

S1D13A05 LCD/USB Companion Chip

Programming Notes and
Examples

Document Number: X40A-G-003-06.1
Rev. 6.1

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written permission
of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does
not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application
or use in any product or circuit and, further, there is no representation that this material is applicable to products
requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights
is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance
with this material will be free from any patent or copyright infringement of a third party. When exporting the
products or technology described in this material, you should comply with the applicable export control laws and
regulations and follow the procedures required by such laws and regulations. You are requested not to use, to resell,
to export and/or to otherwise dispose of the products (and any technical information furnished, if any) for the devel-
opment and/or manufacture of weapon of mass destruction or for other military purposes.

All brands or product names mentioned herein are trademarks and/or registered trademarks of their respective
companies.

©SEIKO EPSON CORPORATION 2001-2018. All rights reserved.
2 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

Table of Contents

1 Introduction . 7
2 Identifying the S1D13A05 . 8
3 Initialization . 9

4 Memory Models . 10
4.1 Display Buffer Location . 10
4.2 Memory Organization for One Bit-per-pixel (2 Colors/Gray Shades) 10
4.3 Memory Organization for Two Bit-per-pixel (4 Colors/Gray Shades) 11
4.4 Memory Organization for Four Bit-per-pixel (16 Colors/Gray Shades) 11
4.5 Memory Organization for 8 Bpp (256 Colors/64 Gray Shades) 12
4.6 Memory Organization for 16 Bpp (65536 Colors/64 Gray Shades) 12

5 Look-Up Table (LUT) . 13
5.1 Registers . 13

5.1.1 Look-Up Table Write Register . 13
5.1.2 Look-Up Table Read Register . 14

5.2 Look-Up Table Organization . 14
5.2.1 Gray Shade Modes . 16
5.2.2 Color Modes . 19

6 Power Save Mode . 23
6.1 Overview . 23
6.2 Registers . 24

6.2.1 Power Save Mode Enable . 24
6.2.2 Memory Controller Power Save Status . 24

6.3 LCD Power Sequencing . 25
6.4 Enabling Power Save Mode . 26
6.5 Disabling Power Save Mode . 26

7 SwivelView‘ . 27
7.1 SwivelView 90° . 28
7.2 SwivelView 180° . 29
7.3 SwivelView 270° . 30
7.4 SwivelView Registers . 31

7.4.1 SwivelView 0° (Landscape) . 34
7.4.2 SwivelView 90° . 35
7.4.3 SwivelView 180° . 36
7.4.4 SwivelView 270° . 37

7.5 Examples . 38
7.6 Limitations . 42
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 3
Rev. 6.1

7.6.1 SwivelView 0° and 180° . 42
7.6.2 SwivelView 90° and 270° . 42

8 Picture-In-Picture Plus (PIP+) .43
8.1 Registers . .44
8.2 Picture-In-Picture-Plus Examples .51

8.2.1 SwivelView 0° (Landscape Mode) . 51
8.2.2 SwivelView 90° . 54
8.2.3 SwivelView 180° . 57
8.2.4 SwivelView 270° . 60

8.3 Limitations .63
8.3.1 SwivelView 0° and 180° . 63
8.3.2 SwivelView 90° and 270° . 63

9 2D BitBLT Engine . .64
9.1 Registers . .64
9.2 BitBLT Descriptions .72

9.2.1 Write BitBLT with ROP . 73
9.2.2 Color Expansion BitBLT . 76
9.2.3 Color Expansion BitBLT With Transparency . 80
9.2.4 Solid Fill BitBLT . 80
9.2.5 Move BitBLT in a Positive Direction with ROP 82
9.2.6 Move BitBLT in Negative Direction with ROP . 84
9.2.7 Transparent Write BitBLT . 85
9.2.8 Transparent Move BitBLT in Positive Direction 88
9.2.9 Pattern Fill BitBLT with ROP . 89
9.2.10 Pattern Fill BitBLT with Transparency . 91
9.2.11 Move BitBLT with Color Expansion . 93
9.2.12 Transparent Move BitBLT with Color Expansion 94
9.2.13 Read BitBLT . 94

9.3 BitBLT Synchronization . .97
9.4 Known Limitations . .98
9.5 Sample Code .98

10 Programming the USB Controller . .99
10.1 Registers and Interrupts .99

10.1.1 Registers . 99
10.1.2 Interrupts . .100

10.2 Initialization . 100
10.2.1 GPIO Setup .100
10.2.2 USB Registers .101

10.3 Data Transfers . 102
4 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

10.3.1 Receiving Data from the Host - the OUT command 102
10.3.2 Sending Data to the Host - the IN command . 106

10.4 Known Issues . 111
10.4.1 EP4 NAK Status not set correctly in USB Status Register 111
10.4.2 Write to EP4 FIFO Valid bit cleared by NAK . 112
10.4.3 EP3 Interrupt Status bit set by NAKs . 112
10.4.4 “EP2 Valid Bit” in USB Status can be erroneously set by firmware 115
10.4.5 Setting EP4 FIFO Valid bit while NAKing IN token 115

11 Hardware Abstraction Layer . 117
11.1 Introduction . 117
11.2 API for the HAL Library . 117

11.2.1 Startup Routines . 118
11.2.2 Memory Access . 120
11.2.3 Register Access . 121
11.2.4 Clock Support . 123
11.2.5 Miscellaneous . 124

12 Sample Code . 126

13 Change Record . 127
14 Sales and Technical Support . 128
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 5
Rev. 6.1

THIS PAGE LEFT BLANK
6 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

Introduction
1 Introduction
This guide discusses programming issues and provides examples for the main features of
the S1D13A05, such as SwivelView, Picture-in-Picture Plus, and the BitBLT engine. The
example source code referenced in this guide is available on the web at vdc.epson.com.

This guide also introduces the Hardware Abstraction Layer (HAL), which is designed to
simplify the programming of the S1D13A05. Most S1D13xxx products have HAL support,
thus allowing OEMs to do multiple designs with a common code base.

This document is updated as appropriate. Please check for the latest revision of this
document before beginning any development. The latest revision can be downloaded at
vdc.epson.com.

We appreciate your comments on our documentation. Please contact us via email at
vdc-documentation@ea.epson.com.
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 7
Rev. 6.1

Identifying the S1D13A05
2 Identifying the S1D13A05
The S1D13A05 can be identified by reading the value contained in the Product Information
Register (REG[00h]). To identify the S1D13A05 follow the steps below.

1. Read REG[00h].

2. The production version of the S1D13A05 returns a value of 2Dxx402Dh (where xx
depends on the configuration of the CNF[6:0] pins). This value can be broken down
into the following.

1. The product code for the S1D13A05 is 0Bh (001011 binary) and can be found in
bits 7-2. The product code is repeated in bits 31-26.

2. The revision code is 1h (01 binary) and can be found in bits 1-0. The revision code
is repeated in bits 25-24.

3. The display buffer size is encoded as 40h (00101000 binary) and is contained in
bits 15-8.
8 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

Initialization
3 Initialization
This section describes how to initialize the S1D13A05. Sample code for performing initial-
ization of the S1D13A05 is provided in the file init13A05.c which is available on the
internet at vdc.epson.com.

S1D13A05 initialization can be broken into the following steps.

1. Set all registers to initial values. The values are obtained by using a s1d13A0x.h file
exported from the 13A05CFG configuration utility. For more information on
13A05CFG, see the 13A05CFG User Manual, document number X40A-B-001-xx.

2. Program the Look-Up Table (LUT) with color values. For details on programming the
LUT, see Section 5, “Look-Up Table (LUT)” on page 13.

3. Clear the display buffer.

Refer to the HAL (Hardware Abstraction Layer) sample code available on the internet at
vdc.epson.com for S5U13A05B00C specific initialization (i.e. programming the Cypress
clock chip).
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 9
Rev. 6.1

Memory Models
4 Memory Models
The S1D13A05 contains a display buffer of 256K bytes and supports color depths of 1, 2,
4, 8, and 16 bit-per-pixel. For each color depth, the data format is packed pixel.

Packed pixel data may be envisioned as a stream of pixels. In this stream, pixels are packed
adjacent to each other. If a pixel requires four bits, then it is located in the four most signif-
icant bits of a byte. The pixel to the immediate right on the display occupies the lower four
bits of the same byte. The next two pixels to the immediate right are located in the following
byte, etc.

4.1 Display Buffer Location

The S1D13A05 display buffer is 256K bytes of embedded SRAM. The display buffer is
memory mapped and is accessible directly by software. The memory block location
assigned to the S1D13A05 display buffer varies with each individual hardware platform.

For further information on the display buffer, see the S1D13A05 Hardware Functional
Specification, document number X40A-A-001-xx.

4.2 Memory Organization for One Bit-per-pixel (2 Colors/Gray Shades)

Figure 4-1: Pixel Storage for 1 Bpp in One Byte of Display Buffer

At a color depth of 1 bpp, each byte of display buffer contains eight adjacent pixels. Setting
or resetting any pixel requires reading the entire byte, masking out the unchanged bits and
setting the appropriate bits to 1.

One bit pixels provide 2 gray shades/color possibilities. For monochrome panels the gray
shades are generated by indexing into the first two elements of the green component of the
Look-Up Table (LUT). For color panels the 2 colors are derived by indexing into the first
2 positions of the LUT.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Pixel 0 Pixel 1 Pixel 2 Pixel 3 Pixel 4 Pixel 5 Pixel 6 Pixel 7
10 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

Memory Models
4.3 Memory Organization for Two Bit-per-pixel (4 Colors/Gray Shades)

Figure 4-2: Pixel Storage for 2 Bpp in One Byte of Display Buffer

At a color depth of 2 bpp, each byte of display buffer contains four adjacent pixels. Setting
or resetting any pixel requires reading the entire byte, masking out the unchanged bits and
setting the appropriate bits to 1.

Two bit pixels provide 4 gray shades/color possibilities. For monochrome panels the gray
shades are generated by indexing into the first 4 elements of the green component of the
Look-Up Table (LUT). For color panels the 4 colors are derived by indexing into the first
4 positions of the LUT.

4.4 Memory Organization for Four Bit-per-pixel (16 Colors/Gray Shades)

Figure 4-3: Pixel Storage for 4 Bpp in One Byte of Display Buffer

At a color depth of 4 bpp, each byte of display buffer contains two adjacent pixels. Setting
or resetting any pixel requires reading the entire byte, masking out the upper or lower nibble
(4 bits) and setting the appropriate bits to 1.

Four bit pixels provide 16 gray shades/color possibilities. For monochrome panels the gray
shades are generated by indexing into the first 16 elements of the green component of the
Look-Up Table (LUT). For color panels the 16 colors are derived by indexing into the first
16 positions of the LUT.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Pixel 0
 bits 1-0

Pixel 1
 bits 1-0

Pixel 2
 bits 1-0

Pixel 3
 bits 1-0

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Pixel 0
 bits 3-0

Pixel 1
 bits 3-0
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 11
Rev. 6.1

Memory Models
4.5 Memory Organization for 8 Bpp (256 Colors/64 Gray Shades)

Figure 4-4: Pixel Storage for 8 Bpp in One Byte of Display Buffer

At a color depth of 8 bpp, each byte of display buffer represents one pixel on the display.
At this color depth the read-modify-write cycles are eliminated making the update of each
pixel faster.

Each byte indexes into one of the 256 positions of the LUT. The S1D13A05 LUT supports
six bits per primary color. This translates into 256K possible colors when color mode is
selected. Therefore the display has 256 colors available out of a possible 256K colors.

When a monochrome panel is selected, the green component of the LUT is used to
determine the intensity. The green indices, with six bits, can resolve 64 gray shades.
Display memory values > 64 are truncated. Thus a display memory value of 65 (1000 0001)
displays the same intensity as a display memory value of 1.

4.6 Memory Organization for 16 Bpp (65536 Colors/64 Gray Shades)

Figure 4-5: Pixel Storage for 16 Bpp in Two Bytes of Display Buffer

At a color depth of 16 bpp the S1D13A05 is capable of displaying 64K (65536) colors. The
64K color pixel is divided into three parts: five bits for red, six bits for green, and five bits
for blue. In this mode the LUT is bypassed and output goes directly into the Frame Rate
Modulator.

Should monochrome mode be chosen at this color depth, the output sends the six bits of the
green component to the modulator for a total of 64 possible gray shades.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Pixel 0
bits 7-0

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

Red Component
bits 4-0

Green Component
bits 5-3

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Green Component
bits 2-0

Blue Component
bits 4-0
12 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

Look-Up Table (LUT)
5 Look-Up Table (LUT)
This section discusses programming the S1D13A05 Look-Up Table (LUT). Included is a
summary of the LUT registers, recommendations for color/gray shade LUT values, and
additional programming considerations. For a discussion of the LUT architecture, refer to
the S1D13A05 Hardware Functional Specification, document number X40A-A-001-xx.

The S1D13A05 is designed with a LUT consisting of 256 red/green/blue entries. Each LUT
entry is six bits wide. The color depth (bpp) determines how many indices are used. For
example, 1 bpp uses the first 2 indices, 2 bpp uses the first 4 indices, 4 bpp uses the first 16
indices and 8 bpp uses all 256 indices. 16 bpp bypasses the LUT.

In color modes, the pixel values stored in the display buffer index directly to an RGB value
stored in the LUT. In monochrome modes, the pixel value indexes into the green
component of the LUT and the amount of green at that index controls the intensity.

5.1 Registers

5.1.1 Look-Up Table Write Register

This register receives the data to be written to the red (bits 23-18), green (bits 15-10), and
blue (bits 7-2) components of the Look-Up Table (LUT). Also contained in this register is
the LUT Write Address (bits 31-24) which forms a pointer to the location in the LUT where
the RGB components will be written.

This register should be accessed using a 32-bit write cycle to ensure proper operation. If the
Look-Up Table Write Register is accessed with 8 or 16-bit write, it is important to under-
stand that the RGB data is latched into the LUT only after the completion of the write to the
LUT Write Address bits. On little endian systems, this means a write to bits 31-24. On big
endian systems, this means a write to bits 7-2.

This is a write-only register and returns 00000000h if read.

Note
For further information on the S1D13A05 LUT architecture, see the S1D13A05 Hard-
ware Functional Specification, document number X40A-A-001-xx.

Look-Up Table Write Register
REG[18h] Default = 00000000h Write Only

LUT Write Address LUT Red Write Data n/a

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
LUT Green Write Data n/a LUT Blue Write Data n/a

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 13
Rev. 6.1

Look-Up Table (LUT)
5.1.2 Look-Up Table Read Register

This register contains the data returned from the red (bits 23-18), green (bits 15-10), and
blue (bits 7-2) components of the Look-Up Table. This register also contains the LUT Read
Address (bits 31-24) which forms a pointer to the offset in the LUT where the RGB compo-
nents are read from.

Reading the LUT is a two step process. First the desired index must be set by writing the
LUT Read Address bits with the desired index. Second, the LUT values are retrieved by
reading the Look-Up Table Read Register.

Bits 31-24 are write only and will return 00h when read.

Note
For further information on the S1D13A05 LUT architecture, see the S1D13A05 Hard-
ware Functional Specification, document number X40A-A-001-xx.

5.2 Look-Up Table Organization
• The Look-Up Table treats the value of a pixel as an index into an array. For example, a

pixel value of zero would point to the first LUT entry, whereas a pixel value of seven
would point to the eighth LUT entry.

• The value contained in each LUT entry represents the intensity of the given color or
gray shade. This intensity can range in value from 0 to 3Fh.

• Increasing the LUT data value results in a brighter color or gray shade. For example, a
LUT entry of FCh in the red bank results in bright red output while a LUT entry of 1Ch
results in dull red.

Look-Up Table Read Register
REG[1Ch] Default = 00000000h Write Only (bits 31-24)/Read Only

LUT Read Address (write only) LUT Red Read Data n/a

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
LUT Green Read Data n/a LUT Blue Read Data n/a

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Table 5-1: Look-Up Table Configurations

Color Depth
Look-Up Table Indices Used Effective Gray

Shades/ColorsRED GREEN BLUE
1 bpp gray 2 2 gray shades
2 bpp gray 4 4 gray shades
4 bpp gray 16 16 gray shades
8 bpp gray 64 64 gray shades

16 bpp gray 64 gray shades
1 bpp color 2 2 2 2 colors
2 bpp color 4 4 4 4 colors
4 bpp color 16 16 16 16 colors
14 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

Look-Up Table (LUT)
8 bpp color 256 256 256 256 colors
16 bpp color 65536 colors

= Indicates the Look-Up Table is not used for that display mode

Table 5-1: Look-Up Table Configurations

Color Depth
Look-Up Table Indices Used Effective Gray

Shades/ColorsRED GREEN BLUE
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 15
Rev. 6.1

Look-Up Table (LUT)
5.2.1 Gray Shade Modes

Gray shade (monochrome) modes are selected by the Color/Mono Panel Select bit
(REG[0Ch] bit 6). When this bit is set to 0, the value output to the panel is derived solely
from the green component of the LUT.

For each gray shade depth a table of sample LUT values is provided. These LUT values are
a standardized set of intensities used by the Epson S1D13A05 utility programs.

Note
These LUT values show eight bits of significance. The S1D13A05 LUT uses only the
six MSB. The 2 LSB are ignored.

1 bpp gray shade

The 1 bpp gray shade mode uses the green component of the first 2 LUT entries. The
remaining indices of the LUT are unused.

2 bpp gray shade

The 2 bpp gray shade mode uses the green component of the first 4 LUT entries. The
remaining indices of the LUT are unused.

Table 5-2: Suggested LUT Values for 1 Bpp Gray Shade
Index Red Green Blue

00 00 00 00
01 00 FF 00
02 00 00 00
... 00 00 00
FF 00 00 00

Unused entries

Table 5-3: Suggested LUT Values for 4 Bpp Gray Shade
Index Red Green Blue

00 00 00 00
01 00 55 00
02 00 AA 00
03 00 FF 00
04 00 00 00
... 00 00 00
FF 00 00 00

Unused entries
16 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

Look-Up Table (LUT)
4 bpp gray shade

The 4 bpp gray shade mode uses the green component of the first 16 LUT entries. The
remaining indices of the LUT are unused.

Table 5-4: Suggested LUT Values for 4 Bpp Gray Shade
Index Red Green Blue

00 00 00 00
01 00 10 00
02 00 20 00
03 00 34 00
04 00 44 00
05 00 54 00
06 00 68 00
07 00 78 00
08 00 88 00
09 00 9C 00
0A 00 AC 00
0B 00 BC 00
0C 00 CC 00
0D 00 DC 00
0E 00 EC 00
0F 00 FC 00
10 00 00 00
... 00 00 00
FF 00 00 00

Unused entries
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 17
Rev. 6.1

Look-Up Table (LUT)
8 bpp gray shade

When configured for 8 bpp gray shade mode, the green component of all 256 LUT entries
may be used. The green component of the LUT has six bits of resolution resulting in 64 gray
shades. The remaining 192 green color indices can be programmed, but only to one of the
existing 64 intensities.

Table 5-5: Suggested LUT Values for 8 Bpp Gray Shade
Index Red Green Blue Index Red Green Blue

00 00 00 00 20 00 80 00
01 00 04 00 21 00 84 00
02 00 08 00 22 00 88 00
03 00 0C 00 23 00 8C 00
04 00 10 00 24 00 90 00
05 00 14 00 25 00 94 00
06 00 18 00 26 00 98 00
07 00 1C 00 27 00 9C 00
08 00 20 00 28 00 A0 00
09 00 24 00 29 00 A4 00
0A 00 28 00 2A 00 A8 00
0B 00 2C 00 2B 00 AC 00
0C 00 30 00 2C 00 B0 00
0D 00 34 00 2D 00 B4 00
0E 00 38 00 2E 00 B8 00
0F 00 3C 00 2F 00 BC 00
10 00 40 00 30 00 C0 00
11 00 44 00 31 00 C4 00
12 00 48 00 32 00 C8 00
13 00 4C 00 33 00 CC 00
14 00 50 00 34 00 D0 00
15 00 54 00 35 00 D4 00
16 00 58 00 36 00 D8 00
17 00 5C 00 37 00 DC 00
18 00 60 00 38 00 E0 00
19 00 64 00 39 00 E4 00
1A 00 68 00 3A 00 E8 00
1B 00 6C 00 3B 00 EC 00
1C 00 70 00 3C 00 F0 00
1D 00 74 00 3D 00 F4 00
1E 00 78 00 3E 00 F8 00
1F 00 7C 00 3F 00 FC 00

40 00 00 00
... 00 00 00
FF 00 00 00

Unused entries
18 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

Look-Up Table (LUT)
16 bpp gray shade

The Look-Up Table is bypassed at this color depth, therefore programming the LUT is not
required.

In this mode, the six bits of green in each pixel are used to set the absolute intensity of the
image. This results in 64 gray shades.

5.2.2 Color Modes

In color display modes, the number of LUT entries used is determined by the color depth.
For each supported color depth a table of sample LUT values is provided. These LUT
values are a standardized set of colors used by the Epson S1D13A05 utility programs.

Note
These LUT values show eight bits of significance. The S1D13A05 LUT uses only the
six MSB. The 2 LSB are ignored.

1 bpp color

When the S1D13A05 is configured for 1 bpp color mode the first 2 entries in the LUT are
used. The remaining indices of the LUT are unused.

2 bpp color

When the S1D13A05 is configured for 2 bpp color mode the first 4 entries in the LUT are
used. The remaining indices of the LUT are unused.

Table 5-6: Suggested LUT Values for 1 bpp Color
Index Red Green Blue

00 00 00 00
01 FF FF FF
02 00 00 00
... 00 00 00
FF 00 00 00

= Indicates unused entries in the LUT

Table 5-7: Suggested LUT Values for 2 bpp Color
Index Red Green Blue

00 00 00 00
01 00 00 FF
02 FF 00 00
03 FF FF FF
04 00 00 00
... 00 00 00
FF 00 00 00

= Indicates unused entries in the LUT
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 19
Rev. 6.1

Look-Up Table (LUT)
4 bpp color

When the S1D13A05 is configured for 4 bpp color mode the first 16 entries in the LUT are
used. The remaining indices of the LUT are unused.

The following table shows LUT values that simulate those of a VGA operating in 16 color
mode.

Table 5-8: Suggested LUT Values for 4 bpp Color
Index Red Green Blue

00 00 00 00
01 00 00 AA
02 00 AA 00
03 00 AA AA
04 AA 00 00
05 AA 00 AA
06 AA AA 00
07 AA AA AA
08 00 00 00
09 00 00 FF
0A 00 FF 00
0B 00 FF FF
0C FF 00 00
0D FF 00 FF
0E FF FF 00
0F FF FF FF
10 00 00 00
... 00 00 00
FF 00 00 00

= Indicates unused entries in the LUT
20 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

Look-Up Table (LUT)
8 bpp color

When the S1D13A05 is configured for 8 bpp color mode all 256 entries in the LUT are
used.

The S1D13A05 LUT has six bits (64 intensities) of intensity control per primary color
which is the same as a standard VGA RAMDAC.

The following table shows LUT values that simulate the VGA default color palette.

Table 5-9: Suggested LUT Values 8 bpp Color
Index R G B Index R G B Index R G B Index R G B

00 00 00 00 40 00 00 00 80 FF FF 00 C0 00 00 00
01 00 00 AA 41 00 00 11 81 FF EF 00 C1 00 11 11
02 00 AA 00 42 00 00 22 82 FF DE 00 C2 00 22 22
03 00 AA AA 43 00 00 33 83 FF CD 00 C3 00 33 33
04 AA 00 00 44 00 00 44 84 FF BC 00 C4 00 44 44
05 AA 00 AA 45 00 00 55 85 FF AB 00 C5 00 55 55
06 AA AA 00 46 00 00 66 86 FF 9A 00 C6 00 66 66
07 AA AA AA 47 00 00 77 87 FF 89 00 C7 00 77 77
08 55 55 55 48 00 00 89 88 FF 77 00 C8 00 89 89
09 00 00 FF 49 00 00 9A 89 FF 66 00 C9 00 9A 9A
0A 00 FF 00 4A 00 00 AB 8A FF 55 00 CA 00 AB AB
0B 00 FF FF 4B 00 00 BC 8B FF 44 00 CB 00 BC BC
0C FF 00 00 4C 00 00 CD 8C FF 33 00 CC 00 CD CD
0D FF 00 FF 4D 00 00 DE 8D FF 22 00 CD 00 DE DE
0E FF FF 00 4E 00 00 EF 8E FF 11 00 CE 00 EF EF
0F FF FF FF 4F 00 00 FF 8F FF 00 00 CF 00 FF FF
10 00 00 00 50 00 00 FF 90 FF 00 00 D0 FF 00 00
11 11 11 11 51 00 11 FF 91 FF 00 11 D1 FF 11 11
12 22 22 22 52 00 22 FF 92 FF 00 22 D2 FF 22 22
13 33 33 33 53 00 33 FF 93 FF 00 33 D3 FF 33 33
14 44 44 44 54 00 44 FF 94 FF 00 44 D4 FF 44 44
15 55 55 55 55 00 55 FF 95 FF 00 55 D5 FF 55 55
16 66 66 66 56 00 66 FF 96 FF 00 66 D6 FF 66 66
17 77 77 77 57 00 77 FF 97 FF 00 77 D7 FF 77 77
18 89 89 89 58 00 89 FF 98 FF 00 89 D8 FF 89 89
19 9A 9A 9A 59 00 9A FF 99 FF 00 9A D9 FF 9A 9A
1A AB AB AB 5A 00 AB FF 9A FF 00 AB DA FF AB AB
1B BC BC BC 5B 00 BC FF 9B FF 00 BC DB FF BC BC
1C CD CD CD 5C 00 CD FF 9C FF 00 CD DC FF CD CD
1D DE DE DE 5D 00 DE FF 9D FF 00 DE DD FF DE DE
1E EF EF EF 5E 00 EF FF 9E FF 00 EF DE FF EF EF
1F FF FF FF 5F 00 FF FF 9F FF 00 FF DF FF FF FF
20 00 00 00 60 00 FF FF A0 FF 00 FF E0 00 FF 00
21 11 00 00 61 00 FF EF A1 EF 00 FF E1 11 FF 11
22 22 00 00 62 00 FF DE A2 DE 00 FF E2 22 FF 22
23 33 00 00 63 00 FF CD A3 CD 00 FF E3 33 FF 33
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 21
Rev. 6.1

Look-Up Table (LUT)
16 bpp color

The Look-Up Table is bypassed at this color depth, therefore programming the LUT is not
required.

24 44 00 00 64 00 FF BC A4 BC 00 FF E4 44 FF 44
25 55 00 00 65 00 FF AB A5 AB 00 FF E5 55 FF 55
26 66 00 00 66 00 FF 9A A6 9A 00 FF E6 66 FF 66
27 77 00 00 67 00 FF 89 A7 89 00 FF E7 77 FF 77
28 89 00 00 68 00 FF 77 A8 77 00 FF E8 89 FF 89
29 9A 00 00 69 00 FF 66 A9 66 00 FF E9 9A FF 9A
2A AB 00 00 6A 00 FF 55 AA 55 00 FF EA AB FF AB
2B BC 00 00 6B 00 FF 44 AB 44 00 FF EB BC FF BC
2C CD 00 00 6C 00 FF 33 AC 33 00 FF EC CD FF CD
2D DE 00 00 6D 00 FF 22 AD 22 00 FF ED DE FF DE
2E EF 00 00 6E 00 FF 11 AE 11 00 FF EE EF FF EF
2F FF 00 00 6F 00 FF 00 AF 00 00 FF EF FF FF FF
30 00 00 00 70 00 FF 00 B0 00 00 00 F0 00 00 FF
31 00 11 00 71 11 FF 00 B1 11 00 11 F1 11 11 FF
32 00 22 00 72 22 FF 00 B2 22 00 22 F2 22 22 FF
33 00 33 00 73 33 FF 00 B3 33 00 33 F3 33 33 FF
34 00 44 00 74 44 FF 00 B4 44 00 44 F4 44 44 FF
35 00 55 00 75 55 FF 00 B5 55 00 55 F5 55 55 FF
36 00 66 00 76 66 FF 00 B6 66 00 66 F6 66 66 FF
37 00 77 00 77 77 FF 00 B7 77 00 77 F7 77 77 FF
38 00 89 00 78 89 FF 00 B8 89 00 89 F8 89 89 FF
39 00 9A 00 79 9A FF 00 B9 9A 00 9A F9 9A 9A FF
3A 00 AB 00 7A AB FF 00 BA AB 00 AB FA AB AB FF
3B 00 BC 00 7B BC FF 00 BB BC 00 BC FB BC BC FF
3C 00 CD 00 7C CD FF 00 BC CD 00 CD FC CD CD FF
3D 00 DE 00 7D DE FF 00 BD DE 00 DE FD DE DE FF
3E 00 EF 00 7E EF FF 00 BE EF 00 EF FE EF EF FF
3F 00 FF 00 7F FF FF 00 BF FF 00 FF FF FF FF FF

Table 5-9: Suggested LUT Values 8 bpp Color (Continued)
Index R G B Index R G B Index R G B Index R G B
22 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

Power Save Mode
6 Power Save Mode
The S1D13A05 is designed for very low-power applications. During normal operation, the
internal clocks are dynamically disabled when not required. The S1D13A05 design also
includes a Power Save Mode to further save power. When Power Save Mode is initiated,
LCD power sequencing is required to ensure the LCD bias power supply is disabled
properly. For further information on LCD power sequencing, see Section 6.3, “LCD Power
Sequencing” on page 25.

For Power Save Mode AC Timing, see the S1D13A05 Hardware Functional Specification,
document number X40A-A-001-xx.

6.1 Overview

The S1D13A05 includes a software initiated Power Save Mode. Enabling/disabling Power
Save Mode is controlled using the Power Save Mode Enable bit (REG[14h] bit 4).

While Power Save Mode is enabled the following conditions apply.

• Most registers are accessible.

• USB registers are not accessible

• Memory writes are possible1

• Memory reads are not possible

• LCD display is inactive.

• LCD interface outputs are forced low.

Note
1 Memory writes are possible during power save mode because the S1D13A05 dynami-
cally enables the memory controller for display buffer writes.
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 23
Rev. 6.1

Power Save Mode
6.2 Registers

6.2.1 Power Save Mode Enable

The Power Save Mode Enable bit initiates Power Save Mode when set to 1. Setting the bit
to 0 disables Power Save Mode and returns the S1D13A05 to normal mode. At reset this
bit is set to 1.

Note
Enabling/disabling Power Save Mode requires proper LCD Power Sequencing. See Sec-
tion 6.3, “LCD Power Sequencing” on page 25.

6.2.2 Memory Controller Power Save Status

The Memory Controller Power Save Status bit is a read-only status bit which indicates the
power save state of the S1D13A05 SRAM interface. When this bit returns a 1, the SRAM
interface is powered down and the memory clock source may be disabled. When this bit
returns a 0, the SRAM interface is active. This bit returns a 0 after a chip reset.

Note
Memory writes are possible during power save mode because the S1D13A05 dynami-
cally enables the memory controller for display buffer writes.

Power Save Configuration Register
REG[14h] Default = 00000010h Read/Write

n/a

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

n/a
VNDP
Status
(RO)

Memory
Power
Save
Status
(RO)

n/a

Power
Save
Mode

Enable

n/a Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Power Save Configuration Register
REG[14h] Default = 00000010h Read/Write

n/a

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

n/a
VNDP
Status
(RO)

Memory
Power
Save
Status
(RO)

n/a

Power
Save
Mode

Enable

n/a Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
24 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

Power Save Mode
6.3 LCD Power Sequencing

The S1D13A05 requires LCD power sequencing (the process of powering-on and
powering-off the LCD panel). LCD power sequencing allows the LCD bias voltage to
discharge prior to shutting down the LCD signals, preventing long term damage to the panel
and avoiding unsightly “lines” at power-on/power-off.

Proper LCD power sequencing for power-off requires a delay from the time the LCD power
is disabled to the time the LCD signals are shut down. Power-on requires the LCD signals
to be active prior to applying power to the LCD. This time interval depends on the LCD
bias power supply design. For example, the LCD bias power supply on the S1D13A05
Evaluation Board requires 0.5 seconds to fully discharge. Other power supply designs may
vary.

This section assumes the LCD bias power is controlled through GPIO0. The S1D13A05
GPIO pins are multi-use pins and may not be available in all system designs. For further
information on the availability of GPIO pins, see the S1D13A05 Hardware Functional
Specification, document number X40A-A-001-xx.
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 25
Rev. 6.1

Power Save Mode
6.4 Enabling Power Save Mode

Enable Power Save Mode using the following steps.

1. Turn off the LCD bias power.

Note
The S1D13A05 evaluation board uses GPIO0 to control the LCD bias power supplies.
Your system design may vary.

2. Wait for the LCD bias power supply to discharge. The discharge time is based on the
discharge rate of the power supply.

3. Enable Power Save Mode - set REG[14h] bit 4 to 1.

The S1D13A05 is now in Power Save Mode. To further increase power savings PCLK and
MCLK can be switched off (see steps 4 and 5).

4. At this time, the LCD pixel clock source may be disabled.

5. After the Memory Controller Power Save Status bit (REG[14h] bit 6)
returns a 1, the Memory Clock source may be shut down.

6.5 Disabling Power Save Mode

Bring the S1D13A05 out of Power Save Mode using the following steps.

1. If the Memory Clock source is shut down, it must be started.

2. If the pixel clock is disabled, it must be started.

3. Disable Power Save Mode - set REG[14h] bit 4 to 0.

4. Wait for the LCD bias power supply to charge. The charge time is based on the time
required for the LCD power supply to reach operating voltage.

5. Enable the LCD bias power.

Note
The S1D13A05 evaluation board uses GPIO0 to control the LCD bias power supplies.
Your system design may vary.
26 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

SwivelView‘
7 SwivelView

Computer displays usually show an image in only one orientation, which is typically wider
than it is high. For example, a display size of 320x240 is 320 pixels wide and 240 lines high.

SwivelView uses hardware to rotate the displayed image counter-clockwise in ninety
degree increments. Rotating the image on a 320x240 display by 90° or 270° yields a display
that is now 240 pixels wide and 320 lines high.

The S1D13A05 provides hardware support for SwivelView in the following configura-
tions:

• SwivelView 0° (landscape) with or without pixel doubling

• SwivelView 90° without pixel doubling

• SwivelView 180° with or without pixel doubling

• SwivelView 270° without pixel doubling

The SwivelView feature only affects the main display window and the PIP+ window.
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 27
Rev. 6.1

SwivelView‘
7.1 SwivelView 90°

When design constraints require physical rotation of a display by 90°, enable SwivelView
90° mode. The following example shows a LCD panel, which is physically rotated
clockwise by 90°. The top left corner of the physical panel is marked for reference.

Figure 7-1: SwivelView 90° Rotation

The above illustration shows a series of transitions:

• A to B shows the LCD panel being physically rotated. Note that the physical display is
rotated clockwise and the image is rotated counter-clockwise.

• B to C shows the effect of enabling SwivelView 90°. The broken image in C indicates
that after the registers are programmed the image in display memory is invalid and must
be repainted. The following register values must be updated to select SwivelView 90°:

• SwivelView Mode Select (REG[010h] bits 17 and 16)

• Main Window Display Start Address (REG[040h])

• Main Window Line Address Offset (REG[044h])

• PIP+ Line Address Offset (REG[054h])

• PIP+ X End Position (REG[058h] bits 25-16)

• PIP+ X Start Position (REG[058h] bits 9-0)

• PIP+ Y End Position (REG[05Ch] bits 25-16)

• PIP+ Y Start Position (REG[05Ch] bits 9-0)

• C to D shows the effect of repainting the display in SwivelView 90°. The image must be
drawn based on the new display dimensions.

Repaint
Enable

SwivelView
90° Image

Top left corner of
physical panel

Rotate
panel 90°

A B C D
28 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

SwivelView‘
7.2 SwivelView 180°

When design constraints require physical rotation of a display by 180°, enable SwivelView
180° mode. The following example shows a LCD panel which is physically rotated by
180°. The top left corner of the physical panel is marked for reference.

Figure 7-2: SwivelView 90° Rotation

The above illustration shows a series of transitions:

• A to B shows the LCD panel being physically rotated.

• B to C shows the effect of enabling SwivelView 180°. The following register values
must be updated to support SwivelView 180°:

- SwivelView Mode Select (REG[010h] bits 17 and 16)

• Main Window Display Start Address (REG[040h])

• Main Window Line Address Offset (REG[044h])

- PIP+ X End Position (REG[058h] bits 25-16)

- PIP+ X Start Position (REG[058h] bits 9-0)

- PIP+ Y End Position (REG[05Ch] bits 25-16)

- PIP+ Y Start Position (REG[05Ch] bits 9-0)

• Notice that the image does not have to be repainted when SwivelView 180° is enabled.

Enable
SwivelView

180°
Top left corner of

physical panel
Rotate

panel 180°

A B C
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 29
Rev. 6.1

SwivelView‘
7.3 SwivelView 270°

When design constraints require physical rotation of a display by 270°, enable SwivelView
270° mode. The following example shows a LCD panel which is physically rotated
clockwise by 270°. The top left corner of the physical panel is marked for reference.

Figure 7-3: SwivelView 270° Rotation

The above illustration shows a series of transitions:

• A to B shows the LCD panel being physically rotated.

• B to C shows the effect of enabling SwivelView 270°. The broken image in Box C indi-
cates that after registers are programmed the image in display memory is invalid and
must be repainted. The following register values must be updated to support Swivel-
View 270°:

• SwivelView Mode Select (REG[010h] bits 17 and 16)

• Main Window Display Start Address (REG[040h])

• Main Window Line Address Offset (REG[044h])

• PIP+ X End Position (REG[058h] bits 25-16)

• PIP+ X Start Position (REG[058h] bits 9-0)

• PIP+ Y End Position (REG[05Ch] bits 25-16)

• PIP+ Y Start Position (REG[05Ch] bits 9-0)

• C to D shows the effect of repainting the display in SwivelView 270°. The image must
be drawn based on the new display dimensions.

Repaint
Enable

SwivelView
270° Image

Top left corner of
physical panel

Rotate
panel 270°

A B C D
30 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

SwivelView‘
7.4 SwivelView Registers

These registers control the SwivelView feature.

SwivelView Mode Select
The SwivelView modes are selected using the SwivelView Mode Select Bits[1:0] (bits 17-
16). The combinations of these bits provide the following rotations.

Main Window Display Start Address
The Main Window Display Start Address Register represents a DWORD address which
points to the start of the main window image in the display buffer. An address of 0 is the
start of the display buffer. The Main Window Display Start Address is programmed to the
address of display memory which is at the upper left corner of the rotated image.

For the following SwivelView mode descriptions, calculations refer to the Upper Left
Coordinate Address as the address of display memory for the coordinates at the upper left
corner of the display whether or not the image is rotated. Normally this coordinate is zero
and therefore the address is zero. However, this address is dependent on the number of
bits-per-pixel and is programmed into the Main Window Display Start Address register in
dwords.

In SwivelView 0°, program the Main Window Display Start Address
= Upper Left Coordinate Address  4

Display Settings Register
REG[10h] Default = 00000000h Read/Write

n/a
Pixel

Doubling
Vertical

Pixel
Doubling

Horiz.

Display
Blank

Dithering
Disable n/a

SW
Video
Invert

PIP+
Window
Enable

n/a SwivelView Mode
Select

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

n/a Bits-per-pixel Select
(actual value: 1, 2, 4, 8 or 16 bpp)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Table 7-1: SwivelView Mode Select Bits
SwivelView Mode

Select Bit 1
SwivelView Mode

Select Bit 0
SwivelView
Orientation

0 0 0° (normal)
0 1 90°
1 0 180°
1 1 270°

Main Window Display Start Address Register
REG[40h] Default = 00000000h Read/Write

n/a bit 16

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Main Window Display Start Address bits 15-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 31
Rev. 6.1

SwivelView‘
In SwivelView 90°, program the Main Window Display Start Address
= ((Upper Left Coordinate Address + (unrotated panel height  bpp  8)

+ ((4 - (unrotated panel height  bpp  8)) & 03h))  4) - 1

In SwivelView 180°, calculate the value of the Main Window Stride and then program the
Main Window Display Start Address

= ((Upper Left Coordinate Address + (Main Window Stride unrotated panel
height unrotated panel width bpp  8) + ((4 - (unrotated panel width
 bpp  8)) & 03h))  4) - 1

In SwivelView 270°, calculate the value of the Main Window Stride and then program the
Main Window Display Start Address

= (Upper Left Coordinate Address + ((unrotated panel width - 1)  Main
Window Stride))  4

Note
Truncate all fractional values before writing to the address registers.

SwivelView 0° and 180° require the unrotated panel width to be a multiple of (32 bits-
per-pixel). SwivelView 90° and 270° require the unrotated panel height to be a multiple
of (32 bits-per-pixel). If this is not possible, refer to Section 7.6, “Limitations” on page
42.

Main Window Line Address Offset
The Main Window Line Address Offset Register indicates the number of dwords per line
in the main window image.

For SwivelView 0° and 180°, the image width must be at least the rotated panel width. For
SwivelView 90° and 270°, the image width must be at least the rotated panel height. In
addition, the image width must be a multiple of (32  bpp). If the image width is not such
a multiple, a slightly larger width must be chosen (see Section 7.6, “Limitations”).

Unrotated panel width and Unrotated panel height refer to the physical panel dimensions
in pixels. Stride is the number of bytes required for one line of the image; the offset register
represents the stride in DWORD steps.

Main Window Stride = unrotated panel width  bpp  8

Note
In SwivelView 0° or 180° the image width must be equal to or greater than the unrotated
panel width and in SwivelView 90° or 270° the image width must be equal to or greater
than the unrotated panel height.

Main Window Line Address Offset Register
REG[44h] Default = 00000000h Read/Write

n/a

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
n/a Main Window Line Address Offset bits 9-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
32 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

SwivelView‘
number of dwords per line = unrotated panel width  (32  bpp)
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 33
Rev. 6.1

SwivelView‘
7.4.1 SwivelView 0° (Landscape)

This section describes how to program the registers to establish SwivelView 0° in a series
of steps. Calculations in each step must be truncated to integers. For the following
SwivelView mode descriptions, calculations refer to the Upper Left Coordinate Address as
the address of display memory for coordinates at the upper left corner of the display.

1. Determine the Stride.

Stride
= unrotated panel width bpp  8

2. Determine the Upper Left Coordinate Address.

Upper Left Coordinate Address
=(upper coordinate Stride) + (left coordinate  bpp)

3. Determine and program the Main Window Display Start Address Register.

Main Window Display Start Address Register
= Upper Left Coordinate Address  4

4. Determine and program the Main Window Line Offset Register.

Main Window Line Offset Register
= display width in pixels  (32 bpp)
34 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

SwivelView‘
7.4.2 SwivelView 90°

This section describes how to program the registers to establish SwivelView 90° in a series
of steps. Calculations in each step must be truncated to integers. For the following
SwivelView mode descriptions, calculations refer to the Upper Left Coordinate Address as
the address of display memory for the coordinates at the upper left corner of the rotated
display.

1. Determine the Stride.

Stride
= unrotated panel width bpp  8

2. Determine the Upper Left Coordinate Address.

Upper Left Coordinate Address
= (upper-coordinate Stride) + (left-coordinate  bpp)

3. Determine and program the Main Window Display Start Address Register.

Main Window Display Start Address Register
= ((Upper Left Coordinate Address + unrotated panel height bpp  8))

+ ((4 - (unrotated panel height bpp 8))) & 03h))  4) - 1

4. Determine and program the Main Window Line Address Offset Register.

Main Window Line Address Offset Register
= unrotated panel height   bpp)
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 35
Rev. 6.1

SwivelView‘
7.4.3 SwivelView 180°

This section describes how to program the registers to establish SwivelView 180° in a
series of steps. Calculations in each step must be truncated to integers. For the following
SwivelView mode descriptions, calculations refer to the Upper Left Coordinate Address as
the address of display memory for the coordinates at the upper left corner of the rotated
display.

1. Determine the Stride.

Stride
= rotated panel width bpp  8

2. Determine the Upper Left Coordinate Address.

Upper Left Coordinate Address
=(upper coordinate Stride) + (left coordinate  bpp)

3. Determine and program the Main Window Display Start Address Register.

Main Window Display Start Address Register
= ((Upper Left Coordinate Address + (Stride (unrotated panel height - 1))

+ (unrotated panel width bpp  8)) + ((4 - unrotated panel width bpp 8))
& 03h))  4) - 1

4. Determine and program the Main Window Line Address Offset Register.

Main Window Line Address Offset Register
= unrotated panel height   bpp)
36 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

SwivelView‘
7.4.4 SwivelView 270°

This section describes how to program the registers to establish SwivelView 270° in a
series of steps. Calculations in each step must be truncated to integers. For the following
SwivelView mode descriptions, calculations refer to the Upper Left Coordinate Address as
the address of display memory for the coordinates at the upper left corner of the rotated
display.

1. Determine the Stride.

Stride
= unrotated panel height bpp  8

2. Determine the Upper Left Coordinate Address.

Upper Left Coordinate Address
= (upper coordinate Stride) + (left coordinate  bpp)

3. Determine and program the Main Window Display Start Address Register.

Main Window Display Start Address Register
= ((Upper Left Coordinate Address + ((unrotated panel width - 1) Stride))  4

4. Determine and program the Main Window Line Address Offset Register.

Main Window Line Address Offset Register
= unrotated panel height   bpp)
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 37
Rev. 6.1

SwivelView‘
7.5 Examples

Example 1: In SwivelView 0° (normal) mode, program the main window registers for
a 320x240 panel at a color depth of 4 bpp.

1. Determine the Stride.

Stride
= unrotated panel width bpp  8

2. Determine the Upper Left Coordinate Address.

Upper Left Coordinate Address
= (0 Stride) + (0  bpp)
= 0

3. Determine and program the Main Window Display Start Address. The main window
is typically placed at the start of display memory which is at display address 0.

Main Window Display Start Address Register
= Upper Left Coordinate Address  4
= 0

Program the Main Window Display Start Address register. REG[40h] is set to
00000000h.

4. Determine the Main Window Line Address Offset.

number of dwords per line
= unrotated panel width  (32  bpp)
= 320  (32  4)
= 40
= 28h

Program the Main Window Line Address Offset register. REG[44h] is set to
00000028h.
38 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

SwivelView‘
Example 2: In SwivelView 90° mode, program the main window registers for a
320x240 panel at a color depth of 4 bpp.

1. Determine the Stride.

Stride
= unrotated panel width bpp  8

2. Determine the Upper Left Coordinate Address.

Upper Left Coordinate Address
= (0 Stride) + (0  bpp)
= 0

3. Determine and program the Main Window Display Start Address. The main window
is typically placed at the start of display memory, which is at display address 0.

Main Window Display Start Address Register
= ((Upper Left Coordinate Address + (unrotated panel height  bpp  8)

+ ((4 - (unrotated panel height  bpp  8)) & 03h))  4) - 1
= ((0 + (240  8) + ((4 - (240  8)) & 03h))  4) - 1
= 29
= 1Dh

Program the Main Window Display Start Address register. REG[40h] is set to
0000001Dh.

4. Determine and program the Main Window Line Address Offset.

number of dwords per line
= unrotated panel height  (32  bpp)
= 240  (32  4)
= 30
= 1Eh

Program the Main Window Line Address Offset register. REG[44h] is set to
0000001Eh.
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 39
Rev. 6.1

SwivelView‘
Example 3: In SwivelView 180° mode, program the main window registers for a
320x240 panel at a color depth of 4 bpp.

1. Determine the Stride.

Stride
= unrotated panel width  bpp  8
= 320  4  8
= 160
= A0h

2. Determine the Upper Left Coordinate Address.

Upper Left Coordinate Address
= (0 Stride) + (0  bpp)
= 0

3. Determine and program the Main Window Display Start Address. The main window
is typically placed at the start of display memory which is at display address 0.

Main Window Display Start Address Register
= ((Upper Left Coordinate Address + (Stride unrotated panel height 
unrotated panel width bpp  8) + ((4 - (unrotated panel width  bpp  8))
& 03h))  4) - 1

= ((0+(160 240  4  8) + ((4 - (320  4  8))& 03h))  4) - 1
= 9599
= 257Fh

Program the Main Window Display Start Address register. REG[40h] is set to
0000257Fh.

4. Determine and program the Main Window Line Address Offset.

number of dwords per line
= unrotated panel width  (32  bpp)
= 320  (32  4)
= 40
= 28h

Program the Main Window Line Address Offset register. REG[44h] is set to
00000028h.
40 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

SwivelView‘
Example 4: In SwivelView 270° mode, program the main window registers for a
320x240 panel at a color depth of 4 bpp.

1. Determine the Stride.

Stride
= unrotated panel height  bpp  8
= 240  4  8
= 120
= 78h

2. Determine the Upper Left Coordinate Address.

Upper Left Coordinate Address
= (0 Stride) + (0  bpp)
= 0

3. Determine and program Main Window Display Start Address. The main window is
typically placed at the start of display memory, which is at display address 0.

Main Window Display Start Address Register
= (Upper Left Coordinate Address + ((unrotated panel width - 1)  Stride))  4
= (0 + ((320 - 1)  120))  4
= 9570
= 2562h

Program the Main Window Display Start Address register. REG[40h] is set to
00002562h.

4. Determine and program the Main Window Line Address Offset.

number of dwords per line
= unrotated panel height  (32  bpp)
= 240  (32  4)
= 30
= 1Eh

Program the Main Window Line Address Offset register. REG[44h] is set to
0000001Eh.
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 41
Rev. 6.1

SwivelView‘
7.6 Limitations

7.6.1 SwivelView 0° and 180°

In SwivelView 0° and 180°, the Main Window Line Address Offset Register (REG[44h])
requires the panel width to be a multiple of (32  bits-per-pixel). If this is not the case, then
the Main Window Line Address Offset Register must be programmed to a longer line
which meets this requirement. This longer line creates a virtual image where the width is
Main Window Line Address Offset Register  (32  bits-per-pixel).

In SwivelView 0°, this virtual image should be drawn in display memory as left justified,
and in SwivelView 180°, this virtual image should be drawn in display memory as right
justified.

A left-justified image is one drawn in display memory such that each of the image’s lines
only use the left most portion of the line width defined by the line address offset register
(i.e. starting at horizontal position 0).

A right-justified image is one drawn in display memory such that each of the image’s lines
only use the right most portion of the line width defined by the line address offset register
(i.e. starting at a non-zero horizontal position which is the virtual width - image width).

7.6.2 SwivelView 90° and 270°

In SwivelView 90° and 270°, the Main Window Line Address Offset Register (REG[44h])
requires the panel height to be a multiple of (32  bits-per-pixel). If this is not the case, then
the Main Window Line Address Offset Register must be programmed to a longer line
which meets this requirement. This longer line creates a virtual image whose width is Main
Window Line Address Offset Register  (32  bits-per-pixel).

In SwivelView 270°, this virtual image should be drawn in display memory as left justified,
and in SwivelView 90°, this virtual image should be drawn in display memory as right
justified.

A left-justified image is one drawn in display memory such that each of the image’s lines
only use the left most portion of the line width defined by the line address offset register
(i.e. starting at horizontal position 0).

A right-justified image is one drawn in display memory such that each of the image’s lines
only use the right most portion of the line width defined by the line address offset register
(i.e. starting at a non-zero horizontal position which is the virtual width - image width).
42 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

Picture-In-Picture Plus (PIP+)
8 Picture-In-Picture Plus (PIP+)
Picture-in-Picture Plus (PIP+) enables a secondary window (or PIP+ window) within the
main display window. The PIP+ window may be positioned anywhere within the virtual
display and is controlled through the PIP+ Window control registers (REG[50h] through
REG[5Ch]). The PIP+ window retains the same color depth and SwivelView orientation as
the main window.

A PIP+ window can be used to display temporary items such as a dialog box or to “float”
the display item so that the system doesn’t have to exclude the area during screen repaints.

The following diagram shows an example of a PIP+ window within a main window.

Figure 8-1: Picture-in-Picture Plus with SwivelView Disabled

PIP+ window

main-window

0° SwivelView
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 43
Rev. 6.1

Picture-In-Picture Plus (PIP+)
8.1 Registers

The following registers control the Picture-In-Picture Plus feature.

PIP+ Window Enable
The PIP+ Window Enable bit enables a PIP+ window within the main window. The loca-
tion of the PIP+ window within the landscape window is determined by the PIP+ X Posi-
tion register (REG[58h]) and PIP+ Y Position register (REG[5Ch]). The PIP+ window has
its own Display Start Address register (REG[50h]) and Line Address Offset register
(REG[54h]). The PIP+ window shares the same color depth and SwivelViewTM orientation
as the main window.

PIP+ Display Start Address
The PIP+ Display Start Address register is a DWORD which represents an address that
points to the start of the PIP+ window image in the display buffer. An address of 0 is the
start of the display buffer. For the following PIP+ descriptions, the desired byte address is
the starting display address for the PIP+ window image.

In SwivelView 0°, program the start address
= desired byte address  4

In SwivelView 90°, program the start address
= ((desired byte address + (PIP+ width  bpp  8)

+ ((4 - (PIP+ width  bpp  8)) & 03h))  4) - 1

In SwivelView 180°, program the start address
= ((desired byte address + (PIP+ Stride PIP+ height 
PIP+ width bpp  8) + ((4 - (PIP+ width  bpp  8)) & 03h))  4) - 1

In SwivelView 270°, program the start address
= (desired byte address + ((PIP+ height - 1)  PIP+ Stride))  4

Display Settings Register
REG[10h] Default = 00000000h Read/Write

n/a
Pixel

Doubling
Vertical

Pixel
Doubling

Horiz.

Display
Blank

Dithering
Disable n/a

SW
Video
Invert

PIP+
Window
Enable

n/a SwivelView Mode
Select

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

n/a Bits-per-pixel Select
(actual value: 1, 2, 4, 8 or 16 bpp)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PIP+ Display Start Address Register
REG[50h] Default = 00000000h Read/Write

n/a bit 16

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
PIP+ Display Start Address bits 15-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
44 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

Picture-In-Picture Plus (PIP+)
Note
Truncate all fractional values before writing to the address registers.

SwivelView 0° and 180° require the PIP+ width to be a multiple of (32 bits-per-pixel).
SwivelView 90° and 270° require the PIP+ height to be a multiple of (32 bits-per-pix-
el). If this is not possible, refer to Section 8.3, “Limitations” .

PIP+ Line Address Offset
The PIP+ Line Address Offset register indicates the number of dwords per line in the PIP+
window image.

The image width must be a multiple of (32  bpp). If the image width is not such a multiple,
a slightly larger width must be chosen (see Section 8.3, “Limitations”).

PIP+ width and PIP+ height refer to the PIP+ dimensions as seen in SwivelView 0°
(landscape mode). Stride is the number of bytes required for one line of the image; the
offset register represents the stride in DWORD steps.

PIP+ Stride = image width  bpp  8

For SwivelView 0° and 180°, program the line address offset
= PIP+ Width
= ((REG[58h] bits 25:16) - (REG[58h] bits 9:0) + 1)  (32  bpp)

For SwivelView 90° and 270°, program the line address offset
= PIP+ Width
= ((REG[5Ch] bits 25:16) - (REG[5Ch] bits 9:0) + 1)  (32  bpp)

PIP+ Line Address Offset Register
REG[54h] Default = 00000000h Read/Write

n/a

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
n/a PIP+ Line Address Offset bits 9-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 45
Rev. 6.1

Picture-In-Picture Plus (PIP+)
PIP+ X End Position
The PIP+ X End Position bits determine the horizontal end of the PIP+ window in 0 and
180 SwivelView orientations. These bits determine the vertical end position in 90 and
270 SwivelView. For further information on defining the value of the X End Position, see
Section 8.2, “Picture-In-Picture-Plus Examples” on page 51.

This register increments differently based on the SwivelView orientation. For 0° and 180°
SwivelView the X End Position is incremented by X pixels where X is relative to the current
color depth. For 90° and 270° SwivelView the X End Position is incremented in 1 line
increments.

In SwivelView 0°, these bits set the horizontal coordinates (x) of the PIP+ window’s right
edge. Increasing x moves the right edge towards the right in steps of (32 bits-per-pixel)
(see Table 8-1:). The horizontal coordinates start at pixel 0.

Program the PIP+ Window X End Position so that
PIP+ Window X End Position = x  (32  bits-per-pixel)

Note
Truncate the fractional part of the above equation.

In SwivelView 90°, these bits set the vertical coordinates (y) of the PIP+ window’s bottom
edge. Increasing y moves the bottom edge downward in 1 line steps. The vertical coordi-
nates start at line 0.

Program the PIP+ Window X End Position so that
PIP+ Window X End Position = y

PIP+ X Positions Register
REG[58h] Default = 00000000h Read/Write

n/a PIP+ X End Position bits 9-0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
n/a PIP+ X Start Position bits 9-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Table 8-1: 32-bit Address Increments for PIP+ X Position in SwivelView 0° and 180°
Bits-Per-Pixel (Color Depth) Pixel Increment (X)

1 bpp 32
2 bpp 16
4 bpp 8
8 bpp 4

16 bpp 2
46 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

Picture-In-Picture Plus (PIP+)
In SwivelView 180°, these bits set the horizontal coordinates (x) of the PIP+ window’s left
edge. Increasing x moves the left edge towards the right in steps of (32 bits-per-pixel) (see
Table 8-1:). The horizontal coordinates start at pixel 0.

Program the PIP+ Window X End Position so that
PIP+ Window X End Position = (panel width - x - 1)  (32  bits-per-pixel)

Note
Truncate the fractional part of the above equation.

In SwivelView 270°, these bits set the vertical coordinates (y) of the PIP+ window’s top
edge. Increasing y moves the top edge downwards in 1 line steps. The vertical coordinates
start at line 0.

Program the PIP+ Window X End Position so that
PIP+ Window X End Position = panel width - y - 1

PIP+ X Start Position
The PIP+ X Start Position bits determine the horizontal position of the start of the PIP+
window in 0 and 180 SwivelView orientations. These bits determine the vertical start
position in 90 and 270 SwivelView. For further information on defining the value of the
X Start Position, see Section 8.2, “Picture-In-Picture-Plus Examples” on page 51.

The register increments differently based on the SwivelView orientation. For 0° and 180°
SwivelView the X Start Position is incremented by X pixels where X is relative to the
current color depth. For 90° and 270° SwivelView the X Start Position is incremented in 1
line increments.

In SwivelView 0°, these bits set the horizontal coordinates (x) of the PIP+ windows’s left
edge. Increasing x moves the left edge towards the right in steps of (32 bits-per-pixel) (see
Table 8-2:). The horizontal coordinates start at pixel 0.

Program the PIP+ Window X Start Position so that
PIP+ Window X Start Position = x  (32  bits-per-pixel)

Note
Truncate the fractional part of the above equation.

Table 8-2: 32-bit Address Increments for Color Depth
Bits-per-pixel (Color Depth) Pixel Increment (X)

1 bpp 32
2 bpp 16
4 bpp 8
8 bpp 4

16 bpp 2
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 47
Rev. 6.1

Picture-In-Picture Plus (PIP+)
In SwivelView 90°, these bits set the vertical coordinates (y) of the PIP+ window’s top
edge. Increasing y moves the top edge downward in 1 line steps. The vertical coordinates
start at line 0.

Program the PIP+ Window X Start Position so that
PIP+ Window X Start Position = y

In SwivelView 180°, these bits set the horizontal coordinates (x) of the PIP+ window’s
right edge. Increasing x moves the right edge towards the right in steps of (32 bits-per-
pixel) (see Table 8-2:). The horizontal coordinates start at pixel 0.

Program the PIP+ Window X Start Position so that
PIP+ Window X Start Position = (panel width - x - 1)  (32  bits-per-pixel)

Note
Truncate the fractional part of the above equation.

In SwivelView 270°, these bits set the vertical coordinates (y) of the PIP+ window’s bottom
edge. Increasing y moves the bottom edge downwards in 1 line steps. The vertical coordi-
nates start at line 0.

Program the PIP+ Window X Start Position so that
PIP+ Window X Start Position = panel width - y - 1

PIP+ Y End Position
The PIP+ Y End Position bits determine the vertical end position of the PIP+ window in 0°
and 180° SwivelView orientations. These bits determine the horizontal end position in 90°
and 270° SwivelView. For further information on defining the value of the Y End Posi-
tion, see Section 8.2, “Picture-In-Picture-Plus Examples” on page 51.

The register increments differently based on the SwivelView orientation. For 0° and 180°
SwivelView the Y End Position is incremented in 1 line increments. For 90° and 270°
SwivelView the Y End Position is incremented by Y pixels where Y is relative to the current
color depth.

PIP+ Y Positions Register
REG[5Ch] Default = 00000000h Read/Write

n/a PIP+ Y End Position bits 9-0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
n/a PIP+ Y Start Position bits 9-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Table 8-3: 32-bit Address Increments for Color Depth
Bits-Per-Pixel (Color Depth) Pixel Increment (Y)

1 bpp 32
48 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

Picture-In-Picture Plus (PIP+)
In SwivelView 0°, these bits set the vertical coordinates (y) of the PIP+ windows’s bottom
edge. Increasing y moves the bottom edge downwards in 1 line steps. The vertical coordi-
nates start at line 0.

Program the PIP+ Window Y End Position so that
PIP+ Window Y End Position = y

In SwivelView 90°, these bits set the horizontal coordinates (x) of the PIP+ window’s left
edge. Increasing x moves the left edge towards the right in steps of (32 bits-per-pixel) (see
Table 8-3:). The horizontal coordinates start at pixel 0.

Program the PIP+ Window Y End Position so that
PIP+ Window Y End Position = (panel height - x - 1)  (32  bits-per-pixel)

Note
Truncate the fractional part of the above equation.

In SwivelView 180°, these bits set the vertical coordinates (y) of the PIP+ window’s top
edge. Increasing y moves the top edge downwards in 1 line steps. The vertical coordinates
start at line 0.

Program the PIP+ Window Y End Position so that
PIP+ Window Y End Position = panel height - y - 1

In SwivelView 270°, these bits set the horizontal coordinates (x) of the PIP+ window’s
right edge. Increasing x moves the right edge towards the right in steps of (32 bits-per-
pixel) (see Table 8-3:). The horizontal coordinates start at pixel 0.

Program the PIP+ Window Y End Position so that
PIP+ Window Y End Position = x  (32  bits-per-pixel)

Note
Truncate the fractional part of the above equation.

PIP+ Y Start Position
The PIP+ Y Start Position bits determine the vertical start position of the PIP+ window in
0 and 180 SwivelView orientations. These bits determine the horizontal start position in
90 and 270 SwivelView. For further information on defining the value of the Y Start
Position, see Section 8.2, “Picture-In-Picture-Plus Examples” on page 51.

2 bpp 16
4 bpp 8
8 bpp 4

16 bpp 2

Table 8-3: 32-bit Address Increments for Color Depth
Bits-Per-Pixel (Color Depth) Pixel Increment (Y)
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 49
Rev. 6.1

Picture-In-Picture Plus (PIP+)
The register increments differently based on the SwivelView orientation. For 0° and 180°
SwivelView the Y Start Position is incremented in 1 line increments. For 90° and 270°
SwivelView the Y Start Position is incremented by Y pixels where Y is relative to the current
color depth.

In SwivelView 0°, these bits set the vertical coordinates (y) of the PIP+ windows’s top
edge. Increasing y moves the top edge downwards in 1 line steps. The vertical coordinates
start at line 0.

Program the PIP+ Window Y Start Position so that
PIP+ Window Y Start Position = y

In SwivelView 90°, these bits set the horizontal coordinates (x) of the PIP+ window’s right
edge. Increasing x moves the right edge towards the right in steps of (32 bits-per-pixel)
(see Table 8-4:). The horizontal coordinates start at pixel 0.

Program the PIP+ Window Y Start Position so that
PIP+ Window Y Start Position = (panel height - x - 1)  (32  bits-per-pixel)

Note
Truncate the fractional part of the above equation.

In SwivelView 180°, these bits set the vertical coordinates (y) of the PIP+ window’s bottom
edge. Increasing y moves the bottom edge downwards in 1 line steps. The vertical coordi-
nates start at line 0.

Program the PIP+ Window Y Start Position so that
PIP+ Window Y Start Position = panel height - y - 1

In SwivelView 270°, these bits set the horizontal coordinates (x) of the PIP+ window’s left
edge. Increasing x moves the left edge towards the right in steps of (32 bits-per-pixel) (see
Table 8-4:). The horizontal coordinates start at pixel 0.

Program the PIP+ Window Y Start Position so that
PIP+ Window Y Start Position = x  (32  bits-per-pixel)

Note
Truncate the fractional part of the above equation.

Table 8-4: 32-bit Address Increments for Color Depth
Bits-Per-Pixel (Color Depth) Pixel Increment (Y)

1 bpp 32
2 bpp 16
4 bpp 8
8 bpp 4

16 bpp 2
50 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

Picture-In-Picture Plus (PIP+)
8.2 Picture-In-Picture-Plus Examples

8.2.1 SwivelView 0° (Landscape Mode)

Figure 8-2: Picture-in-Picture Plus with SwivelView disabled

SwivelView 0° (or landscape) is a mode in which both the main and PIP+ window are non-
rotated. The images for each window are typically placed consecutively, with the main
window image starting at address 0 and followed by the PIP+ window image. In addition,
both images must start at addresses which are dword-aligned (the last two bits of the
starting address must be 0).

Note
It is possible to use the same image for both the main window and PIP+ window. To do
so, set the PIP+ Line Address Offset register (REG[54h]) to the same value as the Main
Window Line Address Offset register (REG[44h].

PIP+ window

main-window

PIP+ window y start position
panel’s origin

PIP+ window y end position

PIP+ window x start position PIP+ window x end position

0° SwivelViewTM

 (REG[58h] bits 9-0) (REG[58h] bits 25-16)

 (REG[5Ch] bits 25-16)

 (REG[5Ch] bits 9-0)
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 51
Rev. 6.1

Picture-In-Picture Plus (PIP+)
Example 5: Program the PIP+ window registers for a 320x240 panel at 4 bpp, with
the PIP+ window positioned at (80, 60) with a width of 160 and a height of
120.

1. Determine the value for the PIP+ Window X Positions and PIP+ Window Y Positions
registers. Let the top left corner of the PIP+ window be (x1, y1), and let the bottom
right corner be (x2, y2), where x2 = x1 + width - 1 and y2 = y1 + height - 1. The PIP+
Window X Positions register sets the horizontal coordinates of the PIP+ window’s top
left and bottom right corners. The PIP+ Window Y Positions register sets the vertical
coordinates of the PIP+ window’s top left and bottom right corners.

The required values are calculated as follows:

X Start Position
= x1  (32  bpp)
= 80  (32  4)
= 10
= 0Ah

Y Start Position
= y1
= 60
= 3Ch

X End Position
= x2  (32  bpp)
= (80 + 160 - 1)  (32  4)
= 29.875
= 1Dh (truncated fractional part)

Y End Position
= y2
= 60 + 120 - 1
= 179
= B3h
52 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

Picture-In-Picture Plus (PIP+)
2. Program the PIP+ Window X Positions register with the X Start Position in bits 9-0
and the X End Position in bits 25-16. REG[58h] is set to 001D000Ah.
Program the PIP+ Window Y Positions register with the Y Start Position in bits 9-0
and the Y End Position in bits 25-16. REG[5Ch] is set to 00B3003Ch.

Due to truncation, the dimensions of the PIP+ window may have changed. Recalculate
the PIP+ window width and height below:
PIP+ Width

= ((REG[58h] bits 25:16) - (REG[58h] bits 9:0) + 1)  (32  bpp)
= (1Dh - 0Ah + 1)  (32  4)
= 160 pixels

PIP Height
= (REG[5Ch] bits 25:16) - (REG[5Ch] bits 9:0) + 1
= B3h - 3Ch + 1
= 120 lines

3. Determine the PIP+ display start address.
The main window image must take up 320 x 240 pixels  bpp  8 = 9600h bytes. If
the main window starts at address 0h, the PIP+ window can start at 9600h.

PIP+ display start address
= desired byte address  4
= 9600h  4
= 2580h.

Program the PIP+ Display Start Address register. REG[50h] is set to 00002580h.

4. Determine the PIP+ line address offset.

number of dwords per line
= image width  (32  bpp)
= 160  (32  4)
= 20
= 14h

Program the PIP+ Line Address Offset register. REG[54h] is set to 00000014h.

5. Enable the PIP+ window.

Program the PIP+ Window Enable bit. REG[10h] bit 19 is set to 1.
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 53
Rev. 6.1

Picture-In-Picture Plus (PIP+)
8.2.2 SwivelView 90°

Figure 8-3: Picture-in-Picture Plus with SwivelView 90° enabled

SwivelView 90° is a mode in which both the main and PIP+ windows are rotated 90°
counter-clockwise when shown on the panel. The images for each window are typically
placed consecutively, with the main window image starting at address 0 and followed by
the PIP+ window image. In addition, both images must start at addresses which are dword-
aligned (the last two bits of the starting address must be 0).

Note
It is possible to use the same image for both the main window and PIP+ window. To do
so, set the PIP+ Line Address Offset register (REG[54h]) to the same value as the Main
Window Line Address Offset register (REG[44h]).

PIP+ window

main-window

PIP+ window y start position

panel’s origin

PIP+ window y end position

PIP+ window x start position
PIP+ window x end position

90° SwivelViewTM

(REG[58h] bits 25-16)
 (REG[58h] bits 9-0)

 (REG[5Ch] bits 9-0)

 (REG[5Ch] bits 25-16)
54 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

Picture-In-Picture Plus (PIP+)
Example 6: In SwivelView 90°, program the PIP+ window registers for a 320x240
panel at 4 bpp, with the PIP+ window positioned at SwivelView 90° coor-
dinates (60, 80) with a width of 120 and a height of 160.

1. Determine the value for the PIP+ Window X Positions and PIP+ Window Y Positions
registers. Let the top left corner of the PIP+ window be (x1, y1), and let the bottom
right corner be (x2, y2), where x2 = x1 + width - 1 and y2 = y1 + height - 1. The PIP+
Window X Positions register sets the vertical coordinates of the PIP+ window’s top
right and bottom left corners. The PIP+ Window Y Positions register sets the horizon-
tal coordinates of the PIP+ window’s top right and bottom left corners.

The required values are calculated as follows:

X Start Position
= y1
= 80
= 50h

Y Start Position
= (panel height - x2 - 1)  (32  bpp)
= (240 - (60 + 120 - 1) - 1)  (32  4)
= 7.5
= 07h (truncated fractional part)

X End Position
= y2
= 80 + 160 - 1
= 239
= EFh

Y End Position
= (panel height - x1 - 1)  (32  bpp)
= (240 - 60 - 1)  (32  4)
= 22.375
= 16h (truncated fractional part)
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 55
Rev. 6.1

Picture-In-Picture Plus (PIP+)
2. Program the PIP+ Window X Positions register with the X Start Position in bits 9-0
and the X End Position in bits 25-16. REG[58h] is set to 00EF0050h.
Program the PIP+ Window Y Positions register with the Y Start Position in bits 9-0
and the Y End Position in bits 25-16. REG[5Ch] is set to 00160007h.

Due to truncation, the dimensions of the PIP+ window may have changed. Recalculate
the PIP+ window width and height below:

PIP+ Width
= ((REG[5Ch] bits 25:16) - (REG[5Ch] bits 9:0) + 1)  (32  bpp)
= (16h - 07h + 1)  (32  4)
= 128 pixels (note that this is different from the desired width)

PIP Height
= (REG[58h] bits 25:16) - (REG[58h] bits 9:0) + 1
= EFh - 50h + 1
= 160 lines

3. Determine the PIP+ display start address.
The main window image must take up 320 x 240 pixels  bpp  8 = 9600h bytes. If
the main window starts at address 0h, then the PIP+ window can start at 9600h.

PIP+ display start address
= ((desired byte address + (PIP+ width  bpp  8)

+ ((4 - (PIP+ width  bpp  8)) & 03h))  4) - 1
= ((9600h + (128  4  8) + ((4 - (128  4  8)) & 03h))  4) - 1
= 9615
= 258Fh

Program the PIP+ Display Start Address register. REG[50h] is set to 0000258Fh.

4. Determine the PIP+ line address offset.

number of dwords per line
= image width  (32  bpp)
= 128  (32  4)
= 16
= 10h

Program the PIP+ Line Address Offset register. REG[54h] is set to 00000010h.

5. Enable the PIP+ window.

Program the PIP+ Window Enable bit. REG[10h] bit 19 is set to 1.
56 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

Picture-In-Picture Plus (PIP+)
8.2.3 SwivelView 180°

Figure 8-4: Picture-in-Picture Plus with SwivelView 180° enabled

SwivelView 180° is a mode in which both the main and PIP+ windows are rotated 180°
counter-clockwise when shown on the panel. The images for each window are typically
placed consecutively, with the main window image starting at address 0 and followed by
the PIP+ window image. In addition, both images must start at addresses which are dword-
aligned (the last two bits of the starting address must be 0).

Note
It is possible to use the same image for both the main window and PIP+ window. To do
so, set the PIP+ Line Address Offset register (REG[54h]) to the same value as the Main
Window Line Address Offset register (REG[44h]).

PIP+ window

main-window

PIP+ window y start position panel’s origin
PIP+ window y end position

PIP+ window x start position
PIP+ window x end position

180° SwivelViewTM

 (REG[58h] bits 25-16)
 (REG[58h] bits 9-0)

 (REG[58h] bits 25-16)
 (REG[5Ch] bits 9-0)
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 57
Rev. 6.1

Picture-In-Picture Plus (PIP+)
Example 7: In SwivelView 180°, program the PIP+ window registers for a 320x240
panel at 4 bpp, with the PIP+ window positioned at SwivelView 180° co-
ordinates (80, 60) with a width of 160 and a height of 120.

1. Determine the value for the PIP+ Window X Positions and PIP+ Window Y Positions
registers. Let the top left corner of the PIP+ window be (x1, y1), and let the bottom
right corner be (x2, y2), where x2 = x1 + width - 1 and y2 = y1 + height - 1. The PIP+
Window X Positions register sets the horizontal coordinates of the PIP+ window’s
bottom right and top left corner. The PIP+ Window Y Positions register sets the verti-
cal coordinates of the PIP+ window’s bottom right and top left corner.

The required values are calculated as follows:

X Start Position
= (panel width - x2 - 1)  (32  bpp)
= (320 - (80 + 160 - 1) - 1)  (32  4)
= 10
= 0Ah

Y Start Position
= panel height - y2 - 1
= 240 - (60 + 120 - 1) - 1
= 60
= 3Ch

X End Position
= (panel width - x1 - 1)  (32  bpp)
= (320 - 80 - 1)  (32  4)
= 29.875
= 1Dh (truncated fractional part)

Y End Position
= panel height - y1 - 1
= 240 - 60 - 1
= 179
= B3h

Program the PIP+ Window X Positions register with the X Start Position in bits 9-0
and the X End Position in bits 25-16. REG[58h] is set to 001D000Ah.
Program the PIP+ Window Y Positions register with the Y Start Position in bits 9-0
and the Y End Position in bits 25-16. REG[5Ch] is set to 00B3003Ch.

Due to truncation, the dimensions of the PIP+ window may have changed. Recalculate
the PIP+ window width and height below:

PIP+ Width
= ((REG[58h] bits 25:16) - (REG[58h] bits 9:0) + 1)  (32  bpp)
= (1Dh - 0Ah + 1)  (32  4)
= 160 pixels

PIP Height
58 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

Picture-In-Picture Plus (PIP+)
= (REG[5Ch] bits 25:16) - (REG[5Ch] bits 9:0) + 1
= B3h - 3Ch + 1
= 120 lines

2. Determine the PIP+ display start address.
The main window image must take up 320 x 240 pixels  bpp  8 = 9600h bytes. If
the main window starts at address 0h, then the PIP+ window can start at 9600h.

PIP+ Stride
= image width  bpp  8
= 160  4  8
= 80
= 50h

PIP+ display start address
= ((desired byte address + (PIP+ Stride (PIP+ height - 1))

+ (PIP+ width  bpp  8) + ((4 - (PIP width  bpp  8)) & 03h))  4) - 1
= ((9600h + (80 (120 - 1)) + (160  4  8) + ((4 - (160  4  8))&03h))  4) - 1
= 11999
= 2EDFh

Program the PIP+ Display Start Address register. REG[50h] is set to 00002EDFh.

3. Determine the PIP+ line address offset.

number of dwords per line
= image width  (32  bpp)
= 160  (32  4)
= 20
= 14h

Program the PIP+ Line Address Offset register. REG[54h] is set to 00000014h.

4. Enable the PIP+ window.

Program the PIP+ Window Enable bit. REG[10h] bit 19 is set to 1.
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 59
Rev. 6.1

Picture-In-Picture Plus (PIP+)
8.2.4 SwivelView 270°

Figure 8-5: Picture-in-Picture Plus with SwivelView 270° enabled

SwivelView 270° is a mode in which both the main and PIP+ windows are rotated 270°
counter-clockwise when shown on the panel. The images for each window are typically
placed consecutively, with the main window image starting at address 0 and followed by
the PIP+ window image. In addition, both images must start at addresses which are dword-
aligned (the last two bits of the starting address must be 0).

Note
It is possible to use the same image for both the main window and PIP+ window. To do
so, set the PIP+ Line Address Offset register (REG[54h]) to the same value as the Main
Window Line Address Offset register (REG[44h]).

PIP+ window

main-window

PIP+ window y start position

panel’s origin

PIP+ window y end position

PIP+ window x start position
PIP+ window x end position

270° SwivelViewTM

 (REG[58h] bits 25-16)

 (REG[5Ch] bits 25-16)

 (REG[5Ch] bits 9-0)

 (REG[58h] bits 9-0)
60 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

Picture-In-Picture Plus (PIP+)
Example 8: In SwivelView 270°, program the PIP+ window registers for a 320x240
panel at 4 bpp, with the PIP+ window positioned at SwivelView 270° co-
ordinates (60, 80) with a width of 120 and a height of 160.

1. Determine the value for the PIP+ Window X Positions and PIP+ Window Y Positions
registers. Let the top left corner of the PIP+ window be (x1, y1), and let the bottom
right corner be (x2, y2), where x2 = x1 + width - 1 and y2 = y1 + height - 1. The PIP+
Window X Positions register sets the vertical coordinates of the PIP+ window’s top
right and bottom left corner. The PIP+ Window Y Positions register sets the horizontal
coordinates of the PIP+ window’s top right and bottom left corner.

The required values are calculated as follows:

X Start Position
= panel width - y2 - 1
= 320 - (80 + 160 - 1) - 1
= 80
= 50h

Y Start Position
= x1  (32  bpp)
= 60  (32  4)
= 7.5
= 07h (truncated fractional part)

X End Position
= panel width - y1 - 1
= 320 - 80 - 1
= 239
= EFh

Y End Position
= x2  (32  bpp)
= (60 + 120 - 1)  (32  4)
= 22.375
= 16h (truncated fractional part)
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 61
Rev. 6.1

Picture-In-Picture Plus (PIP+)
2. Program the PIP+ Window X Positions register with the X Start Position in bits 9-0
and the X End Position in bits 25-16. REG[58h] is set to 00EF0050h.
Program the PIP+ Window Y Positions register with the Y Start Position in bits 9-0
and the Y End Position in bits 25-16. REG[5Ch] is set to 00160007h.

Due to truncation, the dimensions of the PIP+ window may have changed. Recalculate
the PIP+ window width and height below:

PIP+ Width
= ((REG[5Ch] bits 25:16) - (REG[5Ch] bits 9:0) + 1)  (32  bpp)
= (16h - 07h + 1)  (32  4)
= 128 pixels (note that this is different from the desired width)

PIP Height
= (REG[58h] bits 25:16) - (REG[58h] bits 9:0) + 1
= EFh - 50h + 1
= 160 lines

3. Determine the PIP+ display start address.
The main window image must take up 320 x 240 pixels  bpp  8 = 9600h bytes. If
the main window starts at address 0h, then the PIP+ window can start at 9600h.

PIP+ Stride
= image width  bpp  8
= 128  4  8
= 64
= 40h

PIP+ display start address
= (desired byte address + ((PIP+ height - 1)  PIP+ Stride))  4
= (9600h + ((160 - 1)  64))  4
= 12144
= 2F70h

Program the PIP+ Display Start Address register. REG[50h] is set to 00002F70h.

4. Determine the PIP+ line address offset.

number of dwords per line
= image width  (32  bpp)
= 128  (32  4)
= 16
= 10h

Program the PIP+ Line Address Offset register. REG[54h] is set to 00000010h.

5. Enable the PIP+ window.

Program the PIP+ Window Enable bit. REG[10h] bit 19 is set to 1.
62 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

Picture-In-Picture Plus (PIP+)
8.3 Limitations

8.3.1 SwivelView 0° and 180°

The PIP+ Line Address Offset register (REG[54h]) requires the PIP+ window image width
to be a multiple of (32  bits-per-pixel). If this formula is not satisfied, then the PIP+ Line
Address Offset register must be programmed to the next larger value that satisfies the
formula.

8.3.2 SwivelView 90° and 270°

The PIP+ Line Address Offset register (REG[54h]) requires the PIP+ window image width
to be a multiple of (32  bits-per-pixel). If this formula is not satisfied, then the PIP+ Line
Address Offset register must be programmed to the next larger value that satisfies the
formula.
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 63
Rev. 6.1

2D BitBLT Engine
9 2D BitBLT Engine
BitBLT is an acronym for Bit Block Transfer. The 2D BitBLT Engine in the S1D13A05 is
designed to increase the speed of the most common GUI operations by off-loading work
from the CPU, reducing traffic on the system bus and freeing the CPU sooner for other
tasks.

All BitBLTs require a destination - a place to write the data. Most BitBLTs have a source
of data for the BitBLT and many also incorporate a pattern. The pattern, source, and desti-
nation operands are combined using logical AND, OR, XOR and NOT operations. The
combining process is called a Raster Operation (ROP) and results in the final pixel data to
be written to the destination address.

The S1D13A05 2D BitBLT engine supports a total of sixteen ROPs and works at 8 bpp and
16 bpp color depths. This section describes the BitBLT registers and provides some sample
BitBLT operations.

9.1 Registers

The S1D13A05 BitBLT registers are located 8000h bytes from the start of S1D13A05
address space. The registers are labelled, according to their byte offset, as REG[8000h]
through REG[8024h]. The following is a description of all BitBLT registers.

Color Format Select
The Color Format Select bit indicates to the BitBLT engine what color depth to assume for
the BitBLT operation. The BitBLT engine uses this information to set the step size for
internal counters.

When this bit = 0, 8 bpp is selected and when this bit = 1, 16 bpp is selected.

Destination Linear Select
The Destination Linear Select bit determines how the BitBLT destination address pointer
is updated when the BitBLT reaches the end of a row.

When the end of a row is reached and rectangular is selected the destination address is
updated to point to the beginning of the next row of a rectangular area. The offset to the
start of the next row is contained in the BitBLT Memory Address Offset register
(REG[8014h]).

BitBLT Control Register
REG[8000h] Default = 00000000h Read/Write

n/a
Color

Format
Select

Dest
Linear
Select

Source
Linear
Select

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

n/a
BitBLT
Enable
(WO)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
64 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

2D BitBLT Engine
When the end of a row is reached and destination linear is selected the destination address
is updated to the next available memory offset. The result is data which is jammed
together with one row immediately following the next in display memory. This is useful
when it is desired to compactly save a rectangular area into off screen memory.

When this bit = 0, the BitBLT destination is stored as a rectangular region of memory.
When this bit = 1, the BitBLT destination is stored as a contiguous linear block of mem-
ory.

Source Linear Select
The Source Linear Select bit determines how the source address pointer is updated when
the BitBLT reaches the end of a row.

When the end of a row is reached and rectangular is selected the source address is updated
to point to the beginning of the next row of a rectangular area. The offset to the start of the
next row is contained in the BitBLT Memory Address Offset register (REG[8014h]).

When the end of a row is reached and source linear is selected the source address is
updated to the next available memory offset. The result is data, which was jammed
together with one row immediately following the next in display memory, can now be
expanded back to a rectangular area.

When this bit = 0, the BitBLT source is stored as a rectangular region of memory.
When this bit = 1, the BitBLT source is stored as a contiguous linear block of memory.

BitBLT Enable
This bit is write only.
Setting this bit to 1 begins the 2D BitBLT operation. This bit must not be set to 0 while a
BitBLT operation is in progress.

Note
To determine the status of a BitBLT operation use the BitBLT Busy Status bit
(REG[8004h] bit 0).
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 65
Rev. 6.1

2D BitBLT Engine
Number of Used FIFO Entries
This is a read-only status.
This field indicates the minimum number of FIFO entries currently in use. If these bits
return a 0, the FIFO is empty.

Number of Free FIFO Entries
This is a read-only status bit
This field indicates the number of empty FIFO entries available. If these bits return a 0,
the FIFO is full.

FIFO Not-Empty
This is a read-only status bit.
When this bit = 0, the BitBLT FIFO is empty. When this bit = 1, the BitBLT FiFO has at
least one data. To reduce system latency, software can monitor this bit prior to a BitBLT
read burst operation.

The following table shows the number of words available in the BitBLT FIFO under dif-
ferent status conditions.

BitBLT FIFO Half Full Status
This is a read-only status bit.
When this bit = 1, the BitBLT FIFO is half full or greater than half full. When this bit = 0,
the BitBLT FIFO is less than half full.

BitBLT FIFO Full Status
This is a read-only status bit.
When this bit = 1, the BitBLT FIFO is full. When this bit = 0, the BitBLT FIFO is not full.

BitBLT Busy Status
This bit is a read-only status bit.
When this bit = 1, the BitBLT operation is in progress. When this bit = 0, the BitBLT oper-
ation is complete.

BitBLT Status Register
REG[8004h] Default = 00000000h Read Only

n/a Number of Used FIFO Entries n/a Number of Free FIFO Entries (0 means full)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

n/a
FIFO
Not

Empty

FIFO
Half Full

FIFO
Full

Status
n/a

BitBLT
Busy

Status

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Table 9-1: BitBLT FIFO Words Available
BitBLT FIFO Full

Status
(REG[8004h] Bit 4)

BitBLT FIFO Half
Full Status

(REG[8004h] Bit 5)

BitBLT FIFO Not
Empty Status

(REG[8004h] Bit 6)

Number of Words
available in BitBLT

FIFO
0 0 0 0

0 0 1 1 to 6

0 1 1 7 to 14

1 1 1 15 to 16
66 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

2D BitBLT Engine
Note
During a BitBLT Read operation, the BitBLT engine does not attempt to keep the FIFO
full. If the FIFO becomes full, the BitBLT operation stops temporarily as data is read
out of the FIFO. The BitBLT will restart only when less than 14 values remain in the
FIFO.

BitBLT ROP Code
The BitBLT ROP Code specifies the Raster Operation to be used for Write and Move Bit-
BLTs. In addition, for Color Expansion, the BitBLT ROP Code bits 2-0 specify the start bit
position for Color Expansion BitBLTs.

Note
S = Source, D = Destination, P = Pattern.
~ = NOT, . = Logical AND, + = Logical OR, ^ = Logical XOR

BitBLT Command Register
REG[8008h] Default = 00000000h Read/Write

n/a BitBLT ROP Code bits 3-0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
n/a BitBLT Operation bits 3-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Table 9-2 : BitBLT ROP Code/Color Expansion Function Selection
BitBLT ROP Code Bits

[3:0]
Boolean Function for Write
BitBLT and Move BitBLT

Boolean Function for
Pattern Fill

Start Bit Position for Color
Expansion

0000 0 (Blackness) 0 (Blackness) bit 0

0001 ~S . ~D or ~(S + D) ~P . ~D or ~(P + D) bit 1

0010 ~S . D ~P . D bit 2

0011 ~S ~P bit 3

0100 S . ~D P . ~D bit 4

0101 ~D ~D bit 5

0110 S ^ D P ^ D bit 6

0111 ~S + ~D or ~(S . D) ~P + ~D or ~(P . D) bit 7

1000 S . D P . D bit 0

1001 ~(S ^ D) ~(P ^ D) bit 1

1010 D D bit 2

1011 ~S + D ~P + D bit 3

1100 S P bit 4

1101 S + ~D P + ~D bit 5

1110 S + D P + D bit 6

1111 1 (Whiteness) 1 (Whiteness) bit 7
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 67
Rev. 6.1

2D BitBLT Engine
BitBLT Operation
The BitBLT Operation selects which BitBLT operation performed. The following table
lists the available BitBLT operations.

Table 9-3 : BitBLT Operation Selection
BitBLT Operation

Bits [3:0] BitBLT Operation

0000
Write BitBLT with ROP

This operation refers to BitBLTs where data is to be transferred from system memory to display memory

0001
Read BitBLT

This operation refers to BitBLTs where data is to be transferred from display memory to system memory

0010
Move BitBLT in positive direction with ROP

This operation is used to transfer data from display memory to display memory

0011
Move BitBLT in negative direction with ROP

This operation is used to transfer data from display memory to display memory

0100

Transparent Write BitBLT

Like the Write BitBLT this operation is used when transferring data from system memory to display
memory, the difference is that destination pixels will be left “as is” when source pixels of a specified color
are encountered.

0101

Transparent Move BitBLT in positive direction

As with the Move BitBLTs this operation is used to transfer data from display memory to display memory.
The difference is that destination pixels will be left “as is” when source pixels of a specified color are
encountered.

0110
Pattern Fill with ROP

Fills the specified area of display memory with a repeating pattern stored in display memory.

0111
Pattern Fill with transparency

As with the Pattern Fill, this BitBLT fills a specified area of display memory with a repeating pattern,
destination pixels will be left “as is” when source pixels of a specified color are encountered.

1000

Color Expansion

This BitBLT expands the bits of the source data into full pixels at the destination. If a source bit is 0 the
destination pixel will be background color and if the source bit is 1 the destination pixel will be of foreground
color. The source data for Color Expansion BitBLTs is always system memory.

1001

Color Expansion with transparency

Like the Color Expansion BitBLT, this operations expands each bit of the source data to occupy a full
destination pixel. The difference, is that destination pixels corresponding to source bits of 0 will be left “as
is”. The data source is system memory

1010
Move BitBLT with Color Expansion

This BitBLT works the same as the Color Expansion BitBLT however the source of the BitBLT is display
memory.

1011
Move BitBLT with Color Expansion and transparency

This BitBLT works the same as the Color Expansion with Transparency BitBLT however the source of the
BitBLT is display memory.

1100
Solid Fill BitBLT

Use this BitBLT to fill a given area with one solid color.
Other

combinations Reserved
68 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

2D BitBLT Engine
BitBLT Source Start Address
This register has multiple meanings depending on the BitBLT operation being performed.
It can be either:

• the start address in display memory of the source data for BitBLTs where the source is
display memory (i.e. Move BitBLTs).

• in pattern fill operations, the BitBLT Source Start Address determines where in the
pattern to begin the BitBLT operation and is defined by the following equation:

Value programmed to the Source Start Address Register =
Pattern Base Address + Pattern Line Offset + Pixel Offset.

• the data alignment for 16 bpp BitBLTs where the source of BitBLT data is the CPU
(i.e. Write BitBLTs).

The following table shows how Source Start Address Register is defined for 8 and 16 bpp
color depths.

BitBLT Destination Start Address
This register specifies the initial destination address for BitBLT operations. For rectangu-
lar destinations this address represents the upper left corner of the BitBLT rectangle. If the
operation is a Move BitBLT in a Negative Direction, these bits define the address of the
lower right corner of the rectangle.

BitBLT Source Start Address Register
REG[800Ch] Default = 00000000h Read/Write

n/a BitBLT Source Start Address bits 20-16

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
BitBLT Source Start Address bits 15-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Table 9-4 : BitBLT Source Start Address Selection

Color Format Pattern Base Address[20:0] Pattern Line Offset[2:0] Pixel Offset[3:0]

8 bpp BitBLT Source Start Address[20:6] BitBLT Source Start
Address[5:3]

BitBLT Source Start
Address[2:0]

16 bpp BitBLT Source Start Address[20:7] BitBLT Source Start
Address[6:4]

BitBLT Source Start
Address[3:0]

BitBLT Destination Start Address Register
REG[8010h] Default = 00000000h Read/Write

n/a BitBLT Destination Start Address bits 20-16

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
BitBLT Destination Start Address bits 15-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 69
Rev. 6.1

2D BitBLT Engine
BitBLT Memory Address Offset
This register specifies the 11-bit address offset from the starting word of line n to the start-
ing word of line n + 1. The offset value is only used for address calculation when the
BitBLT is configured as rectangular.

BitBLT Width
This register specifies the width of a BitBLT in pixels - 1.

BitBLT width (in pixels) = REG[8018h] + 1

BitBLT Height
This register specifies the height of the BitBLT in lines - 1.

BitBLT height (in lines) = REG[801Ch] + 1

BitBLT Background Color
This register specifies either:

• the BitBLT background color for Color Expansion

BitBLT Memory Address Offset Register
REG[8014h] Default = 00000000h Read/Write

n/a

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
n/a BitBLT Memory Address Offset bits 10-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BitBLT Width Register
REG[8018h] Default = 00000000h Read/Write

n/a

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
n/a BitBLT Width bits 9-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BitBLT Height Register
REG[801Ch] Default = 00000000h Read/Write

n/a

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
n/a BitBLT Height bits 9-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BitBLT Background Color Register
REG[8020h] Default = 00000000h Read/Write

n/a

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
BitBLT Background Color bits 15-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
70 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

2D BitBLT Engine
or

• the key color for Transparent BitBLT. For 8 bpp BitBLTs, bits 7-0 are used to specify
the key color and for 16 bpp BitBLTs, bits 15-0 are used.

BitBLT Foreground Color
This register specifies the foreground color for Color Expansion or Solid Fill BitBLTs. For
8 bpp BitBLTs, bits 7-0 are used to specify the color and for 16 bpp BitBLTs, bits 15-0 are
used.

BitBLT Data bits
This register is used by the local CPU to send data to the BitBLT engine for Write and
Color Expansion BitBLTs and is used to read data from the BitBLT engine for Read
BitBLTs. The register should be treated as any other register it is however loosely decoded
from 10000h to 1FFFEh.

Note
The BitBLT data registers are 32 bits wide but are accessed on WORD boundaries using
16 bit accesses. Byte access to the BitBLT data registers is not allowed.

Note
Accesses to this register, other than for purposes of a BitBLT operation may cause the
13A05 to stop responding and the system to hang.

BitBLT Foreground Color Register
REG[8024h] Default = 00000000h Read/Write

n/a

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
BitBLT Foreground Color bits 15-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

2D Accelerator (BitBLT) Data Memory Mapped Region Register
AB16-AB0 = 10000h-1FFFEh, even addresses Read/Write

BitBLT Data bits 31-16

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
BitBLT Data bits 15-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 71
Rev. 6.1

2D BitBLT Engine
9.2 BitBLT Descriptions

The S1D13A05 supports 13 fundamental BitBLT operations:

• Write BitBLT with ROP

• Read BitBLT

• Move BitBLT in positive direction with ROP

• Move BitBLT in negative direction with ROP

• Transparent Write BitBLT

• Transparent Move BitBLT in positive direction

• Pattern Fill with ROP

• Pattern Fill with Transparency

• Color Expansion

• Color Expansion with Transparency

• Move BitBLT with Color Expansion

• Move BitBLT with Color Expansion and Transparency

• Solid Fill

Most of the 13 operations are self completing. This means once the BitBLT operation
begins it completes without further assistance from the local CPU. No data transfers are
required to or from the local CPU. Five BitBLT operations (Write BitBLT with ROP,
Transparent Write BitBLT, Color Expansion, Color Expansion with Transparency, Read
BitBLT) require data to be written to/read from the BitBLT engine. This data must be trans-
ferred one word (16-bits) at a time. This does not imply only 16-bit CPU instructions are
acceptable. If a system is able to separate one DWORD write into two WORD writes and
the CPU writes the low word before the high word, then 32-bit CPU instructions are
acceptable. Otherwise, 16-bit CPU instructions are required.

The data is not directly written to/read from the display buffer. It is written to/read from the
BitBLT FIFO through the 64K byte BitBLT aperture specified at the address of
REG[10000h]. The 16 word FIFO can be written to only when not full and can be read from
only when not empty. Failing to monitor the FIFO status can result in a BitBLT FIFO
overflow or underflow.

While the FIFO is being written to by the CPU, it is also being emptied by the S1D13A05.
If the S1D13A05 empties the FIFO faster than the CPU can fill it, it may not be possible to
cause an overflow/underflow. In these cases, performance can be improved by not
monitoring the FIFO status. However, this is very much platform dependent and must be
determined for each system.
72 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

2D BitBLT Engine
9.2.1 Write BitBLT with ROP

Write BitBLTs increase the speed of transferring data from system memory to the display
buffer. The Write BitBLT with ROP accepts data from the CPU and writes it into display
memory. This BitBLT is typically used to copy a bitmap image from system memory to the
display buffer.

Write BitBLTs support 16 ROPs, the most frequently used being ROP 0Ch (Copy Source
to Destination). Write BitBLTs support both rectangular and linear destinations. Using a
linear destination it is possible to move an image to off screen memory in a compact format
for later restoration using a Move BitBLT.

During a Write BitBLT operation the BitBLT engine expects to receive a particular number
of WORDs and it is the responsibility of the CPU to provide the required amount of data.

When performing BitBLT at 16 bpp color depth the number of WORDS to be sent is the
same as the number of pixels to be transferred as each pixel is one WORD wide. The
number of WORD writes the BitBLT engine expects is calculated using the following
formula.

WORDS = Pixels
= BitBLTWidth  BitBLTHeight

When the color depth is 8 bpp the formula must take into consideration that the BitBLT
engine accepts only WORD accesses and each pixel is one BYTE. This may lead to a
different number of WORD transfers than there are pixels to transfer.

The number of WORD accesses is dependant on the position of the first pixel within the
first WORD of each row. Is the pixel stored in the low byte or the high byte of the WORD?
This aspect of the BitBLT is called phase and is determined as follows:

Source phase is 0 when the first pixel is in the low byte and the second pixel is in the high
byte of the WORD. When the source phase is 0, bit 0 of the Source Start Address Register
is 0. The Source Phase is 1 if the first pixel of each row is contained in the high byte of the
WORD, the contents of the low byte are ignored. When the source phase is 1, bit 0 of the
Source Start Address Register is set.

Depending on the Source Phase and the BitBLT Width, the last WORD may contain only
one pixel. In this case it is always in the low byte. The number of WORD writes the BitBLT
engine expects for 8 bpp color depths is shown in the following formula.

WORDS = ((BitBLTWidth + 1 + SourcePhase)  2)  BitBLTHeight

The BitBLT engine requires this number of WORDS to be sent from the local CPU before
it will end the Write BitBLT operation.
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 73
Rev. 6.1

2D BitBLT Engine
Note
The BitBLT engine counts WORD writes made to the BitBLT register space. This does
not imply only 16-bit CPU instructions are acceptable. If a system is able to separate one
DWORD write into two WORD writes and the CPU writes the low word before the
high word, then 32-bit CPU instructions are acceptable. Otherwise, 16-bit CPU instruc-
tions are required.

Example 9: Write a 100 x 20 rectangle at the screen coordinates x = 25, y = 38 using
a 320x240 display at a color depth of 8 bpp.

1. Calculate the destination address (upper left corner of the screen BitBLT rectangle)
using the following formula.

DestinationAddress = (y ScreenStride)  (x  BytesPerPixel)
= (38 320)  (25  1)
= 12185
= 2F99h

where:
BytesPerPixel = 1 for 8 bpp
ScreenStride = DisplayWidthInPixels  BytesPerPixel = 320 for 8 bpp

Program the BitBLT Destination Start Address Register. REG[8010h] is set to 2F99h.

2. Program the BitBLT Width Register to 100 - 1. REG[8018h] is set to 63h (99 deci-
mal).

3. Program the BitBLT Height Register to 20 - 1. REG[801Ch] is set to 13h (19 deci-
mal).

4. Program the Source Phase in the BitBLT Source Start Address Register. In this exam-
ple the data is WORD aligned, so the source phase is 0. REG[800Ch] is set to 00h.

5. Program the BitBLT Operation Register to select the Write BitBLT with ROP.
REG[8008h] bits 3-0 are set to 0h.

6. Program the BitBLT ROP Code Register to select Destination = Source. REG[8008h]
bits 19-16 are set to 0Ch.

7. Program the BitBLT Color Format Select bit for 8 bpp operations. REG[8000h] bit 18
is set to 0.

8. Program the BitBLT Memory Offset Register to the ScreenStride in WORDS:

BLTMemoryOffset = DisplayWidthInPixels  BytesPerPixel
= 320  2
= A0h

REG[8014h] is set to A0h.
74 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

2D BitBLT Engine
9. Calculate the number of WORDS the BitBLT engine expects to receive.

WORDS = ((BLTWidth + 1 + SourcePhase)  2)  BLTHeight
= (100 + 1)  2  20
= 1000
= 3E8h

10. Program the BitBLT Destination/Source Linear Select bits for a rectangular BitBLT
(BitBLT Destination Linear Select = 0, BitBLT Source Linear Select = 0).

Start the BitBLT operation. REG[8004h] bit 0 returns a 1.

11. Prior to writing any data to the BitBLT FIFO, confirm the BitBLT FIFO is not full
(REG[8004h] bit 4 returns a 0).
If the BitBLT FIFO Not Empty Status (REG[8004h] bit 6) returns a 0, the FIFO is
empty. Write up to 16 WORDS to the BitBLT data register area.
If the BitBLT FIFO Not Empty Status (REG[8004h] bit 6) returns a 1 and the BitBLT
FIFO Half Full Status (REG[8004h] bit 5) returns a 0 then you can write up to 8
WORDS.
If the BitBLT FIFO Full Status returns a 1, do not write to the BitBLT FIFO until it re-
turns a 0.

The following table summarizes how many words can be written to the BitBLT FIFO.

Note
The sequence of register initialization is irrelevant as long as all required registers are
programmed before the BitBLT is started.

Table 9-5: Possible BitBLT FIFO Writes
BitBLT Status Register (REG[8004h]) Word Writes

AvailableFIFO Not Empty Status FIFO Half Full Status FIFO Full Status
0 0 0 16
1 0 0 8
1 1 0 up to 8
1 1 1 0 (do not write)
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 75
Rev. 6.1

2D BitBLT Engine
9.2.2 Color Expansion BitBLT

Similar to the Write BitBLT, the Color Expansion BitBLT requires the CPU to feed data to
the BitBLT data register It differs in that bits set to one in the source data becomes a
complete pixel of foreground color. Source bits set to zero are converted to a pixel of
background color. The intended use of this BitBLT operation is to increase the speed of
writing text to display memory. As with the Write BitBLT, all data sent to the BitBLT
engine must be WORD (16-bit) writes.

The BitBLT engine expands first the low byte, then the high byte starting at bit 7 of
each byte. The start byte of the first WORD to be expanded and the start bit position within
this byte must be specified. The start byte position is selected by setting source address bit
0 to 0 to start expanding the low byte or 1 to start expanding the high byte.

Partially “masked” color expansion BitBLTs can be used when drawing a portion of a
pattern (i.e. a portion of a character) on the screen. The following examples illustrate how
one WORD is expanded using the Color Expansion BitBLT.

1. To expand bits 0-1 of the word:

Source Address = 0
Start Bit Position = 1
BitBLT Width = 2

The following bits are expanded.

2. To expand bits 0-15 of the word (entire word)

Source Address = 0
Start Bit Position = 7 (bit seven of the low byte)
BitBLT Width = 16

The following bits are expanded.

15 8 7 0

0707
High Byte Low Byte

Word Sent To BitBLT Engine

15 8 7 0

0707
High Byte Low Byte

Word Sent To BitBLT Engine
76 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

2D BitBLT Engine
3. To expand bits 8-9 of the word

Source Address = 1
Start Bit Position = 1
BitBLT Width = 2

The following bits are expanded.

4. To expand bits 0,15-14 of the word

Source Address = 0
Start Bit Position = 0
BitBLT Width = 3

The following bits are expanded.

All subsequent WORDS in one BitBLT line are then serially expanded starting at bit 7 of
the low byte until the end of the BitBLT line. All unused bits in the last WORD are
discarded. It is extremely important that the exact number of WORDS is provided to the
BitBLT engine. The number of WORDS is calculated from the following formula. This
formula is valid for all color depths (8/16 bpp).

WORDS = ((Sx MOD 16 + BitBLTWidth + 15)  16)  BitBLTHeight

where:
Sx is the X coordinate of the starting pixel in a word aligned monochrome bitmap.

15 8 7 0

0707
High Byte Low Byte

Word Sent To BitBLT Engine

15 8 7 0

0707
High Byte Low Byte

Word Sent To BitBLT Engine

15765

Byte 1
Monochrome Bitmap

Byte 2

43210 1412111098 13Sx =
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 77
Rev. 6.1

2D BitBLT Engine
Example 10: Color expand a rectangle of 12 x 18 starting at the coordinates
Sx = 125, Sy = 17 using a 320x240 display at a color depth of 8 bpp.

This example assumes a monochrome, WORD aligned bitmap of dimensions 300 x 600
with the origin at an address A. The color expanded rectangle will be displayed at the screen
coordinates X = 20, Y = 30. The foreground color corresponds to the LUT entry at index
134, the background color to index 124.

1. First we need to calculate the address of the WORD within the monochrome bitmap
containing the pixel x = 125,y = 17.

SourceAddress = BitmapOrigin + (y  SourceStride) + (x  8)
= A + (Sy  SourceStride) + (Sx  8)
= A + (17  38) + (125  8)
= A + 646 + 15
= A + 661

where:
SourceStride = (BitmapWidth + 15)  16

= (300 + 15)  16
= 19 WORDS per line
= 38 BYTES per line

2. Calculate the destination address (upper left corner of the screen BitBLT rectangle)
using the following formula.

DestinationAddress = (Y ScreenStride) + (X BytesPerPixel)
= (30  320) + (20  1)
= 9620
= 2594h

where:
BytesPerPixel = 1 for 8 bpp
ScreenStride = DisplayWidthInPixels  BytesPerPixel = 320 for 8 bpp

Program the BitBLT Destination Start Address Register. REG[8010h] is set to 2594h.

3. Program the BitBLT Width Register to 12 - 1. REG[8018h] is set to 0Bh (11 decimal).

4. Program the BitBLT Height Register to 18 - 1. REG[801Ch] is set to 11h (17 deci-
mal).

5. Program the Source Phase in the BitBLT Source Start Address Register. In this exam-
ple the source address equals A + 661 (odd), so REG[800Ch] is set to 1.

Since only bit 0 flags the source phase, more efficient code would simply write the
low byte of the SourceAddress into REG[800Ch] directly -- not needing to test for an
odd/even address. Note that in 16 bpp color depths the Source address is guaranteed to
be even.

6. Program the BitBLT Operation Register to select the Color Expand BitBLT.
REG[8008h] bits 3-0 are set to 8h.
78 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

2D BitBLT Engine
7. Program the Color Expansion Register. The formula for this example is as follows.

Color Expansion = 7 - (Sx MOD 8)
= 7 - (125 MOD 8)
= 7 - 5
= 2

REG[8008h] is set to 2h.

8. Program the Background Color Register to the background color. REG[8020h] is set
to 7Ch (124 decimal).

9. Program the Foreground Color Register to the foreground color. REG[8024h] is set to
86h (134 decimal).

10. Program the BitBLT Color Format Register for 8 bpp operation. REG[8000h] bit 18 is
set to 0.

11. Program the BitBLT Memory Offset Register to the ScreenStride in WORDS.

BltMemoryOffset = ScreenStride  2
= 320  2
= A0h

REG[8014h] is set to A0h.

12. Calculate the number of WORDS the BitBLT engine expects to receive.

First, the number of WORDS in one BitBLT line must be calculated as follows.

WordsOneLine = ((125 MOD 16) + 12 + 15)  16
= (13 + 12 + 15)  16
= 40  16
= 2

Therefore, the total WORDS the BitBLT engine expects to receive is calculated as
follows.

WORDS = WordsOneLine  18
= 2  18
= 36

13. Program the BitBLT Destination/Source Linear Select bits for a rectangular BitBLT
(BitBLT Destination Linear Select = 0, BitBLT Source Linear Select = 0).

Start the BitBLT operation. REG[8004h] bit 0 returns a 1.
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 79
Rev. 6.1

2D BitBLT Engine
14. Prior to writing all WORDS to the BitBLT FIFO, confirm the BitBLT FIFO is not full
(REG[8004h] bit 4 returns a 0). One WORD expands into 16 pixels which fills all 16
FIFO words in 16 bpp or 8 FIFO words in 8 bpp.

The following table summarizes how many words can be written to the BitBLT FIFO.

Note
The sequence of register setup is irrelevant as long as all required registers are pro-
grammed before the BitBLT is started.

9.2.3 Color Expansion BitBLT With Transparency

This BitBLT operation is virtually identical to the Color Expand BitBLT, the difference is
in how background bits are handled. Bits in the source bitmap which are set to zero result
in the destination pixel remaining untouched. Bits set to one are expanded to the foreground
color.

Use this BitBLT operation to overlay text onto any background while leaving the
background intact.

Refer to the Color Expansion BitBLT for sample calculations and keep the following points
in mind:

• Program the BitBLT operation bits, REG[8008h] bits 3-0, to 09h instead of 08h.

• Setting a background color, REG[8020h], is not required.

9.2.4 Solid Fill BitBLT

The Solid Fill BitBLT fills a rectangular area of the display buffer with a solid color. This
operation is used to paint large screen areas or to set areas of the display buffer to a given
value.

This BitBLT operation is self completing. After setting the width, height, destination start
position and (foreground) color the BitBLT engine is started. When the region of display
memory is filled with the given color the BitBLT engine will automatically stop.

Table 9-6: Possible BitBLT FIFO Writes
BitBLT Status Register (REG[8004h]) 8 bpp Word

Writes Available
16 bpp Word

Writes AvailableFIFO Not Empty Status FIFO Half Full Status FIFO Full Status
0 0 0 2 1
1 0 0 1

0 (do not write)1 1 0
0 (do not write)

1 1 1
80 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

2D BitBLT Engine
Example 11: Fill a red 9 x 301 rectangle at the screen coordinates x = 100, y = 10 us-
ing a 320x240 display at a color depth of 16 bpp.

1. Calculate the destination address (upper left corner of the destination rectangle) using
the following formula.

DestinationAddress = (y  ScreenStride) + (x  BytesPerPixel)
= (10 (3202)) + (100 2)
= 6600
= 19C8h

where:
BytesPerPixel = 2 for 16 bpp
ScreenStride = DisplayWidthInPixels  BytesPerPixel = 640 for 16 bpp.

Program the BitBLT Destination Start Address Register. REG[8010h] is set to 19C8h.

2. Program the BitBLT Width Register to 9 - 1. REG[8018h] is set to 08h.

3. Program the BitBLT Height Register to 301 - 1. REG[801Ch] is set to 12Ch (300 dec-
imal).

4. Program the BitBLT Foreground Color Register. REG[8024h] is set to F800h (Full in-
tensity red in 16 bpp is F800h).

5. Program the BitBLT Operation Register to select Solid Fill. REG[8008h] bits 3-0 are
set to 0Ch.

6. Program the BitBLT Color Format Register for 16 bpp operations. REG[8000h] bit 18
is set to 1.

7. Program the BitBLT Memory Offset Register to the ScreenStride in WORDS.

BltMemoryOffset = ScreenStride  2
= 320
= 140h

REG[8014h] is set to 0140h.

8. Program the BitBLT Destination/Source Linear Select bits for a rectangular BitBLT
(BitBLT Destination Linear Select = 0, BitBLT Source Linear Select = 0).

Start the BitBLT operation. REG[8000h] bit 0 is set to 1.

Note
The sequence of register setup is irrelevant as long as all required registers are pro-
grammed before the BitBLT is started.
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 81
Rev. 6.1

2D BitBLT Engine
9.2.5 Move BitBLT in a Positive Direction with ROP

The Move BitBLT is used to copy one area of display memory to another area in display
memory.

The source and the destination areas of the BitBLT may be either rectangular or linear.
Performing a rectangular to rectangular Move BitBLT creates an exact copy of one portion
of video memory at the second location. Selecting a rectangular source to linear destination
would be used to compactly store an area of displayed video memory into non-displayed
video memory. Later, the area could be restored by performing a linear source to rectan-
gular destination Move BitBLT.

The Move BitBLT in a Positive Direction with ROP is a self completing operation. Once
the width, height and the source and destination start addresses are setup and the BitBLT is
started the BitBLT engine will complete the operation automatically.

Should the source and destination areas overlap a decision has to be made as to whether to
use a Positive or Negative direction so that source data is not overwritten by the move
before it is used. Refer to Figure 9-1: to see when to make the decision to switch to the
Move BitBLT in a Negative direction. When the destination area overlaps the original
source area and the destination address is greater then the source address, use the Move
BitBLT in Negative Direction with ROP.

Figure 9-1: Move BitBLT Usage

Example 12: Copy a 9 x 101 rectangle at the screen coordinates x = 100, y = 10 to
screen coordinates x = 200, y = 20 using a 320x240 display at a color
depth of 16 bpp.

D

S

S

D

Destination Address less than Source Address
Use Move BitBLT in Positive Direction

Destination Address greater than Source Address
Use Move BitBLT in Negative Direction
82 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

2D BitBLT Engine
1. Calculate the source and destination addresses (upper left corners of the source and
destination rectangles), using the following formula.

SourceAddress = (y  ScreenStride) + (x  BytesPerPixel)
= (10 (320 2)) + (100 2)
= 6600
= 19C8h

DestinationAddress = (y ScreenStride) + (x BytesPerPixel)
= (20  (320 2)) + (200 2)
= 13200
= 3390h

where:
BytesPerPixel = 2 for 16 bpp
ScreenStride = DisplayWidthInPixels  BytesPerPixel = 640 for 16 bpp

Program the BitBLT Source Start Address Register. REG[800Ch] is set to 19C8h.

Program the BitBLT Destination Start Address Register. REG[8010h] is set to 3390h.

2. Program the BitBLT Width Register to 9 - 1. REG[8018h] is set to 08h.

3. Program the BitBLT Height Register to 101 - 1. REG[801Ch] is set to 64h (100 deci-
mal).

4. Program the BitBLT Operation Register to select the Move BitBLT in Positive Direc-
tion with ROP. REG[8008h] bits 3-0 are set to 2h.

5. Program the BitBLT ROP Code Register to select Destination = Source. REG[8008h]
bits 19-16 are set to 0Ch.

6. Program the BitBLT Color Format Select bit for 16 bpp operations. REG[8000h] bit
18 is set to 1.

7. Program the BitBLT Memory Offset Register to the ScreenStride in WORDS.

BltMemoryOffset = ScreenStride  2
= 320
= 140h

REG[8014h] is set to 0140h.

8. Program the BitBLT Destination/Source Linear Select bits for a rectangular BitBLT
(BitBLT Destination Linear Select = 0, BitBLT Source Linear Select = 0).

Start the BitBLT operation. REG[8000h] bit 0 is set to 1.

Note
The sequence of register setup is irrelevant as long as all required registers are pro-
grammed before the BitBLT is started.
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 83
Rev. 6.1

2D BitBLT Engine
9.2.6 Move BitBLT in Negative Direction with ROP

The Move BitBLT in Negative Direction with ROP is similar to the Move BitBLT in
Positive direction. Use this BitBLT operation when the source and destination BitBLT
areas overlap and the destination address is greater then the source address. Refer to Figure
9-1: on page 82 to see when to make the decision to switch to the Move BitBLT in a
Positive direction.

When using the Move BitBLT in Negative Direction it is necessary to calculate the
addresses of the last pixels as opposed to the first pixels. This means calculating the
addresses of the lower right corners as opposed to the upper left corners.

Example 13: Copy a 9 x 101 rectangle at the screen coordinates x = 100, y = 10 to
screen coordinates X = 105, Y = 20 using a 320x240 display at a color
depth of 16 bpp.

In the following example, the coordinates of the source and destination rectangles inten-
tionally overlap.

1. Calculate the source and destination addresses (lower right corners of the source and
destination rectangles) using the following formula.

SourceAddress
= ((y + Height - 1) ScreenStride) + ((x + Width - 1)  BytesPerPixel)
= ((10 + 101 - 1)  (320  2)) + ((100 + 9 - 1)  2)
= 70616
= 113D8h

DestinationAddress
= ((Y + Height - 1)  ScreenStride) + ((X + Width - 1)  BytesPerPixel)
= ((20 + 101 - 1) (320 2)) + ((105 + 9 - 1) 2)
= 77026
= 12CE2h

where:
BytesPerPixel = 2 for 16 bpp
ScreenStride = DisplayWidthInPixels  BytesPerPixel = 640 for 16 bpp

Program the BitBLT Source Start Address Register. REG[800Ch] is set to 113D8h.

Program the BitBLT Destination Start Address Register. REG[8010h] is set to
12CE2h.

2. Program the BitBLT Width Register to 9 - 1. REG[8018h] is set to 08h.

3. Program the BitBLT Height Register to 101 - 1. REG[801Ch] is set to 64h (100 deci-
mal).

4. Program the BitBLT Operation Register to select the Move BitBLT in Negative Di-
rection with ROP. REG[8008] bits 3-0 are set to 3h.

5. Program the BitBLT ROP Code Register to select Destination = Source. REG[8008h]
bits 19-16 are set to 0Ch.
84 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

2D BitBLT Engine
6. Program the BitBLT Color Format Select bit for 16 bpp operations. REG[8000h] bit
18 is set to 1.

7. Program the BitBLT Memory Offset Register to the ScreenStride in WORDS.

BltMemoryOffset = ScreenStride  2
= 320
= 140h

REG[8014h] is set to 0140h.

8. Program the BitBLT Destination/Source Linear Select bits for a rectangular BitBLT
(BitBLT Destination Linear Select = 0, BitBLT Source Linear Select = 0).

Start the BitBLT operation. REG[8000h] bit 0 is set to 1.

Note
The sequence of register setup is irrelevant as long as all required registers are pro-
grammed before the BitBLT is started.

9.2.7 Transparent Write BitBLT

Transparent Write BitBLTs are similar to the Write BitBLT with ROP with two differ-
ences; first, a specified color in the source data leaves the destination pixel untouched and
second ROPs are not supported.

This operation is used to copy a bitmap image from system memory to the display buffer
with one source color treated as transparent. Pixels of the transparent color are not trans-
ferred. This allows fast display of non-rectangular or masked images. For example,
consider a source bitmap having a red circle on a blue background. By selecting the blue as
the transparent color and using the Transparent Write BitBLT on the whole rectangle, the
effect is a BitBLT of the red circle only.

During a Transparent Write BitBLT operation the BitBLT engine expects to receive a
particular number of WORDs and it is the responsibility of the CPU to provide the required
amount of data.

When performing BitBLTs at 16 bpp color depth the number of WORDS to be sent is the
same as the number of pixels as each pixel is one WORD wide. The number of WORD
writes the BitBLT engine expects is calculated using the following formula.

WORDS = Pixels
= BitBLTWidth  BitBLTHeight

When the color depth is 8 bpp the formula must take into consideration that the BitBLT
engine accepts only WORD accesses and each pixel is one BYTE. This may lead to a
different number of WORD transfers than there are pixels to transfer.
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 85
Rev. 6.1

2D BitBLT Engine
The number of WORD accesses is dependant on the position of the first pixel within the
first WORD of each row. Is the pixel stored in the low byte or the high byte of the WORD?
This aspect of the BitBLT is called phase and is determined as follows:

Source phase is 0 when the first pixel is in the low byte and the second pixel is in the high
byte of the WORD. When the source phase is 0, bit 0 of the Source Start Address Register
is 0. The Source Phase is 1 if the first pixel of each row is contained in the high byte of the
WORD, the contents of the low byte are ignored. When the source phase is 1, bit 0 of the
Source Start Address Register is set.

Depending on the Source Phase and the BitBLT Width, the last WORD may contain only
one pixel. In this case it is always in the low byte. The number of WORD writes the BitBLT
engine expects for 8 bpp color depths is shown in the following formula.

WORDS = ((BitBLTWidth + 1 + SourcePhase)  2)  BitBLTHeight

Once the Transparent Write BitBLT begins, the BitBLT engine remains active until all
pixels have been written. The BitBLT engine requires the correct number of WORDS to be
sent from the local CPU before it ends the Transparent Write BitBLT operation.

Note
The BitBLT engine counts WORD writes made to the BitBLT register. This does not
imply only 16-bit CPU instructions are acceptable. If a system is able to separate one
DWORD write into two WORD writes and the CPU writes the low word before the
high word, then 32-bit CPU instructions are acceptable. Otherwise, 16-bit CPU instruc-
tions are required.

Example 14: Write 100 x 20 pixels at the screen coordinates x = 25, y = 38 using a
320x240 display at a color depth of 8 bpp. Transparent color is high in-
tensity blue (assume LUT Index 124).

1. Calculate the destination address (upper left corner of the screen BitBLT rectangle),
using the formula:

DestinationAddress = (y ScreenStride) + (x  BytesPerPixel)
= (38  320) + (25 1)
= 12185
= 2F99h

where:
BytesPerPixel = 1 for 8 bpp
ScreenStride = DisplayWidthInPixels  BytesPerPixel = 320 for 8 bpp

Program the BitBLT Destination Start Address Register. REG[8010h] is set to 2F99h.

2. Program the BitBLT Width Register to 100 - 1. REG[8018h] is set to 63h (99 deci-
mal).

3. Program the BitBLT Height Register to 20 - 1. REG[801Ch] is set to 13h (19 deci-
mal).
86 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

2D BitBLT Engine
4. Program the Source Phase in the BitBLT Source Start Address Register. In this exam-
ple, the data is WORD aligned, so the source phase is 0. REG[800Ch] is set to 00h.

5. Program the BitBLT Operation Register to select Transparent Write BitBLT.
REG[8008h] bits 3-0 are set to 4h.

6. Program the BitBLT Background Color Register to select transparent color.
REG[8020h] is set to 7Ch (124 decimal).

7. Program the BitBLT Color Format Select bit for 8 bpp operations. REG[8000h] bit 18
is set to 0.

8. Program the BitBLT Memory Offset Register to the ScreenStride in WORDS.

BltMemoryOffset = ScreenStride  2
= 320  2
= 160
= A0h

REG[8014h] is set to 0A0h.

9. Calculate the number of WORDS the BitBLT engine expects to receive.

WORDS = ((BLTWidth + 1 + SourcePhase)  2)  BLTHeight
= (100 + 1 + 0)  2  20
= 1000
= 3E8h

10. Program the BitBLT Destination/Source Linear Select bits for a rectangular BitBLT
(BitBLT Destination Linear Select = 0, BitBLT Source Linear Select = 0).

Start the BitBLT operation. REG[8004h] bit 0 returns a 1.

11. Prior to writing any data to the BitBLT FIFO, confirm the BitBLT FIFO is not full
(REG[8004h] bit 4 returns a 0).
If the BitBLT FIFO Not Empty Status (REG[8004h] bit 6) returns a 0, the FIFO is
empty. Write up to 16 WORDS to the BitBLT data register area.
If the BitBLT FIFO Not Empty Status (REG[8004h] bit 6) returns a 1 and the BitBLT
FIFO Half Full Status (REG[8004h] bit 5) returns a 0 then you can write up to 8
WORDS.
If the BitBLT FIFO Full Status returns a 1, do not write to the BitBLT FIFO until it re-
turns a 0.

The following table summarizes how many words can be written to the BitBLT FIFO.

Table 9-7: Possible BitBLT FIFO Writes
BitBLT Status Register (REG[8004h]) Word Writes

AvailableFIFO Not Empty Status FIFO Half Full Status FIFO Full Status
0 0 0 16
1 0 0 8
1 1 0 less than 8
1 1 1 0 (do not write)
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 87
Rev. 6.1

2D BitBLT Engine
Note
The sequence of register setup is irrelevant as long as all required registers are pro-
grammed before the BitBLT is started.

9.2.8 Transparent Move BitBLT in Positive Direction

The Transparent Move BitBLT in Positive Direction combines the capabilities of the Move
BitBLT with the ability to define a transparent color. Use this operation to copy a masked
area of display memory to another area in display memory.

The source and the destination areas of the BitBLT may be either rectangular or linear.
Performing a rectangular to rectangular Move BitBLT creates an exact copy of one portion
of video memory at the second location. Selecting a rectangular source to linear destination
would be used to compactly store an area of displayed video memory into non-displayed
video memory. Later, the area could be restored by performing a linear source to rectan-
gular destination Move BitBLT.

The transparent color is not copied during this operation, whatever pixel color existed in
the destination will be there when the BitBLT completes. This allows fast display of non-
rectangular images. For example, consider a source bitmap having a red circle on a blue
background. By selecting the blue color as the transparent color and using the Transparent
Move BitBLT on the whole rectangle, the effect is a BitBLT of the red circle only.

Note
The Transparent Move BitBLT is supported only in a positive direction.

Example 15: Copy a 9 x 101 rectangle at the screen coordinates x = 100, y = 10 to
screen coordinates X = 200, Y = 20 using a 320x240 display at a color
depth of 16 bpp. Transparent color is blue.

1. Calculate the source and destination addresses (upper left corners of the source and
destination rectangles), using the formula:

SourceAddress = (y ScreenStride) + (x BytesPerPixel)
= (10 (320 2)) + (100 2)
= 6600
= 19C8h

DestinationAddress = (Y ScreenStride) + (XBytesPerPixel)
= (20  (320 2)) + (200 2)
= 13200
= 3390h

where:
BytesPerPixel = 2 for 16 bpp
ScreenStride = DisplayWidthInPixels BytesPerPixel = 640 for 16 bpp

Program the BitBLT Source Start Address Register. REG[800Ch] is set to 19C8h.

Program the BitBLT Destination Start Address Register. REG[8010h] is set to 3390h.
88 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

2D BitBLT Engine
2. Program the BitBLT Width Register to 9 - 1. REG[8018h] is set to 08h.

3. Program the BitBLT Height Register to 101 - 1. REG[801Ch] is set to 64h (100 deci-
mal).

4. Program the BitBLT Operation Register to select the Transparent Move BitBLT in
Positive Direction. REG[8008h] bits 3-0 are set to 05h.

5. Program the BitBLT Background Color Register to select blue as the transparent col-
or. REG[8020h] is set to 001Fh (Full intensity blue in 16 bpp is 001Fh).

6. Program the BitBLT Color Format Register to select 16 bpp operations. REG[8000h]
bit 18 is set to 1.

7. Program the BitBLT Memory Offset Register to the ScreenStride in WORDS.

BltMemoryOffset = ScreenStride  2
= 320
= 140h

REG[8014h] is set to 0140h.

8. Program the BitBLT Destination/Source Linear Select bits for a rectangular BitBLT
(BitBLT Destination Linear Select = 0, BitBLT Source Linear Select = 0).

Start the BitBLT operation. REG[8000h] bit 0 is set to 1.

Note
The order of register setup is irrelevant as long as all relevant registers are programmed
before the BitBLT is initiated.

9.2.9 Pattern Fill BitBLT with ROP

The Pattern Fill BitBLT with ROP fills a specified area of display memory with a pattern.
The pattern is repeated until the fill area is completely filled. The fill pattern is limited to
an eight by eight pixel array and must be loaded to off-screen video memory before starting
the BitBLT. The pattern can be logically combined with the destination using any of the 16
ROP codes, but typically the copy pattern ROP is used (ROP code 0Ch).

A pattern is defined to be an array of 8x8 pixels and the pattern data must be stored in
consecutive bytes of display memory (64 consecutive bytes for 8 bpp color depths and 128
bytes for 16 bpp color depths). For 8 bpp color depths the pattern must begin on a 64 byte
boundary, for 16 bpp color depths the pattern must begin on a 128 byte boundary.

This operation is self completing. Once the parameters have been entered and the BitBLT
started the BitBLT engine will fill all of the specified memory with the pattern.
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 89
Rev. 6.1

2D BitBLT Engine
To fill an area using the pattern BitBLT, the BitBLT engine requires the location of the
pattern, the destination rectangle position and size, and the ROP code. The BitBLT engine
also needs to know which pixel from the pattern is the first pixel in the destination rectangle
(the pattern start phase). This allows seamless redrawing of any part of the screen using the
pattern fill.

Example 16: Fill a 100 x 150 rectangle at the screen coordinates x = 10, y = 20 with
the pattern in off-screen memory at offset 3C000h using a 320x240 dis-
play at a color depth of 8 bpp. The first pixel (upper left corner) of the
rectangle is the pattern pixel at x = 3, y = 4.

1. Calculate the destination address (upper left corner of the destination rectangle), using
the formula:

DestinationAddress = (y  ScreenStride) + (x  BytesPerPixel)
= (20  320) + (10  1)
= 6410
= 190Ah

where:
BytesPerPixel = 1 for 8 bpp
ScreenStride = DisplayWidthInPixels  BytesPerPixels = 320 for 8 bpp

Program the BitBLT Destination Start Address Register. REG[8010h] is set to 190Ah.

2. Calculate the source address. This is the address of the pixel in the pattern that is the
origin of the destination fill area. The pattern begins at offset 240K, but the first pat-
tern pixel is at x = 3, y = 4. Therefore, an offset within the pattern itself must be calcu-
lated.

SourceAddress
= PatternOffset + StartPatternY  8  BytesPerPixel + StartPatternX  BytesPerPixel
= 240K + (4  8  1) + (3  1)
= 240K + 35
= 245795
= 3C023h

where:
BytesPerPixel = 1 for 8 bpp
Program the BitBLT Source Start Address Register. REG[800Ch] is set to 3C023h.

3. Program the BitBLT Width Register to 100 - 1. REG[8018h] is set to 63h (99 deci-
mal).

4. Program the BitBLT Height Register to 150-1. REG[801Ch] is set to 95h (149 deci-
mal).

5. Program the BitBLT Operation Register to select the Pattern Fill with ROP.
REG[8008h] bits 3-0 are set to 6h.

6. Program the BitBLT ROP Code Register to select Destination = Source. REG[8008h]
bits 19-16 are set to 0Ch.
90 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

2D BitBLT Engine
7. Program the BitBLT Color Format Select bit for 8 bpp operations. REG[8000h] bit 18
is set to 0.
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 91
Rev. 6.1

2D BitBLT Engine
8. Program the BitBLT Memory Offset Register to the ScreenStride in WORDS.

BltMemoryOffset = ScreenStride  2
= 320  2
= 160
= A0h

REG[8014h] is set to 00A0h.

9. Program the BitBLT Destination/Source Linear Select bits for a rectangular BitBLT
(BitBLT Destination Linear Select = 0, BitBLT Source Linear Select = 0).

Start the BitBLT operation. REG[8000h] bit 0 is set to 1.

Note
The sequence of register setup is irrelevant as long as all required registers are pro-
grammed before the BitBLT is started.

9.2.10 Pattern Fill BitBLT with Transparency

This operation is very similar to the Pattern Fill BitBLT with the difference being that one
color can be specified to be transparent. Whenever the Transparent color is encountered in
the pattern data the destination is left as is. This operation is useful to create hatched or
striped patterns where the original image shows through the hatching.

The requirements for this BitBLT are the same as for the Pattern Fill BitBLT the only
change in programming is that the BitBLT Operation field of REG[8008h] must be set to
07h and the BitBLT Background color register, REG[8020h] must be set to the desired
color.

Example 17: Fill a 100 x 150 rectangle at the screen coordinates x = 10, y = 20 with
the pattern in off-screen memory at offset 3C000h using a 320x240 dis-
play at a color depth of 8 bpp. The first pixel (upper left corner) of the
rectangle is the pattern pixel at x = 3, y = 4. Transparent color is blue (as-
sumes LUT index 1).

1. Calculate the destination address (upper left corner of destination rectangle), using the
formula:

DestinationAddress = (y  ScreenStride) + (x  BytesPerPixel)
= (20 320) + (10  1)
= 6410
= 190Ah

where:
BytesPerPixel = 1 for 8 bpp
ScreenStride = DisplayWidthInPixels  BytesPerPixels = 320 for 8 bpp

Program the BitBLT Destination Start Address Register. REG[8010h] is set to 190Ah.
92 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

2D BitBLT Engine
2. Calculate the source address. This is the address of the pixel in the pattern that is the
origin of the destination fill area. The pattern begins at offset 240K, but the first pat-
tern pixel is at x = 3, y = 4. Therefore, an offset within the pattern itself must be calcu-
lated.

SourceAddress
= PatternOffset + StartPatternY  8  BytesPerPixel + StartPatternX  BytesPerPixel
= 240K + (4  8  1) + (3  1)
= 240K + 35
= 245795
= 3C023h

where:
BytesPerPixel = 1 for 8 bpp
Program the BitBLT Source Start Address Register. REG[800Ch] is set to 3C0023h.

3. Program the BitBLT Width Register to 100 - 1. REG[8018h] is set to 63h (99 deci-
mal).

4. Program the BitBLT Height Register to 150-1. REG[801Ch] is set to 95h (149 deci-
mal).

5. Program the BitBLT Operation Register to select the Pattern Fill BitBLT with Trans-
parency. REG[8008h] bits 3-0 are set to 7h.

6. Program the BitBLT Background Color Register to select transparent color. This ex-
ample uses blue (LUT index 1) as the transparent color. REG[8020h] is set to 01h.

7. Program the BitBLT Color Format Select bit for 8 bpp operations. REG[8000h] bit 18
is set to 0.

8. Program the BitBLT Memory Offset Register to the ScreenStride in WORDS.

BltMemoryOffset = ScreenStride  2
= 320  2
= 160
= A0h

REG[8014h] is set to A0h.

9. Program the BitBLT Destination/Source Linear Select bits for a rectangular BitBLT
(BitBLT Destination Linear Select = 0, BitBLT Source Linear Select = 0).

Start the BitBLT operation. REG[8000h] bit 0 is set to 1.

Note
The sequence of register setup is irrelevant as long as all required registers are pro-
grammed before the BitBLT is started.
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 93
Rev. 6.1

2D BitBLT Engine
9.2.11 Move BitBLT with Color Expansion

The Move BitBLT with Color Expansion takes a monochrome bitmap as the source and
color expands it into the destination. All bits set to one in the source are expanded to desti-
nation pixels of the selected foreground color. All bits set to zero in the source are expanded
to pixels of the selected background color.

The Move BitBLT with Color Expansion is used to accelerate text drawing. A monochrome
bitmap of a font, in off-screen video memory, occupies very little space and takes
advantage of the hardware acceleration. Since the foreground and background colors are
programmable, text of any color can be created.

The Move BitBLT with Color Expansion can move data from one rectangular area to
another, or either the source or destination may be specified to be linear. Storing rectangular
display data in linear format in off screen memory results in a tremendous space saving.

Example 18: Color expand a 9 x 16 rectangle using the pattern in off-screen memory
at 3C000h and move it to the screen coordinates x = 200, y = 20. Assume
a 320x240 display at a color depth of 16 bpp, Foreground color of black,
and background color of white.

1. Calculate the destination and source addresses (upper left corner of the destination and
source rectangles), using the formula.

DestinationAddress = (y ScreenStride) + (x BytesPerPixel)
= (20  (320 2)) + (200 2)
= 13200
= 3390h

where:
BytesPerPixel = 2 for 16 bpp
ScreenStride = DisplayWidthInPixels  BytesPerPixels = 640 for 16 bpp

SourceAddress = 240K
= 3C000h

Program the BitBLT Destination Start Address Register. REG[8010h] is set to 3390h.

Program the BitBLT Source Start Address Register. REG[800Ch] is set to 3C000h.

2. Program the BitBLT Width Register to 9 - 1. REG[8018h] is set to 08h.

3. Program the BitBLT Height Register to 16 - 1. REG[801Ch] is set to 0Fh.

4. Program the BitBLT ROP Code/Color Expansion Register. REG[8008h] bits 19-16
are set to 7h.

5. Program the BitBLT Operation Register to select the Move BitBLT with Color Ex-
pansion. REG[8008h] bits 3-0 are set to 0Bh.

6. Program the BitBLT Foreground Color Register to select black (in 16 bpp black =
0000h). REG[8024h] is set to 0000h.
94 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

2D BitBLT Engine
7. Program the BitBLT Background Color Register to select white (in 16 bpp white =
FFFFh). REG[8024h] is set to FFFFh.

8. Program the BitBLT Color Format Select bit for 16 bpp operations. REG[8000h] bit
18 is set to 1.

9. Program the BitBLT Memory Offset Register to the ScreenStride in WORDS.

BltMemoryOffset = ScreenStride  2
= 320
= 140h

REG[8014h] is set to 0140h.

10. Program the BitBLT Destination/Source Linear Select bits for a rectangular BitBLT
(BitBLT Destination Linear Select = 0, BitBLT Source Linear Select = 0).

Start the BitBLT operation. REG[8000h] bit 0 is set to 1.

Note
The sequence of register setup is irrelevant as long as all required registers are pro-
grammed before the BitBLT is started.

9.2.12 Transparent Move BitBLT with Color Expansion

The Transparent Move BitBLT with Color Expansion is virtually identical to the Move
BitBLT with Color Expansion. This operation expands bits set to one in the source bitmap
to the foreground color in the destination. Bits set to zero in the source bitmap leave the
corresponding destination pixel as is.

Setup and use this operation exactly as the Move BitBLT with Color Expansion.

9.2.13 Read BitBLT

This Read BitBLT increases the speed of transferring data from the video memory to
system memory. This BitBLT complements the Write BitBLT and is typically used to save
a part of the display buffer to the system memory. Once the Read BitBLT begins, the
BitBLT engine remains active until all the pixels have been read.

During a Read BitBLT operation the BitBLT engine expects to send a particular number of
WORDs to the CPU, and it is the responsibility of the CPU to read the required amount of
data.

When performing BitBLT at 16 bpp color depth the number of WORDS to be sent is the
same as the number of pixels to be transferred as each pixel is one WORD wide. The
number of WORD writes the BitBLT engine expects is calculated using the following
formula.
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 95
Rev. 6.1

2D BitBLT Engine
WORDS = Pixels
= BitBLTWidth  BitBLTHeight

When the color depth is 8 bpp the formula must take into consideration that the BitBLT
engine accepts only WORD accesses and pixels are only one BYTE. This may lead to a
different number of WORD transfers than there are pixels to transfer.

The number of WORD accesses is dependant on the position of the first pixel within the
first WORD of each destination row. Is the pixel stored in the low byte or the high byte of
the WORD? Read BitBLT phase is determined as follows:

Destination phase is 0 when the first pixel is in the low byte and the second pixel is in the
high byte of the WORD. When the destination phase is 0, bit 0 of the Destination Start
Address Register is 0. The destination phase is 1 if the first pixel of each destination row is
contained in the high byte of the WORD, the contents of the low byte are ignored. When
the destination phase is 1, bit 0 of the Destination Start Address Register is set.

Depending on the destination phase and the BitBLT width, the last WORD may contain
only one pixel. In this case it is always in the low byte. The number of WORD writes the
BitBLT engine expects for 8 bpp color depths is shown in the following formula.

WORDS = ((BitBLTWidth + 1 + DestinationPhase)  2)  BitBLTHeight

The BitBLT engine requires this number of WORDS to be sent from the local CPU before
it will end the Write BitBLT operation.

Example 19: Read 100 x 20 pixels at the screen coordinates x = 25, y = 38 and save
to system memory. Assume a display of 320x240 at a color depth of 8
bpp.

1. Calculate the source address (upper left corner of the screen BitBLT rectangle), using
the formula.

SourceAddress = (yScreenStride) + (x BytesPerPixel)
= (38  320) + (25 1)
= 12185
= 2F99h

where:
BytesPerPixel = 1 for 8 bpp
ScreenStride = DisplayWidthInPixels  BytesPerPixels = 320 for 8 bpp

Program the BitBLT Source Start Address Register. REG[800Ch] is set to 2F99h.

2. Program the BitBLT Width Register to 100 - 1. REG[8018h] is set to 63h (99 deci-
mal).

3. Program the BitBLT Height Register to 20 - 1. REG[801Ch] is set to 13h (19 deci-
mal).
96 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

2D BitBLT Engine
4. Program the Destination Phase in the BitBLT Destination Start Address Register. In
this example, the data is WORD aligned, so the destination phase is 0. REG[8010h] is
set to 00h.

5. Program the BitBLT Operation to select the Read BitBLT. REG[8008h] bits 3-0 are
set to 1h.

6. Program the BitBLT Color Format Select bit for 8 bpp operations. REG[8000h] bit 18
is set to 0.

7. Program the BitBLT Memory Offset Register to the ScreenStride in WORDS.

BltMemoryOffset = ScreenStride  2
= 320  2
= 160
= A0h

REG[8014h] is set to 0A0h.

8. Calculate the number of WORDS the BitBLT engine expects to receive.

WORDS = ((BLTWidth + 1 + DestinationPhase)  2) BLTHeight
= (100 + 1 + 0)  2  20
= 1000
= 3E8h

9. Program the BitBLT Destination/Source Linear Select bits for a rectangular BitBLT
(BitBLT Destination Linear Select = 0, BitBLT Source Linear Select = 0).

Start the BitBLT operation. REG[8004h] bit 0 returns a 1.

10. Prior to reading from the BitBLT FIFO, confirm the BitBLT FIFO is not empty
(REG[8004h] bit 4 returns a 1). If the BitBLT FIFO Not Empty Status (REG[8004h]
bit 6) returns a 1 and the BitBLT FIFO Half Full Status (REG[8004h] bit 5) returns a 0
then you can read up to 8 WORDS. If the BitBLT FIFO Full Status returns a 1, read
up to 16 WORDS. If the BitBLT FIFO Not Empty Status returns a 0 (the FIFO is
empty), do not read from the BitBLT FIFO until it returns a 1.

The following table summarizes how many words can be read from the BitBLT FIFO.

Note
The sequence of register initialization is irrelevant as long as all required registers are
programmed before the BitBLT is started.

Table 9-8: Possible BitBLT FIFO Reads
BitBLT Status Register (REG[8004h]) Word Reads

AvailableFIFO Not Empty Status FIFO Half Full Status FIFO Full Status
0 0 0 0 (do not read)
1 0 0 up to 8
1 1 0 8
1 1 1 16
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 97
Rev. 6.1

2D BitBLT Engine
9.3 BitBLT Synchronization

A BitBLT operation can only be started if the BitBLT engine is not busy servicing another
BitBLT. Before a new operation is started, software must confirm the BitBLT Busy Status
bit (REG[8004h] bit 0) is set to zero. The status of this bit can either be tested after each
BitBLT operation, or before each BitBLT operation.

Testing the BitBLT Status After

Testing the BitBLT Active Status after starting a new BitBLT is simpler and less prone to
errors.

To test after each BitBLT operation, perform the following.

1. Program and start the BitBLT engine.

2. Wait for the current BitBLT operation to finish -- Poll the BitBLT Busy Status bit
(REG[8004h] bit 0) until it returns a 0.

3. Continue with program execution.

Testing the BitBLT Status Before

Testing the BitBLT Active Status before starting a new BitBLT results in better perfor-
mance, as both CPU and BitBLT engine can be running at the same time. This is most
useful for BitBLTs that are self completing (once started they don’t require any CPU assis-
tance). While the BitBLT engine is busy, the CPU can do other tasks. To test before each
BitBLT operation, perform the following.

1. Wait for the current BitBLT operation to finish -- Poll the BitBLT Busy Status bit
(REG[8004h] bit 0) until it returns a 0.

2. Program and start the new BitBLT operation.

3. Continue with program execution (CPU and BitBLT engine work independently).

This approach can pose problems when mixing CPU and BitBLT access to the display
buffer. For example, if the CPU writes a pixel while the BitBLT engine is running and the
CPU writes a pixel before the BitBLT finishes, the pixel may be overwritten by the BitBLT.
To avoid this scenario, always assure no BitBLT is in progress before accessing the display
buffer with the CPU, or don’t use the CPU to access the display buffer at all.
98 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

2D BitBLT Engine
9.4 Known Limitations

The S1D13A05 BitBLT engine has the following limitations.

• The 2D Accelerator Data Memory Mapped register must not be accessed except during
BitBLT operations. Read from the register only during Read BitBLT operations and
write to the register only during Write and Color Expand BitBLTs. Accessing the
register at any other time may result in S1D13A05 stopping to respond and the system
to freeze.

• The Read and Write BitBLT operations are not available when the S1D13A05 is config-
ured for the Redcap or Dragonball without DTACK host bus interfaces.

• A BitBLT operation cannot be terminated once it has been started.

9.5 Sample Code

Sample code demonstrating how to program the S1D13A05 BitBLT engine is provided in
the files A05src.zip. This file is available on the internet at vdc.epson.com.
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 99
Rev. 6.1

Programming the USB Controller
10 Programming the USB Controller
USB (Universal Serial Bus) is an external bus designed to ease the connection and use of
peripheral devices. USB incorporates a host/client architecture in which the host initiates
all data transactions and the client either receives or supplies data to the host.

USB offers the following features to the end user:

• Single plug type for all peripheral devices.

• Support for up to 127 simultaneous devices.

• Speeds up to 12 Megabits per second.

• “hot-plugging” peripherals.

The S1D13A05 USB controller supports revision 1.1 of the USB specification. The
S1D13A05 USB controller handles many common USB tasks without requiring local
processor intervention. For example, setup and data transfers are handled automatically by
the S1D13A05 controller. The controller notifies the local CPU, through an interrupt, when
data is ready to be read from the FIFO or when data has been transmitted to the host.

This section demonstrates how to program and use the S1D13A05 USB controller. Topics
covered include:

• Basic concepts such as registers and interrupts

• Initialization and data transfers

• S1D13A05 USB known issues.

10.1 Registers and Interrupts

10.1.1 Registers

Configuration, interrupt notification, and data transfers are all done using the S1D13A05
USB registers. The USB registers are located 4000h bytes past the beginning of S1D13A05
address space and should be written/read using 16 bit accesses.

On most systems the start of S1D13A05 address space, is fixed by the system design. The
S1D13A05 evaluation board uses a PCI interface, thus the start of S1D13A05 address space
may vary from one session to the next. Example code is written using a pointer to the USB
registers (pUSB). The USB examples do not show how to obtain the register address. For
a description of how to get the register address when using the S1D13A05 evaluation board,
refer to the function halAcquireController() in Section 11, “Hardware Abstraction Layer”
on page 118.
100 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

Programming the USB Controller
10.1.2 Interrupts

The S1D13A05 uses an interrupt to notify the local CPU when a USB event, which requires
servicing, occurs. Events, such as USB reset and data transfer notifications generate inter-
rupts.

It is beyond the scope of this document to explain how to setup and configure the interrupt
system for the variety of platforms the S1D13A05 supports. The examples and flowcharts
assume there is one interrupt handling routine which will determine the cause of the
interrupt and call the appropriate handler function. It is assumed the user understands the
mechanics and architecture of their system well enough setup a routine which will receive
an interrupt notification and determine the cause of the interrupt.

10.2 Initialization

Initialization describes the process of setting the registers state to enable the USB controller
for use. There are two cases where the USB registers need to be initialized. When the
system is powered up and the registers need to be prepared for first use. The second time
the registers need to be initialized is after receiving a RESET request from the host
controller.

Refer to Section 10.2.2, “USB Registers” on page 102 for an example of the register initial-
ization sequence.

10.2.1 GPIO Setup

The S1D13A05 shares four lines between GPIO and USB use. Before any accesses are
made to the USB section the GPIO lines must be configured. To set the GPIO lines write
the binary value 0010xxxx-1101xxxx-00000000-xxxxxxxx (2xDx00xxh) to REG[64h],
the GPIO Status and Control register.

Note
X’s represent a don’t care state. Depending on other system configuration (i.e. panel
technology) certain don’t care bits may have to be set also. See the S1D13A05 Hard-
ware Functional Specification, document number X40A-A-001, for more information
regarding the bits in the GPIO Status and Control register.
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 101
Rev. 6.1

Programming the USB Controller
10.2.2 USB Registers

The steps described below are typical of the startup of the S1D13A05 USB controller.

• registers are set to an initial value

• the S1D13A05 is connected to a USB host controller

• the host controller issues a RESET command

• the USB registers are re-initialized

As initialization for both steps are similar it is recommended that one routine perform the
sequence. The following table depicts a typical register initialization sequence.

Table 10-1: USB Controller Initialization Sequence

Register Value
(hex) Notes

REG[4040h] USBFC INPUT CONTROL 40 Enable the USB differential input receiver and indicate we are a bulk
transfer self powered device. (for ISOchronous mode, use 43h)

REG[4044] PIN IO STATUS DATA 01 USBPUP must be set to enable the USB interface and registers.
REG[4000h] to REG[403Ah] cannot be written until this bit is set.

REG[4000] CONTROL 84 Enable the clocks and USB GPIO pins.

REG[4024] EP3 RECEIVE FIFO STATUS 1C Clear EP3 status.

REG[402C] USB EP4 TX FIFO STATUS 1C Clear EP4 status

REG[4032] USB STATUS 7E Clear EP2 valid bit

REG[4004] INTERRUPT STATUS 0 FF Clear any pending USB interrupts

REG[4010] EP1 INDEX 00 Set EP1 index to zero

REG[4018] EP2 INDEX 00 Set EP2 index to zero

ext REG[00]

ext REG[01]

VENDOR ID MSB

VENDOR ID LSB

??

??
Provide appropriate vendor ID

ext REG[02]

ext Reg[03]

PRODUCT ID MSB

PRODUCT ID LSB

??

??
Provide appropriate product ID

ext REG[0C] FIFO CONTROL 01 Enable EP4 (FIFO) valid transfer mode.

REG[4002] INT ENABLE 0 0A Enable interrupts for EP1 and EP3

REG[4004] INT STATUS 0 0A Make sure any pending interrupts are cleared.

REG[4046 INTERRUPT CONTROL
ENABLE 0 02

Enable RESET and endpoints notifications
REG[4048] INTERRUPT CONTROL

ENABLE 1 01

REG[404A] INTERRUPT CONTROL
STATUS/CLEAR 0 7F

Clear ALL interrupt status...
REG[404C] INTERRUPT CONTROL

STATUS/CLEAR 1 7F

REG[4000] CONTROL A4 Enable the USB port for use
102 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

Programming the USB Controller
The USB controller is ready for operation with the following configuration:

• Endpoint 1 (mailbox receive) is configured for bulk OUT and Endpoint 2 (mailbox
transmit) is configured for interrupt IN. The functionality of these endpoints cannot be
altered.

• Endpoint 3 (FIFO receive) is configured for bulk in and Endpoint 4 (FIFO transmit) is
configured for bulk out. Endpoints 3 and 4 may also be configured for isochronous oper-
ation.

When the S1D13A05 is connected to a host controller, the host will issue a RESET
command to the S1D13A05. In response to the RESET the S1D13A05 clears all USB
registers in the range REG[4000h] to REG[403Ah]. The client software must respond to the
reset and reprogram the USB registers. A host controller may issue a RESET at any time
during operation.

After the S1D13A05 receives the RESET and re-initializes the registers, the host controller
starts the USB SETUP phase. The SETUP sequence is handled entirely by the S1D13A05
USB controller. After the setup is complete the S1D13A3 is ready to begin transferring
data.

Note
Prior to initializing the registers, host controller accesses are responded to with NAKs.
After being configured, host controller accesses will be handled in the normal way.

Note
A Vendor ID can be obtained through the USB Implementers Forum at
http://www.usb.org.

10.3 Data Transfers

The S1D13A05 USB requires very little local CPU assistance during data transfers. For the
most part data transfers from the host involve reading a FIFO data register when notified of
that the transfer is complete or writing a FIFO register and setting a ’ready’ bit to send data
to the host.

The following sections expand on the data transfer mechanism.

10.3.1 Receiving Data from the Host - the OUT command

Data transferred from the host to the S1D13A05 is directed to either EndPoint 1 (the
mailbox) or EndPoint 3 (the FIFO). When the data packet has been successfully received
the S1D13A05 generates an interrupt.

On receipt of the interrupt the local CPU examines the masked interrupt status registers
REG[404Eh] and REG[4050h] to determine the source of the interrupt. If the interrupt
came from bit 0 of the Negative Interrupt Masked Status register, REG[4050h], the next
step is to examine REG[4004] to determine the exact cause of the interrupt.
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 103
Rev. 6.1

Programming the USB Controller
Endpoint 1 - Mailbox Receive

If the cause of the interrupt is determined to be EndPoint 1 (REG[4004h] bit 1 = 1), then
the data is read from the EndPoint 1 data register (REG[4012h]). The following figure
shows the procedure for the CPU to read the mailbox register.

Figure 10-1: Endpoint 1 Data Reception

Note
In this diagram reference is made to two pseudo-variables:

Idx is an integer used as a loop counter
pBuffer is a pointer to eight bytes of memory to store the EP1 data

EP1 Receive

Clear EP1 Index Register

Read another
byte from the mailbox?

(Idx < 8)?

Clear EP1 interrupt status

Read byte from EP 1
Receive Mailbox Data

Initialize local index

Done

(Idx = 0)

(*pBuffer = (REG[4012h])

(REG[4004h] = 20h)

No

Yes

(REG[4010h] == 00h)

Increment the local index
(Idx++)
104 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

Programming the USB Controller
Endpoint 3 - FIFO Receive

If the cause of the interrupt is determined to be EndPoint 3, REG[4004h] bit 3 = 1b, then
the host controller has sent data to EndPoint 3. Figure 10-2: shows the procedure for
reading data from EndPoint 3.

An EndPoint 3 interrupt is generated when the number of bytes in the receive FIFO equal
the value in the Receive FIFO Almost Full Threshold register (REG[403Ah], Index[06h]).
The default value is sixty bytes. On systems where bulk transfers are used, the default value
for the receive FIFO threshold should be satisfactory.

Systems with slow processors, high interrupt service latency, or configured for isochronous
operation may have to decrease this value to allow the CPU time to begin reading data
before the data transfer overflows the FIFO.
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 105
Rev. 6.1

Programming the USB Controller
Figure 10-2: Endpoint 3 Data Reception

EP3 Receive

No

Yes

Did EP3 ACK?
(REG[4032h]b1 ==1)?

EP3 NAK?
(REG[4032h]b2 == 1)?

Determine transfer size

Reduce size of remaining transfer

Copy another
byte from FIFO?

(Cnt > 0)?

Copy byte from FIFO to local memory

(Count = min(Remaining, REG[4022h]))

(Remaining -= Count)

(*pLocMem = *REG[4020h)]
Point to next local memory - (pLocMem++)
Reduce Count - (Count--)

Transfer Done?
(Remaining == 0)?

Flush EP3 FIFO
- REG[4024h] = 10h

Done

See 2.5.3
“EP3 Interrupt Status
bit set by NAKs”

Disable EP3 Interrupt
- REG[4002h] &= ~08h

Yes

Yes

Yes

No

No S1D13A05
successfully
received a packet

Since the transfer is over,
there is no need for OUT
packets to interrupt the
local CPU anymore
(this is optional)

S1D13A05
responded to
the OUT packet
with a NAK

S1D13A05 detected
a transaction error and
did not respond to the
OUT packet
106 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

Programming the USB Controller
10.3.2 Sending Data to the Host - the IN command

Data transfers to the host controller occur when the host issues an IN command. The data
comes from EndPoint 2 (the mailbox) or EndPoint 4 (the FIFO). The data transfer is
handled automatically by the S1D13A05 and requires no CPU assistance.

Data transfers, from the S1D13A05 to the host controller, are performed by writing the data
into either EndPoint 2 (mailbox) or EndPoint 4 (FIFO) data registers. After writing the data
to the registers a control bit indicating that mailbox or FIFO data is valid is set.
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 107
Rev. 6.1

Programming the USB Controller
Endpoint 2 - Mailbox Transmit

Figure 10-3: shows the logical flow for sending data to the host controller using EndPoint
2, the mailbox.

Figure 10-3: EndPoint 2 Data Transmission

Note
In this diagram reference is made to two pseudo-variables:

Idx is an integer used as a loop counter
pBuffer is a pointer to eight bytes of memory to send to the host

No

Yes

EP2 Transmit

Clear EP2 valid bit
(REG[4032h] = 0)

Clear EP2 index register
(REG[4018h] = 0)

Initialize local count
(Idx = 0)

Copy byte to EP2 data
(REG[401Ah] = *pBuffer)

Increment pointer
(pBuffer++)

Copy another byte?
(Idx < 8)?

Clear EP2 interrupt status
(REG[4004h] = 04h)

Set EP2 valid
(REG[4032h] = 01h)

Done

EP2 will now respond to
IN packets with data
instead of NAKs

See Section 10.4.4 on page 116
108 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

Programming the USB Controller
Endpoint 4 - Data Transmit

Transferring data to the host controller using the FIFO controller has additional overhead
as this routine must run tests to ensure error free data transmission.

Figure 10-4: Endpoint 4 Data Transmission

No

Yes

EP4 Transmit

Determine size of packet
(PktSize = min(Remain, FIFOSIZE))

Need to send ZLP?
(PktSize == 0)?

Initialize local Count
(Count = 0)

Copy another

(Count < PktSize)?
byte to FIFO?

Copy byte to EP4 FIFO
(REG[4028h] = *Buffer)

Reference next position
(pBuffer++)

Enqueue ZeroLengthPacket
(REG[4000h] = 40h)

Clear USB EP4 ACK
(REG[4032] = 10h)

Set EP4 IRQ enable - (REG[4002h] |= 10h)
Set Transmit FIFO valid - (REG[402Ch] = 20h)
Clear EP4 IRQ Status - (REG[4004h] = 10h)

Done

YesNo

See Section 10.4.1 on page 112, EP4 IRQ status
must be cleared within 5 us of EP4 transmit FIFO
valid
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 109
Rev. 6.1

Programming the USB Controller
Note
In this example there are three variables:

PktSize is an integer containing the number of bytes to transfer in this packet
Count is an integer used for local loop control
pBuffer is a pointer to an array of at least FIFOSIZE bytes.

To ensure the host controller receives the packet error free, an interrupt handler for
EndPoint 4 must be configured and the flow control as shown in the following diagram
must be implemented.
110 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

Programming the USB Controller
Figure 10-5: Endpoint 4 Interrupt Handling

Yes

No

EP4 Int Handler

Packet actually sent?
(REG[402Ah] == 0)?

ZLP actually sent?
(REG[4000h]b6 == 0)?

EP4 ACK?
(REG[4032h]b4 == 1

Last packet
short or ZLP?

(Remain < FIFOSIZE)?

Advance pointer to next packet

Reduce remaining transfer size

Disable EP4 interrupt (REG[4002h] &= ~10h)
Clear EP4 interrupt status (REG[4004h] = 10h)

Advance to end of buffer (pBuffer += Remain)
Reduce remaining count to 0 (Remain = 0)

Done

Set Transmit FIFO Valid (REG[402Ch] = 20h)
Clear EP4 interrupt status (REG[4004h] = 10h)

Done

Yes

Yes

Yes

No

No

No

(pBuffer += FIFOSIZE)

(Remain -= FIFOSIZE)

EP4 Data Transmission

EP4 Int Handler is called after the host controller reads or fails to
read a packet. If the host controller successfully read the last packet
then the next packet can be loaded into the FIFO. If the host controller
failed to read the packet then the last packet must be loaded into

This block is shown as a cleanup
step. It is not required.

Final packet of transfer was successfully transmitted

The last packet was
not successfully
transmitted

The last packet was a full packet

 the FIFO
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 111
Rev. 6.1

Programming the USB Controller
Note
In the diagram the variables:

pBuffer is a pointer to the local memory buffer containing the data to be transferred
 to the host controller
Remain is an integer tracking the number of bytes still to be sent.

10.4 Known Issues

This section presents known issues with USB transfers when using the S1D13A05 USB
controller.

10.4.1 EP4 NAK Status not set correctly in USB Status Register

The EP4 NAK status bit is not set in the USB Status Register (REG4032h]) when the
S1D13A05 responds to an IN request on EP4 with a NAK. As a result, a local CPU
receiving an “EP4 Packet Transmitted” interrupt may mistakenly believe a bus error
occurred in the most recently transmitted packet.

Work Around

Disable the EP4 Packet Transmitted interrupt when no data is queued for transmission to
the local CPU. The basic flow is:

In Chip Initialization Code

Do not enable ‘EP4 Packet Transmitted’ bit in Interrupt Enable Register 0 (REG[4002h]).

When Local Side Wishes to Send Data

1. Put data to transmit in FIFO.

2. Enable ‘EP4 Packet Transmitted’ bit in Interrupt Enable Register 0.

3. Set FIFO Valid (if using FIFO Valid Mode == TRUE). See Section 10.4.2 on page
113 for more information on setting the FIFO Valid.

4. Clear ‘EP4 Packet Transmitted’ status bit in Interrupt Status Register 0 (REG[4004]).

Note
Step 4 is time-critical. It must be performed within 5 µs after Step 3.

In Packet Transmitted Interrupt Routine

Disable ‘EP4 Packet Transmitted’ bit in Interrupt Enable Register 0.
112 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

Programming the USB Controller
10.4.2 Write to EP4 FIFO Valid bit cleared by NAK

After the local CPU sets EP4 FIFO Valid (in Endpoint 4 FIFO Status Register,
REG[402Ch]), the S1D13A05 will erroneously clear the EP4 valid bit if the S1D13A05 is
concurrently sending a NAK handshake in response to a previous IN token to EP4.

Work Around

The work-around is in the ‘EP4 Packet Transmitted’ interrupt routine. It requires the
interrupt routine to know whether the recently queued packet was a zero-length packet or
not, so that must be stored as a bit when the packet was loaded into the FIFO. On entry to
the ‘EP4 Packet Transmitted’ interrupt routine:

For a non-zero-length Packet

Check the FIFO count. If it is non-zero, this error occurred. In that case, set FIFO Valid
again, clear the interrupt status bit, and exit the interrupt routine.

For a zero-length Packet

Check the Software EOT bit (in Control Register, REG[4000h]). If it is set, the FIFO Valid
write failed. In that case, set FIFO Valid again, clear the interrupt status bit, and exit the
interrupt routine

10.4.3 EP3 Interrupt Status bit set by NAKs

When receiving Bulk OUT packets from a Host PC, the S1D13A05 “Endpoint 3 Interrupt
Status” interrupt typically is used to notify the peripheral firmware that a packet has been
received. This bit also serves as the “Receive FIFO Valid” bit, so additional packets
addressed to Endpoint 3 are NAKed until this status bit is cleared. Once cleared, however,
it may become set by another packet which is NAKed by the S1D13A05, causing the
Receive FIFO to become “Valid” again. The Host PC may immediately attempt to re-
transmit the NAKed packet. The firmware should be written to prevent a cycle in which the
FIFO is “Valid” each time that the Host PC sends an OUT packet.

The following rules govern the S1D13A05’s behavior regarding packets received on
Endpoint 3:

Rule A. At the end of a received OUT token to EP3 (and before the data is received), the
S1D13A05 decides to NAK the packet if the “EP3 Interrupt Status” bit is set, and will
therefore throw away data received.

Rule B. At the end of a received packet (including one which is NAKed), the S1D13A05
sets the “EP3 Interrupt Status” bit.

Rule C. Local firmware should clear the “EP3 Interrupt Status” bit after reading all bytes
out of the EP3 Receive FIFO.
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 113
Rev. 6.1

Programming the USB Controller
The following figure shows how a repeating cycle of NAKed OUT packets may occur.

Figure 10-6: Firmware Looping Continuously on Received OUT packets

At Point 1, the EP3 Interrupt activates because a packet has been received. In response, the
firmware reads the bytes out of the packet and clears the interrupt at Point 2. A second
packet is already being received at Point 2, and the S1D13A05 has already decided to NAK
this packet due to Rule A. At point 3, the S1D13A05 has NAKed the packet and asserts the
Interrupt status bit.

Again, the local firmware responds to the interrupt, and seeing it is only a “NAK” interrupt,
clears the interrupt condition at Point 4. However, the Host PC has begun to retry the
second packet already, so the packet will again get NAKed due to Rule B. This cycle could
continue until something changes the flow of OUT packets – for instance, an SOF at the
beginning of the next frame, or packet traffic directed at another device or endpoint.

Work Around

The normal program flow for a packet which the S1D13A05 NAKs is as follows:

1. S1D13A05 asserts IRQ# after NAKing a received packet on EP3.

2. Local CPU is interrupted, enters interrupt routine.

3. Local CPU reads Interrupt Status Register 0 (REG[4004h]) and sees “EP3 Packet Re-
ceived” interrupt bit.

4. Local CPU reads USB Status Register (REG[4032h]) and sees “NAK” bit set.

5. Local CPU clears Interrupt Status Register 0 (REG[4004h]) “EP3 Packet Status” in-
terrupt bit.

6. Local CPU clears USB Status Register (REG[4032]) “NAK” bit.

The technique for avoiding this potential pitfall depends on the speed of the peripheral
CPU. The critical timing parameter is the time from the S1D13A05 asserting IRQ# to the
firmware clearing the “EP3 Packet Received” bit in Interrupt Status Register 0.

Host Device

IRQ#

OUT Data0 pkt

ACK

OUT Data1 pkt

NAK

OUT

NAK

Data1 pkt

21 3 4 5
114 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

Programming the USB Controller
For a Fast CPU

A CPU which can clear the Interrupt Status Register 0 bit within 10 msec after the
S1D13A05 asserts the IRQ# signal requires no extra code to prevent the potential cycling.
In this case, the CPU is fast enough to clear a NAKed packet’s Interrupt Status Register 0
bit before another packet can be received.

For a Slow CPU

A CPU which can’t meet the timing requirements for a fast CPU above will require some
additional firmware to eliminate the potential for this cycle. After successfully receiving a
packet on Endpoint 3 and emptying received data out of the FIFO, the firmware should
follow the flow in the following figure.

Figure 10-7: Endpoint 3 Program Flow for Slow CPU

Part of Endpoint 3 Interrupt Service Routine
(after FIFO has been emptied)

Clear USB Status
Register ACK and
NAK (bits 1 and 2)

Set Timout
(calculate for 50 us)

Read USB Status
Register

NAK (bit 2) set?

Decrement Timeout

Timeout == 0?

Yes

YesNo

No

Clear "Endpoint 3
Interrupt Status" in
Interrupt Status
Register 0 (bit 3)

Clear "USB Endpoint
3 NAK" in USB Status
Register (bit 2)

Note: Each cycle of this loop
should take less than 10 ms
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 115
Rev. 6.1

Programming the USB Controller
10.4.4 “EP2 Valid Bit” in USB Status can be erroneously set by firmware

“Endpoint 2 Valid” is the only bit in USB Status which is not written as a “Yes/CLR” bit.
Therefore, the firmware must do a read-modify-write sequence when clearing other bits in
Interrupt Status Register 0 (REG[4004h]), to preserve the state of “Endpoint 2 Valid”.
However, this read-modify-write could lead to erroneously setting the EP2 Valid bit if the
following sequence occurs with “EP2 Valid” set True:

1. Firmware reads Interrupt Status Register 0 to do a read-modify-write

2. Data from EP2 is sent to Host PC, causing S1D13A05 to clear EP2 Valid

3. Firmware writes modified value to Interrupt Status Register 0

In this case, the firmware has set EP2 Valid in Step 3 after it was cleared by the Host PC,
erroneously validating EP2 for the next IN token from the Host.

Work Around

First, the firmware should do the read-modify-write operation as described above anytime
it is modifying bits in “USB Status”.

Second, when the firmware recognizes an interrupt for “EP2 Packet Transmitted”, it should
immediately write a ‘0’ to USB Status Register. This will clear the EP2 Valid bit in the
unlikely event that it was erroneously set during a read-modify-write operation.

10.4.5 Setting EP4 FIFO Valid bit while NAKing IN token

Bit 5 of REG[402Ch] indicates to the S1D13A05 controller when data in the endpoint 4
FIFO is ready to be transferred to the host computer. Changing the state of this bit at certain
times may generate an error.

When the S1D13A05 USB controller receives an endpoint 4 IN request and endpoint 4 is
not ready to transmit data (REG[402Ch] bit 5 = 0), the response is a NAK packet. If
endpoint 4 is toggled to a ready to transmit state just before a NAK response packet is sent,
the controller may erroneously send a zero length packet instead. When this happens, the
data toggle state will be incorrectly set for the next endpoint 4 data transmit.

The following timing diagram shows the error occurring in section 3.

Host to Device

Device to Host
CPU Write to

EP4_VALID = 1

1 2 3

IN EP4 Token PKT IN EP4 Token PKT IN EP4 Token PKT

NAK RPLY DATA PKT RPLY ZERO Length PKT
116 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

Programming the USB Controller
This unexpected occurrence of a zero length packet may cause file system handling errors
for some operating systems.

Work Around

There are two software solutions for this occurrence.

Disable USB Receiver before setting the EP4 FIFO Valid bit

The first solution involves disabling the USB receiver to avoid responding to an EP4 IN
packet. During the time the USB receiver is disabled the EP4 FIFO Valid bit is set.

When the local CPU is ready to send data on endpoint 4 the steps to follow are:

2. Disable the USB differential input receiver (REG[4040h] bit 6 = 0)
3. Wait a minimum of 1s. If needed, delays may be added
4. Enable the EP4 FIFO Valid bit (REG[402Ch] bit 5 = 1)
5. Clear the EP4 Interrupt status bit (REG[4004h] bit 4 = 1)
6. Enable the USB differential input receiver (REG[4040h] bit 6 = 1)

Note
Steps 1 through 5 are time critical and must be performed in less than 6 s.

Note
To comply with “EP4 NAK Status not set correctly in USB Status register”, steps 3 and
4 must be completed within 5 s of each other. For further information on “EP4 NAK
Status not set correctly in USB Status register”, see Section 10.4.1, “EP4 NAK Status
not set correctly in USB Status Register” .

EP4 FIFO Valid bit set after NAK and before the next IN token

The second solution is to wait until immediately after the USB has responded to an IN
request with a NAK packet before setting the transmit FIFO valid bit. This solution is
recommended only for fast processors.

When the local CPU is ready to send data on endpoint 4, it must first detect that a NAK
packet has been sent. This is done by reading the EP4 Interrupt Status bit (REG[4004h] bit
4). If the EP4 FIFO Valid bit was not set, the EP4 Interrupt Status bit is set only if a NAK
packet has been sent. When the local CPU detects the NAK it must immediately set the EP4
FIFO Valid bit (before responding to the next IN token).

After filling the EP4 FIFO the steps to follow before setting the EP4 FIFO Valid bit are:

1. Clear the EP4 Interrupt Status bit (REG[4004h] bit 4)
2. Read the EP4 Interrupt Status bit (REG[4004h] bit 4) until it is set
3. Set the EP4 FIFO Valid bit (REG[402Ch] bit 5 = 1)

The setting of the EP4 FIFO Valid bit is time critical. The EP4 FIFO Valid bit must be set
within 3 s after the EP4 Interrupt Status has been set internally by the S1D13A05.
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 117
Rev. 6.1

Hardware Abstraction Layer
11 Hardware Abstraction Layer

11.1 Introduction

The S1D13A05 Hardware Abstraction Layer (HAL) is a collection of routines intended to
simplify the programming for the S1D13A05 evaluation board. Programmers can use the
HAL to assist in rapid software prototyping for the S1D13A05 evaluation board.

The HAL routines are divided into discrete functional blocks. The functions for startup and
clock control offer specific support for the S1D13A05 evaluation board, while other
routines demonstrate memory and register access techniques. For a complete list, see Table
11-1:, “HAL Library API” .

11.2 API for the HAL Library

The following table lists the functions provided by the S1D13A05 HAL library.

Table 11-1: HAL Library API
Function Description

Startup

halAcquireController This routine loads the driver required to access the S1D13A05, locates the and returns the address of
the controller.

halInitController Initializes the controller for use. This includes setting the programmable clock and initializing registers as
well as setting the lookup table and clearing video memory.

Memory Access
halReadDisplay8 Reads one byte from display memory
halReadDisplay16 Reads one word from display memory
halReadDisplay32 Reads one double word from display memory
halWriteDisplay8 Writes one byte to display memory
halWriteDisplay16 Writes on word to display memory
halWriteDisplay32 Writes on double word to display memory

Register Access
halReadReg8 Reads one byte from a control register
halReadReg16 Reads one word from a control register
halReadReg32 Reads one dword from a control register
halWriteReg8 Writes one byte to a control register
halWriteReg16 Writes one word to a control register
halWriteReg32 Writes one dword to a control registers

Clock Support
halSetClock Programs the ICD2061A Programmable Clock Generator.
halGetClock Returns the frequency of the requested ICD2061A clock

Miscellaneous
halGetVersionInfo Returns a standardized startup banner message
halGetLastError Returns the numerical value of the last error and optionally an ASCII string describing the error
118 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

Hardware Abstraction Layer
11.2.1 Startup Routines

There are two routines dedicated to startup and initializing the S1D13A05. Typically these
two functions are the first two HAL routines a program will call.

The startup routines locate the S1D13A05 controller and initialize HAL data structures. As
the name suggests, the initialization routine prepares the S1D13A05 for use. Splitting the
startup functionality allows programs to start and locate the S1D13A05 but delay or
possibly never initialize the controller.

Boolean halAcquireController(UInt32 * pMem, UInt32 * pReg)
Description: This routine initializes data structures and initiates the link between the application soft-

ware and the hardware. When the S1D13A05 HAL is used this routine must be the first
HAL function called.

On PCI platforms, the routine attempts to load the S1D13xxx driver. If the driver loads
successfully, then a check is made for the existence of an S1D13A05 evaluation board.

Parameters: pMem Pointer to an unsigned 32-bit integer which will receive the offset to the first
byte of display memory. The offset may be cast to a pointer to access
display memory.

pReg Pointer to an unsigned 32-bit integer which will receive the offset to the first
byte of register space. The offset may be cast to a pointer and to access
S1D13A05 registers.

On Win32 systems the returned offsets correspond to a linear addresses
within the callers address space.

Return Value: TRUE (non-zero) if the routine is able to locate an S1D13A05.
pMem will contain the offset to the first byte of display memory.
pRegs will contain the address of the first 13A05 control register.

FALSE (zero) if an S1D13A05 is not located.
pMem and pRegs will be undefined.
If additional error information is required call halGetLastError().

Note
1. This routine must be called before any other HAL routine is called.
2. For programs written for the S1D13A05 evaluation board, an application may call

this routine to obtain pointers to the registers and display memory and then perform
all S1D13A05 accesses directly.

3. This routine does not modify S1D13A05 registers or memory.

halInitLUT This routine sets the LUT to uniform values for color/mono panels at all color depths

Table 11-1: HAL Library API
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 119
Rev. 6.1

Hardware Abstraction Layer
Boolean halInitController(UInt32 Flags)
Description: This routine performs the initialization portion of the startup sequence.

Initialization of the S1D13A05 evaluation board consists of several steps:
- Program the ICD2061A clock generator
- Set the initial state of the control
- Set the LUT to its default value
- Clear video memory

All display memory and nearly every control register can or will be affected by the initial-
ization.

Any, or all, of the initialization steps may be bypassed according to values contained in the
Flags parameter. This allows for conditional run-time changes to the initialization.

Parameters: Flags contains initialization specific information. The default action of the HAL is to per-
form all initialization steps. Flags contain specific instructions for bypassing certain ini-
tialization steps. The values for Flags are:

fDONT_SET_CLOCKS
Setting this flag causes initialization to skip programming the ICD2061A
clock generator. Normally the clock on the S1D13A05 is programmed
to configured values during initialization.

fDONT_INIT_REGS
Bypass register initialization. Normally the initialization process sets the
register values to a known state. Setting this flag bypasses this step.

fDONT_INIT_LUT
Bypass look-up table initialization.

fDONT_CLEAR_MEM
The final step of the initialization process is to clear video display memory.
 Setting this flag will bypass this step.

Return Value: TRUE (non-zero) if the initialization was successful.

FALSE (zero) if the HAL was unable to initialize the S1D13A05
If additional error information is required call halGetLastError()
120 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

Hardware Abstraction Layer
11.2.2 Memory Access

The S1D13A05 HAL includes six memory access functions. The primary purpose of the
memory access functions is to demonstrate how to access display memory using the C
programming language. Most programs that need to access memory will bypass the HAL
and access memory directly.

UInt8 halReadDisplay8(UInt32 Offset)
Description: Reads and returns the value of one byte of display memory.

Parameters: Offset A 32 bit offset to the byte to be read from display memory

Return Value: The value of the byte at the requested offset.

UInt16 halReadDisplay16(UInt32 Offset)
Description: Reads and returns the value of one word of display memory.

Parameters: Offset A 32 bit byte offset to the word to be read from display memory
To prevent system slowdowns and possibly memory faults, Offset should be
a word multiple.

Return Value: The value of the word at the requested offset.

UInt32 halReadDisplay32(UInt32 Offset)
Description: Reads and returns the value of one dword of display memory.

Parameters: Offset A 32 bit byte offset to the dword to be read from display memory.
To prevent system slowdowns and possibly memory faults, Offset should be
a dword multiple.

Return Value: The value of the dword at the requested offset.

void halWriteDisplay8(UInt32 Offset, UInt8 Value, UInt32 Count)
Description: Writes a byte into display memory at the requested address.

Parameters: Offset A 32 bit byte offset to the byte to be written to display memory.

Value The byte value to be written to display memory.

Count The number of times to repeat Value in memory. By including a count (or
loop) value this function can efficiently fill display memory.

Return Value: Nothing.
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 121
Rev. 6.1

Hardware Abstraction Layer
void halWriteDisplay16(UInt32 Offset, UInt16 Value, UInt32 Count)
Description: Writes a word into display memory at the requested offset.

Parameters: Offset a 32 bit byte offset to the byte to be written to display memory. To prevent
system slowdowns and possibly memory faults, Offset should be a word
multiple.

Value the word value to be written to display memory.

Count the number of times to repeat the Value in memory. By including a count (or
loop) value this function can efficiently fill display memory.

Return Value: Nothing.

void halWriteDisplay32(UInt32 Offset, UInt32 Value, UInt32 Count)
Description: Writes a dword into display memory at the requested offset.

Parameters: Offset A 32 bit byte offset to the byte to be written to display memory. To prevent
system slowdowns and possibly memory faults, Offset should be a dword
multiple.

Value The dword value to be written to display memory.

Count The number of times to repeat the Value in memory. By including a count
(or loop) value this function can efficiently fill display memory.

Return Value: Nothing.

11.2.3 Register Access

The S1D13A05 HAL includes six register access functions. The primary purpose of the
register access functions is to demonstrate how to access the S1D13A05 control registers
using the C programming language. Most programs that need to access the registers will
bypass the HAL and access the registers directly.

UInt8 halReadReg8(UInt32 Index)
Description: Reads and returns the contents of one byte of an S1D13A05 register at the requested off-

set. No S1D13A05 registers are changed.

Parameters: Index 32 bit offset to the register to read. Index is zero based from the beginning
of register address space. (e.g. if Index == 04h then the Memory Clock
Configuration register will be read and if Index == 8000h then the BitBLT
Control Register will be read)

Return Value: The value read from the register.

Use caution in selecting the index and when interpreting values returned from
halReadReg8() to ensure the correct meaning is given to the values. Changing between big
endian and little endian will move relative register offsets.
122 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

Hardware Abstraction Layer
UInt16 halReadReg16(UInt32 Index)
Description: Reads and returns the contents of one word of an S1D13A05 register at the requested off-

set. No S1D13A05 register are changed.

Parameters: Index 32 bit offset to the register to read. Index is zero based from the beginning
of register address space. (e.g. if Index == 04h then the Memory Clock
Configuration register will be read and if Index == 8000h then the BitBLT
Control Register will be read)

Return Value: The word value read from the register.

Use caution in determining the index and interpreting the values returned from
halReadReg16() to ensure the correct meaning is given to the values. Changing between
big and little endian will move relative register offsets resulting in different values.

UInt16 halReadReg32(UInt32 Index)
Description: Reads and returns the dword value of an S1D13A05 register at the requested offset. No

S1D13A05 register are changed.

Parameters: Index 32 bit offset to the register to read. Index is zero based from the beginning
of register address space. (e.g. if Index == 04h then the Memory Clock
Configuration register will be read and if Index == 8000h then the BitBLT
Control Register will be read)

Return Value: The dword value read from the register.

void halWriteReg8(UInt32 Index, UInt8 Value)
Description: Writes an 8 bit value to the register at the requested offset.

Parameters: Index 32 bit offset to the register to write. Index is zero based from the beginning
of register address space. (e.g. if Index == 04h then the Memory Clock
Configuration register will be written to and if Index == 8000h then the
BitBLT Control Register will be written to)

Value The byte value to write to the register. Changing between big and little
endian will move relative register offsets. Use caution in interpreting the
index and values to write to registers using the halWriteReg8() function to
ensure that register are programmed correctly.

Return Value: Nothing.
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 123
Rev. 6.1

Hardware Abstraction Layer
void halWriteReg16(UInt32 Index, UInt16 Value)
Description: Writes a 16 bit value to the S1D13A05 register at the requested offset.

Parameters: Index 32 bit byte offset to the register to write. Index is zero based from the
beginning of register address space. (e.g. if Index == 04h then the Memory
Clock Configuration register will be written to and if Index == 8000h then
the BitBLT Control Register will be written to)

Value The word value to write to the register.

Return Value: Nothing.

Changing between big and little endian will move relative register offsets. Use caution in
interpreting the index and values to write to registers using the halWriteReg8() function to
ensure that register are programmed correctly.

void halWriteReg32(UInt32 Index, UInt32 Value)
Description: Writes a 32 bit value (dword) to the register at the requested offset.

Parameters: Index 32 bit byte offset to the register to write. Index is zero based from the
beginning of register address space. (e.g. if Index == 04h then the Memory
Clock Configuration register will be written to and if Index == 8000h then
the BitBLT Control Register will be written to)

Value The dword value to write to the register.

Return Value: Nothing.

11.2.4 Clock Support

To maximize flexibility, S1D13A05 evaluation boards include a programmable clock. The
following HAL routines provide support for the programmable clock.

Boolean halSetClock(UInt32 ClkiFreq, UInt32 Clki2Freq)
Description: This routine program the ICD2061A programmable clock generator to the specified fre-

quency.

Parameters: ClkiFreq The desired frequency, in Hz, for CLKI.

Clki2Freq The desired frequency, in Hz, for CLKI2.

dwFrequency The desired frequency (in Hz).

Return Value: TRUE (non-zero) if the function was successful in setting the clock.

FALSE (zero) if there was an error detected while trying to set the clock.
If additional error information is required call halGetLastError().
124 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

Hardware Abstraction Layer
UInt32 halGetClock(CLOCKSELECT Clock)
Description: Returns the frequency of the clock input identified by 'Clock'.

Parameters: Clock Indicates which clock to read. This value can be CLKI or CLKI2.

Return Value: The frequency, in Hz, of the requested clock.

11.2.5 Miscellaneous

The miscellaneous function are an assortment of routines, determined to be beneficial to a
number of programs and hence warranted being included in the HAL.

void halGetVersionInfo(const char * szProgName, const char * szDesc, const char * szVersion,
char * szRetStr, int nLength)
Description: This routine creates a standardized startup banner by merging program and HAL specific

information. The newly formulated string is returned to the calling program for display.

The final formatted string will resemble:

13A05PROGRAM - Internal test and diagnostic program - Build: 1234 [HAL: 1234]
Copyright (c) 2000,2001 Epson Research and Development, Inc.
All Rights Reserved.

Parameters: szProgName Pointer to an ASCIIZ string containing the name of the program.
(e.g. “PROGRAM”)

szDesc Pointer to an ASCIIZ string containing a description of what this program
is intended to do. (e.g. “Internal test and diagnostic program”)

szVersion Pointer to an ASCIIZ string containing the build info for this program. This
should be the revision info string as updated by VSS.
(e.g. “$Revision: 30 $”)

szRetStr Pointer to a buffer into which the product and version information will be
formatted into.

nLength Total number of bytes in the string pointed to by szRetStr. This function will
write nLength or fewer bytes to the buffer pointed to by szRetStr.

Return Value: Nothing.
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 125
Rev. 6.1

Hardware Abstraction Layer
int halGetLastError(char * ErrMsg, int MaxSize)

Description: This routine retrieves the last error detected by the HAL.

Parameters: ErrMsg When halGetLastError() returns ErrMsg will point to the textual
error message. If ErrMsg is NULL then only the error code will be
returned.

MaxSize Maximum number of bytes, including the final '\0' that can be
placed in the string pointed to by ErrMsg.

Return Value:The numerical value of the internal error number.

HALEXTERN void halInitLUT(void)

Description: To standardize the appearance of test and validation programs, it was
decided the HAL would have the ability to set the lookup table to uniform
values.

The routine cracks the color depth and display type to determine which LUT
values to use and proceeds to write the LUT entries.

Parameters: None

Return Value: Nothing.
126 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

Sample Code
12 Sample Code
Example source code demonstrating programming the S1D13A05 using the HAL library is
available on the internet at vdc.epson.com.
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 127
Rev. 6.1

Change Record
13 Change Record

X40A-G-003-06 Revision 6.1 - Issued: March 28, 2018

• updated Sales and Technical Support Section

• updated some formatting

X40A-G-003-06 Revision 6.0 - Issued: July 20, 2010

• section 10.4.3 EP3 Interrupt Status bit set by NAKs - correct typo in figure 10-7,
Endpoint 3 Program Flow for Slow CPU, change "50 ms" to "50 us"
128 Seiko Epson Corporation S1D13A05 Programming Notes and Examples
Rev. 6.1

Sales and Technical Support
14 Sales and Technical Support

For more information on Epson Display Controllers, visit the Epson Global website.

https://global.epson.com/products_and_drivers/semicon/products/display_controllers/

For Sales and Technical Support, contact the Epson representative for your region.

https://global.epson.com/products_and_drivers/semicon/information/support.html
S1D13A05 Programming Notes and Examples Seiko Epson Corporation 129
Rev. 6.1

https://global.epson.com/products_and_drivers/semicon/products/display_controllers/
https://global.epson.com/products_and_drivers/semicon/information/support.html

	S1D13A05 LCD/USB Companion Chip
	Table of Contents
	1 Introduction
	2 Identifying the S1D13A05
	3 Initialization
	4 Memory Models
	4.1 Display Buffer Location
	4.2 Memory Organization for One Bit-per-pixel (2 Colors/Gray Shades)
	Figure 4-1: Pixel Storage for 1 Bpp in One Byte of Display Buffer

	4.3 Memory Organization for Two Bit-per-pixel (4 Colors/Gray Shades)
	Figure 4-2: Pixel Storage for 2 Bpp in One Byte of Display Buffer

	4.4 Memory Organization for Four Bit-per-pixel (16 Colors/Gray Shades)
	Figure 4-3: Pixel Storage for 4 Bpp in One Byte of Display Buffer

	4.5 Memory Organization for 8 Bpp (256 Colors/64 Gray Shades)
	Figure 4-4: Pixel Storage for 8 Bpp in One Byte of Display Buffer

	4.6 Memory Organization for 16 Bpp (65536 Colors/64 Gray Shades)
	Figure 4-5: Pixel Storage for 16 Bpp in Two Bytes of Display Buffer

	5 Look-Up Table (LUT)
	5.1 Registers
	5.1.1 Look-Up Table Write Register
	5.1.2 Look-Up Table Read Register

	5.2 Look-Up Table Organization
	Table 5-1: Look-Up Table Configurations
	5.2.1 Gray Shade Modes
	Table 5-2: Suggested LUT Values for 1 Bpp Gray Shade
	Table 5-3: Suggested LUT Values for 4 Bpp Gray Shade
	Table 5-4: Suggested LUT Values for 4 Bpp Gray Shade
	Table 5-5: Suggested LUT Values for 8 Bpp Gray Shade

	5.2.2 Color Modes
	Table 5-6: Suggested LUT Values for 1 bpp Color
	Table 5-7: Suggested LUT Values for 2 bpp Color
	Table 5-8: Suggested LUT Values for 4 bpp Color
	Table 5-9: Suggested LUT Values 8 bpp Color

	6 Power Save Mode
	6.1 Overview
	6.2 Registers
	6.2.1 Power Save Mode Enable
	6.2.2 Memory Controller Power Save Status

	6.3 LCD Power Sequencing
	6.4 Enabling Power Save Mode
	6.5 Disabling Power Save Mode

	7 SwivelView‘
	7.1 SwivelView 90˚
	Figure 7-1: SwivelView 90˚ Rotation

	7.2 SwivelView 180˚
	Figure 7-2: SwivelView 90˚ Rotation

	7.3 SwivelView 270˚
	Figure 7-3: SwivelView 270˚ Rotation

	7.4 SwivelView Registers
	Table 7-1: SwivelView Mode Select Bits
	7.4.1 SwivelView 0˚ (Landscape)
	7.4.2 SwivelView 90˚
	7.4.3 SwivelView 180˚
	7.4.4 SwivelView 270˚

	7.5 Examples
	7.6 Limitations
	7.6.1 SwivelView 0˚ and 180˚
	7.6.2 SwivelView 90˚ and 270˚

	8 Picture-In-Picture Plus (PIP+)
	Figure 8-1: Picture-in-Picture Plus with SwivelView Disabled
	8.1 Registers
	Table 8-1: 32-bit Address Increments for PIP+ X Position in SwivelView 0˚ and 180˚
	Table 8-2: 32-bit Address Increments for Color Depth
	Table 8-3: 32-bit Address Increments for Color Depth
	Table 8-4: 32-bit Address Increments for Color Depth

	8.2 Picture-In-Picture-Plus Examples
	8.2.1 SwivelView 0˚ (Landscape Mode)
	Figure 8-2: Picture-in-Picture Plus with SwivelView disabled

	8.2.2 SwivelView 90˚
	Figure 8-3: Picture-in-Picture Plus with SwivelView 90˚ enabled

	8.2.3 SwivelView 180˚
	Figure 8-4: Picture-in-Picture Plus with SwivelView 180˚ enabled

	8.2.4 SwivelView 270˚
	Figure 8-5: Picture-in-Picture Plus with SwivelView 270˚ enabled

	8.3 Limitations
	8.3.1 SwivelView 0˚ and 180˚
	8.3.2 SwivelView 90˚ and 270˚

	9 2D BitBLT Engine
	9.1 Registers
	Table 9-1: BitBLT FIFO Words Available
	Table 9-2 : BitBLT ROP Code/Color Expansion Function Selection
	Table 9-3 : BitBLT Operation Selection
	Table 9-4 : BitBLT Source Start Address Selection

	9.2 BitBLT Descriptions
	9.2.1 Write BitBLT with ROP
	Table 9-5: Possible BitBLT FIFO Writes

	9.2.2 Color Expansion BitBLT
	Table 9-6: Possible BitBLT FIFO Writes

	9.2.3 Color Expansion BitBLT With Transparency
	9.2.4 Solid Fill BitBLT
	9.2.5 Move BitBLT in a Positive Direction with ROP
	Figure 9-1: Move BitBLT Usage

	9.2.6 Move BitBLT in Negative Direction with ROP
	9.2.7 Transparent Write BitBLT
	Table 9-7: Possible BitBLT FIFO Writes

	9.2.8 Transparent Move BitBLT in Positive Direction
	9.2.9 Pattern Fill BitBLT with ROP
	9.2.10 Pattern Fill BitBLT with Transparency
	9.2.11 Move BitBLT with Color Expansion
	9.2.12 Transparent Move BitBLT with Color Expansion
	9.2.13 Read BitBLT
	Table 9-8: Possible BitBLT FIFO Reads

	9.3 BitBLT Synchronization
	9.4 Known Limitations
	9.5 Sample Code

	10 Programming the USB Controller
	10.1 Registers and Interrupts
	10.1.1 Registers
	10.1.2 Interrupts

	10.2 Initialization
	10.2.1 GPIO Setup
	10.2.2 USB Registers
	Table 10-1: USB Controller Initialization Sequence

	10.3 Data Transfers
	10.3.1 Receiving Data from the Host - the OUT command
	Figure 10-1: Endpoint 1 Data Reception
	Figure 10-2: Endpoint 3 Data Reception

	10.3.2 Sending Data to the Host - the IN command
	Figure 10-3: EndPoint 2 Data Transmission
	Figure 10-4: Endpoint 4 Data Transmission
	Figure 10-5: Endpoint 4 Interrupt Handling

	10.4 Known Issues
	10.4.1 EP4 NAK Status not set correctly in USB Status Register
	10.4.2 Write to EP4 FIFO Valid bit cleared by NAK
	10.4.3 EP3 Interrupt Status bit set by NAKs
	Figure 10-6: Firmware Looping Continuously on Received OUT packets
	Figure 10-7: Endpoint 3 Program Flow for Slow CPU

	10.4.4 “EP2 Valid Bit” in USB Status can be erroneously set by firmware
	10.4.5 Setting EP4 FIFO Valid bit while NAKing IN token

	11 Hardware Abstraction Layer
	11.1 Introduction
	11.2 API for the HAL Library
	Table 11-1: HAL Library API
	11.2.1 Startup Routines
	11.2.2 Memory Access
	11.2.3 Register Access
	11.2.4 Clock Support
	11.2.5 Miscellaneous

	12 Sample Code
	13 Change Record
	14 Sales and Technical Support

