EPSON

S1C17W11 (rev1.0)

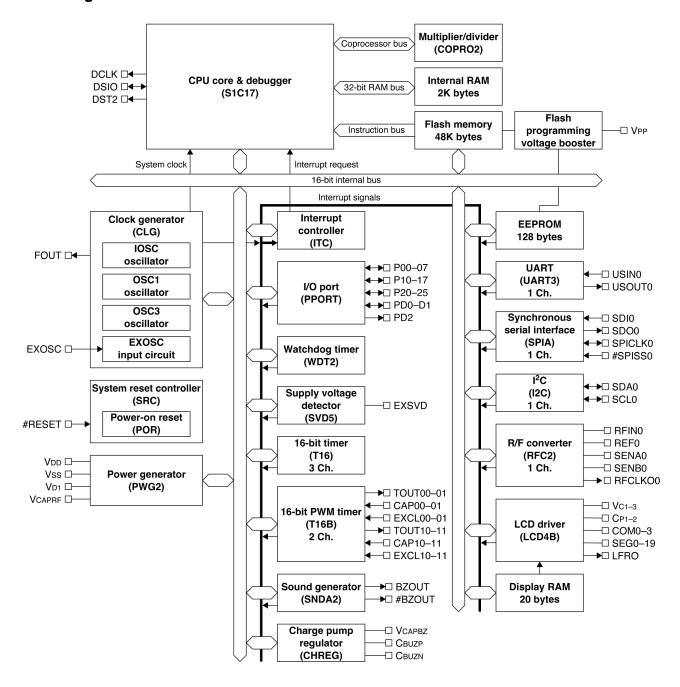
16-bit Single Chip Microcontroller

- Low-voltage operation from 1.2V possible using a single alkaline or silver oxide button cell battery.
- Sleep mode power consumption of 109nA (all registers, SRAM, and terminal states are retained.)
- Equipped with an R/F converter (RFC2) for high-resolution measurements even in low-voltage environments.
- A power supply voltage doubling circuit (max. 5V) can be used to boost the buzzer volume or drive a white LED.
- Equipped with 128 bytes of EEPROM for storing sensor calibration values and measurement values.

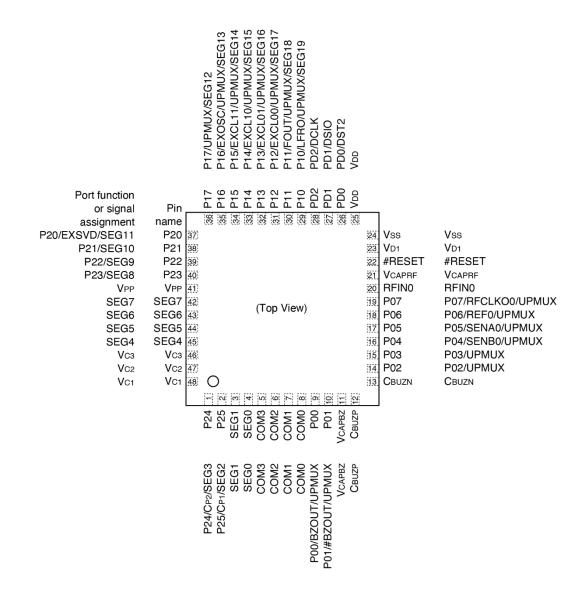
Overview

The S1C17W11 is a 16-bit MCU featuring low power consumption. It incorporates various serial interfaces, an LCD driver, and a CR oscillation-type A/D converter (R/F converter). Combined with the powerful processing capability of a 16-bit CPU, it is best suited for battery-powered equipment requiring LCD and resistance measurement functions (such as thermometers, water quality meters, and salinity meters). In addition, it includes a charge pump regulator for driving a buzzer and LEDs, allowing for white LED illumination and increased buzzer volume.

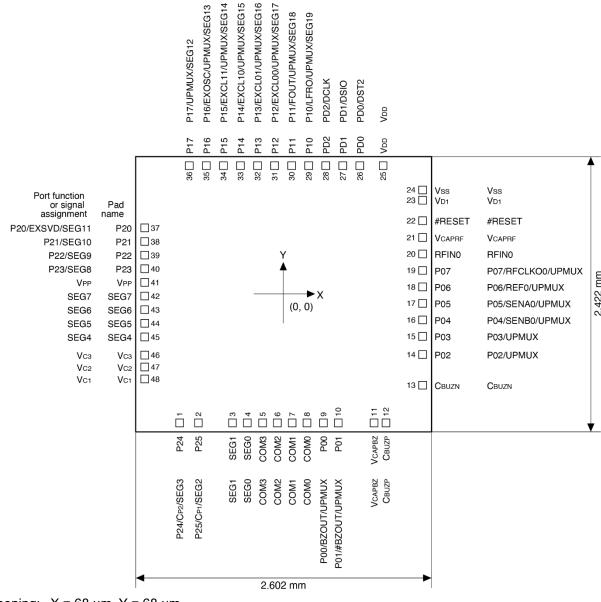
■ Features


Model	S1C17W11
CPU	
CPU core	Seiko Epson original 16-bit RISC CPU core S1C17
Other	On-chip debugger
Embedded Flash memory	
Capacity (for both instructions and data)	48K bytes
Erase/program count	1,000 times (min.) * Programming by the debugging tool ICDmini
Other	Security function to protect from reading/programming by ICDmini
	On-board programming function using ICDmini * An external smoothing capacitor is required.
	Flash programming voltage can be generated internally.
Embedded EEPROM	
Capacity	128 bytes
Erase/program count	100,000 times (min.)
Embedded RAM	
Capacity	2K bytes
Embedded display RAM	
Capacity	20 bytes (4 COM x 20 SEG x 2 screens)
Clock generator (CLG)	
System clock source	4 sources (IOSC/OSC1/OSC3/EXOSC)
System clock frequency (operating frequency)	4.2 MHz (max.)
IOSC oscillator circuit (boot clock source)	700 kHz (typ.) embedded oscillator
	23 μs (max.) starting time (time from cancelation of SLEEP state to vector table read by the CPU)
OSC1 oscillator circuit	32 kHz (typ.) embedded oscillator
OSC3 oscillator circuit	4 MHz (max.)/2 MHz/1 MHz/500 kHz/384 kHz/250 kHz embedded oscillator
EXOSC clock input	4.2 MHz (max.) square or sine wave input
Other	Configurable system clock division ratio
	Configurable system clock used at wake up from SLEEP state
	Operating clock frequency for the CPU and all peripheral circuits is selectable.

Model		S1C17W11					
I/O port (PPORT)							
Number of general-purpose	Input/output port	24 bits (max.), 2 bits can also be used as debug ports (DSIO / DST2).					
ports	Output port	1 bit (max.), Can also be used as a debug port (DCLK).					
	Other	Pins are shared with the peripheral I/O.					
Number of input interrupt por	ts	22 bits (max.)					
Number of ports that support	universal port	16 bits					
multiplexer (UPMUX)	·	A peripheral circuit I/O function selected via software can be assigned to each port. Applicable functions: I2C, SPIA, UART3, T16B					
LED drive output ports		2 bits, Nch open-drain, maximum output current 10 mA					
Timers							
Watchdog timer (WDT2)		Generates NMI or hardware reset.					
Traising union (11212)		Programmable NMI/reset generation cycle					
16-bit timer (T16)		3 channels					
(1.10)		Generates the SPIA master clock.					
16-bit PWM timer (T16B)		2 channels					
To sich vvivi aimor (1 105)		Event counter/capture function					
		PWM waveform generation function					
		Number of PWM output or capture input ports: 2 ports (per channel)					
Supply voltage detector (S	VD5)	Number of 1 www output of capture input ports. 2 ports (per chainler)					
Detection voltage	V D 3)	V _{DD} or external voltage (One external voltage input port is provided, and an external voltage level can be detected even if it exceeds V _{DD} .)					
Detection level		32 levels (1.15 to 3.2 V)					
Other		Intermittent operation mode					
Other		Generates an interrupt or reset according to the detection level evaluation.					
Serial interfaces		Constitutes an interrupt of reset assessaning to the actionism to various and action.					
UART (UART3)		1 channel					
(0,)		Baud-rate generator included, IrDA1.0 supported					
		Open drain output, signal polarity, and baud rate division ratio are configurable.					
		Infrared communication carrier modulation output function					
Synchronous serial interface	(SPIA)	1 channel					
5,	(3)	2 to 16-bit variable data length					
		The 16-bit timer (T16) can be used for the baud-rate generator in master mode.					
I ² C (I2C) *1		1 channel					
1 0 (120)		Baud-rate generator included					
Sound generator (SNDA2)		Bada Tate gonerator molados					
Buzzer output function		512 Hz to 16 kHz output frequencies					
Buzzer output function		One-shot output function					
Molady generation function		Pitch: 128 Hz to 16 kHz ≈ C3 to C6					
Melody generation function		Duration: 7 notes/rests (Half note/rest to thirty-second note/rest)					
		, , ,					
		Tempo: 16 tempos (30 to 480)					
Channa numan namulatan (Cl	IDEO)	Tie may be specified.					
Charge pump regulator (Ch	HREG)	V 0.450V//					
Output voltage Other		$V_{DD} \times 2 \le 5.0 \text{ V (typ.)}$					
		Used for the I/O voltage of the SNDA2 output (BZOUT, #BZOUT)					
LOD datas (LOD (T)		Can be used as the LED drive power supply, 10 mA (max.) output current					
LCD driver (LCD4B)							
LCD output (max value.)		20SEG x 1 to 4COM (max.)					
LCD power supply		1/3 bias power supply included (internal step-up/resistive divider selectable). An external voltage can be applied. (Internal resistors are provided to divide the external source voltage).					
100		source voltage.)					
LCD contrast		29 levels (Only when the internal voltage booster is enabled.)					


Model	S1C17W11					
R/F converter (RFC2)						
Conversion method	CR oscillation type with 24-bit counters					
Number of conversion channels	1 channel					
Supported sensors	DC-bias resistive sensors					
	AC-bias resistive sensors					
Number of connectable sensors	2 (max.) in DC resistive sensor mode					
	1 (max.) in AC resistive sensor mode					
Reference power supply for measurement	Internally generated by dedicated power circuit					
Multiplier/divider (COPRO2)						
Arithmetic functions	16-bit x 16-bit multiplier					
	16-bit x 16-bit + 32-bit multiply and accumulation unit					
	32-bit ÷ 32-bit divider					
Reset						
#RESET pin	Reset when the reset pin is set to low.					
Power-on reset	Reset at power on.					
Key entry reset	Reset when the P10 to P11/P12/P13 keys are pressed simultaneously (can be enabled/disabled using a register).					
Watchdog timer reset	Reset when the watchdog timer overflows (can be enabled/disabled using a register).					
Supply voltage detector reset	Reset when the supply voltage detector detects the set voltage level (can be enabled/disabled using a register).					
Interrupt						
Non-maskable interrupt	4 systems (Reset, address misaligned interrupt, debug, NMI)					
Programmable interrupt	External interrupt: 1 system (8 levels)					
	Internal interrupt: 14 systems (8 levels)					
Power supply voltage						
V _{DD} operating voltage	1.2 to 3.6 V					
Internal logic voltage	Selectable among 1.2 V/1.4 V/1.8 V					
V _{DD} operating voltage for Flash programming	2.2 to 3.6 V (Programming voltage V _{PP} : 7.5 V supplied externally or generated internally)					
V _{DD} operating voltage for EEPROM programming	2.2 to 3.6 V (Programming voltage V _{PP} : generated internally)					
Operating temperature						
Operating temperature range	-40 to 85°C					
Current consumption (typ. value)						
SLEEP mode	109 nA (VDD=1.5V), 116 nA (VDD=3.0V) IOSC = OFF, OSC1 = OFF, OSC3 = OFF, V _{D1} =1.2V					
HALT mode	1.28 μA OSC1 = 32 kHz, V _{D1} =1.2V					
RUN mode	3.82 μA OSC1 = 32 kHz, CPU = OSC1, V _{D1} =1.2V					
	75.6 μA IOSC = 700kHz, CPU = IOSC, V _{D1} =1.2V					
	156 μA OSC3 = 1MHz, CPU = OSC3, V _{D1} =1.2V					
Shipping form						
1	SQFN7-48pin (P-VQFN048-0707-0.50, 7 × 7 mm, t = 1.0 mm, 0.5 mm pitch) *2					
2	Bare chip					

^{*1} The input filter in I2C (SDA and SCL inputs) does not comply with the standard for removing noise spikes less than 50 ns.
*2 Shown in parentheses is the JEITA package name.


Block Diagram

Pin Configuration Diagram SQFN7-48pin

Chip

Pad opening: $X = 68 \mu m$, $Y = 68 \mu m$

Chip thickness: 400 µm

No.	Χμm	Υμm	No.	Χμm	Υμm	No.	Xμm	Yµm	No.	Xμm	Yμm
1	-915.0	-1131.5	13	1221.5	-800.0	25	875.0	1131.5	37	-1221.5	585.0
2	-750.0	-1131.5	14	1221.5	-530.0	26	670.0	1131.5	38	-1221.5	465.0
3	-450.0	-1131.5	15	1221.5	-370.0	27	520.0	1131.5	39	-1221.5	345.0
4	-320.0	-1131.5	16	1221.5	-225.0	28	370.0	1131.5	40	-1221.5	225.0
5	-185.0	-1131.5	17	1221.5	-80.0	29	220.0	1131.5	41	-1221.5	105.0
6	-55.0	-1131.5	18	1221.5	65.0	30	70.0	1131.5	42	-1221.5	-15.0
7	75.0	-1131.5	19	1221.5	210.0	31	-80.0	1131.5	43	-1221.5	-135.0
8	205.0	-1131.5	20	1221.5	355.0	32	-230.0	1131.5	44	-1221.5	-255.0
9	350.0	-1131.5	21	1221.5	500.0	33	-380.0	1131.5	45	-1221.5	-375.0
10	480.0	-1131.5	22	1221.5	647.5	34	-530.0	1131.5	46	-1221.5	-534.5
11	795.0	-1131.5	23	1221.5	827.5	35	-680.0	1131.5	47	-1221.5	-639.5
12	900.0	-1131.5	24	1221.5	917.5	36	-830.0	1131.5	48	-1221.5	-744.5

Pin Descriptions

Symbol meanings

Assigned signal:

The signal listed at the top of each pin is assigned in the initial state. The pin function must be switched via software to assign another signal (see the "I/O Ports" chapter).

I/O:

I = Input
O = Output
I/O = Input/output
P = Power supply
A = Analog signal

Hi-Z = High impedance state

Initial state:

I (Pull-up) = Input with pulled up
I (Pull-down)= Input with pulled down
Hi-Z = High impedance state
O (H) = High level output
O (L) = Low level output

Tolerant fail-safe structure:

✓ = Over voltage tolerant fail-safe type I/O cell included (see the "I/O Ports" chapter)

Pin name	Assigned signal	I/O	Initial state	Tolerant fail-safe structure	Function	
V_{DD}	V_{DD}	Р	-	-	Power supply (+)	
Vss	Vss	Р	-	-	GND	
V_{PP}	V_{PP}	Р	-	-	Flash programming power supply	
V_{D1}	V_{D1}	Α	-	-	DC-DC converter output	
V_{C1-3}	V _{C1-3}	Р	-	-	LCD panel drive power supply	
#RESET	#RESET	I	I (Pull-up)	-	Reset input	
V _{CAPBZ}	V _{CAPBZ}	Р	Hi-Z	-	Buzzer/LED drive voltage output	
C _{BUZP}	C _{BUZP}	Α	Hi-Z	-	Buzzer/LED drive power supply boost capacitor connection pin	
C _{BUZN}	C _{BUZN}	Α	Hi-Z	-	Buzzer/LED drive power supply boost capacitor connection pin	
V _{CAPRF}	V_{CAPRF}	Α	-	-	R/F converter regulator output	
RFIN0	RFIN0	Α	Hi-Z	-	R/F converter Ch.0 oscillation input	
P00	P00	I/O	Hi-Z	✓	I/O port	
	BZOUT	0			Sound generator buzzer output	
	UPMUX	I/O			User-selected I/O (universal port multiplexer)	
P01	P01	I/O	Hi-Z	✓	I/O port	
	#BZOUT	0			Sound generator inverted buzzer output	
	UPMUX	I/O			User-selected I/O (universal port multiplexer)	
P02	P02	I/O	Hi-Z	✓	I/O port (open-drain type)	
	UPMUX	I/O			User-selected I/O (universal port multiplexer)	
P03	P03	I/O	Hi-Z	✓	I/O port (open-drain type)	
	UPMUX	I/O			User-selected I/O (universal port multiplexer)	
P04	P04	I/O	Hi-Z	✓	I/O port	
	SENB0	Α			R/F converter Ch.0 sensor B oscillation pin	
	UPMUX	I/O			User-selected I/O (universal port multiplexer)	

Pin name	Assigned signal	I/O	Initial state	Tolerant fail-safe structure	Function	
P05	P05	I/O	Hi-Z	✓	I/O port	
	SENA0	Α			R/F converter Ch.0 sensor A oscillation pin	
	UPMUX	I/O			User-selected I/O (universal port multiplexer)	
P06	P06	I/O	Hi-Z	✓	I/O port	
	REF0	Α			R/F converter Ch.0 reference oscillation pin	
	UPMUX	I/O			User-selected I/O (universal port multiplexer)	
P07	P07	I/O	Hi-Z	✓	I/O port	
	RFCLKO0	Α			R/F converter Ch.0 clock monitor output	
	UPMUX	I/O			User-selected I/O (universal port multiplexer)	
P10	P10	I/O	Hi-Z	✓	I/O port	
	LFRO	0			LCD frame signal monitor output	
	UPMUX	I/O			User-selected I/O (universal port multiplexer)	
	SEG19	Α			LCD segment output 19	
P11	P11	I/O	Hi-Z	✓	I/O port	
	FOUT	0			Clock generator clock external output	
	UPMUX	I/O			User-selected I/O (universal port multiplexer)	
	SEG18	Α			LCD segment output 18	
P12	P12	I/O	Hi-Z	✓	I/O port	
	EXCL00	I			16-bit PWM timer Ch.0 event counter input 0	
	UPMUX	I/O			User-selected I/O (universal port multiplexer)	
	SEG17	Α			LCD segment output 17	
P13	P13	I/O	Hi-Z	✓	I/O port	
	EXCL01	I			16-bit PWM timer Ch.0 event counter input 1	
	UPMUX	I/O			User-selected I/O (universal port multiplexer)	
	SEG16	Α			LCD segment output 16	
P14	P14	I/O	Hi-Z	✓	I/O port	
	EXCL10	I			16-bit PWM timer Ch.1 event counter input 0	
	UPMUX	I/O			User-selected I/O (universal port multiplexer)	
	SEG15	Α			LCD segment output 15	
P15	P15	I/O	Hi-Z	✓	I/O port	
	EXCL11	ı			16-bit PWM timer Ch.1 event counter input 1	
	UPMUX	I/O			User-selected I/O (universal port multiplexer)	
	SEG14	Α			LCD segment output 14	
P16	P16	I/O	Hi-Z	✓	I/O port	
	EXOSC	ı			Clock generator external clock input	
	UPMUX	I/O			User-selected I/O (universal port multiplexer)	
	SEG13	Α			LCD segment output 13	
P17	P17	I/O	Hi-Z	✓	I/O port	
	UPMUX	I/O			User-selected I/O (universal port multiplexer)	
	SEG12	Α			LCD segment output 12	
P20	P20	I/O	Hi-Z	✓	I/O port	
	EXSVD	Α			External power supply voltage detection input	
	SEG11	Α			LCD segment output 11	
P21	P21	I/O	Hi-Z	✓	I/O port	
	SEG10	Α			LCD segment output 10	
P22	P22	I/O	Hi-Z	✓	I/O port	
	SEG9	Α			LCD segment output 9	
P23	P23	I/O	Hi-Z	✓	I/O port	
	SEG8	Α			LCD segment output 8	
P24	P24	0	Hi-Z	✓	✓ I/O port	

Pin name	Assigned signal	I/O	Initial state	Tolerant fail-safe structure	Function	
	C _{P2}	Α			LCD drive voltage boost capacitor connection pin	
	SEG3	Α			LCD segment output 3	
P25	P25	I/O	Hi-Z	✓	I/O port	
	C _{P1}	Α			LCD drive voltage boost capacitor connection pin	
	SEG2	Α			LCD segment output 2	
PD0	DST2	0	O (L)	✓	On-chip debugger status output	
	PD0	I/O			I/O port	
PD1	DSIO	I/O	I (Pull-up)	✓	On-chip debugger data input/output	
	PD1	I/O			I/O port	
PD2	DCLK	0	O (H)	-	On-chip debugger clock output	
	PD2	0			Output port	
COM0-3	COM0-3	Α	Hi-Z	-	LCD common outputs	
SEG0-1	SEG0-1	Α	Hi-Z	-	LCD segment outputs	
SEG4-7	SEG4-7					

Note: In the peripheral circuit descriptions, the assigned signal name is used as the pin name.

Universal port multiplexer (UPMUX)

The universal port multiplexer (UPMUX) allows software to select the peripheral circuit input/output function to be assigned to each pin from those listed below.

Peripheral Circuit Input/output Function Selectable by UPMUX

Peripheral circuit	Signal to be assigned	I/O	Channel number n	Function
Synchronous serial	SDIn	I	n = 0	SPIA Ch.n data input
interface (SPIA)	SDOn	0		SPIA Ch.n data output
	SPICLK <i>n</i>	I/O		SPIA Ch.n clock input/output
	#SPISSn	ı		SPIA Ch.n slave-select input
I ² C (I2C)	SCLn	I/O	n = 0	I2C Ch.n clock input/output
	SDAn	I/O		I2C Ch.n data input/output
UART (UART3)	USINn	ı	n = 0	UART3 Ch.n data input
	USOUTn	0		UART3 Ch.n data output
16-bit PWM timer (T16B)	TOUTn0/CAPn0	I/O	n = 0, 1	T16B Ch.n PWM output/capture input 0
	TOUTn1/CAPn1	I/O	1	T16B Ch.n PWM output/capture input 1

Note: Do not assign a function to two or more pins simultaneously.

NOTICE: PLEASE READ THE FOLLOWING NOTICE CAREFULLY BEFORE USING THIS DOCUMENT

The contents of this document are subject to change without notice.

- 1. This document may not be copied, reproduced, or used for any other purpose, in whole or in part, without the consent of the Seiko Epson Corporation ("Epson").
- 2. Before purchasing or using Epson products, please contact our sales representative for the latest information and always be sure to check the latest information published on Epson's official web sites and other sources.
- 3. Information provided in this document such as application circuits, programs, usage, etc., are for reference purposes only. Using the application circuits, programs, usage, etc. in the design of your equipment or systems is your own responsibility. Epson makes no guarantees against any infringements or damages to any third parties' intellectual property rights or any other rights resulting from the information. This document does not grant you any licenses, intellectual property rights or any other rights with respect to Epson products owned by Epson or any third parties.
- 4. Epson is committed to constantly improving quality and reliability, but semiconductor products in general are subject to malfunction and failure. By using Epson products, you shall be responsible for your hardware. Software and systems must be designed well enough to prevent death or injury as well as any property damage even if any of the malfunctions or failures might be caused by Epson products. When designing your products using Epson products, please be sure to check and comply with the latest information regarding Epson products (this document, specifications, data sheets, manuals, Epson's web site, etc.). When using the information included above materials such as product data, charts, technical contents, programs, algorithms and application circuit examples, you shall evaluate your products both on a stand-alone basis as well as within your overall systems. You shall be solely responsible for deciding whether or not to adopt and use Epson products.
- 5. Epson has prepared this document and programs provided in this document carefully to be accurate and dependable, but Epson does not guarantee that the information and the programs are always accurate and complete. Epson assumes no responsibility for any damages which you incur due to misinformation in this document and the programs.
- 6. No dismantling, analysis, reverse engineering, modification, alteration, adaptation, reproduction, etc., of Epson products is allowed.
- 7. Epson products have been designed, developed and manufactured to be used in general electronic applications (office equipment, communications equipment, measuring instruments, home electronics, etc.) ("General Purpose") and applications which is individually listed in this document or designated by Epson ("Designated Purpose"). Epson products are NOT intended for any use beyond the General Purpose and Designated Purpose uses that requires particular/higher quality or reliability in order to refrain from causing any malfunction or failure leading to death, injury, serious property damage or severe impact on society, including, but not limited to those listed below ("Particular Purpose"). Therefore, you are advised to use Epson products only for General Purpose and Designated Purpose uses. Should you desire to buy and use Epson products for a Particular Purpose, Epson makes no warranty and disclaims with respect to Epson products, whether express or implied, including without limitation any implied warranty of merchantability or fitness for any Particular Purpose. Please be sure to contact our sales representative and obtain approval in advance.

[Examples of Particular Purpose]

Space equipment (artificial satellites, rockets, etc.) /

Transportation vehicles and their control equipment (automobiles, aircraft, trains, ships, etc.) /

Medical equipment / Relay equipment to be placed on ocean floor /

Power station control equipment / Disaster or crime prevention equipment / Traffic control equipment / Financial equipment

Other applications requiring similar levels of reliability as those listed above. Please be sure to contact our sales representative for details of the other applications.

- 8. Epson products listed in this document and our associated technologies shall not be used in any equipment or systems that laws and regulations in Japan or any other countries prohibit to manufacture, use or sell. Furthermore, Epson products and our associated technologies shall not be used for developing weapons of mass destruction, or any other military purposes or applications. If exporting Epson products or our associated technologies, you shall comply with the Foreign Exchange and Foreign Trade Control Act in Japan, Export Administration Regulations in the U.S.A. (EAR) and other export-related laws and regulations in Japan and any other countries and follow the required procedures as provided by the relevant laws and regulations.
- 9. Epson assumes no responsibility for any damages (whether direct or indirect) caused by or in relation with your non-compliance with the terms and conditions in this document.
- 10. Epson assumes no responsibility for any damages (whether direct or indirect) incurred by any third party that you assign, transfer, loan, etc., Epson products to.
- 11. For more details or other concerns about this document, please contact our sales representative.
- 12. Company names and product names listed in this document are trademarks or registered trademarks of their respective companies.

Rev. e1.5, 2025. 7

©2025 Seiko Epson Corporation All rights reserved.

Seiko Epson Corporation
Sales & Marketing Division

Epson semiconductor website

global.epson.com/products_and_drivers/semicon/

MD Sales & Marketing Department

421-8 Hino, Hino-shi, Tokyo 191-8501, Japan

Document code: 414751100 First issue Nov, 2025