

CMOS 32-BIT SINGLE CHIP MICROCONTROLLER

S1C31D41 Technical Manual

Evaluation board/kit and Development tool important notice

- 1. This evaluation board/kit or development tool is designed for use with engineering evaluation, demonstration, or development purposes only. Do not use it for other purposes. It is not intended to meet the design requirements of finished products.
- 2. This evaluation board/kit or development tool is intended for use by an electronic engineer and is not a consumer product. The user should use it properly and in a safe manner. Seiko Epson does not assume any responsibility or liability of any kind of damage and/or fire caused by its use. The user should cease to use it when any abnormal issue occurs even during proper and safe use.
- 3. Parts used for this evaluation board/kit or development tool may be changed without any notice.

NOTICE: PLEASE READ CAREFULLY BELOW BEFORE USING THIS DOCUMENT

The contents of this document are subject to change without notice.

- 1. This document may not be copied, reproduced, or used for any other purpose, in whole or in part, without the consent of the Seiko Epson Corporation ("Epson").
- 2. Before purchasing or using Epson products, please contact our sales representative for the latest information and always be sure to check the latest information published on Epson's official web sites and other sources.
- 3. Information provided in this document such as application circuits, programs, usage, etc., are for reference purposes only. Using the application circuits, programs, usage, etc. in the design of your equipment or systems is your own responsibility. Epson makes no guarantees against any infringements or damages to any third parties' intellectual property rights or any other rights resulting from the information. This document does not grant you any licenses, intellectual property rights or any other rights with respect to Epson products owned by Epson or any third parties.
- 4. Epson is committed to constantly improving quality and reliability, but semiconductor products in general are subject to malfunction and failure. By using Epson products, you shall be responsible for your hardware. Software and systems must be designed well enough to prevent death or injury as well as any property damage even if any of the malfunctions or failures might be caused by Epson products. When designing your products using Epson products, please be sure to check and comply with the latest information regarding Epson products (this document, specifications, data sheets, manuals, Epson's web site, etc.). When using the information included above materials such as product data, charts, technical contents, programs, algorithms and application circuit examples, you shall evaluate your products both on a stand-alone basis as well as within your overall systems. You shall be solely responsible for deciding whether or not to adopt and use Epson products.
- 5. Epson has prepared this document and programs provided in this document carefully to be accurate and dependable, but Epson does not guarantee that the information and the programs are always accurate and complete. Epson assumes no responsibility for any damages which you incur due to misinformation in this document and the programs.
- 6. No dismantling, analysis, reverse engineering, modification, alteration, adaptation, reproduction, etc., of Epson products is allowed.
- 7. Epson products have been designed, developed and manufactured to be used in general electronic applications (office equipment, communications equipment, measuring instruments, home electronics, etc.) and applications individually listed in this document ("General Purpose"). Epson products are NOT intended for any use beyond the General Purpose uses that requires particular/higher quality or reliability in order to refrain from causing any malfunction or failure leading to death, injury, serious property damage or severe impact on society, including, but not limited to those listed below. Therefore, you are advised to use Epson products only for General Purpose uses. Should you desire to buy and use Epson products for a particular purpose other than a General Purpose use, Epson makes no warranty and disclaims with respect to Epson products, whether express or implied, including without limitation any implied warranty of merchantability or fitness for any particular purpose. Please be sure to contact our sales representative and obtain approval in advance.

[Particular purpose]

Space equipment (artificial satellites, rockets, etc.)

Transportation vehicles and their control equipment (automobiles, aircraft, trains, ships, etc.)

Medical equipment (other than applications individually listed in this document) / Relay equipment to be placed on ocean floor Power station control equipment / Disaster or crime prevention equipment / Traffic control equipment / Financial equipment Other applications requiring similar levels of reliability as those listed above

- 8. Epson products listed in this document and our associated technologies shall not be used in any equipment or systems that laws and regulations in Japan or any other countries prohibit to manufacture, use or sell. Furthermore, Epson products and our associated technologies shall not be used for developing weapons of mass destruction, or any other military purposes or applications. If exporting Epson products or our associated technologies, you shall comply with the Foreign Exchange and Foreign Trade Control Act in Japan, Export Administration Regulations in the U.S.A. (EAR) and other export-related laws and regulations in Japan and any other countries and follow the required procedures as provided by the relevant laws and regulations.
- 9. Epson assumes no responsibility for any damages (whether direct or indirect) caused by or in relation with your non-compliance with the terms and conditions in this document.
- 10. Epson assumes no responsibility for any damages (whether direct or indirect) incurred by any third party that you assign, transfer, loan, etc., Epson products to.
- 11. For more details or other concerns about this document, please contact our sales representative.
- Company names and product names listed in this document are trademarks or registered trademarks of their respective companies.

(Rev. e1.0, 2021.9)

i

Preface

This is a technical manual for designers and programmers who develop a product using the S1C31D41. This document describes the functions of the IC, embedded peripheral circuit operations, and their control methods.

Notational conventions and symbols in this manual

Register address

Peripheral circuit chapters do not provide control register addresses. Refer to "Peripheral Circuit Area" in the "Memory and Bus" chapter or "List of Peripheral Circuit Control Registers" in the Appendix.

Register and control bit names

In this manual, the register and control bit names are described as shown below to distinguish from signal and pin names.

XXX register: Represents a register including its all bits.

XXX.YYY bit: Represents the one control bit YYY in the XXX register.

XXX.ZZZ[1:0] bits: Represents the two control bits ZZZ1 and ZZZ0 in the XXX register.

Register table contents and symbols

Initial: Value set at initialization

Reset: Initialization condition. The initialization condition depends on the reset group (H0, H1, or S0).

For more information on the reset groups, refer to "Initialization Conditions (Reset Groups)" in

the "Power Supply, Reset, and Clocks" chapter.

R/W: R = Read only bit

W = Write only bit

WP = Write only bit with a write protection using the SYSPROT.PROT[15:0] bits

R/W = Read/write bit

R/WP = Read/write bit with a write protection using the SYSPROT.PROT[15:0] bits

(reserved): Reserved bit. Do not alter from the initial value.

Control bit read/write values

This manual describes control bit values in a hexadecimal notation except for one-bit values (and except when decimal or binary notation is required in terms of explanation). The values are described as shown below according to the control bit width.

1 bit: 0 or 1
2 to 4 bits: 0x0 to 0xf
5 to 8 bits: 0x00 to 0xff
9 to 12 bits: 0x000 to 0xfff
13 to 16 bits: 0x0000 to 0xffff

Decimal: 0 to 9999...

Binary: 0b0000... to 0b1111...

Channel number

Multiple channels may be implemented in some peripheral circuits (e.g., 16-bit timer, etc.). The peripheral circuit chapters use 'n' as the value that represents the channel number in the register and pin names regardless of the number of channel actually implemented. Normally, the descriptions are applied to all channels. If there is a channel that has different functions from others, the channel number is specified clearly.

Example) T16_nCTL register of the 16-bit timer

If one channel is implemented (Ch.0 only): $T16_nCTL = T16_0CTL$ only If two channels are implemented (Ch.0 and Ch.1): $T16_nCTL = T16_0CTL$ and $T16_1CTL$

For the number of channels implemented in the peripheral circuits of this IC, refer to "Features" in the

Low power mode

"Overview" chapter.

This manual describes the low power modes as HALT mode and SLEEP mode. These terms refer to sleep mode and deep sleep mode in the Cortex®-M0+ processor, respectively.

- Contents -

		efacetational conventions and symbols in this manual	
1		iew	
•		Features	
		Block Diagram	
	1.3	Pins	
		1.3.1 Pin Configuration Diagram	
_	_	1.3.2 Pin Descriptions	
2		Supply, Reset, and Clocks	
	2.1	Power Generator (PWGA)	
		2.1.1 Overview	
		2.1.2 Pins	
		2.1.3 V _{D1} Regulator Operation Mode	
		2.1.4 V _{D1} Regulator Voltage Mode	
	2.2	System Reset Controller (SRC)	
		2.2.1 Overview	
		2.2.2 Input Pin	
		2.2.3 Reset Sources	
		2.2.4 Initialization Conditions (Reset Groups)	2-5
	2.3	Clock Generator (CLG)	2-5
		2.3.1 Overview	2-5
		2.3.2 Input/Output Pins	2-6
		2.3.3 Clock Sources	2-6
		2.3.4 Operations	2-9
	2.4	Operating Mode	2-14
		2.4.1 Initial Boot Sequence	2-14
		2.4.2 Transition between Operating Modes	2-14
	2.5	Interrupts	2-16
	2.6	Control Registers	2-16
		PWGA Control Register	
		CLG System Clock Control Register	
		CLG Oscillation Control Register	2-18
		CLG IOSC Control Register	2-19
		CLG OSC1 Control Register	
		CLG OSC3 Control Register	
		CLG Interrupt Flag Register	
		CLG Interrupt Enable Register	
		CLG FOUT Control RegisterCLG Oscillation Frequency Trimming Register 1	
		CLG Oscillation Frequency Trimming Register 2	
		CLG Oscillation Frequency Trimming Register 3	
2	CDII -		
J		nd Debugger	
		Overview	
		CPU	
	3.3	Debugger	
		3.3.1 List of Debugger Input/Output Pins	
		3.3.2 External Connection	
	3.4	Reference Documents	3-2

4	Memo	ry and Bus	.4-1
	4.1	Overview	4-1
	4.2	Bus Access Cycle	4-2
		Flash Memory	
	4.5	4.3.1 Flash Memory Pin	
		4.3.2 Flash Bus Access Cycle Setting	
		4.3.3 Flash Programming	
		RAM	
	4.5	Peripheral Circuit Control Registers	
		4.5.1 System-Protect Function	4-9
	4.6	Instruction Cache	4-9
	4.7	Memory Mapped Access Area For External Flash Memory	4-9
		Control Registers	
	1.0	System Protect Register	
		CACHE Control Register	
		FLASHC Flash Read Cycle Register	
5	Intorru	pt	5 1
5		Overview	
	5.2	Vector Table	
		5.2.1 Vector Table Offset Address (VTOR)	
		5.2.2 Priority of Interrupts	
		Peripheral Circuit Interrupt Control	
	5.4	NMI	5-4
6	DMA C	Controller (DMAC)	.6-1
		Overview	
		Operations	
	0.2	6.2.1 Initialization	
	6.2	Priority	
		•	
	6.4	Data Structure	
		6.4.1 Transfer Source End Pointer	
		6.4.2 Transfer Destination End Pointer	
		6.4.3 Control Data	
	6.5	DMA Transfer Mode	
		6.5.1 Basic Transfer	
		6.5.2 Auto-Request Transfer	
		6.5.3 Ping-Pong Transfer	
		6.5.4 Memory Scatter-Gather Transfer	
		6.5.5 Peripheral Scatter-Gather Transfer	6-8
	6.6	DMA Transfer Cycle	6-9
	6.7	Interrupts	6-9
	6.8	Control Registers	6-10
		DMAC Status Register	
		DMAC Configuration Register	6-10
		DMAC Control Data Base Pointer Register	6-11
		DMAC Alternate Control Data Base Pointer Register	
		DMAC Software Request Register	
		DMAC Request Mask Set Register	
		DMAC Request Mask Clear Register	
		DMAC Enable Clear Register	
		DMAC Brimany Alternate Set Register	
		DMAC Primary-Alternate Set Register	0-12

		DMAC Primary-Alternate Clear Register	6-13
		DMAC Priority Set Register	
		DMAC Priority Clear Register	
		DMAC Error Interrupt Flag Register	
		DMAC Transfer Completion Interrupt Flag Register	
		DMAC Transfer Completion Interrupt Enable Set Register	
		DMAC Transfer Completion Interrupt Enable Clear Register	
		DMAC Error Interrupt Enable Set Register	
		DMAC Error Interrupt Enable Clear Register	
7		s (PPORT)	
		Overview	
	7.2	O Cell Structure and Functions	7-2
		7.2.1 Schmitt Input	7-2
		7.2.2 Over Voltage Tolerant Fail-Safe Type I/O Cell	7-3
		7.2.3 Pull-Up/Pull-Down	7-3
		7.2.4 CMOS Output and High Impedance State	7-3
	7.3	Clock Settings	7-3
		7.3.1 PPORT Operating Clock	
		7.3.2 Clock Supply in SLEEP Mode	
		7.3.3 Clock Supply During Debugging	
	7.4	Operations	
		7.4.1 Initialization	
		7.4.2 Port Input/Output Control	
	7.5	nterrupts	
		·	
	7.0	Control Registers	
		Px Port Data RegisterPx Port Enable Register	
		Px Port Pull-up/down Control Register	
		Px Port Interrupt Flag Register	
		Px Port Interrupt Control Register	
		Px Port Chattering Filter Enable Register	
		Px Port Mode Select Register	
		Px Port Function Select Register	
		P Port Clock Control Register	7-10
		P Port Interrupt Flag Group Register	7-11
	7.7	Control Register and Port Function Configuration of this IC	7-12
		7.7.1 P0 Port Group	7-12
		7.7.2 P1 Port Group	7-14
		7.7.3 P2 Port Group	7-16
		7.7.4 P3 Port Group	7-19
		7.7.5 P4 Port Group	7-21
		7.7.6 P5 Port Group	7-23
		7.7.7 P6 Port Group	7-25
		7.7.8 Pd Port Group	
		7.7.9 Common Registers between Port Groups	
ΩΙ	Iniver	al Port Multiplexer (UPMUX)	8 ₋1
•		Overview	
		Peripheral Circuit I/O Function Assignment	
	8.3	Control Registers	
		Pxy-xz Universal Port Multiplexer Setting Register	8-2
9 '	Watch	og Timer (WDT2)	9-1
	9.1	Dverview	9-1

	9.2	Clock Settings	
		9.2.1 WDT2 Operating Clock	9-1
		9.2.2 Clock Supply in DEBUG Mode	9-1
	9.3	Operations	9-2
		9.3.1 WDT2 Control	
		9.3.2 Operations in HALT and SLEEP Modes	
	94	Control Registers	
	0.1	WDT2 Clock Control Register	
		WDT2 Control Register	
		WDT2 Counter Compare Match Register	
10	Real-	Time Clock (RTCA)	
10		Overview	
		2 Output Pin and External Connection	
	10.2	•	
		10.2.1 Output Pin	
	10.3	3 Clock Settings	
		10.3.1 RTCA Operating Clock	
		10.3.2 Theoretical Regulation Function	
	10.4	Poperations	10-3
		10.4.1 RTCA Control	10-3
		10.4.2 Real-Time Clock Counter Operations	
		10.4.3 Stopwatch Control	10-4
		10.4.4 Stopwatch Count-up Pattern	10-4
	10.5	5 Interrupts	10-5
	10.6	Control Registers	10-6
		RTCA Control Register (Low Byte)	
		RTCA Control Register (High Byte)	10-7
		RTCA Second Alarm Register	10-7
		RTCA Hour/Minute Alarm Register	
		RTCA Stopwatch Control Register	
		RTCA Second/1Hz Register	
		RTCA Mouth (D. British	
		RTCA Month/Day Register	
		RTCA Year/Week Register	
		RTCA Interrupt Flag Register	
11	Suppl	y Voltage Detector (SVD3)	
	11.1	Overview	11-1
	11.2	2 Input Pins and External Connection	11-2
		11.2.1 Input Pins	11-2
		11.2.2 External Connection	
	11.3	3 Clock Settings	11-2
		11.3.1 SVD3 Operating Clock	
		11.3.2 Clock Supply in SLEEP Mode	
		11.3.3 Clock Supply in DEBUG Mode	
	11 /	Operations	
		11.4.1 SVD3 Control	
		11.4.2 SVD3 Operations	
	44.5	·	
	11.5	5 SVD3 Interrupt and Reset	
		11.5.1 SVD3 Interrupt	
		11.5.2 SVD3 Reset	
	11.6	Control Registers	
		SVD3 Clock Control Register	11-5

		SVD3 Control Register	
		SVD3 Status and Interrupt Flag Register	
		SVD3 Interrupt Enable Register	11-8
12	16-bit	Timers (T16)	12-1
		Overview	
		Input Pin	
		Clock Settings	
	12.0	12.3.1 T16 Operating Clock	
		12.3.2 Clock Supply in SLEEP Mode	
		12.3.3 Clock Supply During Debugging	
		12.3.4 Event Counter Clock	
	12 /	Operations	
	12.7	12.4.1 Initialization	
		12.4.2 Counter Underflow	
		12.4.3 Operations in Repeat Mode	
		12.4.4 Operations in One-shot Mode	
		12.4.5 Counter Value Read	
	12.5	Interrupt	
		Control Registers	
	12.0	T16 Ch.n Clock Control Register	
		T16 Ch.n Mode Register	
		T16 Ch.n Control Register	
		T16 Ch.n Reload Data Register	12-6
		T16 Ch.n Counter Data Register	12-6
		T16 Ch.n Interrupt Flag Register	
		T16 Ch.n Interrupt Enable Register	12-7
		The class medicapt Endoughter	
13	UART	(UART3)	
13			13-1
13	13.1	(UART3)	13-1 13-1
13	13.1	(UART3) Overview	13-1 13-1 13-2
13	13.1	Overview	13-1 13-1 13-2 13-2
13	13.1	Overview	13-1 13-1 13-2 13-2 13-2
13	13.1	Overview	13-1 13-1 13-2 13-2 13-2 13-2 13-2
13	13.1	Overview	13-1 13-1 13-2 13-2 13-2 13-2 13-2
13	13.1 13.2	Overview	13-1 13-1 13-2 13-2 13-2 13-2 13-2 13-2
13	13.1 13.2	Overview Input/Output Pins and External Connections 13.2.1 List of Input/Output Pins 13.2.2 External Connections 13.2.3 Input Pin Pull-Up Function 13.2.4 Output Pin Open-Drain Output Function 13.2.5 Input/Output Signal Inverting Function Clock Settings 13.3.1 UART3 Operating Clock	13-1 13-1 13-2 13-2 13-2 13-2 13-2 13-2
13	13.1 13.2	Overview Input/Output Pins and External Connections 13.2.1 List of Input/Output Pins 13.2.2 External Connections 13.2.3 Input Pin Pull-Up Function 13.2.4 Output Pin Open-Drain Output Function 13.2.5 Input/Output Signal Inverting Function Clock Settings 13.3.1 UART3 Operating Clock 13.3.2 Clock Supply in SLEEP Mode	13-1 13-1 13-2 13-2 13-2 13-2 13-2 13-2
13	13.1 13.2	Overview Input/Output Pins and External Connections 13.2.1 List of Input/Output Pins	13-1 13-2 13-2 13-2 13-2 13-2 13-2 13-2
13	13.1 13.2 13.3	Overview Input/Output Pins and External Connections 13.2.1 List of Input/Output Pins. 13.2.2 External Connections 13.2.3 Input Pin Pull-Up Function. 13.2.4 Output Pin Open-Drain Output Function 13.2.5 Input/Output Signal Inverting Function. Clock Settings. 13.3.1 UART3 Operating Clock 13.3.2 Clock Supply in SLEEP Mode 13.3.3 Clock Supply During Debugging 13.3.4 Baud Rate Generator.	13-1 13-2 13-2 13-2 13-2 13-2 13-2 13-2
13	13.1 13.2 13.3	Overview Input/Output Pins and External Connections 13.2.1 List of Input/Output Pins	13-1 13-2 13-2 13-2 13-2 13-2 13-2 13-2
13	13.1 13.2 13.3	Overview Input/Output Pins and External Connections 13.2.1 List of Input/Output Pins. 13.2.2 External Connections 13.2.3 Input Pin Pull-Up Function. 13.2.4 Output Pin Open-Drain Output Function 13.2.5 Input/Output Signal Inverting Function. Clock Settings. 13.3.1 UART3 Operating Clock 13.3.2 Clock Supply in SLEEP Mode 13.3.3 Clock Supply During Debugging 13.3.4 Baud Rate Generator.	13-1 13-1 13-2 13-2 13-2 13-2 13-2 13-2
13	13.1 13.2 13.3	Overview Input/Output Pins and External Connections 13.2.1 List of Input/Output Pins 13.2.2 External Connections 13.2.3 Input Pin Pull-Up Function 13.2.4 Output Pin Open-Drain Output Function 13.2.5 Input/Output Signal Inverting Function Clock Settings 13.3.1 UART3 Operating Clock 13.3.2 Clock Supply in SLEEP Mode 13.3.3 Clock Supply During Debugging 13.3.4 Baud Rate Generator Data Format	13-1 13-2 13-2 13-2 13-2 13-2 13-2 13-2
13	13.1 13.2 13.3	Overview Input/Output Pins and External Connections 13.2.1 List of Input/Output Pins. 13.2.2 External Connections 13.2.3 Input Pin Pull-Up Function. 13.2.4 Output Pin Open-Drain Output Function 13.2.5 Input/Output Signal Inverting Function. Clock Settings. 13.3.1 UART3 Operating Clock 13.3.2 Clock Supply in SLEEP Mode 13.3.3 Clock Supply During Debugging 13.3.4 Baud Rate Generator. Data Format. Operations	13-1 13-2 13-2 13-2 13-2 13-2 13-2 13-2
13	13.1 13.2 13.3	Overview Input/Output Pins and External Connections 13.2.1 List of Input/Output Pins. 13.2.2 External Connections 13.2.3 Input Pin Pull-Up Function. 13.2.4 Output Pin Open-Drain Output Function 13.2.5 Input/Output Signal Inverting Function. Clock Settings. 13.3.1 UART3 Operating Clock 13.3.2 Clock Supply in SLEEP Mode 13.3.3 Clock Supply During Debugging 13.3.4 Baud Rate Generator. Data Format Operations 13.5.1 Initialization 13.5.2 Data Transmission 13.5.3 Data Reception	13-1 13-2 13-2 13-2 13-2 13-2 13-2 13-3 13-3
13	13.1 13.2 13.3	Overview Input/Output Pins and External Connections 13.2.1 List of Input/Output Pins	13-1 13-2 13-2 13-2 13-2 13-2 13-2 13-3 13-3
13	13.1 13.2 13.3	Overview Input/Output Pins and External Connections 13.2.1 List of Input/Output Pins. 13.2.2 External Connections 13.2.3 Input Pin Pull-Up Function. 13.2.4 Output Pin Open-Drain Output Function 13.2.5 Input/Output Signal Inverting Function. Clock Settings. 13.3.1 UART3 Operating Clock 13.3.2 Clock Supply in SLEEP Mode 13.3.3 Clock Supply During Debugging 13.3.4 Baud Rate Generator. Data Format Operations 13.5.1 Initialization 13.5.2 Data Transmission 13.5.3 Data Reception	13-1 13-2 13-2 13-2 13-2 13-2 13-2 13-3 13-3
13	13.1 13.2 13.3 13.4 13.5	Overview	13-1 13-2 13-2 13-2 13-2 13-2 13-2 13-2
13	13.1 13.2 13.3 13.4 13.5	Overview Input/Output Pins and External Connections 13.2.1 List of Input/Output Pins	13-1 13-2 13-2 13-2 13-2 13-2 13-2 13-2
13	13.1 13.2 13.3 13.4 13.5	(UART3)	13-1 13-2 13-2 13-2 13-2 13-2 13-2 13-3 13-3
13	13.1 13.2 13.3 13.4 13.5	Overview Input/Output Pins and External Connections 13.2.1 List of Input/Output Pins. 13.2.2 External Connections 13.2.3 Input Pin Pull-Up Function. 13.2.4 Output Pin Open-Drain Output Function 13.2.5 Input/Output Signal Inverting Function. Clock Settings. 13.3.1 UART3 Operating Clock. 13.3.2 Clock Supply in SLEEP Mode. 13.3.3 Clock Supply During Debugging. 13.3.4 Baud Rate Generator. Data Format. Operations. 13.5.1 Initialization. 13.5.2 Data Transmission. 13.5.3 Data Reception. 13.5.4 IrDA Interface. 13.5.5 Carrier Modulation. Receive Errors. 13.6.1 Framing Error. 13.6.2 Parity Error. 13.6.3 Overrun Error.	13-1 13-2 13-2 13-2 13-2 13-2 13-2 13-3 13-3
13	13.1 13.2 13.3 13.4 13.5	(UART3)	13-1 13-2 13-2 13-2 13-2 13-2 13-2 13-3 13-3

	13.9	Control Registers	13-11
		UART3 Ch.n Clock Control Register	
		UART3 Ch.n Mode Register	13-11
		UART3 Ch.n Baud-Rate Register	13-13
		UART3 Ch.n Control Register	13-13
		UART3 Ch.n Transmit Data Register	13-14
		UART3 Ch.n Receive Data Register	
		UART3 Ch.n Status and Interrupt Flag Register	
		UART3 Ch.n Interrupt Enable Register	
		UART3 Ch.n Transmit Buffer Empty DMA Request Enable Register	
		UART3 Ch.n Receive Buffer One Byte Full DMA Request Enable Register	
		UART3 Ch.n Carrier Waveform Register	
14	Synchr	onous Serial Interface (SPIA)	14-1
	14.1	Overview	14-1
	14.2	Input/Output Pins and External Connections	14-2
		14.2.1 List of Input/Output Pins	
		14.2.2 External Connections	14-2
		14.2.3 Pin Functions in Master Mode and Slave Mode	14-3
		14.2.4 Input Pin Pull-Up/Pull-Down Function	14-3
	14.3	Clock Settings	
		14.3.1 SPIA Operating Clock	
		14.3.2 Clock Supply During Debugging	
		14.3.3 SPI Clock (SPICLK <i>n</i>) Phase and Polarity	
	144	Data Format	
		Operations	
	14.5	14.5.1 Initialization	
		14.5.2 Data Transmission in Master Mode	
		14.5.3 Data Reception in Master Mode	
		14.5.4 Terminating Data Transfer in Master Mode	
		14.5.5 Data Transfer in Slave Mode	
		14.5.6 Terminating Data Transfer in Slave Mode	
	110	_	
		Interrupts	
		DMA Transfer Requests	
	14.8	Control Registers	
		SPIA Ch.n Mode Register	
		SPIA Ch.n Control Register	
		SPIA Ch.n Transmit Data Register	
		SPIA Ch.n Receive Data Register	
		SPIA Ch.n Interrupt Flag Register	
		SPIA Ch.n Interrupt Enable Register SPIA Ch.n Transmit Buffer Empty DMA Request Enable Register	
		SPIA Ch.n Receive Buffer Full DMA Request Enable Register	
15		Synchronous Serial Interface (QSPI)	
		Overview	
	15.2	Input/Output Pins and External Connections	
		15.2.1 List of Input/Output Pins	
		15.2.2 External Connections	
		15.2.3 Pin Functions in Master Mode and Slave Mode	
		15.2.4 Input Pin Pull-Up/Pull-Down Function	15-6
	15.3	Clock Settings	15-6
		15.3.1 QSPI Operating Clock	
		15.3.2 Clock Supply During Debugging	15-7
		15.3.3. OSPI Clock (OSPICL Kn) Phase and Polarity	15-7

	15.4	Data Format	. 15-8
	15.5	Operations	. 15-9
		15.5.1 Register Access Mode	15-9
		15.5.2 Memory Mapped Access Mode	
		15.5.3 Initialization	15-11
		15.5.4 Data Transmission in Master Mode	
		15.5.5 Data Reception in Register Access Master Mode	
		15.5.6 Data Reception in Memory Mapped Access Mode	
		15.5.7 Terminating Memory Mapped Access Operations	
		15.5.8 Terminating Data Transfer in Master Mode	
		15.5.9 Data Transfer in Slave Mode	
		15.5.10 Terminating Data Transfer in Slave Mode	
	15.6	Interrupts	15-27
		DMA Transfer Requests	
		Control Registers	
	13.6	QSPI Ch.n Mode Register	
		QSPI Ch.n Node negister	
		QSPI Ch.n Transmit Data Register	
		QSPI Ch.n Receive Data Register	
		QSPI Ch.n Interrupt Flag Register	
		QSPI Ch.n Interrupt Enable Register	
		QSPI Ch.n Transmit Buffer Empty DMA Request Enable Register	15-33
		QSPI Ch.n Receive Buffer Full DMA Request Enable Register	15-34
		QSPI Ch.n FIFO Data Ready DMA Request Enable Register	
		QSPI Ch.n Memory Mapped Access Configuration Register 1	
		QSPI Ch.n Remapping Start Address High Register	
		QSPI Ch.n Memory Mapped Access Configuration Register 2 QSPI Ch.n Mode Byte Register	
		QSFI OII.// Node Byte negister	13-31
	•		
16 I	•	C)	
16 l	•	Overview	
16 I	16.1	Overview	. 16-1 . 16-2
16 l	16.1	Overview	. 16-1 . 16-2 . 16-2
16 l	16.1	Overview	. 16-1 . 16-2 . 16-2
16 I	16.1 16.2	Overview	. 16-1 . 16-2 . 16-2 . 16-2
16 l	16.1 16.2	Overview	. 16-1 . 16-2 . 16-2 . 16-2 . 16-3
16 l	16.1 16.2	Overview	. 16-1 . 16-2 . 16-2 . 16-3 . 16-3
16 l	16.1 16.2	Overview Input/Output Pins and External Connections 16.2.1 List of Input/Output Pins. 16.2.2 External Connections Clock Settings 16.3.1 I2C Operating Clock	. 16-1 . 16-2 . 16-2 . 16-3 . 16-3 . 16-3
16 l	16.1 16.2 16.3	Overview Input/Output Pins and External Connections 16.2.1 List of Input/Output Pins. 16.2.2 External Connections Clock Settings. 16.3.1 I2C Operating Clock 16.3.2 Clock Supply During Debugging 16.3.3 Baud Rate Generator.	. 16-1 . 16-2 . 16-2 . 16-3 . 16-3 . 16-3
16 l	16.1 16.2 16.3	Overview Input/Output Pins and External Connections 16.2.1 List of Input/Output Pins	. 16-1 . 16-2 . 16-2 . 16-3 . 16-3 . 16-3 . 16-3
16 l	16.1 16.2 16.3	Overview Input/Output Pins and External Connections 16.2.1 List of Input/Output Pins 16.2.2 External Connections Clock Settings 16.3.1 I2C Operating Clock 16.3.2 Clock Supply During Debugging 16.3.3 Baud Rate Generator. Operations	. 16-1 . 16-2 . 16-2 . 16-3 . 16-3 . 16-3 . 16-3 . 16-4 . 16-4
16 l	16.1 16.2 16.3	Overview Input/Output Pins and External Connections 16.2.1 List of Input/Output Pins 16.2.2 External Connections Clock Settings 16.3.1 I2C Operating Clock 16.3.2 Clock Supply During Debugging 16.3.3 Baud Rate Generator Operations 16.4.1 Initialization 16.4.2 Data Transmission in Master Mode	. 16-1 . 16-2 . 16-2 . 16-3 . 16-3 . 16-3 . 16-3 . 16-4 . 16-4
16 l	16.1 16.2 16.3	Overview Input/Output Pins and External Connections 16.2.1 List of Input/Output Pins	. 16-1 . 16-2 . 16-2 . 16-3 . 16-3 . 16-3 . 16-3 . 16-4 . 16-4 . 16-5 . 16-7
16 F	16.1 16.2 16.3	Overview Input/Output Pins and External Connections 16.2.1 List of Input/Output Pins	. 16-1 . 16-2 . 16-2 . 16-3 . 16-3 . 16-3 . 16-3 . 16-4 . 16-4 . 16-5 . 16-7
16 F	16.1 16.2 16.3	Overview Input/Output Pins and External Connections 16.2.1 List of Input/Output Pins	. 16-1 . 16-2 . 16-2 . 16-3 . 16-3 . 16-3 . 16-3 . 16-4 . 16-4 . 16-5 . 16-7 16-10
16 F	16.1 16.2 16.3	Overview Input/Output Pins and External Connections 16.2.1 List of Input/Output Pins 16.2.2 External Connections Clock Settings 16.3.1 I2C Operating Clock 16.3.2 Clock Supply During Debugging 16.3.3 Baud Rate Generator. Operations 16.4.1 Initialization 16.4.2 Data Transmission in Master Mode 16.4.3 Data Reception in Master Mode 16.4.4 10-bit Addressing in Master Mode 16.4.5 Data Transmission in Slave Mode 16.4.6 Data Reception in Slave Mode	. 16-1 . 16-2 . 16-2 . 16-3 . 16-3 . 16-3 . 16-3 . 16-4 . 16-4 . 16-5 . 16-7 16-10 16-11
16 F	16.1 16.2 16.3	Overview Input/Output Pins and External Connections 16.2.1 List of Input/Output Pins	. 16-1 . 16-2 . 16-2 . 16-3 . 16-3 . 16-3 . 16-4 . 16-4 . 16-5 . 16-7 16-10 16-11 16-13 16-15
16 F	16.1 16.2 16.3	Overview Input/Output Pins and External Connections 16.2.1 List of Input/Output Pins 16.2.2 External Connections Clock Settings 16.3.1 I2C Operating Clock 16.3.2 Clock Supply During Debugging 16.3.3 Baud Rate Generator. Operations 16.4.1 Initialization 16.4.2 Data Transmission in Master Mode 16.4.3 Data Reception in Master Mode 16.4.4 10-bit Addressing in Master Mode 16.4.5 Data Transmission in Slave Mode 16.4.6 Data Reception in Slave Mode	. 16-1 . 16-2 . 16-2 . 16-3 . 16-3 . 16-3 . 16-4 . 16-4 . 16-5 . 16-7 16-10 16-11 16-13 16-15
16 F	16.1 16.2 16.3	Overview Input/Output Pins and External Connections 16.2.1 List of Input/Output Pins	. 16-1 . 16-2 . 16-2 . 16-3 . 16-3 . 16-3 . 16-3 . 16-4 . 16-5 . 16-7 16-10 16-11 16-15 16-15
16 F	16.1 16.2 16.3 16.4	Overview Input/Output Pins and External Connections 16.2.1 List of Input/Output Pins. 16.2.2 External Connections Clock Settings. 16.3.1 I2C Operating Clock. 16.3.2 Clock Supply During Debugging 16.3.3 Baud Rate Generator. Operations 16.4.1 Initialization 16.4.2 Data Transmission in Master Mode 16.4.3 Data Reception in Master Mode 16.4.4 10-bit Addressing in Master Mode 16.4.5 Data Transmission in Slave Mode 16.4.6 Data Reception in Slave Mode 16.4.7 Slave Operations in 10-bit Address Mode 16.4.8 Automatic Bus Clearing Operation 16.4.9 Error Detection. Interrupts.	. 16-1 . 16-2 . 16-2 . 16-3 . 16-3 . 16-3 . 16-3 . 16-4 . 16-5 . 16-7 16-10 16-11 16-15 16-15 16-16
16 F	16.1 16.2 16.3 16.4	Overview	. 16-1 . 16-2 . 16-2 . 16-3 . 16-3 . 16-3 . 16-3 . 16-4 . 16-5 . 16-7 16-10 16-11 16-15 16-15 16-16
16	16.1 16.2 16.3 16.4	Overview	. 16-1 . 16-2 . 16-2 . 16-3 . 16-3 . 16-3 . 16-3 . 16-4 . 16-4 . 16-5 . 16-7 16-10 16-15 16-15 16-16 16-17 16-18
16 F	16.1 16.2 16.3 16.4	Overview Input/Output Pins and External Connections 16.2.1 List of Input/Output Pins. 16.2.2 External Connections Clock Settings 16.3.1 I2C Operating Clock 16.3.2 Clock Supply During Debugging 16.3.3 Baud Rate Generator. Operations 16.4.1 Initialization 16.4.2 Data Transmission in Master Mode 16.4.3 Data Reception in Master Mode 16.4.4 10-bit Addressing in Master Mode 16.4.5 Data Transmission in Slave Mode 16.4.6 Data Reception in Slave Mode 16.4.7 Slave Operations in 10-bit Address Mode 16.4.8 Automatic Bus Clearing Operation 16.4.9 Error Detection. Interrupts. DMA Transfer Requests Control Registers I2C Ch.n Clock Control Register	. 16-1 . 16-2 . 16-2 . 16-3 . 16-3 . 16-3 . 16-3 . 16-4 . 16-5 . 16-7 16-10 16-15 16-15 16-16 16-18 16-18 16-18
16 F	16.1 16.2 16.3 16.4	Overview	. 16-1 . 16-2 . 16-2 . 16-3 . 16-3 . 16-3 . 16-3 . 16-4 . 16-5 . 16-7 16-10 16-15 16-15 16-16 16-18 16-18 16-18 16-18

		I2C Ch.n Own Address Register	16-20
		I2C Ch.n Control Register	
		I2C Ch.n Transmit Data Register	
		I2C Ch.n Receive Data Register	
		I2C Ch.n Status and Interrupt Flag Register	
		I2C Ch.n Interrupt Enable Register	
		I2C Ch.n Transmit Buffer Empty DMA Request Enable Register	
17		PWM Timers (T16B)	
	17.1	Overview	17-1
	17.2	Input/Output Pins	17-2
	17.3	Clock Settings	17-3
		17.3.1 T16B Operating Clock	17-3
		17.3.2 Clock Supply in SLEEP Mode	17-3
		17.3.3 Clock Supply During Debugging	17-3
		17.3.4 Event Counter Clock	17-3
	17.4	Operations	17-4
		17.4.1 Initialization	17-4
		17.4.2 Counter Block Operations	17-5
		17.4.3 Comparator/Capture Block Operations	17-8
		17.4.4 TOUT Output Control	17-17
	17.5	Interrupt	17-23
	17.6	DMA Transfer Requests	17-23
		Control Registers	
		T16B Ch.n Clock Control Register	
		T16B Ch.n Counter Control Register	
		T16B Ch.n Max Counter Data Register	17-25
		T16B Ch.n Timer Counter Data Register	17-25
		T16B Ch.n Counter Status Register	
		T16B Ch.n Interrupt Flag Register	
		T16B Ch.n Interrupt Enable Register	
		T16B Ch.n Comparator/Capture m Control Register	
		T16B Ch.n Counter Max/Zero DMA Request Enable Register	
		T16B Ch.n Compare/Capture m DMA Request Enable Register	
40	ID Dan	note Controller (REMC3)	
10			
		Overview	
	18.2	Output Pins and External Connections	
		18.2.1 List of Output Pins	
		18.2.2 External Connections	
	18.3	Clock Settings	
		18.3.1 REMC3 Operating Clock	
		18.3.2 Clock Supply in SLEEP Mode	
		18.3.3 Clock Supply During Debugging	
	18.4	Operations	
		18.4.1 Initialization	
		18.4.2 Data Transmission Procedures	
		18.4.3 REMO Output Waveform	
		18.4.4 Continuous Data Transmission and Compare Buffers	
	18.5	Interrupts	18-6
	18.6	Application Example: Driving EL Lamp	18-7
	18.7	Control Registers	18-7
		REMC3 Clock Control Register	

		REMC3 Data Bit Counter Control Register	18-8
		REMC3 Data Bit Counter Register	18-9
		REMC3 Data Bit Active Pulse Length Register	18-10
		REMC3 Data Bit Length Register	
		REMC3 Status and Interrupt Flag Register	
		REMC3 Interrupt Enable Register	
		REMC3 Carrier Waveform Register	
		REMC3 Carrier Modulation Control Register	
19	12-bit /	A/D Converter (ADC12A)	19-1
	19.1	Overview	19-1
	19.2	Input Pins and External Connections	19-2
		19.2.1 List of Input Pins	
		19.2.2 External Connections	
	10.3	Clock Settings	
	19.0	19.3.1 ADC12A Operating Clock	
		· -	
	40.4	19.3.2 Sampling Time	
	19.4	Operations	
		19.4.1 Initialization	
		19.4.2 Conversion Start Trigger Source	
		19.4.3 Conversion Mode and Analog Input Pin Settings	
		19.4.4 A/D Conversion Operations and Control Procedures	
	19.5	Interrupts	19-6
	19.6	DMA Transfer Requests	19-6
	19.7	Control Registers	19-7
		ADC12A Ch.n Control Register	
		ADC12A Ch.n Trigger/Analog Input Select Register	
		ADC12A Ch.n Configuration Register	19-9
		ADC12A Ch.n Interrupt Flag Register	19-10
		ADC12A Ch.n Interrupt Enable Register	
		ADC12A Ch.n DMA Request Enable Register m	
		ADC12A Ch.n Result Register	19-11
20	Tempe	rature Sensor/Reference Voltage Generator (TSRVR)	20-1
	20.1	Overview	20-1
		Output Pin and External Connections	
	20.2	20.2.1 Output Pin	
		20.2.2 External Connections	
	20.2		
	20.3	Operations	
		20.3.1 Reference Voltage Setting	
		20.3.2 Temperature Sensor Setting	
	20.4	Control Registers	
		TSRVR Ch.n Temperature Sensor Control Register	
		TSRVR Ch.n Reference Voltage Generator Control Register	20-3
21	R/F Co	nverter (RFC)	21-1
	21.1	Overview	21-1
	21.2	Input/Output Pins and External Connections	21-2
		21.2.1 List of Input/Output Pins	
		21.2.2 External Connections	
	21.3	Clock Settings	
	21.0	21.3.1 RFC Operating Clock	
		21.3.2 Clock Supply in SLEEP Mode	
		21.3.3 Clock Supply in DEBUG Mode	
		21.0.0 Clock Cupply in Debod Mode	2 1-0

	21.4	Operations	21-3
		21.4.1 Initialization	21-3
		21.4.2 Operating Modes	21-4
		21.4.3 RFC Counters	21-4
		21.4.4 Converting Operations and Control Procedure	
		21.4.5 CR Oscillation Frequency Monitoring Function	
	21.5	Interrupts	
		•	
	21.6	Control Registers	
		RFC Ch.n Clock Control Register	
		RFC Ch.n Control RegisterRFC Ch.n Oscillation Trigger Register	
		RFC Ch.n Measurement Counter Low and High Registers	
		RFC Ch.n Time Base Counter Low and High Registers	
		RFC Ch.n Interrupt Flag Register	
		RFC Ch.n Interrupt Enable Register	
~~	1.04/ D		
22		ocessor (HWP) and Sound Output (SDAC2)	
		Overview	
	22.2	Output Pins and External Connections	
		22.2.1 List of Output Pins	
		22.2.2 External Connections	22-3
	22.3	Clock Settings	22-4
		22.3.1 HWP Operating Clock	22-4
		22.3.2 Clock Supply in SLEEP Mode	22-4
		22.3.3 Clock Supply in DEBUG Mode	
	22.4	Operations	
	22.7	22.4.1 Sound Play Function	
		22.4.2 Memory Check Function	
		22.4.3 External QSPI Flash Memory Access	
		Interrupts	
	22.6	HWP Internal Registers	22-18
		22.6.1 Sound Play Function Registers	22-19
		Function ID Register	22-19
		Interrupt Mask Register	22-19
		ROM Address Register	22-19
		ROM Size Register	
		Key Code Register	22-20
		Ch.n Command Register	
		Ch.n Sentence Number Setting Register	
		Ch.n Volume Control Register	
		Ch.n Repeat Control Register	
		Ch.0 Playback Speed Conversion Register	
		Ch.0 Playback Pitch Conversion Register	
		Ch.n State Monitor Register	
		Error Status Register	
		Operating Status Register	
		Version Number Register	
		22.6.2 Memory Check Function Register	
		Function ID Register	
		Interrupt Mask Register	
		Memory Size Register	
		Memory Size Register	
		Initial Value Setting Register	
		Command Register	
		State Monitor Register	22-20

		Operating Status Register		22-27
		Calculation Result Register	·	22-27
		Version Number Register		22-27
	22.7 Co	ontrol Registers		22-28
		_		
		HWP Interrupt Flag Registe	er	22-28
		HWP Interrupt Enable Regi	ster	22-28
		HWP Command Trigger Re	egister	22-28
		SDAC2 Clock Control Regi	ster	22-29
		SDAC2 Control Register		22-29
		SDAC2 Mode Register		22-30
		SDAC2 Ch.n Data Register		22-30
		, ,	ster	
			egister	
			egister	
		SDAC2 Tone Divider Regis	ter	22-32
23	Electrical	Characteristics		23-1
	23.1 Ab	solute Maximum Ratings		23-1
	23.2 Re	commended Operating Co	nditions	23-1
	23.3 Cu	irrent Consumption		23-2
			Characteristics	
			pteristics	
		•		
	-		naracteristics	
	23.8 Su	pply Voltage Detector (SVD	3) Characteristics	23-10
	23.9 UA	ART (UART3) Characteristics	S	23-12
	23.10 S	ynchronous Serial Interface	(SPIA) Characteristics	23-12
			erface (QSPI) Characteristics	
		` '	PA) Characteristics	
		=	ce Voltage Generator (TSRVR) Characteristics	
	23.15 R	R/F Converter (RFC) Charact	eristics	23-17
24	Basic Ext	ernal Connection Diagr	am	24-1
	•			
Аp			it Control Registers	
		x0020 0000	System Register (SYS)	
		x0020 0020	Power Generator (PWGA)	
		x0020 0040-0x0020 005a	Clock Generator (CLG)	
		x0020 0080	Cache Controller (CACHE)	
	0	x0020 00a0-0x0020 00a4	Watchdog Timer (WDT2)	
	0	x0020 00c0-0x0020 00d2	Real-time Clock (RTCA)	
	0	x0020 0100–0x0020 0106	Supply Voltage Detector (SVD3)	
	0	x0020 0160-0x0020 016c	16-bit Timer (T16) Ch.0	AP-A-5
	0	x0020 01b0	Flash Controller (FLASHC)	AP-A-5
	0	x0020 0200-0x0020 02e2	I/O Ports (PPORT)	AP-A-6
	0	x0020 0300-0x0020 031e	Universal Port Multiplexer (UPMUX)	AP-A-19
	0	x0020 0380-0x0020 0394	UART (UART3) Ch.0	AP-A-21
	0	x0020 03a0-0x0020 03ac	16-bit Timer (T16) Ch.1	AP-A-22
	0	x0020 03b0-0x0020 03be	Synchronous Serial Interface (SPIA) Ch.0	AP-A-23
	0	x0020 03c0-0x0020 03d6	I ² C (I2C) Ch.0	AP-A-24
		x0020 0400-0x0020 042c	16-bit PWM Timer (T16B) Ch.0	4 D A 6 C

0x0020 0440-0x0020 046c	16-bit PWM Timer (T16B) Ch.1	AP-A-27
0x0020 0480-0x0020 048c	16-bit Timer (T16) Ch.3	AP-A-30
0x0020 04a0-0x0020 04ac	16-bit Timer (T16) Ch.4	AP-A-30
0x0020 04c0-0x0020 04cc	16-bit Timer (T16) Ch.5	AP-A-31
0x0020 04d0-0x0020 04de	Synchronous Serial Interface (SPIA) Ch.2	AP-A-31
0x0020 0600-0x0020 0614	UART (UART3) Ch.1	AP-A-32
0x0020 0620-0x0020 0634	UART (UART3) Ch.2	AP-A-33
0x0020 0660-0x0020 066c	16-bit Timer (T16) Ch.6	
0x0020 0670-0x0020 067e	Synchronous Serial Interface (SPIA) Ch.1	AP-A-35
0x0020 0680-0x0020 068c	16-bit Timer (T16) Ch.2	AP-A-36
0x0020 0690-0x0020 06a8	Quad Synchronous Serial Interface (QSPI) Ch.0.	AP-A-36
0x0020 06c0-0x0020 06d6	I ² C (I2C) Ch.1	
0x0020 06e0-0x0020 06f6	I ² C (I2C) Ch.2	
0x0020 0720-0x0020 0732	IR Remote Controller (REMC3)	
0x0020 0780-0x0020 078c	16-bit Timer (T16) Ch.7	
0x0020 07a0-0x0020 07bc	12-bit A/D Converter (ADC12A) Ch.0	AP-A-41
0x0020 07c0-0x0020 07c2	Temperature Sensor/	
	Reference Voltage Generator (TSRVR) Ch.0	
0x0020 0840–0x0020 0850	R/F Converter (RFC) Ch.0	
0x0020 0860-0x0020 087e	Sound DAC (SDAC2)	
0x0020 08a0-0x0020 08a8	HW Processor (HWP)	
0x0020 1000–0x0020 2014	DMA Controller (DMAC)	AP-A-45
Appendix B Power Saving		AP-B-1
	Examples for Power Saving	
Appendix C Mounting Precautions		AP-C-1
Appendix D Measures Against Noise	e	AP-D-1
Revision History		

1 Overview

1.1 Features

The S1C31D41 is a 32-bit MCU that includes an Arm® Cortex®-M0+ processor and a specific hardware block called the HW Processor. The HW Processor features 2-channel Voice/Audio Playback such as BGM + voice, Voice Speed Conversion, and Self Memory Check without using any CPU resource. With the HW Processor, a low memory footprint and multi-language support are achievable because of its integrated high-compression/high-sound-quality algorithm for voice and audio. In addition to a speaker, though generally difficult, it allows small-sized equipment, which cannot mount a speaker, to playback voice and audio using a buzzer. The S1C31D41 is suitable for home electronics, white goods, and battery-based products, which require a voice and audio playback function.

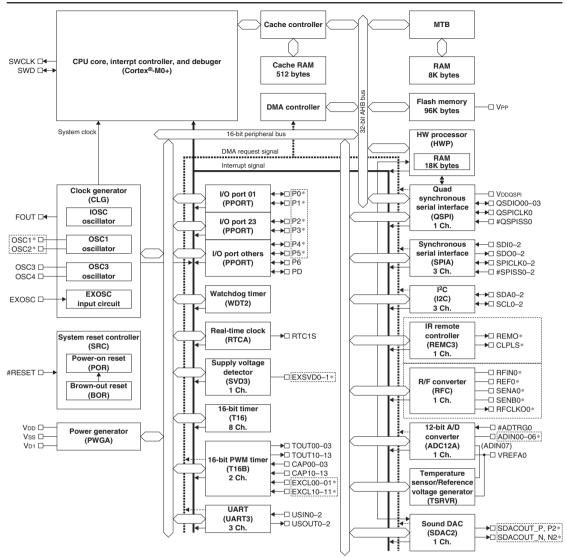
Table 1.1.1 Features

	Table 1.1.1 Features					
S1C31D41 lineup	32-pin package 48-pin package 64-pin package					
CPU						
CPU	Arm® 32-bit RISC processor Cortex®-M0+					
Other	Serial-wire debug ports (SW-DP) and a micro trace buffer (MTB) included					
Embedded Flash memory						
Capacity	96K bytes (for both instructions and data)					
Erase/program count	1,000 times (min.) * When being programmed by the dedicated flash loader					
Other	On-board programming function					
	Flash programming voltage can be generated internally.					
Embedded RAMs						
General-purpose RAM	8K bytes					
Voice RAM	18K bytes (Usable as a general-purpose RAM when the HW processor is inactive.)					
Instruction cache	512 bytes					
HW processor (HWP)						
Sound play function						
Sound algorithm	EPSON high quality and high compression algorithm (EOV: EPSON Original Sound Format)					
Playback channels	2 channels with mixing supported (e.g. Ch.0: voice, Ch.1: BGM)					
Sampling frequency	15.625 kHz					
Bitrate	16/24 kbps					
Playback speed conversion	75% to 125%, 5% steps (when used alone)					
	85% to 115%, 5% steps (when used in combination with playback pitch conversion)					
	* Available only in Ch.0					
Playback pitch conversion	75% to 125%, 5% steps (when used alone)					
	90% to 110%, 5% steps (when used in combination with playback pitch conversion)					
	* Available only in Ch.0					
Sound output	Speaker output and buzzer output					
Other	Voice/audio playback using an electromagnetic or piezoelectric buzzer					
	Tone generator function					
Memory check function						
Embedded RAM check	Read/write check, March-C					
Embedded Flash check	Checksum, CRC					
External QSPI-Flash check	Checksum, CRC					
Sound DAC (SDAC2)						
Sampling frequency	15.625 kHz					
Serial interfaces						
UART (UART3)	3 channels					
,	Baud-rate generator included, IrDA1.0 supported					
	Open drain output, signal polarity, and baud rate division ratio are configurable.					
	Infrared communication carrier modulation output function					
Synchronous serial interface (SPIA)	3 channels					
,	2 to 16-bit variable data length					
	The 16-bit timer (T16) can be used for the baud-rate generator in master mode.					
Quad synchronous serial interface	1 channel					
(QSPI)	Supports single, dual, and quad transfer modes.					
(44)	Low CPU overhead memory mapped access mode that can directly read data from the					
	external flash memory with XIP (eXecute-In-Place) mode.					
I2C (I2C) *1	3 channels					
	Baud-rate generator included					
DMA controller (DMAC)						
Number of channels	4 channels					
Data transfer path	Memory to memory, memory to peripheral, and peripheral to memory					
Transfer mode	Basic, ping-pong, scatter-gather					
DMA trigger source	UART3, SPIA, QSPI, I2C, T16B, ADC12A, and software					
Diff, talgger source	practic, or in, got i, izo, i tob, nootzi, and software					

1 OVERVIEW

S1C31D41 lineup	22 nin naakaga	48-pin package	64-pin package		
Clock generator (CLG)	32-pin package	чо-ріп раскаде	04-piii package		
System clock source	4 sources (IOSC/OSC1/OSC3	/EVOSC)			
•	`				
System clock frequency	V _{D1} voltage mode = mode0: 1	,			
(operating frequency)	V _{D1} voltage mode = mode1: 1	· /			
IOSC oscillator circuit		/2/1 MHz (typ.) software select			
(boot clock source)		.8/0.9 MHz (typ.) software sele			
	10 µs (typ.) starting time (time	from cancelation of SLEEP stat	te to vector table read by the		
	CPU)				
OSC1 oscillator circuit	32.768 kHz (typ.) crystal oscil	ator			
	32kHz (typ.) embedded oscilla	ator			
	Oscillation stop detection circ	uit included			
OSC3 oscillator circuit	0.2 to 16.3 MHz crystal/ceram				
See	16/8/4 MHz (typ.) embedded				
EXOSC clock input	0.016 to 16.3 MHz square or				
Other	Configurable system clock div				
Other			1-		
		ed at wake up from SLEEP sta			
	Operating clock frequency for	the CPU and all peripheral cir	cuits is selectable.		
I/O port (PPORT)	Transaction of the second	I and the second second			
Number of general-purpose I/O ports	25 bits (max.)	39 bits (max.)	55 bits (max.)		
	Pins are shared with the perip	heral I/O.			
Number of input interrupt ports	21 bits (max.)	35 bits (max.)	51 bits (max.)		
Number of ports that support universal	9 bits	20 bits	32 bits		
port multiplexer (UPMUX)		n selected via software can be			
Timers	ponphoral ollowit I/O fulletic	Solotica via solitivale call be	acoignou to odon port.		
Watchdog timer (WDT2)	Generates NMI or watchdog t	iman ranat			
Watchdog timer (WD12)					
D 1 11 1 1 (DTO 1)	Programmable NMI/reset gen				
Real-time clock (RTCA)		nute/hour/day/day of the week	/month/year counters		
	Theoretical regulation function				
	Alarm and stopwatch function	IS .			
16-bit timer (T16)	8 channels				
	Generates the SPIA and QSP	master clocks, and the ADC1	2A operating clock/trigger		
	signal.				
16-bit PWM timer (T16B)	2 channels				
, ,	Event counter/capture function	n			
	PWM waveform generation fu				
		pture input ports: 4 ports/chan	nel		
Supply voltage detector (SVD3)	Transcrott Time Salpar St. Sa	praire impart porter i porter email			
Number of channels	1 channel				
Detection voltage		external detection ports are ava	ailable)		
ŭ					
Detection level	` ` `	ternal voltage: 32 levels (1.2 to	5 5.U V)		
Other	Intermittent operation mode				
	Generates an interrupt or rese	t according to the detection le	vel evaluation.		
12-bit A/D converter (ADC12A)					
Conversion method	Successive approximation type	е			
Resolution	12 bits				
Number of conversion channels	1 channel				
Number of analog signal inputs	6 ports/channel (max.)		8 ports/channel (max.)		
	1 port is dedicated for the bui	It-in temperature sensor.			
Temperature sensor/reference voltage	e generator (TSRVR)				
Temperature sensor circuit	Sensor output can be measur	ed using ADC12A.			
Reference voltage generator	· · · · · · · · · · · · · · · · · · ·	A is selectable from 2.0 V, 2.5 \	/ Vpp, and external input		
R/F converter (RFC)	Thorefore voltage for ADO 12/	TIO SCIEGLADIC HOITI Z.U V, Z.S V	, voo, and external input.		
	1	CD application to a south CA L	it acceptant		
Conversion method	_	CR oscillation type with 24-b			
Number of conversion channels	-	1 channel (Up to two sensors	can be connected.)		
Supported sensors	_	DC-bias resistive sensors			
IR remote controller (REMC3)					
Number of transmitter channels	_	1 channel			
Other	_	EL lamp drive waveform can	be generated (by the hardware)		
		for an application example.	,		
	_	Output inversion function			
Reset					
#RESET pin	Reset when the reset pin is se	at to low			
Power-on reset	Reset at power on.				
		voltage drape (when \/== +4	15 V (typ) in datasted		
	Ineset when the power supply	voltage drops (when VDD ≤ 1.4			
Brown-out reset	December 1 1 1 1				
Watchdog timer reset	Reset when the watchdog tim				
	Reset when the supply voltage	er overflows (can be enabled/o e detector detects the set voltage			
Watchdog timer reset					

S1C31D41 lineup	32-pin package	48-pin package	64-pin package			
Interrupt						
Non-maskable interrupt	6 systems (Reset, NMI, HardF	ault, SVCall, PendSV, SysTic)				
Programmable interrupt	External interrupt: 3 systems	External interrupt: 3 systems				
	Internal interrupt: 27 systems	;				
Power supply voltage						
VDD operating voltage	1.8 to 5.5 V * If VDD > 3.6 V, th	ne V _{D1} voltage mode must be s	et to mode0.			
VDD operating voltage for Flash	2.2 to 5.5 V					
programming						
QSPI-Flash interface power voltage	3.0 to 3.6 V (voltage different	from VDD can be supplied.)				
Operating temperature						
Operating temperature range	-40 to 85 °C					
Current consumption (Typ. value)						
SLEEP mode *2	0.34 μΑ					
	IOSC = OFF, OSC1 = OFF, OS	SC3 = OFF				
	0.9 μΑ					
	IOSC = OFF, OSC1 = 32.768 kHz (crystal oscillator), OSC3 = OFF, RTCA = ON					
HALT mode *3	1.5 µA					
	IOSC = OFF, OSC1 = 32.768 F	kHz (crystal oscillator), OSC3 =	OFF			
RUN mode	215 μA/MHz					
	V _{D1} voltage mode = mode0, C	CPU = IOSC				
	130 μA/MHz					
	V _{D1} voltage mode = mode1, C	CPU = IOSC				
Shipping form						
Package *4	TQFP12-32PIN	TQFP12-48PIN	QFP13-64PIN			
	(P-TQFP0328-0707-0.80, 7 × 7	(P-TQFP048-0707-0.50, 7 × 7	(P-LQFP064-1010-0.50, 10 × 10			
	mm, t = 1.2 mm, 0.8 mm pitch)	mm, t = 1.2 mm, 0.5 mm pitch)	mm, t = 1.7 mm, 0.5 mm pitch)			


^{*1} The input filter in I2C (SDA and SCL inputs) does not comply with the standard for removing noise spikes less than 50 ns.

^{*2} SLEEP mode refers to deep sleep mode in the Cortex®-M0+ processor. The RAM retains data even in SLEEP mode.

^{*3} HALT mode refers to sleep mode in the Cortex®-M0+ processor.

^{*4} Shown in parentheses are JEITA package names.

1.2 Block Diagram

^{*} The pin configuration depends on the package. For detailed information, refer to Section 1.3, "Pins." Figure 1.2.1 S1C31D41 Block Diagram

1.3 Pins

1.3.1 Pin Configuration Diagram

TQFP12-32PIN

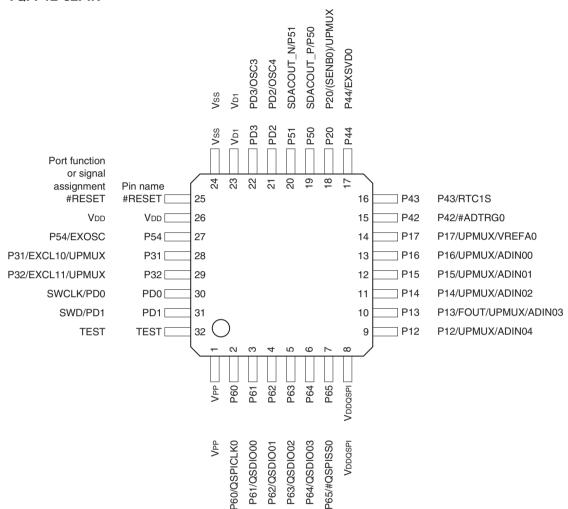


Figure 1.3.1.1 S1C31D41 Pin Configuration Diagram (TQFP12-32PIN)

TQFP12-48PIN

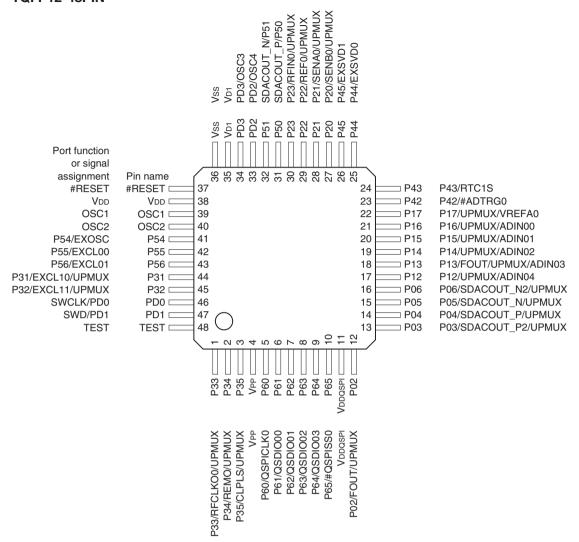


Figure 1.3.1.2 S1C31D41 Pin Configuration Diagram (TQFP12-48PIN)

QFP13-64PIN

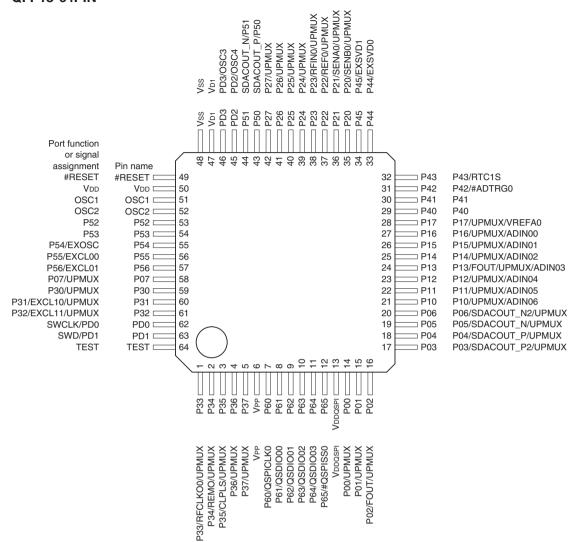


Figure 1.3.1.3 S1C31D41 Pin Configuration Diagram (QFP13-64PIN)

1.3.2 Pin Descriptions

Symbol meanings

Assigned signal: The signal listed at the top of each pin is assigned in the initial state. The pin function must be switched via software to assign another signal (see the "I/O Ports" chapter).

I = Input
 O = Output
 I/O = Input/output
 P = Power supply
 A = Analog signal
 Hi-Z = High impedance state

Initial state: I (Pull-up) = Input with pulled up

I (Pull-down) = Input with pulled down
Hi-Z = High impedance state
O (H) = High level output
O (L) = Low level output

Tolerant fail-safe structure:

= Over voltage tolerant fail-safe type I/O cell included (see the "I/O Ports" chapter)

Table 1.3.2.1 Pin Description

				Tolerant			icka		
Pin name	Assigned signal	I/O	Initial state	fail-safe structure	Function	32-pin	48-pin	64-pin	
Vdd	VDD	Р	-	-	Power supply (+)	✓	1	1	
Vss	Vss	Р	-	-	GND	1	1	1	
VPP	VPP	Р	_	_	Power supply for Flash programming	1	1	1	
V _{D1}	V _{D1}	Α	_	_	V _{D1} regulator output	1	1	1	
VDDQSPI	VDDQSPI	Р	_	_	QSPI interface/P6 port group power supply	1	1	1	
OSC1	OSC1	Α	-	-	OSC1 oscillator circuit input	-	1	1	
OSC2	OSC2	Α	_	_	OSC1 oscillator circuit output	-	1	1	
TEST	TEST	- 1	I (Pull-down)	-	Test mode enable input	1	1	1	
#RESET	#RESET	I	I (Pull-up)	_	Reset input	1	1	1	
P00	P00	I/O	Hi-Z	/	I/O port	-	-	1	
	UPMUX	I/O			User-selected I/O (universal port multiplexer)				
P01	P01	I/O	Hi-Z	/	I/O port	-	-	1	
	UPMUX	I/O	1		User-selected I/O (universal port multiplexer)			İ	
P02	P02	I/O	Hi-Z	/	I/O port	-	1	1	
	FOUT	0	1		Clock external output				
	UPMUX	I/O	1		User-selected I/O (universal port multiplexer)				
P03	P03	1/0	Hi-Z	/	I/O port	-	1	1	
	SDACOUT P2	0	1		Buzzer sound DAC positive output 2				
	UPMUX	1/0			User-selected I/O (universal port multiplexer)				
P04	P04	1/0	Hi-Z	/	I/O port	-	1	1	
		0	1	'		Buzzer sound DAC positive output 1			
	UPMUX	1/0			User-selected I/O (universal port multiplexer)				
P05	P05	1/0	Hi-Z	/	I/O port	-	1	1	
	SDACOUT N	0			Buzzer sound DAC nagetive output 1				
	UPMUX	1/0			User-selected I/O (universal port multiplexer)				
P06	P06	1/0	Hi-Z	/	I/O port	- 1-	1	1	
	SDACOUT N2	0			Buzzer sound DAC nagetive output 2				
	UPMUX	1/0			User-selected I/O (universal port multiplexer)				
P07	P07	1/0	Hi-Z	/	I/O port		<u> </u>	1	
	UPMUX	1/0			User-selected I/O (universal port multiplexer)			ľ	
P10	P10	1/0	Hi-Z	_	I/O port		-	1	
	UPMUX	1/0			User-selected I/O (universal port multiplexer)			1	
	ADIN06	A	1		12-bit A/D converter Ch.0 analog signal input 6				
P11	P11	1/0	Hi-Z	_	I/O port		 	1	
	UPMUX	1/0			User-selected I/O (universal port multiplexer)			•	
	ADIN05	A	-		12-bit A/D converter Ch.0 analog signal input 5				
P12	P12	1/0	Hi-Z		I/O port	1	1	1	
	UPMUX	1/0	1"-		User-selected I/O (universal port multiplexer)	—— *	"	•	
	ADIN04	A			12-bit A/D converter Ch.0 analog signal input 4				

				Tolerant		Pa		age
Pin name	Assigned signal	I/O	Initial state	fail-safe structure	Function	32-pin	48-pin	64-pin
P13	P13	I/O	Hi-Z	-	I/O port	1	1	1
	FOUT	0			Clock external output			
	UPMUX	I/O			User-selected I/O (universal port multiplexer)			
	ADIN03	Α			12-bit A/D converter Ch.0 analog signal input 3			_
P14	P14	1/0	Hi-Z	-	I/O port		1	1
	UPMUX	1/0			User-selected I/O (universal port multiplexer)			
	ADIN02	A			12-bit A/D converter Ch.0 analog signal input 2		L	1
P15	P15	1/0	Hi-Z	-	I/O port		1	/
	UPMUX	1/0	-		User-selected I/O (universal port multiplexer)	_		
D16	ADIN01	A	Hi-Z	_	12-bit A/D converter Ch.0 analog signal input 1	1	_	_
P16	P16	1/0	HI-Z	_	I/O port		1	1
	UPMUX I/O User-selected I/O (universal port multiplexer) ADIN00 A 12-bit A/D converter Ch.0 analog signal input 0							
P17	P16	1/0	Hi-Z	_	I/O port	1	1	1
' ''	UPMUX	1/0	. '''-2	_	User-selected I/O (universal port multiplexer)	⊢"	•	•
	VREFA0	A	-		12-bit A/D converter Ch.0 reference voltage input			
P20	P20	1/0	Hi-Z	/	I/O port	1	1	1
0	SENB0	A	1		R/F converter Ch.0 sensor B oscillator pin	⊣ `		
	UPMUX	1/0	-		User-selected I/O (universal port multiplexer)			
P21	P21	1/0	Hi-Z	/	I/O port		1	1
	SENA0	A	1		R/F converter Ch.0 sensor A oscillator pin			
	UPMUX	1/0			User-selected I/O (universal port multiplexer)			
P22	P22	1/0	Hi-Z	/	I/O port		1	1
	REF0	Α			R/F converter Ch.0 reference oscillator pin			
	UPMUX	I/O			User-selected I/O (universal port multiplexer)			
P23	P23	I/O	Hi-Z	1	I/O port	_	1	1
	RFIN0	Α			R/F converter Ch.0 oscillation input			
	UPMUX	I/O			User-selected I/O (universal port multiplexer)			
P24	P24	I/O	Hi-Z	1	I/O port		-	1
	UPMUX	I/O			User-selected I/O (universal port multiplexer)			
P25	P25	I/O	Hi-Z	1	I/O port	_ -	-	1
	UPMUX	I/O			User-selected I/O (universal port multiplexer)			╙
P26	P26	I/O	Hi-Z	1	I/O port	_ -	-	1
	UPMUX	I/O			User-selected I/O (universal port multiplexer)		┡	Ļ
P27	P27	I/O	Hi-Z	1	I/O port	_ -	-	1
	UPMUX	1/0			User-selected I/O (universal port multiplexer)			<u> </u>
P30	P30	1/0	Hi-Z	1	I/O port	_ -	-	1
Dod	UPMUX	1/0	11: 7		User-selected I/O (universal port multiplexer)		_	<u> </u>
P31	P31	1/0	Hi-Z	/	I/O port	_ <	1	1
	EXCL10	1/0			16-bit PWM timer Ch.1 event counter input 0	_		
P32	UPMUX P32	1/0	Hi-Z	,	User-selected I/O (universal port multiplexer)		_	_
P32	EXCL11	1/0	HI-Z	1	I/O port		1	1
	UPMUX	I /O	-		16-bit PWM timer Ch.1 event counter input 1 User-selected I/O (universal port multiplexer)	\dashv		
P33	P33	1/0	Hi-Z	/	I/O port		-	-
F33	RFCLKO0	0	111-2	•	R/F converter Ch.0 clock monitor output	\dashv	•	•
	UPMUX	1/0	-		User-selected I/O (universal port multiplexer)	\dashv		
P34	P34	1/0	Hi-Z	1	I/O port		1	1
04	REMO	0	1"2	•	IR remote controller transmit data output		*	*
	UPMUX	1/0	-		User-selected I/O (universal port multiplexer)	\neg		
P35	P35	1/0	Hi-Z	/	I/O port		1	1
	CLPLS	0	1		IR remote controller clear pulse output	\dashv		
	UPMUX	1/0			User-selected I/O (universal port multiplexer)	\dashv		
P36	P36	1/0	Hi-Z	1	I/O port	<u> </u>	-	1
	UPMUX	1/0	1		User-selected I/O (universal port multiplexer)	\neg		1
P37	P37	1/0	Hi-Z	/	I/O port	<u> </u>	1-	1
	UPMUX	I/O	1		User-selected I/O (universal port multiplexer)			
P40	P40	I/O	Hi-Z	-	I/O port	_ -	-	1
P41	P41	I/O	Hi-Z	1	I/O port		_	1
P42	P42	I/O	Hi-Z	-	I/O port	1	1	1
	#ADTRG0	1			12-bit A/D converter Ch.0 trigger input		L	1_
P43	P43	I/O	Hi-Z	-	I/O port		1	1
	RTC1S	0			Real-time clock 1-second cycle pulse output		L	L
P44	P44	I/O	Hi-Z	1	I/O port	1	1	1
	EXSVD0	Α			Supply voltage detector external voltage detection input 0			

		Tolerant		Pa	ckage			
Pin name	Assigned signal	I/O	Initial state	fail-safe structure	Function	32-pin	48-pin	64-pin
P45	P45	I/O	Hi-Z	1	I/O port	_	1	1
	EXSVD1	Α			Supply voltage detector external voltage detection input 1			
P50	SDACOUT_P	0	O (L)	/	Sound DAC positive output	1	1	1
	P50	I/O			I/O port			
P51	SDACOUT_N	0	O (L)	/	Sound DAC nagetive output	1	1	1
	P51	I/O			I/O port			
P52	P52	I/O	Hi-Z	/	I/O port	_	-	1
P53	P53	I/O	Hi-Z	/	I/O port	_	_	1
P54	P54	I/O	Hi-Z	/	I/O port	1	1	1
	EXOSC	- 1			Clock generator external clock input			
P55	P55	I/O	Hi-Z	/	I/O port	-	1	1
	EXCL00	1			16-bit PWM timer Ch.0 event counter input 0			
P56	P56	I/O	Hi-Z	1	I/O port	-	1	1
	EXCL01	1			16-bit PWM timer Ch.0 event counter input 1			
P60	P60	I/O	Hi-Z	/	I/O port	1	1	1
	QSPICLK0	I/O			Quad synchronous serial interface Ch.0 clock input/output			
P61	P61	I/O	Hi-Z	✓	I/O port	1	1	1
	QSDIO00	I/O			Quad synchronous serial interface Ch.0 data input/output			
P62	P62	I/O	Hi-Z	1	I/O port	1	1	1
	QSDIO01	I/O			Quad synchronous serial interface Ch.0 data input/output			
P63	P63	I/O	Hi-Z	/	I/O port	1	1	1
	QSDIO02	I/O			Quad synchronous serial interface Ch.0 data input/output			
P64	P64	I/O	Hi-Z	1	I/O port	1	1	1
	QSDIO03	I/O			Quad synchronous serial interface Ch.0 data input/output			
P65	P65	I/O	Hi-Z	/	I/O port	1	1	1
	#QSPISS0	I/O			Quad synchronous serial interface Ch.0 slave-select input/output			
PD0	SWCLK	1	I (Pull-up)	1	Serial-wire debugger clock input	1	1	1
	PD0	I/O			I/O port			ĺ
PD1	SWD	I/O	I (Pull-up)	✓	Serial-wire debugger data input/output	1	1	1
	PD1	I/O			I/O port			
PD2	PD2	I/O	Hi-Z	_	I/O port	1	1	1
	OSC4	Α			OSC3 oscillator circuit output			L
PD3	PD3	I/O	Hi-Z	_	I/O port	1	1	1
	OSC3	Α			OSC3 oscillator circuit input			

Note: In the peripheral circuit descriptions, the assigned signal name is used as the pin name.

Universal port multiplexer (UPMUX)

The universal port multiplexer (UPMUX) allows software to select the peripheral circuit input/output function to be assigned to each pin from those listed below.

Table 1.3.2.2 Peripheral Circuit Input/output Function Selectable by UPMUX

Peripheral circuit	Signal to be assigned	I/O	Channel number n	Function
I ² C	SCLn	I/O	n = 0-2	I2C Ch.n clock input/output
(I2C)	SDAn	I/O		I2C Ch.n data input/output
UART	USINn	I	n = 0-2	UART3 Ch.n data input
(UART3)	USOUTn	0		UART3 Ch.n data output
Synchronous serial	SDIn	I	n = 0-2	SPIA Ch.n data input
interface	SDOn	0		SPIA Ch.n data output
(SPIA)	SPICLKn	I/O		SPIA Ch.n clock input/output
	#SPISSn	I		SPIA Ch.n slave-select input
16-bit PWM timer	TOUTn0/CAPn0	I/O	n = 0, 1	T16B Ch.n PWM output/capture input 0
(T16B)	TOUTn1/CAPn1	I/O		T16B Ch.n PWM output/capture input 1
	TOUTn2/CAPn2	I/O		T16B Ch.n PWM output/capture input 2
	TOUTn3/CAPn3	I/O		T16B Ch.n PWM output/capture input 3

Note: Do not assign a function to two or more pins simultaneously.

2 Power Supply, Reset, and Clocks

The power supply, reset, and clocks in this IC are managed by the embedded power generator, system reset controller, and clock generator, respectively.

2.1 Power Generator (PWGA)

2.1.1 Overview

PWGA is the power generator that controls the internal power supply system to drive this IC with stability and low power. The main features of PWGA are outlined below.

- Embedded VD1 regulator
 - The VDI regulator generates the VDI voltage to drive internal circuits, this makes it possible to keep current consumption constant independent of the VDD voltage level.
 - The V_{D1} regulator supports two operation modes, normal mode and economy mode, and setting the V_{D1} regulator into economy mode at light loads helps achieve low-power operations.
 - The VDI regulator supports two voltage modes, mode0 and mode1, and setting the VDI regulator into mode1 during low-speed operation helps achieve low-power operations.

Figure 2.1.1.1 shows the PWGA configuration.

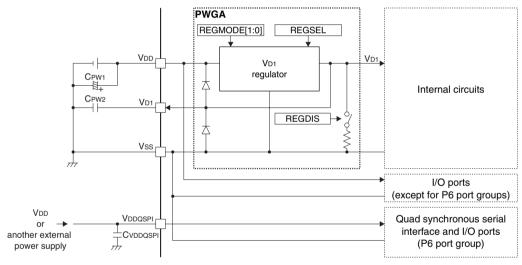


Figure 2.1.1.1 PWGA Configuration

2.1.2 Pins

Table 2.1.2.1 lists the PWGA pins.

Table 2.1.2.1 List of PWGA Pins

Pin name	I/O	Initial status	Function
VDD	Р	-	Power supply (+)
Vss	Р	-	GND
V _{D1}	Α	_	V _{D1} regulator output pin
VDDQSPI	Р	-	QSPI interface (QSPI-Flash) and I/O power supply (for P6 port group)

For the VDD/VDDQSPI operating voltage ranges and recommended external parts, refer to "Recommended Operating Conditions, Power supply voltage VDD/VDDQSPI" in the "Electrical Characteristics" chapter and the "Basic External Connection Diagram" chapter, respectively.

VDDQSPI

VDDQSPI is the power supply dedicated for the quad synchronous serial interface (QSPI-Flash). It is also used as the power supply for the I/O ports P60 to P65.

2.1.3 V_{D1} Regulator Operation Mode

The VDI regulator supports two operation modes, normal mode and economy mode. Setting the VDI regulator into economy mode at light loads helps achieve low-power operations. Table 2.1.3.1 lists examples of light load conditions in which economy mode can be set.

Table 2.1.3.1 Examples of Light Load Conditions in which Economy Mode Can be Set

Light load condition	Exceptions
SLEEP mode (when all oscillators are stopped, or OSC1 only is active)	When a clock source except for
HALT mode (when OSC1 only is active)	OSC1 is active
RUN mode (when OSC1 only is active)	

The VDI regulator also supports automatic mode in which the hardware detects a light load condition and automatically switches between normal mode and economy mode. Use the VDI regulator in automatic mode when no special control is required.

2.1.4 V_{D1} Regulator Voltage Mode

The VDI regulator supports two voltage modes, mode0 and mode1.

When the IC runs with a low-speed clock, setting the VDI regulator into model reduces power consumption.

When the voltage mode is switched, the system clock source automatically stops operating and it resumes operating after the voltage has stabilized. Table 2.1.4.1 shows the stop period of the system clock.

Table 2.1.4.1 System Clock Stop Period After Switching Voltage Mode

System clock	Stop period
IOSC	4,096 cycles
OSC1	Number of cycles set using the CLGOSC1.OSC1WT[1:0] bits

Procedure to switch from mode0 to mode1

- 1. Set the MODEN bits of the peripheral circuits to 0. (Stop using peripheral circuits)
- 2. Write 0x0096 to the SYSPROT.PROT[15:0] bits. (Remove system protection)
- 3. Switch the system clock to a low-speed clock (OSC1, IOSC 1.8 MHz or 0.9 MHz).
- 4. Stop OSC3 and EXOSC.
- 5. Configure the following PWGACTL register bits.
 - Set the PWGACTL.REGSEL bit to 0. (Switch to model)
 - Set the PWGACTL.REGDIS bit to 1. (Discharge)
 - Set the PWGACTL.REGMODE[1:0] bits to 0x2. (Set to normal mode)
- 6. Configure the following PWGACTL register bits after the system clock supply has resumed.
 - Set the PWGACTL.REGDIS bit to 0. (Stop discharging)
 - Set the PWGACTL.REGMODE[1:0] bits to 0x0. (Set to automatic mode)
- 7. Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits. (Set system protection)

Procedure to switch from mode1 to mode0

- 1. Set the MODEN bits of the peripheral circuits to 0. (Stop using peripheral circuits)
- 2. Write 0x0096 to the SYSPROT.PROT[15:0] bits. (Remove system protection)
- 3. Configure the following PWGACTL register bits.
 - Set the PWGACTL.REGSEL bit to 1. (Switch to mode0)
 Set the PWGACTL.REGMODE[1:0] bits to 0x2. (Set to normal mode)
- 4. Set the PWGACTL.REGMODE[1:0] bits to 0x0
 - after the system clock supply has resumed. (Set to automatic mode)
- 5. Switch the system clock to a high-speed clock.
- 6. Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits. (Set system protection)

Notes: • After the voltage mode has been switched, correct the RTC, as the RTC operating clock is also stopped for the period set using the CLGOSC1.OSC1WT[1:0] bits.

- · Always use the IC in mode0 when VDD is 3.6 V or higher.
- When two voltage modes are used, set the V_{D1} regulator into mode1 before putting the IC into SLEEP or HALT mode.

2.2 System Reset Controller (SRC)

2.2.1 Overview

SRC is the system reset controller that resets the internal circuits according to the requests from the reset sources to archive steady IC operations. The main features of SRC are outlined below.

- Embedded reset hold circuit maintains reset state to boot the system safely while the internal power supply is unstable after power on or the oscillation frequency is unstable after the clock source is initiated.
- Supports reset requests from multiple reset sources.
 - #RESET pin
 - POR and BOR
 - Reset request from the CPU
 - Watchdog timer reset
 - Supply voltage detector reset
 - Peripheral circuit software reset (supports some peripheral circuits only)
- The CPU registers and peripheral circuit control bits will be reset with an appropriate initialization condition according to changes in status.

Figure 2.2.1.1 shows the SRC configuration.

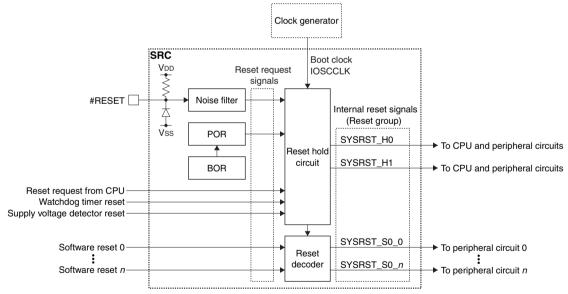


Figure 2.2.1.1 SRC Configuration

2.2.2 Input Pin

Table 2.2.2.1 shows the SRC pin.

Table 2.2.2.1 SRC Pin

Pin name	I/O	Initial status	Function
#RESET	I	I (Pull-up)	Reset input

The #RESET pin is connected to the noise filter that removes pulses not conforming to the requirements. An internal pull-up resistor is connected to the #RESET pin, so the pin can be left open. For the #RESET pin characteristics, refer to "#RESET pin characteristics" in the "Electrical Characteristics" chapter.

2.2.3 Reset Sources

The reset source refers to causes that request system initialization. The following shows the reset sources.

#RESET pin

Inputting a reset signal with a certain low level period to the #RESET pin issues a reset request.

POR and BOR

POR (Power On Reset) issues a reset request when the rise of V_{DD} is detected. BOR (Brown-out Reset) issues a reset request when a certain V_{DD} voltage level is detected. Reset requests from these circuits ensure that the system will be reset properly when the power is turned on and the supply voltage is out of the operating voltage range. Figure 2.2.3.1 shows an example of POR and BOR internal reset operation according to variations in V_{DD}.

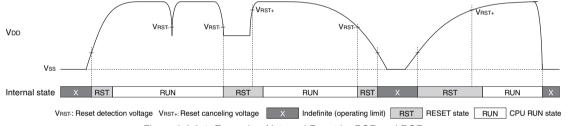


Figure 2.2.3.1 Example of Internal Reset by POR and BOR

For the POR and BOR electrical specifications, refer to "POR/BOR characteristics" in the "Electrical Characteristics" chapter.

Reset request from the CPU

The CPU issues a reset request by writing 1 to the AIRCR.SYSRESETREQ bit in the Cortex®-M0+ Application Interrupt and Reset Control Register. For more information, refer to the "ARM®v6-M Architecture Reference Manual."

Watchdog timer reset

Setting the watchdog timer into reset mode will issue a reset request when the counter overflows. This helps return the runaway CPU to a normal operating state. For more information, refer to the "Watchdog timer" chapter.

Supply voltage detector reset

By enabling the low power supply voltage detection reset function, the supply voltage detector will issue a reset request when a drop in the power supply voltage is detected. This makes it possible to put the system into reset state if the IC must be stopped under a low voltage condition. For more information, refer to the "Supply Voltage Detector" chapter.

Peripheral circuit software reset

Some peripheral circuits provide a control bit for software reset (MODEN or SFTRST). Setting this bit initializes the peripheral circuit control bits. Note, however, that the software reset operations depend on the peripheral circuit. For more information, refer to "Control Registers" in each peripheral circuit chapter.

Note: The MODEN bit of some peripheral circuits does not issue software reset.

2.2.4 Initialization Conditions (Reset Groups)

A different initialization condition is set for the CPU registers and peripheral circuit control bits, individually. The reset group refers to an initialization condition. Initialization is performed when a reset source included in a reset group issues a reset request. Table 2.2.4.1 lists the reset groups. For the reset group to initialize the registers and control bits, refer to the "CPU and Debugger" chapter or "Control Registers" in each peripheral circuit chapter.

		•
Reset group	Reset source	Reset cancelation timing
H0	#RESET pin	Reset state is maintained for the reset
	POR and BOR	hold time tristra after the reset request is
	Reset request from the CPU	canceled.
	Supply voltage detector reset	
	Watchdog timer reset	
H1	#RESET pin	
	POR and BOR	
	Reset request from the CPU	
S0	Peripheral circuit software reset	Reset state is canceled immediately
	(MODEN and SFTRST bits. The	after the reset request is canceled.
	software reset operations de-	
	pend on the peripheral circuit.	

Table 2.2.4.1 List of Reset Groups

2.3 Clock Generator (CLG)

2.3.1 Overview

CLG is the clock generator that controls the clock sources and manages clock supply to the CPU and the peripheral circuits. The main features of CLG are outlined below.

- Supports multiple clock sources.
 - IOSC oscillator circuit that oscillates with a fast startup and no external parts required
 - Low-power OSC1 oscillator circuit in which the oscillator type can be specified from high-precision 32.768 kHz crystal oscillator (an external resonator is required) and internal oscillator
 - 16 MHz (max.) high-speed OSC3 oscillator circuit in which the oscillator type can be specified from crystal/ ceramic oscillator (an external resonator is required) and internal oscillator
 - EXOSC clock input circuit that allows input of square wave and sine wave clock signals up to 16 MHz
- The system clock (SYSCLK), which is used as the operating clock for the CPU and bus, and the peripheral circuit operating clocks can be configured individually by selecting the suitable clock source and division ratio.
- Controls the oscillator and clock input circuits to enable/disable according to the operating mode, RUN or SLEEP mode.
- Provides a flexible system clock switching function at SLEEP mode cancelation.
 - The clock sources to be stopped in SLEEP mode can be selected.
 - SYSCLK to be used at SLEEP mode cancelation can be selected from all clock sources.
 - The oscillator and clock input circuit on/off state can be maintained or changed at SLEEP mode cancelation.
- Provides the FOUT function to output an internal clock for driving external ICs or for monitoring the internal state.

Figure 2.3.1.1 shows the CLG configuration.

Table 2.3.1.1 CLG Configuration of S1C31D41

Item	32-pin package	48-pin package	64-pin package
IOSC oscillator circuit	Available	Available	Available
OSC1 crystal oscillator circuit	Unavailable	Available	Available
OSC1 internal oscillator circuit Available		Available	Available
OSC2 crystal/ceramic oscillator circuit	Available	Available	Available
OSC3 internal oscillator circuit	Available	Available	Available
EXOSC clock input Available		Available	Available

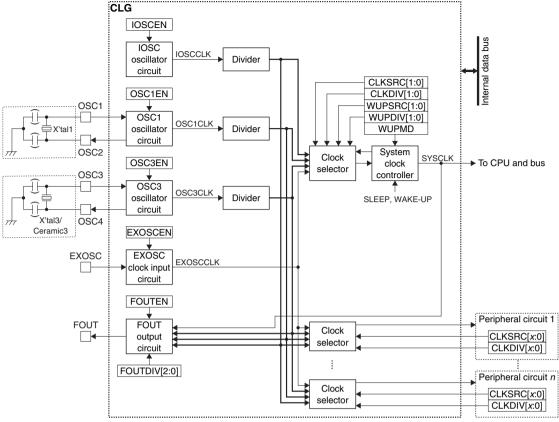


Figure 2.3.1.1 CLG Configuration

2.3.2 Input/Output Pins

Table 2.3.2.1 lists the CLG pins.

Table 2.3.2.1 List of CLG Pins

Pin name	I/O*	Initial status*	Function
OSC1	Α	-	OSC1 oscillator circuit input
OSC2	Α	_	OSC1 oscillator circuit output
OSC3	Α	-	OSC3 oscillator circuit input
OSC4	Α	-	OSC3 oscillator circuit output
EXOSC	I	I	EXOSC clock input
FOUT	0	O (L)	FOUT clock output

* Indicates the status when the pin is configured for CLG.

If the port is shared with the CLG input/output function and other functions, the CLG function must be assigned to the port. For more information, refer to the "I/O Ports" chapter.

2.3.3 Clock Sources

IOSC oscillator circuit

The IOSC oscillator circuit features a fast startup and no external parts are required for oscillating. Figure 2.3.3.1 shows the configuration of the IOSC oscillator circuit.

Figure 2.3.3.1 IOSC Oscillator Circuit Configuration

The IOSC oscillator circuit output clock IOSCCLK is used as SYSCLK at booting. The IOSCCLK frequency can be selected using the CLGIOSC.IOSCFQ[1:0] bits. For more information on the oscillation characteristics, refer to "IOSC oscillator circuit characteristics" in the "Electrical Characteristics" chapter.

OSC1 oscillator circuit

The OSC1 oscillator circuit is a low-power oscillator circuit that allows software to select the oscillator type from two different types shown below. Figure 2.3.3.2 shows the configuration of the OSC1 oscillator circuit.

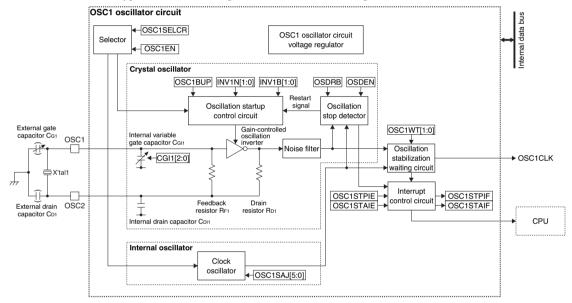


Figure 2.3.3.2 OSC1 Oscillator Circuit Configuration

Crystal oscillator

This oscillator circuit includes a gain-controlled oscillation inverter and a variable gate capacitor allowing use of various crystal resonators (32.768 kHz typ.) with ranges from cylinder type through surface-mount type.

The oscillator circuit also includes a feedback resistor and a drain resistor, so no external parts are required except for a crystal resonator. The embedded oscillation stop detector, which detects oscillation stop and restarts the oscillator, allows the system to operate in safety under adverse environments that may stop the oscillation. The oscillation startup control circuit operates for a set period of time after the oscillation is enabled to assist the oscillator in initiating, this makes it possible to use a low-power resonator that is difficult to start up.

Note: Depending on the circuit board or the crystal resonator type used, an external gate capacitor C_{G1} and a drain capacitor C_{D1} may be required.

Internal oscillator

This 32 kHz oscillator circuit operates without any external parts.

When the internal oscillator circuit is used, set the OSC1 pin level to Vss and leave the OSC3 pin open.

For the recommended parts and the oscillation characteristics, refer to the "Basic External Connection Diagram" chapter and "OSC1 oscillator circuit characteristics" in the "Electrical Characteristics" chapter, respectively.

OSC3 oscillator circuit

The OSC3 oscillator circuit is a high-speed oscillator circuit that allows software to select the oscillator type from two different types shown below. Figure 2.3.3.3 shows the configuration of the OSC3 oscillator circuit.

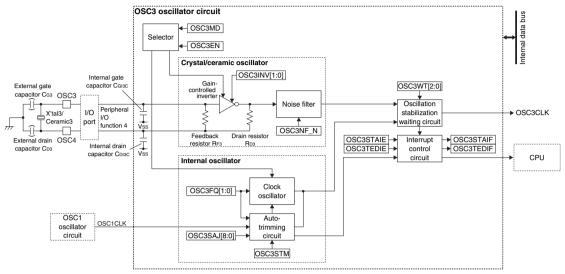


Figure 2.3.3.3 OSC3 Oscillator Circuit Configuration

Crystal/ceramic oscillator

This oscillator circuit includes a feedback resistor and a drain resistor, so no external part is required except for a crystal/ceramic resonator. The embedded gain-controlled inverter allows selection of the resonator from a wide frequency range.

Internal oscillator

This oscillator circuit features a fast startup and no external parts are required for oscillating. The OSC3CLK frequency can be selected using the CLGOSC3.OSC3FQ[1:0] bits. This oscillator circuit is equipped with an auto-trimming function that automatically adjusts the frequency. This helps reduce frequency deviation due to unevenness in manufacturing quality, temperature, and changes in voltage. For more information on the auto-trimming function, refer to "OSC3 oscillation auto-trimming function" in this chapter.

For the recommended parts and the oscillation characteristics, refer to the "Basic External Connection Diagram" chapter and "OSC3 oscillator circuit characteristics" in the "Electrical Characteristics" chapter, respectively.

EXOSC clock input

EXOSC is an external clock input circuit that supports square wave and sine wave clocks. Figure 2.3.3.4 shows the configuration of the EXOSC clock input circuit.

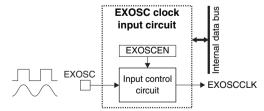


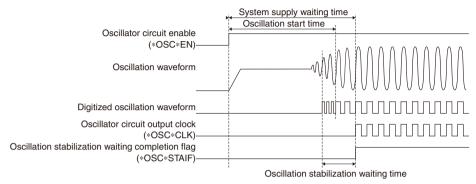
Figure 2.3.3.4 EXOSC Clock Input Circuit

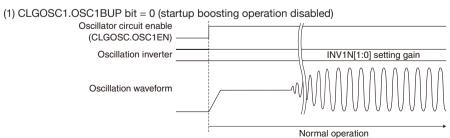
EXOSC has no oscillation stabilization waiting circuit included, therefore, it must be enabled when a stabilized clock is being supplied. For the input clock characteristics, refer to "EXOSC external clock input characteristics" in the "Electrical Characteristics" chapter.

2.3.4 Operations

Oscillation start time and oscillation stabilization waiting time

The oscillation start time refers to the time after the oscillator circuit is enabled until the oscillation signal is actually sent to the internal circuits. The oscillation stabilization waiting time refers to the time it takes the clock to stabilize after the oscillation starts. To avoid malfunctions of the internal circuits due to an unstable clock during this period, the oscillator circuit includes an oscillation stabilization waiting circuit that can disable supplying the clock to the system until the designated time has elapsed. Figure 2.3.4.1 shows the relationship between the oscillation start time and the oscillation stabilization waiting time.




Figure 2.3.4.1 Oscillation Start Time and Oscillation Stabilization Waiting Time

The oscillation stabilization waiting times for the OSC1 and OSC3 oscillator circuits can be set using the CLGOSC1.OSC1WT[1:0] bits and CLGOSC3.OSC3WT[2:0] bits, respectively. To check whether the oscillation stabilization waiting time is set properly and the clock is stabilized immediately after the oscillation starts or not, monitor the oscillation clock using the FOUT output function. The oscillation stabilization waiting time for the IOSC oscillator circuit is fixed at 16 IOSCCLK clocks. The oscillation stabilization waiting time for the OSC1 oscillator circuit should be set to 16,384 OSC1CLK clocks or more when crystal oscillator is selected, or 4,096 OSC1CLK clocks or more when internal oscillator is selected. The oscillation stabilization waiting time for the OSC3 oscillator circuit should be set to 4,096 OSC3CLK clocks or more.

When the oscillation stabilization waiting operation has completed, the oscillator circuit sets the oscillation stabilization waiting completion flag and starts clock supply to the internal circuits.

Note: The oscillation stabilization waiting time is always expended at start of oscillation even if the oscillation stabilization waiting completion flag has not be cleared to 0.

When the oscillation startup control circuit in the OSC1 oscillator circuit is enabled by setting the CLGOSC1.OS-C1BUP bit to 1, it uses the high-gain oscillation inverter for a set period of time (startup boosting operation) after the oscillator circuit is enabled (by setting the CLGOSC.OSC1EN bit to 1) to reduce oscillation start time. Note, however, that the oscillation operation may become unstable if there is a large gain differential between normal operation and startup boosting operation. Furthermore, the oscillation start time being actually reduced depends on the characteristics of the resonator used. Figure 2.3.4.2 shows an operation example when the oscillation startup control circuit is used.

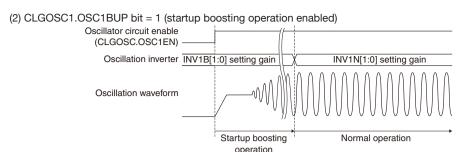


Figure 2.3.4.2 Operation Example when the Oscillation Startup Control Circuit is Used

Oscillation start procedure for the IOSC oscillator circuit

Follow the procedure shown below to start oscillation of the IOSC oscillator circuit.

Write 1 to the CLGINTF.IOSCSTAIF bit. (Clear interrupt flag)
 Write 1 to the CLGINTE.IOSCSTAIE bit. (Enable interrupt)

3. Write 0x0096 to the SYSPROT.PROT[15:0] bits. (Remove system protection)

4. Configure the CLGIOSC.IOSCFQ[1:0] bits. (Select frequency)

5. Set the CLGTRIM1.IOSCLSAJ[5:0] bits (fiosc = 2/1 MHz) or CLGTRIM1.IOSCHSAJ[5:0] bits (fiosc = 8 MHz) as necessary. (Finely adjust oscillation frequency)

6. Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits. (Set system protection)

7. Write 1 to the CLGOSC.IOSCEN bit. (Start oscillation)

8. IOSCCLK can be used if the CLGINTF.IOSCSTAIF bit = 1 after an interrupt occurs.

The setting values of the CLGTRIM1.IOSCLSAJ[5:0] and CLGTRIM1.IOSCHSAJ[5:0] bits should be determined after performing evaluation using the populated circuit board.

Note: Make sure the CLGOSC.IOSCEN bit is set to 0 (while the IOSC oscillation is halted) when setting the CLGTRIM1.IOSCLSAJ[5:0] or CLGTRIM1.IOSCHSAJ[5:0] bits.

Oscillation start procedure for the OSC1 oscillator circuit

Follow the procedure shown below to start oscillation of the OSC1 oscillator circuit.

Write 1 to the CLGINTF.OSC1STAIF bit. (Clear interrupt flag)
 Write 1 to the CLGINTE.OSC1STAIE bit. (Enable interrupt)

3. Write 0x0096 to the SYSPROT.PROT[15:0] bits. (Remove system protection)

4. Configure the following CLGOSC1 register bits:

- CLGOSC1.OSC1SELCR bit (Select oscillator type)

- CLGOSC1.OSC1WT[1:0] bits (Set oscillation stabilization waiting time)

In addition to the above, configure the following bits when using the crystal oscillator:

- CLGOSC1.INV1N[1:0] bits (Set oscillation inverter gain)
- CLGOSC1.CGI1[2:0] bits (Set internal gate capacitor)

CLGOSC1.INV1B[1:0] bits
 CLGOSC1.OSC1BUP bit
 (Set oscillation inverter gain for startup boosting period)
 (Enable/disable oscillation startup control circuit)

5. When using the internal oscillator, set the CLGTRIM2.OSC1SAJ[5:0] bits as necessary.

(Finely adjust oscillation frequency)

6. Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits. (Set system protection)

7. Write 1 to the CLGOSC.OSC1EN bit. (Start oscillation)

8. OSC1CLK can be used if the CLGINTF.OSC1STAIF bit = 1 after an interrupt occurs.

The setting values of the CLGOSC1.INV1N[1:0], CLGOSC1.CGI1[2:0], CLGOSC1.OSC1WT[1:0], CLGOSC1.INV1B[1:0], and CLGTRIM2.OSC1SAJ[5:0] bits should be determined after performing evaluation using the populated circuit board.

Note: Make sure the CLGOSC.OSC1EN bit is set to 0 (while the OSC1 oscillation is halted) when setting the CLGTRIM2.OSC1SAJ[5:0] bits.

Oscillation start procedure for the OSC3 oscillator circuit

Follow the procedure shown below to start oscillation of the OSC3 oscillator circuit.

Write 1 to the CLGINTF.OSC3STAIF bit. (Clear interrupt flag)
 Write 1 to the CLGINTE.OSC3STAIE bit. (Enable interrupt)

- 3. Write 0x0096 to the SYSPROT.PROT[15:0] bits. (Remove system protection)
- 4. Configure the following CLGOSC3 register bits:

- CLGOSC3.OSC3MD bit (Select oscillator type)

- CLGOSC3.OSC3WT[2:0] bits (Set oscillation stabilization waiting time)
In addition to the above, configure the following bits when using the crystal/ceramic oscillator:

- CLGOSC3.OSC3INV[1:0] bits (Set oscillation inverter gain)

Configure the following bits when using the internal oscillator:

- CLGOSC3.OSC3FQ[1:0] bits (Select oscillation frequency)

5. When using the internal oscillator, set the CLGTRIM3.OSC3SAJ[8:0] bits as necessary.

(Finely adjust oscillation frequency)

- 6. Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits. (Set system protection)
- 7. When using the crystal/ceramic oscillator, assign the OSC3 oscillator input/output functions to the ports. (Refer to the "I/O Ports" chapter.)
- 8. Write 1 to the CLGOSC.OSC3EN bit. (Start oscillation)
- 9. OSC3CLK can be used if the CLGINTF.OSC3STAIF bit = 1 after an interrupt occurs.

The setting values of the CLGOSC3.OSC3INV[1:0], CLGOSC3.OSC3WT[2:0], and CLGTRIM3. OSC3SAJ[8:0] bits should be determined after performing evaluation using the populated circuit board.

Note: Make sure the CLGOSC.OSC3EN bit is set to 0 (while the OSC3 oscillation is halted) when setting the CLGTRIM3.OSC3SAJ[8:0] bits.

System clock switching

The CPU boots using IOSCCLK as SYSCLK. After booting, the clock source of SYSCLK can be switched according to the processing speed required. The SYSCLK frequency can also be set by selecting the clock source division ratio, this makes it possible to run the CPU at the most suitable performance for the process to be executed. The CLGSCLK.CLKSRC[1:0] and CLGSCLK.CLKDIV[1:0] bits are used for this control.

The CLGSCLK register bits are protected against writings by the system protect function, therefore, the system protection must be removed by writing 0x0096 to the SYSPROT.PROT[15:0] bits before the register setting can be altered. For the transition between the operating modes including the system clock switching, refer to "Operating Mode."

Clock control in SLEEP mode

Whether the clock sources being operated are stopped or not when the CPU enters SLEEP mode (deep sleep mode) can be selected in each source individually. This allows the CPU to fast switch between SLEEP mode and RUN mode, and the peripheral circuits to continue operating without disabling the clock in SLEEP mode. The CLGOSC.IOSCSLPC, CLGOSC.OSC1SLPC, CLGOSC.OSC3SLPC, and CLGOSC.EXOSCSLPC bits are used for this control. Figure 2.3.4.3 shows a control example.

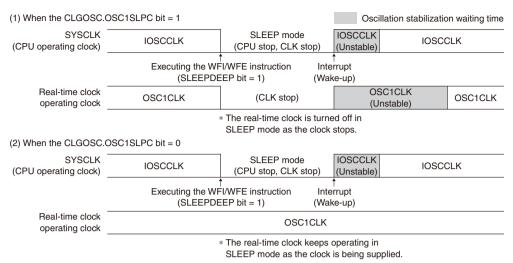


Figure 2.3.4.3 Clock Control Example in SLEEP Mode

The SYSCLK condition (clock source and division ratio) at wake-up from SLEEP mode to RUN mode can also be configured. This allows flexible clock control according to the wake-up process. Configure the clock using the CLGSCLK.WUPSRC[1:0] and CLGSCLK.WUPDIV[1:0] bits, and write 1 to the CLGSCLK.WUPMD bit to enable this function.

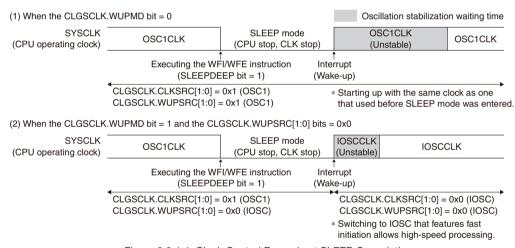


Figure 2.3.4.4 Clock Control Example at SLEEP Cancelation

Clock external output (FOUT)

The FOUT pin can output the clock generated by a clock source or its divided clock to outside the IC. This allows monitoring the oscillation frequency of the oscillator circuit or supplying an operating clock to external ICs. Follow the procedure shown below to start clock external output.

- 1. Assign the FOUT function to the port. (Refer to the "I/O Ports" chapter.)
- 2. Configure the following CLGFOUT register bits:
 - CLGFOUT.FOUTSRC[1:0] bits (Select clock source)
 CLGFOUT.FOUTDIV[2:0] bits (Set clock division ratio)
 - Set the CLGFOUT.FOUTEN bit to 1. (Enable clock external output)

OSC3 oscillation auto-trimming function

The auto-trimming function adjusts the OSC3CLK clock frequency by trimming the clock with reference to the high precision OSC1CLK clock generated by the OSC1 oscillator circuit (crystal oscillator). However, this function is effective only when 16 MHz (CLGOSC3.OSC3FQ[1:0] bits = 0x3) has been selected to the OSC3 oscillation frequency.

Follow the procedure shown below to enable the auto-trimming function.

- 1. After enabling the OSC1 oscillation, check if the stabilized clock is supplied (CLGINTF.OSC1STAIF bit = 1).
- 2. After enabling the OSC3 oscillation, check if the stabilized clock is supplied (CLGINTF.OSC3STAIF bit = 1).
- 3. Write 0x0096 to the SYSPROT.PROT[15:0] bits. (Remove system protection)
- 4. Configure the following CLGINTF register bits:
 - Write 1 to the CLGINTF.OSC3TEDIF bit. (Clear interrupt flag)
 Write 1 to the CLGINTF.OSC3TERIF bit. (Clear interrupt flag)
- 5. Configure the following CLGINTF register bits:
 - Set the CLGINTE.OSC3TEDIE bit to 1. (Enable interrupt)
 Set the CLGINTE.OSC3TERIE bit to 1. (Enable interrupt)
- 6. Write 1 to the CLGOSC3.OSC3STM bit. (Enable OSC3 oscillation auto-trimming)
- 7. Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits. (Set system protection)
- 8. The trimmed OSC3CLK can be used if the CLGINTF.OSC3TEDIF bit = 1 after an interrupt occurs. If the CLGINTF.OSC3TERIF bit = 1, an error has occurred during the auto-trimming operation (the clock has not been adjusted).

After the trimming operation has completed, the CLGOSC3.OSC3STM bit automatically reverts to 0. Although the trimming time depends on the temperature, an average of several 10 ms is required.

OSC1 oscillation stop detection function

The oscillation stop detection function restarts the OSC1 oscillator circuit when it detects oscillation stop under adverse environments that may stop the oscillation. Follow the procedure shown below to enable the oscillation stop detection function.

- 1. After enabling the OSC1 oscillation, check if the stabilized clock is supplied (CLGINTF.OSC1STAIF bit = 1).
- 2. Write 1 to the CLGINTF.OSC1STPIF bit. (Clear interrupt flag)
- 3. Write 1 to the CLGINTE.OSC1STPIE bit. (Enable interrupt)
- 4. Write 0x0096 to the SYSPROT.PROT[15:0] bits. (Remove system protection)
- 5. Set the following CLGOSC1 register bits:
 - Set the CLGOSC1.OSDRB bit to 1. (Enable OSC1 restart function)
 - Set the CLGOSC1.OSDEN bit to 1. (Enable oscillation stop detection function)
- 6. Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits. (Set system protection)
- 7. The OSC1 oscillation stops if the CLGINTF.OSC1STPIF bit = 1 after an interrupt occurs. If the CLGOSC1.OSDRB bit = 1, the hardware restarts the OSC1 oscillator circuit.

Note: Enabling the oscillation stop detection function increase the oscillation stop detector current (losp1).

2.4 Operating Mode

2.4.1 Initial Boot Sequence

Figure 2.4.1.1 shows the initial boot sequence after power is turned on.

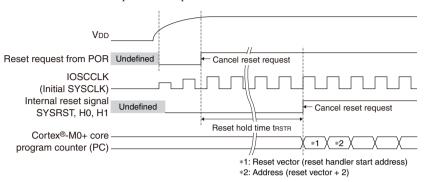


Figure 2.4.1.1 Initial Boot Sequence

Note: The reset cancelation time at power-on varies according to the power rise time and reset request cancelation time.

For the reset hold time trstr, refer to "Reset hold circuit characteristics" in the "Electrical Characteristics" chapter.

2.4.2 Transition between Operating Modes

State transitions between operating modes shown in Figure 2.4.2.1 take place in this IC.

RUN mode

RUN mode refers to the state in which the CPU is executing the program. A transition to this mode takes place when the system reset request from the system reset controller is canceled. RUN mode is classified into "IOSC RUN," "OSC1 RUN," "OSC3 RUN," and "EXOSC RUN" by the SYSCLK clock source.

HALT mode

When the Cortex®-M0+ core executes the WFI or WFE instruction with the SLEEPDEEP bit of the Cortex®-M0+ System Control Register set to 0, it suspends program execution and stops operating. This state is referred to HALT mode in this IC. In this mode, the clock sources and peripheral circuits keep operating. This mode can be set while no software processing is required and it reduces power consumption as compared with RUN mode. HALT mode is classified into "IOSC HALT," "OSC1 HALT," "OSC3 HALT," and "EXOSC HALT" by the SYSCLK clock source.

SLEEP mode

When the Cortex®-M0+ core executes the WFI or WFE instruction with the SLEEPDEEP bit of the Cortex®-M0+ System Control Register set to 1, it suspends program execution and stops operating. This state is referred to SLEEP mode in this IC. In this mode, the clock sources stop operating as well.

However, the clock source in which the CLGOSC.IOSCSLPC/OSC3SLPC/EXOSCSLPC bit is set to 0 keeps operating, so the peripheral circuits with the clock being supplied can also operate. By setting this mode when no software processing and peripheral circuit operations are required, power consumption can be less than HALT mode.

The RAM retains data even in SLEEP mode.

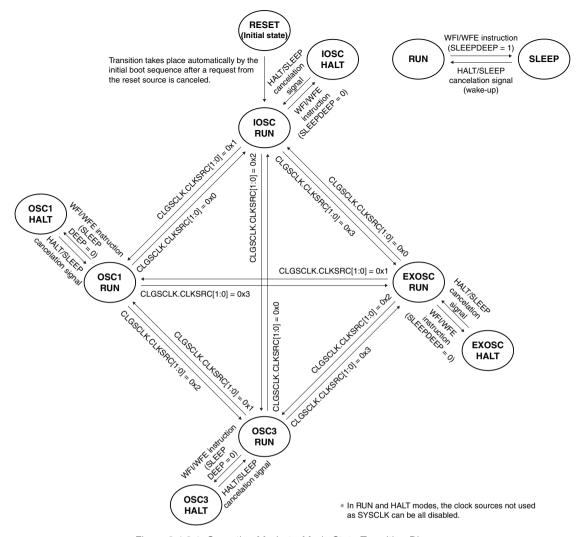


Figure 2.4.2.1 Operating Mode-to-Mode State Transition Diagram

Canceling HALT or SLEEP mode

The conditions listed below generate the HALT/SLEEP cancelation signal to cancel HALT or SLEEP mode and put the CPU into RUN mode.

- Interrupt request from a peripheral circuit
- · NMI from the watchdog timer
- · Reset request

2.5 Interrupts

CLG has a function to generate the interrupts shown in Table 2.5.1.

Table 2.5.1 CLG Interrupt Functions

Interrupt	Interrupt flag	Set condition	Clear condition
IOSC oscillation stabiliza-	CLGINTF.IOSCSTAIF	When the IOSC oscillation stabilization waiting	Writing 1
tion waiting completion		operation has completed after the oscillation starts	
OSC1 oscillation stabili-	CLGINTF.OSC1STAIF	When the OSC1 oscillation stabilization waiting	Writing 1
zation waiting completion		operation has completed after the oscillation starts	
OSC3 oscillation stabili-	CLGINTF.OSC3STAIF	When the OSC3 oscillation stabilization waiting	Writing 1
zation waiting completion		operation has completed after the oscillation starts	
OSC1 oscillation stop	CLGINTF.OSC1STPIF	When OSC1CLK is stopped, or when the CLGOSC.	Writing 1
		OSC1EN or CLGOSC1.OSDEN bit setting is al-	
		tered from 1 to 0.	
OSC3 oscillation auto-	CLGINTF.OSC3TEDIF	When the OSC3 oscillation auto-trimming opera-	Writing 1
trimming completion		tion has completed	
OSC3 oscillation auto-	CLGINTF.OSC3TERIF	When the OSC3 oscillation auto-trimming opera-	Writing 1
trimming error		tion has terminated due to an error	

CLG provides interrupt enable bits corresponding to each interrupt flag. An interrupt request is sent to the CPU only when the interrupt flag, of which interrupt has been enabled by the interrupt enable bit, is set. For more information on interrupt control, refer to the "Interrupt" chapter.

2.6 Control Registers

PWGA Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
PWGACTL	15–8	_	0x00	_	R	_
	7–6	_	0x0	-	R	
	5	REGDIS	0	H0	R/WP	
	4	REGSEL	1	H0	R/WP	
	3–2	_	0x0	-	R	
	1–0	REGMODE[1:0]	0x0	H0	R/WP	

Bits 15-6 Reserved

Bit 5 REGDIS

This bit enables the VD1 regulator discharge function.

1 (R/WP): Enable 0 (R/WP): Disable

Bit 4 REGSEL

This bit controls the VD1 regulator voltage mode.

1 (R/WP): mode0 0 (R/WP): mode1

Bits 3-2 Reserved

Bits 1-0 REGMODE[1:0]

These bits control the VD1 regulator operating mode.

Table 2.6.1 Internal Regulator Operating Mode

PWGACTL.REGMODE[1:0] bits	Operating mode
0x3	Economy mode
0x2	Normal mode
0x1	Reserved
0x0	Automatic mode

CLG System Clock Control Register

= = j						
Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
CLGSCLK	15	WUPMD	0	H0	R/WP	_
	14	_	0	-	R	
	13–12	WUPDIV[1:0]	0x0	H0	R/WP	
	11–10	_	0x0	-	R	
	9–8	WUPSRC[1:0]	0x0	H0	R/WP	
	7–6	_	0x0	-	R	
	5–4	CLKDIV[1:0]	0x2	H0	R/WP	
	3–2	_	0x0	-	R	
	1-0	CLKSRC[1:0]	0x0	H0	R/WP	

Bit 15 WUPMD

This bit enables the SYSCLK switching function at wake-up.

1 (R/WP): Enable 0 (R/WP): Disable

When the CLGSCLK.WUPMD bit = 1, setting values of the CLGSCLK.WUPSRC[1:0] bits and the CLGSCLK.WUPDIV[1:0] bits are loaded to the CLGSCLK.CLKSRC[1:0] bits and the CLGSCLK. CLKDIV[1:0] bits, respectively, at wake-up from SLEEP mode to switch SYSCLK. When the CLGSCLK.WUPMD bit = 0, the CLGSCLK.CLKSRC[1:0] and CLGSCLK.CLKDIV[1:0] bits are not altered at wake-up.

Bit 14 Reserved

Bits 13-12 WUPDIV[1:0]

These bits select the SYSCLK division ratio for resetting the CLGSCLK.CLKDIV[1:0] bits at wake-up. This setting is ineffective when the CLGSCLK.WUPMD bit = 0.

Bits 11-10 Reserved

Bits 9-8 WUPSRC[1:0]

These bits select the SYSCLK clock source for resetting the CLGSCLK.CLKSRC[1:0] bits at wake-up. When a currently stopped clock source is selected, it will automatically start oscillating or clock input at wake-up. However, this setting is ineffective when the CLGSCLK.WUPMD bit = 0.

Table 2.6.2 SYSCLK Clock Source and Division Ratio Settings at Wake-up

CLGSCLK.	CLGSCLK.WUPSRC[1:0] bits					
	0x0	0x1	0x2	0x3		
WUPDIV[1:0] bits	IOSCCLK	OSC1CLK	OSC3CLK	EXOSCCLK		
0x3	1/8	Reserved	1/16	Reserved		
0x2	1/4	Reserved	1/8	Reserved		
0x1	1/2	1/2	1/2	Reserved		
0x0	1/1	1/1	1/1	1/1		

Bits 7-6 Reserved

Bits 5-4 CLKDIV[1:0]

These bits set the division ratio of the clock source to determine the SYSCLK frequency.

Bits 3-2 Reserved

Bits 1-0 CLKSRC[1:0]

These bits select the SYSCLK clock source.

When a currently stopped clock source is selected, it will automatically start oscillating or clock input.

Table 2.6.3 SYSCLK Clock Source and Division Ratio Settings

CLGSCLK.	CLGSCLK.CLKSRC[1:0] bits							
CLGSCLK. CLKDIV[1:0] bits	0x0	0x1	0x2	0x3				
CLKDIV[1:0] bits	IOSCCLK	OSC1CLK	OSC3CLK	EXOSCCLK				
0x3	1/8	Reserved	1/16	Reserved				
0x2	1/4	Reserved	1/8	Reserved				
0x1	1/2	1/2	1/2	Reserved				
0x0	1/1	1/1	1/1	1/1				

CLG Oscillation Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
CLGOSC	15–12	_	0x0	_	R	_
	11	EXOSCSLPC	1	H0	R/W	
	10	OSC3SLPC	1	H0	R/W	
	9	OSC1SLPC	1	H0	R/W	
	8	IOSCSLPC	1	H0	R/W	
	7–4	-	0x0	-	R	
	3	EXOSCEN	0	H0	R/W	
	2	OSC3EN	0	H0	R/W	
	1	OSC1EN	0	H0	R/W	
	0	IOSCEN	1	H0	R/W	

Bits 15-12 Reserved

Bit 11	EXOSCSLPC
Bit 10	OSC3SLPC
Bit 9	OSC1SLPC
Bit 8	IOSCSLPC

These bits control the clock source operations in SLEEP mode.

1 (R/W): Stop clock source in SLEEP mode 0 (R/W): Continue operation state before SLEEP

Each bit corresponds to the clock source as follows:
CLGOSC.EXOSCSLPC bit: EXOSC clock input
CLGOSC.OSC3SLPC bit: OSC3 oscillator circuit
CLGOSC.OSC1SLPC bit: OSC1 oscillator circuit
CLGOSC.IOSCSLPC bit: IOSC oscillator circuit

Bits 7-4 Reserved

Bit 3	EXOSCEN
Bit 2	OSC3EN
Bit 1	OSC1EN
Rit 0	IOSCEN

These bits control the clock source operation. 1(R/W): Start oscillating or clock input 0(R/W): Stop oscillating or clock input

Each bit corresponds to the clock source as follows: CLGOSC.EXOSCEN bit: EXOSC clock input CLGOSC.OSC3EN bit: OSC3 oscillator circuit

CLGOSC.OSC1EN bit: OSC1 oscillator circuit CLGOSC.IOSCEN bit: IOSC oscillator circuit

CLG IOSC Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
CLGIOSC	15–8	_	0x00	_	R	_
	7–2	-	0x00	_	R	
	1–0	IOSCFQ[1:0]	0x2	H0	R/WP	

Bits 15-2 Reserved

Bits 1-0 IOSCFQ[1:0]

These bits select the IOSCCLK frequency.

Table 2.6.4 IOSCCLK Frequency Selection

CLGIOSC.	IOSCCLK frequency				
IOSCFQ[1:0] bits	V _{D1} voltage mode = mode0	V _{D1} voltage mode = mode1			
0x3	Reserved	Setting prohibited			
0x2	8 MHz	Setting profibited			
0x1	2.0 MHz	1.8 MHz			
0x0	1.0 MHz	0.9 MHz			

CLG OSC1 Control Register

5 = 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6						
Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
CLGOSC1	15	_	0	-	R	_
	14	OSDRB	1	H0	R/WP	
	13	OSDEN	0	H0	R/WP	
	12	OSC1BUP	1	H0	R/WP	
	11	OSC1SELCR	0	H0	R/WP	
	10–8	CGI1[2:0]	0x0	H0	R/WP	
	7–6	INV1B[1:0]	0x2	H0	R/WP	
	5–4	INV1N[1:0]	0x1	H0	R/WP	
	3–2	_	0x0	-	R	
	1-0	OSC1WT[1:0]	0x2	H0	R/WP	

Bit 15 Reserved

Bit 14 OSDRB

This bit enables the OSC1 oscillator circuit restart function by the oscillation stop detector when OSC1 oscillation stop is detected.

1 (R/WP): Enable (Restart the OSC1 oscillator circuit when oscillation stop is detected.)

0 (R/WP): Disable

Bit 13 OSDEN

This bit controls the oscillation stop detector in the OSC1 oscillator circuit.

1 (R/WP): OSC1 oscillation stop detector on

0 (R/WP): OSC1 oscillation stop detector off

Note: Do not write 1 to the CLGOSC1.OSDEN bit before stabilized OSC1CLK is supplied. Furthermore, the CLGOSC1.OSDEN bit should be set to 0 when the CLGOSC.OSC1EN bit is set to 0.

Bit 12 OSC1BUP

This bit enables the oscillation startup control circuit in the OSC1 oscillator circuit.

1 (R/WP): Enable (Activate booster operation at startup.)

0 (R/WP): Disable

Bit 11 OSC1SELCR

This bit selects an oscillator type of the OSC1 oscillator circuit.

1 (R/WP): Internal oscillator

0 (R/WP): Crystal oscillator

Bits 10-8 CGI1[2:0]

These bits set the internal gate capacitance in the OSC1 oscillator circuit.

Table 2.6.5 OSC1 Internal Gate Capacitance Setting

CLGOSC1.CGI1[2:0] bits	Capacitance
0x7	Max.
0x6	↑
0x5	
0x4	
0x3	
0x2	
0x1	↓
0x0	Min.

For more information, refer to "OSC1 oscillator circuit characteristics, Internal gate capacitance Cg11" in the "Electrical Characteristics" chapter.

Bits 7-6 INV1B[1:0]

These bits set the oscillation inverter gain that will be applied at boost startup of the OSC1 oscillator circuit.

Table 2.6.6 Setting Oscillation Inverter Gain at OSC1 Boost Startup

CLGOSC1.INV1B[1:0] bits	Inverter gain
0x3	Max.
0x2	↑
0x1	↓
0x0	Min.

Note: The CLGOSC1.INV1B[1:0] bits must be set to a value equal to or larger than the CLGOSC1. INV1N[1:0] bits.

Bits 5-4 INV1N[1:0]

These bits set the oscillation inverter gain applied at normal operation of the OSC1 oscillator circuit.

Table 2.6.7 Setting Oscillation Inverter Gain at OSC1 Normal Operation

CLGOSC1.INV1N[1:0] bits	Inverter gain
0x3	Max.
0x2	↑
0x1	↓
0x0	Min.

Bits 3-2 Reserved

Bits 1-0 OSC1WT[1:0]

These bits set the oscillation stabilization waiting time for the OSC1 oscillator circuit.

Table 2.6.8 OSC1 Oscillation Stabilization Waiting Time Setting

CLGOSC1.OSC1WT[1:0] bits	Oscillation stabilization waiting time
0x3	65,536 clocks
0x2	16,384 clocks
0x1	4,096 clocks
0x0	Reserved

CLG OSC3 Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
CLGOSC3	15–12	_	0x0	_	R	_
	11–10	OSC3FQ[1:0]	0x1	H0	R/WP	
	9	OSC3MD	0	H0	R/WP	
	8	_	0	-	R	
	7–6	_	0x0	-	R	
	5–4	OSC3INV[1:0]	0x3	H0	R/WP	
	3	OSC3STM	0	H0	R/WP	
	2-0	OSC3WT[2:0]	0x6	H0	R/WP	

Bits 15-12 Reserved

Bit 11-10 OSC3FQ[1:0]

These bits set the oscillation frequency of the OSC3 internal oscillator circuit.

Table 2.6.9 OSC3CLK Frequency Selection

CLGOSC3.OSC3FQ[1:0] bits	OSC3CLK frequency
0x3	16 MHz
0x2	Reserved
0x1	8 MHz
0x0	4 MHz

Bit 9 OSC3MD

This bit selects an oscillator type of the OSC3 oscillator circuit.

1 (R/WP): Crystal/ceramic oscillator

0 (R/WP): Internal oscillator

Bits 8-6 Reserved

Bits 5-4 OSC3INV[1:0]

These bits set the oscillation inverter gain when crystal/ceramic oscillator is selected as the OSC3 oscillator type.

Table 2.6.10 OSC3 Oscillation Inverter Gain Setting

CLGOSC3.OSC3INV[1:0] bits	Inverter gain
0x3	Max.
0x2	<u>↑</u>
0x1	↓
0x0	Min.

Bit 3 OSC3STM

This bit controls the OSC3CLK auto-trimming function.

1 (WP): Start trimming 0 (WP): Stop trimming

1 (R): Trimming is executing.

0 (R): Trimming has finished. (Trimming operation inactivated.)

This bit is automatically cleared to 0 when trimming has finished.

Notes: • The auto-trimming function does not work if the OSC1 oscillator circuit is stopped. Make sure the CLGINTF.OSC1STAIF bit is set to 1 before starting the trimming operation.

 Be sure to avoid altering the CLGOSC3.OSC3FQ[1:0] bits while the auto-trimming is being executed.

Bits 2-0 OSC3WT[2:0]

These bits set the oscillation stabilization waiting time for the OSC3 oscillator circuit.

Table 2.6.11 OSC3 Oscillation Stabilization Waiting Time Setting

CLGOSC3.OSC3WT[2:0] bits	Oscillation stabilization waiting time
0x7	65,536 clocks
0x6	16,384 clocks
0x5	8,192 clocks
0x4	4,096 clocks
0x3-0x0	Setting prohibited

CLG Interrupt Flag Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
CLGINTF	15–9	_	0x00	-	R	_
	8	OSC3TERIF	0	H0	R/W	Cleared by writing 1.
	7	-	0	-	R	_
	6	(reserved)	0	H0	R	
	5	OSC1STPIF	0	H0	R/W	Cleared by writing 1.
	4	OSC3TEDIF	0	H0	R/W	
	3	-	0	-	R	_
	2	OSC3STAIF	0	H0	R/W	Cleared by writing 1.
	1	OSC1STAIF	0	H0	R/W	
	0	IOSCSTAIF	0	H0	R/W	

Bits 15-9, 7, 6, 3 Reserved

Bit 8	OSC3TERIF
Bit 5	OSC1STPIF
Bit 4	OSC3TEDIF
Bit 2	OSC3STAIF
Bit 1	OSC1STAIF
Bit 0	IOSCSTAIF

These bits indicate the CLG interrupt cause occurrence statuses.

1 (R): Cause of interrupt occurred 0 (R): No cause of interrupt occurred

1 (W): Clear flag 0 (W): Ineffective

Each bit corresponds to the interrupt as follows:

CLGINTF.OSC3TERIF bit: OSC3 oscillation auto-trimming error interrupt

CLGINTF.OSC1STPIF bit: OSC1 oscillation stop interrupt

CLGINTF.OSC3TEDIF bit: OSC3 oscillation auto-trimming completion interrupt CLGINTF.OSC3STAIF bit: OSC3 oscillation stabilization waiting completion interrupt CLGINTF.OSC1STAIF bit: OSC1 oscillation stabilization waiting completion interrupt CLGINTF.IOSCSTAIF bit: IOSC oscillation stabilization waiting completion interrupt

Note: The CLGINTF.IOSCSTAIF bit is 0 after system reset is canceled, but IOSCCLK has already been stabilized.

CLG Interrupt Enable Register

old mitor apt linable mogicies						
Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
CLGINTE	15–9	-	0x00	_	R	_
	8	OSC3TERIE	0	H0	R/W	
	7	_	0	_	R	
	6	(reserved)	0	H0	R/W	
	5	OSC1STPIE	0	H0	R/W	
	4	OSC3TEDIE	0	H0	R/W	
	3	_	0	_	R	
	2	OSC3STAIE	0	H0	R/W	
	1	OSC1STAIE	0	H0	R/W	
	0	IOSCSTAIE	0	H0	R/W	

Bits 15-9, 7, 6, 3 Reserved

Bit 8	OSC3TERIE
Bit 5	OSC1STPIE
Bit 4	OSC3TEDIE
Bit 2	OSC3STAIE
Bit 1	OSC1STAIE
Bit 0	IOSCSTAIF

These bits enable the CLG interrupts.

1 (R/W): Enable interrupts 0 (R/W): Disable interrupts

Each bit corresponds to the interrupt as follows:

CLGINTE.OSC3TERIE bit: OSC3 oscillation auto-trimming error interrupt

CLGINTE.OSC1STPIE bit: OSC1 oscillation stop interrupt

CLGINTE.OSC3TEDIE bit: OSC3 oscillation auto-trimming completion interrupt CLGINTE.OSC3STAIE bit: OSC3 oscillation stabilization waiting completion interrupt CLGINTE.OSC1STAIE bit: OSC1 oscillation stabilization waiting completion interrupt CLGINTE.IOSCSTAIE bit: IOSC oscillation stabilization waiting completion interrupt

CLG FOUT Control Register

<u> </u>							
Register name	Bit	Bit name	Initial	Reset	R/W		
CLGFOUT	15–8	_	0x00	_	R		
	7	_	0	-	R		
	6–4	FOUTDIV[2:0]	0x0	H0	R/W		
	3–2	FOUTSRC[1:0]	0x0	H0	R/W		
	1	-	0	-	R		
	0	FOUTEN	0	H0	R/W		

Bits 15-7 Reserved

Bits 6-4 FOUTDIV[2:0]

These bits set the FOUT clock division ratio.

Bits 3-2 FOUTSRC[1:0]

These bits select the FOUT clock source.

Table 2.6.12 FOUT Clock Source and Division Ratio Settings

CLGFOUT.	CLGFOUT.FOUTSRC[1:0] bits						
	0x0	0x1	0x2	0x3			
FOUTDIV[2:0] bits	IOSCCLK	OSC1CLK	OSC3CLK	SYSCLK			
0x7	1/128	1/32,768	1/128	Reserved			
0x6	1/64	1/4,096	1/64	Reserved			
0x5	1/32	1/1,024	1/32	Reserved			
0x4	1/16	1/256	1/16	Reserved			
0x3	1/8	1/8	1/8	Reserved			
0x2	1/4	1/4	1/4	Reserved			
0x1	1/2	1/2	1/2	Reserved			
0x0	1/1	1/1	1/1	1/1			

Note: When the CLGFOUT.FOUTSRC[1:0] bits are set to 0x3, the FOUT output will be stopped in SLEEP/HALT mode as SYSCLK is stopped.

Bit 1 Reserved

Bit 0 FOUTEN

This bit controls the FOUT clock external output.

1 (R/W): Enable external output 0 (R/W): Disable external output

Note: Since the FOUT signal generated is out of sync with writings to the CLGFOUT.FOUTEN bit, a glitch may occur when the FOUT output is enabled or disabled.

CLG Oscillation Frequency Trimming Register 1

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
CLGTRIM1	15–14	_	0x0	_	R	_
	13–8	IOSCLSAJ[5:0]	*	H0	R/WP	* Determined by factory adjustment.
	7–6	_	0x0	_	R	_
	5–0	IOSCHSAJ[5:0]	*	H0	R/WP	* Determined by factory adjustment.

Bits 15-14 Reserved

Bits 13-8 IOSCLSAJ[5:0]

These bits set the frequency trimming value for the IOSC internal oscillator circuit.

This setting affects the low-speed oscillation frequencies (1 MHz and 2 MHz).

Table 2.6.13 Low-Speed Oscillation Frequency Trimming Setting of IOSC Internal Oscillator Circuit

CLGTRIM1.IOSCLSAJ[5:0] bits	IOSC oscillation frequency (2/1 MHz)
0x3f	High
:	:
0x00	Low

Bits 7-6 Reserved

Bits 5-0 IOSCHSAJ[5:0]

These bits set the frequency trimming value for the IOSC internal oscillator circuit.

This setting affects the high-speed oscillation frequency (8 MHz).

Table 2.6.14 High-Speed Oscillation Frequency Trimming Setting of IOSC Internal Oscillator Circuit

CLGTRIM1.IOSCHSAJ[5:0] bits	IOSC oscillation frequency (8 MHz)
0x3f	High
:	:
0x00	Low

Note: The initial values of the CLGTRIM1.IOSCLSAJ[5:0] and CLGTRIM1.IOSCHSAJ[5:0] bits were adjusted so that the IOSC oscillator circuit characteristics described in the "Electrical Characteristics" chapter can be guaranteed. Be aware that the frequency characteristics may not be satisfied when these settings are altered. When altering these settings, always make sure that the IOSC oscillator circuit is inactive.

CLG Oscillation Frequency Trimming Register 2

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
CLGTRIM2	15–8	_	0x00	-	R	_
	7–6	-	0x0	_	R	
	5–0	OSC1SAJ[5:0]	*	H0	R/WP	* Determined by factory adjustment.

Bits 15-6 Reserved

Bits 5-0 OSC1SAJ[5:0]

These bits set the frequency trimming value for the OSC1 internal oscillator circuit.

This setting does not affect the OSC1 crystal oscillation frequency.

Table 2.6.15 Oscillation Frequency Trimming Setting of OSC1 Internal Oscillator Circuit

CLGTRIM2.OSC1SAJ[5:0] bits	OSC1 internal oscillator frequency
0x3f	High
:	:
0x00	Low

Note: The initial value of the CLGTRIM2.OSC1SAJ[5:0] bits was adjusted so that the OSC1 oscillator circuit characteristics described in the "Electrical Characteristics" chapter can be guaranteed. Be aware that the frequency characteristic may not be satisfied when this setting is altered. When altering this setting, always make sure that the OSC1 oscillator circuit is inactive.

CLG Oscillation Frequency Trimming Register 3

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
CLGTRIM3	15–9	_	0x00	_	R	_
	8–0	OSC3SAJ[8:0]	*	H0	R/WP	* Determined by factory adjustment.

Bits 15-9 Reserved

Bits 8-0 OSC3SAJ[8:0]

These bits set the frequency trimming value for the OSC3 internal oscillator circuit.

This setting does not affect the OSC3 crystal/ceramic oscillation frequency.

Table 2.6.16 Oscillation Frequency Trimming Setting of OSC3 Internal Oscillator Circuit

CLGTRIM3.OSC3SAJ[8:0] bits	OSC3 internal oscillator frequency
0x1ff	High
:	:
0x00	Low

Note: The initial value of the CLGTRIM3.OSC3SAJ[8:0] bits was adjusted so that the OSC3 oscillator circuit characteristics described in the "Electrical Characteristics" chapter can be guaranteed. Be aware that the frequency characteristic may not be satisfied when this setting is altered. When altering this setting, always make sure that the OSC3 oscillator circuit is inactive.

3 CPU and Debugger

3.1 Overview

This IC incorporates a Cortex®-M0+ CPU manufactured by Arm Ltd.

3.2 CPU

The following shows the system configuration of the Cortex®-M0+ CPU embedded in this IC:

- Cortex®-M0+ core
- 32-bit single-cycle multiplier
- Nested vectored interrupt controller (NVIC)
- System timer (Systick)
- Serial-wire debug port (SW-DP)
- Micro trace buffer (MTB)
- Number of hardware break points: 4
- Number of watch points: 2

3.3 Debugger

This IC includes a serial-wire debug port (SW-DP).

3.3.1 List of Debugger Input/Output Pins

Table 3.3.3.1 lists the debug pins.

Table 3.3.1.1 List of Debug Pins

Pin name	I/O	Initial state	Function
SWCLK	0	0	On-chip debugger clock input pin
			Input a clock from a debugging tool.
SWD	I/O	I	On-chip debugger data input/output pin
			Used to input/output debugging data.

The debugger input/output pins are shared with general-purpose I/O ports and are initially set as the debug pins. If the debugging function is not used, these pins can be switched to general-purpose I/O port pins. For details, refer to the "I/O Ports" chapter.

3.3.2 External Connection

Figure 3.3.2.1 shows a connection example between this IC and a debugging tool when performing debugging.

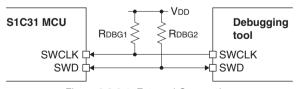


Figure 3.3.2.1 External Connection

For the recommended pull-up resistor value, refer to "Recommended Operating Conditions, Debug pin pull-up resistors RDBG1-2" in the "Electrical Characteristics" chapter. RDBG1 and RDBG2 are not required when using the debug pins as general-purpose I/O port pins.

3.4 Reference Documents

Arm Ltd. provides various documents for developing a system with a Cortex®-M0+ CPU included. For detailed information on the Cortex®-M0+ CPU that are not described in this manual, refer to the following documents:

- 1. ARM®v6-M Architecture Reference Manual
- 2. Cortex®-M0+Technical Reference Manual
- 3. Cortex®-M0+ Devices Generic User Guide

These documents can be downloaded from the document site of Arm Ltd.

https://developer.arm.com/documentation

4 Memory and Bus

4.1 Overview

This IC supports up to 4G bytes of accessible memory space for both instructions and data. The features are listed below.

- Embedded Flash memory that supports on-board programming
- Write-protect function to protect system control registers

Figure 4.1.1 shows the memory map.

		S1C31D41
0xffff 0xf022	ffff 2000	Reserved
0xf022	1fff	MTB SRAM area (8K bytes)
0xf022 0xf021	0000 ffff	(Device size: 32 bits)
0xf020	1000	Reserved
0xf020	0fff	MTB SFR area (4K bytes) (Device size: 32 bits)
0xf020 0xf01f	0000 ffff	Reserved
0xf000 0xf000	1000 0fff	System ROM table area (4K bytes)
0xf000	0000	(Device size: 32 bits)
0xefff	ffff	PPB and reserved area for Cortex®-M0+ (Device size: 32 bits)
0xe000 0xdfff	0000 ffff	Reserved
0x0020 0x0020	4000 3fff	
0x0020	1000	Peripheral circuit area (12K bytes) (Device size: 32 bits)
0x0020	Offf	Peripheral circuit area (4K bytes)
0x0020 0x001f	0000 ffff	(Device size: 16 bits)
0x0015 0x0015	6800 67ff	Reserved
		Voice RAM area (18K bytes) (Device size: 32 bits)
0x0015 0x0015	2000 1fff	DAM area (OK hutan)
		RAM area (8K bytes) (Device size: 32 bits)
0x0015 0x0014	0000 ffff	
0x0014	0000	Reserved
0x0013	0000	Memory mapped access area for external Flash memory (1M bytes) (Device size: 32 bits)
0x0003	ffff	Reserved
0x0001 0x0001	8000 7fff	
		Flash area (96K bytes) (Device size: 32 bits)
0x0000	0000	

Figure 4.1.1 Memory Map

4.2 Bus Access Cycle

The CPU uses the system clock for bus access operations. First, "Bus access cycle," "Device size," and "Access size" are defined as follows:

- Bus access cycle: One system clock period = 1 cycle
- Device size: Bit width of the memory and peripheral circuits that can be accessed in one cycle
- Access size: Access size designated by the CPU instructions (e.g., LDR Rt, [Rn] → 32-bit data transfer)

Table 4.2.1 lists numbers of bus access cycles by different device size and access size. The peripheral circuits can be accessed with an 8- or 16-bit instruction.

Table 1.2.1 Hamber of Bac / toodes Cycles						
Device size	Access size	Number of bus access cycles				
8 bits	8 bits	1				
	16 bits	2				
	32 bits	4				
16 bits	8 bits	1				
	16 bits	1				
	32 bits	2				
32 bits	8 bits	1				
	16 bits	1				

32 bits

1

Table 4.2.1 Number of Bus Access Cycles

4.3 Flash Memory

The Flash memory is used to store application programs and data. Address 0x0 in the Flash area is defined as the vector table base address by default, therefore a vector table must be located beginning from this address. For more information on the vector table, refer to "Vector Table" in the "Interrupt" chapter.

4.3.1 Flash Memory Pin

Table 4.3.1.1 shows the Flash memory pin.

Table 4.3.1.1 Flash Memory Pin

			•	
Pin name	I/O	Initial status	Function	
VPP	Р	_	Flash programming power supply	

4.3.2 Flash Bus Access Cycle Setting

There is a limit of frequency to access the Flash memory with no wait cycle, therefore, the number of bus access cycles for reading must be changed according to the system clock frequency. The number of bus access cycles for reading can be configured using the FLASHCWAIT.RDWAIT[1:0] bits. Select a setting for higher frequency than the system clock.

4.3.3 Flash Programming

The Flash memory supports on-board programming, so it can be programmed using a flash loader. The VPP voltage is supplied from the internal voltage booster.

Be sure to connect CVPP between the Vss and VPP pins for generating the voltage using the internal power supply.

Notes: • When programming the Flash memory, 2.2 V or more VDD voltage is required.

• Be sure to avoid using the VPP pin output for driving external circuits.

4.4 **RAM**

The RAM can be used to execute the instruction codes copied from another memory as well as storing variables or other data. This allows higher speed processing and lower power consumption than Flash memory.

4.5 Peripheral Circuit Control Registers

The control registers for the peripheral circuits are located in the peripheral circuit area beginning with address 0x0020 0000. Table 4.5.1 shows the control register map. For details of each control register, refer to "List of Peripheral Circuit Registers" in the appendix or "Control Registers" in each peripheral circuit chapter.

Table 4.5.1 Peripheral Circuit Control Register Map

Peripheral circuit	Address		Register name
System register (SYS)	0x0020 0000	SYSPROT	System Protect Register
Power generator (PWGA)	0x0020 0020		PWGA Control Register
Clock generator(CLG)	0x0020 0040		CLG System Clock Control Register
Clock generator(CEa)	0x0020 0042		CLG Oscillation Control Register
	0x0020 0044		CLG IOSC Control Register
	0x0020 0044		CLG OSC1 Control Register
	0x0020 0048		CLG OSC3 Control Register
	0x0020 004c		CLG Interrupt Flag Register
	0x0020 004c		CLG Interrupt Enable Register
	0x0020 004e		CLG FOUT Control Register
	0x4000 0052		CLG Oscillation Frequency Trimming Register 1
	0x4000 0052		CLG Oscillation Frequency Trimming Register 1
	0x4000 0054		CLG Oscillation Frequency Trimming Register 2
Cache controller (CACHE)	0x0020 003a		CACHE Control Register
Watchdog timer (WDT2)	0x0020 0000		WDT2 Clock Control Register
watchdog timer (VVD12)			
	0x0020 00a2		WDT2 Country Company Match Powieter
Deal time also le (DTCA)	0x0020 00a4		WDT2 Counter Compare Match Register
Real-time clock (RTCA)	0x0020 00c0		RTCA Control Register (Low Byte)
	0x0020 00c1		RTCA Control Register (High Byte)
	0x0020 00c2		RTCA Second Alarm Register
	0x0020 00c4		RTCA Hour/Minute Alarm Register
		RTCASWCTL	RTCA Stopwatch Control Register
	0x0020 00c8		RTCA Second/1Hz Register
	0x0020 00ca		RTCA Hour/Minute Register
	0x0020 00cc		RTCA Month/Day Register
	0x0020 00ce		RTCA Year/Week Register
	0x0020 00d0		RTCA Interrupt Flag Register
	0x0020 00d2		RTCA Interrupt Enable Register
Supply voltage detector	0x0020 0100	SVD3CLK	SVD3 Clock Control Register
(SVD3)	0x0020 0102		SVD3 Control Register
	0x0020 0104	SVD3INTF	SVD3 Status and Interrupt Flag Register
	0x0020 0106	SVD3INTE	SVD3 Interrupt Enable Register
16-bit timer (T16) Ch.0	0x0020 0160	T16_0CLK	T16 Ch.0 Clock Control Register
	0x0020 0162	T16_0MOD	T16 Ch.0 Mode Register
	0x0020 0164	T16_0CTL	T16 Ch.0 Control Register
	0x0020 0166	T16_0TR	T16 Ch.0 Reload Data Register
	0x0020 0168	T16_0TC	T16 Ch.0 Counter Data Register
	0x0020 016a	T16_0INTF	T16 Ch.0 Interrupt Flag Register
	0x0020 016c	T16_0INTE	T16 Ch.0 Interrupt Enable Register
Flash controller (FLASHC)	0x0020 01b0	FLASHCWAIT	FLASHC Flash Read Cycle Register
I/O ports (PPORT)		PPORTP0DAT	P0 Port Data Register
	0x0020 0202	PPORTP0IOEN	P0 Port Enable Register
		PPORTPORCTL	P0 Port Pull-up/down Control Register
		PPORTP0INTF	P0 Port Interrupt Flag Register
		PPORTP0INTCTL	P0 Port Interrupt Control Register
		PPORTPOCHATEN	P0 Port Chattering Filter Enable Register
		PPORTP0MODSEL	P0 Port Mode Select Register
		PPORTP0FNCSEL	P0 Port Function Select Register
		PPORTP1DAT	P1 Port Data Register
		PPORTP1IOEN	P1 Port Enable Register
		PPORTP1RCTL	P1 Port Pull-up/down Control Register
	5		1

4 MEMORY AND BUS

Peripheral circuit	Address		Register name		
I/O ports (PPORT)		PPORTP1INTF	P1 Port Interrupt Flag Register		
	_	PPORTP1INTCTL	P1 Port Interrupt Control Register		
		PPORTP1CHATEN	P1 Port Chattering Filter Enable Register		
		PPORTP1MODSEL	P1 Port Mode Select Register		
		PPORTP1FNCSEL	P1 Port Function Select Register		
		PPORTP2DAT	P2 Port Data Register		
	_	PPORTP2IOEN	P2 Port Enable Register		
		PPORTP2RCTL	P2 Port Pull-up/down Control Register		
		PPORTPOINTF	P2 Port Interrupt Flag Register		
		18 PPORTP2INTCTL P2 Port Interrupt Control Register			
		PPORTP2CHATEN	P2 Port Chattering Filter Enable Register		
		PPORTP2MODSEL	P2 Port Mode Select Register		
	0x0020 022e	PPORTP2FNCSEL	P2 Port Function Select Register		
		PPORTP3DAT	P3 Port Data Register		
	0x0020 0232	PPORTP3IOEN	P3 Port Enable Register		
	0x0020 0234	PPORTP3RCTL	P3 Port Pull-up/down Control Register		
	0x0020 0236	PPORTP3INTF	P3 Port Interrupt Flag Register		
	0x0020 0238	PPORTP3INTCTL	P3 Port Interrupt Control Register		
		PPORTP3CHATEN	P3 Port Chattering Filter Enable Register		
		PPORTP3MODSEL	P3 Port Mode Select Register		
		PPORTP3FNCSEL	P3 Port Function Select Register		
		PPORTP4IOEN	P4 Port Data Register		
	_	PPORTP4POT	P4 Port Enable Register		
		PPORTP4RCTL	P4 Port Pull-up/down Control Register		
		PPORTP4INTF	P4 Port Interrupt Flag Register		
		PPORTP4INTCTL	P4 Port Interrupt Control Register		
	0x0020 024a	PPORTP4CHATEN	P4 Port Chattering Filter Enable Register		
	0x0020 024c	PPORTP4MODSEL	P4 Port Mode Select Register		
	0x0020 024e	PPORTP4FNCSEL	P4 Port Function Select Register		
	0x0020 0250	PPORTP5DAT	P5 Port Data Register		
	0x0020 0252	PPORTP5IOEN	P5 Port Enable Register		
		PPORTP5RCTL	P5 Port Pull-up/down Control Register		
	_	PPORTP5INTF	P5 Port Interrupt Flag Register		
		PPORTP5INTCTL	P5 Port Interrupt Control Register		
		PPORTP5CHATEN	P5 Port Chattering Filter Enable Register		
	_	PPORTP5MODSEL	P5 Port Mode Select Register		
		PPORTP5FNCSEL	P5 Port Function Select Register		
		PPORTP6DAT	P6 Port Data Register		
	0x0020 0262	PPORTP6IOEN	P6 Port Enable Register		
	0x0020 0264	PPORTP6RCTL	P6 Port Pull-up/down Control Register		
	0x0020 0266	PPORTP6INTF	P6 Port Interrupt Flag Register		
	0x0020 0268	PPORTP6INTCTL	P6 Port Interrupt Control Register		
	0x0020 026a	PPORTP6CHATEN	P6 Port Chattering Filter Enable Register		
	0x0020 026c	PPORTP6MODSEL	P6 Port Mode Select Register		
		PPORTP6FNCSEL	P6 Port Function Select Register		
		PPORTPDDAT	Pd Port Data Register		
		PPORTPDIOEN	Pd Port Enable Register		
			Pd Port Enable Register Pd Port Pull-up/down Control Register		
		PPORTPDRCTL			
		PPORTPDMODSEL	Pd Port Mode Select Register		
		PPORTPDFNCSEL	Pd Port Function Select Register		
	0x0020 02e0	PPORTCLK	P Port Clock Control Register		
	0x0020 02e2	PPORTINTFGRP	P Port Interrupt Flag Group Register		
Jniversal port multiplexer	0x0020 0300	UPMUXP0MUX0	P00–01 Universal Port Multiplexer Setting Register		
UPMUX)	0x0020 0302	UPMUXP0MUX1	P02–03 Universal Port Multiplexer Setting Register		
	0x0020 0304	UPMUXP0MUX2	P04-05 Universal Port Multiplexer Setting Register		
			P06–07 Universal Port Multiplexer Setting Register		
	0x0020 0308	UPMUXP1MUX0	P10–11 Universal Port Multiplexer Setting Register		
	0x0020 030a	UPMUXP1MUX1	P12–13 Universal Port Multiplexer Setting Register		
	0x0020 030c	UPMUXP1MUX2	P14–15 Universal Port Multiplexer Setting Register		
		UPMUXP1MUX3	P16–17 Universal Port Multiplexer Setting Register		
	0x0020 0310	UPMUXP2MUX0	P20–21 Universal Port Multiplexer Setting Register		
	0x0020 0312	UPMUXP2MUX1	P22–23 Universal Port Multiplexer Setting Register		
	0x0020 0314	UPMUXP2MUX2	P24–25 Universal Port Multiplexer Setting Register		
	0.0000 0316	UPMUXP2MUX3	P26–27 Universal Port Multiplexer Setting Register		

Peripheral circuit	Address		Register name
Universal port multiplexer		UPMUXP3MUX0	P30–31 Universal Port Multiplexer Setting Register
(UPMUX)		UPMUXP3MUX1	P32–33 Universal Port Multiplexer Setting Register
		UPMUXP3MUX2	P34–35 Universal Port Multiplexer Setting Register
	-	UPMUXP3MUX3	P36–37 Universal Port Multiplexer Setting Register
UART (UART3) Ch.0	0x0020 0380		UART3 Ch.0 Clock Control Register
		UART3_0MOD	UART3 Ch.0 Mode Register
			UART3 Ch.0 Baud-Rate Register
	-	_	UART3 Ch.0 Control Register
		UART3_0TXD	UART3 Ch.0 Transmit Data Register
	-	UART3_0RXD	UART3 Ch.0 Receive Data Register
		UART3 0INTF	UART3 Ch.0 Status and Interrupt Flag Register
	-	UART3 OINTE	UART3 Ch.0 Interrupt Enable Register
	0x0020 0390	_	UART3 Ch.0 Transmit Buffer Empty DMA Request Enable Register
	0x0020 0392		UART3 Ch.0 Receive Buffer One Byte Full DMA Request Enable Register
	0x0020 0394	UART3_0CAWF	UART3 Ch.0 Carrier Waveform Register
16-bit timer (T16) Ch.1	0x0020 03a0	T16_1CLK	T16 Ch.1 Clock Control Register
To bit times (110) on:	0x0020 03a2	T16_1MOD	T16 Ch.1 Mode Register
	0x0020 03a4	T16_1CTL	T16 Ch.1 Control Register
	0x0020 03a6		T16 Ch.1 Reload Data Register
	0x0020 03a8		T16 Ch.1 Counter Data Register
	0x0020 03aa		T16 Ch.1 Interrupt Flag Register
	0x0020 03ac	T16_1INTE	T16 Ch.1 Interrupt Enable Register
Synchronous serial interface	0x0020 03b0		SPIA Ch.0 Mode Register
(SPIA) Ch.0	0x0020 03b2		SPIA Ch.0 Control Register
(2 4 22	0x0020 03b4		SPIA Ch.0 Transmit Data Register
	0x0020 00b4		SPIA Ch.0 Receive Data Register
	0x0020 00b8		SPIA Ch.0 Interrupt Flag Register
	0x0020 03ba		SPIA Ch.0 Interrupt Enable Register
	-	SPIA_0TBEDMAEN	SPIA Ch.0 Transmit Buffer Empty DMA Request Enable Register
		SPIA_ORBFDMAEN	SPIA Ch.0 Receive Buffer Full DMA Request Enable Register
I ² C (I2C) Ch.0	0x0020 03c0		I2C Ch.0 Clock Control Register
(120) 01110	0x0020 03c2		I2C Ch.0 Mode Register
	0x0020 03c4	_	I2C Ch.0 Baud-Rate Register
	0x0020 03c8		I2C Ch.0 Own Address Register
	0x0020 03ca		I2C Ch.0 Control Register
	0x0020 03cc		I2C Ch.0 Transmit Data Register
	0x0020 03ce	_	I2C Ch.0 Receive Data Register
	0x0020 03d0	_	I2C Ch.0 Status and Interrupt Flag Register
	0x0020 03d2	_	I2C Ch.0 Interrupt Enable Register
		I2C_0TBEDMAEN	I2C Ch.0 Transmit Buffer Empty DMA Request Enable Register
		I2C_0RBFDMAEN	I2C Ch.0 Receive Buffer Full DMA Request Enable Register
16-bit PWM timer (T16B)	0x0020 0400	_	T16B Ch.0 Clock Control Register
Ch.0	0x0020 0402	_	T16B Ch.0 Counter Control Register
	0x0020 0404	T16B_0MC	T16B Ch.0 Max Counter Data Register
	0x0020 0406		T16B Ch.0 Timer Counter Data Register
			T16B Ch.0 Counter Status Register
	0x0020 040a	T16B_0INTF	T16B Ch.0 Interrupt Flag Register
	0x0020 040c	T16B_0INTE	T16B Ch.0 Interrupt Enable Register
	0x0020 040e	T16B_0MZDMAEN	T16B Ch.0 Counter Max/Zero DMA Request Enable Register
	0x0020 0410	T16B_0CCCTL0	T16B Ch.0 Compare/Capture 0 Control Register
	0x0020 0412		T16B Ch.0 Compare/Capture 0 Data Register
	0x0020 0412	T16B_0CC0DMAEN	T16B Ch.0 Compare/Capture 0 DMA Request Enable Register
	0x0020 0414	T16B_0CCCTL1	T16B Ch.0 Compare/Capture 1 Control Register
	0x0020 0418	T16B_0CCR1	T16B Ch.0 Compare/Capture 1 Control Register
	0x0020 041a	T16B_0CC1DMAEN	T16B Ch.0 Compare/Capture 1 DMA Request Enable Register
		_	T16B Ch.0 Compare/Capture 1 DMA Request Enable Register T16B Ch.0 Compare/Capture 2 Control Register
	0x0020 0420	T16B_0CCCTL2	
	0x0020 0422	T16B_0CCR2	T16B Ch.0 Compare/Capture 2 DMA Request Enable Register
	0x0020 0424	T16B_0CC2DMAEN	T16B Ch.0 Compare/Capture 2 DMA Request Enable Register
	0x0020 0428	T16B_0CCCTL3	T16B Ch.0 Compare/Capture 3 Control Register T16B Ch.0 Compare/Capture 3 Data Register
	0x0020 042a	T16B_0CC3DMAEN	T16B Ch.0 Compare/Capture 3 Data Register T16B Ch.0 Compare/Capture 3 DMA Reguest Enable Register
16-bit DWM timer (T16D)	0x0020 042c	T16B_0CC3DMAEN	T16B Ch.0 Compare/Capture 3 DMA Request Enable Register
16-bit PWM timer (T16B) Ch.1	0x0020 0440		T16B Ch.1 Clock Control Register T16B Ch.1 Counter Control Register
O11. 1	0x0020 0442	LIOD_ICIL	T16B Ch.1 Counter Control Register

Peripheral circuit	Address		Register name
16-bit PWM timer (T16B)	0x0020 0444	T16B 1MC	T16B Ch.1 Max Counter Data Register
Ch.1	0x0020 0444 0x0020 0446		T16B Ch.1 Timer Counter Data Register
····	0x0020 0448	_	T16B Ch.1 Counter Status Register
	0x0020 044a	_	T16B Ch.1 Interrupt Flag Register
	0x0020 044c		T16B Ch.1 Interrupt Enable Register
		T16B_1MZDMAEN	T16B Ch.1 Counter Max/Zero DMA Request Enable Register
	-	T16B_1CCCTL0	T16B Ch.1 Compare/Capture 0 Control Register
		T16B_1CCR0	T16B Ch.1 Compare/Capture 0 Data Register
		T16B_1CC0DMAEN	T16B Ch.1 Compare/Capture 0 DMA Request Enable Register
		T16B_1CCCTL1	T16B Ch.1 Compare/Capture 1 Control Register
		T16B_1CCR1	T16B Ch.1 Compare/Capture 1 Data Register
		T16B_1CC1DMAEN	T16B Ch.1 Compare/Capture 1 DMA Request Enable Register
		T16B_1CCCTL2	T16B Ch.1 Compare/Capture 2 Control Register
		T16B_1CCR2	T16B Ch.1 Compare/Capture 2 Data Register
		T16B_1CC2DMAEN	T16B Ch.1 Compare/Capture 2 DMA Request Enable Register
	-	T16B_1CCCTL3	T16B Ch.1 Compare/Capture 3 Control Register
		T16B_1CCR3	T16B Ch.1 Compare/Capture 3 Data Register
		T16B_1CC3DMAEN	T16B Ch.1 Compare/Capture 3 DMA Request Enable Register
16-bit timer (T16) Ch.3	0x0020 0480		T16 Ch.3 Clock Control Register
, ,	0x0020 0482	_	T16 Ch.3 Mode Register
	0x0020 0484	_	T16 Ch.3 Control Register
	0x0020 0486		T16 Ch.3 Reload Data Register
	0x0020 0488	T16_3TC	T16 Ch.3 Counter Data Register
	0x0020 048a	_	T16 Ch.3 Interrupt Flag Register
	0x0020 048c	T16_3INTE	T16 Ch.3 Interrupt Enable Register
16-bit timer (T16) Ch.4	0x0020 04a0	T16_4CLK	T16 Ch.4 Clock Control Register
, ,	0x0020 04a2	T16_4MOD	T16 Ch.4 Mode Register
	0x0020 04a4	T16_4CTL	T16 Ch.4 Control Register
	0x0020 04a6	T16_4TR	T16 Ch.4 Reload Data Register
	0x0020 04a8	T16_4TC	T16 Ch.4 Counter Data Register
	0x0020 04aa	T16_4INTF	T16 Ch.4 Interrupt Flag Register
	0x0020 04ac	T16_4INTE	T16 Ch.4 Interrupt Enable Register
16-bit timer (T16) Ch.5	0x0020 04c0	T16_5CLK	T16 Ch.5 Clock Control Register
	0x0020 04c2	T16_5MOD	T16 Ch.5 Mode Register
	0x0020 04c4	T16_5CTL	T16 Ch.5 Control Register
	0x0020 04c6	T16_5TR	T16 Ch.5 Reload Data Register
	0x0020 04c8	T16_5TC	T16 Ch.5 Counter Data Register
	0x0020 04ca	T16_5INTF	T16 Ch.5 Interrupt Flag Register
	0x0020 04cc	T16_5INTE	T16 Ch.5 Interrupt Enable Register
Synchronous serial interface	0x0020 04d0	SPIA_2MOD	SPIA Ch.2 Mode Register
(SPIA) Ch.2	0x0020 04d2	SPIA_2CTL	SPIA Ch.2 Control Register
	0x0020 04d4	SPIA_2TXD	SPIA Ch.2 Transmit Data Register
	0x0020 04d6		SPIA Ch.2 Receive Data Register
	0x0020 04d8	SPIA_2INTF	SPIA Ch.2 Interrupt Flag Register
	0x0020 04da	SPIA_2INTE	SPIA Ch.2 Interrupt Enable Register
	0x0020 04dc	SPIA_2TBEDMAEN	SPIA Ch.2 Transmit Buffer Empty DMA Request Enable Register
		SPIA_2RBFDMAEN	SPIA Ch.2 Receive Buffer Full DMA Request Enable Register
UART (UART3) Ch.1		UART3_1CLK	UART3 Ch.1 Clock Control Register
		UART3_1MOD	UART3 Ch.1 Mode Register
	0x0020 0604		UART3 Ch.1 Baud-Rate Register
		UART3_1CTL	UART3 Ch.1 Control Register
		UART3_1TXD	UART3 Ch.1 Transmit Data Register
		UART3_1RXD	UART3 Ch.1 Receive Data Register
		UART3_1INTF	UART3 Ch.1 Status and Interrupt Flag Register
		UART3_1INTE	UART3 Ch.1 Interrupt Enable Register
	0x0020 0610	UART3_1 TBEDMAEN	UART3 Ch.1 Transmit Buffer Empty DMA Request Enable Register
			1
	0x0020 0612	UART3_1	UART3 Ch.1 Receive Buffer One Byte Full DMA Request Enable Register
		UART3_1 RB1FDMAEN	Register
LIART (LIARTS) Ch 2	0x0020 0614	UART3_1 RB1FDMAEN UART3_1CAWF	Register UART3 Ch.1 Carrier Waveform Register
UART (UART3) Ch.2	0x0020 0614 0x0020 0620	UART3_1 RB1FDMAEN UART3_1CAWF UART3_2CLK	Register UART3 Ch.1 Carrier Waveform Register UART3 Ch.2 Clock Control Register
UART (UART3) Ch.2	0x0020 0614 0x0020 0620 0x0020 0622	UART3_1 RB1FDMAEN UART3_1CAWF UART3_2CLK UART3_2MOD	Register UART3 Ch.1 Carrier Waveform Register UART3 Ch.2 Clock Control Register UART3 Ch.2 Mode Register
UART (UART3) Ch.2	0x0020 0614 0x0020 0620 0x0020 0622 0x0020 0624	UART3_1 RB1FDMAEN UART3_1CAWF UART3_2CLK UART3_2MOD	Register UART3 Ch.1 Carrier Waveform Register UART3 Ch.2 Clock Control Register

Peripheral circuit	Address		Register name
UART (UART3) Ch.2	0x0020 062a	UART3_2RXD	UART3 Ch.2 Receive Data Register
	0x0020 062c	UART3_2INTF	UART3 Ch.2 Status and Interrupt Flag Register
		UART3_2INTE	UART3 Ch.2 Interrupt Enable Register
		UART3_2 TBEDMAEN	UART3 Ch.2 Transmit Buffer Empty DMA Request Enable Register
	0x0020 0632	UART3_2 RB1FDMAEN	UART3 Ch.2 Receive Buffer One Byte Full DMA Request Enable Register
	0x0020 0634	UART3_2CAWF	UART3 Ch.2 Carrier Waveform Register
16-bit timer (T16) Ch.6	0x0020 0660	T16_6CLK	T16 Ch.6 Clock Control Register
	0x0020 0662	T16_6MOD	T16 Ch.6 Mode Register
	0x0020 0664	T16_6CTL	T16 Ch.6 Control Register
	0x0020 0666	T16_6TR	T16 Ch.6 Reload Data Register
	0x0020 0668	T16_6TC	T16 Ch.6 Counter Data Register
	0x0020 066a	T16_6INTF	T16 Ch.6 Interrupt Flag Register
	0x0020 066c	T16_6INTE	T16 Ch.6 Interrupt Enable Register
Synchronous serial interface	0x0020 0670	SPIA_1MOD	SPIA Ch.1 Mode Register
(SPIA) Ch.1	0x0020 0672	SPIA_1CTL	SPIA Ch.1 Control Register
	0x0020 0674	SPIA_1TXD	SPIA Ch.1 Transmit Data Register
	0x0020 0676	SPIA_1RXD	SPIA Ch.1 Receive Data Register
	0x0020 0678	SPIA_1INTF	SPIA Ch.1 Interrupt Flag Register
	0x0020 067a		SPIA Ch.1 Interrupt Enable Register
		SPIA_1TBEDMAEN	SPIA Ch.1 Transmit Buffer Empty DMA Request Enable Register
	0x0020 067e	SPIA_1RBFDMAEN	SPIA Ch.1 Receive Buffer Full DMA Request Enable Register
16-bit timer (T16) Ch.2		T16_2CLK	T16 Ch.2 Clock Control Register
	0x0020 0682	T16_2MOD	T16 Ch.2 Mode Register
		T16_2CTL	T16 Ch.2 Control Register
		T16_2TR	T16 Ch.2 Reload Data Register
		T16_2TC	T16 Ch.2 Counter Data Register
		T16_2INTF	T16 Ch.2 Interrupt Flag Register
	0x0020 068c	T16_2INTE	T16 Ch.2 Interrupt Enable Register
Quad synchronous serial		QSPI_0MOD	QSPI Ch.0 Mode Register
interface (QSPI) Ch.0	0x0020 0692	QSPI_0CTL	QSPI Ch.0 Control Register
		QSPI_0TXD	QSPI Ch.0 Transmit Data Register
	0x0020 0696	QSPI_0RXD	QSPI Ch.0 Receive Data Register
	0x0020 0698	QSPI_0INTF	QSPI Ch.0 Interrupt Flag Register
		QSPI_0INTE	QSPI Ch.0 Interrupt Enable Register
		QSPI_0TBEDMAEN	QSPI Ch.0 Transmit Buffer Empty DMA Request Enable Register
		QSPI_ORBFDMAEN	QSPI Ch.0 Receive Buffer Full DMA Request Enable Register
		QSPI_0FRLDMAEN	QSPI Ch.0 FIFO Data Ready DMA Request Enable Register
	0x0020 06a2	QSPI_0MMACFG1	QSPI Ch.0 Memory Mapped Access Configuration Register 1
		QSPI_0RMADRH	QSPI Ch.0 Remapping Start Address High Register
		QSPI_0MMACFG2	QSPI Ch.0 Memory Mapped Access Configuration Register 2
120 (100) Ob 1		QSPI_0nMB	QSPI Ch.0 Mode Byte Register
I ² C (I2C) Ch.1	0x0020 06c0		I2C Ch.1 Clock Control Register
	0x0020 06c2		I2C Ch.1 Mode Register
	0x0020 06c4 0x0020 06c8	I2C_1BR	I2C Ch.1 Baud-Rate Register I2C Ch.1 Own Address Register
		I2C_1CTL I2C_1TXD	I2C Ch.1 Control Register I2C Ch.1 Transmit Data Register
		I2C_1TXD	I2C Ch.1 Ransmit Data Register
		I2C_1INTF	I2C Ch.1 Receive Data Register
		I2C_1INTE	I2C Ch.1 Interrupt Enable Register
		I2C_1TREDMAEN	I2C Ch.1 Transmit Buffer Empty DMA Request Enable Register
		I2C_1RBFDMAEN	I2C Ch.1 Ransmit Buller Empty Divid Request Enable Register
I ² C (I2C) Ch.2		I2C_1RBFDIVIAEIN	I2C Ch.2 Clock Control Register
. 0 (120) 011.2		I2C_2MOD	I2C Ch.2 Mode Register
		12C_2INOD	I2C Ch.2 Baud-Rate Register
		12C_2BR 12C_2OADR	I2C Ch.2 Daud-hate negister
		I2C_2CADA	I2C Ch.2 Control Register
		12C_2CTL 12C_2TXD	-
			I2C Ch.2 Transmit Data Register
		I2C_2RXD	I2C Ch.2 Receive Data Register I2C Ch.2 Status and Interrupt Flag Register
		I2C_2INTF	
	0x0020 06f2	I2C_2INTE	I2C Ch.2 Interrupt Enable Register
	0x0020 06f4	I2C_2TBEDMAEN	I2C Ch.2 Transmit Buffer Empty DMA Request Enable Register
	0x0020 06f6	I2C_2RBFDMAEN	I2C Ch.2 Receive Buffer Full DMA Request Enable Register

4 MEMORY AND BUS

Peripheral circuit	Address		Register name
IR remote controller (REMC3)		REMC3CLK	REMC3 Clock Control Register
		REMC3DBCTL	REMC3 Data Bit Counter Control Register
	0x0020 0724	REMC3DBCNT	REMC3 Data Bit Counter Register
		REMC3APLEN	REMC3 Data Bit Active Pulse Length Register
		REMC3DBLEN	REMC3 Data Bit Length Register
	0x0020 072a	REMC3INTF	REMC3 Status and Interrupt Flag Register
	0x0020 072c		REMC3 Interrupt Enable Register
		REMC3CARR	REMC3 Carrier Waveform Register
		REMC3CCTL	REMC3 Carrier Modulation Control Register
16-bit timer (T16) Ch.7	0x0020 0780		T16 Ch.7 Clock Control Register
, ,	0x0020 0782		T16 Ch.7 Mode Register
	0x0020 0784		T16 Ch.7 Control Register
	0x0020 0786		T16 Ch.7 Reload Data Register
	0x0020 0788	T16_7TC	T16 Ch.7 Counter Data Register
	0x0020 078a	T16_7INTF	T16 Ch.7 Interrupt Flag Register
	0x0020 078c	T16_7INTE	T16 Ch.7 Interrupt Enable Register
12-bit A/D converter		ADC12A_0CTL	ADC12A Ch.0 Control Register
(ADC12A) Ch.0	0x0020 07a4	ADC12A_0TRG	ADC12A Ch.0 Trigger/Analog Input Select Register
		ADC12A_0CFG	ADC12A Ch.0 Configuration Register
		ADC12A_0INTF	ADC12A Ch.0 Interrupt Flag Register
		ADC12A_0INTE	ADC12A Ch.0 Interrupt Enable Register
	0x0020 07ac	ADC12A_0DMAEN0	ADC12A Ch.0 DMA Request Enable Register 0
		ADC12A_0DMAEN1	ADC12A Ch.0 DMA Request Enable Register 1
			ADC12A Ch.0 DMA Request Enable Register 2
		ADC12A_0DMAEN3	ADC12A Ch.0 DMA Request Enable Register 3
	0x0020 07b4	ADC12A_0DMAEN4	ADC12A Ch.0 DMA Request Enable Register 4
	0x0020 07b6	ADC12A_0DMAEN5	ADC12A Ch.0 DMA Request Enable Register 5
	0x0020 07b8	ADC12A_0DMAEN6	ADC12A Ch.0 DMA Request Enable Register 6
	0x0020 07ba	ADC12A_0DMAEN7	ADC12A Ch.0 DMA Request Enable Register 7
	0x0020 07bc	ADC12A_0ADD	ADC12A Ch.0 Result Register
Temperature sensor/reference	0x0020 07c0	TSRVR_0TCTL	TSRVR Ch.0 Temperature Sensor Control Register
voltage generator (TSRVR)	0x0020 07c2	TSRVR_0VCTL	TSRVR Ch.0 Reference Voltage Generator Control Register
R/F converter (RFC) Ch.0	0x0020 0840		RFC Ch.0 Clock Control Register
	0x0020 0842		RFC Ch.0 Control Register
	0x0020 0844		RFC Ch.0 Oscillation Trigger Register
	0x0020 0846		RFC Ch.0 Measurement Counter Low Register
	0x0020 0848		RFC Ch.0 Measurement Counter High Register
	0x0020 084a 0x0020 084c		RFC Ch.0 Time Base Counter Low Register
	0x0020 084e	_	RFC Ch.0 Time Base Counter High Register RFC Ch.0 Interrupt Flag Register
	0x0020 004e		RFC Ch.0 Interrupt Enable Register
Sound DAC (SDAC2)	0x0020 0860		SDAC2 Clock Control Register
(=====,	0x0020 0862		SDAC2 Control Register
	0x0020 0864		SDAC2 Mode Register
		SDAC2_0DAT	SDAC2 Ch.0 Data Register
	0x0020 0868	SDAC2INTF	SDAC2 Interrupt Flag Register
	0x0020 086a		SDAC2 Interrupt Enable Register
		SDAC2RESAMP	SDAC2 Resampler Rate Register
		SDAC2TONE	SDAC2 Tone Divider Register
104/		SDAC2_1DAT	SDAC2 Ch.1 Data Register
HW processor (HWP)	0x0020 08a2		HWP Control Register
	0x0020 08a4		HWP Interrupt Flag Register
	0x0020 08a6		HWP Interrupt Enable Register
DMA controller (DMAC)	0x0020 08a8	HWPCMDTRG DMACSTAT	HWP Command Trigger Register DMAC Status Register
DIVIA CONTROLLET (DIVIAC)			
	0x0020 1004 0x0020 1008		DMAC Configuration Register DMAC Control Data Base Pointer Register
	0x0020 1008		DMAC Alternate Control Data Base Pointer Register
		DMACSWREQ	DMAC Software Request Register
		DMACRMSET	DMAC Software Request Register DMAC Request Mask Set Register
	0x0020 1020 0x0020 1024	DMACRMCLR	DMAC Request Mask Clear Register
		DMACENSET	DMAC Enable Set Register
		DMACENCLR	DMAC Enable Clear Register
		DMACPASET	DMAC Primary-Alternate Set Register
		DMACPACLR DMACPRSET	DMAC Primary-Alternate Clear Register DMAC Priority Set Register

Peripheral circuit	Address	Register name			
DMA controller (DMAC)	0x0020 103c	DMACPRCLR DMAC Priority Clear Register			
	0x0020 104c	DMACERRIF DMAC Error Interrupt Flag Register			
	0x0020 2000	DMACENDIF DMAC Transfer Completion Interrupt Flag Register			
	0x0020 2008	DMACENDIESET DMAC Transfer Completion Interrupt Enable Set Register			
	0x0020 200c	DMACENDIECLR DMAC Transfer Completion Interrupt Enable Clear Register			
	0x0020 2010	DMACERRIESET DMAC Error Interrupt Enable Set Register			
	0x0020 2014	DMACERRIECLR	DMAC Error Interrupt Enable Clear Register		

4.5.1 System-Protect Function

The system-protect function protects control registers and bits from writings. They cannot be rewritten unless write protection is removed by writing 0x0096 to the SYSPROT.PROT[15:0] bits. This function is provided to prevent deadlock that may occur when a system-related register is altered by a runaway CPU. See "Control Registers" in each peripheral circuit to identify the registers and bits with write protection.

Note: Once write protection is removed using the SYSPROT.PROT[15:0] bits, write enabled status is maintained until write protection is applied again. After the registers/bits required have been altered, apply write protection.

4.6 Instruction Cache

This IC includes an instruction cache. Enabling the cache function translates into reduced current consumption, as the Flash memory access frequency is decreased.

This function is enabled by setting the CACHECTL.CACHEEN bit to 1. Setting this bit to 0 clears the instruction codes stored in the cache.

Before placing the IC into SLEEP or HALT mode, disable the cache function by setting the CACHECTL. CACHEEN bit to 0.

4.7 Memory Mapped Access Area For External Flash Memory

This area is used to read data from the external Flash memory via the quad synchronous serial interface. For more information, refer to the "Quad Synchronous Serial Interface" chapter.

4.8 Control Registers

System Protect Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SYSPROT	15–0	PROT[15:0]	0x0000	H0	R/W	_

Bits 15-0 PROT[15:0]

These bits protect the control registers related to the system against writings.

0x0096 (R/W): Disable system protection Other than 0x0096 (R/W): Enable system protection

While the system protection is enabled, any data will not be written to the affected control bits (bits with "WP" or "R/WP" appearing in the R/W column).

CACHE Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
CACHECTL	15–8	_	0x00	-	R	_
	7–2	-	0x00	-	R	
	1	-	1	-	R	
	0	CACHEEN	0	H0	R/W	

Bits 15-1 Reserved

4 MEMORY AND BUS

Bit 0 CACHEEN

This bit enables the instruction cache function.

1 (R/W): Enable instruction cache 0 (R/W): Disable instruction cache

FLASHC Flash Read Cycle Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
FLASHCWAIT	15–9	_	0x00	_	R	_
	8	(reserved)	0	H0	R/WP	
	7–2	_	0x00	-	R	
	1–0	RDWAIT[1:0]	0x1	H0	R/WP	

Bits 15-2 Reserved

Bits 1-0 RDWAIT[1:0]

These bits set the number of bus access cycles for reading from the Flash memory.

Table 4.8.1 Setting Number of Bus Access Cycles for Flash Read

FLASHCWAIT.	Number of bus	System clock frequency			
RDWAIT[1:0] bits	access cycles	PWGACTL. REGSEL bit = 0	PWGACTL. REGSEL bit = 1		
0x3	4				
0x2	3	2.1 MHz (max.)	16.3 MHz (max.)		
0x1	2				
0x0	1	1.02 MHz (max.)	8.4 MHz (max.)		

Notes: • Be sure to set the FLASHCWAIT.RDWAIT[1:0] bits before the system clock is configured.

• When the FLASHCWAIT.RDWAIT[1:0] bit setting is altered from 0x2 to 0x1, add two NOP instructions immediately after that.

Program example: FLASHC->WAIT_b.RDWAIT = 1;

asm("NOP");

asm("NOP");

CLG->OSC_b.IOSCEN = 0;

5 Interrupt

5.1 Overview

This IC includes a nested vectored interrupt controller (NVIC). For detailed information on the NVIC, refer to the documents introduced in Section 3.4, such as "ARM®v6-M Architecture Reference Manual."

Figure 5.1.1 shows the configuration of the interrupt system.

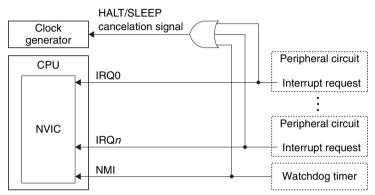


Figure 5.1.1 Configuration of Interrupt System

5.2 Vector Table

The vector table contains the vectors to the interrupt handler routines (handler routine start address) that will be read by the CPU to execute the handler when an interrupt occurs.

Table 5.2.1 shows the vector table.

Table 5.2.1 Vector Table

VTOR initial value = 0x0

Interrupt number	IRQ number	Vector address	Hardware interrupt name	Cause of hardware interrupt	Priority
-	-	VTOR + 0x00	(Stack pointer initial value)	-	_
1	-	VTOR + 0x04	Reset	Low input to the #RESET pin Power-on reset Key reset Watchdog timer overflow *1	-3
				Supply voltage detector reset	_
2	-14	VTOR + 0x08		Watchdog timer overflow *1	-2
3	-13	VTOR + 0x0c	HardFault	Bus errorUndefined instructionUnaligned address etc.	-1
4–10	-	-	Reserved	-	-
11	-5	VTOR + 0x2c	SVCall	SVC instruction	Configurable
12-13	-	-	Reserved	-	-
14	-2	VTOR + 0x38	PendSV	-	
15	-1	VTOR + 0x3c	SysTick	SysTick timer underflow	
16	0	VTOR + 0x40	DMA controller interrupt	DMA transfer completion DMA transfer error	
17	1	VTOR + 0x44	Supply voltage detector inter- rupt	Power supply voltage drop detection	
18	2	VTOR + 0x48	Port interrupt (P0/P1)	P0-P1 port input	
19	3	VTOR + 0x4c	Port interrupt (P2/P3)	P2-P3 port input	Configurable
20	4	VTOR + 0x50	Port interrupt (Others)	P4–P6 port input	1
21	5	VTOR + 0x54	Clock generator interrupt	IOSC oscillation stabilization waiting completion OSC1 oscillation stabilization waiting completion OSC3 oscillation stabilization waiting completion OSC1 oscillation stop OSC3 oscillation auto-trimming completion OSC3 oscillation auto-trimming error	

5 INTERRUPT

Interrupt number	IRQ number	Vector address	Hardware interrupt name	Cause of hardware interrupt	Priority
22	6	VTOR + 0x58	Real-time clock interrupt	1-day, 1-hour, 1-minute, and 1-second 1/32-second, 1/8-second, 1/4-second, and 1/2-second Stopwatch 1 Hz, 10 Hz, and 100 Hz Alarm	
	-	V. TOD 0.5	LDA	Theoretical regulation completion	
23	7	VIOR + 0x5c	HW processor	Error occurrence State transition	
24	8	VTOR + 0x60	Sound DAC	Error occurrence	_
24		VIOITIOXOO	Count Di Co	Data request	
25	9	VTOR + 0x64	UART Ch.0 interrupt	End of transmission Framing error Parity error Overrun error Receive buffer two bytes full Receive buffer one byte full	
				Transmit buffer empty	
26	10	VTOR + 0x68	16-bit timer Ch.1 interrupt	Underflow	
27	11		Synchronous serial interface Ch.0 interrupt	End of transmission Receive buffer full Transmit buffer empty Overrun error	
28	12	VTOR + 0x70	I ² C Ch.0 interrupt	End of data transfer General call address reception NACK reception STOP condition START condition Error detection Receive buffer full Transmit buffer empty	
29	13	VTOR + 0x74	16-bit PWM timer Ch.0 interrupt	Capture overwrite Compare/capture Counter MAX	
				Counter zero	Configurable
30	14	VTOR + 0x78	16-bit PWM timer Ch.1 inter- rupt	Capture overwrite Compare/capture Counter MAX Counter zero	
31	15	VTOR + 0x7c	UART Ch.1 interrupt	End of transmission Framing error Parity error Overrun error Receive buffer two bytes full Receive buffer one byte full	
32	16	VTOR + 0x80	16-bit timer Ch.2 interrupt	Transmit buffer empty Underflow	-
33	17		Quad synchronous serial interface Ch.0 interrupt	End of transmission Receive buffer full Transmit buffer empty Overrun error	
34	18	VTOR + 0x88	I ² C Ch.1 interrupt	End of data transfer General call address reception NACK reception STOP condition START condition Error detection Receive buffer full Transmit buffer empty	
35	19	VTOR + 0x8c	UART Ch.2 interrupt 16-bit timer Ch.0 interrupt	End of transmission Framing error Parity error Overrun error Receive buffer two bytes full Receive buffer one byte full Transmit buffer empty Underflow	
36	20	VTOD . 0v00	16-bit timer Ch.3 interrupt	Underflow	_

Interrupt number	IRQ number	Vector address	Hardware interrupt name	Cause of hardware interrupt	Priority
37	21	VTOR + 0x90	Synchronous serial interface	End of transmission	
			Ch.1 interrupt	Receive buffer full	
				Transmit buffer empty	
				Overrun error	
38	22	VTOR + 0x98	16-bit timer Ch.4 interrupt	Underflow	
39	23	VTOR + 0x9c	16-bit timer Ch.5 interrupt	Underflow	
40	24	VTOR + 0xa0	16-bit timer Ch.6 interrupt	Underflow	
41	25	VTOR + 0xa4	R/F converter Ch.0 interrupt	Reference oscillation completion	
				Sensor A oscillation completion	
				Sensor B oscillation completion	
				Measurement counter overflow error	
				Time base counter overflow error	
42	26	VTOR + 0xa8	12-bit A/D converter interrupt	Analog input signal m A/D conversion]
				completion	
				 Analog input signal m A/D conversion result 	
				overwrite error	0 5 11
43	27	VTOR + 0xac	Synchronous serial interface	End of transmission	Configurable
			Ch.2 interrupt	Receive buffer full	
				Transmit buffer empty	
				Overrun error	
			16-bit timer Ch.7 interrupt	Underflow]
44	28	VTOR + 0xb0	I ² C Ch.2 interrupt	End of data transfer	
				General call address reception	
				NACK reception	
				STOP condition	
				START condition	
				Error detection	
				Receive buffer full	
				Transmit buffer empty	
45	29	VTOR + 0xb4	IR remote controller interrupt	Compare AP]
				Compare DB	
46–47	-	-	Reserved	-	

^{*1} Either reset or NMI can be selected as the watchdog timer interrupt via software.

5.2.1 Vector Table Offset Address (VTOR)

The Cortex®-M0+ Vector Table Offset Register (VTOR) is provided to set the offset (start) address of the vector table in which interrupt vectors are programmed. "VTOR" described in Table 5.2.1 means the value set to this register. After an initial reset, VTOR is set to address 0x0. Therefore, even when the vector table location is changed, it is necessary that at least the reset vector be written to this address. For more information on VTOR, refer to the documents introduced in Section 3.4, such as "Cortex®-M0+ Devices Generic User Guide."

5.2.2 Priority of Interrupts

The priorities of SVCall, PendSV, and SysTick are configurable to the desired levels using the Cortex®-M0+ System Handler Priority Registers (SHPR2 and SHPR3). The priorities of the interrupt number 16 or later are configurable to the desired levels using the Cortex®-M0+ Interrupt Priority Registers (NVIC_IPR0-7). The priority value can be set within a range of 0 to 192 (a lower value has a higher priority). The priorities of reset, NMI, and HardFault are fixed at the predefined values. For more information, refer to the documents introduced in Section 3.4, such as "Cortex®-M0+ Devices Generic User Guide."

5.3 Peripheral Circuit Interrupt Control

The peripheral circuit that generates interrupts includes an interrupt enable bit and an interrupt flag for each interrupt cause.

Interrupt flag: The flag is set to 1 when the interrupt cause occurs. The clear condition depends on the peripheral circuit.

Interrupt enable bit: By setting this bit to 1 (interrupt enabled), an interrupt request will be sent to the CPU when the interrupt flag is set to 1. When this bit is set to 0 (interrupt disabled), no interrupt request will be sent to the CPU even if the interrupt flag is set to 1. An interrupt request is also sent to the CPU if the status is changed to interrupt enabled when the interrupt flag is 1.

5 INTERRUPT

For specific information on causes of interrupts, interrupt flags, and interrupt enable bits, refer to the respective peripheral circuit descriptions.

Note: To prevent occurrence of unnecessary interrupts, the corresponding interrupt flag should be cleared before setting the interrupt enable bit to 1 (interrupt enabled) and before terminating the interrupt handler routine.

5.4 NMI

The watchdog timer embedded in this IC can generate a non-maskable interrupt (NMI). This interrupt takes precedence over other interrupts and is unconditionally accepted by the CPU.

For detailed information on generating NMI, refer to the "Watchdog Timer" chapter.

6 DMA Controller (DMAC)

6.1 Overview

The main features of the DMAC are outlined below.

- Supports byte, halfword, and word transfers.
- Each DMAC channel can be configured to different transfer conditions independently.
- Supports memory-to-memory, memory-to-peripheral circuit, and peripheral circuit-to-memory transfers.
- Supports hardware DMA requests from peripheral circuits and software DMA requests.
- Priority level for each channel is selectable from two levels.
- DMA transfers are allowed even if the CPU is placed into HALT mode.

Figure 6.1.1 shows the configuration of the DMAC.

Table 6.1.1 DMAC Channel Configuration of S1C31D41

Item	32-pin package	48-pin package	64-pin package
Number of channels	4 channels (Ch.0 to Ch.3)		
Transfer source memories	Internal Flash memory, external Flash memory, and RAM		
Transfer destination memories	RAM		
Transfer source peripheral circuits	UART3, SPIA, QSPI, I2C, T16B, and ADC12A		d ADC12A
Transfer destination peripheral circuits	UA	ART3, SPIA, QSPI, I2C, T1	6B

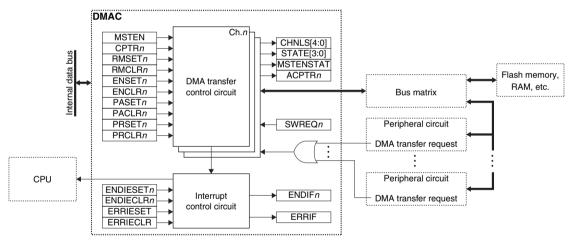


Figure 6.1.1 DMAC Configuration

6.2 Operations

6.2.1 Initialization

The DMAC should be initialized with the procedure shown below.

- 1. Set the data structure base address to the DMACCPTR register.
- 2. Configure the data structure for the channels to be used.
 - Set the control data.
 - Set the transfer source end pointer.
 - Set the transfer destination end pointer.
- 3. Set the DMACCFG.MSTEN bit to 1. (1)

(Enable DMAC)

4. Configure the DMACRMSET and DMACRMCLR registers.

(Configure masks for DMA transfer requests from peripheral circuits)

5. Configure the DMACENSET and DMACENCLR registers. (Enable channels used)

6. Configure the DMACPASET and DMACPACLR registers. (Select data structure used)

7. Configure the DMACPRSET and DMACPRCLR registers. (Set priorities)

8 Set the following registers when using the interrupt:

 Write 1 to the interrupt flags in the DMACENDIF and DMACERRIF registers.

(Clear interrupt flags)

- Configures the DMACENDIESET/DMACENDIECLR

and DMACERRIESET/DMACERRIECLR registers. (Enable/disable interrupts)

- 9. Set the DMA request enable bits of the peripheral circuits that use DMA transfer to 1.
- 10. To issue a software DMA request to Ch.n, write 1 to the DMACSWREQ.SWREQn bit.

6.3 Priority

If DMA requests are issued to two or more channels, the DMA transfers are performed in order from the highest-priority channel. The channel of which the priority level is set to 1 by the DMACPRSET.PRSET*n* bit has the highest priority. If two or more channels have been set to the same priority level, the smaller channel number takes precedence.

6.4 Data Structure

To perform DMA transfers, a data structure that contains basic transfer control information must be provided. The data structure consists of two blocks, primary data structure and alternate data structure, and one of them is used according to the DMA transfer mode.

The data structure can be located at an arbitrary address in the RAM area by setting the base address to the DMAC-CPTR.CPTR[31:0] bits.

The data structure for each channel consists of a transfer source end pointer, a transfer destination end pointer, and control data. An area of 16 bytes × 2 is allocated in the RAM for each channel.

The whole size of the data structure and the alternate data structure base address depend on the number of channels implemented.

Number of channels	Data structure	Primary data structure	Alternate data structure
implemented	size	base address	base address
1	32 bytes	DMACCPTR.CPTR[31:0] (CPTR[4:0] = 0x00)	DMACCPTR.CPTR[31:0] + 0x010
2	64 bytes	DMACCPTR.CPTR[31:0] (CPTR[5:0] = 0x00)	DMACCPTR.CPTR[31:0] + 0x020
3 to 4	128 bytes	DMACCPTR.CPTR[31:0] (CPTR[6:0] = 0x00)	DMACCPTR.CPTR[31:0] + 0x040
5 to 8	256 bytes	DMACCPTR.CPTR[31:0] (CPTR[7:0] = 0x00)	DMACCPTR.CPTR[31:0] + 0x080
9 to 16	512 bytes	DMACCPTR.CPTR[31:0] (CPTR[8:0] = 0x000)	DMACCPTR.CPTR[31:0] + 0x100
17 to 32	1,024 bytes	DMACCPTR.CPTR[31:0] (CPTR[9:0] = 0x000)	DMACCPTR.CPTR[31:0] + 0x200

Table 6.4.1 Data Structure Size According to Number of Channels Implemented

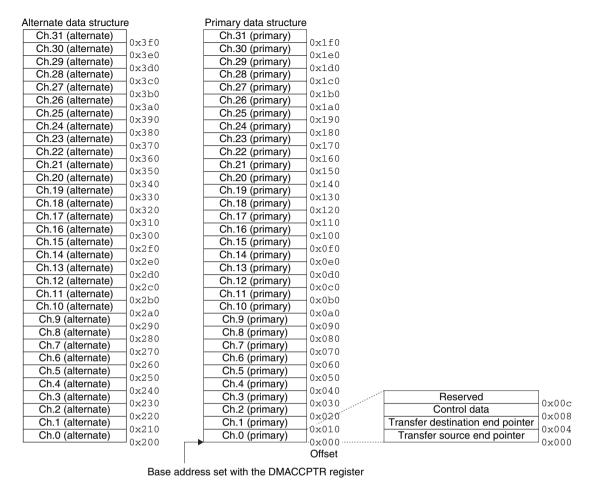
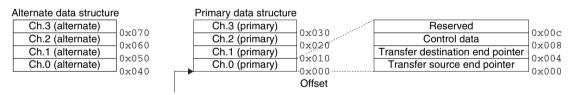



Figure 6.4.1 Data Structure Address Map (when 32 channels are implemented)

Base address set with the DMACCPTR register
Figure 6.4.2 Data Structure Address Map (when 4 channels are implemented)

The alternate data structure base address can be determined from the DMACACPTR.ACPTR[31:0] bits.

6.4.1 Transfer Source End Pointer

Set the source data end address. The address of data to be transferred should be set as it is if the transfer source address is not incremented.

6.4.2 Transfer Destination End Pointer

Set the address to which the last transfer data is written. The address for writing transfer data should be set as it is if the transfer destination address is not incremented.

6.4.3 Control Data

Set the DMA transfer information. Figure 6.4.3.1 shows the constituent elements of the control data.

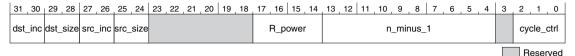


Figure 6.4.3.1 Constituent Elements of Control Data

dst inc

Set the increment value of the transfer destination address. The setting value must be equal to or larger than the transfer data size when the address is incremented.

Table 6.4.3.1 Increment Value of Transfer Destination Address

dst_inc	Increment value
0x3	No increment
0x2	+4
0x1	+2
0x0	+1

dst size

Set the size of the data to be written to the transfer destination. It should be the same value as the src_size.

Table 6.4.3.2 Size of Data Written to Transfer Destination

dst_size	Data size
0x3	Reserved
0x2	Word
0x1	Halfword
0x0	Byte

src inc

Set the increment value of the transfer source address. The setting value must be equal to or larger than the transfer data size when the address is incremented.

Table 6.4.3.3 Increment Value of Transfer Source Address

src_inc	Increment value
0x3	No increment
0x2	+4
0x1	+2
0x0	+1

src size

Set the size of the data to be read from the transfer source. It should be the same value as the dst_size.

Table 6.4.3.4 Size of Data Read from Transfer Source

src_size	Data size
0x3	Reserved
0x2	Word
0x1	Halfword
0x0	Byte

R_power

Set the arbitration cycle during successive data transfer.

Arbitration cycle $(2^R) = 2^{R_power}$

When the DMAC is performing a successive transfer, it suspends the data transfer at the cycle set with R_power . If DMA requests have been issued at that point, the DMAC re-arbitrates them according to their priorities and then performs a DMA transfer for the channel with the highest priority.

If the arbitration cycle setting value is larger than the number of successive data transfers, successive data transfers will not be suspended.

n minus 1

Set the number of DMA transfers to be executed successively.

Number of successive transfers $(N) = n_minus_1 + 1$

When the set number of successive transfers has completed, a transfer completion interrupt occurs.

cycle ctrl

Set the DMA transfer mode. For detailed information on each transfer mode, refer to Section 6.5, "DMA Transfer Mode."

cycle_ctrl	DMA transfer mode
0x7	Peripheral scatter-gather transfer
	(for alternate data structure)
0x6	Peripheral scatter-gather transfer
	(for primary data structure)
0x5	Memory scatter-gather transfer
	(for alternate data structure)
0x4	Memory scatter-gather transfer
	(for primary data structure)
0x3	Ping-pong transfer
0x2	Auto-request transfer
0x1	Basic transfer
0x0	Stop

Table 6.4.3.5 DMA Transfer Mode

6.5 DMA Transfer Mode

6.5.1 Basic Transfer

This is the basic DMA transfer mode. In this mode, DMA transfer starts when a DMA transfer request from a peripheral circuit or a software DMA request is issued, and it continues until it is completed for the set number of successive transfers or it is suspended at the arbitration cycle. To resume the DMA transfer suspended at the arbitration cycle, a DMA transfer request must be reissued.

When the set number of successive transfers has completed, a transfer completion interrupt occurs.

Figure 6.5.1.1 Basic Transfer Operation Example (N = 8, 2^R = 2)

6.5.2 Auto-Request Transfer

Similar to the basic transfer, DMA transfer starts when a DMA transfer request from a peripheral circuit or a software DMA request is issued, and it continues until it is completed for the set number of successive transfers or it is suspended at the arbitration cycle. The DMAC resumes the DMA transfer suspended at the arbitration cycle without a DMA transfer request being reissued.

When the set number of successive transfers has completed, a transfer completion interrupt occurs.

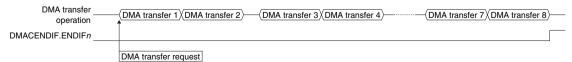


Figure 6.5.2.1 Auto-Request Transfer Operation Example (N = 8, 2^R = 2)

6.5.3 Ping-Pong Transfer

In ping-pong transfer mode, the DMAC performs basic transfers repeatedly while switching between the primary data structure and alternate data structure. The data structures are referred alternately, and DMA transfer is terminated when the control data with cycle_ctrl set to 0x0 is referred. A transfer completion interrupt occurs each time a transfer using a data structure is completed.

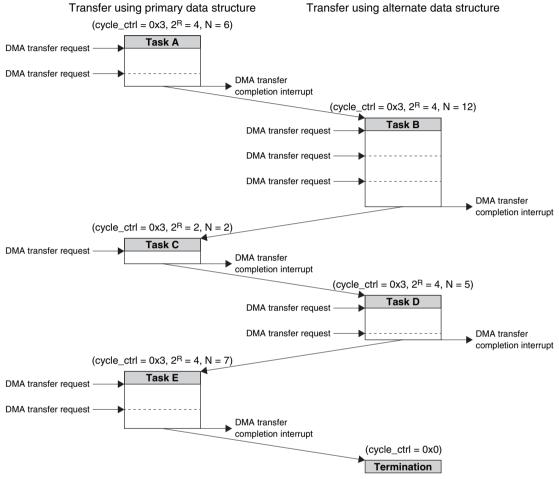


Figure 6.5.3.1 Ping-Pong Transfer Operation Example

DMA transfer procedure

- 1. Start data transfer by following the procedure shown in Section 6.2.1, "Initialization." In Step 2 of the initialization procedure, set Task A and Task B to the primary data structure and the alternate data structure, respectively.
- 2. Set Task C to the primary data structure after a DMA transfer completion interrupt has occurred by Task A.
- 3. Set Task D to the alternate data structure when a DMA transfer completion interrupt has occurred by Task B.
- 4. Repeat Steps 2 and 3.
- 5. Set cycle_ctrl to 0x0 after a DMA transfer completion interrupt has occurred by the next to last task.
- 6. The DMA transfer is completed when a DMA transfer completion interrupt occurs by the last task.

6.5.4 Memory Scatter-Gather Transfer

In scatter-gather transfer mode, first the DMAC, using the primary data structure, copies a data structure from the data structure table, which has been prepared with multiple data structures included in advance, to the alternate data structure, and then it performs DMA transfer using the alternate data structure. The DMAC performs this operation repeatedly. By programming the transfer mode of the data structure located at the end of the table as a basic transfer, the DMA transfer can be terminated with a transfer completion interrupt. This mode requires a DMA transfer request only for starting the first data transfer. Subsequent data transfers are performed by auto-requests.

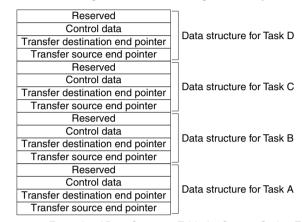


Figure 6.5.4.1 Example of Data Structure Table for Scatter-Gather Transfer

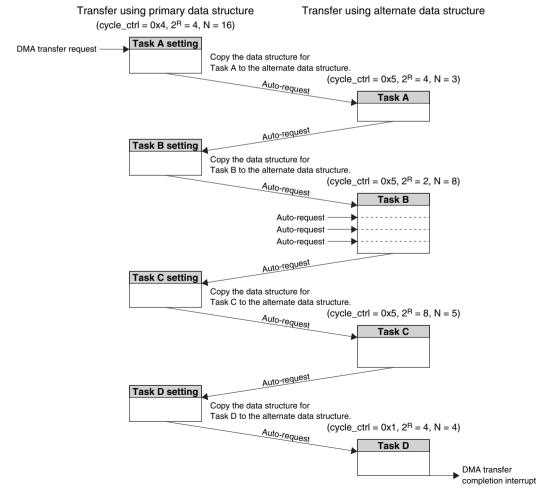


Figure 6.5.4.2 Memory Scatter-Gather Transfer Operation Example

DMA transfer procedure

- Configure the data structure table for scatter-gather transfer.
 Set the cycle_ctrl for the last task to 0x1 and those for other tasks to 0x5.
- 2. Start data transfer by following the procedure shown in Section 6.2.1, "Initialization." In Step 2 of the initialization procedure, configure the primary data structure with the control data shown below.

```
Transfer source end pointer = Data structure table end address Transfer destination end pointer = Alternate data structure end address dst_inc = 0x2 dst_size = 0x2 src_inc = 0x2 src_size = 0x2 src_size = 0x2 R_power = 0x2 n_minus_1 = Number of tasks \times 4 - 1 cycle_ctrl = 0x4
```

3. The DMA transfer is completed when a DMA transfer completion interrupt occurs.

6.5.5 Peripheral Scatter-Gather Transfer

In memory scatter-gather transfer mode, the second and subsequent DMA transfers are performed by auto-requests. On the other hand, in peripheral scatter-gather transfer mode, all DMA transfers are performed by a DMA transfer request issued by a peripheral circuit or a software DMA request.

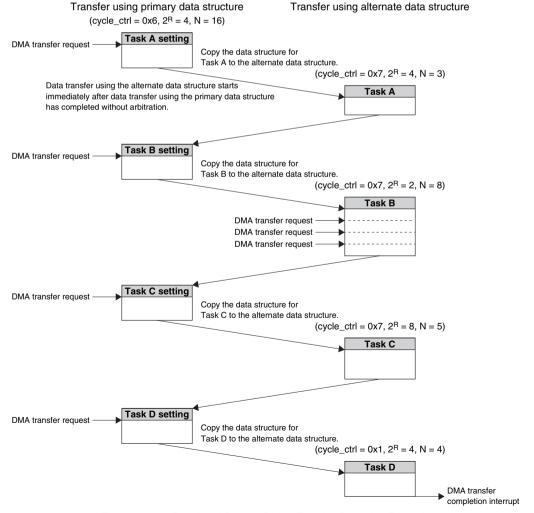


Figure 6.5.5.1 Peripheral Scatter-Gather Transfer Operation Example

DMA transfer procedure

- Configure the data structure table for scatter-gather transfer.
 Set the cycle_ctrl for the last task to 0x1 and those for other tasks to 0x7.
- 2. Start data transfer by following the procedure shown in Section 6.2.1, "Initialization." In Step 2 of the initialization procedure, configure the primary data structure with the control data shown below.

```
Transfer source end pointer = Data structure table end address

Transfer destination end pointer = Alternate data structure end address

dst_inc = 0x2

dst_size = 0x2

src_inc = 0x2

src_size = 0x2

R_power = 0x2

n_minus_1 = Number of tasks × 4 - 1

cycle ctrl = 0x6
```

- 3. Issue a DMA transfer request in each task using a peripheral circuit or via software.
- 4. The DMA transfer is completed when a DMA transfer completion interrupt occurs.

6.6 DMA Transfer Cycle

A DMA transfer requires several clock cycles to execute. Figure 6.6.1 shows a detailed DAM transfer cycle. Note that the number of clock cycles for a DMA transfer may be increased due to a conflict with an access from the CPU or the Flash bus access cycle setting.

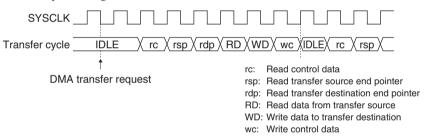


Figure 6.6.1 DMA Transfer Cycle

6.7 Interrupts

The DMAC has a function to generate the interrupts shown in Table 6.7.1.

Table 6.7.1 DMAC Interrupt Function

Interrupt	Interrupt flag	Set condition	Clear condition
DMA transfer completion	DMACENDIF.ENDIFn	When DMA transfers for a set number of	Writing 1
		successive transfers have completed	
DMA transfer error	DMACERRIF.ERRIF	When an AHB bus error has occurred	Writing 1

The DMAC provides interrupt enable bits corresponding to each interrupt flag. An interrupt request is sent to the CPU only when the interrupt flag, of which interrupt has been enabled by the interrupt enable bit, is set. For more information on interrupt control, refer to the "Interrupt" chapter.

6.8 Control Registers

DMAC Status Register

	,	J				
Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACSTAT	31–24	_	0x00	_	R	_
	23-21	_	0x0	-	R	
	20-16	CHNLS[4:0]	*	H0	R	* Number of channels implemented - 1
	15–8	_	0x00	-	R	_
	7–4	STATE[3:0]	0x0	H0	R	
	3–1	_	0x0	-	R	
	0	MSTENSTAT	0	H0	R	

Bits 31-21 Reserved

Bits 20-16 CHNLS[4:0]

These bits show the number of DMAC channels implemented in this IC.

Number of channels implemented = CHNLS + 1

Bits 15-8 Reserved

Bits 7-4 STATE[3:0]

These bits indicates the DMA transfer status.

Table 6.8.1 DMA Transfer Status

DMACSTAT.STATE[3:0] bits	DMA transfer status
0xf–0xbf	Reserved
0xa	Peripheral scatter-gather transfer is in progress.
0x9	Transfer has completed.
0x8	Transfer has been suspended.
0x7	Control data is being written.
0x6	Standby for transfer request to be cleared.
0x5	Transfer data is being written.
0x4	Transfer data is being read.
0x3	Transfer destination end pointer is being read.
0x2	Transfer source end pointer is being read.
0x1	Control data is being read.
0x0	Idle

Bits 3-1 Reserved

Bit 0 MSTENSTAT

This bit indicates the DMA controller status.

1 (R): DMA controller is operating. 0 (R): DMA controller is idle.

DMAC Configuration Register

	<u>J</u>	<u> </u>				
Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACCFG	31–24	-	0x00	_	R	_
	23-16	_	0x00	-	R	
	15–8	_	0x00	-	R	_
	7–1	_	0x00	_	R	
	0	MSTEN	-	-	W	

Bits 31-1 Reserved

Bit 0 MSTEN

This bit enables the DMA controller.

1 (W): Enable 0 (W): Disable

DMAC Control Data Base Pointer Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACCPTR	31–0	CPTR[31:0]	0x0000	H0	R/W	_
			0000			

Bits 31-0 CPTR[31:0]

These bits set the leading address of the data structure.

Depending on the number of channels implemented, low-order bits are configured for read only.

Table 6.8.2 CPTR Writable/Read-Only Bits Depending On Number of Channel Implemented

	, ,	
Number of channel implemented	Writable bits	Read-only bits
1	CPTR[31:5]	CPTR[4:0]
2	CPTR[31:6]	CPTR[5:0]
3–4	CPTR[31:7]	CPTR[6:0]
5–8	CPTR[31:8]	CPTR[7:0]
9–16	CPTR[31:9]	CPTR[8:0]
17–32	CPTR[31:10]	CPTR[9:0]

DMAC Alternate Control Data Base Pointer Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACACPTR	31–0	ACPTR[31:0]	_	H0	R	_

Bits 31-0 ACPTR[31:0]

These bits show the alternate data structure base address.

DMAC Software Request Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACSWREQ	31–0	SWREQ[31:0]	-	_	W	_

Bits 31-0 SWREQ [31:0]

These bits issue a software DMA transfer request to each channel.

1 (W): Issue a software DMA transfer request

0 (W): Ineffective

Each bit corresponds to a DMAC channel (e.g. bit n corresponds to Ch.n). The high-order bits for the unimplemented channels are ineffective.

DMAC Request Mask Set Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACRMSET	31–0	RMSET[31:0]	0x0000	H0	R/W	-
			0000			

Bits 31-0 RMSET[31:0]

These bits mask DMA transfer requests from peripheral circuits.

1 (W): Mask DMA transfer requests from peripheral circuits

0 (W): Ineffective

1 (R): DMA transfer requests from peripheral circuits have been disabled.

0 (R): DMA transfer requests from peripheral circuits have been enabled.

Each bit corresponds to a DMAC channel. The high-order bits for the unimplemented channels are ineffective.

DMAC Request Mask Clear Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACRMCLR	31–0	RMCLR[31:0]	-	-	W	_

Bits 31-0 RMCLR[31:0]

These bits cancel the mask state of DMA transfer requests from peripheral circuits

1 (W): Cancel mask state of DMA transfer requests from peripheral circuits

(The DMACRMSET register is cleared to 0.)

0 (W): Ineffective

Each bit corresponds to a DMAC channel. The high-order bits for the unimplemented channels are ineffective.

DMAC Enable Set Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACENSET	31–0	ENSET[31:0]	0x0000	H0	R/W	_
			0000			

Bits 31-0 ENSET[31:0]

These bits enable each DMAC channel.

1 (W): Enable DMAC channel

0 (W): Ineffective 1 (R): Enabled 0 (R): Disabled

These bits are cleared after the DMA transfer has completed.

Each bit corresponds to a DMAC channel. The high-order bits for the unimplemented channels are ineffective.

DMAC Enable Clear Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACENCLR	31–0	ENCLR[31:0]	_	-	W	_

Bits 31-0 ENCLR[31:0]

These bits disable each DMAC channel.

1 (W): Disable DMAC channel (The DMACENSET register is cleared to 0.)

0 (W): Ineffective

Each bit corresponds to a DMAC channel. The high-order bits for the unimplemented channels are ineffective.

DMAC Primary-Alternate Set Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks			
DMACPASET	31–0	PASET[31:0]	0x0000 0000	H0	R/W	_			

Bits 31-0 PASET[31:0]

These bits enable the alternate data structures.

1 (W): Enable alternate data structure

0 (W): Ineffective

1 (R): The alternate data structure has been enabled. 0 (R): The primary data structure has been enabled.

Each bit corresponds to a DMAC channel. The high-order bits for the unimplemented channels are ineffective.

DMAC Primary-Alternate Clear Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACPACLR	31–0	PACLR[31:0]	_	_	W	_

Bits 31-0 PACLR[31:0]

These bits disable the alternate data structures.

1 (W): Disable alternate data structure (The DMACPASET register is cleared to 0.)

0 (W): Ineffective

Each bit corresponds to a DMAC channel. The high-order bits for the unimplemented channels are ineffective.

DMAC Priority Set Register

	_					
Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACPRSET	31–0	PRSET[31:0]	0x0000	H0	R/W	_
			0000			

Bits 31-0 PRSET[31:0]

These bits increase the priority of each channel.

1 (W): Increase priority 0 (W): Ineffective

1 (R): Priority = High 0 (R): Priority = Normal

Each bit corresponds to a DMAC channel. The high-order bits for the unimplemented channels are ineffective.

DMAC Priority Clear Register

	,	- J				
Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACPRCLR	31–0	PRCLR[31:0]	_	_	W	_

Bits 31-0 PRCLR[31:0]

These bits decrease the priority of each channel.

1(W): Decrease priority (The DMACPRSET register is cleared to 0.)

0 (W): Ineffective

Each bit corresponds to a DMAC channel. The high-order bits for the unimplemented channels are ineffective.

DMAC Error Interrupt Flag Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACERRIF	31–24	_	0x00	_	R	_
	23-16	_	0x00	-	R	
	15–8	-	0x00	-	R	
	7–1	_	0x00	-	R	
	0	ERRIF	0	H0	R/W	Cleared by writing 1.

Bits 31-1 Reserved

Bit 0 ERRIF

This bit indicates the DMAC error interrupt cause occurrence status.

1 (R): Cause of interrupt occurred

0 (R): No cause of interrupt occurred

1 (W): Clear flag 0 (W): Ineffective **DMAC Transfer Completion Interrupt Flag Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACENDIF	31–0	ENDIF[31:0]	0x0000 0000	H0	R/W	Cleared by writing 1.

Bits 31-0 ENDIF[31:0]

These bits indicate the DMA transfer completion interrupt cause occurrence status of each DMAC channel.

1 (R): Cause of interrupt occurred 0 (R): No cause of interrupt occurred

1 (W): Clear flag 0 (W): Ineffective

Each bit corresponds to a DMAC channel. The high-order bits for the unimplemented channels are ineffective.

DMAC Transfer Completion Interrupt Enable Set Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACENDIESET	31–0	ENDIESET[31:0]	0x0000 0000	H0	R/W	_

Bits 31-0 ENDIESET[31:0]

These bits enable DMA transfer completion interrupts to be generated from each DMAC channel.

1 (W): Enable interrupt

0 (W): Ineffective

1 (R): Interrupt has been enabled.0 (R): Interrupt has been disabled.

Each bit corresponds to a DMAC channel. The high-order bits for the unimplemented channels are ineffective.

DMAC Transfer Completion Interrupt Enable Clear Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACENDIECLR	31–0	ENDIECLR[31:0]	-	_	W	_

Bits 31-0 ENDIECLR[31:0]

These bits disable DMA transfer completion interrupts to be generated from each DMAC channel.

1 (W): Disable interrupt (The DMACENDIESET register is cleared to 0.)

0 (W): Ineffective

Each bit corresponds to a DMAC channel. The high-order bits for the unimplemented channels are ineffective

DMAC Error Interrupt Enable Set Register

				,		
Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACERRIESET	31–24	_	0x00	_	R	_
	23-16	_	0x00	-	R	
	15–8	_	0x00	-	R	
	7–1	_	0x00	_	R	
	0	ERRIESET	0	H0	R/W	

Bits 31-1 Reserved

Bit 0 ERRIESET

This bit enables DMA error interrupts.

1 (W): Enable interrupt 0 (W): Ineffective

1 (R): Interrupt has been enabled.0 (R): Interrupt has been disabled.

DMAC Error Interrupt Enable Clear Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACERRIECLR	31–24	_	0x00	-	R	_
	23-16	_	0x00	-	R	
	15–8	_	0x00	-	R	
	7–1	_	0x00	-	R	
	0	ERRIECLR	-	-	W	

Bits 31-1 Reserved

Bit 0 ERRIECLR

This bit disables DMA error interrupts.

1 (W): Disable interrupt (The DMACERRIESET register is cleared to 0.)

0 (W): Ineffective

7 I/O Ports (PPORT)

7.1 Overview

PPORT controls the I/O ports. The main features are outlined below.

- Allows port-by-port function configurations.
 - Each port can be configured with or without a pull-up or pull-down resistor.
 - Each port can be configured with or without a chattering filter.
 - Allows selection of the function (general-purpose I/O port (GPIO) function, up to four peripheral I/O functions) to be assigned to each port.
- Ports, except for those shared with debug pins, are initially placed into Hi-Z state. (No current passes through the pin during this Hi-Z state.)

Note: 'x', which is used in the port names Pxy, register names, and bit names, refers to a port group ($x = 0, 1, 2, \dots, d$) and 'y' refers to a port number ($y = 0, 1, 2, \dots, 7$).

Figure 7.1.1 shows the configuration of PPORT.

Table 7.1.1 Port Configuration of S1C31D41

Item		32-pin pa	ckage	48-pin pad	ckage	64-pin package	
Port groups included	P0	_	(0)	P0[6:2]	(5) *1, *2	P0[7:0]	(8) *1, *2
	P1	P1[7:2]	(6) *1, *2	P1[7:2]	(6) *1, *2	P1[7:0]	(8) *1, *2
	P2	P20	(1) *1, *2	P2[3:0]	(4) *1, *2	P2[7:0]	(8) *1, *2
	P3	P3[2:1]	(2) *1, *2	P3[5:1]	(5) *1, *2	P3[7:0]	(8) *1, *2
	P4	P4[4:2]	(3) *1, *2	P4[5:2]	(4) *1, *2	P4[5:0]	(6) *1, *2
	P5	P54, P5[1:0]	(3) *1, *2	5[6:4], P5[1:0]	(5) *1, *2	P5[6:0]	(7) *1, *2
	P6	P6[5:0]	(6) *1, *2	P6[5:0]	(6) *1, *2	P6[5:0]	(6) *1, *2
	Pd	Pd[3:0]	(4) *1	Pd[3:0]	(4) *1	Pd[3:0]	(4) *1
Total number of ports		25 pc	rts	39 por	ts	55 ports	
Ports for debug function	debug function Pd[1:0]						
Key-entry reset function		Unavailable					

^{*1} Ports with general-purpose I/O function (GPIO)

^{*2} Ports with interrupt function

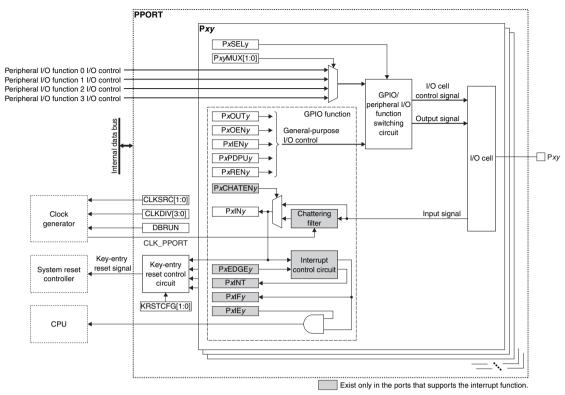


Figure 7.1.1 PPORT Configuration

7.2 I/O Cell Structure and Functions

Figure 7.2.1 shows the I/O cell Configuration.

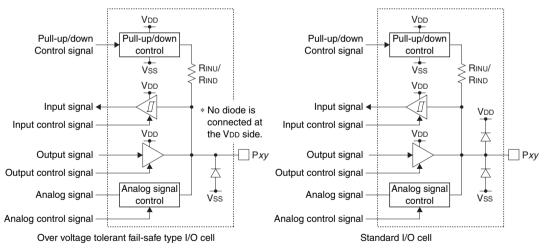


Figure 7.2.1 I/O Cell Configuration

Refer to "Pin Descriptions" in the "Overview" chapter for the cell type, either the over voltage tolerant fail-safe type I/O cell or the standard I/O cell, included in each port.

7.2.1 Schmitt Input

The input functions are all configured with the Schmitt interface level. When a port is set to input disable status (PPORTPxIOEN.PxIENy bit = 0), unnecessary current is not consumed if the Pxy pin is placed into floating status.

7.2.2 Over Voltage Tolerant Fail-Safe Type I/O Cell

The over voltage tolerant fail-safe type I/O cell allows interfacing without passing unnecessary current even if a voltage exceeding VDD is applied to the port. Also unnecessary current is not consumed when the port is externally biased without supplying VDD. However, be sure to avoid applying a voltage exceeding the recommended maximum operating power supply voltage to the port.

7.2.3 Pull-Up/Pull-Down

The GPIO port has a pull-up/pull-down function. Either pull-up or pull-down may be selected for each port individually. This function may also be disabled for the port that does not require pulling up/down.

When the port level is switched from low to high through the pull-up resistor included in the I/O cell or from high to low through the pull-down resistor, a delay will occur in the waveform rising/falling edge depending on the time constant by the pull-up/pull-down resistance and the pin load capacitance. The rising/falling time is commonly determined by the following equation:

```
\begin{aligned} \text{tpr} &= -\text{Rinu} \times (\text{Cin} + \text{Cboard}) \times \ln(1 - \text{Vt} + \text{Vdd}) \\ \text{tpf} &= -\text{Rind} \times (\text{Cin} + \text{Cboard}) \times \ln(1 - \text{Vt} + \text{Vdd}) \\ \end{aligned} \\ \text{Where} \\ \text{tpr}: \qquad \text{Rising time (port level = low $\rightarrow$ high) [second]} \\ \text{tpf}: \qquad \text{Falling time (port level = high $\rightarrow$ low) [second]} \\ \text{Vt}: \qquad \text{High level Schmitt input threshold voltage [V]} \\ \text{Vt}: \qquad \text{Low level Schmitt input threshold voltage [V]} \end{aligned}
```

Cin: Pin capacitance [F]

CBOARD: Parasitic capacitance on the board [F]

RINU/RIND: Pull-up/pull-down resistance $[\Omega]$

7.2.4 CMOS Output and High Impedance State

The I/O cells except for analog output can output signals in the VDD and Vss levels. Also the GPIO ports may be put into high-impedance (Hi-Z) state.

7.3 Clock Settings

7.3.1 PPORT Operating Clock

When using the chattering filter for entering external signals to PPORT, the PPORT operating clock CLK_PPORT must be supplied to PPORT from the clock generator.

The CLK_PPORT supply should be controlled as in the procedure shown below.

- 1. Enable the clock source in the clock generator if it is stopped (refer to "Clock Generator" in the "Power Supply, Reset, and Clocks" chapter).
- 2. Write 0x0096 to the SYSPROT.PROT[15:0] bits. (Remove system protection)
- 3. Set the following PPORTCLK register bits:

- PPORTCLK.CLKSRC[1:0] bits (Clock source selection)

- PPORTCLK.CLKDIV[3:0] bits (Clock division ratio selection = Clock frequency setting)

4. Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits. (Set system protection)

Settings in Step 3 determine the input sampling time of the chattering filter.

7.3.2 Clock Supply in SLEEP Mode

When using the chattering filter function during SLEEP mode, the PPORT operating clock CLK_PPORT must be configured so that it will keep suppling by writing 0 to the CLGOSC_xxxxSLPC bit for the CLK_PPORT clock source.

7 I/O PORTS (PPORT)

If the CLGOSC xxxxSLPC bit for the CLK_PPORT clock source is 1, the CLK_PPORT clock source is deactivated during SLEEP mode and it disables the chattering filter function regardless of the PPORTPxCHATEN.Px-CHATENy bit setting (chattering filter enabled/disabled).

7.3.3 Clock Supply During Debugging

The CLK_PPORT supply during debugging should be controlled using the PPORTCLK.DBRUN bit.

The CLK_PPORT supply to PPORT is suspended when the CPU enters debug state if the PPORTCLK.DBRUN bit = 0. After the CPU returns to normal operation, the CLK_PPORT supply resumes. The PPORT chattering filter stops operating when the CLK_PPORT supply is suspended. If the chattering filter is enabled in PPORT, the input port function is also deactivated. However, the control registers can be altered. If the PPORTCLK.DBRUN bit = 1, the CLK_PPORT supply is not suspended and the chattering filter will keep operating in a debug state.

7.4 Operations

7.4.1 Initialization

After a reset, the ports except for the debugging function are configured as shown below.

Port input: Disabled
Port output: Disabled
Pull-up: Off
Pull-down: Off

Port pins: High impedance statePort function: Configured to GPIO

This status continues until the ports are configured via software. The debugging function ports are configured for debug signal input/output.

Initial settings when using a port for a peripheral I/O function

When using the Pxy port for a peripheral I/O function, perform the following software initial settings:

1. Set the following PPORTPxIOEN register bits:

Set the PPORTPxIOEN.PxIENy bit to 0. (Disable input)
 Set the PPORTPxIOEN.PxOENy bit to 0. (Disable output)

2. Set the PPORTPxMODSEL.PxSELy bit to 0. (Disable peripheral I/O function)

3. Initialize the peripheral circuit that uses the pin.

4. Set the PPORTPxFNCSEL.PxyMUX[1:0] bits. (Select peripheral I/O function)
5. Set the PPORTPxMODSEL.PxSELy bit to 1. (Enable peripheral I/O function)

For the list of the peripheral I/O functions that can be assigned to each port of this IC, refer to "Control Register and Port Function Configuration of this IC." For the specific information on the peripheral I/O functions, refer to the respective peripheral circuit chapter.

Initial settings when using a port as a general-purpose output port (only for the ports with GPIO function)

When using the Pxy port pin as a general-purpose output pin, perform the following software initial settings:

1. Set the PPORTPxIOEN.PxOENy bit to 1. (Enable output)

2. Set the PPORTPxMODSEL.PxSELv bit to 0. (Enable GPIO function)

Initial settings when using a port as a general-purpose input port (only for the ports with GPIO function)

When using the Pxy port pin as a general-purpose input pin, perform the following software initial settings:

1. Write 0 to the PPORTPxINTCTL.PxIEy bit. * (Disable interrupt)

2. When using the chattering filter, configure the PPORT operating clock (see "PPORT Operating Clock") and set the PPORTPxCHATEN.PxCHATENy bit to 1.*

When the chattering filter is not used, set the PPORTPxCHATEN.PxCHATENy bit to 0 (supply of the PPORT operating clock is not required).

3. Configure the following PPORTPxRCTL register bits when pulling up/down the port using the internal pull-up or down resistor:

- PPORTPxRCTL.PxPDPUy bit (Select pull-up or pull-down resistor)

- Set the PPORTPxRCTL.PxRENy bit to 1. (Enable pull-up/down)

Set the PPORTPxRCTL.PxRENy bit to 0 if the internal pull-up/down resistors are not used.

4. Set the PPORTPxMODSEL.PxSELy bit to 0. (Enable GPIO function)

5. Configure the following bits when using the port input interrupt: *

- Write 1 to the PPORTPxINTF.PxIFy bit. (Clear interrupt flag)

- PPORTPxINTCTL.PxEDGEy bit (Select interrupt edge (input rising edge/falling edge))

- Set the PPORTPxINTCTL.PxIEy bit to 1. (Enable interrupt)

6. Set the following PPORTPxIOEN register bits:

Set the PPORTPxIOEN.PxOENy bit to 0. (Disable output)
 Set the PPORTPxIOEN.PxIENy bit to 1. (Enable input)

* Steps 1 and 5 are required for the ports with an interrupt function. Step 2 is required for the ports with a chattering filter function.

Table 7.4.1.1 lists the port status according to the combination of data input/output control and pull-up/down control.

PPORTPxIOEN. PxIENy bit	PPORTPxIOEN. PxOENy bit	PPORTPxRCTL. PxRENy bit	PPORTPxRCTL. PxPDPUy bit	Input	Output	Pull-up/pull-down condition
0	0	0	×	Disa	bled	Off (Hi-Z) *1
0	0	1	0	Disa	bled	Pulled down
0	0	1	1	Disa	bled	Pulled up
1	0	0	×	Enabled	Disabled	Off (Hi-Z) *2
1	0	1	0	Enabled	Disabled	Pulled down
1	0	1	1	Enabled	Disabled	Pulled up
0	1	0	×	Disabled	Enabled	Off
0	1	1	0	Disabled	Enabled	Off
0	1	1	1	Disabled	Enabled	Off
1	1	1	0	Enabled	Enabled	Off
1	1	1	1	Enabled	Enabled	Off

Table 7.4.1.1 GPIO Port Control List

Note: If the PPORTPxMODSEL.PxSELy bit for the port without a GPIO function is set to 0, the port goes into initial status (refer to "Initial Settings"). The GPIO control bits are configured to a read-only bit always read out as 0.

7.4.2 Port Input/Output Control

Peripheral I/O function control

The port for which a peripheral I/O function is selected is controlled by the peripheral circuit. For more information, refer to the respective peripheral circuit chapter.

^{*1:} Initial status. Current does not flow if the pin is placed into floating status.

^{*2:} Use of the pull-up or pull-down function is recommended, as undesired current will flow if the port input is set to floating status.

Setting output data to a GPIO port

Write data (1 = high output, 0 = low output) to be output from the Pxy pin to the PPORTPxDAT.PxOUTy bit.

Reading input data from a GPIO port

The data (1 = high input, 0 = low input) input from the Pxy pin can be read out from the PPORTPxDAT.PxINy bit.

Chattering filter function

Some ports have a chattering filter function and it can be controlled in each port. This function is enabled by setting the PPORTPxCHATEN.PxCHATENy bit to 1. The input sampling time to remove chattering is determined by the CLK_PPORT frequency configured using the PPORTCLK register in common to all ports. The chattering filter removes pulses with a shorter width than the input sampling time.

Input sampling time =
$$\frac{2 \text{ to } 3}{\text{CLK_PPORT frequency [Hz]}}$$
 [second] (Eq. 7.2)

Make sure the Pxy port interrupt is disabled before altering the PPORTCLK register and PPORTPxCHATEN. PxCHATENy bit settings. A Pxy port interrupt may erroneously occur if these settings are altered in an interrupt enabled status. Furthermore, enable the interrupt after a lapse of four or more CLK_PPORT cycles from enabling the chattering filter function.

If the clock generator is configured so that it will supply CLK_PPORT to PPORT in SLEEP mode, the chattering filter of the port will function even in SLEEP mode. If CLK_PPORT is configured to stop in SLEEP mode, PPORT inactivates the chattering filter during SLEEP mode to input pin status transitions directly to itself.

Key-entry reset function

This function issues a reset request when low-level pulses are input to all the specified ports simultaneously. Make the following settings when using this function:

- 1. Configure the ports to be used for key-entry reset as general-purpose input ports (refer to "Initial settings when using a port as a general-purpose input port (only for the ports with GPIO function)").
- 2. Configure the input pin combination for key-entry reset using the PPORTCLK.KRSTCFG[1:0] bits.

Note: When enabling the key-entry reset function, be sure to configure the port pins to be used for it as general-purpose input pins before setting the PPORTCLK.KRSTCFG[1:0] bits.

PPORT issues a reset request immediately after all the input pins specified by the PPORTCLK.KRSTCFG[1:0] are set to a low level if the chattering filter function is disabled (initial status). To issue a reset request only when low-level signals longer than the time configured are input, enable the chattering filter function for all the ports used for key-entry reset.

The pins configured for key-entry reset can also be used as general-purpose input pins.

7.5 Interrupts

When the GPIO function is selected for the port with an interrupt function, the port input interrupt function can be used.

Table 7.5.1 Port Input Interrupt Function

Interrupt	Interrupt flag	Set condition	Clear condition
Port input	PPORTPxINTF.PxIFy	Rising or falling edge of the input signal	Writing 1
interrupt	PPORTINTFGRP.PxINT	Setting an interrupt flag in the port group	Clearing PPORTPxINTF.PxIFy

Interrupt edge selection

Port input interrupts will occur at the falling edge of the input signal when setting the PPORTPxINTCTL. PxEDGEy bit to 1, or the rising edge when setting to 0.

Interrupt enable

PPORT provides interrupt enable bits (PPORTPxINTCTL.PxIEy bit) corresponding to each interrupt flag. An interrupt request is sent to the CPU only when the interrupt flag, of which interrupt has been enabled by the interrupt enable bit, is set. For more information on interrupt control, refer to the "Interrupt" chapter.

Interrupt check in port group unit

When interrupts are enabled in two or more port groups, check the PPORTINTFGRP.PxINT bit in the interrupt handler first. It helps minimize the handler codes for finding the port that has generated an interrupt. If this bit is set to 1, an interrupt has occurred in the port group. Next, check the PPORTPxINTF.PxIFy bit set to 1 in the port group to determine the port that has generated an interrupt. Clearing the PPORTPxINTF.PxIFy bit also clears the PPORTINTFGRP.PxINT bit. If the port is set to interrupt disabled status by the PPORTINTCTL. PxIEy bit, the PPORTINTFGRP.PxINT bit will not be set even if the PPORTPxINTF.PxIFy bit is set to 1.

7.6 Control Registers

This section describes the same control registers of all port groups as a single register. For the register and bit configurations in each port group and their initial values, refer to "Control Register and Port Function Configuration of this IC."

Px Port Data Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
PPORTPxDAT	15–8	PxOUT[7:0]	0x00	H0	R/W	_
	7–0	PxIN[7:0]	0x00	H0	R	

- *1: This register is effective when the GPIO function is selected.
- *2: The bit configuration differs depending on the port group.
- *3: The initial value may be changed by the port.

Bits 15-8 PxOUT[7:0]

These bits are used to set data to be output from the GPIO port pins.

1 (R/W): Output high level from the port pin 0 (R/W): Output low level from the port pin

When output is enabled (PPORTPxIOEN.PxOENy bit = 1), the port pin outputs the data set here. Although data can be written when output is disabled (PPORTPxIOEN.PxOENy bit = 0), it does not affect the pin status. These bits do not affect the outputs when the port is used as a peripheral I/O function.

Bits 7–0 PxIN[7:0]

The GPIO port pin status can be read out from these bits.

1 (R): Port pin = High level 0 (R): Port pin = Low level

The port pin status can be read out when input is enabled (PPORTPxIOEN.PxIENy bit = 1). When input is disabled (PPORTPxIOEN.PxIENy bit = 0), these bits are always read as 0.

When the port is used for a peripheral I/O function, the input value cannot be read out from these bits.

Px Port Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
PPORTPxIOEN	15–8	PxIEN[7:0]	0x00	H0	R/W	_
	7–0	PxOEN[7:0]	0x00	H0	R/W	

^{*1:} This register is effective when the GPIO function is selected.

Bits 15-8 PxIEN[7:0]

These bits enable/disable the GPIO port input. 1 (R/W): Enable (The port pin status is input.) 0 (R/W): Disable (Input data is fixed at 0.)

When both data output and data input are enabled, the pin output status controlled by this IC can be read.

These bits do not affect the input control when the port is used as a peripheral I/O function.

^{*2:} The bit configuration differs depending on the port group.

Bits 7-0 PxOEN[7:0]

These bits enable/disable the GPIO port output.

1 (R/W): Enable (Data is output from the port pin.)

0 (R/W): Disable (The port is placed into Hi-Z.)

These bits do not affect the output control when the port is used as a peripheral I/O function.

Px Port Pull-up/down Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
PPORTPxRCTL	15–8	PxPDPU[7:0]	0x00	H0	R/W	_
	7–0	PxREN[7:0]	0x00	H0	R/W	

^{*1:} This register is effective when the GPIO function is selected.

Bits 15-8 PxPDPU[7:0]

These bits select either the pull-up resistor or the pull-down resistor when using a resistor built into the port.

1 (R/W): Pull-up resistor 0 (R/W): Pull-down resistor

The selected pull-up/down resistor is enabled when the PPORTPxRCTL.PxRENy bit = 1.

Bits 7-0 PxREN[7:0]

These bits enable/disable the port pull-up/down control.

1 (R/W): Enable (The built-in pull-up/down resistor is used.) 0 (R/W): Disable (No pull-up/down control is performed.)

Enabling this function pulls up or down the port when output is disabled (PPORTPxIOEN.PxOENy bit = 0). When output is enabled (PPORTPxIOEN.PxOENy bit = 1), the PPORTPxRCTL.PxRENy bit setting is ineffective regardless of how the PPORTPxIOEN.PxIENy bit is set and the port is not pulled up/down. These bits do not affect the pull-up/down control when the port is used as a peripheral I/O function.

Px Port Interrupt Flag Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
PPORTPxINTF	15–8	_	0x00	_	R	_
	7–0	PxIF[7:0]	0x00	H0	R/W	Cleared by writing 1.

^{*1:} This register is effective when the GPIO function is selected.

Bits 15-8 Reserved

Bits 7-0 PxIF[7:0]

These bits indicate the port input interrupt cause occurrence status.

1 (R): Cause of interrupt occurred 0 (R): No cause of interrupt occurred

1 (W): Clear flag 0 (W): Ineffective

Px Port Interrupt Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
PPORTPxINTCTL	15–8	PxEDGE[7:0]	0x00	H0	R/W	_
	7–0	PxIE[7:0]	0x00	H0	R/W	

^{*1:} This register is effective when the GPIO function is selected.

Bits 15-8 PxEDGE[7:0]

These bits select the input signal edge to generate a port input interrupt.

1 (R/W): An interrupt will occur at a falling edge.

0 (R/W): An interrupt will occur at a rising edge.

^{*2:} The bit configuration differs depending on the port group.

^{*2:} The bit configuration differs depending on the port group.

^{*2:} The bit configuration differs depending on the port group.

Bits 7–0 PxIE[7:0]

These bits enable port input interrupts.

1 (R/W): Enable interrupts 0 (R/W): Disable interrupts

Note: To prevent generating unnecessary interrupts, the corresponding interrupt flag should be cleared before enabling interrupts.

Px Port Chattering Filter Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
PPORTPxCHATEN	15–8	_	0x00	_	R	_
	7–0	PxCHATEN[7:0]	0x00	H0	R/W	

^{*1:} The bit configuration differs depending on the port group.

Bits 15-8 Reserved

Bits 7-0 PxCHATEN[7:0]

These bits enable/disable the chattering filter function.

1 (R/W): Enable (The chattering filter is used.)
0 (R/W): Disable (The chattering filter is bypassed.)

Px Port Mode Select Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
PPORTPxMODSEL	15–8	_	0x00	_	R	_
	7–0	PxSEL[7:0]	0x00	H0	R/W	

^{*1:} The bit configuration differs depending on the port group.

Bits 15-8 Reserved

Bits 7-0 PxSEL[7:0]

These bits select whether each port is used for the GPIO function or a peripheral I/O function.

1 (R/W): Use peripheral I/O function

0 (R/W): Use GPIO function

Px Port Function Select Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
PPORTPxFNCSEL	15–14	Px7MUX[1:0]	0x0	H0	R/W	_
	13–12	Px6MUX[1:0]	0x0	H0	R/W	
	11–10	Px5MUX[1:0]	0x0	H0	R/W	
	9–8	Px4MUX[1:0]	0x0	H0	R/W	
	7–6	Px3MUX[1:0]	0x0	H0	R/W	
	5–4	Px2MUX[1:0]	0x0	H0	R/W	
	3–2	Px1MUX[1:0]	0x0	H0	R/W	
	1–0	Px0MUX[1:0]	0x0	H0	R/W	

^{*1:} The bit configuration differs depending on the port group.

Bits 15-14 Px7MUX[1:0]

Bits 1-0 Px0MUX[1:0]

I XOMOX[1.0]

These bits select the peripheral I/O function to be assigned to each port pin.

Table 7.6.1 Selecting Peripheral I/O Function

PPORTPxFNCSEL.PxyMUX[1:0] bits	Peripheral I/O function
0x3	Function 3
0x2	Function 2
0x1	Function 1
ΟxΟ	Function 0

This selection takes effect when the PPORTPxMODSEL.PxSELy bit = 1.

^{*2:} The initial value may be changed by the port.

^{*2:} The initial value may be changed by the port.

P Port Clock Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
PPORTCLK	15–9	_	0x00	_	R	_
	8	DBRUN	0	H0	R/WP	
	7–4	CLKDIV[3:0]	0x0	H0	R/WP	
	3–2	KRSTCFG[1:0]	0x0	H0	R/WP	
	1–0	CLKSRC[1:0]	0x0	H0	R/WP	

Bits 15-9 Reserved

Bit 8 DBRUN

This bit sets whether the PPORT operating clock is supplied during debugging or not.

1 (R/WP): Clock supplied during debugging

0 (R/WP): No clock supplied during debugging

Bits 7-4 CLKDIV[3:0]

These bits select the division ratio of the PPORT operating clock (chattering filter clock).

Bits 3-2 KRSTCFG[1:0]

These bits configure the key-entry reset function.

Table 7.6.2 Key-Entry Reset Function Settings

PPORTCLK.KRSTCFG[1:0] bits	key-entry reset
0x3	Reset when P0[3:0] inputs = all low
0x2	Reset when P0[2:0] inputs = all low
0x1	Reset when P0[1:0] inputs = all low
0x0	Disable

Bits 1-0 CLKSRC[1:0]

These bits select the clock source of PPORT (chattering filter).

The PPORT operating clock should be configured by selecting the clock source using the PPORT-CLK.CLKSRC[1:0] bits and the clock division ratio using the PPORTCLK.CLKDIV[3:0] bits as shown in Table 7.6.3. These settings determine the input sampling time of the chattering filter.

Table 7.6.3 Clock Source and Division Ratio Settings

PPORTCLK.CLKDIV[3:0]		PPORTCLK.CL	KSRC[1:0] bits	
bits	0x0	0x1	0x2	0x3
DILS	IOSC	OSC1	OSC3	EXOSC
0xf		1/32,768		1/1
0xe		1/16,384		
0xd				
0xc				
0xb				
0xa		1/1,024		
0x9		1/512		
0x8		1/256		
0x7		1/128		
0x6		1/64		
0x5		1/32		
0x4		1/16		
0x3		1/8		
0x2				
0x1				
0x0		1/1		

(Note) The oscillation circuits/external input that are not supported in this IC cannot be selected as the clock source.

P Port Interrupt Flag Group Register

			<u> </u>		1	
Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
PPORTINTFGRP	15–13	_	0x0	_	R	_
	12	PCINT	0	H0	R	
	11	PBINT	0	H0	R	
	10	PAINT	0	H0	R	
	9	P9INT	0	H0	R	
	8	P8INT	0	H0	R	
	7	P7INT	0	H0	R	
	6	P6INT	0	H0	R	
	5	P5INT	0	H0	R	
	4	P4INT	0	H0	R	
	3	P3INT	0	H0	R	
	2	P2INT	0	H0	R	
	1	P1INT	0	H0	R	
	0	POINT	0	H0	R	

^{*1:} Only the bits corresponding to the port groups that support interrupts are provided.

Bits 15-13 Reserved

Bits 12-0 PxINT

These bits indicate that Px port group includes a port that has generated an interrupt.

1 (R): A port generated an interrupt 0 (R): No port generated an interrupt

The PPORTINTFGRP.PxINT bit is cleared when the interrupt flag for the port that has generated an interrupt is cleared.

7.7 Control Register and Port Function Configuration of this IC

This section shows the PPORT control register/bit configuration in this IC and the list of peripheral I/O functions selectable for each port.

7.7.1 P0 Port Group

The P0 port group supports the GPIO and interrupt functions.

Table 7.7.1.1 Control Registers for P0 Port Group

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks	32 pin	1	64 pin
PODAT	15	P0OUT7	0	H0	R/W	_	-	-	1
(P0 Port Data	14	P0OUT6	0	H0	R/W		_	1	1
Register)	13	P0OUT5	0	H0	R/W		-	1	1
	12	P0OUT4	0	H0	R/W		-	1	1
	11	P0OUT3	0	H0	R/W		_	1	1
	10	P0OUT2	0	H0	R/W		-	1	1
	9	P0OUT1	0	H0	R/W		_	-	1
	8	P0OUT0	0	H0	R/W		_	-	1
	7	P0IN7	0	H0	R	_	-	-	1
	6	P0IN6	0	H0	R		_	1	1
	5	P0IN5	0	H0	R		_	1	1
	4	P0IN4	0	H0	R		_	1	1
	3	P0IN3	0	H0	R		_	1	1
	2	P0IN2	0	H0	R		_	1	1
	1	P0IN1	0	H0	R		_	-	1
	0	P0IN0	0	H0	R		_	-	1
POIOEN	15	P0IEN7	0	H0	R/W	_	-	-	1
(P0 Port Enable	14	P0IEN6	0	H0	R/W		_	1	1
Register)	13	P0IEN5	0	H0	R/W		_	1	1
	12	P0IEN4	0	H0	R/W		_	1	1
	11	P0IEN3	0	H0	R/W		_	1	1
	10	P0IEN2	0	H0	R/W		_	1	1
	9	P0IEN1	0	H0	R/W		_	-	1
	8	P0IEN0	0	H0	R/W		_	-	1
	7	P0OEN7	0	H0	R/W	_	-	-	1
	6	P00EN6	0	H0	R/W		-	1	1
	5	P0OEN5	0	H0	R/W		-	1	1
	4	P00EN4	0	H0	R/W		_	1	1
	3	P0OEN3	0	H0	R/W		_	1	1
	2	P0OEN2	0	H0	R/W		_	1	1
	1	P00EN1	0	H0	R/W		_	-	1
	0	P0OEN0	0	H0	R/W		_	-	1
P0RCTL	15	P0PDPU7	0	H0	R/W	_	-	-	1
(P0 Port Pull-up/down	14	P0PDPU6	0	H0	R/W		_	1	1
Control Register)	13	P0PDPU5	0	H0	R/W		-	1	1
	12	P0PDPU4	0	H0	R/W		-	1	1
	11	P0PDPU3	0	H0	R/W		-	1	1
	10	P0PDPU2	0	H0	R/W		_	1	1
	9	P0PDPU1	0	H0	R/W		_	-	1
	8	P0PDPU0	0	H0	R/W			-	1
	7	P0REN7	0 H0 R/W -	-	1				
	6	POREN6	0	H0	R/W		-	1	1
	5 POREN5	P0REN5	0	H0	R/W		_	1	1
	4	P0REN4	0	H0	R/W		-	1	1
	3	P0REN3	0	H0	R/W		-	1	1
	2	P0REN2	0	H0	R/W		-	1	1
	1	P0REN1	0	H0	R/W		-	-	1
	0	P0REN0	0	H0	R/W		-	1-	1

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks	32 pin	48 pin	64 pin
POINTF	15–8	_	0x00	_	R	_	-	-	-
(P0 Port Interrupt	7	P0IF7	0	H0	R/W	Cleared by writing 1.	-	-	1
Flag Register)	6	P0IF6	0	H0	R/W		-	1	1
	5	P0IF5	0	H0	R/W		-	1	1
	4	P0IF4	0	H0	R/W		_	1	1
	3	P0IF3	0	H0	R/W		_	1	1
	2	P0IF2	0	H0	R/W		-	1	1
	1	P0IF1	0	H0	R/W		-	-	1
	0	P0IF0	0	H0	R/W		-	-	1
POINTCTL	15	P0EDGE7	0	H0	R/W	-	-	-	1
(P0 Port Interrupt	14	P0EDGE6	0	H0	R/W		_	1	1
Control Register)	13	P0EDGE5	0	H0	R/W		_	1	1
	12	P0EDGE4	0	H0	R/W		_	1	1
	11	P0EDGE3	0	H0	R/W		-	1	1
	10	P0EDGE2	0	H0	R/W		_	1	/
	9	P0EDGE1	0	H0	R/W		_	-	1
	8	P0EDGE0	0	HO	R/W		_	-	/
	7	P0IE7	0	HO	R/W	_	1-	-	/
	6	P0IE6	0	HO	R/W	-	_	1	/
	5	P0IE5	0	HO	R/W	-	<u> </u>	1	/
	4	P0IE4	0	HO	R/W	-	<u> </u>	/	/
	3	POIE3	0	H0	R/W	-	<u> </u>	/	/
	2	P0IE2	0	H0	R/W	-		1	/
	1	P0IE1	0	H0	R/W	-	<u> </u>	_	/
	0	POIE0	0	H0	R/W	-	H		/
POCHATEN	15–8	_	0x00	-	R	_	\vdash		<u> </u>
(P0 Port Chattering	7	P0CHATEN7	0	H0	R/W		⊢	 	/
Filter Enable Register)	6	POCHATEN6	0	H0	R/W	-	H	/	/
,	5	POCHATEN5	0	H0	R/W	-	<u> </u>	1	/
	4	POCHATEN4	0	H0	R/W	-	H	1	/
	3	POCHATEN3	0	H0	R/W	-	H	1	/
	2	POCHATEN2	0	H0	R/W	-	H	1	/
	1	POCHATEN1	0	H0	R/W		F	•	/
	0	POCHATENO	0	H0	R/W	-	-	Ε	1
POMODSEL	15–8	PUCHATENU	0x00	_ HU	R		╀	 -	•
(P0 Port Mode Select	7	DOSEL 7				_	⊢	 -	_
Register)		POSEL7	0	H0 H0	R/W	-	\vdash	<u>-</u> ✓	1
l toglotor)	6	POSEL6	0		R/W	-	-	1	1
	5	POSEL5		H0	R/W	-	F	1	-
	4	POSEL4	0	H0	R/W	-	<u> </u>	<u> </u>	1
	3	POSEL3	0	H0	R/W		<u> </u>	/	/
	2	P0SEL2	0	H0	R/W		_	1	1
	1	P0SEL1	0	H0	R/W		_	_	/
	0	P0SEL0	0	H0	R/W		-	-	1
P0FNCSEL		P07MUX[1:0]	0x0	H0	R/W	_	_	-	/
(P0 Port Function		P06MUX[1:0]	0x0	H0	R/W		_	/	/
Select Register)		P05MUX[1:0]	0x0	H0	R/W		_	1	1
		P04MUX[1:0]	0x0	H0	R/W		_	/	1
		P03MUX[1:0]	0x0	H0	R/W		_	1	1
	5–4	P02MUX[1:0]	0x0	H0	R/W		_	1	1
	3–2	P01MUX[1:0]	0x0	H0	R/W		_	_	1
	1–0	P00MUX[1:0]	0x0	H0	R/W		_	_	1

Table 7.7.1.2 P0 Port Group Function Assignment

	POSELy = 0		P0SELy = 1																	
Port		P0yN	IUX = 0x0	P0yMU	X = 0x1	P0yMU	X = 0x2	P0yMU	X = 0x3	32	48	64								
name	GPIO	(Fur	nction 0)	(Function 1)		(Function 1) (Function 2) (Function 3)		(Function 1) (Function 2) (Function 3)		(Function 1) (Function 2) (Function 3)		(Function 2)		n 2) (Function 3)		(Function 3)		pin	pin	pin
		Peripheral	Pin	Peripheral	Pin	Peripheral	Pin	Peripheral	Pin			Ш								
P00	P00	-	-	UPMUX	*1	-	-	_	-	-	-	1								
P01	P01	_	-	UPMUX	*1	-	-	_	-	-	-	1								
P02	P02	CLG	FOUT	UPMUX	*1	-	-	_	-	-	1	1								
P03	P03	SDAC2	SDACOUT_P2	UPMUX	*1	-	-	_	-	-	1	1								
P04	P04	SDAC2	SDACOUT_P	UPMUX	*1	-	-	_	-	-	1	1								
P05	P05	SDAC2	SDACOUT_N	UPMUX	*1	-	-	_	-	-	1	1								
P06	P06	SDAC2	SDACOUT_N2	UPMUX	*1	-	-	_	-	-	1	1								
P07	P07	_	-	UPMUX	*1	-	_	_	-	T -	-	1								

^{*1:} Refer to the "Universal Port Multiplexer" chapter.

7.7.2 P1 Port Group

The P1 port group supports the GPIO and interrupt functions.

Table 7.7.2.1 Control Registers for P1 Port Group

	1	Table 7.7.2.1 C	ontroi Re	gisters for	PIPOR	aroup I	32	48	64
Register name	Bit	Bit name	Initial	Reset	R/W	Remarks	1 -		1
P1DAT	15	P1OUT7	0	H0	R/W	_	1	1	1
(P1 Port Data	14	P1OUT6	0	H0	R/W		1	1	1
Register)	13	P1OUT5	0	H0	R/W		1	1	1
	12	P1OUT4	0	H0	R/W		1	1	1
	11	P1OUT3	0	H0	R/W		1	1	1
	10	P1OUT2	0	H0	R/W		1	1	1
	9	P1OUT1	0	H0	R/W		_	-	1
	8	P1OUT0	0	H0	R/W		-	-	1
	7	P1IN7	0	H0	R	_	1	1	1
	6	P1IN6	0	H0	R		1	1	1
	5	P1IN5	0	H0	R		1	1	1
	4	P1IN4	0	H0	R		1	1	1
	3	P1IN3	0	H0	R		1	1	1
	2	P1IN2	0	H0	R		1	1	1
	1	P1IN1	0	H0	R		_	-	1
	0	P1IN0	0	H0	R		_	-	1
P1IOEN	15	P1IEN7	0	H0	R/W	_	1	1	1
(P1 Port Enable	14	P1IEN6	0	H0	R/W		1	1	1
Register)	13	P1IEN5	0	H0	R/W		1	1	1
	12	P1IEN4	0	H0	R/W		1	1	1
	11	P1IEN3	0	H0	R/W		1	1	1
	10	P1IEN2	0	H0	R/W		1	1	1
	9	P1IEN1	0	H0	R/W		-	-	1
	8	P1IEN0	0	H0	R/W		-	-	1
	7	P10EN7	0	H0	R/W	_	1	1	1
	6	P10EN6	0	H0	R/W		1	1	1
	5	P10EN5	0	H0	R/W		1	1	1
	4	P10EN4	0	H0	R/W		1	1	1
	3	P10EN3	0	H0	R/W		1	1	1
	2	P10EN2	0	H0	R/W		1	1	1
	1	P10EN1	0	H0	R/W		-	-	1
	0	P10EN0	0	H0	R/W		-	-	1

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks	32 pin	48 pin	64 pin
P1RCTL	15	P1PDPU7	0	H0	R/W	-	1	1	1
(P1 Port Pull-up/down	14	P1PDPU6	0	H0	R/W		1	1	1
Control Register)	13	P1PDPU5	0	H0	R/W		1	1	1
	12	P1PDPU4	0	H0	R/W		1	1	1
	11	P1PDPU3	0	H0	R/W		1	1	1
	10	P1PDPU2	0	H0	R/W		1	1	1
	9	P1PDPU1	0	H0	R/W		_	_	1
	8	P1PDPU0	0	H0	R/W	-	-	-	1
	7	P1REN7	0	H0	R/W	<u> </u>	1	1	1
	6	P1REN6	0	H0	R/W		1	1	1
	5	P1REN5	0	H0	R/W		1	1	1
	4	P1REN4	0	H0	R/W		1	1	1
	3	P1REN3	0	H0	R/W	1	1	1	1
	2	P1REN2	0	H0	R/W	1	1	1	1
	1	P1REN1	0	H0	R/W	-	_	-	1
	0	P1REN0	0	H0	R/W	-		_	/
P1INTF	15–8	_	0x00	-	R	_	1_	-	_
(P1 Port Interrupt	7	P1IF7	0	H0	R/W	Cleared by writing 1.	1	1	/
Flag Register)	6	P1IF6	0	HO	R/W		1	1	/
	5	P1IF5	0	HO	R/W	-	1	1	1
	4	P1IF4	0	H0	R/W	-	1	1	/
	3	P1IF3	0	H0	R/W	-	1	1	/
	2	P1IF2	0	H0	R/W	-	1	1	/
	1	P1IF1	0	H0	R/W	-	Ė	Ė	/
	0	P1IF0	0	H0	R/W	-		_	/
P1INTCTL	15	P1EDGE7	0	H0	R/W	_	/	1	1
(P1 Port Interrupt	14	P1EDGE6	0	H0	R/W	-	1	1	1
Control Register)	13	P1EDGE5	0	H0	R/W	-	1	1	1
,	12	P1EDGE4	0	H0	R/W	-	1	1	1
	11	P1EDGE3	0	H0	R/W	-	1	1	1
	10	P1EDGE2	0	H0	R/W	-	1	1	/
	9	P1EDGE1	0	H0	R/W	-	-	•	/
	8	P1EDGE0	0	H0	R/W	-	F		/
	7	P1IE7	0	H0	R/W		_	_	1
		P1IE6	0		R/W	-	1	✓	1
	6	P1IE5	0	H0 H0	R/W	-	1	✓	1
	5					-	1	1	1
	4	P1IE4	0	H0 H0	R/W	-	_	1	1
	3	P1IE3	0		R/W	-	1	1	1
	2	P1IE2	0	H0	R/W	-	-	•	-
	1	P1IE1	0	H0	R/W	-	-	_	/
DAGUATEN	0	P1IE0	0	H0	R/W		μ-	_	1
P1CHATEN (P1 Port Chattering	15–8	- DA OLI ATENIA	0x00	-	R	-	-	-	_
Filter Enable Register)	7	P1CHATEN7	0	H0	R/W	-	1	1	1
i ilei Lilable negister)	6	P1CHATEN6	0	H0	R/W	_	1	1	1
	5	P1CHATEN5	0	H0	R/W	_	1	1	/
	4	P1CHATEN4	0	H0	R/W	_	✓	1	/
	3	P1CHATEN3	0	H0	R/W	_	/	/	/
	2	P1CHATEN2	0	H0	R/W		1	1	1
	1	P1CHATEN1	0	H0	R/W		_	_	1
	0	P1CHATEN0	0	H0	R/W		_	-	✓

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks	32	48	64
DAMODOFI	45.0	<u> </u>	0.00			<u> </u>	Ť	pin	pin
P1MODSEL	15–8	_	0x00	_	R	_	-	_	-
(P1 Port Mode Select	7	P1SEL7	0	H0	R/W]-	1	1	1
Register)	6	P1SEL6	0	H0	R/W		1	1	1
	5	P1SEL5	0	H0	R/W		1	1	1
	4	P1SEL4	0	H0	R/W		1	1	1
	3	P1SEL3	0	H0	R/W		1	1	1
	2	P1SEL2	0	H0	R/W		1	1	1
	1	P1SEL1	0	H0	R/W		_	-	1
	0	P1SEL0	0	H0	R/W		_	-	1
P1FNCSEL	15–14	P17MUX[1:0]	0x0	H0	R/W	-	1	1	1
(P1 Port Function	13–12	P16MUX[1:0]	0x0	H0	R/W		1	1	1
Select Register)	11–10	P15MUX[1:0]	0x0	H0	R/W		1	1	1
	9–8	P14MUX[1:0]	0x0	H0	R/W		1	1	1
	7–6	P13MUX[1:0]	0x0	H0	R/W		1	1	1
	5–4	P12MUX[1:0]	0x0	H0	R/W		1	1	1
	3–2	P11MUX[1:0]	0x0	H0	R/W		_	-	1
	1–0	P10MUX[1:0]	0x0	H0	R/W		_	-	1

Table 7.7.2.2 P1 Port Group Function Assignment

	P1SELy = 0				P1SE	Ly = 1						
Port		P1yMU	X = 0x0	P1yMU	X = 0x1	P1yMU	X = 0x2	P1yMU	X = 0x3	32	48	64
name	GPIO	(Func	tion 0)	(Func	tion 1)	(Func	tion 2)	(Funct	tion 3)	pin	pin	pin
		Peripheral	Pin	Peripheral	Pin	Peripheral	Pin	Peripheral	Pin			Ш
P10	P10	_	_	UPMUX	*1	ADC12A	ADIN06	-	-	-	-	1
P11	P11	-	-	UPMUX	*1	ADC12A	ADIN05	-	-	-	-	1
P12	P12	-	_	UPMUX	*1	ADC12A	ADIN04	-	-	1	1	1
P13	P13	CLG	FOUT	UPMUX	*1	ADC12A	ADIN03	-	-	1	1	1
P14	P14	_	-	UPMUX	*1	ADC12A	ADIN02	-	-	1	1	1
P15	P15	-	_	UPMUX	*1	ADC12A	ADIN01	-	-	1	1	1
P16	P16	_	-	UPMUX	*1	ADC12A	ADIN00	-	-	1	1	1
P17	P17	-	-	UPMUX	*1	ADC12A/	VREFA0	-	-	1	1	1
						TSRVR						

^{*1:} Refer to the "Universal Port Multiplexer" chapter.

7.7.3 P2 Port Group

The P2 port group supports the GPIO and interrupt functions.

Table 7.7.3.1 Control Registers for P2 Port Group

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks	32	48	64
negister name	DIL	Dit name	IIIIuai	neset	ITA/ WV	Remarks	pin	pin	pin
P2DAT	15	P2OUT7	0	H0	R/W	_	-	-	1
(P2 Port Data	14	P2OUT6	0	H0	R/W		_	_	1
Register)	13	P2OUT5	0	H0	R/W		_	_	1
	12	P2OUT4	0	H0	R/W		_	-	1
	11	P2OUT3	0	H0	R/W		_	1	1
	10	P2OUT2	0	H0	R/W		-	1	1
	9	P2OUT1	0	H0	R/W		-	1	1
	8	P2OUT0	0	H0	R/W		1	1	1
	7	P2IN7	0	H0	R	_	-	-	1
	6	P2IN6	0	H0	R		_	_	1
	5	P2IN5	0	H0	R		_	_	1
	4	P2IN4	0	H0	R		_	_	1
	3	P2IN3	0	H0	R		_	1	1
	2	P2IN2	0	H0	R		_	1	1
	1	P2IN1	0	H0	R		_	1	1
	0	P2IN0	0	H0	R		1	1	✓

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks	32 pin	48 pin	64 pin
P2IOEN	15	P2IEN7	0	H0	R/W	-	T-	-	1
(P2 Port Enable	14	P2IEN6	0	H0	R/W		-	-	1
Register)	13	P2IEN5	0	H0	R/W	=	-	-	1
	12	P2IEN4	0	H0	R/W	1	_	-	1
	11	P2IEN3	0	H0	R/W	1	-	1	1
	10	P2IEN2	0	H0	R/W	1	-	1	1
	9	P2IEN1	0	H0	R/W	1	_	1	1
	8	P2IEN0	0	H0	R/W	1	1	1	1
	7	P2OEN7	0	H0	R/W	_	T-	-	1
	6	P2OEN6	0	H0	R/W	1	-	-	1
	5	P2OEN5	0	H0	R/W	1	-	-	1
	4	P2OEN4	0	H0	R/W	1	-	-	1
	3	P2OEN3	0	H0	R/W	1	_	1	1
	2	P2OEN2	0	H0	R/W	1	_	1	1
	1	P2OEN1	0	H0	R/W	1	_	1	1
	0	P2OEN0	0	H0	R/W	1	1	1	1
P2RCTL	15	P2PDPU7	0	H0	R/W	_	1_	-	1
(P2 Port Pull-up/down	14	P2PDPU6	0	HO	R/W	1	_	<u> </u>	/
Control Register)	13	P2PDPU5	0	HO	R/W	1	-	-	1
	12	P2PDPU4	0	HO	R/W	-		-	1
	11	P2PDPU3	0	HO	R/W	-		1	1
	10	P2PDPU2	0	H0	R/W	1		1	/
	9	P2PDPU1	0	H0	R/W	-		1	/
	8	P2PDPU0	0	H0	R/W	-	1	1	/
	7	P2REN7	0	H0	R/W	_	Ť	Ť	1
	6	P2REN6	0	H0	R/W	-	-	-	1
	5	P2REN5	0	H0	R/W	-	_	Η_	1
	4	P2REN4	0	H0	R/W	-	_	-	1
	3	P2REN3	0	H0	R/W	-	-	_	1
	2	P2REN2	0	H0	R/W	-	<u> </u>	1	✓ ✓
	1	P2REN1	0	H0	R/W	-	<u> </u>	1	✓ ✓
	0		0	H0	ł — — — — — — — — — — — — — — — — — — —	-	_	1	1
P2INTF	15–8	P2REN0	0x00	по	R/W R		-	•	·
(P2 Port Interrupt	7	P2IF7		H0	R/W	Cleared by writing 1.	+	Η_	_
Flag Register)			0			Cleared by writing 1.	-		✓ ✓
l lag riogiotor)	6	P2IF6	0	H0	R/W	-	_	-	1
	5	P2IF5	0	H0	R/W	-	<u> </u>	-	1
	4	P2IF4	0	H0	R/W	-	_	-	-
	3	P2IF3	0	H0	R/W	-	<u> </u>	1	1
	2	P2IF2	0	H0	R/W	-	_	1	1
	1	P2IF1	0	H0	R/W	-	_	1	/
DOINTOTI	0	P2IF0	0	H0	R/W		1	1	1
P2INTCTL (P2 Port Interrupt	15	P2EDGE7	0	H0	R/W	-	_	-	1
Control Register)	14	P2EDGE6	0	H0	R/W	-	<u> </u>	-	1
Control Negister)	13	P2EDGE5	0	H0	R/W	-	_	-	/
	12	P2EDGE4	0	H0	R/W	-	_	-	1
	11	P2EDGE3	0	H0	R/W	-	<u> </u>	1	/
	10	P2EDGE2	0	H0	R/W	-	<u> </u>	1	/
	9	P2EDGE1	0	H0	R/W	_	_	1	1
	8	P2EDGE0	0	H0	R/W		1	1	/
	7	P2IE7	0	H0	R/W	- =	_	-	1
	6	P2IE6	0	H0	R/W	_	_	-	1
	5	P2IE5	0	H0	R/W	1	_	_	1
	4	P2IE4	0	H0	R/W	_	L	_	1
	3	P2IE3	0	H0	R/W		_	1	1
	2	P2IE2	0	H0	R/W		_	1	1
	1	P2IE1	0	H0	R/W		_	1	1
	0	P2IE0	0	H0	R/W		1	1	1

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks	32 pin	48 pin	64 pin
P2CHATEN	15–8	_	0x00	_	R	_	Ĭ-	-	<u>-</u>
(P2 Port Chattering	7	P2CHATEN7	0	H0	R/W	_	-	-	1
Filter Enable Register)	6	P2CHATEN6	0	H0	R/W		-	_	1
	5	P2CHATEN5	0	H0	R/W		-	-	1
	4	P2CHATEN4	0	H0	R/W		-	-	1
	3	P2CHATEN3	0	H0	R/W		-	1	1
	2	P2CHATEN2	0	H0	R/W		_	1	1
	1	P2CHATEN1	0	H0	R/W		-	1	1
	0	P2CHATEN0	0	H0	R/W		1	1	1
P2MODSEL	15–8	_	0x00	-	R	_	-	_	_
(P2 Port Mode Select	7	P2SEL7	0	H0	R/W	_	-	-	1
Register)	6	P2SEL6	0	H0	R/W		-	_	1
	5	P2SEL5	0	H0	R/W		-	_	1
	4	P2SEL4	0	H0	R/W		_	_	1
	3	P2SEL3	0	H0	R/W		_	1	1
	2	P2SEL2	0	H0	R/W		_	1	1
	1	P2SEL1	0	H0	R/W		_	1	1
	0	P2SEL0	0	H0	R/W		1	1	1
P2FNCSEL	15–14	P27MUX[1:0]	0x0	H0	R/W	_	-	-	1
(P2 Port Function	13-12	P26MUX[1:0]	0x0	H0	R/W		-	-	1
Select Register)	11-10	P25MUX[1:0]	0x0	H0	R/W		-	_	1
	9–8	P24MUX[1:0]	0x0	H0	R/W		-	_	1
	7–6	P23MUX[1:0]	0x0	H0	R/W		_	1	1
	5–4	P22MUX[1:0]	0x0	H0	R/W		_	1	1
	3–2	P21MUX[1:0]	0x0	H0	R/W		_	1	1
	1–0	P20MUX[1:0]	0x0	H0	R/W		1	1	1

Table 7.7.3.2 P2 Port Group Function Assignment

	P2SELy = 0				P2SE	Ly = 1						
Port		P2yMU	X = 0x0	P2yMU	X = 0x1	P2yMU	X = 0x2	P2yMU	X = 0x3	32	48	64
name	GPIO	(Func	tion 0)	(Function 1)		(Func	tion 2)	(Func	tion 3)	pin	pin	pin
		Peripheral	Pin	Peripheral	Pin	Peripheral	Pin	Peripheral	Pin			
P20	P20	RFC	SENB0	UPMUX	*1	-	-	-	_	1	1	1
P21	P21	RFC	SENA0	UPMUX	*1	-	_	-	-	-	1	1
P22	P22	RFC	REF0	UPMUX	*1	-	-	-	_	-	1	1
P23	P23	RFC	RFIN0	UPMUX	*1	-	-	-	-	-	1	1
P24	P24	-	-	UPMUX	*1	-	-	-	-	-	-	1
P25	P25	-	-	UPMUX	*1	-	-	-	-	-	_	1
P26	P26	-	-	UPMUX	*1	-	-	-	-	_	_	1
P27	P27	_	_	UPMUX	*1	_	-	-	_	-	_	1

^{*1:} Refer to the "Universal Port Multiplexer" chapter.

7.7.4 P3 Port Group

The P3 port group supports the GPIO and interrupt functions.

Table 7.7.4.1 Control Registers for P3 Port Group

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks	32 pin	48 pin	64 pin
P3DAT	15	P3OUT7	0	H0	R/W	_	Ϊ-	<u> </u>	1
(P3 Port Data	14	P3OUT6	0	H0	R/W		-	-	1
Register)	13	P3OUT5	0	H0	R/W		_	1	1
	12	P3OUT4	0	H0	R/W		-	1	1
	11	P3OUT3	0	H0	R/W		-	1	1
	10	P3OUT2	0	H0	R/W		1	1	1
	9	P3OUT1	0	H0	R/W		1	1	1
	8	P3OUT0	0	H0	R/W		_	_	1
	7	P3IN7	0	H0	R	_	_	_	1
	6	P3IN6	0	H0	R		_	_	1
	5	P3IN5	0	H0	R		_	1	1
	4	P3IN4	0	H0	R		_	1	1
	3	P3IN3	0	H0	R		_	1	1
	2	P3IN2	0	H0	R		1	1	1
	1	P3IN1	0	H0	R		✓	1	1
	0	P3IN0	0	H0	R		<u> </u>	_	1
P3IOEN	15	P3IEN7	0	H0	R/W		_	_	1
(P3 Port Enable	14	P3IEN6	0	H0	R/W		_	_	1
Register)	13	P3IEN5	0	H0	R/W		_	1	1
	12	P3IEN4	0	H0	R/W		_	1	1
	11	P3IEN3	0	H0	R/W		_	1	1
	10	P3IEN2	0	H0	R/W		✓	1	1
	9	P3IEN1	0	H0	R/W		✓	1	1
	8	P3IEN0	0	H0	R/W		<u> </u>	_	1
	7	P3OEN7	0	H0	R/W	_	_	_	1
	6	P3OEN6	0	H0	R/W		_	_	1
	5	P3OEN5	0	H0	R/W	_	_	1	1
	4	P3OEN4	0	H0	R/W		_	1	1
	3	P3OEN3	0	H0	R/W	-	_	1	1
	2	P3OEN2	0	H0	R/W		1	1	1
	1	P3OEN1	0	H0	R/W	-	1	1	1
	0	P3OEN0	0	H0	R/W		 -	-	1
P3RCTL	15	P3PDPU7	0	H0	R/W	_	_	_	1
(P3 Port Pull-up/down Control Register)	14	P3PDPU6	0	H0	R/W		_	-	/
Control Register)	13	P3PDPU5	0	H0	R/W	_	_	1	/
	12	P3PDPU4	0	H0	R/W	_	_	1	/
	11	P3PDPU3	0	H0	R/W	_	<u> </u>	1	/
	10	P3PDPU2	0	H0	R/W	-	1	1	1
	9	P3PDPU1	0	H0	R/W	-	1	1	1
	8	P3PDPU0	0	H0	R/W		↓ -	-	/
	7	P3REN7	0	H0	R/W	-	-	-	V
	6	P3REN6	0	H0	R/W	-	<u> </u>	-	/
	5	P3REN5	0	H0	R/W	-	_	1	1
	4	P3REN4	0	H0	R/W	-	_	1	/
	3	P3REN3	0	H0	R/W	-	_	1	/
	2	P3REN2	0	H0	R/W	-	1	1	/
	1	P3REN1	0	H0	R/W	-	1	/	/
	0	P3REN0	0	H0	R/W				1

7 I/O PORTS (PPORT)

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks	32 pin	48 pin	64 pin
P3INTF	15–8	_	0x00	<u> </u>	R	_	Ϊ-	Ĭ-	<u>-</u>
(P3 Port Interrupt	7	P3IF7	0	H0	R/W	Cleared by writing 1.	1-	l –	1
Flag Register)	6	P3IF6	0	H0	R/W]	_	l –	1
	5	P3IF5	0	H0	R/W		_	1	1
	4	P3IF4	0	H0	R/W		_	1	1
	3	P3IF3	0	HO	R/W			1	1
	2	P3IF2	0	HO	R/W		1	1	1
	1	P3IF1	0	HO	R/W		1	1	1
	0	P3IF0	0	HO	R/W		_	-	1
P3INTCTL	15	P3EDGE7	0	HO	R/W	_	+-	+	1
(P3 Port Interrupt	14	P3EDGE6	0	HO	R/W		-	 	1
Control Register)	13	P3EDGE5	0	HO	R/W	-	-	/	1
,	12	P3EDGE4	0	H0	R/W	-	-	1	1
	11	P3EDGE3	0	H0	R/W	-	-	1	1
	10	P3EDGE2	0	H0	R/W	-	/	1	1
	9		0	H0	R/W	-	1	1	1
		P3EDGE1	_			-	-	-	1
	8	P3EDGE0	0	H0	R/W		+-	├-	<u> </u>
	7	P3IE7	0	H0	R/W	-	<u> </u>	 -	1
	6	P3IE6	0	H0	R/W	-	_	-	1
	5	P3IE5	0	H0	R/W	-	_	/	1
	4	P3IE4	0	H0	R/W		_	1	1
	3	P3IE3	0	H0	R/W		_	1	1
	2	P3IE2	0	H0	R/W		1	1	1
	1	P3IE1	0	H0	R/W		1	/	1
	0	P3IE0	0	H0	R/W		<u> </u>	-	1
P3CHATEN	15–8	_	0x00	_	R	_		_	_
(P3 Port Chattering	7	P3CHATEN7	0	H0	R/W	_	_	_	1
Filter Enable Register)	6	P3CHATEN6	0	H0	R/W		-	-	1
	5	P3CHATEN5	0	H0	R/W		_	1	1
	4	P3CHATEN4	0	H0	R/W		_	1	1
	3	P3CHATEN3	0	H0	R/W		_	1	1
	2	P3CHATEN2	0	H0	R/W		1	1	1
	1	P3CHATEN1	0	H0	R/W		1	1	1
	0	P3CHATEN0	0	H0	R/W		_	T-	1
P3MODSEL	15–8	_	0x00	_	R	_	1-	1-	Ι-
(P3 Port Mode Select	7	P3SEL7	0	H0	R/W	_	1-	<u> </u>	1
Register)	6	P3SEL6	0	HO	R/W			<u> </u>	1
	5	P3SEL5	0	H0	R/W	-		1	1
	4	P3SEL4	0	HO	R/W		-	1	1
	3	P3SEL3	0	H0	R/W	-	-	1	1
	2	P3SEL2	0	H0	R/W	-	1	1	1
	1	P3SEL1	0	H0	R/W	-	1	1	1
	0	P3SEL0	0	H0	R/W	-	-	•	1
P3FNCSEL					R/W		+	Ι-	1
(P3 Port Function		P37MUX[1:0]	0x0	H0		-	F	⊢	1
Select Register)		P36MUX[1:0]	0x0	H0	R/W	-	<u> </u>	-	1
CS.OOT HOGISTON		P35MUX[1:0]	0x0	H0	R/W	-	-	-	<u> </u>
		P34MUX[1:0]	0x0	H0	R/W	-	<u> </u>	1	1
	7–6	P33MUX[1:0]	0x0	H0	R/W	-	-	1	1
	5–4	P32MUX[1:0]	0x0	H0	R/W	_	1	1	1
	3–2	P31MUX[1:0]	0x0	H0	R/W	_	1	1	1
	1–0	P30MUX[1:0]	0x0	H0	R/W			-	1

Table 7.7.4.2 P3 Port Group Function Assignment

	P3SELy = 0				P3SE	L <i>y</i> = 1						
Port		P3yMU	X = 0x0	P3yMUX = 0x1		P3yMU	X = 0x2	P3yMU	X = 0x3	32	48	64
name	GPIO	(Func	tion 0)	(Function 1)		(Func	tion 2)	(Func	tion 3)	pin	pin	pin
		Peripheral	Pin	Peripheral	Pin	Peripheral	Pin	Peripheral	Pin			
P30	P30	_	_	UPMUX	*1	-	-	_	_	-	-	1
P31	P31	T16B Ch.1	EXCL10	UPMUX	*1	-	-	_	-	1	1	1
P32	P32	T16B Ch.1	EXCL11	UPMUX	*1	-	-	_	_	1	1	1
P33	P33	RFC	RFCLKO0	UPMUX	*1	-	-	_	_	-	1	1
P34	P34	REMC3	REMO	UPMUX	*1	-	-	-	-	-	1	1
P35	P35	REMC3	CLPLS	UPMUX	*1	-	_	_	-	-	1	1
P36	P36	-	-	UPMUX	*1	-	-	-	-	_	-	/
P37	P37	_	_	UPMUX	*1	_	_	_	_	Ι-	-	1

^{*1:} Refer to the "Universal Port Multiplexer" chapter.

7.7.5 P4 Port Group

The P4 port group supports the GPIO and interrupt functions.

Table 7.7.5.1 Control Registers for P4 Port Group

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks	32 nin	48 pin	64
P4DAT	15–14	_	0x0	_	R	_	pin	piii	pin _
(P4 Port Data	13	P4OUT5	0	HO	R/W	_	+-	1	1
Register)	12	P4OUT4	0	HO	R/W		1	1	1
	11	P4OUT3	0	HO	R/W		1	1	/
	10	P4OUT2	0	HO	R/W		1	1	1
	9	P4OUT1	0	HO	R/W		_	<u> </u>	1
	8	P4OUT0	0	HO	R/W			Ι_	/
	7–6	-	0x0	-	R	_	T-	1-	1-1
	5	P4IN5	0	H0	R	_	T-	1	1
	4	P4IN4	0	H0	R		1	1	1
	3	P4IN3	0	H0	R		1	1	1
	2	P4IN2	0	H0	R		1	1	1
	1	P4IN1	0	H0	R		_	T-	1
	0	P4IN0	0	H0	R		_	T-	1
P4IOEN	15–14	_	0x0	_	R	_	T -	-	П
(P4 Port Enable	13	P4IEN5	0	H0	R/W	_		1	1
Register)	12	P4IEN4	0	H0	R/W		1	1	1
	11	P4IEN3	0	H0	R/W		1	1	1
	10	P4IEN2	0	H0	R/W		1	1	1
	9	P4IEN1	0	H0	R/W		_	-	1
	8	P4IEN0	0	H0	R/W		_	-	1
	7–6	-	0x0	-	R	-	-	-	-
	5	P4OEN5	0	H0	R/W	-	-	1	1
	4	P40EN4	0	H0	R/W		1	1	1
	3	P4OEN3	0	H0	R/W		1	1	1
	2	P40EN2	0	H0	R/W		1	1	1
	1	P4OEN1	0	H0	R/W		_	_	1
	0	P4OEN0	0	H0	R/W		_	-	1

7 I/O PORTS (PPORT)

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks	32 pin	48 pin	64 pin
P4RCTL	15–14	_	0x0	_	R		-	-	_
(P4 Port Pull-up/down	13	P4PDPU5	0	H0	R/W	_	-	1	1
Control Register)	12	P4PDPU4	0	H0	R/W		1	1	1
	11	P4PDPU3	0	H0	R/W		1	1	1
	10	P4PDPU2	0	H0	R/W		1	1	1
	9	P4PDPU1	0	H0	R/W		_	-	1
	8	P4PDPU0	0	H0	R/W		_	-	1
	7–6	_	0x0	_	R	_	-	-	-
	5	P4REN5	0	H0	R/W	_	-	1	1
	4	P4REN4	0	H0	R/W		1	1	1
	3	P4REN3	0	H0	R/W		1	1	1
	2	P4REN2	0	H0	R/W		1	1	1
	1	P4REN1	0	H0	R/W		_	-	1
	0	P4REN0	0	H0	R/W		_	-	1
P4INTF	15–8	_	0x00	_	R	_	1-	-	_
(P4 Port Interrupt	7–6	_	0x0	_	R		_	T_	_
Flag Register)	5	P4IF5	0	H0	R/W	Cleared by writing 1.	1-	1	1
	4	P4IF4	0	HO	R/W	, o.oa.oa	1	1	1
	3	P4IF3	0	HO	R/W		1	1	1
	2	P4IF2	0	H0	R/W		1	1	1
	1	P4IF1	0	H0	R/W		Ė	Ė	1
	0	P4IF0	0	H0	R/W		-	-	1
P4INTCTL	15–14	_	0x0	_	R	_	╁	H	L.
(P4 Port Interrupt	13	P4EDGE5	0	H0	R/W		╁	1	/
Control Register)	12	P4EDGE4	0	H0	R/W	_	_	1	1
	11		0	H0			1	1	1
	10	P4EDGE3	0	H0	R/W		1	1	✓
	9	P4EDGE2	0	H0	R/W		_	•	1
		P4EDGE1			R/W		\vdash	Η_	1
	8	P4EDGE0	0	H0	R/W		├-	 -	-
	7–6	- D4155	0x0	-	R	_	├-	_	_
	5	P4IE5	0	H0	R/W	-	_	1	1
	4	P4IE4	0	H0	R/W		/	1	1
	3	P4IE3	0	H0	R/W		V	1	1
	2	P4IE2	0	H0	R/W		/	1	1
	1	P4IE1	0	H0	R/W		_	<u> </u>	1
	0	P4IE0	0	H0	R/W		-	-	1
P4CHATEN	15–8	_	0x00	_	R	_	_	-	_
(P4 Port Chattering	7–6	_	0x0	-	R		-	-	_
Filter Enable Register)		P4CHATEN5	0	H0	R/W	_	_	1	1
	4	P4CHATEN4	0	H0	R/W		1	1	1
	3	P4CHATEN3	0	H0	R/W		/	1	1
	2	P4CHATEN2	0	H0	R/W		1	1	1
	1	P4CHATEN1	0	H0	R/W		_	_	1
	0	P4CHATEN0	0	H0	R/W		-	-	1
P4MODSEL	15–8	_	0x00	_	R	_	_	_	_
(P4 Port Mode Select	7–6	_	0x0	-	R		-	-	-
Register)	5	P4SEL5	0	H0	R/W	_	<u>_</u>	1	1
	4	P4SEL4	0	H0	R/W		1	1	1
	3	P4SEL3	0	H0	R/W		1	1	1
	2	P4SEL2	0	H0	R/W		1	1	1
	1	P4SEL1	0	H0	R/W		L	<u> </u>	1
	0	P4SEL0	0	H0	R/W		-	_	1

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks	32 pin	_	64 pin
P4FNCSEL	15–12	_	0x0	H0	R/W	_	-	-	-
(P4 Port Function	11–10	P45MUX[1:0]	0x0	H0	R/W	_	-	1	1
Select Register)	9–8	P44MUX[1:0]	0x0	H0	R/W		1	1	1
	7–6	P43MUX[1:0]	0x0	H0	R/W		1	1	1
	5–4	P42MUX[1:0]	0x0	H0	R/W		1	1	1
	3–2	P41MUX[1:0]	0x0	H0	R/W		-	-	1
	1–0	P40MUX[1:0]	0x0	H0	R/W		-	-	1

Table 7.7.5.2 P4 Port Group Function Assignment

	P4SELy = 0				P4SE	Ly = 1						
Port name	GPIO	_	X = 0x0 tion 0)	P4yMUX = 0x1 (Function 1)		P4yMU (Funct		P4yMU (Func		32 pin	48 pin	64 pin
		Peripheral	Pin	Peripheral	Pin	Peripheral	Pin	Peripheral	Pin]		
P40	P40	-	-	-	-	-	-	-	-	T -	-	1
P41	P41	-	-	-	-	-	_	-	_	-	-	1
P42	P42	ADC12A	#ADTRG0	_	-	-	_	-	-	1	1	1
P43	P43	RTCA	RTC1S	_	-	-	-	-	-	1	1	1
P44	P44	-	-	_	-	SDV3	EXSVD0	-	-	1	1	1
P45	P45	-	-	-	-	SDV3	EXSVD1	-	-	_	1	1

7.7.6 P5 Port Group

The P5 port group supports the GPIO and interrupt functions.

Table 7.7.6.1 Control Registers for P5 Port Group

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks	32 pin	48 pin	64 pin
P5DAT	15	-	0	_	R	Ī-	T -	-	-
(P5 Port Data	14	P5OUT6	0	H0	R/W	-	T -	1	1
Register)	13	P5OUT5	0	H0	R/W		_	1	1
	12	P5OUT4	0	H0	R/W		1	1	1
	11	P5OUT3	0	H0	R/W		_	-	1
	10	P5OUT2	0	H0	R/W		_	_	1
	9	P5OUT1	0	H0	R/W		1	1	1
	8	P5OUT0	0	H0	R/W		1	1	1
	7	_	0	_	R	_		_	
	6	P5IN6	0	H0	R	_	_	1	1
	5	P5IN5	0	H0	R		_	1	1
	4	P5IN4	0	H0	R		1	1	1
	3	P5IN3	0	H0	R		_	_	1
	2	P5IN2	0	H0	R		_	-	1
	1	P5IN1	0	H0	R		1	1	1
	0	P5IN0	0	H0	R		1	1	1
P5IOEN	15	_	0	_	R	_		_	-
(P5 Port Enable	14	P5IEN6	0	H0	R/W	_	L	1	1
Register)	13	P5IEN5	0	H0	R/W		_	1	1
	12	P5IEN4	0	H0	R/W		1	1	1
	11	P5IEN3	0	H0	R/W		_	_	1
	10	P5IEN2	0	H0	R/W		_	_	1
	9	P5IEN1	0	H0	R/W		1	1	1
	8	P5IEN0	0	H0	R/W		1	1	1
	7	_	0	_	R	_	_	-	-
	6	P50EN6	0	H0	R/W	_	-	1	1
	5	P50EN5	0	H0	R/W		_	1	1
	4	P50EN4	0	H0	R/W		1	1	1
	3	P5OEN3	0	H0	R/W			-	1
	2	P50EN2	0	H0	R/W			_	1
	1	P50EN1	0	H0	R/W		1	1	1
	0	P5OEN0	0	H0	R/W		1	1	1

7 I/O PORTS (PPORT)

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks	32 pin	48 pin	64 pin
P5RCTL	15	_	0	_	R	-	Ī-	-	_
(P5 Port Pull-up/down	14	P5PDPU6	0	H0	R/W	-	-	1	1
Control Register)	13	P5PDPU5	0	H0	R/W		_	1	1
	12	P5PDPU4	0	H0	R/W		1	1	1
	11	P5PDPU3	0	H0	R/W		-	-	1
	10	P5PDPU2	0	H0	R/W		_	-	1
	9	P5PDPU1	0	H0	R/W		1	1	1
	8	P5PDPU0	0	H0	R/W		1	1	1
	7	-	0	_	R	-	-	-	_
	6	P5REN6	0	H0	R/W	_	-	1	1
	5	P5REN5	0	H0	R/W		_	1	1
	4	P5REN4	0	H0	R/W		1	1	1
	3	P5REN3	0	H0	R/W		-	-	1
	2	P5REN2	0	H0	R/W		_	-	1
	1	P5REN1	0	H0	R/W	1	1	1	1
	0	P5REN0	0	H0	R/W	-	1	1	1
P5INTF	15–8	_	0x00	_	R	_	1-	<u> </u>	-
(P5 Port Interrupt	7	_	0	_	R	_	1-	l –	-
Flag Register)	6	P5IF6	0	H0	R/W	Cleared by writing 1.	1-	1	1
	5	P5IF5	0	H0	R/W		_	1	1
	4	P5IF4	0	HO	R/W	1	/	1	1
	3	P5IF3	0	HO	R/W	1	_	_	1
	2	P5IF2	0	HO	R/W	1	_	-	1
	1	P5IF1	0	HO	R/W	1	1	1	1
	0	P5IF0	0	HO	R/W	1	1	1	1
P5INTCTL	15	_	0	_	R	_	1_	-	<u> </u>
(P5 Port Interrupt	14	P5EDGE6	0	HO	R/W	_	†-	1	1
Control Register)	13	P5EDGE5	0	HO	R/W	1	_	1	1
	12	P5EDGE4	0	HO	R/W		1	1	1
	11	P5EDGE3	0	HO	R/W	1		<u> </u>	1
	10	P5EDGE2	0	HO	R/W	-	_	l _	1
	9	P5EDGE1	0	HO	R/W	-	1	1	1
	8	P5EDGE0	0	HO	R/W	-	1	1	1
	7	_	0	_	R	_	+-	<u> </u>	-
	6	P5IE6	0	H0	R/W		+-	1	1
	5	P5IE5	0	H0	R/W	1		1	1
	4	P5IE4	0	H0	R/W	1	/	1	1
	3	P5IE3	0	H0	R/W	-	Ė	i -	1
	2	P5IE2	0	H0	R/W	-	-	<u> </u>	1
	1	P5IE1	0	H0	R/W	-	/	1	1
	0	P5IE0	0	H0	R/W	-	1	1	1
P5CHATEN	15–8	FJILU	0x00	-	R		-		-
(P5 Port Chattering	7		0	_	R	_	╫	H	H
Filter Enable Register)	6	DECHATENS		-		_	+=	_	_
2	5	P5CHATEN6	0	H0	R/W	-	-	1	1
		P5CHATENA	0	H0	R/W	-	-	-	1
	4	P5CHATEN4	0	H0	R/W	-	/	/	1
	3	P5CHATEN3	0	H0	R/W	-	<u> </u>	 -	-
	2	P5CHATEN2	0	H0	R/W	_	-	-	1
	1	P5CHATEN1	0	H0	R/W	-	1	1	1
	0	P5CHATEN0	0	H0	R/W		1	1	1

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks	32	48	1 -
							pin	pin	pin
P5MODSEL	15–8	_	0x00	_	R	_	-	_	-
(P5 Port Mode Select	7	_	0	_	R	_	-	-	-
Register)	6	P5SEL6	0	H0	R/W	-	-	1	1
	5	P5SEL5	0	H0	R/W		_	1	1
	4	P5SEL4	0	H0	R/W		1	1	1
	3	P5SEL3	0	H0	R/W		_	T-	1
	2	P5SEL2	0	H0	R/W		_	T-	1
	1	P5SEL1	1	H0	R/W		1	1	1
	0	P5SEL0	1	H0	R/W		1	1	1
P5FNCSEL	15–14	_	0x0	-	R	-	Τ-	-	-
(P5 Port Function	13-12	P56MUX[1:0]	0x0	H0	R/W	_	T-	1	1
Select Register)	11–10	P55MUX[1:0]	0x0	H0	R/W		_	1	1
	9–8	P54MUX[1:0]	0x0	H0	R/W		1	1	1
	7–6	P53MUX[1:0]	0x0	H0	R/W		_	-	1
	5–4	P52MUX[1:0]	0x0	H0	R/W		_	-	1
	3–2	P51MUX[1:0]	0x0	H0	R/W		1	1	1
	1–0	P50MUX[1:0]	0x0	H0	R/W		1	1	1

Table 7.7.6.2 P5 Port Group Function Assignment

	P5SELy = 0				P5SEL	y = 1						
Port name	GPIO		UX = 0x0 ction 0)	P5yMU (Func	X = 0x1 tion 1)	P5yMU (Funct	X = 0x2 tion 2)		X = 0x3 tion 3)	32 pin	48 pin	64 pin
		Peripheral	Pin	Peripheral	Pin	Peripheral	Pin	Peripheral	Pin			
P50	P50	SDAC2	SDACOUT_P	-	_	_	-	_	_	1	1	1
P51	P51	SDAC2	SDACOUT_N	-	-	-	-	_	-	1	1	1
P52	P52	-	-	-	-	-	-	_	-	-	-	1
P53	P53	-	-	-	-	_	-	_	-	T -	-	1
P54	P54	CLG	EXOSC	_	_	-	_	_	-	1	1	1
P55	P55	T16B Cn.0	EXCL00	-	-	-	-	_	-	-	1	1
P56	P56	T16B Cn.0	EXCL01	-	-	-	-	-	-	-	1	1

7.7.7 P6 Port Group

The P6 port group supports the GPIO and interrupt functions.

Table 7.7.7.1 Control Registers for P6 Port Group

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks	32	1	-
riogiotor riamo			militia	110001		riomano	pin	pin	pin
P6DAT	15–14	_	0x0	-	R	_	-	_	_
(P6 Port Data	13	P6OUT5	0	H0	R/W	_	1	1	1
Register)	12	P6OUT4	0	H0	R/W		1	1	1
	11	P6OUT3	0	H0	R/W		1	1	1
	10	P6OUT2	0	H0	R/W		1	1	1
	9	P6OUT1	0	H0	R/W		1	1	1
	8	P6OUT0	0	H0	R/W		1	1	1
	7–6	-	0x0	-	R	_	-	-	
	5	P6IN5	0	H0	R	_	1	1	1
	4	P6IN4	0	H0	R		1	1	1
	3	P6IN3	0	H0	R		1	1	1
	2	P6IN2	0	H0	R		1	1	1
	1	P6IN1	0	H0	R		1	1	1
	0	P6IN0	0	H0	R		1	1	1

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks	32 pin	48 pin	64 pin
P6IOEN	15–14		0x0	-	R	-	-	-	_
•	13	P6IEN5	0	H0	R/W	_	1	1	1
Register)	12	P6IEN4	0	H0	R/W		1	1	1
	11	P6IEN3	0	H0	R/W	_	1	1	1
66IOEN P6 Port Enable egister) 66RCTL P6 Port Pull-up/down ontrol Register) 66INTF P6 Port Interrupt lag Register) 66INTCTL P6 Port Interrupt ontrol Register)	10	P6IEN2	0	H0	R/W	_	1	-	/
	9	P6IEN1	0	H0	R/W	_	/	-	/
	8	P6IEN0	0	H0	R/W		1	/	1
	7–6	-	0x0	-	R	-	<u> </u>	_	_
	5	P60EN5	0	H0	R/W	-	/	-	1
	4	P60EN4	0	H0	R/W	-	V	-	1
	3	P60EN3	0	H0	R/W	-	✓ 	<u> </u>	1
	2	P60EN2	0	H0	R/W	-	✓ ✓	-	1
	1	P60EN1	0	H0	R/W	_	/	<u> </u>	1
DADOTI	0	P60EN0	0	H0	R/W		/	-	/
	15–14		0x0	-	R	_	-	-	_
l, '	10	P6PDPU5 P6PDPU4	0	H0	R/W	- <mark>-</mark>	1	-	1
Control riegister)	12 11	P6PDPU4 P6PDPU3	0	H0 H0	R/W R/W	_	1	-	1
	10		0	H0	R/W	_	1	<u> </u>	1
	9	P6PDPU2 P6PDPU1	0	H0	R/W	_	1	-	1
	8	P6PDPU0	0	H0	R/W	-	1	-	1
	7–6	FOFDFOO	0x0	_ HU	R		-	•	•
	5	P6REN5	0.00	H0	R/W		_		_
	4	P6REN4	0	H0	R/W	-	1	-	1
	3	P6REN3	0	H0	R/W	-	1	_	/
	2	P6REN2	0	H0	R/W	-	1	-	1
	1	P6REN1	0	H0	R/W	_	1	-	1
	0	P6REN0	0	HO	R/W	-	1	-	1
P6INTF	15–8	_	0x00	-	R	_	1-	-	_
(P6 Port Interrupt	7–6	_	0x0	_	R	-	-	-	_
Flag Register)	5	P6IF5	0	H0	R/W	Cleared by writing 1.	1	1	1
	4	P6IF4	0	H0	R/W]	1	1	1
	3	P6IF3	0	H0	R/W	-	1	1	1
	2	P6IF2	0	H0	R/W		1	1	1
	1	P6IF1	0	H0	R/W		1	1	1
	0	P6IF0	0	H0	R/W		1	1	1
P6INTCTL	15–14	_	0x0	-	R	_	-	-	_
(P6 Port Interrupt	13	P6EDGE5	0	H0	R/W	_	1	1	1
Control Register)	12	P6EDGE4	0	H0	R/W		1	1	1
	11	P6EDGE3	0	H0	R/W		1	1	1
	10	P6EDGE2	0	H0	R/W		1	1	1
	9	P6EDGE1	0	H0	R/W		1	1	1
	8	P6EDGE0	0	H0	R/W		1	1	1
	7–6	_	0x0	_	R	_	_	_	_
	5	P6IE5	0	H0	R/W	_	1	1	1
	4	P6IE4	0	H0	R/W		1	1	1
	3	P6IE3	0	H0	R/W		1	1	1
	2	P6IE2	0	H0	R/W		1	1	1
	1	P6IE1	0	H0	R/W		1	1	1
	0	P6IE0	0	H0	R/W		1	1	1
P6CHATEN	15–8	_	0x00	-	R	_	_	-	_
(P6 Port Chattering	7–6	_	0x0	_	R		-	-	_
Filter Enable Register)		P6CHATEN5	0	H0	R/W		1	1	1
	4	P6CHATEN4	0	H0	R/W		1	1	1
	3	P6CHATEN3	0	H0	R/W		1	1	1
	2	P6CHATEN2	0	H0	R/W		1	1	1
	1	P6CHATEN1	0	H0	R/W		1	1	1
ĺ.	0	P6CHATEN0	0	H0	R/W	1	1		1

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks	32	48	64
DOMAGDOEL	45.0		0.00			<u> </u>	pin	piii	pin
P6MODSEL	15–8	_	0x00	_	R	_	_	_	-
(P6 Port Mode Select	7–6	_	0x0	_	R		-	-	-
Register)	5	P6SEL5	0	H0	R/W	_	1	1	1
	4	P6SEL4	0	H0	R/W		1	1	1
	3	P6SEL3	0	H0	R/W		1	1	1
	2	P6SEL2	0	H0	R/W		1	1	1
	1	P6SEL1	0	H0	R/W		1	1	1
	0	P6SEL0	0	H0	R/W		1	1	1
P6FNCSEL	15–12	_	0x0	H0	R/W	_	-	-	[-]
(P6 Port Function	11–10	P65MUX[1:0]	0x0	H0	R/W	_	1	1	1
Select Register)	9–8	P64MUX[1:0]	0x0	H0	R/W		1	1	1
	7–6	P63MUX[1:0]	0x0	H0	R/W		1	1	1
	5–4	P62MUX[1:0]	0x0	H0	R/W		1	1	1
	3–2	P61MUX[1:0]	0x0	H0	R/W		1	1	1
	1–0	P60MUX[1:0]	0x0	H0	R/W		1	1	1

Table 7.7.7.2 P6 Port Group Function Assignment

	P6SELy = 0		P6SELy = 1									
Port name	GPIO		X = 0x0 tion 0)	P6yMU (Func		P6yMU (Func	X = 0x2 tion 2)	P6yMU (Func	X = 0x3 tion 3)	32 pin	48 pin	64 pin
		Peripheral	Pin	Peripheral	Pin	Peripheral	Pin	Peripheral	Pin	1.		.
P60	P60	QSPI Ch.0	QSPICLK0	-	-	-	-	-	-	1	1	1
P61	P61	QSPI Ch.0	QSDIO00	-	-	-	-	-	-	1	1	1
P62	P62	QSPI Ch.0	QSDIO01	-	-	-	-	-	-	1	1	1
P63	P63	QSPI Ch.0	QSDIO02	_	_	-	-	-	-	1	1	1
P64	P64	QSPI Ch.0	QSDIO03	-	-	-	-	-	-	1	1	1
P65	P65	QSPI Ch.0	#QSPISS0	-	-	-	-	-	-	1	1	1

7.7.8 Pd Port Group

The Pd port group support the GPIO function. The Pd0 and Pd1 ports are configured as debugging function ports at initialization.

Table 7.7.8.1 Control Registers for Pd Port Group

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks	32	48	64
					1,, 11	11011101110	pin	pin	pin
PDDAT	15–12	_	0x0	_	R	_	-	-	-
(Pd Port Data	11	PDOUT3	0	H0	R/W	_	1	1	1
Register)	10	PDOUT2	0	H0	R/W		1	1	1
	9	PDOUT1	0	H0	R/W		1	1	1
	8	PDOUT0	0	H0	R/W		✓	1	1
	7–4	_	0x0	-	R	_	-	_	_
	3	PDIN3	0	H0	R	_	1	1	1
	2	PDIN2	0	H0	R		1	1	1
	1	PDIN1	0	H0	R		1	1	1
	0	PDIN0	0	H0	R		1	1	1
PDIOEN	15–12	_	0x0	-	R	_	-	_	_
(Pd Port Enable	11	PDIEN3	0	H0	R/W	_	1	1	1
Register)	10	PDIEN2	0	H0	R/W		1	1	1
	9	PDIEN1	0	H0	R/W		1	1	1
	8	PDIEN0	0	H0	R/W		1	1	1
	7–4	_	0x0	-	R	_	-	_	_
	3	PDOEN3	0	H0	R/W	_	1	1	1
	2	PDOEN2	0	H0	R/W		1	1	1
	1	PDOEN1	0	H0	R/W		1	1	1
	0	PDOEN0	0	H0	R/W		1	1	1

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks	32 pin	48 pin	64 pin
PDRCTL	15–12	_	0x0	_	R	_	Ĭ-	<u> </u>	<u> </u>
(Pd Port Pull-up/down	11	PDPDPU3	0	H0	R/W	_	1	1	1
Control Register)	10	PDPDPU2	0	H0	R/W		1	1	1
	9	PDPDPU1	0	H0	R/W		1	1	1
	8	PDPDPU0	0	H0	R/W		1	1	1
	7–4	-	0x0	_	R	_	-	-	-
	3	PDREN3	0	H0	R/W	_	1	1	1
	2	PDREN2	0	H0	R/W		1	1	1
	1	PDREN1	0	H0	R/W		1	1	1
	0	PDREN0	0	H0	R/W		1	1	1
PDMODSEL	15–8	_	0x00	_	R	_	-	-	-
(Pd Port Mode Select	7–4	_	0x0	_	R		_	-	_
Register)	3	PDSEL3	0	H0	R/W	_	1	1	1
	2	PDSEL2	0	H0	R/W		1	1	1
	1	PDSEL1	1	H0	R/W		1	1	1
	0	PDSEL0	1	H0	R/W		1	1	1
PDFNCSEL	15–8	_	0x00	H0	R/W	_	-	_	_
(Pd Port Function	7–6	PD3MUX[1:0]	0x0	H0	R/W	_	1	1	1
Select Register)	5–4	PD2MUX[1:0]	0x0	H0	R/W		1	1	1
	3–2	PD1MUX[1:0]	0x0	H0	R/W		1	1	1
	1–0	PD0MUX[1:0]	0x0	H0	R/W		1	1	1

Table 7.7.8.2 Pd Port Group Function Assignment

	PDSELy = 0		PDSELy = 1									
Port name	GPIO	PDyMUX = 0x0 GPIO (Function 0)		PDyMUX = 0x1 (Function 1)		PDyMUX = 0x2 (Function 2)		PDyMUX = 0x3 (Function 3)		32 pin	48 pin	64 pin
		Peripheral	Pin	Peripheral	Pin	Peripheral	Pin	Peripheral	Pin			
Pd0	Pd0	CPU	SWCLK	-	-	-	-	-	-	1	1	1
Pd1	Pd1	CPU	SWD	-	-	-	-	-	-	1	1	1
Pd2	Pd2	-	-	-	-	CLG	OSC4	-	-	1	1	1
Pd3	Pd3	_	_	_	_	CLG	OSC3	_	-	1	1	1

7.7.9 Common Registers between Port Groups

Table 7.7.9.1 Control Registers for Common Use with Port Groups

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks	32	48	
Trogressor training							pin	pin	pin
PPORTCLK	15–9	_	0x00	_	R	_	-	_	-
(P Port Clock Control	8	DBRUN	0	H0	R/WP	_	1	1	1
Register)	7–4	CLKDIV[3:0]	0x0	H0	R/WP		1	1	1
	3–2	-	0x0	-	R	_	-	-	-
	1–0	CLKSRC[1:0]	0x0	H0	R/WP	_	1	1	1
PPORTINTFGRP	15–8	-	0x00	_	R	_	-	-	_
(P Port Interrupt Flag	7	_	0	_	R		_	_	-
Group Register)	6	P6INT	0	H0	R	_	1	1	1
	5	P5INT	0	H0	R		1	1	1
	4	P4INT	0	H0	R		1	1	1
	3	P3INT	0	H0	R		1	1	1
	2	P2INT	0	H0	R		1	1	1
	1	P1INT	0	H0	R		1	1	1
	0	POINT	0	H0	R		_	1	1

8 Universal Port Multiplexer (UPMUX)

8.1 Overview

UPMUX is a multiplexer that allows software to assign the desired peripheral I/O function to an I/O port. The main features are outlined below.

- Allows programmable assignment of the I²C, UART, synchronous serial interface, and 16-bit PWM timer peripheral I/O functions to the P0, P1, P2, and P3 port groups.
- The peripheral I/O function assigned via UPMUX is enabled by setting the PPORTPxFNCSEL.PxyMUX[1:0] bits

Note: 'x', which is used in the port names Pxy, register names, and bit names, refers to a port group (x = 0, 1, 2, 3) and 'y' refers to a port number (y = 0, 1, 2, ..., 7).

Figure 8.1.1 shows the configuration of UPMUX.

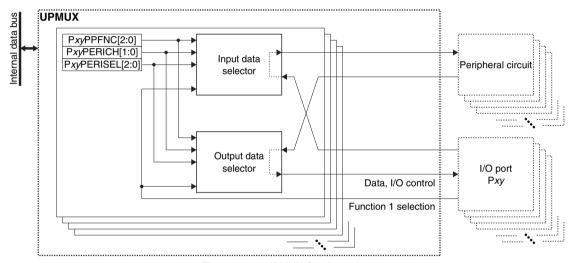


Figure 8.1.1 UPMUX Configuration

8.2 Peripheral Circuit I/O Function Assignment

An I/O function of a peripheral circuit supported may be assigned to peripheral I/O function 1 of an I/O port listed above. The following shows the procedure to assign a peripheral I/O function and enable it in the I/O port:

1. Configure the PPORTPxIOEN register of the I/O port.

- Set the PPORTPxIOEN.PxIENv bit to 0. (Disable input) Set the PPORTPxIOEN.PxOENy bit to 0. (Disable output)

2. Set the PPORTPxMODSEL.PxSELy bit of the I/O port to 0. (Disable peripheral I/O function)

3. Set the following UPMUXPxMUXn register bits (n = 0 to 3).

- UPMUXPxMUXn.PxyPERISEL[2:0] bits (Select peripheral circuit) - UPMUXPxMUXn.PxyPERICH[1:0] bits (Select peripheral circuit channel) - UPMUXPxMUXn.PxyPPFNC[2:0] bits (Select function to assign)

4. Initialize the peripheral circuit.

5. Set the PPORTPxFNCSEL.PxyMUX[1:0] bits of the I/O port to 0x1. (Select peripheral I/O function 1) 6. Set the PPORTPxMODSEL.PxSELy bit of the I/O port to 1. (Enable peripheral I/O function)

8.3 Control Registers

Pxy-xz Universal Port Multiplexer Setting Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
UPMUXPxMUXn	15–13	PxzPPFNC[2:0]	0x0	H0	R/W	_
	12-11	PxzPERICH[1:0]	0x0	H0	R/W	
	10–8	PxzPERISEL[2:0]	0x0	H0	R/W	
	7–5	PxyPPFNC[2:0]	0x0	H0	R/W	
	4–3	PxyPERICH[1:0]	0x0	H0	R/W	
	2-0	PxyPERISEL[2:0]	0x0	H0	R/W	

^{*1: &#}x27;x' in the register name refers to a port group number and 'n' refers to a register number (0-3).

Bits 15-13 PxzPPFNC[2:0]

Bits 7-5 PxyPPFNC[2:0]

These bits specify the peripheral I/O function to be assigned to the port. (See Table 8.3.1.)

Bits 12-11 PxzPERICH[1:0]

Bits 4-3 PxyPERICH[1:0]

These bits specify a peripheral circuit channel number. (See Table 8.3.1.)

Bits 10-8 PxzPERISEL[2:0]

Bits 2–0 PxyPERISEL[2:0]

These bits specify a peripheral circuit. (See Table 8.3.1.)

Table 8.3.1 Peripheral I/O Function Selections

		UP	MUXPxMUX	1.PxyPERISE	L[2:0] bits (Po	eripheral circ	uit)					
UPMUXPxMUXn.	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7				
PxyPPFNC[2:0] bits	None *	I2C	SPIA	UART3	T16B	Reserved	Reserved	Reserved				
(Peripheral I/O	UPMUXPxMUXn.PxyPERICH[1:0] bits (Peripheral circuit channel)											
function)	-	0x0-0x2	0x0-0x2	0x0-0x2	0x0-0x1	_	_	-				
	-	Ch.0-2	Ch.0-2	Ch.0-2	Ch.0-1	-	_	-				
0x0	None *	None *	None *	None *	None *	None *	None *	None *				
0x1		SCLn	SDIn	USINn	TOUTn0/ CAPn0	_						
0x2		SDAn	SDOn	USOUTn	TOUTn1/ CAPn1							
0x3	Reserved		SPICLKn		TOUTn2/ CAPn2	Reserved	Reserved	Reserved				
0x4		Reserved	#SPISSn	Reserved	TOUTn3/ CAPn3							
0x5												
0x6		Rese	Reserved		Reserved							
0x7												

^{* &}quot;None" means no assignment. Selecting this will put the Pxy pin into Hi-Z status when peripheral I/O function 1 is selected and enabled in the I/O port.

Note: Do not assign a peripheral input function to two or more I/O ports. Although the I/O ports output the same waveforms when an output function is assigned to two or more I/O port, a skew occurs due to the internal delay.

^{*2: &#}x27;x' in the bit name refers to a port group number, 'y' refers to an even port number (0, 2, 4, 6), and 'z' refers to an odd port number (z = y + 1).

9 Watchdog Timer (WDT2)

9.1 Overview

WDT2 restarts the system if a problem occurs, such as when the program cannot be executed normally. The features of WDT2 are listed below.

- Includes a 10-bit up counter to count NMI/reset generation cycle.
- A counter clock source and clock division ratio are selectable.
- Can generate a reset or NMI in a cycle given via software.
- Can generate a reset at the next NMI generation cycle after an NMI is generated.

Figure 9.1.1 shows the configuration of WDT2.

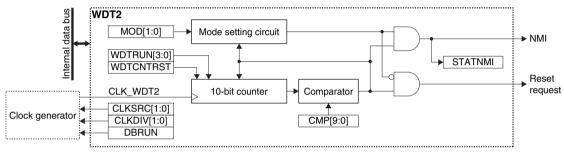


Figure 9.1.1 WDT2 Configuration

9.2 Clock Settings

9.2.1 WDT2 Operating Clock

When using WDT2, the WDT2 operating clock CLK_WDT2 must be supplied to WDT2 from the clock generator. The CLK_WDT2 supply should be controlled as in the procedure shown below.

- 1. Write 0x0096 to the SYSPROT.PROT[15:0] bits. (Remove system protection)
- 2. Enable the clock source in the clock generator if it is stopped (refer to "Clock Generator" in the "Power Supply, Reset, and Clocks" chapter).
- 3. Set the following WDT2CLK register bits:

WDT2CLK.CLKSRC[1:0] bits (Clock source selection)

WDT2CLK.CLKDIV[1:0] bits (Clock division ratio selection = Clock frequency setting)

4. Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits. (Set system protection)

9.2.2 Clock Supply in DEBUG Mode

The CLK_WDT2 supply during DEBUG mode should be controlled using the WDT2CLK.DBRUN bit.

The CLK_WDT2 supply to WDT2 is suspended when the CPU enters DEBUG mode if the WDT2CLK.DBRUN bit = 0. After the CPU returns to normal mode, the CLK_WDT2 supply resumes. Although WDT2 stops operating when the CLK_WDT2 supply is suspended, the register retains the status before DEBUG mode was entered.

If the WDT2CLK.DBRUN bit = 1, the CLK_WDT2 supply is not suspended and WDT2 will keep operating in DEBUG mode.

9.3 Operations

9.3.1 WDT2 Control

Activating WDT2

WDT2 should be initialized and started up with the procedure listed below.

1. Write 0x0096 to the SYSPROT.PROT[15:0] bits. (Remove system protection)

2. Configure the WDT2 operating clock.

3. Set the WDT2CTL.MOD[1:0] bits. (Select WDT2 operating mode)

4. Set the WDT2CMP.CMP[9:0] bits. (Set NMI/reset generation cycle)

5. Write 1 to the WDT2CTL.WDTCNTRST bit. (Reset WDT2 counter)

6. Write a value other than 0xa to the WDT2CTL.WDTRUN[3:0] bits. (Start up WDT2)

7. Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits. (Set system protection)

NMI/reset generation cycle

Use the following equation to calculate the WDT2 NMI/reset generation cycle.

$$t_{WDT} = \frac{CMP + 1}{CLK \ WDT2}$$
 (Eq. 9.1)

Where

twor. NMI/reset generation cycle [second] CLK_WDT2: WDT2 operating clock frequency [Hz] Setting value of the WDT2CMP.CMP[9:0] bits

Example) twDT = 2.5 seconds when CLK_WDT2 = 256 Hz and the WDT2CMP.CMP[9:0] bits = 639

Resetting WDT2 counter

To prevent an unexpected NMI/reset to be generated by WDT2, its embedded counter must be reset periodically via software while WDT2 is running.

1. Write 0x0096 to the SYSPROT.PROT[15:0] bits. (Remove system protection)

2. Write 1 to the WDT2CTL.WDTCNTRST bit. (Reset WDT2 counter)

3. Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits. (Set system protection)

A location should be provided for periodically processing this routine. Process this routine within the two cycle. After resetting, WDT2 starts counting with a new NMI/reset generation cycle.

Occurrence of counter compare match

If WDT2 is not reset within the two cycle for any reason and the counter reaches the setting value of the WDT2CMP.CMP[9:0] bits, a compare match occurs to cause WDT2 to issue an NMI or reset according to the setting of the WDT2CTL.MOD[1:0] bits.

If an NMI is issued, the WDT2CTL.STATNMI bit is set to 1. This bit can be cleared to 0 by writing 1 to the WDT2CTL.WDTCNTRST bit. Be sure to clear the WDT2CTL.STATNMI bit in the NMI handler routine,

If a compare match occurs, the counter is automatically reset to 0 and it continues counting.

Deactivating WDT2

WDT2 should be stopped with the procedure listed below.

1. Write 0x0096 to the SYSPROT.PROT[15:0] bits. (Remove system protection)

2. Write 0xa to the WDT2CTL.WDTRUN[3:0] bits. (Stop WDT2)

3. Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits. (Set system protection)

9.3.2 Operations in HALT and SLEEP Modes

During HALT mode

WDT2 operates in HALT mode. HALT mode is therefore cleared by an NMI or reset if it continues for more than the NMI/reset generation cycle and the CPU executes the interrupt handler. To disable WDT2 in HALT mode, stop WDT2 by writing 0xa to the WDT2CTL.WDTRUN[3:0] bits before setting to HALT mode. Reset WDT2 before resuming operations after HALT mode is cleared.

During SLEEP mode

WDT2 operates in SLEEP mode if the selected clock source is running. SLEEP mode is cleared by an NMI or reset if it continues for more than the NMI/reset generation cycle and the CPU executes the interrupt handler. Therefore, stop WDT2 by setting the WDT2CTL.WDTRUN[3:0] bits before setting to SLEEP mode.

If the clock source stops in SLEEP mode, WDT2 stops. To prevent generation of an unnecessary NMI or reset after clearing SLEEP mode, reset WDT2 before executing the slp instruction. WDT2 should also be stopped as required using the WDT2CTL.WDTRUN[3:0] bits.

9.4 Control Registers

WDT2 Clock Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
WDT2CLK	15–9	_	0x00	_	R	_
	8	DBRUN	0	H0	R/WP	
	7–6	-	0x0	_	R	
	5–4	CLKDIV[1:0]	0x0	H0	R/WP	
	3–2	-	0x0	-	R	
	1–0	CLKSRC[1:0]	0x0	H0	R/WP	

Bits 15-9 Reserved

Bit 8 DBRUN

This bit sets whether the WDT2 operating clock is supplied in DEBUG mode or not.

1 (R/WP): Clock supplied in DEBUG mode

0 (R/WP): No clock supplied in DEBUG mode

Bits 7-6 Reserved

Bits 5-4 CLKDIV[1:0]

These bits select the division ratio of the WDT2 operating clock (counter clock). The clock frequency should be set to around 256 Hz.

Bits 3-2 Reserved

Bits 1-0 CLKSRC[1:0]

These bits select the clock source of WDT2.

Table 9.4.1 Clock Source and Division Ratio Settings

WDT2CLK.		WDT2CLK.CLKSRC[1:0] bits							
CLKDIV[1:0] bits	0x0	0x1	0x2	0x3					
CENDIA[1:0] DIES	IOSC	OSC1	OSC3	EXOSC					
0x3	1/65,536	1/128	1/65,536	1/1					
0x2	1/32,768		1/32,768						
0x1	1/16,384		1/16,384						
0x0	1/8,192		1/8,192						

(Note) The oscillation circuits/external input that are not supported in this IC cannot be selected as the clock source.

WDT2 Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
WDT2CTL	15–11	_	0x00	_	R	_
	10–9	MOD[1:0]	0x0	H0	R/WP	
	8	STATNMI	0	H0	R	
	7–5	_	0x0	-	R	
	4	WDTCNTRST	0	H0	WP	Always read as 0.
	3–0	WDTRUN[3:0]	0xa	H0	R/WP	_

Bits 15-11 Reserved

Bits 10-9 MOD[1:0]

These bits set the WDT2 operating mode.

Table 9.4.2 Operating Mode Setting

WDT2CTL. MOD[1:0] bits	Operating mode	Description
0x3	Reserved	-
0x2		If the WDT2CTL.STATNMI bit is not cleared to 0 after an NMI has occurred due to a counter compare match, WDT2 issues
		a reset when the next compare match occurs.
0x1	NMI mode	WDT2 issues an NMI when a counter compare match occurs.
0x0	RESET mode	WDT2 issues a reset when a counter compare match occurs.

Bit 8 STATNMI

This bit indicates that a counter compare match and NMI have occurred.

1 (R): NMI (counter compare match) occurred

0 (R): NMI not occurred

When the NMI generation function of WDT2 is used, read this bit in the NMI handler routine to confirm that WDT2 was the source of the NMI.

The WDT2CTL.STATNMI bit set to 1 is cleared to 0 by writing 1 to the WDT2CTL.WDTCNTRST bit.

Bits 7-5 Reserved

Bit 4 WDTCNTRST

This bit resets the 10-bit counter and the WDT2CTL.STATNMI bit.

1 (WP): Reset 0 (WP): Ignored

0 (R): Always 0 when being read

Bits 3-0 WDTRUN[3:0]

These bits control WDT2 to run and stop.

0xa (WP):StopValues other than 0xa (WP):Run0xa (R):Idle0x0 (R):Running

Always 0x0 is read if a value other than 0xa is written.

Since an NMI or reset may be generated immediately after running depending on the counter value, WDT2 should also be reset concurrently when running WDT2.

WDT2 Counter Compare Match Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
WDT2CMP	15–10	_	0x00	_	R	_
	9–0	CMP[9:0]	0x3ff	H0	R/WP	

Bits 15-10 Reserved

Bits 9-0 CMP[9:0]

These bits set the NMI/reset generation cycle.

The value set in this register is compared with the 10-bit counter value while WDT2 is running, and an NMI or reset is generated when they are matched.

10 Real-Time Clock (RTCA)

10.1 Overview

RTCA is a real-time clock with a perpetual calendar function. The main features of RTCA are outlined below.

- Includes a BCD real-time clock counter to implement a time-of-day clock (second, minute, and hour) and calendar (day, day of the week, month, and year with leap year supported).
- Provides a hold function for reading correct counter values by suspending the real-time clock counter operation.
- 24-hour or 12-hour mode is selectable.
- Capable of controlling the starting and stopping of the time-of-day clock.
- Provides a 30-second correction function to adjust time using a time signal.
- Includes a 1 Hz counter to count 128 to 1 Hz.
- Includes a BCD stopwatch counter with 1/100-second counting supported.
- Provides a theoretical regulation function to correct clock error due to frequency tolerance with no external parts required.

Figure 10.1.1 shows the configuration of RTCA.

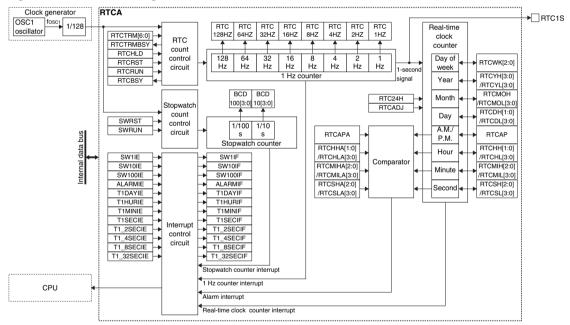


Figure 10.1.1 RTCA Configuration

10.2 Output Pin and External Connection

10.2.1 Output Pin

Table 10.2.1.1 shows the RTCA pin.

Table 10.2.1.1 RTCA Pin

Pin name	Pin name I/O* Initial status*		Function					
RTC1S	0	O (L)	1-second signal monitor output pin					

* Indicates the status when the pin is configured for RTCA.

If the port is shared with the RTCA output function and other functions, the RTCA function must be assigned to the port. For more information, refer to the "I/O Ports" chapter.

10.3 Clock Settings

10.3.1 RTCA Operating Clock

RTCA uses CLK RTCA, which is generated by the clock generator from OSC1 as the clock source, as its operating clock. RTCA is operable when OSC1 is enabled.

To continue the RTCA operation during SLEEP mode with OSC1 being activated, the CLGOSC.OSC1SLPC bit must be set to 0.

10.3.2 Theoretical Regulation Function

The time-of-day clock loses accuracy if the OSC1 frequency fosc1 has a frequency tolerance from 32.768 kHz. To correct this error without changing any external part, RTCA provides a theoretical regulation function. Follow the procedure below to perform theoretical regulation.

- 1. Measure fosci and calculate the frequency tolerance correction value "m [ppm] = $-\{(fosc_1 - 32,768 [Hz]) / 32,768 [Hz]\} \times 10^6$."
- 2. Determine the theoretical regulation execution cycle time "n seconds."
- 3. Determine the value to be written to the RTCACTLH.RTCTRM[6:0] bits from the results in Steps 1 and 2.
- 4. Write the value determined in Step 3 to the RTCACTLH.RTCTRM[6:0] bits periodically in n-second cycles using an RTCA alarm or second interrupt.
- 5. Monitor the RTC1S signal to check that every n-second cycle has no error included.

The correction value for theoretical regulation can be specified within the range from -64 to +63 and it should be written to the RTCACTLH.RTCTRM[6:0] bits as a two's-complement number. Use Eq. 10.1 to calculate the correction value.

$$RTCTRM[6:0] = \frac{m}{10^6} \times 256 \times n \quad \text{(However, RTCTRM[6:0] is an integer after rounding off to -64 to +63.)} \quad \text{(Eq. 10.1)}$$

Where

10-2

- n: Theoretical regulation execution cycle time [second] (time interval to write the correct value to the RTCACTLH.RTCTRM[6:0] bits periodically via software)
- m: OSC1 frequency tolerance correction value [ppm]

Figure 10.3.2.1 shows the RTC1S signal waveform.

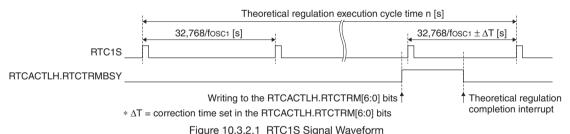


Table 10.3.2.1 lists the frequency tolerance correction rates when the theoretical regulation execution cycle time n is 4,096 seconds as an example.

Table 10.3.2.1 Correction Rates when Theoretical Regulation Execution Cycle Time n = 4,096 Seconds

RTCACTLH.RTCTRM[6:0]	Correction	Correction rate	RTCACTLH.RTCTRM[6:0]	Correction	Correction rate
bits (two's-complement)	value (decimal)	[ppm]	bits (two's-complement)	value (decimal)	[ppm]
0x00	0	0.0	0x40	-64	-61.0
0x01	1	1.0	0x41	-63	-60.1
0x02	2	1.9	0x42	-62	-59.1
0x03	3	2.9	0x43	-61	-58.2
	• • •				
0x3e	62	59.1	0x7e	-2	-1.9
0x3f	63	60.1	0x7f	-1	-1.0

Minimum resolution: 1 ppm, Correction rate range: -61.0 to 60.1 ppm

S1C31D41 TECHNICAL MANUAL

- **Notes:** The theoretical regulation affects only the real-time clock counter and 1 Hz counter. It does not affect the stopwatch counter.
 - After a value is written to the RTCACTLH.RTCTRM[6:0] bits, the theoretical regulation correction takes effect on the 1 Hz counter value at the same timing as when the 1 Hz counter changes to 0x7f. Also an interrupt occurs depending on the counter value at this time.

10.4 Operations

10.4.1 RTCA Control

Follow the sequences shown below to set time to RTCA, to read the current time and to set alarm.

Time setting

- 1. Set RTCA to 12H or 24H mode using the RTCACTLL.RTC24H bit.
- 2. Write 1 to the RTCACTLL.RTCRUN bit to enable for the real-time clock counter to start counting up.
- 3. Check to see if the RTCACTLL.RTCBSY bit = 0 that indicates the counter is ready to rewrite. If the RTCACTLL.RTCBSY bit = 1, wait until it is set to 0.
- 4. Write the current date and time in BCD code to the control bits listed below.

RTCASEC.RTCSH[2:0]/RTCSL[3:0] bits (second)

RTCAHUR.RTCMIH[2:0]/RTCMIL[3:0] bits (minute)

RTCAHUR.RTCHH[1:0]/RTCHL[3:0] bits (hour)

RTCAHUR.RTCAP bit (AM/PM) (effective when RTCACTLL.RTC24H bit = 0)

RTCAMON.RTCDH[1:0]/RTCDL[3:0] bits (day)

RTCAMON.RTCMOH/RTCMOL[3:0] bits (month)

RTCAYAR.RTCYH[3:0]/RTCYL[3:0] bits (year)

RTCAYAR.RTCWK[2:0] bits (day of the week)

- 5 Write 1 to the RTCACTLL.RTCADJ bit (execute 30-second correction) using a time signal to adjust the time. (For more information on the 30-second correction, refer to "Real-Time Clock Counter Operations.")
- 6. Write 1 to the real-time clock counter interrupt flags in the RTCAINTF register to clear them.
- 7. Write 1 to the interrupt enable bits in the RTCAINTE register to enable real-time clock counter interrupts.

Time read

- 1. Check to see if the RTCACTLL.RTCBSY bit = 0. If the RTCACTLL.RTCBSY bit = 1, wait until it is set to 0.
- 2. Write 1 to the RTCACTLL.RTCHLD bit to suspend count-up operation of the real-time clock counter.
- 3. Read the date and time from the control bits listed in "Time setting, Step 4" above.
- 4. Write 0 to the RTCACTLL.RTCHLD bit to resume count-up operation of the real-time clock counter. If a second count-up timing has occurred in the count hold state, the hardware corrects the second counter for +1 second (for more information on the +1 second correction, refer to "Real-Time Clock Counter Operations").

Alarm setting

- 1. Write 0 to the RTCAINTE.ALARMIE bit to disable alarm interrupts.
- 2. Write the alarm time in BCD code to the control bits listed below (a time within 24 hours from the current time can be specified).

RTCAALM1.RTCSHA[2:0]/RTCSLA[3:0] bits (second)

RTCAALM2.RTCMIHA[2:0]/RTCMILA[3:0] bits (minute)

RTCAALM2.RTCHHA[1:0]/RTCHLA[3:0] bits (hour)

RTCAALM2.RTCAPA bit (AM/PM) (effective when RTCACTLL.RTC24H bit = 0)

- 3. Write 1 to the RTCAINTF.ALARMIF bit to clear the alarm interrupt flag.
- 4. Write 1 to the RTCAINTE.ALARMIE bit to enable alarm interrupts.

 When the real-time clock counter reaches the alarm time set in Step 2, an alarm interrupt occurs.

10.4.2 Real-Time Clock Counter Operations

The real-time clock counter consists of second, minute, hour, AM/PM, day, month, year, and day of the week counters and it performs counting up using the RTC1S signal. It has the following functions as well.

Recognizing leap years

The leap year recognizing algorithm used in RTCA is effective only for Christian Era years. Years within 0 to 99 that can be divided by four without a remainder are recognized as leap years. If the year counter = 0x00, RTCA assumes it as a common year. If a leap year is recognized, the count range of the day counter changes when the month counter is set to February.

Corrective operation when a value out of the effective range is set

When a value out of the effective range is set to the year, day of the week, or hour (in 24H mode) counter, the counter will be cleared to 0 at the next count-up timing. When a such value is set to the month, day, or hour (in 12H mode) counter, the counter will be set to 1 at the next count-up timing.

Note: Do not set the RTCAMON.RTCMOL[3:0] bits to 0x0 if the RTCAMON.RTCMOH bit = 0.

30-second correction

This function is provided to set the time-of-day clock by the time signal. Writing 1 to the RTCACTLL.RTC-ADJ bit clears the second counter and adds 1 to the minute counter if the second counter represents 30 to 59 seconds, or clears the second counter with the minute counter left unchanged if the second counter represents 0 to 29 seconds.

+1 second correction

If a second count-up timing occurred while the RTCACTLL.RTCHLD bit = 1 (count hold state), the real-time clock counter counts up by +1 second (performs +1 second correction) after the counting has resumed by writing 0 to the RTCACTLL.RTCHLD bit.

Note: If two or more second count-up timings occurred while the RTCACTLL.RTCHLD bit = 1, the counter is always corrected for +1 second only.

10.4.3 Stopwatch Control

Follow the sequences shown below to start counting of the stopwatch and to read the counter.

Count start

- 1. Write 1 to the RTCASWCTL.SWRST bit to reset the stopwatch counter.
- 2. Write 1 to the stopwatch interrupt flags in the RTCAINTF register to clear them.
- 3. Write 1 to the interrupt enable bits in the RTCAINTE register to enable stopwatch interrupts.
- 4. Write 1 to the RTCASWCTL.SWRUN bit to start stopwatch count up operation.

Counter read

- 1. Read the count value from the RTCASWCTL.BCD10[3:0] and BCD100[3:0] bits.
- 2. Read again.
 - i. If the two read values are the same, assume that the count values are read correctly.
 - ii. If different values are read, perform reading once more and compare the read value with the previous one.

10.4.4 Stopwatch Count-up Pattern

The stopwatch consists of 1/100-second and 1/10-second counters and these counters perform counting up in increments of approximate 1/100 and 1/10 seconds with the count-up patterns shown in Figure 10.4.4.1.

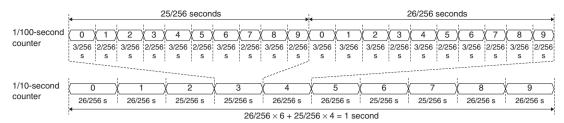


Figure 10.4.4.1 Stopwatch Count-Up Patterns

10.5 Interrupts

RTCA has a function to generate the interrupts shown in Table 10.5.1.

Interrupt	Interrupt flag	Set condition	Clear condition
Alarm	RTCAINTF.ALARMIF	Matching between the RTCAALM1-2 register contents and the real-time clock counter contents	Writing 1
1-day	RTCAINTF.T1DAYIF	Day counter count up	Writing 1
1-hour	RTCAINTF.T1HURIF	Hour counter count up	Writing 1
1-minute	RTCAINTF.T1MINIF	Minute counter count up	Writing 1
1-second	RTCAINTF.T1SECIF	Second counter count up	Writing 1
1/2-second	RTCAINTF.T1_2SECIF	See Figure 10.5.1.	Writing 1
1/4-second	RTCAINTF.T1_4SECIF	See Figure 10.5.1.	Writing 1
1/8-second	RTCAINTF.T1_8SECIF	See Figure 10.5.1.	Writing 1
1/32-second	RTCAINTF.T1_32SECIF	See Figure 10.5.1.	Writing 1
Stopwatch 1 Hz	RTCAINTF.SW1IF	1/10-second counter overflow	Writing 1
Stopwatch 10 Hz	RTCAINTF.SW10IF	1/10-second counter count up	Writing 1
Stopwatch 100 Hz	RTCAINTF.SW100IF	1/100-second counter count up	Writing 1
Theoretical regulation completion	RTCAINTF.RTCTRMIF	At the end of theoretical regulation operation	Writing 1

Table 10.5.1 RTCA Interrupt Function

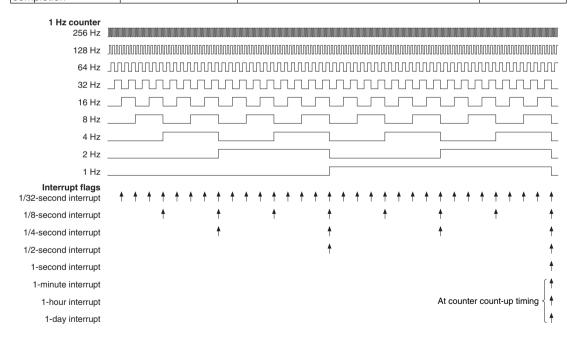


Figure 10.5.1 RTCA Interrupt Timings

Notes: • 1-second to 1/32-second interrupts occur after a lapse of 1/256 second from change of the 1 Hz counter value.

 An alarm interrupt occurs after a lapse of 1/256 second from matching between the AM/PM (in 12H mode), hour, minute, and second counter value and the alarm setting value. RTCA provides interrupt enable bits corresponding to each interrupt flag. An interrupt request is sent to the CPU only when the interrupt flag, of which interrupt has been enabled by the interrupt enable bit, is set. For more information on interrupt control, refer to the "Interrupt" chapter.

10.6 Control Registers

RTCA Control Register (Low Byte)

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RTCACTLL	7	-	0	_	R	_
	6	RTCBSY	0	H0	R	
	5	RTCHLD	0	H0	R/W	Cleared by setting the
						RTCACTLL.RTCRST bit to 1.
	4	RTC24H	0	H0	R/W	_
	3	_	0	-	R	
	2	RTCADJ	0	H0	R/W	Cleared by setting the
						RTCACTLL.RTCRST bit to 1.
	1	RTCRST	0	H0	R/W	_
	0	RTCRUN	0	H0	R/W	

Bit 7 Reserved

Bit 6 RTCBSY

This bit indicates whether the counter is performing count-up operation or not.

1 (R): In count-up operation

0 (R): Idle (ready to rewrite real-time clock counter)

This bit goes 1 when performing 1-second count-up, +1 second correction, or 30-second correction. It retains 1 for 1/256 second and then reverts to 0.

Bit 5 RTCHLD

This bit halts the count-up operation of the real-time clock counter.

1 (R/W): Halt real-time clock counter count-up operation

0 (R/W): Normal operation

Writing 1 to this bit halts the count-up operation of the real-time clock counter, this makes it possible to read the counter value correctly without changing the counter. Write 0 to this bit to resume count-up operation immediately after the counter has been read. Depending on these operation timings, the +1 second correction may be executed after the count-up operation resumes. For more information on the +1 second correction, refer to "Real-Time Clock Counter Operations."

Note: When the RTCACTLH.RTCTRMBSY bit = 1, the RTCACTLL.RTCHLD bit cannot be rewritten to 1 (as fixed at 0).

Bit 4 RTC24H

This bit sets the hour counter to 24H mode or 12H mode.

1 (R/W): 24H mode 0 (R/W): 12H mode

This selection changes the count range of the hour counter. Note, however, that the counter value is not updated automatically, therefore, it must be programmed again.

Note: Be sure to avoid writing to this bit when the RTCACTLL.RTCRUN bit = 1.

Bit 3 Reserved

Bit 2 RTCADJ

This bit executes the 30-second correction time adjustment function.

1 (W): Execute 30-second correction

0 (W): Ineffective

1 (R): 30-second correction is executing.

0 (R): 30-second correction has finished. (Normal operation)

Writing 1 to this bit executes 30-second correction and an enabled interrupt occurs even if the RT-CACTLL.RTCRUN bit = 0. The correction takes up to 2/256 seconds. The RTCACTLL.RTCADJ bit is automatically cleared to 0 when the correction has finished. For more information on the 30-second correction, refer to "Real-Time Clock Counter Operations."

Notes: • Be sure to avoid writing to this bit when the RTCACTLL.RTCBSY bit = 1.

• Do not write 1 to this bit again while the RTCACTLL.RTCADJ bit = 1.

Bit 1 RTCRST

This bit resets the 1 Hz counter, the RTCACTLL.RTCADJ bit, and the RTCACTLL.RTCHLD bit.

1 (W): Reset 0 (W): Ineffective

1 (R): Reset is being executed.

0 (R): Reset has finished. (Normal operation)

This bit is automatically cleared to 0 after reset has finished.

Bit 0 RTCRUN

This bit starts/stops the real-time clock counter.

1 (R/W): Running/start control 0 (R/W): Idle/stop control

When the real-time clock counter stops counting by writing 0 to this bit, the counter retains the value when it stopped. Writing 1 to this bit again resumes counting from the value retained.

RTCA Control Register (High Byte)

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RTCACTLH	7	RTCTRMBSY	0	H0	R	_
	6–0	RTCTRM[6:0]	0x00	H0	W	Read as 0x00.

Bit 7 RTCTRMBSY

This bit indicates whether the theoretical regulation is currently executed or not.

1 (R): Theoretical regulation is executing.

0 (R): Theoretical regulation has finished (or not executed).

This bit goes 1 when a value is written to the RTCACTLH.RTCTRM[6:0] bits. The theoretical regulation takes up to 1 second for execution. This bit reverts to 0 automatically after the theoretical regulation has finished execution.

Bits 6-0 RTCTRM[6:0]

Write the correction value for adjusting the 1 Hz frequency to these bits to execute theoretical regulation. For a calculation method of correction value, refer to "Theoretical Regulation Function."

Notes: • When the RTCACTLH.RTCTRMBSY bit = 1, the RTCACTLH.RTCTRM[6:0] bits cannot be rewritten.

• Writing 0x00 to the RTCACTLH.RTCTRM[6:0] bits sets the RTCACTLH.RTCTRMBSY bit to 1 as well. However, no correcting operation is performed.

RTCA Second Alarm Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RTCAALM1	15	_	0	_	R	_
	14–12	RTCSHA[2:0]	0x0	H0	R/W	
	11–8	RTCSLA[3:0]	0x0	H0	R/W	
	7–0	_	0x00	-	R	

Bit 15 Reserved

Bits 14-12 RTCSHA[2:0]

Bits 11-8 RTCSLA[3:0]

The RTCAALM1.RTCSHA[2:0] bits and the RTCAALM1.RTCSLA[3:0] bits set the 10-second digit and 1-second digit of the alarm time, respectively. A value within 0 to 59 seconds can be set in BCD code as shown in Table 10.6.1.

Table 10.6.1 Setting Examples in BCD Code

Setting value	Setting value in BCD code							
RTCAALM1.RTCSHA[2:0] bits	RTCAALM1.RTCSLA[3:0] bits	Alarm (second) setting						
0x0	0x0	00 seconds						
0x0	0x1	01 second						
	• • •	• • •						
0x0	0x9	09 seconds						
0x1	0x0	10 seconds						
0x5	0x9	59 seconds						

Bits 7-0 Reserved

RTCA Hour/Minute Alarm Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RTCAALM2	15	_	0	_	R	_
	14	RTCAPA	0	H0	R/W	
	13-12	RTCHHA[1:0]	0x0	H0	R/W	
	11–8	RTCHLA[3:0]	0x0	H0	R/W	
	7	_	0	-	R	
	6–4	RTCMIHA[2:0]	0x0	H0	R/W	
	3–0	RTCMILA[3:0]	0x0	H0	R/W	

Bit 15 Reserved

Bit 14 RTCAPA

This bit sets A.M. or P.M. of the alarm time in 12H mode (RTCACTLL.RTC24H bit = 0).

1 (R/W): P.M. 0 (R/W): A.M.

This setting is ineffective in 24H mode (RTCACTLL.RTC24H bit = 1).

Bits 13-12 RTCHHA[1:0]

Bits 11-8 RTCHLA[3:0]

The RTCAALM2.RTCHHA[1:0] bits and the RTCAALM2.RTCHLA[3:0] bits set the 10-hour digit and 1-hour digit of the alarm time, respectively. A value within 1 to 12 o'clock in 12H mode or 0 to 23 in 24H mode can be set in BCD code.

Bit 7 Reserved

Bits 6-4 RTCMIHA[2:0]

Bits 3-0 RTCMILA[3:0]

The RTCAALM2.RTCMIHA[2:0] bits and the RTCAALM2.RTCMILA[3:0] bits set the 10-minute digit and 1-minute digit of the alarm time, respectively. A value within 0 to 59 minutes can be set in BCD code.

RTCA Stopwatch Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RTCASWCTL	15–12	BCD10[3:0]	0x0	H0	R	_
	11–8	BCD100[3:0]	0x0	H0	R	
	7–5	_	0x0	-	R	
	4	SWRST	0	H0	W	Read as 0.
	3–1	_	0x0	-	R	_
	0	SWRUN	0	H0	R/W	

Bits 15-12 BCD10[3:0]

Bits 11-8 BCD100[3:0]

The 1/10-second and 1/100-second digits of the stopwatch counter can be read as a BCD code from the RTCASWCTL.BCD10[3:0] bits and the RTCASWCTL.BCD100[3:0] bits, respectively.

Note: The counter value may not be read correctly while the stopwatch counter is running. The RTCASWCTL.BCD10[3:0]/BCD100[3:0] bits must be read twice and assume the counter value was read successfully if the two read results are the same.

Bits 7-5 Reserved

Bit 4 SWRST

This bit resets the stopwatch counter to 0x00.

1 (W): Reset 0 (W): Ineffective

0 (R): Always 0 when being read

When the stopwatch counter in running status is reset, it continues counting from count 0x00. The stopwatch counter retains 0x00 if it is reset in idle status.

Bits 3-1 Reserved

Bit 0 SWRUN

This bit starts/stops the stopwatch counter.

1 (R/W): Running/start control 0 (R/W): Idle/stop control

When the stopwatch counter stops counting by writing 0 to this bit, the counter retains the value when it stopped. Writing 1 to this bit again resumes counting from the value retained.

Note: The stopwatch counter stops in sync with the stopwatch clock after 0 is written to the RTCASWCTL.SWRUN bit. Therefore, the counter value may be incremented (+1) from the value at writing 0.

RTCA Second/1Hz Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RTCASEC	15	_	0	_	R	_
	14–12	RTCSH[2:0]	0x0	H0	R/W	
	11–8	RTCSL[3:0]	0x0	H0	R/W	
	7	RTC1HZ	0	H0	R	Cleared by setting the
	6	RTC2HZ	0	H0	R	RTCACTLL.RTCRST bit to 1.
	5	RTC4HZ	0	H0	R	
	4	RTC8HZ	0	H0	R	
	3	RTC16HZ	0	H0	R	
	2	RTC32HZ	0	H0	R	
	1	RTC64HZ	0	H0	R	
	0	RTC128HZ	0	H0	R	

Bit 15 Reserved

Bits 14-12 RTCSH[2:0]

Bits 11-8 RTCSL[3:0]

The RTCASEC.RTCSH[2:0] bits and the RTCASEC.RTCSL[3:0] bits are used to set and read the 10-second digit and the 1-second digit of the second counter, respectively. The setting/read values are a BCD code within the range from 0 to 59.

Note: Be sure to avoid writing to the RTCASEC.RTCSH[2:0]/RTCSL[3:0] bits while the RTCACTLL. RTCBSY bit = 1.

10 REAL-TIME CLOCK (RTCA)

Bit 7	RTC1HZ
Bit 6	RTC2HZ
Bit 5	RTC4HZ
Bit 4	RTC8HZ
Bit 3	RTC16HZ
Bit 2	RTC32HZ
Bit 1	RTC64HZ
Bit 0	RTC128HZ

1 Hz counter data can be read from these bits.

The following shows the correspondence between the bit and frequency:

RTCASEC.RTC1HZ bit: 1 Hz
RTCASEC.RTC2HZ bit: 2 Hz
RTCASEC.RTC4HZ bit: 4 Hz
RTCASEC.RTC8HZ bit: 8 Hz
RTCASEC.RTC16HZ bit: 16 Hz
RTCASEC.RTC32HZ bit: 32 Hz
RTCASEC.RTC64HZ bit: 64 Hz
RTCASEC.RTC128HZ bit: 128 Hz

Note: The counter value may not be read correctly while the 1 Hz counter is running. These bits must be read twice and assume the counter value was read successfully if the two read results are the same.

RTCA Hour/Minute Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RTCAHUR	15	_	0	-	R	_
	14	RTCAP	0	H0	R/W	
	13–12	RTCHH[1:0]	0x1	H0	R/W	
	11–8	RTCHL[3:0]	0x2	H0	R/W	
	7	_	0	-	R	
	6–4	RTCMIH[2:0]	0x0	H0	R/W	
	3–0	RTCMIL[3:0]	0x0	H0	R/W	

Bit 15 Reserved

Bit 14 RTCAP

This bit is used to set and read A.M. or P.M. data in 12H mode (RTCACTLL.RTC24H bit = 0).

1 (R/W): P.M. 0 (R/W): A.M.

In 24H mode (RTCACTLL.RTC24H bit = 1), this bit is fixed at 0 and writing 1 is ignored. However, if the RTCAHUR.RTCAP bit = 1 when changed to 24H mode, it goes 0 at the next count-up timing of the hour counter.

Bits 13-12 RTCHH[1:0]

Bits 11-8 RTCHL[3:0]

The RTCAHUR.RTCHH[1:0] bits and the RTCAHUR.RTCHL[3:0] bits are used to set and read the 10-hour digit and the 1-hour digit of the hour counter, respectively. The setting/read values are a BCD code within the range from 1 to 12 in 12H mode or 0 to 23 in 24H mode.

Note: Be sure to avoid writing to the RTCAHUR.RTCHH[1:0]/RTCHL[3:0] bits while the RTCACTLL. RTCBSY bit = 1.

Bit 7 Reserved

Bits 6–4 RTCMIH[2:0]

Bits 3-0 RTCMIL[3:0]

The RTCAHUR.RTCMIH[2:0] bits and the RTCAHUR.RTCMIL[3:0] bits are used to set and read the 10-minute digit and the 1-minute digit of the minute counter, respectively. The setting/read values are a BCD code within the range from 0 to 59.

Note: Be sure to avoid writing to the RTCAHUR.RTCMIH[2:0]/RTCMIL[3:0] bits while the RTCACTLL.RTCBSY bit = 1.

RTCA Month/Day Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RTCAMON	15–13	_	0x0	_	R	_
	12	RTCMOH	0	H0	R/W	
	11–8	RTCMOL[3:0]	0x1	H0	R/W	
	7–6	_	0x0	-	R	
	5–4	RTCDH[1:0]	0x0	H0	R/W	
	3–0	RTCDL[3:0]	0x1	H0	R/W	

Bits 15-13 Reserved

Bit 12 RTCMOH

Bits 11-8 RTCMOL[3:0]

The RTCAMON.RTCMOH bit and the RTCAMON.RTCMOL[3:0] bits are used to set and read the 10-month digit and the 1-month digit of the month counter, respectively. The setting/read values are a BCD code within the range from 1 to 12.

Notes: • Be sure to avoid writing to the RTCAMON.RTCMOH/RTCMOL[3:0] bits while the RTCACTLL.RTCBSY bit = 1.

• Be sure to avoid setting the RTCAMON.RTCMOH/RTCMOL[3:0] bits to 0x00.

Bits 7-6 Reserved

Bits 5-4 RTCDH[1:0]

Bits 3-0 RTCDL[3:0]

The RTCAMON.RTCDH[1:0] bits and the RTCAMON.RTCDL[3:0] bits are used to set and read the 10-day digit and the 1-day digit of the day counter, respectively. The setting/read values are a BCD code within the range from 1 to 31 (to 28 for February in a common year, to 29 for February in a leap year, or to 30 for April/June/September/November).

Note: Be sure to avoid writing to the RTCAMON.RTCDH[1:0]/RTCDL[3:0] bits while the RTCACTLL.RTCBSY bit = 1.

RTCA Year/Week Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RTCAYAR	15–11	_	0x00	_	R	_
	10–8	RTCWK[2:0]	0x0	H0	R/W	
	7–4	RTCYH[3:0]	0x0	H0	R/W	
	3–0	RTCYL[3:0]	0x0	H0	R/W	

Bits 15-11 Reserved

Bits 10-8 RTCWK[2:0]

These bits are used to set and read day of the week.

The day of the week counter is a base-7 counter and the setting/read values are 0x0 to 0x6. Table 10.6.2 lists the correspondence between the count value and day of the week.

Table 10.6.2 Correspondence between the count value and day of the week

RTCAYAR.RTCWK[2:0] bits	Day of the week
0x6	Saturday
0x5	Friday
0x4	Thursday
0x3	Wednesday
0x2	Tuesday
0x1	Monday
0x0	Sunday

Note: Be sure to avoid writing to the RTCAYAR.RTCWK[2:0] bits while the RTCACTLL.RTCBSY bit = 1

Bits 7–4 RTCYH[3:0] Bits 3–0 RTCYL[3:0]

The RTCAYAR.RTCYH[3:0] bits and the RTCAYAR.RTCYL[3:0] bits are used to set and read the 10-year digit and the 1-year digit of the year counter, respectively. The setting/read values are a BCD code within the range from 0 to 99.

Note: Be sure to avoid writing to the RTCAYAR.RTCYH[3:0]/RTCYL[3:0] bits while the RTCACTLL. RTCBSY bit = 1.

RTCA Interrupt Flag Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RTCAINTF	15	RTCTRMIF	0	H0	R/W	Cleared by writing 1.
	14	SW1IF	0	H0	R/W	
	13	SW10IF	0	H0	R/W	
	12	SW100IF	0	H0	R/W	
	11–9	_	0x0	_	R	_
	8	ALARMIF	0	H0	R/W	Cleared by writing 1.
	7	T1DAYIF	0	H0	R/W	
	6	T1HURIF	0	H0	R/W	
	5	T1MINIF	0	H0	R/W	
	4	T1SECIF	0	H0	R/W	
	3	T1_2SECIF	0	H0	R/W	
	2	T1_4SECIF	0	H0	R/W	
	1	T1_8SECIF	0	H0	R/W	
	0	T1_32SECIF	0	H0	R/W	

Bit 15 RTCTRMIF

Bit 14 SW1IF

Bit 13 SW10IF

Bit 12 SW100IF

These bits indicate the real-time clock interrupt cause occurrence status.

1 (R): Cause of interrupt occurred 0 (R): No cause of interrupt occurred

1 (W): Clear flag 0 (W): Ineffective

The following shows the correspondence between the bit and interrupt: RTCAINTF.RTCTRMIF bit: Theoretical regulation completion interrupt

RTCAINTF.SW1IF bit: Stopwatch 1 Hz interrupt
RTCAINTF.SW10IF bit: Stopwatch 10 Hz interrupt
RTCAINTF.SW100IF bit: Stopwatch 100 Hz interrupt

Bits 11-9 Reserved

Bit 8	ALARMIF
Bit 7	T1DAYIF
Bit 6	T1HURIF
Bit 5	T1MINIF
Bit 4	T1SECIF
Bit 3	T1_2SECIF
Bit 2	T1_4SECIF
Bit 1	T1_8SECIF
Rit 0	T1 32SECIE

These bits indicate the real-time clock interrupt cause occurrence status.

1 (R): Cause of interrupt occurred 0 (R): No cause of interrupt occurred

1 (W): Clear flag 0 (W): Ineffective

The following shows the correspondence between the bit and interrupt:

RTCAINTF. ALARMIF bit: Alarm interrupt
RTCAINTF.T1DAYIF bit: 1-day interrupt
RTCAINTF.T1HURIF bit: 1-hour interrupt
RTCAINTF.T1SECIF bit: 1-second interrupt
RTCAINTF.T1_2SECIF bit: 1/2-second interrupt
RTCAINTF.T1_4SECIF bit: 1/4-second interrupt
RTCAINTF.T1_8SECIF bit: 1/8-second interrupt
RTCAINTF.T1_32SECIF bit: 1/32-second interrupt

RTCA Interrupt Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RTCAINTE	15	RTCTRMIE	0	H0	R/W	_
	14	SW1IE	0	H0	R/W	
	13	SW10IE	0	H0	R/W	
	12	SW100IE	0	H0	R/W	
	11–9	-	0x0	-	R	
	8	ALARMIE	0	H0	R/W	
	7	T1DAYIE	0	H0	R/W	
	6	T1HURIE	0	H0	R/W	
	5	T1MINIE	0	H0	R/W	
	4	T1SECIE	0	H0	R/W	
	3	T1_2SECIE	0	H0	R/W	
	2	T1_4SECIE	0	H0	R/W	
	1	T1_8SECIE	0	H0	R/W	
	0	T1_32SECIE	0	H0	R/W	

Bit 15 RTCTRMIE
Bit 14 SW1IE
Bit 13 SW10IE
Bit 12 SW100IE

These bits enable real-time clock interrupts.

1 (R/W): Enable interrupts0 (R/W): Disable interrupts

The following shows the correspondence between the bit and interrupt: RTCAINTE.RTCTRMIE bit: Theoretical regulation completion interrupt

RTCAINTE.SW1IE bit: Stopwatch 1 Hz interrupt
RTCAINTE.SW10IE bit: Stopwatch 10 Hz interrupt
RTCAINTE.SW100IE bit: Stopwatch 100 Hz interrupt

10 REAL-TIME CLOCK (RTCA)

Bits 11-9 Reserved **ALARMIE** Bit 8 Bit 7 **T1DAYIE** Bit 6 **T1HURIE** Bit 5 T1MINIE Bit 4 **T1SECIE** Bit 3 T1 2SECIE T1 4SECIE Bit 2 Bit 1 T1 8SECIE Bit 0 T1 32SECIE

These bits enable real-time clock interrupts.

1 (R/W): Enable interrupts 0 (R/W): Disable interrupts

The following shows the correspondence between the bit and interrupt:

RTCAINTE.ALARMIE bit: Alarm interrupt
RTCAINTE.T1DAYIE bit: 1-day interrupt
RTCAINTE.T1HURIE bit: 1-hour interrupt
RTCAINTE.T1MINIE bit: 1-minute interrupt
RTCAINTE.T1_2SECIE bit: 1/2-second interrupt
RTCAINTE.T1_4SECIE bit: 1/4-second interrupt
RTCAINTE.T1_8SECIE bit: 1/8-second interrupt
RTCAINTE.T1_32SECIE bit: 1/32-second interrupt

11 Supply Voltage Detector (SVD3)

11.1 Overview

SVD3 is a supply voltage detector to monitor the VDD voltage, or an external voltage detection input pin. The main features are listed below.

• Power supply voltage to be detected: Selectable from VDD and

external power sources (EXSVD0, EXSVD1) (Note: See the table below.)

• Detectable voltage level: Selectable from among 32 levels (max.) (Note: See the table below.)

• Detection results: - Can be read whether the power supply voltage is lower than the detection

voltage level or not.

- Can generate an interrupt or a reset when low power supply voltage is de-

tected.

Interrupt: 1 system (Low power supply voltage detection interrupt)

• Supports intermittent operations: - Three detection cycles are selectable.

 Low power supply voltage detection count function to generate an interrupt/reset when low power supply voltage is successively detected the

number of times specified.

- Continuous operation is also possible.

Figure 11.1.1 shows the configuration of SVD3.

Table 11.1.1 SVD3 Configuration of S1C31D41

Item	32-pin package	48-pin package	64-pin package		
Power supply voltage to be detected	V _{DD} and two externally input voltages (EXSVD0)	VDD and two externally input	voltages (EXSVD0, EXSVD1)		
Detectable voltage level	Vpp: 28 levels (1.8 to 5.0 V)/external voltage: 32 levels (1.2 to 5.0 V)				

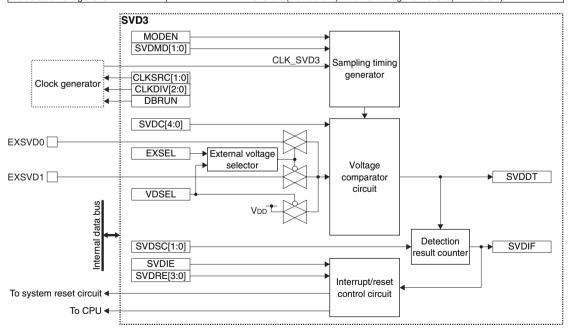


Figure 11.1.1 SVD3 Configuration

11.2 Input Pins and External Connection

11.2.1 Input Pins

Table 11.2.1.1 shows the SVD3 input pins.

Table 11.2.1.1 SVD3 Input Pins

Pin name	I/O	Initial status	Function
EXSVDn	A*	A (Hi-Z)*	External power supply voltage detection pin

^{*} Indicates the status when the pin is configured for SVD3.

If the port is shared with the EXSVDn pin and other functions, the EXSVDn function must be assigned to the port before SVD3 can be activated. For more information, refer to the "I/O Ports" chapter.

11.2.2 External Connection

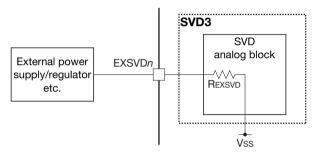


Figure 11.2.2.1 Connection between EXSVD1 Pin and External Power Supply

For the EXSVDn pin input voltage range and the EXSVD input impedance, refer to "Supply Voltage Detector Characteristics" in the "Electrical Characteristics" chapter.

11.3 Clock Settings

11.3.1 SVD3 Operating Clock

When using SVD3, the SVD3 operating clock CLK_SVD3 must be supplied to SVD3 from the clock generator. The CLK_SVD3 supply should be controlled as in the procedure shown below.

- 1. Write 0x0096 to the SYSPROT.PROT[15:0] bits. (Remove system protection)
- 2. Enable the clock source in the clock generator if it is stopped (refer to "Clock Generator" in the "Power Supply, Reset, and Clocks" chapter).
- 3. Set the following SVD3CLK register bits:
 - SVD3CLK.CLKSRC[1:0] bits (Clock source selection)
 - SVD3CLK.CLKDIV[2:0] bits (Clock division ratio selection = Clock frequency setting)
- 4. Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits. (Set system protection)

The CLK_SVD3 frequency should be set to around 32 kHz.

11.3.2 Clock Supply in SLEEP Mode

When using SVD3 during SLEEP mode, the SVD3 operating clock CLK_SVD3 must be configured so that it will keep supplying by writing 0 to the CLGOSC.xxxxSLPC bit for the CLK_SVD3 clock source.

If the CLGOSC xxxxSLPC bit for the CLK_SVD3 clock source is 1, the CLK_SVD3 clock source is deactivated during SLEEP mode and SVD3 stops with the register settings maintained at those before entering SLEEP mode. After the CPU returns to normal mode, CLK_SVD3 is supplied and the SVD3 operation resumes.

11.3.3 Clock Supply in DEBUG Mode

The CLK_SVD3 supply during DEBUG mode should be controlled using the SVD3CLK.DBRUN bit.

The CLK_SVD3 supply to SVD3 is suspended when the CPU enters DEBUG mode if the SVD3CLK.DBRUN bit = 0. After the CPU returns to normal mode, the CLK_SVD3 supply resumes. Although SVD3 stops operating when the CLK_SVD3 supply is suspended, the registers retain the status before DEBUG mode was entered.

If the SVD3CLK.DBRUN bit = 1, the CLK_SVD3 supply is not suspended and SVD3 will keep operating in DE-BUG mode.

11.4 Operations

11.4.1 SVD3 Control

Starting detection

SVD3 should be initialized and activated with the procedure listed below.

- 1. Write 0x0096 to the SYSPROT.PROT[15:0] bits. (Remove system protection)
- 2. Configure the operating clock using the SVD3CLK.CLKSRC[1:0] and SVD3CLK.CLKDIV[2:0] bits.
- 3. Set the following SVD3CTL register bits:
 - SVD3CTL.VDSEL and SVD3CTL.EXSEL bits (Select detection voltage (VDD, EXSVD0, or EXSVD1))
 - SVD3CTL.SVDSC[1:0] bits (Set low power supply voltage detection counter)
 SVD3CTL.SVDC[4:0] bits (Set SVD detection voltage Vsvp/EXSVD detection
 - voltage Vsvd ext)
 - SVD3CTL.SVDRE[3:0] bits (Select reset/interrupt mode)
 SVD3CTL.SVDMD[1:0] bits (Set intermittent operation mode)
- 4. Set the following bits when using the interrupt:
- Write 1 to the SVD3INTF.SVDIF bit. (Clear interrupt flag)
 Set the SVD3INTE.SVDIE bit to 1. (Enable SVD3 interrupt)
 Set the SVD3CTL.MODEN bit to 1. (Enable SVD3 detection)
- 6. Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits. (Set system protection)

Terminating detection

Follow the procedure shown below to stop SVD3 operation.

- 1. Write 0x0096 to the SYSPROT.PROT[15:0] bits. (Remove system protection)
- 2. Write 0 to the SVD3CTL.MODEN bit. (Disable SVD3 detection)
- 3. Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits. (Set system protection)

Reading detection results

The following two detection results can be obtained by reading the SVD3INTF.SVDDT bit:

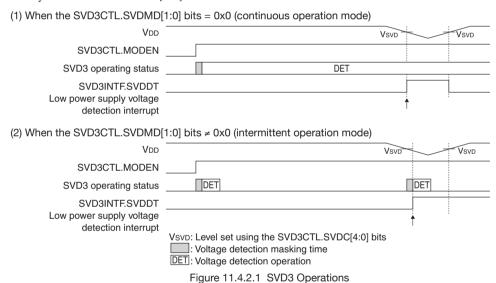
- When SVD3INTF.SVDDT bit = 0
- Power supply voltage (VDD, EXSVDn) ≥ SVD detection voltage VSVD or EXSVD detection voltage VSVD_EXT

 When SVD3INTF.SVDDT bit = 1

Power supply voltage $(V_{DD}, EXSVDn) < SVD$ detection voltage V_{SVD} or EXSVD detection voltage V_{SVD_EXT}

Before reading the SVD3INTF.SVDDT bit, wait for at least SVD circuit enable response time after 1 is written to the SVD3CTL.MODEN bit (refer to "Supply Voltage Detector Characteristics, SVD circuit enable response time tsvDEN" in the "Electrical Characteristics" chapter).

After the SVD3CTL.SVDC[4:0] bits setting value is altered to change the SVD detection voltage VsvD/EXS-VD detection voltage VsvD_EXT when the SVD3CTL.MODEN bit = 1, wait for at least SVD circuit response time before reading the SVD3INTF.SVDDT bit (refer to "Supply Voltage Detector Characteristics, SVD circuit response time tsvD" in the "Electrical Characteristics" chapter).


11.4.2 SVD3 Operations

Continuous operation mode

SVD3 operates in continuous operation mode by default (SVD3CTL.SVDMD[1:0] bits = 0x0). In this mode, SVD3 operates continuously while the SVD3CTL.MODEN bit is set to 1 and it keeps loading the detection results to the SVD3INTF.SVDDT bit. During this period, the current detection results can be obtained by reading the SVD3INTF.SVDDT bit as necessary. Furthermore, an interrupt (if the SVD3CTL.SVDRE[3:0] bits \neq 0xa) or a reset (if the SVD3CTL.SVDRE[3:0] bits = 0xa) can be generated when the SVD3INTF.SVDDT bit is set to 1 (low power supply voltage is detected). This mode can keep detecting power supply voltage drop after the voltage detection masking time has elapsed even if the IC is placed into SLEEP status or accidental clock stoppage has occurred.

Intermittent operation mode

SVD3 operates in intermittent operation mode when the SVD3CTL.SVDMD[1:0] bits are set to 0x1 to 0x3. In this mode, SVD3 turns on at an interval set using the SVD3CTL.SVDMD[1:0] bits to perform detection operation and then it turns off while the SVD3CTL.MODEN bit is set to 1. During this period, the latest detection results can be obtained by reading the SVD3INTF.SVDDT bit as necessary. Furthermore, an interrupt or a reset can be generated when SVD3 has successively detected low power supply voltage the number of times specified by the SVD3CTL.SVDSC[1:0] bits.

11.5 SVD3 Interrupt and Reset

11.5.1 SVD3 Interrupt

Setting the SVD3CTL.SVDRE[3:0] bits to a value other than 0xa allows use of the low power supply voltage detection interrupt function.

Interrupt	Interrupt flag	Set condition	Clear condition
Low power supply	SVD3INTF.SVDIF	In continuous operation mode	Writing 1
voltage detection		When the SVD3INTF.SVDDT bit is 1	
		In intermittent operation mode	
		When low power supply voltage is successively de-	
		tected the specified number of times	

Table 11.5.1.1 Low Power Supply Voltage Detection Interrupt Function

SVD3 provides the interrupt enable bit (SVD3INTE.SVDIE bit) corresponding to the interrupt flag (SVD3INTF. SVDIF bit). An interrupt request is sent to the CPU only when the SVD3INTF.SVDIF bit is set while the interrupt is enabled by the SVD3INTE.SVDIE bit. For more information on interrupt control, refer to the "Interrupt" chapter.

Once the SVD3INTF.SVDIF bit is set, it will not be cleared even if the power supply voltage subsequently returns to a value exceeding the SVD detection voltage VsvD/EXSVD detection voltage VsvD_EXT. An interrupt may occur due to a temporary power supply voltage drop, check the power supply voltage status by reading the SVD3INTF. SVDDT bit in the interrupt handler routine.

11.5.2 SVD3 Reset

Setting the SVD3CTL.SVDRE[3:0] bits to 0xa allows use of the SVD3 reset issuance function.

The reset issuing timing is the same as that of the SVD3INTF.SVDIF bit being set when a low voltage is detected. After a reset has been issued, SVD3 enters continuous operation mode even if it was operating in intermittent operation mode, and continues operating. Issuing an SVD3 reset initializes the port assignment. However, when EXS-VDn is being detected, the input of the port for the EXSVDn pin is sent to SVD3 so that SVD3 will continue the EXSVDn detection operation.

If the power supply voltage reverts to the normal level, the SVD3INTF.SVDDT bit goes 0 and the reset state is canceled. After that, SVD3 resumes operating in the operation mode set previously via the initialization routine. During reset state, the SVD3 control bits are set as shown in Table 11.5.2.1.

		0120 000. 2
Control register	Control bit	Setting
SVD3CLK	DBRUN	Reset to the initial values.
	CLKDIV[2:0]	
	CLKSRC[1:0]	
SVD3CTL	VDSEL	The set value is retained.
	SVDSC[1:0]	Cleared to 0. (The set value becomes invalid as SVD3
		enters continuous operation mode.)
	SVDC[4:0]	The set value is retained.
	SVDRE[3:0]	The set value (0xa) is retained.
	EXSEL	The set value is retained.
	SVDMD[1:0]	Cleared to 0 to set continuous operation mode.
	MODEN	The set value (1) is retained.
SVD3INTF	SVDIF	The status (1) before being reset is retained.
SVD3INTE	SVDIE	Cleared to 0.

Table 11.5.2.1 SVD3 Control Bits During Reset State

11.6 Control Registers

SVD3 Clock Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SVD3CLK	15–9	_	0x00	_	R	_
	8	DBRUN	1	H0	R/WP	
	7	-	0	-	R	
	6–4	CLKDIV[2:0]	0x0	H0	R/WP	
	3–2	-	0x0	-	R	
	1–0	CLKSRC[1:0]	0x0	H0	R/WP	

Bits 15-9 Reserved

Bit 8 DBRUN

This bit sets whether the SVD3 operating clock is supplied in DEBUG mode or not.

1 (R/WP): Clock supplied in DEBUG mode

0 (R/WP): No clock supplied in DEBUG mode

Bit 7 Reserved

Bits 6-4 CLKDIV[2:0]

These bits select the division ratio of the SVD3 operating clock.

Bits 3-2 Reserved

Bits 1-0 CLKSRC[1:0]

These bits select the clock source of SVD3.

Table 11.6.1 Clock Source and Division Ratio Settings

SVD3CLK.	SVD3CLK.CLKSRC[1:0] bits						
CLKDIV[2:0] bits	0x0	0x1	0x2	0x3			
CENDIV[2:0] bits	IOSC	OSC1	OSC3	EXOSC			
0x7, 0x6	Reserved	1/1	Reserved	1/1			
0x5	1/512		1/512				
0x4	1/256		1/256				
0x3	1/128		1/128				
0x2	1/64		1/64				
0x1	1/32		1/32				
0x0	1/16		1/16				

(Note) The oscillation circuits/external input that are not supported in this IC cannot be selected as the clock source.

Note: The clock frequency should be set to around 32 kHz.

SVD3 Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SVD3CTL	15	VDSEL	0	H1	R/WP	_
	14–13	SVDSC[1:0]	0x0	H0	R/WP	Writing takes effect when the SVD3CTL.SVDMD[1:0] bits are not 0x0.
	12–8	SVDC[4:0]	0x1e	H1	R/WP	-
	7–4	SVDRE[3:0]	0x0	H1	R/WP	
	3	EXSEL	0	H1	R/WP	
	2–1	SVDMD[1:0]	0x0	H0	R/WP	
	0	MODEN	0	H1	R/WP	

Bit 15 **VDSEL**

This bit selects the power supply voltage to be detected by SVD3.

1 (R/WP): Voltage applied to the EXSVDn pin

0 (R/WP): VDD

Bits 14-13 SVDSC[1:0]

These bits set the condition to generate an interrupt/reset (number of successive low voltage detections) in intermittent operation mode (SVD3CTL.SVDMD[1:0] bits = 0x1 to 0x3).

Table 11.6.2 Interrupt/Reset Generating Condition in Intermittent Operation Mode

SVD3CTL.SVDSC[1:0] bits	Interrupt/reset generating condition
0x3	Low power supply voltage is successively detected eight times.
0x2	Low power supply voltage is successively detected four times.
0x1	Low power supply voltage is successively detected twice.
0x0	Low power supply voltage is successively detected once.

This setting is ineffective in continuous operation mode (SVD3CTL.SVDMD[1:0] bits = 0x0).

Bits 12-8 SVDC[4:0]

These bits select an SVD detection voltage VsvD/EXSVD detection voltage VsvD_EXT for detecting low voltage.

Table 11.6.3 Setting of SVD Detection Voltage VsvD/EXSVD Detection Voltage VsvD_EXT

SVD3CTL.SVDC[4:0] bits	SVD detection voltage VsvD/ EXSVD detection voltage VsvD_EXT [V]
0x1f	High
0x1e	↑
0x1d	
:	
0x02	
0x01	↓
0x00	Low

For the configurable range and voltage values, refer to "Supply Voltage Detector Characteristics, SVD detection voltage VsvD/EXSVD detection voltage VsvD_EXT" in the "Electrical Characteristics" chapter.

Bits 7-4 SVDRE[3:0]

These bits enable/disable the reset issuance function when a low power supply voltage is detected.

0xa (R/WP): Enable (Issue reset)

Other than 0xa (R/WP): Disable (Generate interrupt)

For more information on the SVD3 reset issuance function, refer to "SVD3 Reset."

Bit 3 EXSEL

This bit selects the voltage to be detected when the SVD3CTL.VDSEL bit = 1.

1 (R/WP): EXSVD1 0 (R/WP): EXSVD0

Bits 2-1 SVDMD[1:0]

These bits select intermittent operation mode and its detection cycle.

Table 11.6.4 Intermittent Operation Mode Detection Cycle Selection

SVD3CTL.SVDMD[1:0] bits	Operation mode (detection cycle)
0x3	Intermittent operation mode (CLK_SVD3/512)
0x2	Intermittent operation mode (CLK_SVD3/256)
0x1	Intermittent operation mode (CLK_SVD3/128)
0x0	Continuous operation mode

For more information on intermittent and continuous operation modes, refer to "SVD3 Operations."

Bit 0 MODEN

This bit enables/disables for the SVD3 circuit to operate.

1 (R/WP): Enable (Start detection operations)

0 (R/WP): Disable (Stop detection operations)

After this bit has been altered, wait until the value written is read out from this bit without subsequent operations being performed.

- Notes: Writing 0 to the SVD3CTL.MODEN bit resets the SVD3 hardware. However, the register values set and the interrupt flag are not cleared. The SVD3CTL.MODEN bit is actually set to 0 after this processing has finished. If 1 is written to the SVD3CTL.MODEN bit continuously without waiting for the bit being read as 0 at this time, writing 0 may be ignored and a malfunction may occur as the hardware restarts without resetting.
 - The SVD3 internal circuit is initialized if the SVD3CTL.SVDSC[1:0] bits, SVD3CTL.SVDRE[3:0] bits, or SVD3CTL.SVDMD[1:0] bits are altered while SVD3 is in operation after 1 is written to the SVD3CTL.MODEN bit.

SVD3 Status and Interrupt Flag Register

<u> </u>						
Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SVD3INTF	15–9	_	0x00	-	R	_
	8	SVDDT	Х	_	R	
	7–1	-	0x00	_	R	
	0	SVDIF	0	H1	R/W	Cleared by writing 1.

Bits 15-9 Reserved

Bit 8 SVDDT

The power supply voltage detection results can be read out from this bit.

1 (R): Power supply voltage (VDD, EXSVDn) < SVD detection voltage VsvD

or EXSVD detection voltage VsvD_EXT

0 (R): Power supply voltage $(VDD, EXSVDn) \ge SVD$ detection voltage VSVD

or EXSVD detection voltage VSVD EXT

Bits 7-1 Reserved

11 SUPPLY VOLTAGE DETECTOR (SVD3)

Bit 0 SVDIF

This bit indicates the low power supply voltage detection interrupt cause occurrence status.

1 (R): Cause of interrupt occurred 0 (R): No cause of interrupt occurred

1 (W): Clear flag 0 (W): Ineffective

Note: The SVD3 internal circuit is initialized if the interrupt flag is cleared while SVD3 is in operation after 1 is written to the SVD3CTL.MODEN bit.

SVD3 Interrupt Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SVD3INTE	15–8	_	0x00	_	R	_
	7–1	-	0x00	_	R	
	0	SVDIE	0	H0	R/W	

Bits 15-1 Reserved

Bit 0 SVDIE

This bit enables low power supply voltage detection interrupts.

1 (R/W): Enable interrupts 0 (R/W): Disable interrupts

Notes: • If the SVD3CTL.SVDRE[3:0] bits are set to 0xa, no low power supply voltage detection interrupt will occur, as a reset is issued at the same timing as an interrupt.

• To prevent generating unnecessary interrupts, the corresponding interrupt flag should be cleared before enabling interrupts.

12 16-bit Timers (T16)

12.1 Overview

T16 is a 16-bit timer. The features of T16 are listed below.

- 16-bit presettable down counter
- Provides a reload data register for setting the preset value.
- A clock source and clock division ratio for generating the count clock are selectable.
- Repeat mode or one-shot mode is selectable.
- Can generate counter underflow interrupts.

Figure 12.1.1 shows the configuration of a T16 channel.

Table 12.1.1 T16 Channel Configuration of S1C31D41

Item	32-pin package	48-pin package	64-pin package				
Number of channels	8 channels (Ch.0-Ch.7)						
Event counter function	Not supported (No EXCLm pins are provided.)						
Peripheral clock output	Ch.1 → Synchronous serial interface Ch.0 master clock						
(Outputs the counter	Ch.2 → Quad synchronous se	erial interface Ch.0 master cloc	k				
underflow signal.)	Ch.5 → Synchronous serial interface Ch.2 master clock						
	Ch.6 → Synchronous serial interface Ch.1 master clock						
	Ch.7 → 12-bit A/D converter	trigger signal					

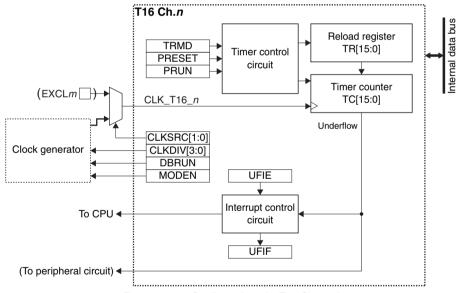


Figure 12.1.1 Configuration of a T16 Channel

12.2 Input Pin

Table 12.2.1 shows the T16 input pin.

Table 12.2.1 T16 Input Pin

Pin name	I/O*	Initial status*	Function
EXCLm	I	I (Hi-Z)	External event signal input pin

* Indicates the status when the pin is configured for T16.

If the port is shared with the EXCLm pin and other functions, the EXCLm input function must be assigned to the port before using the event counter function. The EXCLm signal can be input through the chattering filter. For more information, refer to the "I/O Ports" chapter.

12.3 Clock Settings

12.3.1 T16 Operating Clock

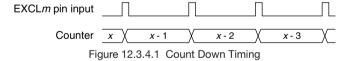
When using T16 Ch.n, the T16 Ch.n operating clock CLK_T16_n must be supplied to T16 Ch.n from the clock generator. The CLK_T16_n supply should be controlled as in the procedure shown below.

- 1. Enable the clock source in the clock generator if it is stopped (refer to "Clock Generator" in the "Power Supply, Reset, and Clocks" chapter).
- 2. Set the following T16_nCLK register bits:
 - T16_nCLK.CLKSRC[1:0] bits (Clock source selection)
 - T16_nCLK.CLKDIV[3:0] bits (Clock division ratio selection = Clock frequency setting)

12.3.2 Clock Supply in SLEEP Mode

When using T16 during SLEEP mode, the T16 operating clock CLK_T16_n must be configured so that it will keep supplying by writing 0 to the CLGOSC_xxxxSLPC bit for the CLK_T16_n clock source.

If the CLGOSC_xxxxSLPC bit for the CLK_T16_n clock source is 1, the CLK_T16_n clock source is deactivated during SLEEP mode and T16 stops with the register settings and counter value maintained at those before entering SLEEP mode. After the CPU returns to normal mode, CLK_T16_n is supplied and the T16 operation resumes.


12.3.3 Clock Supply During Debugging

The CLK_T16_n supply during debugging should be controlled using the T16_nCLK.DBRUN bit.

The CLK_T16_n supply to T16 Ch.n is suspended when the CPU enters debug state if the T16_nCLK.DBRUN bit = 0. After the CPU returns to normal operation, the CLK_T16_n supply resumes. Although T16 Ch.n stops operating when the CLK_T16_n supply is suspended, the counter and registers retain the status before the debug state was entered. If the T16_nCLK.DBRUN bit = 1, the CLK_T16_n supply is not suspended and T16 Ch.n will keep operating in a debug state.

12.3.4 Event Counter Clock

The channel that supports the event counter function counts down at the rising edge of the EXCLm pin input signal when the T16_nCLK.CLKSRC[1:0] bits are set to 0x3.

Note that the EXOSC clock is selected for the channel that does not support the event counter function.

12.4 Operations

12.4.1 Initialization

T16 Ch.n should be initialized and started counting with the procedure shown below.

- 1. Configure the T16 Ch.n operating clock (see "T16 Operating Clock").
- 2. Set the T16_nCTL.MODEN bit to 1. (Enable count operation clock)
- 3. Set the T16_nMOD.TRMD bit. (Select operation mode (Repeat mode or One-shot mode))
- 4. Set the T16_nTR register. (Set reload data (counter preset data))
- 5. Set the following bits when using the interrupt:
 - Write 1 to the T16_nINTF.UFIF bit. (Clear interrupt flag)
 - Set the T16_nINTE.UFIE bit to 1. (Enable underflow interrupt)

- 6. Set the following T16_nCTL register bits:
 - Set the T16_nCTL.PRESET bit to 1. (Preset reload data to counter)
 - Set the T16_nCTL.PRUN bit to 1. (Start counting)

12.4.2 Counter Underflow

Normally, the T16 counter starts counting down from the reload data value preset and generates an underflow signal when an underflow occurs. This signal is used to generate an interrupt and may be output to a specific peripheral circuit as a clock (T16 Ch.n must be set to repeat mode to generate a clock). The underflow cycle is determined by the T16 Ch.n operating clock setting and reload data (counter initial value) set in the T16_nTR register.

The following shows the equations to calculate the underflow cycle and frequency:

$$T = \frac{TR + 1}{f_{CLK T16 n}} \qquad f_{T} = \frac{f_{CLK_T16_n}}{TR + 1} \qquad (Eq. 12.1)$$

Where

T: Underflow cycle [s]
fr: Underflow frequency [Hz]
TR: T16 nTR register setting

fclk_T16_n: T16 Ch.n operating clock frequency [Hz]

12.4.3 Operations in Repeat Mode

T16 Ch.n enters repeat mode by setting the T16 nMOD.TRMD bit to 0.

In repeat mode, the count operation starts by writing 1 to the T16_nCTL.PRUN bit and continues until 0 is written. A counter underflow presets the T16_nTR register value to the counter, so underflow occurs periodically. Select this mode to generate periodic underflow interrupts or when using the timer to output a trigger/clock to the peripheral circuit.

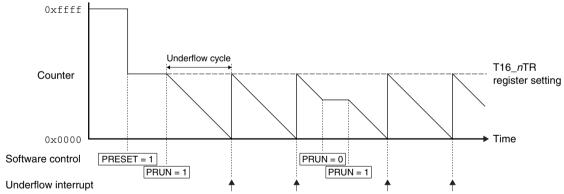


Figure 12.4.3.1 Count Operations in Repeat Mode

12.4.4 Operations in One-shot Mode

T16 Ch.n enters one-shot mode by setting the T16_nMOD.TRMD bit to 1.

In one-shot mode, the count operation starts by writing 1 to the T16_nCTL.PRUN bit and stops after the T16_nTR register value is preset to the counter when an underflow has occurred. At the same time the counter stops, the T16_nCTL.PRUN bit is cleared automatically. Select this mode to stop the counter after an interrupt has occurred once, such as for checking a specific lapse of time.

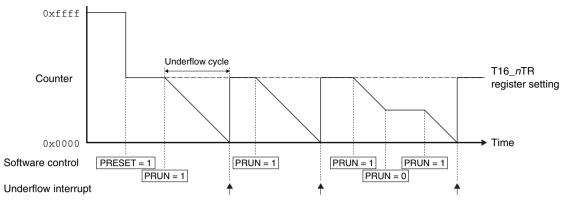


Figure 12.4.4.1 Count Operations in One-shot Mode

12.4.5 Counter Value Read

The counter value can be read out from the $T16_nTC.TC[15:0]$ bits. However, since T16 operates on CLK_T16_n , one of the operations shown below is required to read correctly by the CPU.

- Read the counter value twice or more and check to see if the same value is read.
- Stop the timer and then read the counter value.

12.5 Interrupt

Each T16 channel has a function to generate the interrupt shown in Table 12.5.1.

Table 12.5.1 T16 Interrupt Function

Interrupt	Interrupt flag	Set condition	Clear condition	
Underflow	T16 nINTF.UFIF	When the counter underflows	Writing 1	

T16 provides interrupt enable bits corresponding to each interrupt flag. An interrupt request is sent to the CPU only when the interrupt flag, of which interrupt has been enabled by the interrupt enable bit, is set. For more information on interrupt control, refer to the "Interrupt" chapter.

12.6 Control Registers

T16 Ch.n Clock Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16_nCLK	15–9	_	0x00	_	R	_
	8	DBRUN	0	H0	R/W	
	7–4	CLKDIV[3:0]	0x0	H0	R/W	
	3–2	-	0x0	-	R	
	1–0	CLKSRC[1:0]	0x0	H0	R/W	

Bits 15-9 Reserved

Bit 8 DBRUN

This bit sets whether the T16 Ch.n operating clock is supplied during debugging or not.

1 (R/W): Clock supplied during debugging

0 (R/W): No clock supplied during debugging

Bits 7-4 CLKDIV[3:0]

These bits select the division ratio of the T16 Ch.n operating clock (counter clock).

Bits 3-2 Reserved

Bits 1-0 CLKSRC[1:0]

These bits select the clock source of T16 Ch.n.

T16_nCLK.CLKSRC[1:0] bits T16 nCLK. 0x0 0x3 0x1 0x2 CLKDIV[3:0] bits IOSC OSC1 OSC3 EXOSC/EXCLm 1/32,768 0xf 1/1 1/32,768 1/1 0xe 1/16,384 1/16,384 0xd 1/8,192 1/8,192 0xc 1/4,096 1/4,096 0xb 1/2,048 1/2,048 0xa 1/1,024 1/1,024 1/512 1/512 0x91/256 0x8 1/256 1/256 0x7 1/128 1/128 1/128 1/64 0x6 1/64 1/64 0x5 1/32 1/32 1/32 0x4 1/16 1/16 1/16 0x3 1/8 1/8 1/8 0x2 1/4 1/4 1/4 0x1 1/2 1/2 1/2 0x0 1/1 1/1 1/1

Table 12.6.1 Clock Source and Division Ratio Settings

T16 Ch.n Mode Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16_nMOD	15–8	_	0x00	-	R	_
	7–1	_	0x00	-	R	
	0	TRMD	0	H0	R/W	

Bits 15-1 Reserved

Bit 0 TRMD

This bit selects the T16 operation mode.

1 (R/W): One-shot mode 0 (R/W): Repeat mode

For detailed information on the operation mode, refer to "Operations in One-shot Mode" and "Operations in Repeat Mode."

T16 Ch.n Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16_nCTL	15–9	_	0x00	_	R	_
	8	PRUN	0	H0	R/W	
	7–2	_	0x00	-	R	
	1	PRESET	0	H0	R/W	
	0	MODEN	0	H0	R/W	

Bits 15-9 Reserved

Bit 8 PRUN

This bit starts/stops the timer.

1 (W): Start timer0 (W): Stop timer1 (R): Timer is running0 (R): Timer is idle

⁽Note 1) The oscillation circuits/external input that are not supported in this IC cannot be selected as the clock source.

⁽Note 2) When the T16_nCLK.CLKSRC[1:0] bits are set to 0x3, EXCLm is selected for the channel with an event counter function or EXOSC is selected for other channels.

By writing 1 to this bit, the timer starts count operations. However, the T16_nCTL.MODEN bit must be set to 1 in conjunction with this bit or it must be set in advance. While the timer is running, writing 0 to this bit stops count operations. When the counter stops due to a counter underflow in one-shot mode, this bit is automatically cleared to 0.

Bits 7-2 Reserved

Bit 1 PRESET

This bit presets the reload data stored in the T16_nTR register to the counter.

1 (W): Preset 0 (W): Ineffective

1 (R): Presetting in progress

0 (R): Presetting finished or normal operation

By writing 1 to this bit, the timer presets the T16_nTR register value to the counter. However, the T16_nCTL.MODEN bit must be set to 1 in conjunction with this bit or it must be set in advance. This bit retains 1 during presetting and is automatically cleared to 0 after presetting has finished.

Bit 0 MODEN

This bit enables the T16 Ch.n operations.

1 (R/W): Enable (Start supplying operating clock) 0 (R/W): Disable (Stop supplying operating clock)

T16 Ch.n Reload Data Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16_ <i>n</i> TR	15–0	TR[15:0]	0xffff	H0	R/W	_

Bits 15-0 TR[15:0]

These bits are used to set the initial value to be preset to the counter.

The value set to this register will be preset to the counter when 1 is written to the T16_nCTL.PRESET bit or when the counter underflows.

Notes: • The T16_nTR register cannot be altered while the timer is running (T16_nCTL.PRUN bit = 1), as an incorrect initial value may be preset to the counter.

• When one-shot mode is set, the T16_nTR.TR[15:0] bits should be set to a value equal to or greater than 0x0001.

T16 Ch.n Counter Data Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16 <i>n</i> TC	15–0	TC[15:0]	0xffff	H0	R	_

Bits 15-0 TC[15:0]

The current counter value can be read out from these bits.

T16 Ch.n Interrupt Flag Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16_nINTF	15–8	_	0x00	-	R	_
	7–1	_	0x00	-	R	
	0	UFIF	0	H0	R/W	Cleared by writing 1.

Bits 15-1 Reserved

Bit 0 UFIF

This bit indicates the T16 Ch.n underflow interrupt cause occurrence status.

1 (R): Cause of interrupt occurred 0 (R): No cause of interrupt occurred

1 (W): Clear flag 0 (W): Ineffective

T16 Ch.n Interrupt Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16_nINTE	15–8	-	0x00	_	R	_
	7–1	-	0x00	-	R	
	0	UFIE	0	H0	R/W	

Bits 15-1 Reserved

Bit 0 UFIE

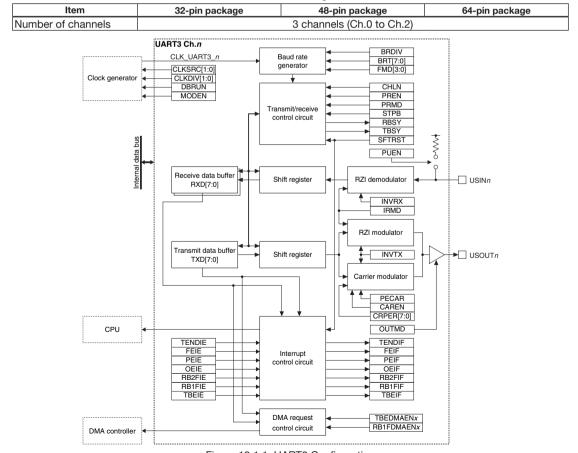
This bit enables T16 Ch.n underflow interrupts.

1 (R/W): Enable interrupts 0 (R/W): Disable interrupts

 $\textbf{Note} \hbox{:} \ \, \text{To prevent generating unnecessary interrupts, the corresponding interrupt flag should be}$

cleared before enabling interrupts.

13 UART (UART3)


13.1 Overview

The UART3 is an asynchronous serial interface. The features of the UART3 are listed below.

- Includes a baud rate generator for generating the transfer clock.
- Supports 7- and 8-bit data length (LSB first).
- Odd parity, even parity, or non-parity mode is selectable.
- The start bit length is fixed at 1 bit.
- The stop bit length is selectable from 1 bit and 2 bits.
- Supports full-duplex communications.
- Includes a 2-byte receive data buffer and a 1-byte transmit data buffer.
- Includes an RZI modulator/demodulator circuit to support IrDA 1.0-compatible infrared communications.
- Can detect parity error, framing error, and overrun error.
- Can generate receive buffer full (1 byte/2 bytes), transmit buffer empty, end of transmission, parity error, framing error, and overrun error interrupts.
- · Can issue a DMA transfer request when a receive buffer one byte full or a transmit buffer empty occurs.
- Input pin can be pulled up with an internal resistor.
- The output pin is configurable as an open-drain output.
- · Provides the carrier modulation output function.

Figure 13.1.1 shows the UART3 configuration.

Table 13.1.1 UART3 Channel Configuration of S1C31D41

13.2 Input/Output Pins and External Connections

13.2.1 List of Input/Output Pins

Table 13.2.1.1 lists the UART3 pins.

Table 13.2.1.1 List of UART3 Pins

Pin name	I/O*	Initial status*	Function
USINn	I	I (Hi-Z)	UART3 Ch.n data input pin
USOUTn	0	O (High)	UART3 Ch.n data output pin

^{*} Indicates the status when the pin is configured for the UART3.

If the port is shared with the UART3 pin and other functions, the UART3 input/output function must be assigned to the port before activating the UART3. For more information, refer to the "I/O Ports" chapter.

13.2.2 External Connections

Figure 13.2.2.1 shows a connection diagram between the UART3 in this IC and an external UART device.

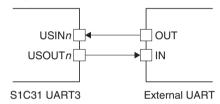


Figure 13.2.2.1 Connections between UART3 and an External UART Device

13.2.3 Input Pin Pull-Up Function

The UART3 includes a pull-up resistor for the USINn pin. Setting the UART3_nMOD.PUEN bit to 1 enables the resistor to pull up the USINn pin.

13.2.4 Output Pin Open-Drain Output Function

The USOUT*n* pin supports the open-drain output function. Default configuration is a push-pull output and it is switched to an open-drain output by setting the UART3_*n*MOD.OUTMD bit to 1.

13.2.5 Input/Output Signal Inverting Function

The UART3 can invert the signal polarities of the USINn pin input and the USOUTn pin output by setting the UART3_nMOD.INVRX bit and the UART3_nMOD.INVTX bit, respectively, to 1.

Note: Unless otherwise specified, this chapter shows input/output signals with non-inverted waveforms (UART3_nMOD.INVRX bit = 0, UART3_nMOD.INVTX bit =0).

13.3 Clock Settings

13.3.1 UART3 Operating Clock

When using the UART3 Ch.*n*, the UART3 Ch.*n* operating clock CLK_UART3_*n* must be supplied to the UART3 Ch.*n* from the clock generator. The CLK_UART3_*n* supply should be controlled as in the procedure shown below.

- 1. Enable the clock source in the clock generator if it is stopped (refer to "Clock Generator" in the "Power Supply, Reset, and Clocks" chapter).
- 2. Set the following UART3_nCLK register bits:
 - UART3_nCLK.CLKSRC[1:0] bits (Clock source selection)
 - UART3_nCLK.CLKDIV[1:0] bits (Clock division ratio selection = Clock frequency setting)

The UART3 operating clock should be selected so that the baud rate generator will be configured easily.

13.3.2 Clock Supply in SLEEP Mode

When using the UART3 during SLEEP mode, the UART3 operating clock CLK_UART3_n must be configured so that it will keep supplying by writing 0 to the CLGOSC_xxxxSLPC bit for the CLK_UART3_n clock source.

13.3.3 Clock Supply During Debugging

The CLK_UART3_n supply during debugging should be controlled using the UART3_nCLK.DBRUN bit. The CLK_UART3_n supply to the UART3 Ch.n is suspended when the CPU enters debug state if the UART3_nCLK.DBRUN bit = 0. After the CPU returns to normal mode, the CLK_UART3_n supply resumes. Although the UART3 Ch.n stops operating when the CLK_UART3_n supply is suspended, the output pin and registers retain the status before the debug state was entered. If the UART3_nCLK.DBRUN bit = 1, the CLK_UART3_n supply is not suspended and the UART3 Ch.n will keep operating in a debug state.

13.3.4 Baud Rate Generator

The UART3 includes a baud rate generator to generate the transfer (sampling) clock. The transfer rate is determined by the UART3_nMOD.BRDIV, UART3_nBR.BRT[7:0], and UART3_nBR.FMD[3:0] bit settings. Use the following equations to calculate the setting values for obtaining the desired transfer rate.

$$bps = \frac{CLK_UART3}{\frac{BRT + 1}{BRDIV} + FMD}$$

$$BRT = BRDIV \times \left(\frac{CLK_UART3}{bps} - FMD\right) - 1$$
 (Eq. 13.1)

Where

bps: Transfer rate [bit/s]

CLK_UART3: UART3 operating clock frequency [Hz]

BRDIV: Baud rate division ratio (1/16 or 1/4) * Selected by the UART3 nMOD.BRDIV bit

BRT: UART3_nBR.BRT[7:0] setting value (0 to 255) FMD: UART3_nBR.FMD[3:0] setting value (0 to 15)

For the transfer rate range configurable in the UART3, refer to "UART Characteristics, Transfer baud rates UBRT1 and UBRT2" in the "Electrical Characteristics" chapter.

13.4 Data Format

The UART3 allows setting of the data length, stop bit length, and parity function. The start bit length is fixed at one bit.

Data length

With the UART3_nMOD.CHLN bit, the data length can be set to seven bits (UART3_nMOD.CHLN bit = 0) or eight bits (UART3_nMOD.CHLN bit = 1).

Stop bit length

With the UART3_nMOD.STPB bit, the stop bit length can be set to one bit (UART3_nMOD.STPB bit = 0) or two bits (UART3_nMOD.STPB bit = 1).

Parity function

The parity function is configured using the UART3 nMOD.PREN and UART3 nMOD.PRMD bits.

Table 13.4.1 Parity Function Setting

UART3_nMOD.PREN bit	UART3_nMOD.PRMD bit	Parity function
1	1	Odd parity
1	0	Even parity
0	*	Non parity

UART	Г3_ <i>п</i> МОD re	gister	
CHLN bit	STPB bit	PREN bit	
0	0	0	\ st \(D0 \) D1 \(\) D2 \(\) D3 \(\) D4 \(\) D5 \(\) D6 \(\) sp \\
0	0	1	st (D0 (D1 (D2 (D3 (D4 (D5 (D6 (p) sp)
0	1	0	st (D0) D1) D2) D3) D4) D5) D6) sp sp
0	1	1	st (D0) D1) D2) D3) D4) D5) D6) p) sp sp \
1	0	0	st (D0) D1) D2) D3) D4) D5) D6) D7) sp
1	0	1	st (D0) D1) D2) D3) D4) D5) D6) D7) p) sp
1	1	0	st (D0) D1) D2) D3) D4) D5) D6) D7) sp sp
1	1	1	st (D0) D1) D2) D3) D4) D5) D6) D7) p) sp sp

st: start bit, sp: stop bit, p: parity bit

Figure 13.4.1 Data Format

13.5 Operations

13.5.1 Initialization

The UART3 Ch.n should be initialized with the procedure shown below.

- 1. Assign the UART3 Ch.n input/output function to the ports. (Refer to the "I/O Ports" chapter.)
- 2. Set the UART3 nCLK.CLKSRC[1:0] and UART3 nCLK.CLKDIV[1:0] bits. (Configure operating clock)
- 3. Configure the following UART3_nMOD register bits:
 - UART3 nMOD.BRDIV bit (Select baud rate division ratio (1/16 or 1/4)) - UART3 nMOD.INVRX bit (Enable/disable USINn input signal inversion) (Enable/disable USOUT*n* output signal inversion) UART3 nMOD.INVTX bit - UART3 nMOD.PUEN bit (Enable/disable USINn pin pull-up) - UART3_nMOD.OUTMD bit (Enable/disable USOUT*n* pin open-drain output) - UART3_nMOD.IRMD bit (Enable/disable IrDA interface) - UART3 nMOD.CHLN bit (Set data length (7 or 8 bits)) - UART3 nMOD.PREN bit (Enable/disable parity function) - UART3_nMOD.PRMD bit (Select parity mode (even or odd)) - UART3_nMOD.STPB bit (Set stop bit length (1 or 2 bits)) - UART3_nMOD.CAREN bit (Enable/disable carrier modulation function) - UART3 nMOD.PECAR bit (Select carrier modulation period (H data period/L data period))
- 4. Set the UART3_nBR.BRT[7:0] and UART3_nBR.FMD[3:0] bits. (Set transfer rate)
- 5. Set the UART3_nCAWF.CRPER[7:0] bits. (Set carrier cycle)
- 6. Set the following UART3_nCTL register bits:
 - Set the UART3_nCTL.SFTRST bit to 1. (Execute software reset)
 - Set the UART3 nCTL.MODEN bit to 1. (Enable UART3 Ch.n operations)
- 7. Set the following bits when using the interrupt:
 - Write 1 to the interrupt flags in the UART3_nINTF register. (Clear interrupt flags)
 - Set the interrupt enable bits in the UART3_nINTE register to 1. * (Enable interrupts)
 - * The initial value of the UART3_nINTF.TBEIF bit is 1, therefore, an interrupt will occur immediately after the UART3_nINTE.TBEIE bit is set to 1.
- 8. Configure the DMA controller and set the following UART3 control bits when using DMA transfer:
 - Write 1 to the DMA transfer request enable bits in the UART3_nTBEDMAEN and UART3_nRB1FDMAEN registers. (Enable DMA transfer requests)

13.5.2 Data Transmission

A data sending procedure and the UART3 Ch.n operations are shown below. Figures 13.5.2.1 and 13.5.2.2 show a timing chart and a flowchart, respectively.

Data sending procedure

- 1. Check to see if the UART3_nINTF.TBEIF bit is set to 1 (transmit buffer empty).
- 2. Write transmit data to the UART3_nTXD register.
- 3. Wait for a UART3 interrupt when using the interrupt.
- 4. Repeat Steps 1 to 3 (or 1 and 2) until the end of transmit data.

UART3 data sending operations

The UART3 Ch.n starts data sending operations when transmit data is written to the UART3_nTXD register.

The transmit data in the UART3_nTXD register is automatically transferred to the shift register and the UART3_nINTF.TBEIF bit is set to 1 (transmit buffer empty).

The USOUT*n* pin outputs a start bit and the UART3_*n*INTF.TBSY bit is set to 1 (transmit busy). The shift register data bits are then output successively from the LSB. Following output of MSB, the parity bit (if parity is enabled) and the stop bit are output.

Even if transmit data is being output from the USOUTn pin, the next transmit data can be written to the UART3 nTXD register after making sure the UART3 nINTF.TBEIF bit is set to 1.

If no transmit data remains in the UART3_nTXD register after the stop bit has been output from the USOUTn pin, the UART3_nINTF.TBSY bit is cleared to 0 and the UART3_nINTF.TENDIF bit is set to 1 (transmission completed).

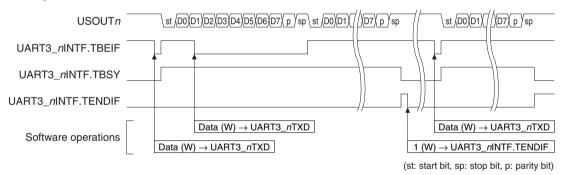


Figure 13.5.2.1 Example of Data Sending Operations

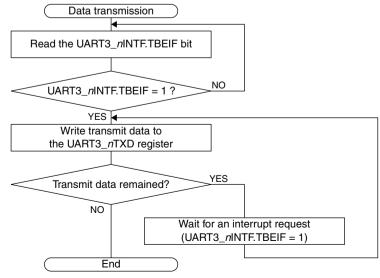


Figure 13.5.2.2 Data Transmission Flowchart

Data transmission using DMA

By setting the UART3_nTBEDMAEN.TBEDMAENx bit to 1 (DMA transfer request enabled), a DMA transfer request is sent to the DMA controller and transmit data is transferred from the specified memory to the UART3_nTXD register via DMA Ch.x when the UART3_nINTF.TBEIF bit is set to 1 (transmit buffer empty). This automates the data sending procedure described above.

The transfer source/destination and control data must be set for the DMA controller and the relevant DMA channel must be enabled to start a DMA transfer in advance so that transmit data will be transferred to the UART3_nTXD register. For more information on DMA, refer to the "DMA Controller" chapter.

Item		Setting example				
End pointer	Transfer source	Memory address in which the last transmit data is stored				
	Transfer destination	UART3_nTXD register address				
Control data	dst_inc	0x3 (no increment)				
	dst_size	0x0 (byte)				
	src_inc	0x0 (+1)				
	src_size	0x0 (byte)				
	R_power	0x0 (arbitrated for every transfer)				
	n_minus_1 Number of transfer data					
	cycle_ctrl	0x1 (basic transfer)				

Table 13.5.2.1 DMA Data Structure Configuration Example (for Data Transmission)

13.5.3 Data Reception

A data receiving procedure and the UART3 Ch.n operations are shown below. Figures 13.5.3.1 and 13.5.3.2 show a timing chart and flowcharts, respectively.

Data receiving procedure (read by one byte)

- 1. Wait for a UART3 interrupt when using the interrupt.
- 2. Check to see if the UART3_nINTF.RB1FIF bit is set to 1 (receive buffer one byte full).
- 3. Read the received data from the UART3 nRXD register.
- 4. Repeat Steps 1 to 3 (or 2 and 3) until the end of data reception.

Data receiving procedure (read by two bytes)

- 1. Wait for a UART3 interrupt when using the interrupt.
- 2. Check to see if the UART3_nINTF.RB2FIF bit is set to 1 (receive buffer two bytes full).
- 3. Read the received data from the UART3_nRXD register twice.
- 4. Repeat Steps 1 to 3 (or 2 and 3) until the end of data reception.

UART3 data receiving operations

The UART3 Ch.n starts data receiving operations when a start bit is input to the USINn pin.

After the receive circuit has detected a low level as a start bit, it starts sampling the following data bits and loads the received data into the receive shift register. The UART3_nINTF.RBSY bit is set to 1 when the start bit is detected.

The UART3_nINTF.RBSY bit is cleared to 0 and the receive shift register data is transferred to the receive data buffer at the stop bit receive timing.

The receive data buffer consists of a 2-byte FIFO and receives data until it becomes full. When the receive data buffer receives the first data, it sets the UART3_nINTF.RB1FIF bit to 1 (receive buffer one byte full). If the second data is received without reading the first data, the UART3_nINTF.RB2FIF bit is set to 1 (receive buffer two bytes full).

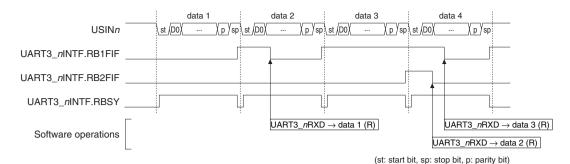


Figure 13.5.3.1 Example of Data Receiving Operations

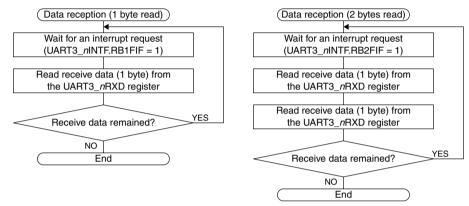


Figure 13.5.3.2 Data Reception Flowcharts

Data reception using DMA

By setting the UART3_nRB1FDMAEN.RB1FDMAENx bit to 1 (DMA transfer request enabled), a DMA transfer request is sent to the DMA controller and the received data is transferred from the UART3_nRXD register to the specified memory via DMA Ch.x when the UART3_nINTF.RB1FIF bit is set to 1 (receive buffer one byte full).

This automates the procedure (read by one byte) described above.

The transfer source/destination and control data must be set for the DMA controller and the relevant DMA channel must be enabled to start a DMA transfer in advance. For more information on DMA, refer to the "DMA Controller" chapter.

	Item	Setting example				
End pointer	Transfer source	UART3_nRXD register address				
	Transfer destination	Memory address to which the last received data is stored				
Control data	dst_inc	0x0 (+1)				
	dst_size	0x0 (byte)				
	src_inc	0x3 (no increment)				
	src_size	0x0 (byte)				
	R_power	0x0 (arbitrated for every transfer)				
	n_minus_1	Number of transfer data				
	cycle_ctrl	0x1 (basic transfer)				

Table 13.5.3.1 DMA Data Structure Configuration Example (for Data Reception)

13.5.4 IrDA Interface

This UART3 includes an RZI modulator/demodulator circuit enabling implementation of IrDA 1.0-compatible infrared communication function simply by adding simple external circuits.

Set the UART3_*n*MOD.IRMD bit to 1 to use the IrDA interface.

Data transfer control is identical to that for normal interface even if the IrDA interface function is enabled.

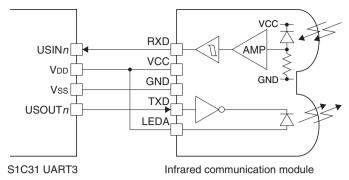


Figure 13.5.4.1 Example of Connections with an Infrared Communication Module

The transmit data output from the UART3 Ch.n transmit shift register is output from the USOUTn pin after the low pulse width is converted into 3/16 by the RZI modulator in SIR method.

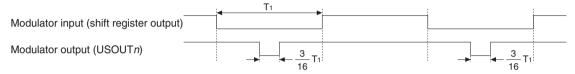


Figure 13.5.4.2 IrDA Transmission Signal Waveform

The received IrDA signal is input to the RZI demodulator and the low pulse width is converted into the normal width before input to the receive shift register.

Figure 13.5.4.3 IrDA Receive Signal Waveform

Notes: • Set the baud rate division ratio to 1/16 when using the IrDA interface function.

The low pulse width (T2) of the IrDA signal input must be CLK_UART3_n x 3 cycles or longer.

13.5.5 Carrier Modulation

The UART3 has a carrier modulation function.

Writing 1 to the UART3_nMOD.CAREN bit enables the carrier modulation function allowing carrier modulation waveforms to be output according to the UART3_nMOD.PECAR bit setting. Data transmit control is identical to that for normal interface even in this case.

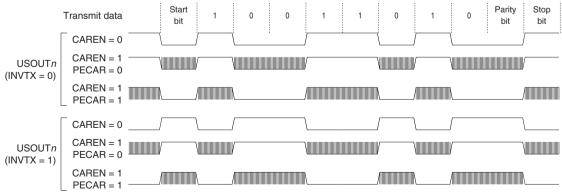


Figure 13.5.5.1 Carrier Modulation Waveform (UART3_nMOD.CHLN = 1, UART3_nMOD.STPB = 0, UART3_nMOD.PREN = 1)

Seiko Epson Corporation

The carrier modulation output frequency is determined by the UART3_nCAWF.CRPER[7:0] bit settings. Use the following equations to calculate the setting values for obtaining the desired frequency.

Carrier modulation output frequency =
$$\frac{\text{CLK_UART3}}{(\text{CRPER} + 1) \times 2} [\text{Hz}]$$
 (Eq. 13.2)

Where

CLK_UART3: UART3 operating clock frequency [Hz]

CRPER: UART3_nCAWF.CRPER[7:0] setting value (0 to 255)

13.6 Receive Errors

Three different receive errors, framing error, parity error, and overrun error, may be detected while receiving data. Since receive errors are interrupt causes, they can be processed by generating interrupts.

13.6.1 Framing Error

The UART3 determines loss of sync if a stop bit is not detected (when the stop bit is received as 0) and assumes that a framing error has occurred. The received data that encountered an error is still transferred to the receive data buffer and the UART3_nINTF.FEIF bit (framing error interrupt flag) is set to 1 when the data becomes ready to read from the UART3_nRXD register.

Note: Framing error/parity error interrupt flag set timings

These interrupt flags will be set after the data that encountered an error is transferred to the receive data buffer. Note, however, that the set timing depends on the buffer status at that point.

- When the receive data buffer is empty
 The interrupt flag will be set when the data that encountered an error is transferred to the receive data buffer.
- When the receive data buffer has a one-byte free space
 The interrupt flag will be set when the first data byte already loaded is read out after the data that encountered an error is transferred to the second byte entry of the receive data buffer.

13.6.2 Parity Error

If the parity function is enabled, a parity check is performed when data is received. The UART3 checks matching between the data received in the shift register and its parity bit, and issues a parity error if the result is a non-match. The received data that encountered an error is still transferred to the receive data buffer and the UART3_nINTF. PEIF bit (parity error interrupt flag) is set to 1 when the data becomes ready to read from the UART3_nRXD register (see the Note on framing error).

13.6.3 Overrun Error

If the receive data buffer is still full (two bytes of received data have not been read) when a data reception to the shift register has completed, an overrun error occurs as the data cannot be transferred to the receive data buffer. When an overrun error occurs, the UART3_nINTF.OEIF bit (overrun error interrupt flag) is set to 1.

13.7 Interrupts

The UART3 has a function to generate the interrupts shown in Table 13.7.1.

Table 13.7.1 UART3 Interrupt Function

Interrupt	Interrupt flag	Set condition	Clear condition
End of transmission	UART3_nINTF.TENDIF	When the UART3_nINTF.TBEIF bit = 1 after the stop bit has been sent	Writing 1 or software reset
Framing error	UART3_nINTF.FEIF	Refer to the "Receive Errors."	Writing 1, reading received data that encountered an error, or software reset
Parity error	UART3_nINTF.PEIF	Refer to the "Receive Errors."	Writing 1, reading received data that encountered an error, or software reset
Overrun error	UART3_nINTF.OEIF	Refer to the "Receive Errors."	Writing 1 or software reset
Receive buffer two bytes full	UART3_nINTF.RB2FIF	When the second received data byte is loaded to the receive data buffer in which the first byte is already received	-
Receive buffer one byte full	UART3_nINTF.RB1FIF	When the first received data byte is loaded to the emptied receive data buffer	Reading data to empty the receive data buffer or software reset
Transmit buffer empty	UART3_nINTF.TBEIF	When transmit data written to the transmit data buffer is transferred to the shift register	

The UART3 provides interrupt enable bits corresponding to each interrupt flag. An interrupt request is sent to the CPU only when the interrupt flag, of which interrupt has been enabled by the interrupt enable bit, is set. For more information on interrupt control, refer to the "Interrupt" chapter.

13.8 DMA Transfer Requests

The UART3 has a function to generate DMA transfer requests from the causes shown in Table 13.8.1.

Table 13.8.1 DMA Transfer Request Causes of UART3

Cause to request DMA transfer	DMA transfer request flag	Set condition	Clear condition
Receive buffer	Receive buffer one byte full flag	When the first received data	Reading data to empty
one byte full	(UART3_nINTF.RB1FIF)	byte is loaded to the emptied receive data buffer	the receive data buffer or software reset
Transmit buffer empty	. , ,	When transmit data written to the transmit data buffer is	•
	, – ,	transferred to the shift register	

The UART3 provides DMA transfer request enable bits corresponding to each DMA transfer request flag shown above for the number of DMA channels. A DMA transfer request is sent to the pertinent channel of the DMA controller only when the DMA transfer request flag, of which DMA transfer has been enabled by the DMA transfer request enable bit, is set. The DMA transfer request flag also serves as an interrupt flag, therefore, both the DMA transfer request and the interrupt cannot be enabled at the same time. After a DMA transfer has completed, disable the DMA transfer to prevent unintended DMA transfer requests from being issued. For more information on the DMA control, refer to the "DMA Controller" chapter.

13.9 Control Registers

UART3 Ch.n Clock Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
UART3_nCLK	15–9	_	0x00	_	R	_
	8	DBRUN	0	H0	R/W	
	7–6	-	0x0	ı	R	
	5–4	CLKDIV[1:0]	0x0	H0	R/W	
	3–2	_	0x0	ı	R	
	1–0	CLKSRC[1:0]	0x0	H0	R/W	

Bits 15-9 Reserved

Bit 8 DBRUN

This bit sets whether the UART3 operating clock is supplied in DEBUG mode or not.

1 (R/W): Clock supplied in DEBUG mode 0 (R/W): No clock supplied in DEBUG mode

Bits 7-6 Reserved

Bits 5-4 CLKDIV[1:0]

These bits select the division ratio of the UART3 operating clock.

Bits 3-2 Reserved

Bits 1-0 CLKSRC[1:0]

These bits select the clock source of the UART3.

Table 13.9.1 Clock Source and Division Ratio Settings

UART3 nCLK.	UART3_nCLK.CLKSRC[1:0] bits							
_	0x0	0x1	0x2	0x3				
CLKDIV[1:0] bits	IOSC	OSC1	OSC3	EXOSC				
0x3	1/8	1/1	1/8	1/1				
0x2	1/4		1/4]				
0x1	1/2		1/2					
0x0	1/1		1/1	1				

(Note) The oscillation circuits/external input that are not supported in this IC cannot be selected as the clock source.

Note: The UART3 nCLK register settings can be altered only when the UART3 nCLK node bit = 0.

UART3 Ch.n Mode Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
UART3_nMOD	15–13	_	0x0	-	R	_
	12	PECAR	0	H0	R/W	
	11	CAREN	0	H0	R/W	
	10	BRDIV	0	H0	R/W	
	9	INVRX	0	H0	R/W	
	8	INVTX	0	H0	R/W	
	7	-	0	-	R	
	6	PUEN	0	H0	R/W	
	5	OUTMD	0	H0	R/W	
	4	IRMD	0	H0	R/W	
	3	CHLN	0	H0	R/W	
	2	PREN	0	H0	R/W	
	1	PRMD	0	H0	R/W	
	0	STPB	0	H0	R/W	

Bits 15-13 Reserved

13 UART (UART3)

Bit 12 PECAR

This bit selects the carrier modulation period.

1 (R/W): Carrier modulation during H data period 0 (R/W): Carrier modulation during L data period

Bit 11 CAREN

This bit enables the carrier modulation function. 1 (R/W): Enable carrier modulation function 0 (R/W): Disable carrier modulation function

Bit 10 BRDIV

This bit sets the UART3 operating clock division ratio for generating the transfer (sampling) clock using the baud rate generator.

1 (R/W): 1/4 0 (R/W): 1/16

Bit 9 INVRX

This bit enables the USINn input inverting function.

1 (R/W): Enable input inverting function 0 (R/W): Disable input inverting function

Bit 8 INVTX

This bit enables the USOUT*n* output inverting function.

1 (R/W): Enable output inverting function 0 (R/W): Disable output inverting function

Bit 7 Reserved

Bit 6 PUEN

This bit enables pull-up of the USINn pin.

1 (R/W): Enable pull-up 0 (R/W): Disable pull-up

Bit 5 OUTMD

This bit sets the USOUT*n* pin output mode.

1 (R/W): Open-drain output 0 (R/W): Push-pull output

Bit 4 IRMD

This bit enables the IrDA interface function. 1 (R/W): Enable IrDA interface function 0 (R/W): Disable IrDA interface function

Bit 3 CHLN

This bit sets the data length.

1 (R/W): 8 bits 0 (R/W): 7 bits

Bit 2 PREN

This bit enables the parity function. 1 (R/W): Enable parity function 0 (R/W): Disable parity function

Bit 1 PRMD

This bit selects either odd parity or even parity when using the parity function.

1 (R/W): Odd parity 0 (R/W): Even parity

Bit 0 STPB

This bit sets the stop bit length.

1 (R/W): 2 bits 0 (R/W): 1 bit

Notes: • The UART3_nMOD register settings can be altered only when the UART3_nCTL.MODEN bit

= 0.

• Do not set both the UART3 nMOD.IRMD and UART3 nMOD.CAREN bits simultaneously.

UART3 Ch.n Baud-Rate Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
UART3_nBR	15–12	_	0x0	-	R	_
	11–8	FMD[3:0]	0x0	H0	R/W	
	7–0	BRT[7:0]	0x00	H0	R/W	

Bits 15-12 Reserved

Bits 11-8 FMD[3:0]

Bits 7-0 BRT[7:0]

These bits set the UART3 transfer rate. For more information, refer to "Baud Rate Generator."

Notes: • The UART3 nBR register settings can be altered only when the UART3 nCTL.MODEN bit = 0.

Do not set the UART3_nBR.FMD[3:0] bits to a value other than 0 to 3 when the UART3_nMOD.BRDIV bit = 1.

UART3 Ch.n Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
UART3_nCTL	15–8	_	0x00	_	R	_
	7–2	_	0x00	_	R	
	1	SFTRST	0	H0	R/W	
	0	MODEN	0	H0	R/W	

Bits 15-2 Reserved

Bit 1 SFTRST

This bit issues software reset to the UART3.

1 (W): Issue software reset

0 (W): Ineffective

1 (R): Software reset is executing.

0 (R): Software reset has finished. (During normal operation)

Setting this bit resets the UART3 transmit/receive control circuit and interrupt flags. This bit is automatically cleared after the reset processing has finished.

Bit 0 MODEN

This bit enables the UART3 operations.

1 (R/W): Enable UART3 operations (The operating clock is supplied.) 0 (R/W): Disable UART3 operations (The operating clock is stopped.)

Note: If the UART3_nCTL.MODEN bit is altered from 1 to 0 while sending/receiving data, the data being sent/received cannot be guaranteed. When setting the UART3_nCTL.MODEN bit to 1 again after that, be sure to write 1 to the UART3 nCTL.SFTRST bit as well.

UART3 Ch.n Transmit Data Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
UART3_nTXD	15–8	_	0x00	_	R	_
	7–0	TXD[7:0]	0x00	H0	R/W	

Bits 15-8 Reserved

Bits 7-0 TXD[7:0]

Data can be written to the transmit data buffer through these bits. Make sure the UART3_nINTF. TBEIF bit is set to 1 before writing data.

UART3 Ch.n Receive Data Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
UART3_nRXD	15–8	_	0x00	_	R	_
	7–0	RXD[7:0]	0x00	H0	R	

Bits 15-8 Reserved

Bits 7-0 RXD[7:0]

The receive data buffer can be read through these bits. The receive data buffer consists of a 2-byte FIFO, and older received data is read first.

UART3 Ch.n Status and Interrupt Flag Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
UART3_nINTF	15–10	_	0x00	_	R	_
	9	RBSY	0	H0/S0	R	
	8	TBSY	0	H0/S0	R	
	7	-	0	-	R	
	6	TENDIF	0	H0/S0	R/W	Cleared by writing 1.
	5	FEIF	0	H0/S0	R/W	Cleared by writing 1 or reading the
	4	PEIF	0	H0/S0	R/W	UART3_nRXD register.
	3	OEIF	0	H0/S0	R/W	Cleared by writing 1.
	2	RB2FIF	0	H0/S0	R	Cleared by reading the UART3_nRXD
	1	RB1FIF	0	H0/S0	R	register.
	0	TBEIF	1	H0/S0	R	Cleared by writing to the UART3_
						nTXD register.

Bits 15-10 Reserved

Bit 9 RBSY

This bit indicates the receiving status. (See Figure 13.5.3.1.)

1 (R): During receiving

0 (R): Idle

Bit 8 TBSY

This bit indicates the sending status. (See Figure 13.5.2.1.)

1 (R): During sending

0 (R): Idle

Bit 7 Reserved

Bit 6	TENDIF
Bit 5	FEIF
Bit 4	PEIF
Bit 3	OEIF
Bit 2	RB2FIF
Bit 1	RB1FIF
Bit 0	TBEIF

These bits indicate the UART3 interrupt cause occurrence status.

1 (R): Cause of interrupt occurred 0 (R): No cause of interrupt occurred

1 (W): Clear flag 0 (W): Ineffective

The following shows the correspondence between the bit and interrupt:

UART3_nINTF.TENDIF bit: End-of-transmission interrupt
UART3_nINTF.FEIF bit: Framing error interrupt
UART3_nINTF.PEIF bit: Parity error interrupt
UART3_nINTF.OEIF bit: Overrun error interrupt

UART3_nINTF.RB2FIF bit: Receive buffer two bytes full interrupt UART3_nINTF.RB1FIF bit: Receive buffer one byte full interrupt UART3_nINTF.TBEIF bit: Transmit buffer empty interrupt

UART3 Ch. *n* Interrupt Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
UART3_nINTE	15–8	_	0x00	-	R	_
	7	_	0	_	R	
	6	TENDIE	0	H0	R/W	
	5	FEIE	0	H0	R/W	
	4	PEIE	0	H0	R/W	
	3	OEIE	0	H0	R/W	
	2	RB2FIE	0	H0	R/W	
	1	RB1FIE	0	H0	R/W	
	0	TBEIE	0	H0	R/W	

Bits 15-7 Reserved

Bit 6	TENDIE
Bit 5	FEIE
Bit 4	PEIE
Bit 3	OEIE
Bit 2	RB2FIE
Bit 1	RB1FIE
Bit 0	TBEIE

These bits enable UART3 interrupts.

1 (R/W): Enable interrupts 0 (R/W): Disable interrupts

The following shows the correspondence between the bit and interrupt:

UART3_nINTE.TENDIE bit: End-of-transmission interrupt
UART3_nINTE.FEIE bit: Framing error interrupt
UART3_nINTE.PEIE bit: Parity error interrupt
UART3_nINTE.OEIE bit: Overrun error interrupt

UART3_nINTE.RB2FIE bit: Receive buffer two bytes full interrupt UART3_nINTE.RB1FIE bit: Receive buffer one byte full interrupt UART3_nINTE.TBEIE bit: Transmit buffer empty interrupt

UART3 Ch.n Transmit Buffer Empty DMA Request Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
UART3_nT	15–0	TBEDMAEN[15:0]	0x0000	H0	R/W	_
BEDMAEN						

Bits 15-0 TBEDMAEN[15:0]

These bits enable the UART3 to issue a DMA transfer request to the corresponding DMA controller channel (Ch.0–Ch.15) when a transmit buffer empty state has occurred.

1 (R/W): Enable DMA transfer request 0 (R/W): Disable DMA transfer request

Each bit corresponds to a DMA controller channel. The high-order bits for the unimplemented channels are ineffective.

UART3 Ch.n Receive Buffer One Byte Full DMA Request Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
UART3_n RB1FDMAEN	15–0	RB1FDMAEN[15:0]	0x0000	H0	R/W	_

Bits 15-0 RB1FDMAEN[15:0]

These bits enable the UART3 to issue a DMA transfer request to the corresponding DMA controller channel (Ch.0–Ch.15) when a receive buffer one byte full state has occurred.

1 (R/W): Enable DMA transfer request 0 (R/W): Disable DMA transfer request

Each bit corresponds to a DMA controller channel. The high-order bits for the unimplemented channels are ineffective.

UART3 Ch. *n* Carrier Waveform Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
UART3_nCAWF	15–8	_	0x00	_	R	_
	7–0	CRPER[7:0]	0x00	H0	R/W	

Bits 15-8 Reserved

Bits 7-0 CRPER[7:0]

These bits set the carrier modulation output frequency. For more information, refer to "Carrier Modulation."

14 Synchronous Serial Interface (SPIA)

14.1 Overview

SPIA is a synchronous serial interface. The features of SPIA are listed below.

- · Supports both master and slave modes.
- Data length: 2 to 16 bits programmable
- Either MSB first or LSB first can be selected for the data format.
- Clock phase and polarity are configurable.
- Supports full-duplex communications.
- Includes separated transmit data buffer and receive data buffer registers.
- Can generate receive buffer full, transmit buffer empty, end of transmission, and overrun interrupts.
- Can issue a DMA transfer request when a receive buffer full or a transmit buffer empty occurs.
- Master mode allows use of a 16-bit timer to set baud rate.
- Slave mode is capable of being operated with the external input clock SPICLKn only.
- Slave mode is capable of being operated in SLEEP mode allowing wake-up by an SPIA interrupt.
- Input pins can be pulled up/down with an internal resistor.

Figure 14.1.1 shows the SPIA configuration.

Table 14.1.1 SPIA Channel Configuration of S1C31D41

Item	32-pin package	48-pin package	64-pin package
Number of channels		3 channels (Ch.0 to Ch.2)	
Internal clock input		Ch.0 ← 16-bit timer Ch.1	
		Ch.1 ← 16-bit timer Ch.6	
		Ch.2 ← 16-bit timer Ch.5	

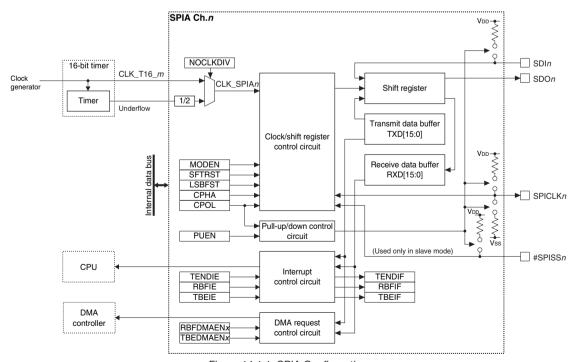


Figure 14.1.1 SPIA Configuration

14.2 Input/Output Pins and External Connections

14.2.1 List of Input/Output Pins

Table 14.2.1.1 lists the SPIA pins.

Table 14.2.1.1 List of SPIA Pins

Pin name	I/O*	Initial status*	Function
SDIn	I	I (Hi-Z)	SPIA Ch.n data input pin
SDOn	O or Hi-Z	Hi-Z	SPIA Ch.n data output pin
SPICLKn	I or O	I (Hi-Z)	SPIA Ch.n external clock input/output pin
#SPISSn	I	I (Hi-Z)	SPIA Ch.n slave select signal input pin

^{*} Indicates the status when the pin is configured for SPIA.

If the port is shared with the SPIA pin and other functions, the SPIA input/output function must be assigned to the port before activating SPIA. For more information, refer to the "I/O Ports" chapter.

14.2.2 External Connections

SPIA operates in master mode or slave mode. Figures 14.2.2.1 and 14.2.2.2 show connection diagrams between SPIA in each mode and external SPI devices.

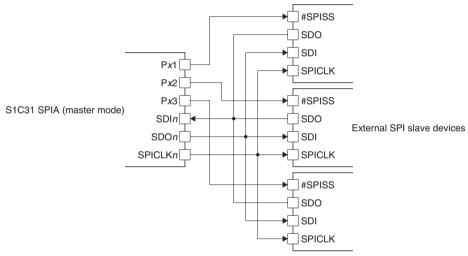


Figure 14.2.2.1 Connections between SPIA in Master Mode and External SPI Slave Devices

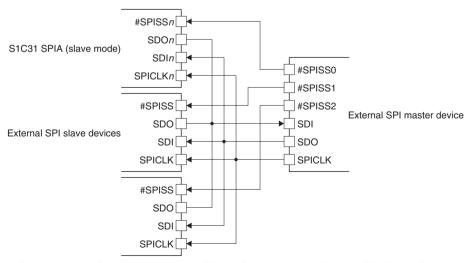


Figure 14.2.2.2 Connections between SPIA in Slave Mode and External SPI Master Device

Applying a low level to the #SPISSn pin enables

device. Data input to the SDIn pin and the clock input to the SPICLKn pin are ignored. When a high level is applied, the transmit/receive bit count is cleared to 0 and the already received bits are dis-

14.2.3 Pin Functions in Master Mode and Slave Mode

The pin functions are changed according to the master or slave mode selection. The differences in pin functions between the modes are shown in Table 14.2.3.1.

Function in master mode Function in slave mode Always placed into input state. Always placed into output state. This pin is placed into output state while a low level is applied to the #SPISSn pin or placed into Hi-Z state while a high level is applied to the #SPISSn SPICLKn Outputs the SPI clock to external devices. Inputs an external SPI clock. Output clock polarity and phase can be configured Clock polarity and phase can be designated according to the input clock.

Table 14.2.3.1 Pin Function Differences between Modes

14.2.4 Input Pin Pull-Up/Pull-Down Function

mode, use a general-purpose I/O port function.

pull-down function as shown in Table 14.2.4.1. This function is enabled by setting the SPIA $_n$ MOD.PUEN bit to 1.
Table 14.2.4.1 Pull-Up or Pull-Down of Input Pins

carded.

This input function is not required to be assigned to SPIA to transmit/receive data. While a high level is the port. To output the slave select signal in master applied to this pin, SPIA is not selected as a slave

		The state of the s
Pin	Master mode	Slave mode
SDIn	Pull-up	Pull-up
SPICLKn	_	SPIA_nMOD.CPOL bit = 1: Pull-up
		SPIA_nMOD.CPOL bit = 0: Pull-down
#SPISSn	-	Pull-up

The SPIA input pins (SDIn in master mode or SDIn, SPICLKn, and #SPISSn pins in slave mode) have a pull-up or

14.3 Clock Settings

if necessary.

Not used.

Pin

#SPISSn

SDIn

SDOn

14.3.1 SPIA Operating Clock

Operating clock in master mode

In master mode, the SPIA operating clock is supplied from the 16-bit timer. The following two options are provided for the clock configuration.

Use the 16-bit timer operating clock without dividing

By setting the SPIA_nMOD.NOCLKDIV bit to 1, the operating clock CLK_T16_m, which is configured by selecting a clock source and a division ratio, for the 16-bit timer channel corresponding to the SPIA channel is input to SPIA as CLK_SPIAn. Since this clock is also used as the SPI clock SPICLKn without changing, the CLK_SPIAn frequency becomes the baud rate.

To supply CLK_SPIAn to SPIA, the 16-bit timer clock source must be enabled in the clock generator. It does not matter how the T16_mCTL.MODEN and T16_mCTL.PRUN bits of the corresponding 16-bit timer channel are set (1 or 0).

When setting this mode, the timer function of the corresponding 16-bit timer channel may be used for another purpose.

Use the 16-bit timer as a baud rate generator

By setting the SPIA_nMOD.NOCLKDIV bit to 0, SPIA inputs the underflow signal generated by the corresponding 16-bit timer channel and converts it to the SPICLKn. The 16-bit timer must be run with an appropriate reload data set. The SPICLKn frequency (baud rate) and the 16-bit timer reload data are calculated by the equations shown below.

$$fspiclk = \frac{fclk_spia}{2 \times (RLD + 1)} \qquad \qquad RLD = \frac{fclk_spia}{fspiclk \times 2} - 1 \qquad (Eq. 14.1)$$

Where

fSPICLK: SPICLK*n* frequency [Hz] (= baud rate [bps]) fCLK_SPIA: SPIA operating clock frequency [Hz] RLD: 16-bit timer reload data value

For controlling the 16-bit timer, refer to the "16-bit Timers" chapter.

Operating clock in slave mode

SPIA set in slave mode operates with the clock supplied from the external SPI master to the SPICLK*n* pin. The 16-bit timer channel (including the clock source selector and the divider) corresponding to the SPIA channel is not used. Furthermore, the SPIA_nMOD.NOCLKDIV bit setting becomes ineffective.

SPIA keeps operating using the clock supplied from the external SPI master even if all the internal clocks halt during SLEEP mode, so SPIA can receive data and can generate receive buffer full interrupts.

14.3.2 Clock Supply During Debugging

In master mode, the operating clock supply during debugging should be controlled using the T16_mCLK.DBRUN bit.

The CLK_T16_m supply to SPIA Ch.n is suspended when the CPU enters debug state if the T16_mCLK.DBRUN bit = 0. After the CPU returns to normal operation, the CLK_T16_m supply resumes. Although SPIA Ch.n stops operating when the CLK_T16_m supply is suspended, the output pins and registers retain the status before the debug state was entered. If the T16_mCLK.DBRUN bit = 1, the CLK_T16_m supply is not suspended and SPIA Ch.n will keep operating in a debug state.

SPIA in slave mode operates with the external SPI master clock input from the SPICLK*n* pin regardless of whether the CPU is placed into debug state or normal operation state.

14.3.3 SPI Clock (SPICLKn) Phase and Polarity

The SPICLKn phase and polarity can be configured separately using the SPIA_nMOD.CPHA bit and the SPIA_nMOD.CPOL bit, respectively. Figure 14.3.3.1 shows the clock waveform and data input/output timing in each setting.

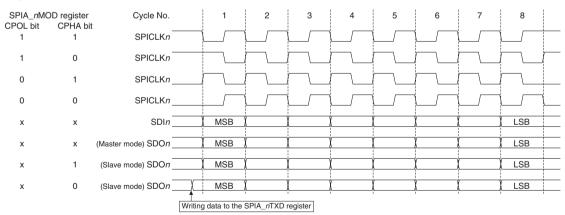


Figure 14.3.3.1 SPI Clock Phase and Polarity (SPIA_nMOD.LSBFST bit = 0, SPIA_nMOD.CHLN[3:0] bits = 0x7)

14.4 Data Format

The SPIA data length can be selected from 2 bits to 16 bits by setting the SPIA_nMOD.CHLN[3:0] bits. The input/output permutation is configurable to MSB first or LSB first using the SPIA_nMOD.LSBFST bit. Figure 14.4.1 shows a data format example when the SPIA_nMOD.CHLN[3:0] bits = 0x7, the SPIA_nMOD.CPOL bit = 0 and the SPIA nMOD.CPHA bit = 0.

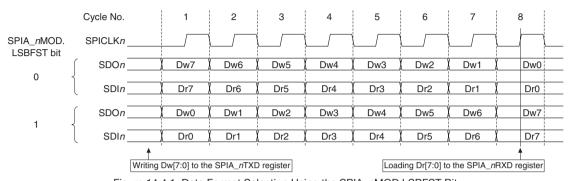


Figure 14.4.1 Data Format Selection Using the SPIA_nMOD.LSBFST Bit (SPIA_nMOD.CHLN[3:0] bits = 0x7, SPIA_nMOD.CPOL bit = 0, SPIA_nMOD.CPHA bit = 0)

14.5 Operations

14.5.1 Initialization

SPIA Ch.n should be initialized with the procedure shown below.

- 1. <Master mode only> Generate a clock by controlling the 16-bit timer and supply it to SPIA Ch.n.
- 2. Configure the following SPIA nMOD register bits:
 - SPIA_nMOD.PUEN bit (Enable input pin pull-up/down)
 SPIA_nMOD.NOCLKDIV bit (Select master mode operating clock)
 - SPIA_nMOD.LSBFST bit (Select MSB first/LSB first)
 SPIA nMOD.CPHA bit (Select clock phase)
 - SPIA_nMOD.CPOL bit (Select clock polarity)
 SPIA_nMOD.MST bit (Select master/slave mode)
- 3. Assign the SPIA Ch.n input/output function to the ports. (Refer to the "I/O Ports" chapter.)
- 4. Set the following SPIA nCTL register bits:
 - Set the SPIA_nCTL.SFTRST bit to 1. (Execute software reset)
 - Set the SPIA_nCTL.MODEN bit to 1. (Enable SPIA Ch.n operations)
- 5. Set the following bits when using the interrupt:
 - Write 1 to the interrupt flags in the SPIA *n*INTF register. (Clear interrupt flags)
 - Set the interrupt enable bits in the SPIA_nINTE register to 1.* (Enable interrupts)
 - * The initial value of the SPIA_nINTF.TBEIF bit is 1, therefore, an interrupt will occur immediately after the SPIA_nINTE.TBEIE bit is set to 1.
- 6. Configure the DMA controller and set the following SPIA control bits when using DMA transfer:
 - Write 1 to the DMA transfer request enable bits
 in the SPIA nTBEDMAEN and SPIA nRBFDMAEN registers. (Enable DMA transfer requests)

14.5.2 Data Transmission in Master Mode

A data sending procedure and operations in master mode are shown below. Figures 14.5.2.1 and 14.5.2.2 show a timing chart and a flowchart, respectively.

Data sending procedure

- 1. Assert the slave select signal by controlling the general-purpose output port (if necessary).
- 2. Check to see if the SPIA_nINTF.TBEIF bit is set to 1 (transmit buffer empty).
- 3. Write transmit data to the SPIA_nTXD register.
- 4. Wait for an SPIA interrupt when using the interrupt.
- 5. Repeat Steps 2 to 4 (or 2 and 3) until the end of transmit data.
- 6. Negate the slave select signal by controlling the general-purpose output port (if necessary).

Data sending operations

SPIA Ch.n starts data sending operations when transmit data is written to the SPIA nTXD register.

The transmit data in the SPIA_nTXD register is automatically transferred to the shift register and the SPIA_nINTF.TBEIF bit is set to 1. If the SPIA_nINTE.TBEIE bit = 1 (transmit buffer empty interrupt enabled), a transmit buffer empty interrupt occurs at the same time.

The SPICLKn pin outputs clocks of the number of the bits specified by the SPIA_nMOD.CHLN[3:0] bits and the transmit data bits are output in sequence from the SDOn pin in sync with these clocks.

Even if the clock is being output from the SPICLKn pin, the next transmit data can be written to the SPIA_nTXD register after making sure the SPIA nINTF.TBEIF bit is set to 1.

If transmit data has not been written to the SPIA_nTXD register after the last clock is output from the SPI-CLKn pin, the clock output halts and the SPIA_nINTF.TENDIF bit is set to 1. At the same time SPIA issues an end-of-transmission interrupt request if the SPIA_nINTE.TENDIE bit = 1.

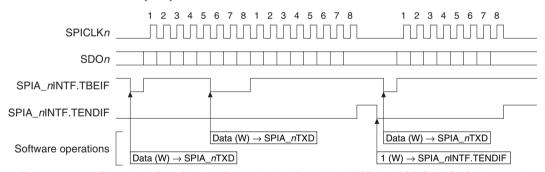


Figure 14.5.2.1 Example of Data Sending Operations in Master Mode (SPIA_nMOD.CHLN[3:0] bits = 0x7)

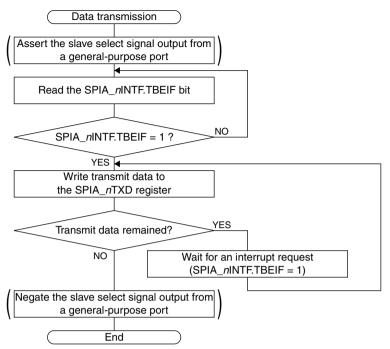


Figure 14.5.2.2 Data Transmission Flowchart in Master Mode

Data transmission using DMA

By setting the SPIA_nTBEDMAEN.TBEDMAENx bit to 1 (DMA transfer request enabled), a DMA transfer request is sent to the DMA controller and transmit data is transferred from the specified memory to the SPIA_nTXD register via DMA Ch.x when the SPIA_nINTF.TBEIF bit is set to 1 (transmit buffer empty).

This automates the procedure from Step 2 to Step 5 described above.

The transfer source/destination and control data must be set for the DMA controller and the relevant DMA channel must be enabled to start a DMA transfer in advance so that transmit data will be transferred to the SPIA_nTXD register. For more information on DMA, refer to the "DMA Controller" chapter.

Item Setting example End pointer Transfer source Memory address in which the last transmit data is stored Transfer destination SPIA_nTXD register address Control data dst_inc 0x3 (no increment) dst_size 0x1 (haflword) src_inc 0x1 (+2) src_size 0x1 (halfword) R_power 0x0 (arbitrated for every transfer) Number of transfer data n_minus_1 cycle_ctrl 0x1 (basic transfer)

Table 14.5.2.1 DMA Data Structure Configuration Example (for 16-bit Data Transmission)

14.5.3 Data Reception in Master Mode

A data receiving procedure and operations in master mode are shown below. Figures 14.5.3.1 and 14.5.3.2 show a timing chart and flowcharts, respectively.

Data receiving procedure

- 1. Assert the slave select signal by controlling the general-purpose output port (if necessary).
- 2. Check to see if the SPIA_nINTF.TBEIF bit is set to 1 (transmit buffer empty).
- 3. Write dummy data (or transmit data) to the SPIA_nTXD register.
- 4. Wait for a transmit buffer empty interrupt (SPIA_nINTF.TBEIF bit = 1).
- 5. Write dummy data (or transmit data) to the SPIA_nTXD register.
- 6. Wait for a receive buffer full interrupt (SPIA_nINTF.RBFIF bit = 1).
- 7. Read the received data from the SPIA nRXD register.
- 8. Repeat Steps 5 to 7 until the end of data reception.
- 9. Negate the slave select signal by controlling the general-purpose output port (if necessary).

Note: To perform continuous data reception without stopping SPICLK*n*, Steps 7 and 5 operations must be completed within the SPICLK*n* cycles equivalent to "Data bit length - 1" after Step 6.

Data receiving operations

SPIA Ch.n starts data receiving operations simultaneously with data sending operations when transmit data (may be dummy data if data transmission is not required) is written to the SPIA nTXD register.

The SPICLK*n* pin outputs clocks of the number of the bits specified by the SPIA_*n*MOD.CHLN[3:0] bits. The transmit data bits are output in sequence from the SDO*n* pin in sync with these clocks and the receive data bits input from the SDI*n* pin are shifted into the shift register.

When the last clock is output from the SPICLKn pin and receive data bits are all shifted into the shift register, the received data is transferred to the receive data buffer and the SPIA_nINTF.RBFIF bit is set to 1. At the same time SPIA issues a receive buffer full interrupt request if the SPIA_nINTE.RBFIE bit = 1. After that, the received data in the receive data buffer can be read through the SPIA_nRXD register.

Note: If data of the number of the bits specified by the SPIA_nMOD.CHLN[3:0] bits is received when the SPIA_nINTF.RBFIF bit is set to 1, the SPIA_nRXD register is overwritten with the newly received data and the previously received data is lost. In this case, the SPIA_nINTF.OEIF bit is set.

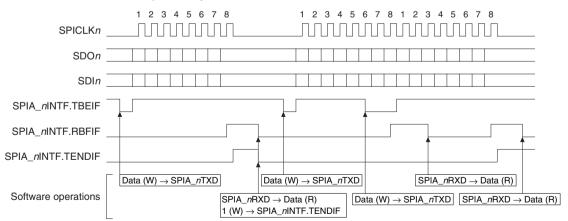


Figure 14.5.3.1 Example of Data Receiving Operations in Master Mode (SPIA nMOD.CHLN[3:0] bits = 0x7)

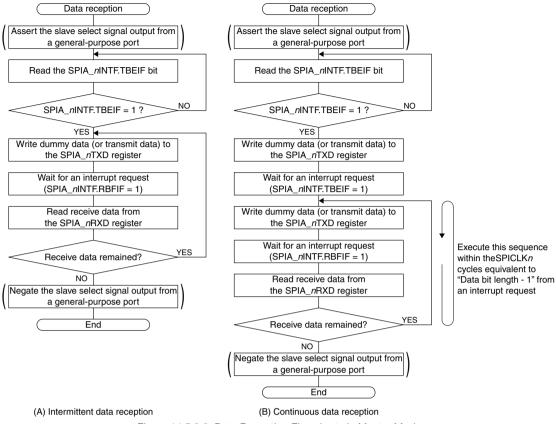


Figure 14.5.3.2 Data Reception Flowcharts in Master Mode

Data reception using DMA

For data reception, two DMA controller channels should be used to write dummy data to the SPIA_nTXD register as a reception start trigger and to read the received data from the SPIA_nRXD register.

By setting the SPIA_nTBEDMAEN.TBEDMAENx1 bit to 1 (DMA transfer request enabled), a DMA transfer request is sent to the DMA controller and dummy data is transferred from the specified memory to the SPIA_nTXD register via DMA Ch.x1 when the SPIA_nINTF.TBEIF bit is set to 1 (transmit buffer empty).

By setting the SPIA_nRBFDMAEN.RBFDMAENx2 bit to 1 (DMA transfer request enabled), a DMA transfer request is sent to the DMA controller and the received data is transferred from the SPIA_nRXD register to the specified memory via DMA Ch.x2 when the SPIA_nINTF.RBFIF bit is set to 1 (receive buffer full).

This automates the procedure from Step 2 to Step 8 described above.

The transfer source/destination and control data must be set for the DMA controller and the relevant DMA channel must be enabled to start a DMA transfer in advance. For more information on DMA, refer to the "DMA Controller" chapter.

Table 14.5.3.1 DMA Data Structure Configuration Example (for Writing 16-bit Dummy Transmit Data)

	Item	Setting example
End pointer	Transfer source	Memory address in which dummy data is stored
	Transfer destination	SPIA_nTXD register address
Control data	dst_inc	0x3 (no increment)
	dst_size	0x1 (haflword)
	src_inc	0x3 (no increment)
	src_size	0x1 (halfword)
	R_power	0x0 (arbitrated for every transfer)
	n_minus_1	Number of transfer data
	cycle_ctrl	0x1 (basic transfer)

Table	lable 14.5.5.2 Divin Bata Structure Configuration Example (for 16 bit Bata Neception)						
	Item	Setting example					
End pointer	Transfer source	SPIA_nRXD register address					
	Transfer destination	Memory address to which the last received data is stored					
Control data	dst_inc	0x1 (+2)					
	dst_size	0x1 (haflword)					
	src_inc	0x3 (no increment)					
	src_size	0x1 (halfword)					
R_power		0x0 (arbitrated for every transfer)					
	n_minus_1	Number of transfer data					
	cycle_ctrl	0x1 (basic transfer)					

Table 14.5.3.2 DMA Data Structure Configuration Example (for 16-bit Data Reception)

14.5.4 Terminating Data Transfer in Master Mode

A procedure to terminate data transfer in master mode is shown below.

- 1. Wait for an end-of-transmission interrupt (SPIA_nINTF.TENDIF bit = 1).
- 2. Set the SPIA_nCTL.MODEN bit to 0 to disable the SPIA Ch.n operations.
- 3. Stop the 16-bit timer to disable the clock supply to SPIA Ch.n.

14.5.5 Data Transfer in Slave Mode

A data sending/receiving procedure and operations in slave mode are shown below. Figures 14.5.5.1 and 14.5.5.2 show a timing chart and flowcharts, respectively.

Data sending procedure

- 1. Check to see if the SPIA_nINTF.TBEIF bit is set to 1 (transmit buffer empty).
- 2. Write transmit data to the SPIA_nTXD register.
- 3. Wait for a transmit buffer empty interrupt (SPIA_nINTF.TBEIF bit = 1).
- 4. Repeat Steps 2 and 3 until the end of transmit data.

Note: Transmit data must be written to the SPIA_nTXD register after the SPIA_nINTF.TBEIF bit is set to 1 by the time the sending SPIA_nTXD register data written is completed. If no transmit data is written during this period, the data bits input from the SDIn pin are shifted and output from the SDOn pin without being modified.

Data receiving procedure

- 1. Wait for a receive buffer full interrupt (SPIA_nINTF.RBFIF bit = 1).
- 2. Read the received data from the SPIA_nRXD register.
- 3. Repeat Steps 1 and 2 until the end of data reception.

Data transfer operations

The following shows the slave mode operations different from master mode:

- Slave mode operates with the SPI clock supplied from the external SPI master to the SPICLK*n* pin. The data transfer rate is determined by the SPICLK*n* frequency. It is not necessary to control the 16-bit timer.
- SPIA can operate as a slave device only when the slave select signal input from the external SPI master to the #SPISSn pin is set to the active (low) level.
 - If #SPISSn = high, the software transfer control, the SPICLKn pin input, and the SDIn pin input are all ineffective. If the #SPISSn signal goes high during data transfer, the transfer bit counter is cleared and data in the shift register is discarded.
- Slave mode starts data transfer when SPICLKn is input from the external SPI master after the #SPISSn signal is asserted. Writing transmit data is not a trigger to start data transfer. Therefore, it is not necessary to write dummy data to the transmit data buffer when performing data reception only.

• Data transmission/reception can be performed even in SLEEP mode, it makes it possible to wake the CPU up using an SPIA interrupt.

Other operations are the same as master mode.

- **Notes:** If data of the number of bits specified by the SPIA_nMOD.CHLN[3:0] bits is received when the SPIA_nINTF.RBFIF bit is set to 1, the SPIA_nRXD register is overwritten with the newly received data and the previously received data is lost. In this case, the SPIA_nINTF.OEIF bit is set.
 - When the clock for the first bit is input from the SPICLK*n* pin, SPIA starts sending the data currently stored in the shift register even if the SPIA *n*INTF.TBEIF bit is set to 1.

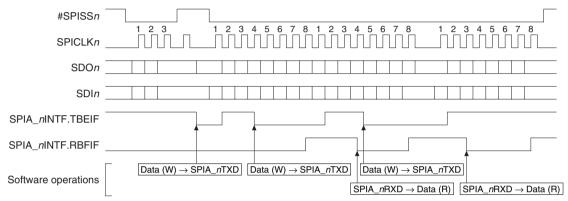


Figure 14.5.5.1 Example of Data Transfer Operations in Slave Mode (SPIA_nMOD.CHLN[3:0] bits = 0x7)

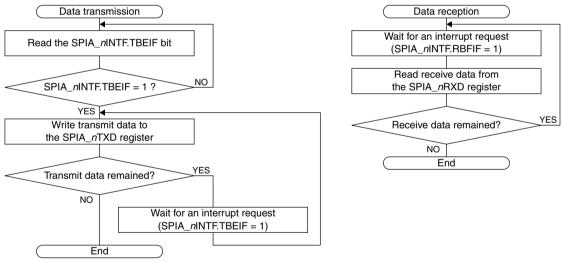


Figure 14.5.5.2 Data Transfer Flowcharts in Slave Mode

14.5.6 Terminating Data Transfer in Slave Mode

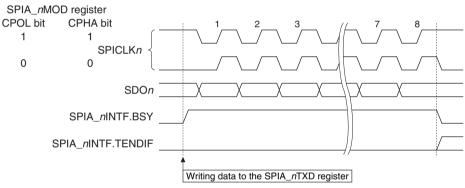
A procedure to terminate data transfer in slave mode is shown below.

- 1. Wait for an end-of-transmission interrupt (SPIA_nINTF.TENDIF bit = 1). Or determine end of transfer via the received data.
- 2. Set the SPIA_nCTL.MODEN bit to 0 to disable the SPIA Ch.n operations.

14.6 Interrupts

SPIA has a function to generate the interrupts shown in Table 14.6.1.

Table 14.6.1 SPIA Interrupt Function


Interrupt	Interrupt flag	Set condition	Clear condition
End of transmission	SPIA_nINTF.TENDIF	When the SPIA_nINTF.TBEIF bit = 1 after data	Writing 1
		of the specified bit length (defined by the SPIA_nMOD.CHLN[3:0] bits) has been sent	
Receive buffer full	SPIA_nINTF.RBFIF	When data of the specified bit length is received and the received data is transferred from the shift register to the received data buffer	_
Transmit buffer empty	SPIA_nINTF.TBEIF	When transmit data written to the transmit data buffer is transferred to the shift register	Writing to the SPIA_ nTXD register
Overrun error	SPIA_nINTF.OEIF	When the receive data buffer is full (when the received data has not been read) at the point that receiving data to the shift register has completed	

SPIA provides interrupt enable bits corresponding to each interrupt flag. An interrupt request is sent to the CPU only when the interrupt flag, of which interrupt has been enabled by the interrupt enable bit, is set. For more information on interrupt control, refer to the "Interrupt" chapter.

The SPIA nINTF register also contains the BSY bit that indicates the SPIA operating status.

Figure 14.6.1 shows the SPIA_nINTF.BSY and SPIA_nINTF.TENDIF bit set timings.

Master mode

Slave mode

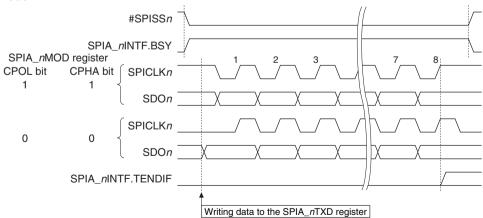


Figure 14.6.1 SPIA_nINTF.BSY and SPIA_nINTF.TENDIF Bit Set Timings (when SPIA_nMOD.CHLN[3:0] bits = 0x7)

14.7 DMA Transfer Requests

The SPIA has a function to generate DMA transfer requests from the causes shown in Table 14.7.1.

Table 14.7.1 DMA Transfer Request Causes of SPIA

Cause to request DMA transfer	DMA transfer request flag	Set condition	Clear condition
	(SPIA_nINTF.RBFIF)	When data of the specified bit length is received and the received data is transferred from the shift register to the received data buffer	
Transmit buffer empty		_	Writing to the SPIA_nTXD register

The SPIA provides DMA transfer request enable bits corresponding to each DMA transfer request flag shown above for the number of DMA channels. A DMA transfer request is sent to the pertinent channel of the DMA controller only when the DMA transfer request flag, of which DMA transfer has been enabled by the DMA transfer request enable bit, is set. The DMA transfer request flag also serves as an interrupt flag, therefore, both the DMA transfer request and the interrupt cannot be enabled at the same time. After a DMA transfer has completed, disable the DMA transfer to prevent unintended DMA transfer requests from being issued. For more information on the DMA control, refer to the "DMA Controller" chapter.

14.8 Control Registers

SPIA Ch.n Mode Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SPIA_nMOD	15–12	_	0x0	_	R	_
	11–8	CHLN[3:0]	0x7	H0	R/W	
	7–6	_	0x0	-	R	
	5	PUEN	0	H0	R/W	
	4	NOCLKDIV	0	H0	R/W	
	3	LSBFST	0	H0	R/W	
	2	CPHA	0	H0	R/W	
	1	CPOL	0	H0	R/W	
	0	MST	0	H0	R/W	

Bits 15-12 Reserved

Bits 11-8 CHLN[3:0]

These bits set the bit length of transfer data.

Table 14.8.1 Data Bit Length Settings

SPIA_nMOD.CHLN[3:0] bits	Data bit length
0xf	16 bits
0xe	15 bits
0xd	14 bits
0xc	13 bits
0xb	12 bits
0xa	11 bits
0x9	10 bits
0x8	9 bits
0x7	8 bits
0x6	7 bits
0x5	6 bits
0x4	5 bits
0x3	4 bits
0x2	3 bits
0x1	2 bits
0x0	Setting prohibited

14 SYNCHRONOUS SERIAL INTERFACE (SPIA)

Bits 7-6 Reserved

Bit 5 PUEN

This bit enables pull-up/down of the input pins.

1 (R/W): Enable pull-up/down 0 (R/W): Disable pull-up/down

For more information, refer to "Input Pin Pull-Up/Pull-Down Function."

Bit 4 NOCLKDIV

This bit selects SPICLK*n* in master mode. This setting is ineffective in slave mode.

1 (R/W): SPICLK*n* frequency = CLK_SPIA*n* frequency (= 16-bit timer operating clock frequency)

0 (R/W): SPICLK*n* frequency = 16-bit timer output frequency / 2

For more information, refer to "SPIA Operating Clock."

Bit 3 LSBFST

This bit configures the data format (input/output permutation).

1 (R/W): LSB first 0 (R/W): MSB first

Bit 2 CPHA Bit 1 CPOL

These bits set the SPI clock phase and polarity. For more information, refer to "SPI Clock (SPICLKn) Phase and Polarity."

Bit 0 MST

This bit sets the SPIA operating mode (master mode or slave mode).

1 (R/W): Master mode 0 (R/W): Slave mode

Note: The SPIA nMOD register settings can be altered only when the SPIA nCTL.MODEN bit = 0.

SPIA Ch.n Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SPIA_nCTL	15–8	_	0x00	_	R	_
	7–2	-	0x00	-	R	
	1	SFTRST	0	H0	R/W	
	0	MODEN	0	H0	R/W	

Bits 15-2 Reserved

Bit 1 SFTRST

This bit issues software reset to SPIA.

1 (W): Issue software reset

0 (W): Ineffective

1 (R): Software reset is executing.

0 (R): Software reset has finished. (During normal operation)

Setting this bit resets the SPIA shift register and transfer bit counter. This bit is automatically cleared after the reset processing has finished.

Bit 0 MODEN

This bit enables the SPIA operations.

1 (R/W): Enable SPIA operations (In master mode, the operating clock is supplied.) 0 (R/W): Disable SPIA operations (In master mode, the operating clock is stopped.)

Note: If the SPIA_nCTL.MODEN bit is altered from 1 to 0 while sending/receiving data, the data being sent/received cannot be guaranteed. When setting the SPIA_nCTL.MODEN bit to 1 again after that, be sure to write 1 to the SPIA_nCTL.SFTRST bit as well.

SPIA Ch.n Transmit Data Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SPIA_nTXD	15–0	TXD[15:0]	0x0000	H0	R/W	_

Bits 15-0 TXD[15:0]

Data can be written to the transmit data buffer through these bits.

In master mode, writing to these bits starts data transfer.

Transmit data can be written when the $SPIA_nINTF.TBEIF$ bit = 1 regardless of whether data is being output from the SDOn pin or not.

Note that the upper data bits that exceed the data bit length configured by the SPIA_nMOD. CHLN[3:0] bits will not be output from the SDOn pin.

Note: Be sure to avoid writing to the SPIA_nTXD register when the SPIA_nINTF.TBEIF bit = 0. Otherwise, transfer data cannot be guaranteed.

SPIA Ch.n Receive Data Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SPIA_nRXD	15–0	RXD[15:0]	0x0000	H0	R	_

Bits 15-0 RXD[15:0]

The receive data buffer can be read through these bits. Received data can be read when the SPIA_nINTF.RBFIF bit = 1 regardless of whether data is being input from the SDIn pin or not. Note that the upper bits that exceed the data bit length configured by the SPIA nMOD.CHLN[3:0] bits become 0.

SPIA Ch.n Interrupt Flag Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SPIA_nINTF	15–8	_	0x00	_	R	_
	7	BSY	0	H0	R	
	6–4	_	0x0	-	R	
	3	OEIF	0	H0/S0	R/W	Cleared by writing 1.
	2	TENDIF	0	H0/S0	R/W	
	1	RBFIF	0	H0/S0	R	Cleared by reading the SPIA_nRXD register.
	0	TBEIF	1	H0/S0	R	Cleared by writing to the SPIA_nTXD register.

Bits 15-8 Reserved

Bit 7 BSY

This bit indicates the SPIA operating status.

1 (R): Transmit/receive busy (master mode), #SPISSn = Low level (slave mode)

0 (R): Idle

Bits 6-4 Reserved

Bit 3 OEIF
Bit 2 TENDIF
Bit 1 RBFIF
Bit 0 TBEIF

These bits indicate the SPIA interrupt cause occurrence status.

1 (R): Cause of interrupt occurred 0 (R): No cause of interrupt occurred 1 (W): Clear flag (OEIF, TENDIF)

0 (W): Ineffective

14 SYNCHRONOUS SERIAL INTERFACE (SPIA)

The following shows the correspondence between the bit and interrupt:

SPIA_nINTF.OEIF bit: Overrun error interrupt
SPIA_nINTF.TENDIF bit: End-of-transmission interrupt
SPIA_nINTF.RBFIF bit: Receive buffer full interrupt
SPIA_nINTF.TBEIF bit: Transmit buffer empty interrupt

SPIA Ch.n Interrupt Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SPIA_nINTE	15–8	_	0x00	_	R	_
	7–4	-	0x0	-	R	
	3	OEIE	0	H0	R/W	
	2	TENDIE	0	H0	R/W	
	1	RBFIE	0	H0	R/W	
	0	TBEIE	0	H0	R/W	

Bits 15-4 Reserved

Bit 3 OEIE
Bit 2 TENDIE
Bit 1 RBFIE
Bit 0 TBEIE

These bits enable SPIA interrupts. 1 (R/W): Enable interrupts 0 (R/W): Disable interrupts

The following shows the correspondence between the bit and interrupt:

SPIA_nINTE.OEIE bit: Overrun error interrupt
SPIA_nINTE.TENDIE bit: End-of-transmission interrupt
SPIA_nINTE.RBFIE bit: Receive buffer full interrupt
SPIA_nINTE.TBEIE bit: Transmit buffer empty interrupt

SPIA Ch.n Transmit Buffer Empty DMA Request Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SPIA_nTBEDMAEN	15–0	TBEDMAEN[15:0]	0x0000	H0	R/W	_

Bits 15-0 TBEDMAEN[15:0]

These bits enable the SPIA to issue a DMA transfer request to the corresponding DMA channel (Ch.0–Ch.15) when a transmit buffer empty state has occurred.

1 (R/W): Enable DMA transfer request 0 (R/W): Disable DMA transfer request

Each bit corresponds to a DMA controller channel. The high-order bits for the unimplemented channels are ineffective.

SPIA Ch.n Receive Buffer Full DMA Request Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SPIA_nRBFDMAEN	15–0	RBFDMAEN[15:0]	0x0000	H0	R/W	_

Bits 15-0 RBFDMAEN[15:0]

These bits enable the SPIA to issue a DMA transfer request to the corresponding DMA channel (Ch.0–Ch.15) when a receive buffer full state has occurred.

1 (R/W): Enable DMA transfer request 0 (R/W): Disable DMA transfer request

Each bit corresponds to a DMA controller channel. The high-order bits for the unimplemented channels are ineffective.

15 Quad Synchronous Serial Interface (QSPI)

15.1 Overview

The QSPI is a quad synchronous serial interface. The features of the QSPI are listed below.

- Supports both master and slave modes.
- Supports single, dual, and quad transfer modes.
- Data length: 2 to 16 clocks programmable.
- Data line drive length: 1 to 16 clocks programmable (for output direction only).
- Either MSB first or LSB first can be selected for the data format.
- · Clock phase and polarity are configurable.
- Supports full-duplex communications.
- Includes separated transmit data buffer and receive data buffer registers.
- Can generate receive buffer full, transmit buffer empty, end of transmission, and overrun interrupts.
- Master mode allows use of a 16-bit timer to set baud rate.
- Slave mode is capable of being operated with the external input clock QSPICLKn only.
- · Slave mode is capable of being operated in SLEEP mode allowing wake-up by a QSPI interrupt.
- Input pins can be pulled up/down with an internal resistor.
- Low CPU overhead memory mapped access mode that can access the external Flash memory with XIP (eXecute-In-Place) mode in the same manner as the embedded system memory.
 - Memory mapped access size: 8, 16, and 32-bit access.
 - 1M-byte external Flash memory mapped access area that allows programmable re-mapping.
 - Configurable 3 or 4-byte address cycle length.
 - Single, dual, or quad transfer mode is configurable for each address, mode byte/dummy, and data cycle.
 - Programmable mode bytes for both XIP mode activation and termination.
 - Configurable mode byte/dummy output cycle length.
- Can issue a DMA transfer request when a receive buffer full, a transmit buffer empty, or a memory mapped access (32-bit read) occurs.

Figure 15.1.1 shows the QSPI configuration.

Table 15.1.1 QSPI Channel Configuration of S1C31D41

Item	32-pin package	48-pin package	64-pin package		
Number of channels	1 channels (Ch.0)				
Internal clock input	Ch.0 ← 16-bit timer Ch.2				
Memory mapped access area	1M-byte area beginning with address 0x0004_0000				
for external Flash memory					

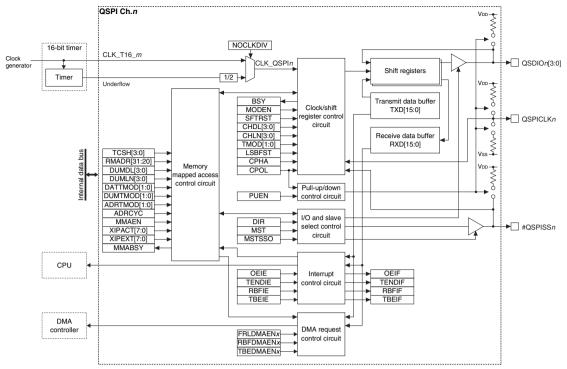


Figure 15.1.1 QSPI Configuration

15.2 Input/Output Pins and External Connections

15.2.1 List of Input/Output Pins

Table 15.2.1.1 lists the QSPI pins.

Table 15.2.1.1 List of QSPI Pins

Pin name	I/O*	Initial status*	Function
QSDIOn[3:0]	I or O	I (Hi-Z)	QSPI Ch.n data input/output pin
QSPICLKn	I or O	I (Hi-Z)	QSPI Ch.n external clock input/output pin
#QSPISSn	I or O	I (Hi-Z)	QSPI Ch.n slave select signal input/output pin

* Indicates the status when the pin is configured for the QSPI.

If the port is shared with the QSPI pin and other functions, the QSPI input/output function must be assigned to the port before activating the QSPI. For more information, refer to the "I/O Ports" chapter.

15.2.2 External Connections

The QSPI operates in master or slave mode. The memory mapped access mode is available only in master mode. When QSPI Ch.n is operating in memory mapped access mode, the #QSPISSn output is controlled by the internal state machine. In this case, only one external QSPI device can be connected.

When QSPI Ch.n is operating in register access master mode, the #QSPISSn output is directly controlled by a register bit. In this case, GPIO pins other than #QSPISSn can also be used as the slave select output ports to connect the QSPI to more than one external QSPI device.

Figures 15.2.2.1 to 15.2.2.7 show connection diagrams between the QSPI in each mode and external QSPI devices.

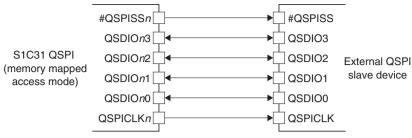


Figure 15.2.2.1 Connections between QSPI in Memory Mapped Access Mode and an External QSPI Slave Device

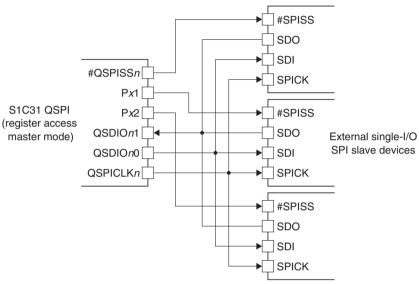


Figure 15.2.2.2 Connections between QSPI in Register Access Master Mode and External Single-I/O SPI (Legacy SPI) Slave Devices

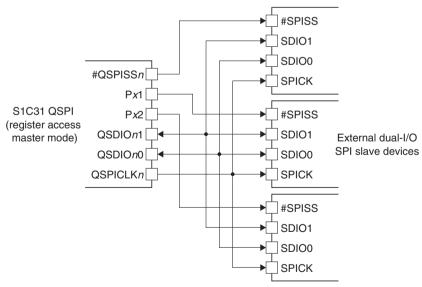


Figure 15.2.2.3 Connections between QSPI in Register Access Master Mode and External Dual-I/O SPI Slave Devices

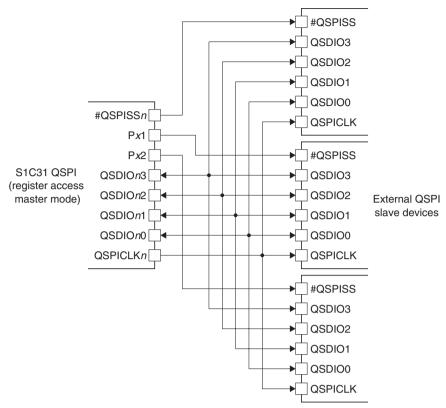


Figure 15.2.2.4 Connections between QSPI in Register Access Master Mode and External QSPI Slave Devices

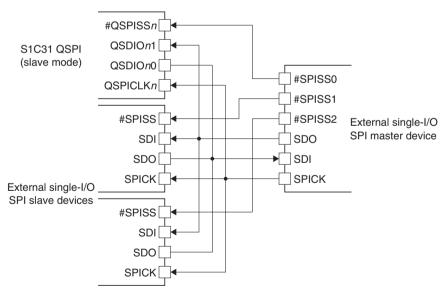


Figure 15.2.2.5 Connections between QSPI in Slave Mode and External Single-I/O SPI (Legacy SPI) Master Device

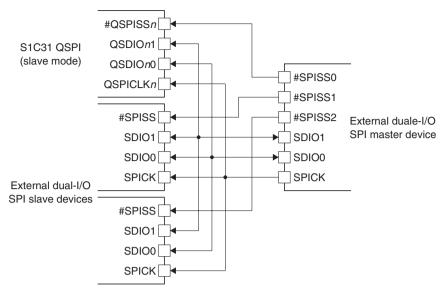


Figure 15.2.2.6 Connections between QSPI in Slave Mode and External Dual-I/O SPI Master Device

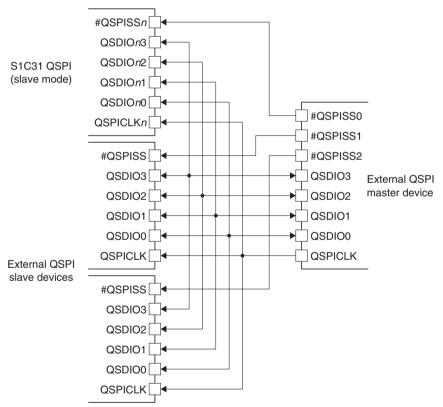


Figure 15.2.2.7 Connections between QSPI in Slave Mode and External QSPI Master Device

15.2.3 Pin Functions in Master Mode and Slave Mode

The pin functions are changed according to the transfer direction, transfer mode, and master/slave mode selections. The differences in pin functions between the modes are shown in Table 15.2.3.1.

Function in master mode Function in slave mode Pin Single transfer mode Dual transfer mode Quad transfer mode Single transfer mode Dual transfer mode Quad transfer mode QSDIOn[3:2] Always placed into Hi-Z state. These pins are Always placed into Hi-Z state. These pins are QSDIOn1 Always placed into These pins are placed into input Always placed into These pins are placed into output placed into output state while a low placed into input or output state input state. input state. OSDIOn0 Always placed into or output state according to the This pin is placed state while a low level is applied according to the QSPI_nCTL.DIR bit into output state level is applied to the #QSPISSn output state. QSPI_nCTL.DIR bit setting. while a low level to the #QSPISSn pin and the QSPI_ is applied to the pin and the QSPI_nCTL.DIR bit is set setting. #QSPISSn pin or nCTL.DIR bit is set to 0 (output), or placed into Hi-Z to 0 (output), or placed into Hi-Z state while a high placed into Hi-Z state while a high level is applied to state while a high level is applied to the #QSPISSn pin. level is applied to the #QSPISSn pin the #QSPISSn pin or the QSPI_nCTL. or the QSPI nCTL. DIR bit is set to 1 DIR bit is set to 1 (input). (input). QSPICLK_n Outputs the QSPI clock to external devices. Inputs an external QSPI clock. Output clock polarity and phase can be configured if nec-Clock polarity and phase can be designated according to essary. the input clock. #QSPISSn This pin is used to output the slave select signal in mas-Applying a low level to the #QSPISSn pin enables the ter mode. In memory mapped access mode, this pin is QSPI to transmit/receive data. While a high level is applied controlled by the internal state machine. In register ac- to this pin, the QSPI is not selected as a slave device. Data cess mode, this pin is controlled by a register bit. When input to the QSDIOn pins and the clock input to the QSPIconnecting more than one external slave device, general- CLKn pin are ignored. When a high level is applied, the purpose I/O ports can be used to output the extra slave transmit/receive bit count is cleared to 0 and the already select signals. received bits are discarded.

Table 15.2.3.1 Pin Function Differences between Modes

15.2.4 Input Pin Pull-Up/Pull-Down Function

The QSPI pins (QSDIOn[3:0] pins in master mode or QSDIOn[3:0] pins, QSPICLKn, and #QSPISSn pins in slave mode) have a pull-up or pull-down function as shown in Table 15.2.4.1. This function is enabled by setting the QSPI nMOD.PUEN bit to 1.

	•			
Pin	Master mode	Slave mode		
QSDIOn[3:0]	Pull-up	Pull-up		
QSPICLKn	-	QSPI_nMOD.CPOL bit = 1: Pull-up		
		QSPI_nMOD.CPOL bit = 0: Pull-down		
#QSPISSn	_	Pull-up		

Table 15.2.4.1 Pull-Up or Pull-Down of QSPI Pins

15.3 Clock Settings

15.3.1 QSPI Operating Clock

Operating clock in master mode

In master mode, the QSPI operating clock is supplied from the 16-bit timer. The following two options are provided for the clock configuration.

Use the 16-bit timer operating clock without dividing

By setting the QSPI_nMOD.NOCLKDIV bit to 1, the operating clock CLK_T16_m, which is configured by selecting a clock source and a division ratio, for the 16-bit timer channel corresponding to the QSPI channel is input to the QSPI as CLK_QSPIn. Since this clock is also used as the QSPI clock QSPICLKn without changing, the CLK_QSPIn frequency becomes the baud rate.

To supply CLK_QSPIn to the QSPI, the 16-bit timer clock source must be enabled in the clock generator. It does not matter how the T16_mCTL.MODEN and T16_mCTL.PRUN bits of the corresponding 16-bit timer channel are set (1 or 0).

When setting this mode, the timer function of the corresponding 16-bit timer channel may be used for another purpose.

Use the 16-bit timer as a baud rate generator

By setting the QSPI_nMOD.NOCLKDIV bit to 0, the QSPI inputs the underflow signal generated by the corresponding 16-bit timer channel and converts it to the QSPICLKn. The 16-bit timer must be run with an appropriate reload data set. The QSPICLKn frequency (baud rate) and the 16-bit timer reload data are calculated by the equations shown below.

$$f_{QSPICLK} = \frac{f_{CLK_QSPI}}{2 \times (RLD + 1)} \qquad \qquad RLD = \frac{f_{CLK_QSPI}}{f_{QSPICLK} \times 2} - 1 \qquad (Eq. 15.1)$$

Where

fQSPICLK: QSPICLKn frequency [Hz] (= baud rate [bps])

fclk_QSPI: QSPI operating clock frequency [Hz]

RLD: 16-bit timer reload data value

For controlling the 16-bit timer, refer to the "16-bit Timers" chapter.

Operating clock in slave mode

The QSPI set in slave mode operates with the clock supplied from the external SPI/QSPI master to the QSPI-CLK*n* pin. The 16-bit timer channel (including the clock source selector and the divider) corresponding to the QSPI channel is not used. Furthermore, the QSPI_nMOD.NOCLKDIV bit setting becomes ineffective.

The QSPI keeps operating using the clock supplied from the external SPI/QSPI master even if all the internal clocks halt during SLEEP mode, so the QSPI can receive data and can generate receive buffer full interrupts.

15.3.2 Clock Supply During Debugging

In master mode, the operating clock supply during debugging should be controlled using the T16_mCLK.DBRUN bit.

The CLK_T16_m supply to QSPI Ch.n is suspended when the CPU enters debug state if the T16_mCLK.DBRUN bit = 0. After the CPU returns to normal operation, the CLK_T16_m supply resumes. Although QSPI Ch.n stops operating when the CLK_T16_m supply is suspended, the output pins and registers retain the status before the debug state was entered. If the T16_mCLK.DBRUN bit = 1, the CLK_T16_m supply is not suspended and QSPI Ch.n will keep operating in a debug state.

The QSPI in slave mode operates with the external SPI/QSPI master clock input from the QSPICLK*n* pin regardless of whether the CPU is placed into debug state or normal operation state.

15.3.3 QSPI Clock (QSPICLKn) Phase and Polarity

The QSPICLK*n* phase and polarity can be configured separately using the QSPI_*n*MOD.CPHA bit and the QSPI_*n*MOD.CPOL bit, respectively. Figure 15.3.3.1 shows the clock waveform and data input/output timing in each setting.

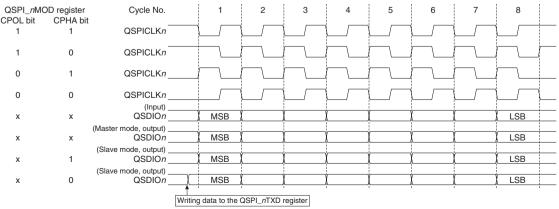


Figure 15.3.3.1 QSPI Clock Phase and Polarity (QSPI_nMOD.LSBFST bit = 0, QSPI_nMOD.CHLN[3:0] bits = 0x7)

15.4 Data Format

The QSPI data length can be selected from 2 to 16 clocks by setting the QSPI_nMOD.CHLN[3:0] bits. The input/output permutation is configurable to MSB first or LSB first using the QSPI_nMOD.LSBFST bit. Figures 15.4.1 to 15.4.3 show data format examples in different transfer modes (QSPI_nMOD.TMOD[1:0]) when the QSPI_nMOD. CPOL bit = 0 and the QSPI_nMOD.CPHA bit = 0.

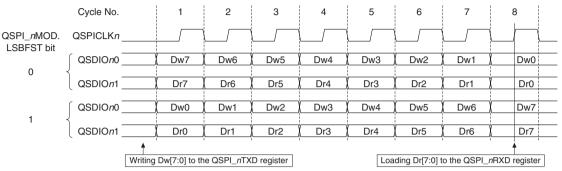


Figure 15.4.1 Data Format Selection for Single Transfer Mode Using the QSPI_nMOD.LSBFST Bit (QSPI_nMOD.TMOD[1:0] bits = 0x0, QSPI_nMOD.CHDL[3:0] bits = 0x7, QSPI_nMOD.CHLN[3:0] bits = 0x7, QSPI_nMOD.CPL bit = 0, QSPI_nMOD.CPHA bit = 0)

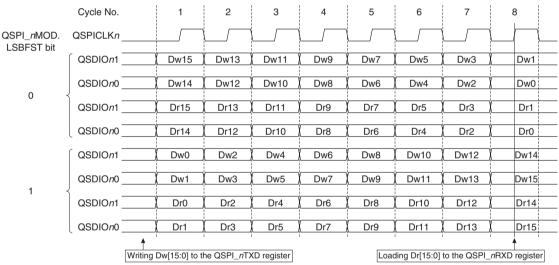


Figure 15.4.2 Data Format Selection for Dual Transfer Mode Using the QSPI_nMOD.LSBFST Bit (QSPI_nMOD.TMOD[1:0] bits = 0x1, QSPI_nMOD.CHDL[3:0] bits = 0x7, QSPI_nMOD.CHLN[3:0] bits = 0x7, QSPI_nMOD.CPOL bit = 0, QSPI_nMOD.CPHA bit = 0)

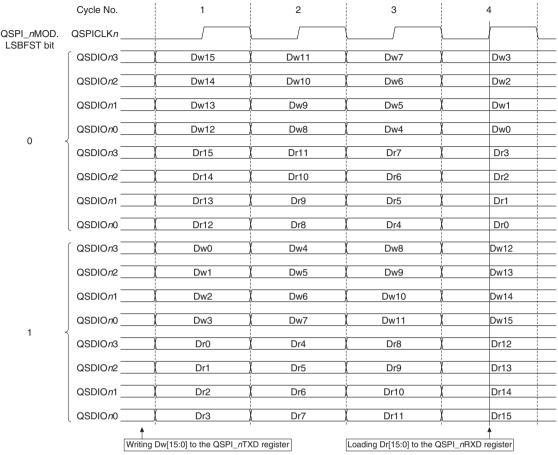


Figure 15.4.3 Data Format Selection for Quad Transfer Mode Using the QSPI_nMOD.LSBFST Bit (QSPI_nMOD.TMOD[1:0] bits = 0x2, QSPI_nMOD.CHDL[3:0] bits = 0x3, QSPI_nMOD.CHLN[3:0] bits = 0x3, QSPI_nMOD.CPOL bit = 0, QSPI_nMOD.CPHA bit = 0)

15.5 Operations

15.5.1 Register Access Mode

Data can be read from or written to the external SPI/QSPI device by accessing the registers in both master and slave modes.

In single transfer mode, transmit data are always output from the QSDIOn0 pin and receive data are always input to the QSDIOn1 pin (the QSDIOn[3:2] pins are not used). The operations are backward compatible with legacy SPI (e.g., synchronous serial interface of this MCU).

In dual transfer mode, transmit data are output from the QSDIOn[1:0] pins when the transfer direction is set to output (QSPI_nCTL.DIR bit = 0). Receive data are input from the QSDIOn[1:0] pins when the transfer direction is set to input (QSPI_nCTL.DIR bit = 1). The QSDIOn[3:2] pins are not used. The number of data transfer clocks is configured using the QSPI_nMOD.CHLN[3:0] bits. Since two data lines are used for data transfer, the data bit length (number of clocks) is obtained by dividing the number of transfer data bits by two.

In quad transfer mode, transmit data are output from the QSDIOn[3:0] pins when the transfer direction is set to output (QSPI_nCTL.DIR bit = 0). Receive data are input from the QSDIOn[3:0] pins when the transfer direction is set to input (QSPI_nCTL.DIR bit = 1). The number of data transfer clocks is configured with the QSPI_nMOD. CHLN[3:0] bits. Since four data lines are used for data transfer, the data bit length (number of clocks) is obtained by dividing the number of transfer data bits by four.

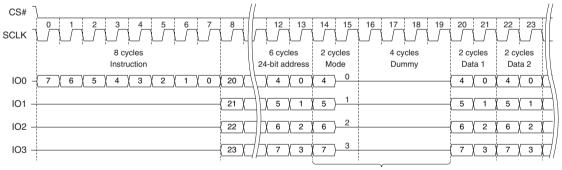
$$LENGTH = \frac{BIT}{N} [clocks]$$
 (Eq. 15.2)

Where

LENGTH: Data bit length [clocks]
BIT: Number of transfer data bits

N: 1 (single transfer mode), 2 (dual transfer mode), or 4 (quad transfer mode)

15.5.2 Memory Mapped Access Mode

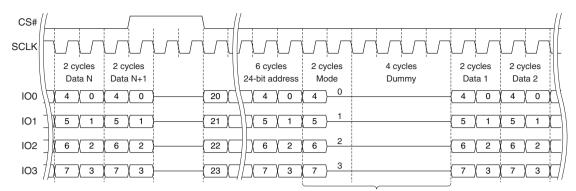

Memory mapped access mode is a low CPU overhead operation mode used with master mode to read data from an external Flash memory, which supports XIP (eXecute-In-Place) mode. Once the external Flash memory enters XIP mode and a read command is executed, the same read command operation can be performed by controlling the slave select signal (inactive to active) and sending a new address to be accessed without the command being resent. This may reduce command re-execution overhead and random access time.

An XIP session consists of a command cycle, an address cycle, a dummy cycle, and consecutive data cycles, and it begins with an XIP specific read command similar to a general read command. Unlike a general read command, one or more data lines must be driven to send XIP activation or termination confirmation bit(s) at the beginning of the dummy cycle of an XIP session

In an XIP session, to start reading from a non-sequential Flash memory address, which is not continuous to the previous read address, assert the slave signal again after negating it once. After that, just send an address cycle to specify the new read start address and a dummy cycle including an XIP activation (continuation) confirmation bit(s), as the command cycle is not needed in this XIP session. The Flash memory performs read operations the same as the read command previously executed to execute a data cycle that includes a given number of data stored from the newly specified address.

To terminate an XIP session, first assert the slave signal again after negating it once. Then, send an address cycle with the address bits set to all high (suggested by most Flash memory manufacturers) and a dummy cycle including an XIP termination confirmation bit(s) at the beginning of the cycle on one or more data lines. After that, negate the slave select signal.

Figures 15.5.2.1 and 15.5.2.2 show Spansion S25FL128S Quad I/O Read command sequences as XIP operation examples.


The QSPI treats the dummy cycle as 6 cycles including 1 driving cycle.

(QSPI_nMMACFG2.DUMDL[3:0] bits = 0x0, QSPI_nMMACFG2.DUMLN[3:0] bits = 0x5)

The QSPI treats the data cycle as 2 cycles including 2 driving cycles.

(QSPI_nMOD.CHDL[3:0] bits = 0x1, QSPI_nMOD.CHLN[3:0] bits = 0x1)

Figure 15.5.2.1 XIP Example - Spansion S25FL128S Quad I/O Read Command Sequence (3-byte address, 0xeb [ExtAdd = 0], LC = 0b00)

The QSPI treats the dummy cycle as 6 cycles including 1 driving cycle.

(QSPI_nMMACFG2.DUMDL[3:0] bits = 0x0, QSPI_nMMACFG2.DUMLN[3:0] bits = 0x5)

The QSPI treats the data cycle as 2 cycles including 2 driving cycles.

(QSPI_nMOD.CHDL[3:0] bits = 0x1, QSPI_nMOD.CHLN[3:0] bits = 0x1)

Figure 15.5.2.2 XIP Example - Spansion S25FL128S Continuous Quad I/O Read Command Sequence (3-byte address, LC = 0b00)

In memory mapped access mode, the QSPI automates toggling of the slave select signal and executing address, dummy, and data cycles so that the CPU will be able to read the external Flash memory mapped to the system memory area. This further reduces CPU overhead.

The transfer mode can be configured for address, dummy, and data cycles individually. The address cycle supports 24 and 32-bit addresses. The QSPI considers that the mode cycle (or XIP activation/termination confirmation) is a part of the dummy cycle, so a mode cycle is sent out on the I/O data line in a dummy cycle.

The memory mapped access area for external Flash memory in the system memory area is used to map the external Flash memory and to access from the CPU. Up to 4G-byte Flash memory can be accessed from this area using a remapping register. Once the external Flash memory is set into XIP mode and a read command is sent in register access mode, the CPU can directly read external Flash memory data through this area. When a read access to a non-sequential address occurs in memory mapped access mode, the QSPI automatically executes a new address and dummy cycles. When memory mapped access mode is disabled by setting a register, the QSPI executes an address cycle and a dummy cycle including a mode byte that specifies to terminate XIP mode.

Memory mapped access mode supports 8, 16, and 32-bit read accesses.

The 32-bit access is mainly used to read data in a large memory block sequentially. In this access, up to two 32-bit data are prefetched into the internal FIFO. Therefore, zero-wait read access is possible if the desired data has already been fetched in the FIFO.

The 8 and 16-bit accesses are mainly used to read data in a small memory block or to read data from non-sequential addresses. Prefetching is not performed as it is unnecessary in non-sequential read. Therefore, overhead of a couple of clocks occurs between accesses.

The QSPI allows incorporating 8 and 16-bit accesses into 32- bit accesses. Prefetching data into FIFO is only performed immediately after a 32-bit read. An 8 or 16-bit read at the sequential address after a 32-bit read allows zerowait read if the desired data has already been fetched in the FIFO.

15.5.3 Initialization

QSPI Ch.*n* should be initialized with the procedure shown below.

- 1. <Master mode only> Generate a clock by controlling the 16-bit timer and supply it to QSPI Ch.n.
- 2. Configure the following QSPI_nMOD register bits:

QSPI_nMOD.PUEN bit (Enable input pin pull-up/down)
 QSPI_nMOD.NOCLKDIV bit (Select master mode operating clock)

QSPI_nMOD.LSBFST bit
 QSPI_nMOD.CPHA bit
 QSPI_nMOD.CPOL bit
 (Select clock phase)
 (Select clock polarity)

- QSPI_nMOD.MST bit (Select master/slave mode)

3. Configure the following register bits when using memory mapped access mode:

- QSPI_nMMACFG1.TCSH[3:0] bits (Set slave select signal negation period)

- OSPI nRMADRH.RMADR[31:20] bits (Set remapping address)

QSPI_nMMACFG2.DUMDL[3:0] bits (Select dummy cycle drive length)
 QSPI_nMMACFG2.DUMLN[3:0] bits (Select dummy cycle length)
 QSPI_nMMACFG2.DATTMOD[1:0] bits (Select data cycle transfer mode)

- QSPI_nMMACFG2.DUMTMOD[1:0] bits (Select dummy cycle transfer mode)

QSPI_nMMACFG2.ADRTMOD[1:0] bits (Select address cycle transfer mode)
 QSPI_nMMACFG2.ADRCYC bit (Select 24 or 32-bit address cycle)

QSPI_nMB.XIPACT[7:0] bits
 QSPI_nMB.XIPEXT[7:0] bits
 (Set XIP activation mode byte)
 (Set XIP termination mode byte)

4. Assign the QSPI Ch.n input/output function to the ports. (Refer to the "I/O Ports" chapter.)

5. Set the following QSPI_nCTL register bits:

Set the QSPI_nCTL.SFTRST bit to 1. (Execute software reset)
 Set the QSPI nCTL.MODEN bit to 1. (Enable QSPI Ch.n operations)

6. Set the following bits when using the interrupt:

- Write 1 to the interrupt flags in the QSPI_nINTF register. (Clear interrupt flags)

- Set the interrupt enable bits in the QSPI_nINTE register to 1. * (Enable interrupts)

* The initial value of the QSPI_nINTF.TBEIF bit is 1, therefore, an interrupt will occur immediately after the QSPI_nINTE.TBEIE bit is set to 1.

7. Configure the DMA controller and set the following QSPI control bits when using DMA transfer:

- Write 1 to the DMA transfer request enable bits in the QSPI_nTBEDMAEN, QSPI_nRBFDMAEN, and QSPI_nFRLDMAEN registers. (Enable DMA transfer requests)

15.5.4 Data Transmission in Master Mode

A data sending procedure and operations in master mode are shown below. Figures 15.5.4.1 and 15.5.4.2 show a timing chart and a flowchart, respectively.

Data sending procedure

- 1. Set the QSPI_nCTL.DIR bit to 0 when QSPI Ch.n is set to dual or quad transfer mode. (This setting is not necessary in single transfer mode.)
- 2. Assert the slave select signal for the external slave device to be accessed by controlling the QSPI_nCTL. MSTSSO bit or the general-purpose output port used for an extra slave select signal output (if necessary).
- 3. Check to see if the OSPI *n*INTF.TBEIF bit is set to 1 (transmit buffer empty).
- 4. Write transmit data to the QSPI_nTXD register.
- 5. Wait for a QSPI interrupt when using interrupt.
- 6. Repeat Steps 3 to 5 (or 3 and 4) until the end of transmit data.
- 7. Negate the slave select signal that has been asserted in Step 2 by controlling the QSPI_nCTL.MSTSSO bit or the general-purpose output port (if necessary).

Data sending operations

QSPI Ch.n starts data sending operations when transmit data is written into the QSPI_nTXD register.

The transmit data in the QSPI_nTXD register is automatically transferred to the shift register and the QSPI_nINTF.TBEIF bit is set to 1. If the QSPI_nINTE.TBEIE bit = 1 (transmit buffer empty interrupt enabled), a transmit buffer empty interrupt occurs at the same time.

The QSPICLK*n* pin outputs clocks for the number of cycles specified by the QSPI_*n*MOD.CHLN[3:0] bits and the transmit data bits are output in sequence from the QSDIO*n* pins, according to the transfer mode specified by the QSPI_*n*MOD.TMOD[1:0] bits, in sync with these clocks.

Even if the clock is being output from the QSPICLK*n* pin, the next transmit data can be written to the QSPI_*n*TXD register after making sure the QSPI_*n*INTF.TBEIF bit is set to 1.

If transmit data has not been written to the QSPI_nTXD register after the last clock is output from the QSPI_CLKn pin, the clock output halts and the QSPI_nINTF.TENDIF bit is set to 1. At the same time QSPI issues an end-of-transmission interrupt request if the QSPI_nINTE.TENDIE bit = 1.

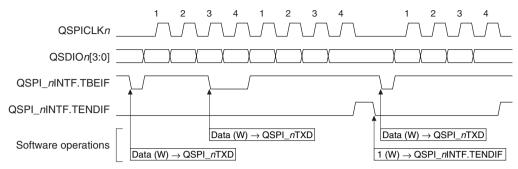


Figure 15.5.4.1 Example of Data Sending Operations in Master Mode (QSPI_nMOD.CHDL[3:0] bits = QSPI_nMOD.CHLN[3:0] bits = 0x3)

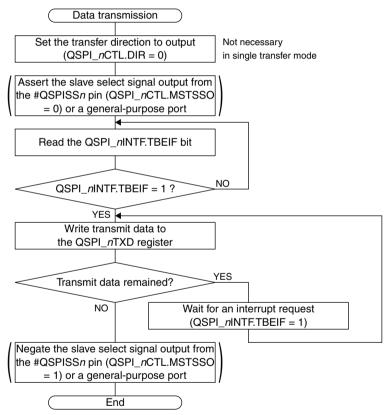


Figure 15.5.4.2 Data Transmission Flowchart in Master Mode

Data transmission using DMA

By setting the QSPI_nTBEDMAEN.TBEDMAENx bit to 1 (DMA transfer request enabled), a DMA transfer request is sent to the DMA controller and transmit data is transferred from the specified memory to the QSPI_nTXD register via DMA Ch.x when the QSPI_nINTF.TBEIF bit is set to 1 (transmit buffer empty).

This automates the procedure from Step 3 to Step 6 described above.

The transfer source/destination and control data must be set for the DMA controller and the relevant DMA channel must be enabled to start a DMA transfer in advance so that transmit data will be transferred to the QSPI_nTXD register. For more information on DMA, refer to the "DMA Controller" chapter.

		in a comigaration Example (i.e. i.e bit bata manomicolon)					
	Item	Setting example					
End pointer	Transfer source	Memory address in which the last transmit data is stored					
	Transfer destination	QSPI_nTXD register address					
Control data	dst_inc	0x3 (no increment)					
	dst_size	0x1 (haflword)					
	src_inc	0x1 (+2)					
	src_size	0x1 (halfword)					
	R_power	0x0 (arbitrated for every transfer)					
	n_minus_1	Number of transfer data					
	cycle_ctrl	0x1 (basic transfer)					

Table 15.5.4.1 DMA Data Structure Configuration Example (for 16-bit Data Transmission)

15.5.5 Data Reception in Register Access Master Mode

A data receiving procedure and operations in register access master mode are shown below. Figures 15.5.5.1 and 15.5.5.2 show a timing chart and flowcharts, respectively.

Data receiving procedure

- 1. Set the QSPI_nCTL.DIR bit to 1 when QSPI Ch.n is set to dual or quad transfer mode. (This setting is not necessary in single transfer mode.)
- 2. Assert the slave select signal for the external slave device to be accessed by controlling the QSPI_nCTL. MSTSSO bit or the general-purpose output port used for an extra slave select signal output (if necessary).
- 3. Check to see if the QSPI_nINTF.TBEIF bit is set to 1 (transmit buffer empty).
- 4. Write dummy data (or transmit data) to the QSPI_nTXD register.
- 5. Wait for a transmit buffer empty interrupt (QSPI_nINTF.TBEIF bit = 1).
- 6. Write dummy data (or transmit data) to the QSPI_nTXD register.
- 7. Wait for a receive buffer full interrupt (QSPI_nINTF.RBFIF bit = 1).
- 8. Read the received data from the QSPI_nRXD register.
- 9. Repeat Steps 6 to 8 until the end of data reception.
- 10. Negate the slave select signal that has been asserted in Step 2 by controlling the QSPI_nCTL.MSTSSO bit or the general-purpose output port (if necessary).

Note: To perform continuous data reception without stopping QSPICLK*n*, Steps 8 and 6 operations must be completed within the QSPICLK*n* cycles equivalent to "Data bit length - 1" after Step 7.

Data receiving operations

In single transfer mode (QSPI_nMOD.TMOD[1:0] bits = 0), QSPI Ch.n operates similar to legacy SPI devices. The data receiving operation starts simultaneously with a data sending operation when transmit data (may be dummy data if data transmission is not required) is written to the QSPI_nTXD register. Transmit data are output from the QSDIOn0 pin and receive data are input from the QSDIOn1 pin.

In dual or quad transfer mode (QSPI_nMOD.TMOD[1:0] bits = 1 or 2), transmit data are not sent at data reception. Writing dummy data to the QSPI_nTXD register triggers the QSPI Ch.n to start supplying the data transfer clock from the QSPICLKn pin to the slave device.

The QSPICLK*n* pin outputs the number of clocks specified by the QSPI_*n*MOD.CHLN[3:0] bits. The receive data bits input from the QSDIO*n* pins, according to the transfer mode specified by the QSPI_*n*MOD. TMOD[1:0] bits, are shifted into the shift register in sync with these clocks.

When the last clock is output from the QSPICLKn pin and receive data bits are all shifted into the shift register, the received data is transferred to the receive data buffer and the QSPI_nINTF.RBFIF bit is set to 1. At the same time QSPI Ch.n issues a receive buffer full interrupt request if the QSPI_nINTE.RBFIE bit = 1. After that, the received data in the receive data buffer can be read through the QSPI_nRXD register.

Note: If data of the number of the bits specified by the QSPI_nMOD.CHLN[3:0] bits and QSPI_nMOD. TMOD[1:0] bits is received when the QSPI_nINTF.RBFIF bit is set to 1, the QSPI_nRXD register is overwritten with the newly received data and the previously received data is lost. In this case, the QSPI_nINTF.OEIF bit is set.

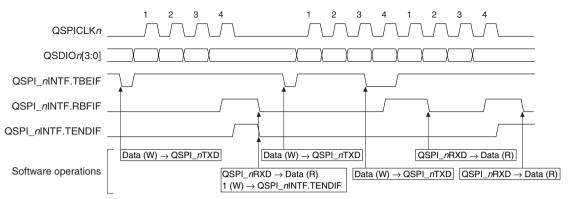


Figure 15.5.5.1 Example of Data Receiving Operations in Register Access Master Mode (QSPI nMOD.CHDL[3:0] bits = QSPI nMOD.CHLN[3:0] bits = 0x3)

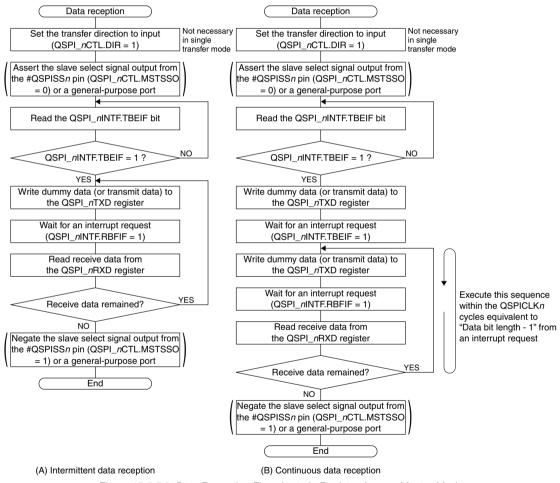


Figure 15.5.5.2 Data Reception Flowcharts in Register Access Master Mode

Data reception using DMA

For data reception, two DMA controller channels should be used to write dummy data to the QSPI_nTXD register as a reception start trigger and to read the received data from the QSPI_nRXD register.

By setting the QSPI_nTBEDMAEN.TBEDMAENx1 bit to 1 (DMA transfer request enabled), a DMA transfer request is sent to the DMA controller and dummy data is transferred from the specified memory to the QSPI_nTXD register via DMA Ch.x1 when the QSPI_nINTF.TBEIF bit is set to 1 (transmit buffer empty).

By setting the QSPI_nRBFDMAEN.RBFDMAENx2 bit to 1 (DMA transfer request enabled), a DMA transfer request is sent to the DMA controller and the received data is transferred from the QSPI_nRXD register to the specified memory via DMA Ch.x2 when the QSPI_nINTF.RBFIF bit is set to 1 (receive buffer full).

This automates the procedure from Step 3 to Step 9 described above.

The transfer source/destination and control data must be set for the DMA controller and the relevant DMA channel must be enabled to start a DMA transfer in advance. For more information on DMA, refer to the "DMA Controller" chapter.

Table 15.5.5.1 DMA Data Structure Configuration Example (for Writing 16-bit Dummy Transmit Data)

	Item	Setting example			
End pointer	Transfer source	Memory address in which dummy data is stored			
	Transfer destination	QSPI_nTXD register address			
Control data	dst_inc	0x3 (no increment)			
	dst_size	0x1 (haflword)			
	src_inc	0x3 (no increment)			
	src_size	0x1 (halfword)			
R_power 0x0		0x0 (arbitrated for every transfer)			
	n_minus_1	Number of transfer data			
	cycle_ctrl	0x1 (basic transfer)			

Table 15.5.5.2 DMA Data Structure Configuration Example (for 16-bit Data Reception)

	Item	Setting example
End pointer	Transfer source	QSPI_nRXD register address
	Transfer destination	Memory address to which the last received data is stored
Control data	dst_inc	0x1 (+2)
	dst_size	0x1 (haflword)
	src_inc	0x3 (no increment)
	src_size	0x1 (halfword)
	R_power	0x0 (arbitrated for every transfer)
	n_minus_1	Number of transfer data
	cycle_ctrl	0x1 (basic transfer)

The following shows an example of the control procedure including the DMA controller operations:

- Configure the primary data structure for the DMA channel (Ch.x) used for writing dummy bytes to the QSPI nTXD register as shown in Table 15.5.5.1.
- Configure the primary data structure for the DMA channel (Ch.y) used for reading data from the QSPI_ nRXD register as shown in Table 15.5.5.2.
- 3. Enable both the DMA channels using the DMA controller register.
- 4. Increase the priority of the DMA channel used for reading data using the DMA controller register.
- 5. Clear the channel request masks for both the DMA channels using the DMA controller register.
- 6. Clear the DMA transfer completion interrupt flags using the DMA controller register.
- Enable only the DMA transfer completion interrupt of the DMA channel used for reading using the DMA controller register.
- 8. Clear pending DMA interrupts in the CPU.
- 9. Enable pending DMA interrupts in the CPU.
- 10. Enable the QSPI to issue DMA transfer requests to both the DMA channels using the QSPI_nTBEDMAEN. TBEDMAENx and QSPI_nRBFDMAEN.RBFDMAENy bits.
- 11. Assert the slave select signal by controlling the QSPI_nCTL.MSTSSO bit, or the general-purpose output port used for an extra slave select signal output (if necessary).
- 12. Issue a software DMA transfer request to the DMA channel used for writing dummy bytes by setting the DMA controller register. This operation is required to read the first data and to set the receive buffer full status flag. Once the receive buffer full status flag is set, a hardware DMA request is generated, and the DMA controller transfers data from the QSPI_nRXD register and then writes another dummy byte to the QSPI nTXD register, allowing the QSPI to read the next data.
- 13. Wait for a DMA interrupt.

- 14. Disable the DMA requests to be sent to both the DMA channels using the QSPI_nTBEDMAEN.TBED-MAENx and QSPI_nRBFDMAEN.RBFDMAENy bits.
- 15. Set the channel request masks for both the DMA channels using the DMA controller register.
- 16. Disable both the DMA channels using the DMA controller register.
- 17. Negate the slave select signal by controlling the QSPI_nCTL.MSTSSO bit or the general-purpose output port (if necessary).

15.5.6 Data Reception in Memory Mapped Access Mode

A data receiving procedure, and 32-bit and 8/16-bit received data read operations in memory mapped access mode are shown below. Figures 15.5.6.1 to 15.5.6.7 show their timing charts and a flowchart.

Data receiving procedure

QSPI Flash memories of different manufacturers have a different XIP operation mode setup procedure. The procedure described below assumes that the external Flash memory has already been placed into XIP operation mode.

- Send a read command that supports XIP mode to the external Flash memory.
 For the sending procedure, see Steps 1 to 5 of the data sending procedure described in Section 15.5.4, "Data Transmission in Master Mode." The slave select signal that has been asserted should be left unchanged.
- 2. Set the QSPI_nMADRH.RMADR[31:20] bits. (Remap external Flash memory)
- 3. Write 1 to the QSPI_nMMACFG2.MMAEN bit. (Enable memory mapped access mode)
- Read the memory mapped access area for external Flash memory with an 8, 16, or 32-bit memory read instruction.
 - This operation directly reads data within the 1M-byte external Flash memory area remapped to the memory mapped access area for external Flash memory at Step 2.
- Repeat Step 4 as needed.
 When reading an address outside the remapped area, start from Step 2 again after setting the QSPI_nM-MACFG2.MMAEN bit to 0 once.

Data receiving operations (32-bit read)

In memory mapped access mode, the internal state machine detects the address in the memory mapped access area from which data is read. If it is the first read operation after the QSPI has entered memory mapped access mode, the state machine generates an address cycle and a dummy cycle (including the XIP activation confirmation bit(s)). At the same time, it pulls the HREADY signal on the internal system bus down to low.

The address cycle can be configured for 24 or 32-bit addresses and it consists of two transfer cycles. The state machine determines actual Flash memory address from the memory mapped access area start address, the read address in that area, and the external Flash memory remapping start address set using the QSPI_nRMADRH[31:20] bits. The first transfer cycle is an 8-bit transfer that sends the high-order 8 bits of the address (when 24-bit address cycle is configured) or a 16-bit transfer that sends the high-order 16 bits of the address (when 32-bit address cycle is configured). The second cycle is fixed at 16-bit transfer that sends the low-order 16 bits of the address.

A dummy cycle follows. The XIP activation confirmation byte set in the QSPI_nMB.XIPACT[7:0] bits is sent at the beginning of the cycle.

Then, the state machine starts fetching data from the external Flash memory. Once 32-bit data has been fetched into the internal FIFO, the FIFO read level is incremented (FIFO data ready). At this time, the HREADY signal reverts to high and the data fetched into the FIFO is sent to the internal system bus. The state machine prefetches two more 32-bit data from the continuous address and stores it into the FIFO.

If the address in the memory mapped access area that is continuous to the previous read address is read when the FIFO contains the prefetched data (FIFO data ready status), the prefetched data is sent to the internal system bus with the HREADY signal held high (zero-wait read).

If an address in the memory mapped access area that is not continuous to the previous read address is read, the HREADY signal is pulled down to low immediately and the FIFO read level is cleared to 0 (empty status). The #QSPISSn signal is negated once for the period set in the QSPI_nMMACFG1.TCSH[3:0] bits and then asserted again. After that a new address cycle, dummy cycle, and data cycle are executed.

The beginning and the end of each address, dummy, or data cycle take a couple of HCLK clocks for handshaking.

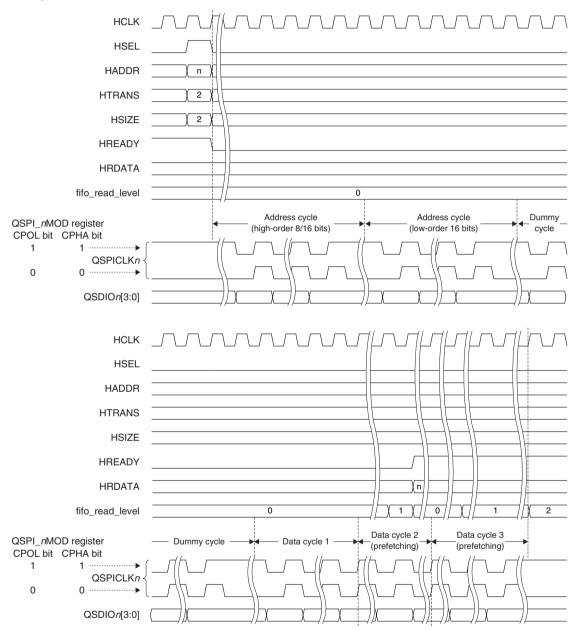


Figure 15.5.6.1 Data Receiving Operation in Memory Mapped Access Mode - First 32-bit Read

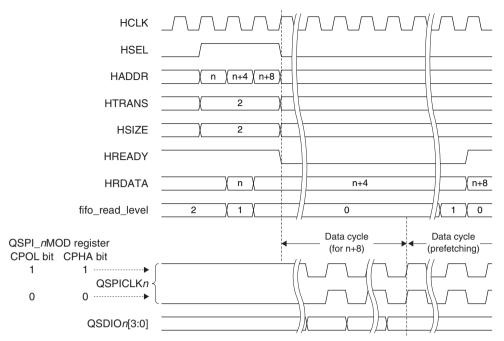


Figure 15.5.6.2 Data Receiving Operation in Memory Mapped Access Mode - 32-bit Sequential Read

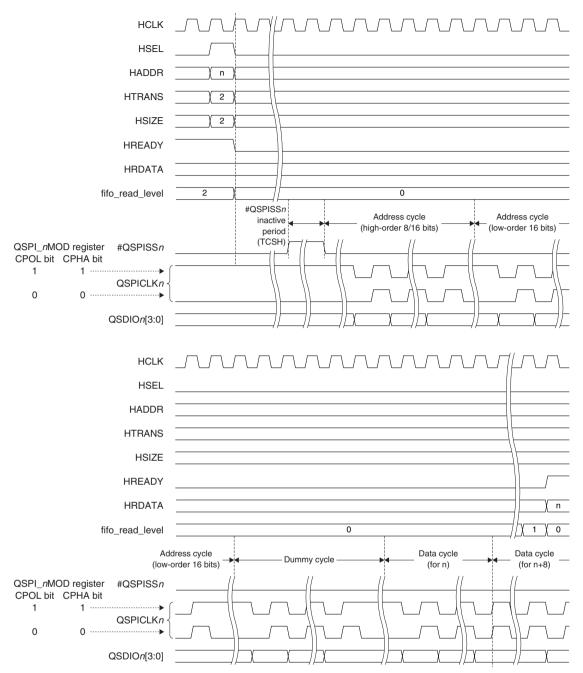


Figure 15.5.6.3 Data Receiving Operation in Memory Mapped Access Mode - 32-bit Non-Sequential Read

Data receiving operations (8/16-bit read)

The 8 and 16-bit read operations are the same as the 32-bit read operation except that data are not prefetched into the FIFO.

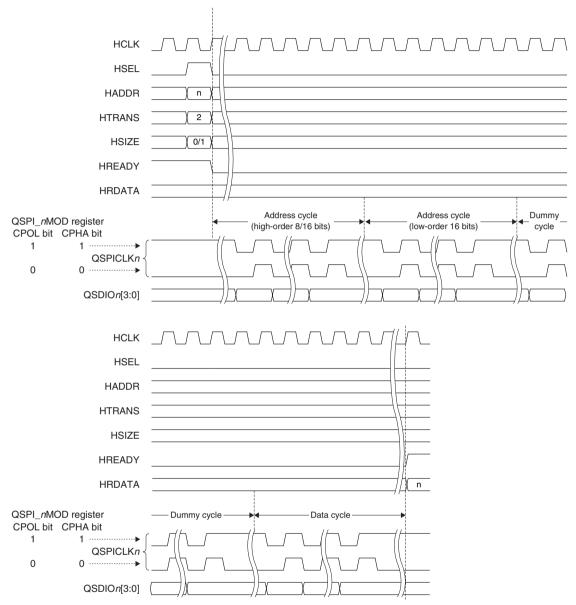


Figure 15.5.6.4 Data Receiving Operation in Memory Mapped Access Mode - First 8/16-bit Read

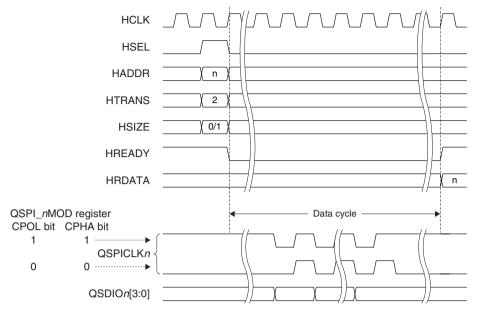


Figure 15.5.6.5 Data Receiving Operation in Memory Mapped Access Mode - 8/16-bit Sequential Read

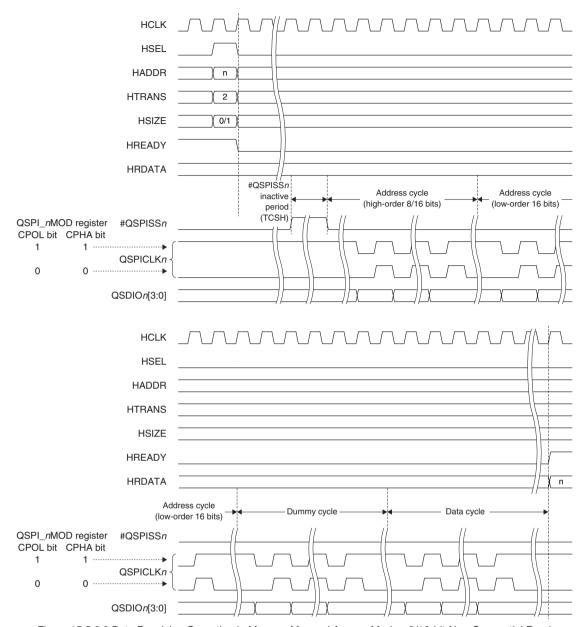


Figure 15.5.6.6 Data Receiving Operation in Memory Mapped Access Mode - 8/16-bit Non-Sequential Read

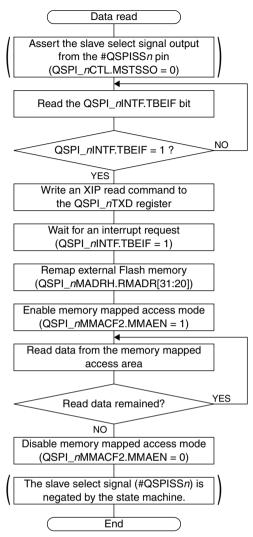


Figure 15.5.6.7 Data Reception Flowchart in Memory Mapped Access Mode

Data reception using DMA

In memory mapped access mode, DMA transfer from the external Flash memory to the internal memory is allowed only for the 32-bit sequential read using the internal FIFO. A non-sequential read and 8/16-bit reads cannot issue a DMA transfer request as they cannot use the FIFO.

By setting the QSPI_nFRLDMAEN.FRLDMAENx bit to 1 (DMA transfer request enabled), a DMA transfer request is sent to the DMA controller and the external Flash memory data is transferred to the specified internal memory via DMA Ch.x when the FIFO read level is incremented (FIFO data ready flag is set). This function allows high-speed data block transfer as it does not need to execute read commands and uses the data pre-fetched into the FIFO.

Note, however, that the first data read must be performed via software or a software triggered DMA.

The transfer source/destination and control data must be set for the DMA controller and the relevant DMA channel must be enabled to start a DMA transfer in advance. For more information on DMA, refer to the "DMA Controller" chapter.

Item Setting example End pointer Transfer source External Flash memory transfer start address Transfer destination Memory area start address from which the read data are stored Control data dst inc 0x2(+4)0x2 (word) dst_size src inc 0x2 (+4) 0x2 (word) src size R power 0x0 (arbitrated for every transfer) n minus 1 Number of receive data cycle ctrl 0x1 (basic transfer)

Table 15.5.6.1 DMA Data Structure Configuration Example (for 32-bit Sequential Read in Memory Mapped Access Mode)

The following shows an example of the control procedure including the DMA controller operations:

- 1. Configure the primary data structure for the DMA channel (Ch.x) as shown in Table 15.5.6.1.
- 2. Enable the DMA channel using the DMA controller register.
- 3. Clear the channel request mask for the DMA channel using the DMA controller register.
- 4. Clear the DMA transfer completion interrupt flag using the DMA controller register.
- 5. Enable the DMA transfer completion interrupt of the DMA channel using the DMA controller register.
- 6. Clear pending DMA interrupts in the CPU.
- 7. Enable pending DMA interrupts in the CPU.
- 8. Enable the QSPI to issue DMA transfer requests to the DMA channel using the QSPI_nFRLDMAEN. FRLDMAENx bit.
- 9. Issue a software DMA transfer request to the DMA channel by setting the DMA controller register. This operation is required to kickstart the first data fetching.
- 10. Wait for a DMA interrupt.
- 11. Disable DMA requests to be sent to the DMA channel using the QSPI nFRLDMAEN.FRLDMAENx bit.
- 12. Set the channel request masks for the DMA channel using the DMA controller register.
- 13. Disable the DMA channels using the DMA controller register.

15.5.7 Terminating Memory Mapped Access Operations

A procedure to terminate memory mapped access operations is shown below.

- Write 0 to the QSPI_nMMACFG2.MMAEN bit. (Disable memory mapped access mode)
 The slave select signal is negated. Note that the slave signal control via software is disabled by the state machine in memory mapped access mode.
- 2. Wait until the QSPI_nINTF.MMABSY bit is set to 0 (memory mapped access operation not busy).

15.5.8 Terminating Data Transfer in Master Mode

A procedure to terminate data transfer in master mode is shown below.

- 1. Wait for an end-of-transmission interrupt (QSPI_nINTF.TENDIF bit = 1).
- 2. Set the QSPI_nCTL.MODEN bit to 0 to disable the QSPI Ch.n operations.
- 3. Stop the 16-bit timer to disable the clock supply to QSPI Ch.n.

15.5.9 Data Transfer in Slave Mode

A data sending/receiving procedure and operations in slave mode are shown below. Figures 15.5.9.1 and 15.5.9.2 show a timing chart and flowcharts, respectively.

Data sending procedure

- 1. Check to see if the OSPI *n*INTF.TBEIF bit is set to 1 (transmit buffer empty).
- 2. Write transmit data to the OSPI nTXD register.
- 3. Wait for a transmit buffer empty interrupt (OSPI nINTF.TBEIF bit = 1).
- 4. Repeat Steps 2 and 3 until the end of transmit data.

Note: Transmit data must be written to the QSPI nTXD register after the QSPI nINTF.TBEIF bit is set to 1 by the time the sending QSPI nTXD register data written is completed. If no transmit data is written during this period, the data bits input from the QSDIOn pins are shifted and output from the QSDIOn pins without being modified.

Data receiving procedure

- 1. Wait for a receive buffer full interrupt (QSPI_nINTF.RBFIF bit = 1).
- 2. Read the received data from the QSPI_nRXD register.
- 3. Repeat Steps 1 and 2 until the end of data reception.

Data transfer operations

The following shows the slave mode operations different from master mode:

- Slave mode operates with the OSPI clock supplied from the external OSPI master to the OSPICLKn pin. The data transfer rate is determined by the OSPICLKn frequency. It is not necessary to control the 16-bit timer.
- QSPI can operate as a slave device only when the slave select signal input from the external QSPI master to the #QSPISSn pin is set to the active (low) level. If #QSPISSn = high, the software transfer control, the QSPICLKn pin input, and the QSDIOn pins input are all ineffective. If the #QSPISSn signal goes high during data transfer, the transfer bit counter is cleared and data in the shift register is discarded.
- Slave mode starts data transfer when QSPICLKn is input from the external QSPI master after the #QSPISSn signal is asserted. Writing transmit data is not a trigger to start data transfer. Therefore, it is not necessary to write dummy data to the transmit data buffer when performing data reception only.
- Data transmission/reception can be performed even in SLEEP mode, it makes it possible to wake the CPU up using a QSPI interrupt.

Other operations are the same as master mode.

- Notes: If data of the number of cycles specified by the QSPI_nMOD.CHLN[3:0] bits is received when the QSPI nINTF.RBFIF bit is set to 1, the QSPI nRXD register is overwritten with the newly received data and the previously received data is lost. In this case, the QSPI nINTF.OEIF bit is set.
 - When the clock for the first bit is input from the QSPICLKn pin, QSPI starts sending the data currently stored in the shift register even if the QSPI nINTF.TBEIF bit is set to 1.

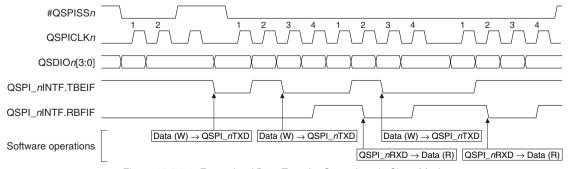


Figure 15.5.9.1 Example of Data Transfer Operations in Slave Mode $(QSPI_nMOD.CHDL[3:0] bits = QSPI_nMOD.CHLN[3:0] bits = 0x3)$

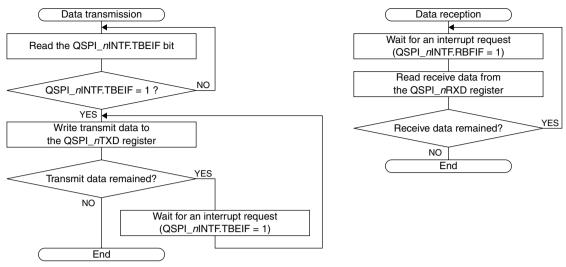


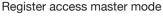
Figure 15.5.9.2 Data Transfer Flowcharts in Slave Mode

15.5.10 Terminating Data Transfer in Slave Mode

A procedure to terminate data transfer in slave mode is shown below.

- 1. Wait for an end-of-transmission interrupt (QSPI_nINTF.TENDIF bit = 1). Or determine end of transfer via the received data.
- 2. Set the QSPI_nCTL.MODEN bit to 0 to disable the QSPI Ch.n operations.

15.6 Interrupts


The QSPI has a function to generate the interrupts shown in Table 15.6.1.

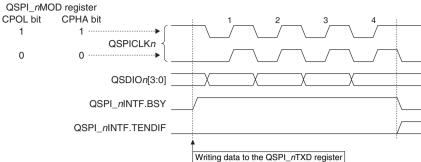
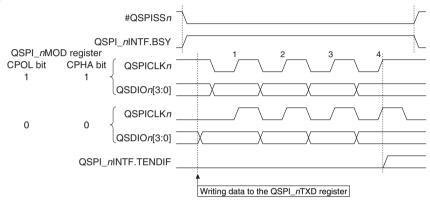

Interrupt Interrupt flag Set condition Clear condition End of transmission QSPI nINTF.TENDIF When the QSPI nINTF.TBEIF bit = 1 after data Writing 1 of the specified bit length (defined by the QSPI_ nMOD.CHLN[3:0] bits) has been sent Receive buffer full QSPI nINTF.RBFIF When data of the specified bit length is received Reading of the and the received data is transferred from the shift QSPI_nRXD register to the received data buffer register Transmit buffer empty QSPI_nINTF.TBEIF When transmit data written to the transmit data Writing to the buffer is transferred to the shift register QSPI_nTXD register Overrun error QSPI nINTF.OEIF When the receive data buffer is full (when the re-|Writing 1 ceived data has not been read) at the point that receiving data to the shift register has completed

Table 15.6.1 QSPI Interrupt Function


The QSPI provides interrupt enable bits corresponding to each interrupt flag. An interrupt request is sent to the CPU only when the interrupt flag, of which interrupt has been enabled by the interrupt enable bit, is set. For more information on interrupt control, refer to the "Interrupt" chapter.

The QSPI_nINTF register also contains the BSY and MMABSY bits that indicate the QSPI operating status in register access and memory mapped access modes, respectively. Figure 15.6.1 shows the QSPI_nINTF.BSY, QSPI_nINTF.MMABSY and QSPI_nINTF.TENDIF bit set timings.

Slave mode

Memory mapped access mode



Figure 15.6.1 QSPI_nINTF.BSY, QSPI_nINTF.MMABSY, and QSPI_nINTF.TENDIF Bit Set Timings (when QSPI_nMOD.CHDL[3:0] bits = QSPI_nMOD.CHLN[3:0] bits = 0x3)

15.7 DMA Transfer Requests

The QSPI has a function to generate DMA transfer requests from the causes shown in Table 15.7.1.

Table 15.7.1 DMA Transfer Request Causes of QSPI

Cause to request DMA transfer	DMA transfer request flag	Set condition	Clear condition
	Receive buffer full flag	When data of the specified bit length is re-	Reading of the QSPI_
	(QSPI_nINTF.RBFIF)	ceived and the received data is transferred from	nRXD register
	, , , , , , , , , , , , , , , , , , ,	the shift register to the received data buffer	-
Transmit buffer	Transmit buffer empty flag	When transmit data written to the transmit data	Writing to the QSPI_
empty			nTXD register
Memory mapped	Memory mapped access	When a 32-bit data is prefetched into the FIFO	When the FIFO read
access FIFO data	FIFO data ready flag	in memory mapped access mode	level is cleared to 0
ready	(internal signal)		

The QSPI provides DMA transfer request enable bits corresponding to each DMA transfer request flag shown above for the number of DMA channels. A DMA transfer request is sent to the pertinent channel of the DMA controller only when the DMA transfer request flag, of which DMA transfer has been enabled by the DMA transfer request enable bit, is set. The receive buffer full and transmit buffer empty DMA transfer request flags also serve as interrupt flags, therefore, both the DMA transfer request and the interrupt cannot be enabled at the same time. After a DMA transfer has completed, disable the DMA transfer to prevent unintended DMA transfer requests from being issued. For more information on the DMA control, refer to the "DMA Controller" chapter.

15.8 Control Registers

QSPI Ch.n Mode Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
QSPI_nMOD	15–12	CHDL[3:0]	0x7	H0	R/W	_
	11–8	CHLN[3:0]	0x7	H0	R/W	
	7–6	TMOD[1:0]	0x0	H0	R/W	
	5	PUEN	0	H0	R/W	
	4	NOCLKDIV	0	H0	R/W	
	3	LSBFST	0	H0	R/W	
	2	CPHA	0	H0	R/W	
	1	CPOL	0	H0	R/W	
	0	MST	0	H0	R/W	

Bits 15-12 CHDL[3:0]

These bits set the number of clocks to drive the serial output data lines.

QSPI nMOD.CHDL[3:0] bits Data line drive length 0xf 16 clocks 0xe 15 clocks 0xd 14 clocks 0xc 13 clocks 0xb 12 clocks 0xa 11 clocks 10 clocks 0x9 0x8 9 clocks 8 clocks 0x7 7 clocks 0x6 0x5 6 clocks 0x4 5 clocks 0x3 4 clocks 0x2 3 clocks 0x1 2 clocks 1 clock

Table 15.8.1 Data Line Drive Length Settings

These bits must be set to a value smaller than or equal to the QSPI_nMOD.CHLN[3:0] bit setting.

Note: When using the QSPI in slave mode, the QSPI_nMOD.CHDL[3:0] bits should be set to the same value as the QSPI_nMOD.CHLN[3:0] bits.

Bits 11-8 CHLN[3:0]

These bits set the number of clocks for data transfer.

Table 15.8.2 Setting of Number of Data Transfer Clocks

QSPI_nMOD.CHLN[3:0] bits	Number of data transfer clocks				
0xf	16 clocks				
0xe	15 clocks				
0xd	14 clocks				
0xc	13 clocks				
0xb	12 clocks				
0xa	11 clocks				
0x9	10 clocks				
0x8	9 clocks				
0x7	8 clocks				
0x6	7 clocks				
0x5	6 clocks				
0x4	5 clocks				
0x3	4 clocks				
0x2	3 clocks				
0x1	2 clocks				
0x0	Setting prohibited				

Bits 7-6 TMOD[1:0]

These bits select a transfer mode.

Table 15.8.3 Transfer Mode

QSPI_nMOD. TMOD[1:0] bits	Transfer mode				
0x3	Reserved				
0x2	Quad transfer mode The QSDIOn[3:0] pins are configured as input or output pins according to the QSPI_nMOD.DIR bit setting.				
0x1	Dual transfer mode The QSDIOn[1:0] pins are configured as input or output pins according to the QSPI_nMOD.DIR bit setting. The QSDIOn[3:2] pins are not used.				
0x0	Single transfer mode The QSDIOn0 and QSDIOn1 pins are configured as an output pin and an input pin, respectively. The QSDIOn[3:2] pins are not used.				

Bit 5 PUEN

This bit enables pull-up/down of the pins that are configured as an input or are not used.

1 (R/W): Enable pull-up/down 0 (R/W): Disable pull-up/down

For more information, refer to "Input Pin Pull-Up/Pull-Down Function."

Bit 4 NOCLKDIV

This bit selects QSPICLK*n* in master mode. This setting is ineffective in slave mode.

1 (R/W): QSPICLK*n* frequency = CLK_QSPI*n* frequency (= 16-bit timer operating clock frequency)

0 (R/W): QSPICLK*n* frequency = 16-bit timer output frequency / 2

For more information, refer to "QSPI Operating Clock."

Bit 3 LSBFST

This bit configures the data format (input/output permutation).

1 (R/W): LSB first 0 (R/W): MSB first

Bit 2 CPHA Bit 1 CPOL

These bits set the QSPI clock phase and polarity. For more information, refer to "QSPI Clock (QSPI-CLK*n*) Phase and Polarity."

Bit 0 MST

This bit sets the QSPI operating mode (master mode or slave mode).

1 (R/W): Master mode 0 (R/W): Slave mode

Note: The QSPI nMOD register settings can be altered only when the QSPI nCTL.MODEN bit = 0.

QSPI Ch.n Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
QSPI_nCTL	15–8	_	0x00	-	R	_
	7–4	-	0x0	-	R	
	3	DIR	0	H0	R/W	
	2	MSTSSO	1	H0	R/W	
	1	SFTRST	0	H0	R/W	
	0	MODEN	0	H0	R/W	

Bits 15-4 Reserved

Bit 3 DIR

This bit sets the data transfer direction on the QSDIOn[3:0] lines when the QSPI_nMOD.TMOD[1:0] bits are set to 1 or 2.

1 (R/W): Input 0 (R/W): Output

Bit 2 MSTSSO

This bit controls and indicates the #QSPISSn pin status.

1 (R/W): #QSPISSn = high (The device is deselected.) 0 (R/W): #QSPISSn = low (The device is selected.)

In memory mapped access mode, the #QSPISSn pin is automatically controlled by the internal state machine. Reading this bit allows monitoring of the current #QSPISSn pin output status at any time.

Bit 1 SFTRST

This bit issues software reset to OSPI.

1 (W): Issue software reset

0 (W): Ineffective

1 (R): Software reset is executing.

0 (R): Software reset has finished. (During normal operation)

Setting this bit resets the QSPI shift register and transfer bit counter. This bit is automatically cleared after the reset processing has finished.

Bit 0 MODEN

This bit enables the QSPI operations.

1 (R/W): Enable QSPI operations (The operating clock is supplied.) 0 (R/W): Disable QSPI operations (The operating clock is stopped.)

Note: If the QSPI_nCTL.MODEN bit is altered from 1 to 0 while sending/receiving data, the data being sent/received cannot be guaranteed. When setting the QSPI_nCTL.MODEN bit to 1 again after that, be sure to write 1 to the QSPI_nCTL.SFTRST bit as well.

QSPI Ch.n Transmit Data Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
QSPI_nTXD	15–0	TXD[15:0]	0x0000	H0	R/W	_

Bits 15-0 TXD[15:0]

Data can be written to the transmit data buffer through these bits. Writing to these bits starts data transfer. Transmit data can be written when the QSPI_nINTF.TBEIF bit = 1 regardless of whether data is being output from the QSDIOn pins or not.

Note that the upper data bits that exceed the data bit length configured by the QSPI_nMOD. CHLN[3:0] bits will not be output from the QSDIOn pin.

Note: Be sure to avoid writing to the QSPI_nTXD register when the QSPI_nINTF.TBEIF bit = 0. Otherwise, transfer data cannot be guaranteed.

QSPI Ch.n Receive Data Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
QSPI_nRXD	15–0	RXD[15:0]	0x0000	H0	R	_

Bits 15-0 RXD[15:0]

The receive data buffer can be read through these bits. Received data can be read when the QSPI $_n$ INTF.RBFIF bit = 1 regardless of whether data is being input from the QSDIO $_n$ pin or not.

Note that the upper bits that exceed the data bit length configured by the QSPI_nMOD.CHLN[3:0] bits become 0.

QSPI Ch.n Interrupt Flag Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
QSPI_nINTF	15–8	_	0x00	_	R	_
	7	BSY	0	HO	R	
	6	MMABSY	0	HO	R	
	5–4	_	0x0	_	R	
	3	OEIF	0	H0/S0	R/W	Cleared by writing 1.
	2	TENDIF	0	H0/S0	R/W	
	1	RBFIF	0	H0/S0	R	Cleared by reading the
						QSPI_nRXD register.
	0	TBEIF	1	H0/S0	R	Cleared by writing to the
						QSPI_nTXD register.

Bits 15-8 Reserved

Bit 7 BSY

This bit indicates the QSPI operating status.

1 (R): Transmit/receive busy

0 (R): Idle

Bit 6 MMABSY

This bit indicates the QSPI memory mapped access operating status.

1 (R): Memory mapped access state machine busy

0 (R): Idle

Bits 5-4 Reserved

Bit 3 OEIF

Bit 2 TENDIF

TBEIF

Bit 1 RBFIF

Bit 0

These bits indicate the QSPI interrupt cause occurrence status.

1 (R): Cause of interrupt occurred 0 (R): No cause of interrupt occurred 1 (W): Clear flag (OEIF, TENDIF)

0 (W): Ineffective

The following shows the correspondence between the bit and interrupt:

QSPI_nINTF.OEIF bit: Overrun error interrupt
QSPI_nINTF.TENDIF bit: End-of-transmission interrupt
QSPI_nINTF.RBFIF bit: Receive buffer full interrupt
QSPI_nINTF.TBEIF bit: Transmit buffer empty interrupt

QSPI Ch.n Interrupt Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
QSPI_nINTE	15–8	_	0x00	-	R	_
	7–4	_	0x0	_	R	
	3	OEIE	0	H0	R/W	
	2	TENDIE	0	H0	R/W	
	1	RBFIE	0	H0	R/W	
	0	TBEIE	0	H0	R/W	

Bits 15-4 Reserved

Bit 3 OEIE
Bit 2 TENDIE
Bit 1 RBFIE
Bit 0 TBEIE

These bits enable QSPI interrupts. 1 (R/W): Enable interrupts 0 (R/W): Disable interrupts

The following shows the correspondence between the bit and interrupt:

QSPI_nINTE.OEIE bit: Overrun error interrupt
QSPI_nINTE.TENDIE bit: End-of-transmission interrupt
QSPI_nINTE.RBFIE bit: Receive buffer full interrupt
QSPI_nINTE.TBEIE bit: Transmit buffer empty interrupt

QSPI Ch.n Transmit Buffer Empty DMA Request Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
QSPI_nTBEDMAEN	15–0	TBEDMAEN[15:0]	0x0000	H0	R/W	_

Bits 15-0 TBEDMAEN[15:0]

These bits enable the QSPI to issue a DMA transfer request to the corresponding DMA channel (Ch.0–Ch.15) when a transmit buffer empty state has occurred.

1 (R/W): Enable DMA transfer request 0 (R/W): Disable DMA transfer request

Each bit corresponds to a DMA controller channel. The high-order bits for the unimplemented channels are ineffective.

QSPI Ch.n Receive Buffer Full DMA Request Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
QSPI_nRBFDMAEN	15–0	RBFDMAEN[15:0]	0x0000	_	R/W	_

Bits 15-0 RBFDMAEN[15:0]

These bits enable the QSPI to issue a DMA transfer request to the corresponding DMA channel (Ch.0–Ch.15) when a receive buffer full state has occurred.

1 (R/W): Enable DMA transfer request 0 (R/W): Disable DMA transfer request

Each bit corresponds to a DMA controller channel. The high-order bits for the unimplemented channels are ineffective.

QSPI Ch.n FIFO Data Ready DMA Request Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
QSPI_nFRLDMAEN	15–8	FRLDMAEN[15:0]	0x0000	H0	R/W	_

Bits 15-0 FRLDMAEN[15:0]

These bits enable the QSPI to issue a DMA transfer request to the corresponding DMA channel (Ch.0–Ch.15) when data is prefetched into the FIFO (FIFO data ready).

1 (R/W): Enable DMA transfer request 0 (R/W): Disable DMA transfer request

Each bit corresponds to a DMA controller channel. The high-order bits for the unimplemented channels are ineffective.

QSPI Ch.n Memory Mapped Access Configuration Register 1

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
QSPI_nMMACFG1	15–8	_	0x00	-	R	_
	7–4	_	0x0	-	R	
	3–0	TCSH[3:0]	0x0	H0	R/W	

Bits 15-4 Reserved

Bits 3-0 TCSH[3:0]

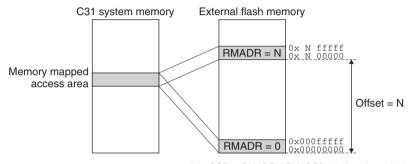
When non-sequential reading from a Flash memory address, which is not continuous to the previous read address, occurs in memory mapped access mode, the #QSPISSn signal is reasserted after negated once. Then the new address is sent to the Flash memory before reading data.

The QSPI_nMMACFG1.TCSH[3:0] bits specify the period to negate the #QSPISSn signal at this time in a number of clocks.

Table 15.8.4 #QSPISSn Inactive Period between Non-Sequential Readings

QSPI_nMMACFG1.TCSH[3:0] bits	#QSPISSn Inactive Period
0xf	16 clocks
0xe	15 clocks
0xd	14 clocks
0xc	13 clocks
0xb	12 clocks
0xa	11 clocks
0x9	10 clocks
0x8	9 clocks
0x7	8 clocks
0x6	7 clocks
0x5	6 clocks
0x4	5 clocks
0x3	4 clocks
0x2	3 clocks
0x1	2 clocks
0x0	1 clock

Note: These bits specify a number of system clocks.


QSPI Ch.n Remapping Start Address High Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
QSPI_nRMADRH	15–4	RMADR[31:20]	0x000	H0	R/W	_
	3-0	_	0x0	_	R	

Bits 15-4 RMADR[31:20]

These bits specify the high-order 12 bits of the external Flash memory area start address (assumed as 32 bits) to be remapped to the system memory area allocated for memory mapped access mode. When the external Flash memory is read using the memory mapped access function, the value specified here is added, as an offset, to the relative address in the memory mapped access area to generate the external Flash memory address to actually be accessed.

Note: Make sure the QSPI_nMMACFG2.MMAEN = 0 when altering the QSPI_nRMADRH. RMADR[31:20] bits.

 $(N = QSPI_nRMADRH.RMADR[31:20]$ setting value)

Figure 15.8.1 External Flash Memory Remapping

Bits 3-0 Reserved

QSPI Ch.n Memory Mapped Access Configuration Register 2

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
QSPI_nMMACFG2	15–12	DUMDL[3:0]	0x7	H0	R/W	_
	11–8	DUMLN[3:0]	0x7	H0	R/W	
	7–6	DATTMOD[1:0]	0x0	H0	R/W	
	5–4	DUMTMOD[1:0]	0x0	H0	R/W	
	3–2	ADRTMOD[1:0]	0x0	H0	R/W	
	1	ADRCYC	0	H0	R/W	
	0	MMAEN	0	H0	R/W	

Bits 15-12 DUMDL[3:0]

These bits set the number of clocks for driving the serial data lines during the dummy cycle output when accessing the external Flash memory in the memory mapped access mode. This setting is required to output the XIP confirmation bit to Micron Flash memories or to output the mode byte to Spansion Flash memories.

Table 15.8.5 Settings of Data Line Drive Length during Dummy Cycle

QSPI_nMMACFG2.DUMDL[3:0] bits	Data line drive length
0xf	16 clocks
0xe	15 clocks
0xd	14 clocks
0xc	13 clocks
0xb	12 clocks
0xa	11 clocks
0x9	10 clocks
0x8	9 clocks
0x7	8 clocks
0x6	7 clocks
0x5	6 clocks
0x4	5 clocks
0x3	4 clocks
0x2	3 clocks
0x1	2 clocks
0x0	1 clock

These bits must be set to a value smaller than or equal to the QSPI_nMMACFG2.DUMLN[3:0] bit setting.

Bits 11-8 DUMLN[3:0]

These bits set the dummy cycle length in a number of clocks when accessing the external Flash memory in the memory mapped access mode.

Table 15.8.6 Dummy Cycle Length Settings

QSPI_nMMACFG2.DUMLN[3:0] bits	Dummy cycle length			
0xf	16 clocks			
0xe	15 clocks			
0xd	14 clocks			
0xc	13 clocks			
0xb	12 clocks			
0xa	11 clocks			
0x9	10 clocks			
0x8	9 clocks			
0x7	8 clocks			
0x6	7 clocks			
0x5	6 clocks			
0x4	5 clocks			
0x3	4 clocks			
0x2	3 clocks			
0x1	2 clocks			
0x0	Setting prohibited			

Bits 7-6 DATTMOD[1:0]

These bits select the transfer mode for the data cycle when accessing the external Flash memory in the memory mapped access mode.

Table 15.8.7 Transfer Mode for Data, Dummy, and Address Cycles

QSPI_nMMACFG2.DATTMOD[1:0] bits						
QSPI_nMMACFG2.DUMTMOD[1:0] bits	Transfer mode					
QSPI_nMMACFG2.ADRTMOD[1:0] bits						
0x3	Reserved					
0x2	Quad transfer mode					
	The QSDIOn[3:0] pins are used.					
0x1	Dual transfer mode					
	The QSDIOn[1:0] pins are used. The QSDIOn[3:2] pins are not used.					
0x0	Single transfer mode					
	The QSDIOn[1:0] pins are used. The QSDIOn[3:2] pins are not used.					

Bits 5-4 DUMTMOD[1:0]

These bits select the transfer mode for the dummy cycle when accessing the external Flash memory in the memory mapped access mode.

Bits 3-2 ADRTMOD[1:0]

These bits select the transfer mode for the address cycle when accessing the external Flash memory in the memory mapped access mode.

Bit 1 ADRCYC

This bit selects the address mode from 24 and 32 bits when accessing the external Flash memory in the memory mapped access mode.

1 (R/W): 32-bit address mode (4-byte address cycle) 0 (R/W): 24-bit address mode (3-byte address cycle)

Bit 0 MMAEN

This bit enables memory mapped access mode for accessing the external Flash memory.

1 (R/W): Enable memory mapped access mode

0 (R/W): Disable memory mapped access mode (register access mode)

When this bit is altered from 1 to 0, the QSPI sends extra address and dummy cycles to the external Flash memory. The address cycle outputs either a three or four-byte address according to the QSPI_nMMACFG2.ADRCYC bit setting, with all address bits set to 1. The dummy cycle is output according to the QSPI_nMMACFG2.DUMLN[3:0] and QSPI_nMMACFG2.DUMDL[3:0] bit settings, with a mode byte for terminating the XIP session of the external Flash memory that has been configured using the QSPI_nMB.XIPEXT[7:0] bits.

Note: Slave mode does not support memory mapped access mode, therefore, setting the QSPI_nMMACFG2.MMAEN bit to 1 does not take effect when the QSPI_nMOD.MST bit = 0.

QSPI Ch.n Mode Byte Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
QSPI_nMB	15–8	XIPACT[7:0]	0x00	H0	R/W	_
	7–0	XIPEXT[7:0]	0x00	H0	R/W	

Bits 15-8 XIPACT[7:0]

These bits configure the mode byte for activating an XIP session of the external Flash memory to be accessed in memory mapped access mode.

Bits 7-0 XIPEXT[7:0]

These bits configure the mode byte for terminating the XIP session of the external Flash memory being accessed in memory mapped access mode.

However, set these bits as follows when the HW processor (HWP) is used:

- Before enabling the HWP, set to the same value as the QSPI_nMB.XIPACT[7:0] bits.
- Before disabling the HWP, set to the mode byte for terminating the XIP session.

Note: In memory mapped access mode, the mode byte is always output from the LSB first. When using a Flash memory that expects the mode byte to be output from the MSB first, write the mode byte to this register in reverse bit order.

16 I²C (I2C)

16.1 Overview

The I2C is a subset of the I2C bus interface. The features of the I2C are listed below.

- Functions as an I²C bus master (single master) or a slave device.
- Supports standard mode (up to 100 kbit/s) and fast mode (up to 400 kbit/s).
- Supports 7-bit and 10-bit address modes.
- Supports clock stretching.
- Includes a baud rate generator for generating the clock in master mode.
- No clock source is required to run the I2C in slave mode, as it can run with the I²C bus signals only.
- Slave mode is capable of being operated in SLEEP mode allowing wake-up by an interrupt when an address
 match is detected.
- Master mode supports automatic bus clear sending function.
- Can generate receive buffer full, transmit buffer empty, and other interrupts.
- Can issue a DMA transfer request when a receive buffer full or a transmit buffer empty occurs.
- The input filter for the SDA and SCL inputs does not comply with the standard for removing noise spikes less than 50 ns.

Figure 16.1.1 shows the I2C configuration.

Table 16.1.1 I2C Channel Configuration of S1C31D41

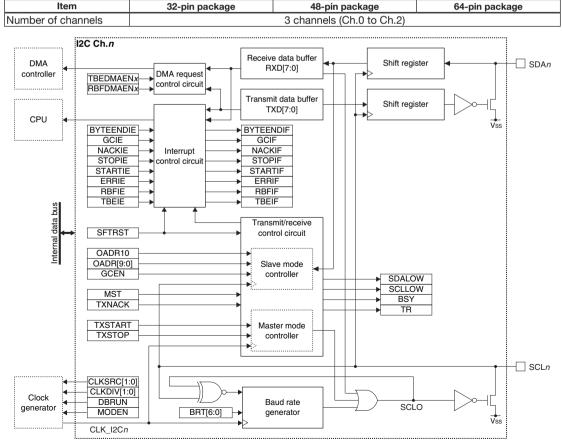


Figure 16.1.1 I2C Configuration

16.2 Input/Output Pins and External Connections

16.2.1 List of Input/Output Pins

Table 16.2.1.1 lists the I2C pins.

Table 16.2.1.1 List of I2C Pins

Pin name	I/O*	Initial status*	Function
SDAn	I/O	I	I ² C bus serial data input/output pin
SCLn	I/O	I	I ² C bus clock input/output pin

^{*} Indicates the status when the pin is configured for the I2C.

If the port is shared with the I2C pin and other functions, the I2C input/output function must be assigned to the port before activating the I2C. For more information, refer to the "I/O Ports" chapter.

16.2.2 External Connections

Figure 16.2.2.1 shows a connection diagram between the I2C in this IC and external I2C devices.

The serial data (SDA) and serial clock (SCL) lines must be pulled up with an external resistor.

When the I2C is set into master mode, one or more slave devices that have a unique address may be connected to the I2C bus. When the I2C is set into slave mode, one or more master and slave devices that have a unique address may be connected to the I2C bus

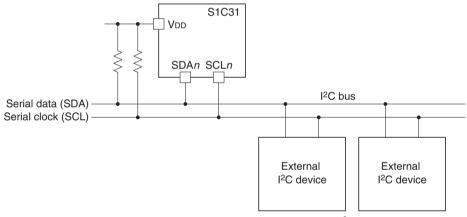


Figure 16.2.2.1 Connections between I2C and External I2C Devices

Notes: • The SDA and SCL lines must be pulled up to a VDD of this IC or lower voltage. However, if the I2C input/output ports are configured with the over voltage tolerant fail-safe type I/O, these lines can be pulled up to a voltage exceeding the VDD of this IC but within the recommended

operating voltage range of this IC.

• The internal pull-up resistors for the I/O ports cannot be used for pulling up SDA and SCL.

When the I2C is set into master mode, no other master device can be connected to the I2C bus.

16.3 Clock Settings

16.3.1 I2C Operating Clock

Master mode operating clock

When using the I2C Ch.n in master mode, the I2C Ch.n operating clock CLK_I2Cn must be supplied to the I2C Ch.n from the clock generator. The CLK_I2Cn supply should be controlled as in the procedure shown below.

- Enable the clock source in the clock generator if it is stopped (refer to "Clock Generator" in the "Power Supply, Reset, and Clocks" chapter).
- 2. Set the following I2C_nCLK register bits:
 - I2C_nCLK.CLKSRC[1:0] bits (Clock source selection)
 - I2C_nCLK.CLKDIV[1:0] bits (Clock division ratio selection = Clock frequency setting)

When using the I2C in master mode during SLEEP mode, the I2C Ch.n operating clock CLK_I2Cn must be configured so that it will keep supplying by writing 0 to the CLGOSC_xxxxSLPC bit for the CLK_I2Cn clock source.

The I2C operating clock should be selected so that the baud rate generator will be configured easily.

Slave mode operating clock

The I2C set to slave mode uses the SCL supplied from the I2C master as its operating clock. The clock setting by the I2C nCLK register is ineffective.

The I2C keeps operating using the clock supplied from the external I²C master even if all the internal clocks halt during SLEEP mode, so the I2C can receive data and can generate receive buffer full interrupts.

16.3.2 Clock Supply During Debugging

In master mode, the CLK_I2Cn supply during debugging should be controlled using the I2C_nCLK.DBRUN bit. The CLK_I2Cn supply to the I2C Ch.n is suspended when the CPU enters debug state if the I2C_nCLK.DBRUN bit = 0. After the CPU returns to normal operation, the CLK_I2Cn supply resumes. Although the I2C Ch.n stops operating when the CLK_I2Cn supply is suspended, the output pin and registers retain the status before debug state was entered. If the I2C_nCLK.DBRUN bit = 1, the CLK_I2Cn supply is not suspended and the I2C Ch.n will keep operating in debug state.

In slave mode, the I2C Ch.n operates with the external I²C master clock input from the SCLn pin regardless of whether the CPU is placed into debug state or normal operation state.

16.3.3 Baud Rate Generator

The I2C includes a baud rate generator to generate the serial clock SCL used in master mode. The I2C set to slave mode does not use the baud rate generator, as it operates with the serial clock input from the SCLn pin.

Setting data transfer rate (for master mode)

The transfer rate is determined by the I2C_nBR.BRT[6:0] bit settings. Use the following equations to calculate the setting values for obtaining the desired transfer rate.

$$bps = \frac{fCLK_12Cn}{(BRT + 3) \times 2}$$
 BRT =
$$\frac{fCLK_12Cn}{bps \times 2} - 3$$
 (Eq. 16.1)

Where

bps: Data transfer rate [bit/s]

fclk_i2Cn: I2C operating clock frequency [Hz]

BRT: I2C_nBR.BRT[6:0] bits setting value (1 to 127)

* The equations above do not include SCL rising/falling time and delay time by clock stretching (see Figure 16.3.3.1).

Note: The I²C bus transfer rate is limited to 100 kbit/s in standard mode or 400 kbit/s in fast mode. Do not set a transfer rate exceeding the limit.

Baud rate generator clock output and operations for supporting clock stretching

Figure 16.3.3.1 shows the clock generated by the baud rate generator and the clock waveform on the I²C bus.

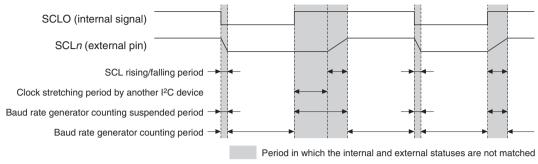


Figure 16.3.3.1 Baud Rate Generator Output Clock and SCLn Output Waveform

The baud rate generator output clock SCLO is compared with the SCLn pin status and the results are returned to the baud rate generator. If a mismatch has occurred between SCLO and SCLn pin levels, the baud rate generator suspends counting. This extends the clock to control data transfer during the SCL signal rising/falling period and clock stretching period in which SCL is fixed at low by a slave device.

16.4 Operations

16.4.1 Initialization

The I2C Ch.n should be initialized with the procedure shown below.

When using the I2C in master mode

- 1. Configure the operating clock and the baud rate generator using the I2C nCLK and I2C nBR registers.
- 2. Assign the I2C Ch.n input/output function to the ports. (Refer to the "I/O Ports" chapter.)
- 3. Set the following bits when using the interrupt:
 - Write 1 to the interrupt flags in the I2C_nINTF register. (Clear interrupt flags)
 - Set the interrupt enable bits in the I2C_nINTE register to 1. (Enable interrupts)
- 4. Set the following I2C_nCTL register bits:
 - Set the I2C_nCTL.MST bit to 1. (Set master mode)
 Set the I2C_nCTL.SFTRST bit to 1. (Execute software reset)
 Set the I2C nCTL.MODEN bit to 1. (Enable I2C Ch.n operations)

When using the I2C in slave mode

- 1. Set the following I2C_nMOD register bits:
 - I2C_nMOD.OADR10 bit (Set 10/7-bit address mode)
 - I2C_nMOD.GCEN bit (Enable response to general call address)
- 2. Set its own address to the I2C_nOADR.OADR[9:0] (or OADR[6:0]) bits.
- 3. Assign the I2C Ch.n input/output function to the ports. (Refer to the "I/O Ports" chapter.)
- 4. Set the following bits when using the interrupt:
 - Write 1 to the interrupt flags in the I2C_nINTF register. (Clear interrupt flags)
 - Set the interrupt enable bits in the I2C_nINTE register to 1. (Enable interrupts)
- 5. Set the following I2C_nCTL register bits:
 - Set the I2C_nCTL.MST bit to 0. (Set slave mode)
 - Set the I2C_nCTL.SFTRST bit to 1. (Execute software reset)
 - Set the I2C_nCTL.MODEN bit to 1. (Enable I2C Ch.n operations)

16.4.2 Data Transmission in Master Mode

A data sending procedure in master mode and the I2C Ch.n operations are shown below. Figures 16.4.2.1 and 16.4.2.2 show an operation example and a flowchart, respectively.

Data sending procedure

- 1. Issue a START condition by setting the I2C_nCTL.TXSTART bit to 1.
- 2. Wait for a transmit buffer empty interrupt (I2C_nINTF.TBEIF bit = 1) or a START condition interrupt (I2C_nINTF.STARTIF bit = 1).
 - Clear the I2C_nINTF.STARTIF bit by writing 1 after the interrupt has occurred.
- 3. Write the 7-bit slave address to the I2C_nTXD.TXD[7:1] bits and 0 that represents WRITE as the data transfer direction to the I2C_nTXD.TXD0 bit.
- (When DMA is used) Configure the DMA controller and set a DMA transfer request enable bit in the I2C_ nTBEDMAEN register to 1 (DMA transfer request enabled). (This automates the data sending procedure Steps 5, 6, and 8.)
- 5. (When DMA is not used) Wait for a transmit buffer empty interrupt (I2C_nINTF.TBEIF bit = 1) generated when an ACK is received.
- 6. (When DMA is not used) Write transmit data to the I2C_nTXD register.
- If a NACK reception interrupt (I2C_nINTF.NACKIF bit = 1) has occurred, go to Step 9 or 1 after clearing the I2C nINTF.NACKIF bit.
- 8. (When DMA is not used) Repeat Steps 5 and 6 until the end of transmit data.
- 9. Issue a STOP condition by setting the I2C nCTL.TXSTOP bit to 1.
- 10. Wait for a STOP condition interrupt (I2C_nINTF.STOPIF bit = 1). Clear the I2C_nINTF.STOPIF bit by writing 1 after the interrupt has occurred.

Data sending operations

Generating a START condition

The I2C Ch.n starts generating a START condition when the I2C_nCTL.TXSTART bit is set to 1. When the generating operation has completed, the I2C Ch.n clears the I2C_nCTL.TXSTART bit to 0 and sets both the I2C_nINTF.STARTIF and I2C_nINTF.TBEIF bits to 1.

Sending slave address and data

If the I2C_nINTF.TBEIF bit = 1, a slave address or data can be written to the I2C_nTXD register. The I2C Ch.n pulls down SCL to low and enters standby state until data is written to the I2C_nTXD register. The writing operation triggers the I2C Ch.n to send the data to the shift register automatically and to output eight clock pulses and data bits to the I2C bus.

When the slave device returns an ACK as the response, the I2C_nINTF.TBEIF bit is set to 1. After this interrupt occurs, the subsequent data may be sent or a STOP/repeated START condition may be issued to terminate transmission. If the slave device returns NACK, the I2C_nINTF.NACKIF bit is set to 1 without setting the I2C_nINTF.TBEIF bit.

Generating a STOP/repeated START condition

After the I2C_nINTF.TBEIF bit is set to 1 (transmit buffer empty) or the I2C_nINTF.NACKIF bit is set to 1 (NACK received), setting the I2C_nCTL.TXSTOP bit to 1 generates a STOP condition. When the bus free time (tBUF defined in the I2C Specifications) has elapsed after the STOP condition has been generated, the I2C_nCTL.TXSTOP bit is cleared to 0 and the I2C_nINTF.STOPIF bit is set to 1.

When setting the I2C_nCTL.TXSTART bit to 1 while the I2C_nINTF.TBEIF bit = 1 (transmit buffer empty) or the I2C_nINTF.NACKIF bit = 1 (NACK received), the I2C Ch.n generates a repeated START condition. When the repeated START condition has been generated, the I2C_nINTF.STARTIF and I2C_nINTF. TBEIF bits are both set to 1 same as when a START condition has been generated.

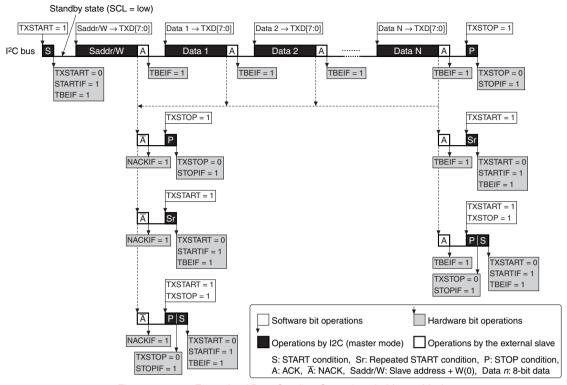


Figure 16.4.2.1 Example of Data Sending Operations in Master Mode

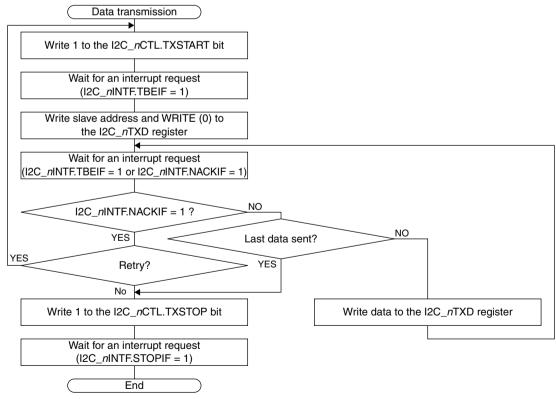


Figure 16.4.2.2 Master Mode Data Transmission Flowchart

Data transmission using DMA

By setting the I2C_nTBEDMAEN.TBEDMAENx bit to 1 (DMA transfer request enabled), a DMA transfer request is sent to the DMA controller and transmit data is transferred from the specified memory to the I2C_nTXD register via DMA Ch.x when the I2C_nINTF.TBEIF bit is set to 1 (transmit buffer empty).

This automates the data sending procedure from Steps 5, 6, and 8 described above.

The transfer source/destination and control data must be set for the DMA controller and the relevant DMA channel must be enabled to start a DMA transfer in advance so that transmit data will be transferred to the I2C_nTXD register. For more information on DMA, refer to the "DMA Controller" chapter.

Item Setting example End pointer Transfer source Memory address in which the last transmit data is stored Transfer destination I2C_nTXD register address Control data dst inc 0x3 (no increment) dst size 0x0 (byte) src_inc 0x0(+1)src size 0x0 (byte) R_power 0x0 (arbitrated for every transfer) n minus 1 Number of transfer data cycle_ctrl 0x1 (basic transfer)

Table 16.4.2.1 DMA Data Structure Configuration Example (for Data Transmission)

16.4.3 Data Reception in Master Mode

A data receiving procedure in master mode and the I2C Ch.n operations are shown below. Figures 16.4.3.1 and 16.4.3.2 show an operation example and a flowchart, respectively.

Data receiving procedure

- 1. When receiving one-byte data, write 1 to the I2C_nCTL.TXNACK bit.
- 2. Issue a START condition by setting the I2C_nCTL.TXSTART bit to 1.
- 3. Wait for a transmit buffer empty interrupt (I2C_nINTF.TBEIF bit = 1) or a START condition interrupt (I2C_nINTF.STARTIF bit = 1).
 - Clear the I2C_nINTF.STARTIF bit by writing 1 after the interrupt has occurred.
- 4. Write the 7-bit slave address to the I2C_nTXD.TXD[7:1] bits and 1 that represents READ as the data transfer direction to the I2C_nTXD.TXD0 bit.
- (When DMA is used) Configure the DMA controller and set a DMA transfer request enable bit in the I2C_ nRBFDMAEN register to 1 (DMA transfer request enabled). (This automates the data receiving procedure Steps 6, 8, and 10.)
- 6. (When DMA is not used) Wait for a receive buffer full interrupt (I2C_nINTF.RBFIF bit = 1) generated when a one-byte reception has completed.
- 7. Perform one of the operations below when the last or next-to-last data is received.
 - i. When the next-to-last data is received, write 1 to the I2C_nCTL.TXNACK bit to send a NACK after the last data is received, and then go to Step 8.
 - ii. When the last data is received, read the received data from the I2C_nRXD register and set the I2C_nCTL.TXSTOP to 1 to generate a STOP condition. Then go to Step 11.
- 8. (When DMA is not used) Read the received data from the I2C_nRXD register.
- 9. If a NACK reception interrupt (I2C_nINTF.NACKIF bit = 1) has occurred, clear the I2C_nINTF.NACKIF bit and issue a STOP condition by setting the I2C_nCTL.TXSTOP bit to 1. Then go to Step 11 or Step 2 if making a retry.
- 10. (When DMA is not used) Repeat Steps 6 to 8 until the end of data reception.
- 11. Wait for a STOP condition interrupt (I2C_nINTF.STOPIF bit = 1). Clear the I2C_nINTF.STOPIF bit by writing 1 after the interrupt has occurred.

Data receiving operations

Generating a START condition

It is the same as the data transmission in master mode.

Sending slave address

It is the same as the data transmission in master mode. Note, however, that the I2C_nTXD.TXD0 bit must be set to 1 that represents READ as the data transfer direction to issue a request to the slave to send data.

Receiving data

After the slave address has been sent, the slave device sends an ACK and the first data. The I2C Ch.n sets the I2C_nINTF.RBFIF bit to 1 after the data reception has completed. Furthermore, the I2C Ch.n returns an ACK. To return a NACK, such as for a response after the last data has been received, write 1 to the I2C_nCTL.TXNACK bit before the I2C_nINTF.RBFIF bit is set to 1.

The received data can be read out from the I2C_nRXD register after a receive buffer full interrupt has occurred. The I2C Ch.n pulls down SCL to low and enters standby state until data is read out from the I2C_nRXD register.

This reading triggers the I2C Ch.n to start subsequent data reception.

Generating a STOP or repeated START condition

It is the same as the data transmission in master mode.

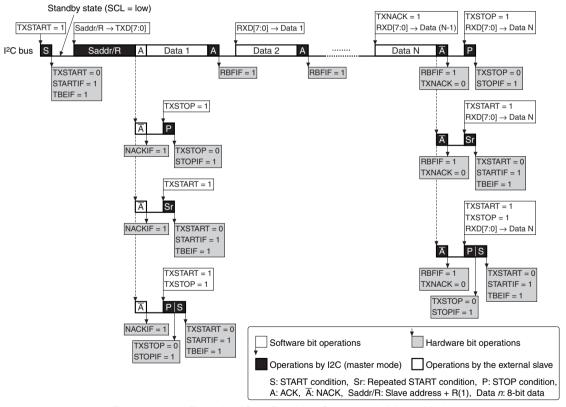


Figure 16.4.3.1 Example of Data Receiving Operations in Master Mode

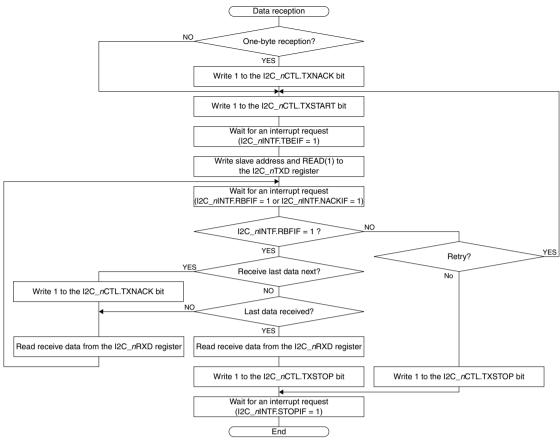


Figure 16.4.3.2 Master Mode Data Reception Flowchart

Data reception using DMA

By setting the I2C_nRBFDMAEN.RBFDMAENx bit to 1 (DMA transfer request enabled), a DMA transfer request is sent to the DMA controller and the received data is transferred from the I2C_nRXD register to the specified memory via DMA Ch.x when the I2C_nINTF.RBFIF bit is set to 1 (receive buffer full).

This automates the data receiving procedure Steps 6, 8, and 10 described above.

The transfer source/destination and control data must be set for the DMA controller and the relevant DMA channel must be enabled to start a DMA transfer in advance. For more information on DMA, refer to the "DMA Controller" chapter.

	Item	Setting example					
End pointer	Transfer source	I2C_nRXD register address					
	Transfer destination	Memory address to which the last received data is stored					
Control data	dst_inc	0x0 (+1)					
	dst_size	0x0 (byte)					
	src_inc	0x3 (no increment)					
	src_size	0x0 (byte)					
	R_power	0x0 (arbitrated for every transfer)					
	n_minus_1	Number of receive data					
	cycle ctrl	0x1 (basic transfer)					

Table 16.4.3.1 DMA Data Structure Configuration Example (for Data Reception)

16.4.4 10-bit Addressing in Master Mode

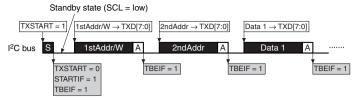
A 10-bit address consists of the first address that contains two high-order bits and the second address that contains eight low-order bits.

7-bit address D7 D6 D5 D4 D3 D2 D1 D0 A4 \ A3 \ A2 Α1 A0 KR/W A6 \ A5 0: WRITE (Master → Slave) Slave address 1: READ (Slave → Master) 10-bit address D7 D₆ D5 Π4 D3 D₂ D₁ DO First address 0 Α9 A8 KR/W 1 1 Two high-order slave address bits D6 D5 D4 D3 D2 D1 Second address A7 \ A6 \ A5 | A4 | A3 | A2 | A1 | Eight low-order slave address bits

The following shows a procedure to start data transfer in 10-bit address mode when the I2C Ch.n is placed into master mode (see the 7-bit mode descriptions above for control procedures when a NACK is received or sending/receiving data). Figure 16.4.4.2 shows an operation example.

Figure 16.4.4.1 10-bit Address Configuration

Starting data transmission in 10-bit address mode


- 1. Issue a START condition by setting the I2C_nCTL.TXSTART bit to 1.
- 2. Wait for a transmit buffer empty interrupt (I2C_nINTF.TBEIF bit = 1) or a START condition interrupt (I2C_nINTF.STARTIF bit = 1).
 - Clear the I2C *n*INTF.STARTIF bit by writing 1 after the interrupt has occurred.
- 3. Write the first address to the I2C_nTXD.TXD[7:1] bits and 0 that represents WRITE as the data transfer direction to the I2C_nTXD.TXD0 bit.
- 4. Wait for a transmit buffer empty interrupt (I2C_nINTF.TBEIF bit = 1).
- 5. Write the second address to the I2C_nTXD.TXD[7:0] bits.
- 6. Wait for a transmit buffer empty interrupt (I2C_nINTF.TBEIF bit = 1).
- 7. Perform data transmission.

Starting data reception in 10-bit address mode

1 to 6. These steps are the same as the data transmission starting procedure described above.

- 7. Issue a repeated START condition by setting the I2C_nCTL.TXSTART bit to 1.
- 8. Wait for a transmit buffer empty interrupt (I2C_nINTF.TBEIF bit = 1) or a START condition interrupt (I2C_nINTF.STARTIF bit = 1).
 - Clear the I2C_nINTF.STARTIF bit by writing 1 after the interrupt has occurred.
- Write the first address to the I2C_nTXD.TXD[7:1] bits and 1 that represents READ as the data transfer direction to the I2C_nTXD.TXD0 bit.
- 10. Perform data reception.

At start of data transmission

At start of data reception

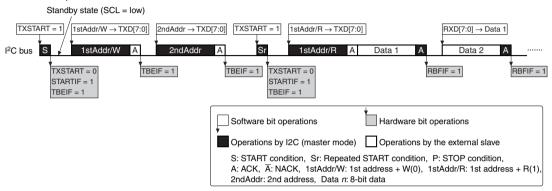


Figure 16.4.4.2 Example of Data Transfer Starting Operations in 10-bit Address Mode (Master Mode)

16.4.5 Data Transmission in Slave Mode

A data sending procedure in slave mode and the I2C Ch.n operations are shown below. Figures 16.4.5.1 and 16.4.5.2 show an operation example and a flowchart, respectively.

Data sending procedure

- 1. Wait for a START condition interrupt (I2C_nINTF.STARTIF bit = 1). Clear the I2C_nINTF.STARTIF bit by writing 1 after the interrupt has occurred.
- 2. Check to see if the I2C_nINTF.TR bit = 1 (transmission mode). (Start a data receiving procedure if the I2C_nINTF.TR bit = 0.)
- 3. Write transmit data to the I2C_nTXD register.
- 4. Wait for a transmit buffer empty interrupt (I2C_nINTF.TBEIF bit = 1), a NACK reception interrupt (I2C_nINTF.NACKIF bit = 1), or a STOP condition interrupt (I2C_nINTF.STOPIF bit = 1).
 - i. Go to Step 3 when a transmit buffer empty interrupt has occurred.
 - ii. Go to Step 5 after clearing the I2C_nINTF.NACKIF bit when a NACK reception interrupt has occurred.
 - iii. Go to Step 6 when a STOP condition interrupt has occurred.
- 5. Wait for a STOP condition interrupt (I2C_nINTF.STOPIF bit = 1) or a START condition interrupt (I2C_nINTF.STARTIF bit = 1).
 - i. Go to Step 6 when a STOP condition interrupt has occurred.
 - ii. Go to Step 2 when a START condition interrupt has occurred.
- 6. Clear the I2C_nINTF.STOPIF bit and then terminate data sending operations.

Data sending operations

START condition detection and slave address check

While the I2C_nCTL.MODEN bit = 1 and the I2C_nCTL.MST bit = 0 (slave mode), the I2C Ch.n monitors the I²C bus. When the I2C Ch.n detects a START condition, it starts receiving of the slave address sent from the master. If the received address is matched with the own address set to the I2C_nOADR.OADR[6:0] bits (when the I2C_nMOD.OADR10 bit = 0 (7-bit address mode)) or the I2C_nOADR.OADR[9:0] bits (when the I2C_nMOD.OADR10 bit = 1 (10-bit address mode)), the I2C_nINTF.STARTIF bit and the I2C_nINTF.BSY bit are both set to 1. The I2C Ch.n sets the I2C_nINTF.TR bit to the R/W bit value in the received address. If this value is 1, the I2C Ch.n sets the I2C_nINTF.TBEIF bit to 1 and starts data sending operations.

Sending the first data byte

After the valid slave address has been received, the I2C Ch.n pulls down SCL to low and enters standby state until data is written to the I2C_nTXD register. This puts the I²C bus into clock stretching state and the external master into standby state. When transmit data is written to the I2C_nTXD register, the I2C Ch.n clears the I2C_nINTF.TBEIF bit and sends an ACK to the master. The transmit data written in the I2C_nTXD register is automatically transferred to the shift register and the I2C_nINTF.TBEIF bit is set to 1. The data bits in the shift register are output in sequence to the I²C bus.

Sending subsequent data

If the I2C_nINTF.TBEIF bit = 1, subsequent transmit data can be written during data transmission. If the I2C_nINTF.TBEIF bit is still set to 1 when the data transmission from the shift register has completed, the I2C Ch.n pulls down SCL to low (sets the I^2 C bus into clock stretching state) until transmit data is written to the I2C_nTXD register.

If the next transmit data already exists in the I2C_nTXD register or data has been written after the above, the I2C Ch.n sends the subsequent eight-bit data when an ACK from the external master is received. At the same time, the I2C_nINTF.BYTEENDIF bit is set to 1. If a NACK is received, the I2C_nINTF.NACKIF bit is set to 1 without sending data.

STOP/repeated START condition detection

While the I2C_nCTL.MST bit = 0 (slave mode) and the I2C_nINTF.BSY = 1, the I2C Ch.n monitors the I²C bus. When the I2C Ch.n detects a STOP condition, it terminates data sending operations. At this time, the I2C_nINTF.BSY bit is cleared to 0 and the I2C_nINTF.STOPIF bit is set to 1. Also when the I2C Ch.n detects a repeated START condition, it terminates data sending operations. In this case, the I2C_nINTF.STARTIF bit is set to 1.

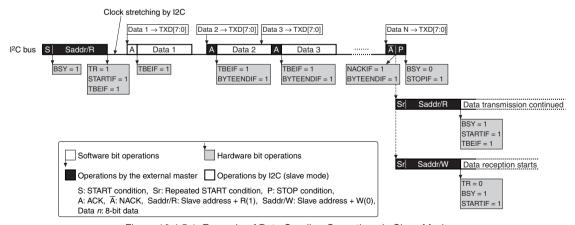


Figure 16.4.5.1 Example of Data Sending Operations in Slave Mode

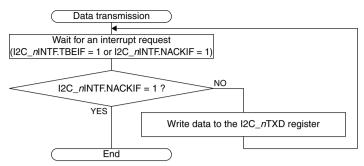


Figure 16.4.5.2 Slave Mode Data Transmission Flowchart

16.4.6 Data Reception in Slave Mode

A data receiving procedure in slave mode and the I2C Ch.n operations are shown below. Figures 16.4.6.1 and 16.4.6.2 show an operation example and a flowchart, respectively.

Data receiving procedure

- 1. When receiving one-byte data, write 1 to the I2C_nCTL.TXNACK bit.
- 2. Wait for a START condition interrupt (I2C_nINTF.STARTIF bit = 1).
- 3. Check to see if the I2C_nINTF.TR bit = 0 (reception mode). (Start a data sending procedure if I2C_nINTF.TR bit = 1.)
- 4. Clear the I2C_nINTF.STARTIF bit by writing 1.
- 5. Wait for a receive buffer full interrupt (I2C_nINTF.RBFIF bit = 1) generated when a one-byte reception has completed or an end of transfer interrupt (I2C_nINTF.BYTEENDIF bit = 1).

 Clear the I2C_nINTF.BYTEENDIF bit by writing 1 after the interrupt has occurred.
- If the next receive data is the last one, write 1 to the I2C_nCTL.TXNACK bit to send a NACK after it is received.
- 7. Read the received data from the I2C_nRXD register.
- 8. Repeat Steps 5 to 7 until the end of data reception.
- Wait for a STOP condition interrupt (I2C_nINTF.STOPIF bit = 1) or a START condition interrupt (I2C_nINTF.STARTIF bit = 1).
 - i. Go to Step 10 when a STOP condition interrupt has occurred.
 - ii. Go to Step 3 when a START condition interrupt has occurred.
- 10. Clear the I2C_nINTF.STOPIF bit and then terminate data receiving operations.

Data receiving operations

START condition detection and slave address check

It is the same as the data transmission in slave mode.

However, the I2C_nINTF.TR bit is cleared to 0 and the I2C_nINTF.TBEIF bit is not set.

If the I2C_nMOD.GCEN bit is set to 1 (general call address response enabled), the I2C Ch.n starts data receiving operations when the general call address is received.

Slave mode can be operated even in SLEEP mode, it makes it possible to wake the CPU up using an interrupt when an address match is detected.

Receiving the first data byte

After the valid slave address has been received, the I2C Ch.n sends an ACK and pulls down SCL to low until 1 is written to the I2C_nINTF.STARTIF bit. This puts the I²C bus into clock stretching state and the external master into standby state. When 1 is written to the I2C_nINTF.STARTIF bit, the I2C Ch.n releases SCL and receives data sent from the external master into the shift register. After eight-bit data has been received, the I2C Ch.n sends an ACK and pulls down SCL to low. The received data in the shift register is transferred to the receive data buffer and the I2C_nINTF.RBFIF and I2C_nINTF.BYTEENDIF bits are both set to 1. After that, the received data can be read out from the I2C_nRXD register.

Receiving subsequent data

When the received data is read out from the I2C_nRXD register after the I2C_nINTF.RBFIF bit has been set to 1, the I2C Ch.n clears the I2C_nINTF.RBFIF bit to 0, releases SCL, and receives subsequent data sent from the external master. After eight-bit data has been received, the I2C Ch.n sends an ACK and pulls down SCL to low. The received data in the shift register is transferred to the receive data buffer and the I2C_nINTF.RBFIF and I2C_nINTF.BYTEENDIF bits are both set to 1.

To return a NACK after eight-bit data is received, such as when terminating data reception, write 1 to the I2C_nCTL.TXNACK bit before the data reception is completed. The I2C_nCTL.TXNACK bit is automatically cleared to 0 after a NACK has been sent.

STOP/repeated START condition detection

It is the same as the data transmission in slave mode.

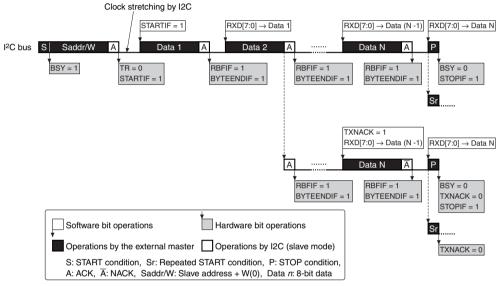


Figure 16.4.6.1 Example of Data Receiving Operations in Slave Mode

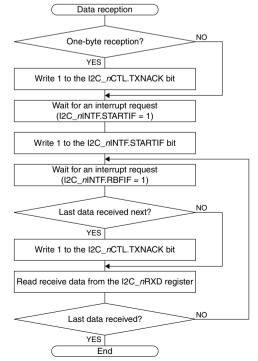


Figure 16.4.6.2 Slave Mode Data Reception Flowchart

16.4.7 Slave Operations in 10-bit Address Mode

The I2C Ch.n functions as a slave device in 10-bit address mode when the I2C_nCTL.MST bit = 0 and the I2C_nMOD.OADR10 bit = 1.

The following shows the address receiving operations in 10-bit address mode. Figure 16.4.7.1 shows an operation example. See Figure 16.4.4.1 for the 10-bit address configuration.

10-bit address receiving operations

After a START condition is issued, the master sends the first address that includes the two high-order slave address bits and the R/W bit (= 0). If the received two high-order slave address bits are matched with the I2C_nOADR.OADR[9:8] bits, the I2C Ch.n returns an ACK. At this time, other slaves may returns an ACK as the two high-order bits may be matched.

Then the master sends the eight low-order slave address bits as the second address. If this address is matched with the I2C nOADR.OADR[7:0] bits, the I2C Ch.n returns an ACK and starts data receiving operations.

If the master issues a request to the slave to send data (data reception in the master), the master generates a repeated START condition and sends the first address with the R/W bit set to 1. This reception switches the I2C Ch.n to data sending mode.

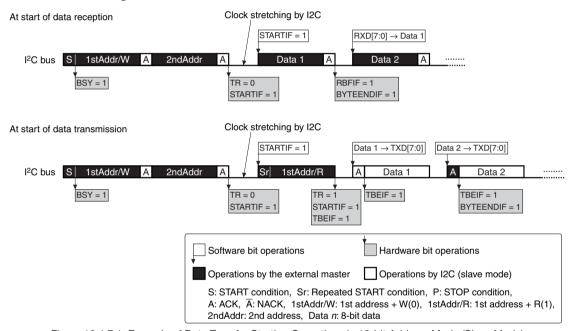


Figure 16.4.7.1 Example of Data Transfer Starting Operations in 10-bit Address Mode (Slave Mode)

16.4.8 Automatic Bus Clearing Operation

The I2C Ch.n set into master mode checks the SDA state immediately before generating a START condition. If SDA is set to a low level at this time, the I2C Ch.n automatically executes bus clearing operations that output up to ten clocks from the SCLn pin with SDA left free state.

When SDA goes high from low within nine clocks, the I2C Ch.n issues a START condition and starts normal operations. If SDA does not change from low when the I2C Ch.n outputs the ninth clock, it is regarded as an automatic bus clearing failure. In this case, the I2C Ch.n clears the I2C_nCTL.TXSTART bit to 0 and sets both the I2C_nINTF. ERRIF and I2C nINTF.STARTIF bits to 1.

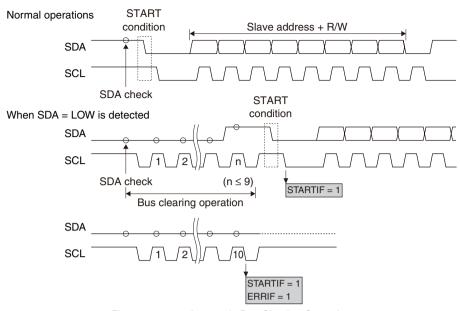


Figure 16.4.8.1 Automatic Bus Clearing Operation

16.4.9 Frror Detection

The I2C includes a hardware error detection function.

Furthermore, the I2C_nINTF.SDALOW and I2C_nINTF.SCLLOW bits are provided to allow software to check whether the SDA and SCL lines are fixed at low. If unintended low level is detected on SDA or SCL, a software recovery processing, such as I2C Ch.n software reset, can be performed.

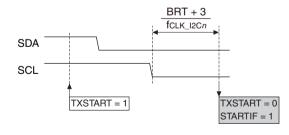
The table below lists the hardware error detection conditions and the notification method.

I²C bus line monitored and No. Error detecting period/timing Notification method error condition SDA = lowWhile the I2C Ch.n controls SDA to high for sending address. I2C nINTF.ERRIF = 1 data, or a NACK <Master mode only> When 1 is written to the I2C_nCTL.TX-SCL = lowI2C_nINTF.ERRIF = 1 $I2C_nCTL.TXSTART = 0$ START bit while the $I2C_nINTF.BSY$ bit = 0 $I2C_nINTF.STARTIF = 1$ <Master mode only> When 1 is written to the I2C nCTL.TX-SCL = lowI2C nINTF.ERRIF = 1 STOP bit while the $I2C_nINTF.BSY$ bit = 0 $I2C_nCTL.TXSTOP = 0$ $12C_nINTF.STOPIF = 1$ <Master mode only> When 1 is written to the I2C_nCTL SDA $I2C_nINTF.ERRIF = 1$ TXSTART bit while the I2C nINTF.BSY bit = 0 (Refer to "Au-Automatic bus clearing I2C nCTL.TXSTART = 0 tomatic Bus Clearing Operation.") failure I2C nINTF.STARTIF = 1

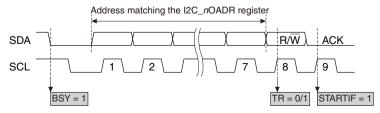
Table 16.4.9.1 Hardware Error Detection Function

16.5 Interrupts

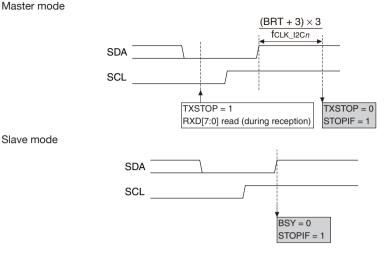
The I2C has a function to generate the interrupts shown in Table 16.5.1.


Table 16.5.1 I2C Interrupt Function

Interrupt	Interrupt flag	Set condition	Clear condition
End of data	I2C_nINTF.BYTEENDIF	When eight-bit data transfer and the following ACK/	Writing 1,
transfer		NACK transfer are completed	software reset
General call	I2C_nINTF.GCIF	Slave mode only: When the general call address is	Writing 1,
address reception		received	software reset
NACK reception	I2C_nINTF.NACKIF	When a NACK is received	Writing 1,
			software reset
STOP condition	I2C_nINTF. STOPIF	Master mode: When a STOP condition is generated	Writing 1,
		and the bus free time (tbur) between STOP and	software reset
		START conditions has elapsed	
		Slave mode: When a STOP condition is detected	
		while the I2C Ch.n is selected as the slave currently	
		accessed	
START condition	I2C nINTF. STARTIF	Master mode: When a START condition is issued	Writing 1,
		Clave mander Whare on adduces market in detected	software reset
		Slave mode: When an address match is detected	
Farmer delegation	IOOINTE EDDIE	(including general call)	AAAdda aa A
Error detection	I2C_nINTF. ERRIF	Refer to "Error Detection."	Writing 1,
Description to the	IOO WINTE DDEIE	NATIonal and a state of the sta	software reset
Receive buffer full	12C_ninte. RBFIF	When received data is loaded to the receive data buffer	
		рипег	data (to empty the
			receive data buffer), software reset
Transmit buffer	I2C nINTF. TBEIF	Master mode: When a START condition is issued or	
	120_//INTE. TEELE	when an ACK is received from the slave	whiling transmit data
empty		When an ACK is received from the slave	
		Slave mode: When transmit data written to the	
		transmit data buffer is transferred to the shift regis-	
		ter or when an address match is detected with R/W	
		bit set to 1	


The I2C provides interrupt enable bits corresponding to each interrupt flag. An interrupt request is sent to the CPU only when the interrupt flag, of which interrupt has been enabled by the interrupt enable bit, is set. For more information on interrupt control, refer to the "Interrupt" chapter.

(1) START condition interrupt


Master mode

Slave mode

(2) STOP condition interrupt

(fclk_l2cn: I2C operating clock frequency [Hz], BRT: I2C_nBR.BRT[6:0] bits setting value (1 to 127))

Figure 16.5.1 START/STOP Condition Interrupt Timings

16.6 DMA Transfer Requests

The I2C has a function to generate DMA transfer requests from the causes shown in Table 16.6.1.

Cause to request **DMA** transfer Set condition Clear condition **DMA** transfer request flag Receive buffer full flag When received data is loaded to the re-Receive buffer Reading received data (to full (I2C_nINTF.RBFIF) ceive data buffer empty the receive data buffer), software reset Transmit buffer Transmit buffer empty Master mode: When a START condition is Writing transmit data issued or when an ACK is received from the empty (I2C_nINTF.TBEIF) Slave mode: When transmit data written to the transmit data buffer is transferred to the shift register or when an address match is detected with R/W bit set to 1

Table 16.6.1 DMA Transfer Request Causes of I2C

The I2C provides DMA transfer request enable bits corresponding to each DMA transfer request flag shown above for the number of DMA channels. A DMA transfer request is sent to the pertinent channel of the DMA controller only when the DMA transfer request flag, of which DMA transfer has been enabled by the DMA transfer request enable bit, is set. The DMA transfer request flag also serves as an interrupt flag, therefore, both the DMA transfer request and the interrupt cannot be enabled at the same time. After a DMA transfer has completed, disable the DMA transfer to prevent unintended DMA transfer requests from being issued. For more information on the DMA control, refer to the "DMA Controller" chapter.

16.7 Control Registers

I2C Ch.n Clock Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
I2C_nCLK	15–9	_	0x00	_	R	_
	8	DBRUN	0	H0	R/W	
	7–6	-	0x0	-	R	
	5–4	CLKDIV[1:0]	0x0	H0	R/W	
	3–2	-	0	-	R	
	1–0	CLKSRC[1:0]	0x0	H0	R/W	

Bits 15-9 Reserved

Bit 8 DBRUN

This bit sets whether the I2C operating clock is supplied during debugging or not.

1 (R/W): Clock supplied during debugging 0 (R/W): No clock supplied during debugging

Bits 7-6 Reserved

Bits 5-4 CLKDIV[1:0]

These bits select the division ratio of the I2C operating clock.

Bits 3-2 Reserved

Bits 1-0 CLKSRC[1:0]

These bits select the clock source of the I2C.

Table 16.7.1 Clock Source and Division Ratio Settings

I2C nCLK.	I2C_nCLK.CLKSRC[1:0] bits									
CLKDIV[1:0] bits	0x0	0x1	0x2	0x3						
CLKDIV[1:0] bits	IOSC	OSC1	OSC3	EXOSC						
0x3	1/8	1/1	1/8	1/1						
0x2	1/4		1/4							
0x1	1/2		1/2							
0x0	1/1		1/1							

(Note) The oscillation circuits/external input that are not supported in this IC cannot be selected as the clock source.

Note: The I2C_nCLK register settings can be altered only when the I2C_nCTL.MODEN bit = 0.

I2C Ch.n Mode Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
I2C_nMOD	15–8	_	0x00	_	R	_
	7–3	-	0x00	-	R	
	2	OADR10	0	H0	R/W	
	1	GCEN	0	H0	R/W	
	0	_	0	-	R	

Bits 15-3 Reserved

Bit 2 OADR10

This bit sets the number of own address bits for slave mode.

1 (R/W): 10-bit address 0 (R/W): 7-bit address

Bit 1 GCEN

This bit sets whether to respond to master general calls in slave mode or not.

1 (R/W): Respond to general calls. 0 (R/W): Do not respond to general calls.

Bit 0 Reserved

Note: The $I2C_nMOD$ register settings can be altered only when the $I2C_nCTL.MODEN$ bit = 0.

I2C Ch.n Baud-Rate Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
I2C_nBR	15–8	_	0x00	_	R	_
	7	_	0	_	R	
	6–0	BRT[6:0]	0x7f	H0	R/W	

Bits 15-7 Reserved

Bits 6-0 BRT[6:0]

These bits set the I2C Ch.n transfer rate for master mode. For more information, refer to "Baud Rate Generator."

Notes: • The I2C nBR register settings can be altered only when the I2C nCTL.MODEN bit = 0.

• Be sure to avoid setting the I2C nBR register to 0.

I2C Ch.n Own Address Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
I2C_nOADR	15–10	_	0x00	_	R	_
	9–0	OADR[9:0]	0x000	H0	R/W	

Bits 15-10 Reserved

Bits 9-0 OADR[9:0]

These bits set the own address for slave mode.

The I2C_nOADR.OADR[9:0] bits are effective in 10-bit address mode (I2C_nMOD.OADR10 bit = 1), or the I2C_nOADR.OADR[6:0] bits are effective in 7-bit address mode (I2C_nMOD.OADR10 bit = 0).

Note: The I2C nOADR register settings can be altered only when the I2C nCTL.MODEN bit = 0.

I2C Ch.n Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
I2C_nCTL	15–8	_	0x00	_	R	_
	7–6	_	0x0	-	R	
	5	MST	0	H0	R/W	
	4	TXNACK	0	H0/S0	R/W	
	3	TXSTOP	0	H0/S0	R/W	
	2	TXSTART	0	H0/S0	R/W	
	1	SFTRST	0	H0	R/W	
	0	MODEN	0	H0	R/W	

Bits 15-6 Reserved

Bit 5 MST

This bit selects the I2C Ch.n operating mode.

1 (R/W): Master mode 0 (R/W): Slave mode

Bit 4 TXNACK

This bit issues a request for sending a NACK at the next responding.

1 (W): Issue a NACK. 0 (W): Ineffective

1 (R): On standby or during sending a NACK

0 (R): NACK has been sent.

This bit is automatically cleared after a NACK has been sent.

Bit 3 TXSTOP

This bit issues a STOP condition in master mode. This bit is ineffective in slave mode.

1 (W): Issue a STOP condition.

0 (W): Ineffective

1 (R): On standby or during generating a STOP condition

0 (R): STOP condition has been generated.

This bit is automatically cleared when the bus free time (tBUF defined in the I²C Specifications) has elapsed after the STOP condition has been generated.

Bit 2 TXSTART

This bit issues a START condition in master mode. This bit is ineffective in slave mode.

1 (W): Issue a START condition.

0 (W): Ineffective

1 (R): On standby or during generating a START condition

0 (R): START condition has been generated.

This bit is automatically cleared when a START condition has been generated.

Bit 1 SFTRST

This bit issues software reset to the I2C.

1 (W): Issue software reset

0 (W): Ineffective

1 (R): Software reset is executing.

0 (R): Software reset has finished. (During normal operation)

Setting this bit resets the I2C transmit/receive control circuit and interrupt flags. This bit is automatically cleared after the reset processing has finished.

Bit 0 MODEN

This bit enables the I2C operations.

1 (R/W): Enable I2C operations (The operating clock is supplied.) 0 (R/W): Disable I2C operations (The operating clock is stopped.)

Note: If the I2C_nCTL.MODEN bit is altered from 1 to 0 while sending/receiving data, the data being sent/received cannot be guaranteed. When setting the I2C_nCTL.MODEN bit to 1 again after that, be sure to write 1 to the I2C nCTL.SFTRST bit as well.

I2C Ch.n Transmit Data Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
I2C_nTXD	15–8	-	0x00	_	R	_
	7–0	TXD[7:0]	0x00	H0	R/W	

Bits 15-8 Reserved

Bits 7-0 TXD[7:0]

Data can be written to the transmit data buffer through these bits. Make sure the I2C_nINTF.TBEIF bit is set to 1 before writing data.

Note: Be sure to avoid writing to the I2C_nTXD register when the I2C_nINTF.TBEIF bit = 0, otherwise transmit data cannot be guaranteed.

I2C Ch.n Receive Data Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
I2C_nRXD	15–8	_	0x00	_	R	_
	7–0	RXD[7:0]	0x00	H0	R	

Bits 15-8 Reserved

Bits 7-0 RXD[7:0]

The receive data buffer can be read through these bits.

I2C Ch.n Status and Interrupt Flag Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
I2C_nINTF	15–13	_	0x0	_	R	_
	12	SDALOW	0	H0	R	
	11	SCLLOW	0	H0	R	
	10	BSY	0	H0/S0	R	
	9	TR	0	H0	R	
	8	_	0	-	R	
	7	BYTEENDIF	0	H0/S0	R/W	Cleared by writing 1.
	6	GCIF	0	H0/S0	R/W	
	5	NACKIF	0	H0/S0	R/W	
	4	STOPIF	0	H0/S0	R/W	
	3	STARTIF	0	H0/S0	R/W	
	2	ERRIF	0	H0/S0	R/W	
	1	RBFIF	0	H0/S0	R	Cleared by reading the I2C_nRXD register.
	0	TBEIF	0	H0/S0	R	Cleared by writing to the I2C_nTXD register.

Bits 15-13 Reserved

Bit 12 SDALOW

This bit indicates that SDA is set to low level.

1 (R): SDA = Low level0 (R): SDA = High level

Bit 11 SCLLOW

This bit indicates that SCL is set to low level.

1 (R): SCL = Low level0 (R): SCL = High level

Bit 10 BSY

This bit indicates that the I²C bus is placed into busy status.

1 (R): I²C bus busy 0 (R): I²C bus free

Bit 9 TR

This bit indicates whether the I2C is set in transmission mode or not.

1 (R): Transmission mode 0 (R): Reception mode

Bit 8 Reserved

Bit 7 BYTEENDIF

Bit 6 GCIF

Bit 5 NACKIF

Bit 4 STOPIF

Bit 3 STARTIF

Bit 2 ERRIF Bit 1 RBFIF

Bit 0 TBEIF

These bits indicate the I2C interrupt cause occurrence status.

1 (R): Cause of interrupt occurred 0 (R): No cause of interrupt occurred

1 (W): Clear flag 0 (W): Ineffective The following shows the correspondence between the bit and interrupt:

I2C_nINTF.BYTEENDIF bit: End of transfer interrupt

I2C_nINTF.GCIF bit: General call address reception interrupt

 I2C_nINTF.NACKIF bit:
 NACK reception interrupt

 I2C_nINTF.STOPIF bit:
 STOP condition interrupt

 I2C_nINTF.STARTIF bit:
 START condition interrupt

 I2C_nINTF.ERRIF bit:
 Error detection interrupt

 I2C_nINTF.RBFIF bit:
 Receive buffer full interrupt

 I2C_nINTF.TBEIF bit:
 Transmit buffer empty interrupt

I2C Ch.n Interrupt Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
I2C_nINTE	15–8	_	0x00	_	R	_
	7	BYTEENDIE	0	H0	R/W	
	6	GCIE	0	H0	R/W	
	5	NACKIE	0	H0	R/W	
	4	STOPIE	0	H0	R/W	
	3	STARTIE	0	H0	R/W	
	2	ERRIE	0	H0	R/W	
	1	RBFIE	0	H0	R/W	
	0	TBEIE	0	H0	R/W	

Bits 15-8 Reserved

Bit 7	BYTEENDIE	
DIL /	DITENDE	

Bit 6 GCIE

Bit 5 NACKIE

Bit 4 STOPIE

Bit 3 STARTIE

Bit 2 ERRIE

Bit 1 RBFIE

Bit 0 TBEIE

These bits enable I2C interrupts. 1 (R/W): Enable interrupts 0 (R/W): Disable interrupts

The following shows the correspondence between the bit and interrupt:

I2C_nINTE.BYTEENDIE bit: End of transfer interrupt

I2C_nINTE.GCIE bit: General call address reception interrupt

 I2C_nINTE.NACKIE bit:
 NACK reception interrupt

 I2C_nINTE.STOPIE bit:
 STOP condition interrupt

 I2C_nINTE.STARTIE bit:
 START condition interrupt

 I2C_nINTE.ERRIE bit:
 Error detection interrupt

 I2C_nINTE.RBFIE bit:
 Receive buffer full interrupt

 I2C_nINTE.TBEIE bit:
 Transmit buffer empty interrupt

I2C Ch.n Transmit Buffer Empty DMA Request Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
I2C_nTBEDMAEN	15–0	TBEDMAEN[15:0]	0x0000	H0	R/W	-

Bits 15-0 TBEDMAEN[15:0]

These bits enable the I2C to issue a DMA transfer request to the corresponding DMA controller channel (Ch.0–Ch.15) when a transmit buffer empty state has occurred.

1 (R/W): Enable DMA transfer request 0 (R/W): Disable DMA transfer request

Each bit corresponds to a DMA controller channel. The high-order bits for the unimplemented channels are ineffective.

I2C Ch.n Receive Buffer Full DMA Request Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
I2C_nRBFDMAEN	15–0	RBFDMAEN[15:0]	0x0000	H0	R/W	_

Bits 15-0 RBFDMAEN[15:0]

These bits enable the I2C to issue a DMA transfer request to the corresponding DMA controller channel (Ch.0–Ch.15) when a receive buffer full state has occurred.

1 (R/W): Enable DMA transfer request 0 (R/W): Disable DMA transfer request

Each bit corresponds to a DMA controller channel. The high-order bits for the unimplemented channels are ineffective.

17 16-bit PWM Timers (T16B)

17.1 Overview

T16B is a 16-bit PWM timer with comparator/capture functions. The features of T16B are listed below.

- Counter block
 - 16-bit up/down counter
 - A clock source and a clock division ratio for generating the count clock are selectable in each channel.
 - The count mode is configurable from combinations of up, down, or up/down count operations, and one-shot operations (counting for one cycle configured) or repeat operations (counting continuously until stopped via software).
 - Supports an event counter function using an external clock.
- · Comparator/capture block
 - Supports up to six comparator/capture circuits to be included per one channel.
 - The comparator compares the counter value with the values specified via software to generate interrupt or DMA request signals, and a PWM waveform. (Can be used as an interval timer, PWM waveform generator, and external event counter.)
 - The capture circuit captures counter values using external/software trigger signals and generates interrupts or DMA requests. (Can be used to measure external event periods/cycles.)

Figure 17.1.1 shows the T16B configuration.

Table 17.1.1 T16B Channel Configuration of S1C31D41

Item	32-pin package	48-pin package	64-pin package		
Number of channels	2 channels (Ch.0 and Ch.1)				
Event counter function	Ch.0: Not available Ch.0: EXCL00 or EXCL01 pin input				
	Ch.1: EXCL10 or EXCL11 pin input	Ch.1: EXCL10 or	EXCL11 pin input		
Number of comparator/	4 austrian (0 to 0)				
capture circuits per channel	4 systems (0 to 3)				
Timer generating signal output	Ch.0: TOUT00 to TOUT03 pin outputs (4 systems)				
	Ch.1: TOUT10 to TOUT13 pin outputs (4 systems)				
Capture signal input	Ch.0: CAP00 to CAP03 pin inputs (4 systems)				
	Ch.1: CAP10 to CAP13 pin inputs (4 systems)				

Note: In this chapter, 'n' refers to a channel number, and 'm' refers to an input/output pin number or a comparator/capture circuit number in a channel.

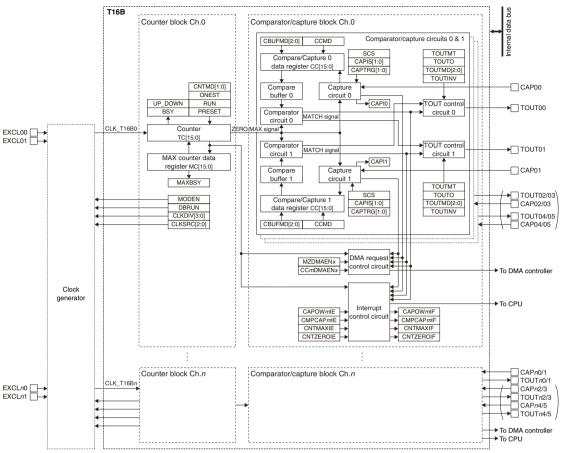


Figure 17.1.1 T16B Configuration

17.2 Input/Output Pins

Table 17.2.1 lists the T16B pins.

Table 17.2.1 List of T16B Pins

Pin name	I/O*	Initial status*	Function
EXCLnm	I	I (Hi-Z)	External clock input
TOUTnm/CAPnm	O or I	O (L)	TOUT signal output (in comparator mode) or
			capture trigger signal input (in capture mode)

^{*} Indicates the status when the pin is configured for T16B.

If the port is shared with the T16B pin and other functions, the T16B input/output function must be assigned to the port before activating T16B. For more information, refer to the "I/O Ports" chapter.

17.3 Clock Settings

17.3.1 T16B Operating Clock

When using T16B Ch.n, the T16B Ch.n operating clock CLK_T16Bn must be supplied to T16B Ch.n from the clock generator. The CLK_T16Bn supply should be controlled as in the procedure shown below.

1. Enable the clock source in the clock generator if it is stopped (refer to "Clock Generator" in the "Power Supply, Reset, and Clocks" chapter).

When an external clock is used, select the EXCLnm pin function (refer to the "I/O Ports" chapter).

- 2. Set the following T16B_nCLK register bits:
 - T16B_nCLK.CLKSRC[2:0] bits (Clock source selection)
 - T16B nCLK.CLKDIV[3:0] bits (Clock division ratio selection = Clock frequency setting)

17.3.2 Clock Supply in SLEEP Mode

When using T16B during SLEEP mode, the T16B operating clock CLK_T16Bn must be configured so that it will keep supplying by writing 0 to the CLGOSC_xxxxSLPC bit for the CLK_T16Bn clock source.

If the CLGOSC.xxxxSLPC bit for the CLK_T16Bn clock source is 1, the CLK_T16Bn clock source is deactivated during SLEEP mode and T16B stops with the register settings and counter value maintained at those before entering SLEEP mode. After the CPU returns to normal mode, CLK_T16Bn is supplied and the T16B operation resumes.

17.3.3 Clock Supply During Debugging

The CLK_T16Bn supply during debugging should be controlled using the T16B_nCLK.DBRUN bit.

The CLK_T16Bn supply to T16B Ch.n is suspended when the CPU enters debug state if the T16B_nCLK.DBRUN bit = 0. After the CPU returns to normal operation, the CLK_T16Bn supply resumes. Although T16B Ch.n stops operating when the CLK_T16Bn supply is suspended, the counter and registers retain the status before debug state was entered. If the T16B_nCLK.DBRUN bit = 1, the CLK_T16Bn supply is not suspended and T16B Ch.n will keep operating in debug state.

17.3.4 Event Counter Clock

When EXCLnm is selected as the clock source using the T16B_nCLK.CLKSRC[2:0] bits, the channel functions as a timer or event counter that counts the EXCLnm pin input clocks.

The counter counts rising edges of the input signal. This can be changed so that the counter will count falling edges of the original signal by selecting EXCL*nm* inverted input as the clock source.

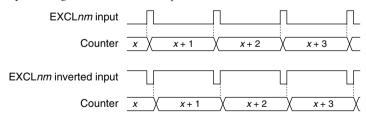


Figure 17.3.4.1 Count Timing (During Count Up Operation)

Note: When running the counter using the event counter clock, two dummy clocks must be input before the first counting up/down can be performed.

17.4 Operations

17.4.1 Initialization

T16B Ch.n should be initialized and started counting with the procedure shown below. Perform initial settings for comparator mode when using T16B as an interval timer, PWM waveform generator, or external event counter. Perform initial settings for capture mode when using T16B to measure external event periods/cycles.

Initial settings for comparator mode

- 1. Configure the T16B Ch.n operating clock.
- 2 Set the T16B_nCTL.MODEN bit to 1. (Enable T16B operations)
- 3. Set the following T16B nCCCTL0 and T16B nCCCTL1 register bits:
 - Set the T16B_nCCCTLm.CCMD bit to 0. * (Set comparator mode)
 T16B_nCCCTLm.CBUFMD[2:0] bits (Configure compare buffer)
 - * Another circuit in the comparator/capture circuit pair (circuits 0 and 1, 2 and 3, 4 and 5) can be set to capture mode.

Set the following bits when the TOUT*nm* output is used.

T16B_nCCCTLm.TOUTMT bit (Select waveform generation signal)
 T16B_nCCCTLm.TOUTMD[2:0] bits (Select TOUT signal generation mode)

- T16B_nCCCTLm.TOUTINV bit (Select TOUT signal polarity)

4. Set the T16B_nMC register. (Set MAX counter data)

5. Set the T16B_nCCR0 and T16B_nCCR1 registers. (Set the counter comparison value)

6. Set the following bits when using the interrupt:

Write 1 to the interrupt flags in the T16B_nINTF register. (Clear interrupt flags)
 Set the interrupt enable bits in the T16B_nINTE register to 1. (Enable interrupts)

- 7. Configure the DMA controller and set the following T16B control bits when using DMA transfer:
 - Write 1 to the DMA transfer request enable bits in the

T16B_nMZDMAEN and T16B_nCCmDMAEN registers. (Enable DMA transfer requests)

8. Set the following T16B_nCTL register bits:

T16B_nCTL.CNTMD[1:0] bits (Select count up/down operation)
 T16B_nCTL.ONEST bit (Select one-shot/repeat operation)

Set the T16B_nCTL.PRESET bit to 1. (Reset counter)
 Set the T16B_nCTL.RUN bit to 1. (Start counting)

Initial settings for capture mode

- 1. Configure the T16B Ch.n operating clock.
- 2 Set the T16B_nCTL.MODEN bit to 1. (Enable T16B operations)
- 3. Set the following T16B_nCCCTL0 and T16B_nCCCTL1 register bits:
 - Set the T16B_nCCCTLm.CCMD bit to 1. * (Set capture mode)
 - T16B nCCCTLm.SCS bit (Set synchronous/asynchronous mode)
 - T16B_nCCCTLm.CAPIS[1:0] bits (Set trigger signal)
 T16B_nCCCTLm.CAPTRG[1:0] bits (Select trigger edge)
 - * Another circuit in the comparator/capture circuit pair (circuits 0 and 1, 2 and 3, 4 and 5) can be set to comparator mode.
- 4. Set the T16B_nMC register. (Set MAX counter data)
- 5. Set the following bits when using the interrupt:
 - Write 1 to the interrupt flags in the T16B_nINTF register. (Clear interrupt flags)
 - Set the interrupt enable bits in the T16B nINTE register to 1. (Enable interrupts)

- 6. Configure the DMA controller and set the following T16B control bits when using DMA transfer:
 - Write 1 to the DMA transfer request enable bits in the

T16B nMZDMAEN and T16B nCCmDMAEN registers. (Enable DMA transfer requests)

7. Set the following T16B_nCTL register bits:

- T16B_nCTL.CNTMD[1:0] bits (Select count up/down operation)
- T16B_nCTL.ONEST bit (Select one-shot/repeat operation)

Set the T16B_nCTL.PRESET bit to 1. (Reset counter)
 Set the T16B_nCTL.RUN bit to 1. (Start counting)

17.4.2 Counter Block Operations

The counter in each counter block channel is a 16-bit up/down counter that counts the selected operating clock (count clock).

Count mode

The T16B_nCTL.CNTMD[1:0] bits allow selection of up, down, and up/down mode. The T16B_nCTL.ON-EST bit allows selection of repeat and one-shot mode. The counter operates in six counter modes specified with a combination of these modes.

Repeat mode enables the counter to continue counting until stopped via software. Select this mode to generate periodic interrupts at desired intervals or to generate timer output waveforms.

One-shot mode enables the counter to stop automatically. Select this mode to stop the counter after an interrupt has occurred once, such as for measuring pulse width or external event intervals and checking a specific lapse of time.

Up, down, and up/down mode configures the counter as an up counter, down counter and up/down counter, respectively.

MAX counter data register

The MAX counter data register (T16B_nMC.MC[15:0] bits) is used to set the maximum value of the counter (hereafter referred to as MAX value). This setting limits the count range to 0x0000–MAX value and determines the count and interrupt cycles. When the counter is set to repeat mode, the MAX value can be rewritten in the procedure shown below even if the counter is running.

- 1. Check to see if the T16B_nCTL.MAXBSY bit is set to 0.
- 2. Write the MAX value to the T16B_nMC.MC[15:0] bits.

Note: When rewriting the MAX value, the new MAX value should be written after the counter has been reset to the previously set MAX value.

Counter reset

Setting the T16B_nCTL.PRESET bit to 1 resets the counter. This clears the counter to 0x0000 in up or up/down mode, or presets the MAX value to the counter in down mode.

The counter is also cleared to 0x0000 when the counter value exceeds the MAX value during count up operation.

Counting start

To start counting, set the T16B_nCTL.RUN bit to 1. The counting stop control depends on the count mode set.

Counter value read

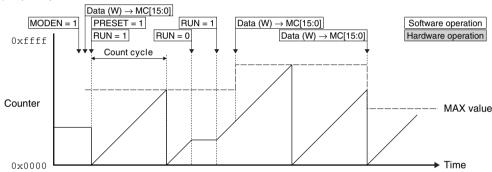
The counter value can be read out from the T16B_nTC.TC[15:0] bits. However, since T16B operates on CLK_T16Bn, one of the operations shown below is required to read correctly by the CPU.

- Read the counter value twice or more and check to see if the same value is read.
- Stop the timer and then read the counter value.

Counter status check

The counter operating status can be checked using the T16B_nCS.BSY bit. The T16B_nCS.BSY bit is set to 1 while the counter is running or 0 while the counter is idle.

The current count direction can also be checked using the T16B_nCS.UP_DOWN bit. The T16B_nCS.UP_DOWN bit is set to 1 during count up operation or 0 during count down operation.


Operations in repeat up count and one-shot up count modes

In these modes, the counter operates as an up counter and counts from 0x0000 (or current value) to the MAX value.

In repeat up count mode, the counter returns to 0x0000 if it exceeds the MAX value and continues counting until the T16B_nCTL.RUN bit is set to 0. If the MAX value is altered to a value larger than the current counter value during counting, the counter keeps counting up to the new MAX value. If the MAX value is altered to a value smaller than the current counter value, the counter is cleared to 0x0000 and continues counting up to the new MAX value.

In one-shot up count mode, the counter returns to 0x0000 if it exceeds the MAX value and stops automatically at that point.

(1) Repeat up count mode

(2) One-shot up count mode

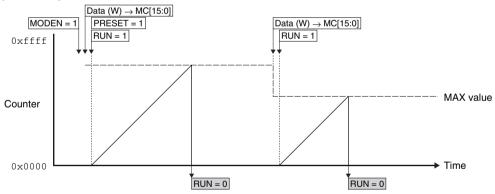
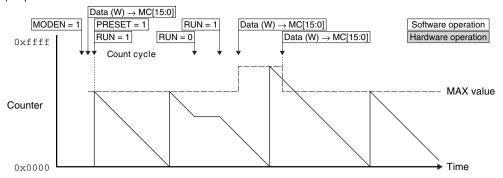


Figure 17.4.2.1 Operations in Repeat Up Count and One-shot Up Count Modes


Operations in repeat down count and one-shot down count modes

In these modes, the counter operates as a down counter and counts from the MAX value (or current value) to 0x0000.

In repeat down count mode, the counter returns to the MAX value if a counter underflow occurs and continues counting until the T16B_nCTL.RUN bit is set to 0. If the MAX value is altered during counting, the counter keeps counting down to 0x0000 and continues counting down from the new MAX value after a counter underflow occurs.

In one-shot down count mode, the counter returns to the MAX value if a counter underflow occurs and stops automatically at that point.

(1) Repeat down count mode

(2) One-shot down count mode

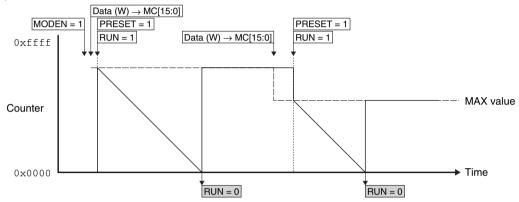
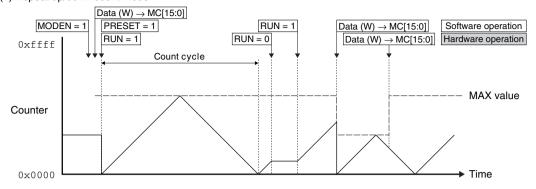


Figure 17.4.2.2 Operations in Repeat Down Count and One-shot Down Count Modes


Operations in repeat up/down count and one-shot up/down count modes

In these modes, the counter operates as an up/down counter and counts as 0x0000 (or current value) \rightarrow the MAX value $\rightarrow 0x0000$.

In repeat up/down count mode, the counter repeats counting up from 0x0000 to the MAX value and counting down from the MAX value to 0x0000 until the T16B_nCTL.RUN bit is set to 0. If the MAX value is altered to a value larger than the current counter value during count up operation, the counter keeps counting up to the new MAX value. If the MAX value is altered to a value smaller than the current counter value, the counter is cleared to 0x0000 and continues counting up to the new MAX value. If the MAX value is altered during count down operation, the counter keeps counting down to 0x0000 and then starts counting up to the new MAX value.

In one-shot up/down count mode, the counter stops automatically when it reaches 0x0000 during count down operation.

(1) Repeat up/down count mode

(2) One-shot up/down count mode

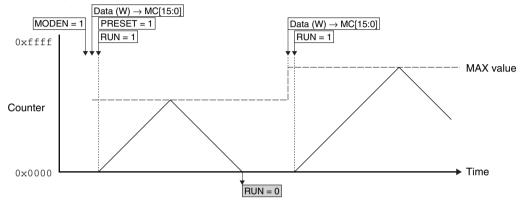


Figure 17.4.2.3 Operations in Repeat Up/Down Count and One-shot Up/Down Count Modes

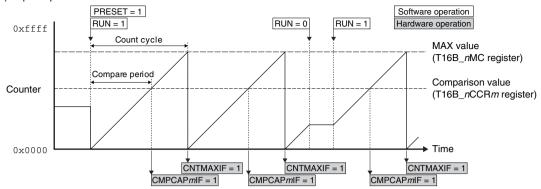
17.4.3 Comparator/Capture Block Operations

The comparator/capture block functions as a comparator to compare the counter value with the register value set or a capture circuit to capture counter values using the external/software trigger signals.

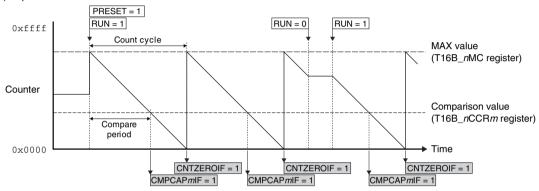
Comparator/capture block operating mode

The comparator/capture block includes two systems (four or six systems) of comparator/capture circuits and each system can be set to comparator mode or capture mode, individually.

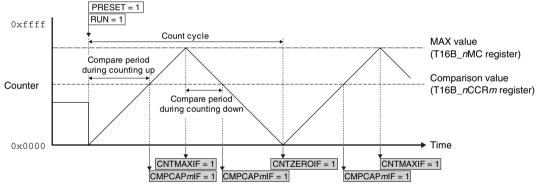
Set the T16B_nCCCTLm.CCMD bit to 0 to set the comparator/capture circuit m to comparator mode or 1 to set it to capture mode.


Operations in comparator mode

The comparator mode compares the counter value and the value set via software. It generates an interrupt and toggles the timer output signal level when the values are matched. The T16B_nCCRm register functions as the compare data register used for setting a comparison value in this mode. The TOUTnm/CAPnm pin is configured to the TOUTnm pin.


When the counter reaches the value set in the T16B_nCCRm register during counting, the comparator asserts the MATCH signal and sets the T16B_nINTF.COMPCAPmIF bit (compare interrupt flag) to 1.

When the counter reaches the MAX value in comparator mode, the T16B_nINTF.CNTMAXIF bit (counter MAX interrupt flag) is set to 1. When the counter reaches 0x0000, the T16B_nINTF.CNTZEROIF bit (counter zero interrupt flag) is set to 1.


(1) Repeat up count mode

(2) Repeat down count mode

(3) Repeat up/down count mode

(Note that the T16B_nINTF.CMPCAPmIF/CNTMAXIF/CNTZEROIF bit clearing operations via software are omitted from the figure.) Figure 17.4.3.1 Operation Examples in Comparator Mode

The time from counter = 0x0000 or MAX value to occurrence of a compare interrupt (compare period) and the time to occurrence of a counter MAX or counter zero interrupt (count cycle) can be calculated as follows:

During counting up

Compare period =
$$\frac{(CC + 1)}{f_{CLK, T16B}} [s]$$
 Count cycle =
$$\frac{(MAX + 1)}{f_{CLK, T16B}} [s]$$
 (Eq. 17.1)

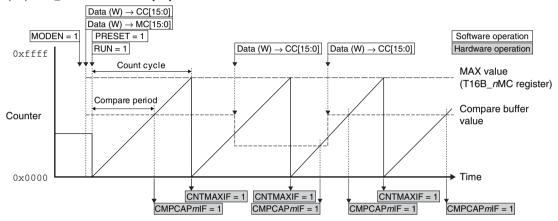
During counting down

Compare period =
$$\frac{(\text{MAX - CC} + 1)}{\text{fclk T16B}} [s]$$
 Count cycle =
$$\frac{(\text{MAX} + 1)}{\text{fclk T16B}} [s]$$
 (Eq. 17.2)

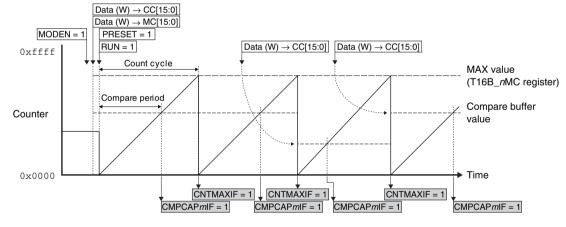
Where

CC: T16B_nCCRm register setting value (0 to 65,535) MAX: T16B_nMC register setting value (0 to 65,535)

fclk_t16B: Count clock frequency [Hz]

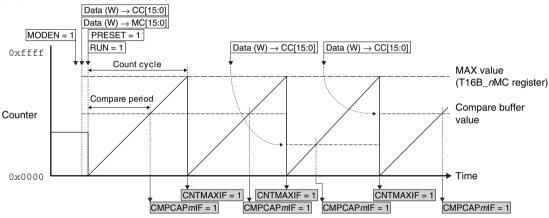

The comparator MATCH signal and counter MAX/ZERO signals are also used to generate a timer output waveform (TOUT). Refer to "TOUT Output Control" for more information.

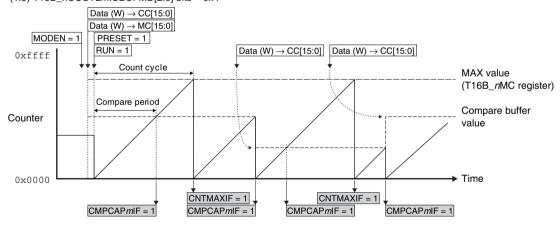
Compare buffer


The comparator loads the comparison value, which has been written to the T16B_nCCRm register, to the compare buffer before comparing it with the counter value. For example, when generating a PWM waveform, the waveform with the desired duty ratio may not be generated if the comparison value is altered asynchronous to the count operation. To avoid this problem, the timing to load the comparison value to the compare buffer can be configured using the T16B_nCCCTLm.CBUFMD[2:0] bits for synchronization with the count operation.

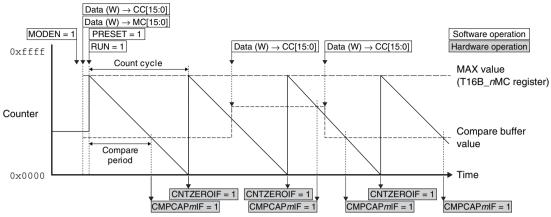
(1) Repeat up count mode

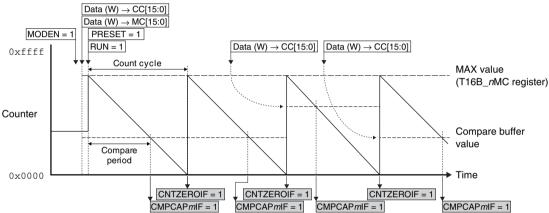

(1.1) T16B_nCCCTLm.CBUFMD[2:0] bits = 0x0


(1.2) T16B_nCCCTLm.CBUFMD[2:0] bits = 0x1

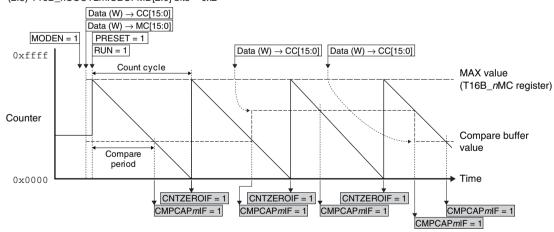

$(1.3) T16B_nCCCTLm.CBUFMD[2:0]$ bits = 0x2

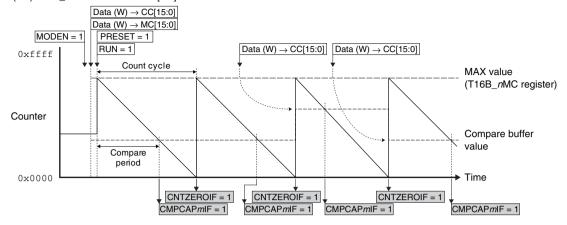
$(1.4) T16B_nCCCTLm.CBUFMD[2:0]$ bits = 0x3

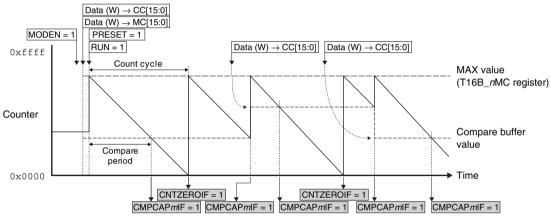

$(1.5) T16B_nCCCTLm.CBUFMD[2:0] bits = 0x4$


17 16-BIT PWM TIMERS (T16B)

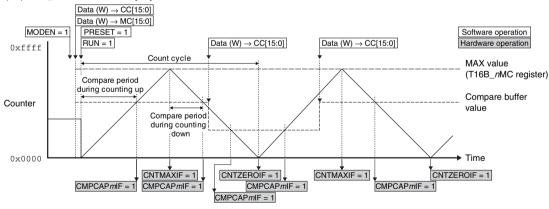
(2) Repeat down count mode


(2.1) T16B_nCCCTLm.CBUFMD[2:0] bits = 0x0

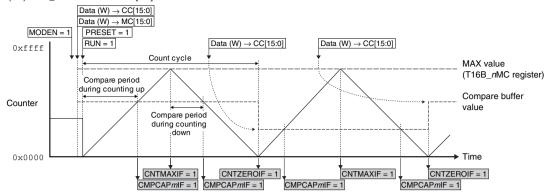

(2.2) T16B_nCCCTLm.CBUFMD[2:0] bits = 0x1


$(2.3) T16B_nCCCTLm.CBUFMD[2:0] bits = 0x2$

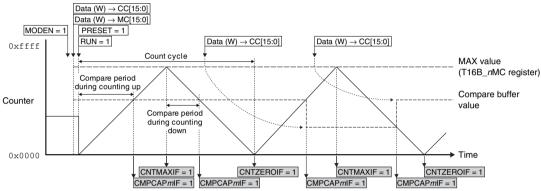
(2.4) T16B_nCCCTLm.CBUFMD[2:0] bits = 0x3

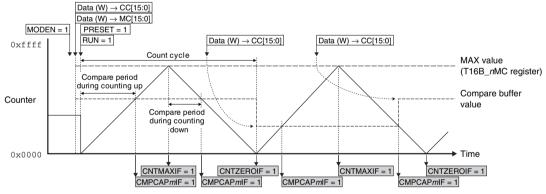


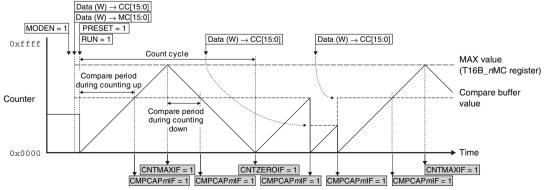
$(2.5) T16B_nCCCTLm.CBUFMD[2:0]$ bits = 0x4



(3) Repeat up/down count mode


(3.1) T16B_nCCCTLm.CBUFMD[2:0] bits = 0x0


(3.2) T16B_nCCCTLm.CBUFMD[2:0] bits = 0x1


(3.3) T16B_nCCCTLm.CBUFMD[2:0] bits = 0x2

(3.4) T16B_nCCCTLm.CBUFMD[2:0] bits = 0x3

(3.5) T16B_nCCCTLm.CBUFMD[2:0] bits = 0x4

(Note that the T16B_nINTF.CMPCAPmIF/CNTMAXIF/CNTZEROIF bit clearing operations via software are omitted from the figure.) Figure 17.4.3.2 Compare Buffer Operations

Compare period and count cycle settings using DMA

By setting the T16B_nCCmDMAEN.CCmDMAENx bit to 1 (DMA transfer request enabled) in comparator mode, a DMA transfer request is sent to the DMA controller and compare data is transferred from the specified memory to the T16B_nCCRm register via DMA Ch.x when the T16B_nINTF.CMPCAPmIF bit is set to 1 (when the counter reaches the compare buffer value).

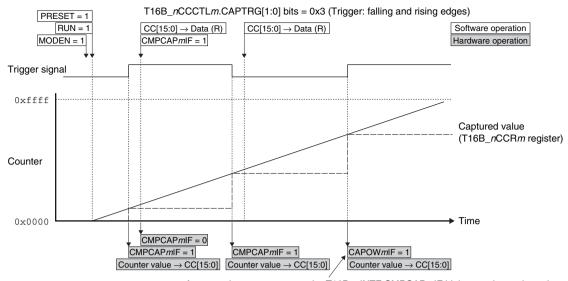
Similarly, by setting the T16B_nCCmDMAEN.MZDMAENx bit to 1 (DMA transfer request enabled), a DMA transfer request is sent to the DMA controller and a counter MAX value is transferred from the specified memory to the T16B_nMC register via DMA Ch.x when the T16B_nINTF.CNTMAXIF bit is set to 1 (when the counter reaches the MAX value) in up or up/down count mode, or when the T16B_nINTF. CNTZEROIF bit is set to 1 (when the counter reaches zero) in down count mode.

This automates the compare period and count cycle settings of the timer counter.

The transfer source/destination and control data must be set for the DMA controller and the relevant DMA channel must be enabled to start a DMA transfer in advance so that the setting data will be transferred to the T16B_nCCRm or T16B_nMC register. For more information on DMA, refer to the "DMA Controller" chapter.

Table 17.4.3.1 DMA Data Structure Configura	tion Example (T16B Compare	Period and Count Cycle Settings)
---	----------------------------	----------------------------------

Item		Setting example				
End pointer	Transfer source	Memory address in which the last setting data is stored				
	Transfer destination	T16B_nCCRm or T16B_nMC register address				
Control data	dst_inc	0x3 (no increment)				
	dst_size	0x1 (haflword)				
	src_inc	0x1 (+2)				
	src_size	0x1 (halfword)				
	R_power	0x0 (arbitrated for every transfer)				
	n_minus_1	Number of transfer data				
	cycle_ctrl	0x1 (basic transfer)				


Operations in capture mode

The capture mode captures the counter value when an external event, such as a key entry, occurs (at the specified edge of the external input/software trigger signal). In this mode, the T16B_nCCRm register functions as the capture register from which the captured data is read. Furthermore, the TOUTnm/CAPnm pin is configured to the CAPnm pin.

The trigger signal and the trigger edge to capture the counter value are selected using the T16B_nCCCTLm. CAPIS[1:0] bits and the T16B_nCCCTLm.CAPTRG[1:0] bits, respectively.

When a specified trigger edge is input during counting, the current counter value is loaded to the T16B_nC-CRm register. At the same time the T16B_nINTF.CMPCAPmIF bit is set. The interrupt occurred by this bit can be used to read the captured data from the T16B_nCCRm register. For example, external event cycles and pulse widths can be measured from the difference between two captured counter values read.

If the captured data stored in the T16B_nCCRm register is overwritten by the next trigger when the T16B_nINTF.CMPCAPmIF bit is still set, an overwrite error occurs (the T16B_nINTF.CAPOWmIF bit is set).

An overwrite error occurs as the T16B_nINTF.CMPCAPmIF bit has not been cleared.

Figure 17.4.3.3 Operations in Capture Mode (Example in One-shot Up Count Mode)

Synchronous capture mode/asynchronous capture mode

The capture circuit can operate in two operating modes: synchronous capture mode and asynchronous capture mode.

Synchronous capture mode is provided to avoid the possibility of invalid data reading by capturing counter data simultaneously with the counter being counted up/down. Set the T16B_nCCCTLm.SCS bit to 1 to set the capture circuit to synchronous capture mode. This mode captures counter data by synchronizing the capture signal with the counter clock.

On the other hand, asynchronous capture mode can capture counter data by detecting a trigger pulse even if the pulse is shorter than the counter clock cycle that becomes invalid in synchronous capture mode. Set the T16B_nCCCTLm.SCS bit to 0 to set the capture circuit to asynchronous capture mode.

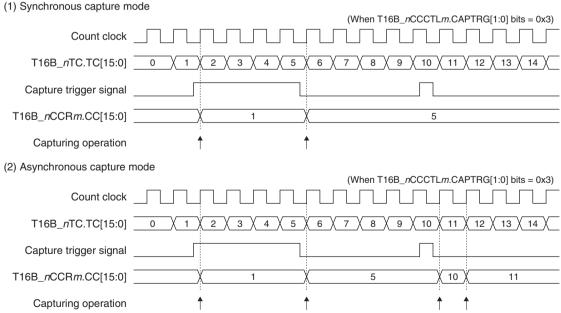


Figure 17.4.3.4 Synchronous Capture Mode/Asynchronous Capture Mode

Capture data transfer using DMA

By setting the T16B_nCCmDMAEN.CcmDMAENx bit to 1 (DMA transfer request enabled) in capture mode, a DMA transfer request is sent to the DMA controller and the T16B_nCCRm register value is transferred to the specified memory via DMA Chx when the T16B_nINTF.CMPCAPmIF bit is set to 1 (when data has been captured).

This automates reading and saving of capture data.

The transfer source/destination and control data must be set for the DMA controller and the relevant DMA channel must be enabled to start a DMA transfer in advance. For more information on DMA, refer to the "DMA Controller" chapter.

	Item	Setting example				
End pointer	Transfer source	T16B_nCCRm register address				
	Transfer destination	Memory address to which the last capture data is stored				
Control data	dst_inc	0x1 (+2)				
	dst_size	0x1 (haflword)				
	src_inc	0x3 (no increment)				
	src_size	0x1 (halfword)				
	R_power	0x0 (arbitrated for every transfer)				
	n_minus_1	Number of transfer data				
	cycle_ctrl	0x1 (basic transfer)				

Table 17.4.3.2 DMA Data Structure Configuration Example (Capture Data Transfer)

17.4.4 TOUT Output Control

Comparator mode can generate TOUT signals using the comparator MATCH and counter MAX/ZERO signals. The generated signals can be output to outside the IC. Figure 17.4.4.1 shows the TOUT output circuits (circuits 0 and 1).

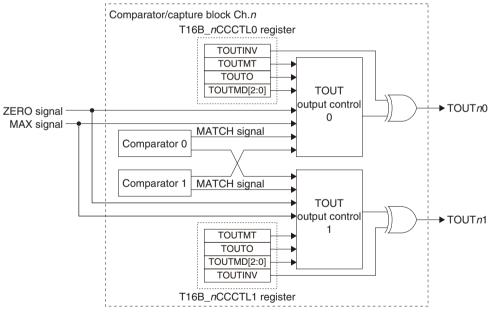
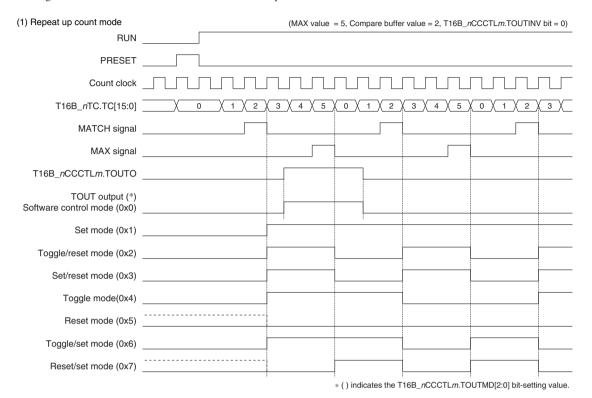


Figure 17.4.4.1 TOUT Output Circuits (Circuits 0 and 1)

Each timer channel includes two (four, or six) TOUT output circuits and their signal generation and output can be controlled individually.

TOUT generation mode


The T16B_nCCCTLm.TOUTMD[2:0] bits are used to set how the TOUT signal waveform is changed by the MATCH and MAX/ZERO signals.

Furthermore, when the T16B_nCCCTLm.TOUTMT bit is set to 1, the TOUT circuit uses the MATCH signal output from another system in the circuit pair (0 and 1, 2 and 3, 4 and 5). This makes it possible to change the signal twice within a counter cycle.

TOUT signal polarity

The TOUT signal polarity (active level) can be set using the T16B_nCCCTLm.TOUTINV bit. It is set to active high by setting the T16B_nCCCTLm.TOUTINV bit to 0 and active low by setting to 1.

Figures 17.4.4.2 and 17.4.4.3 show the TOUT output waveforms.

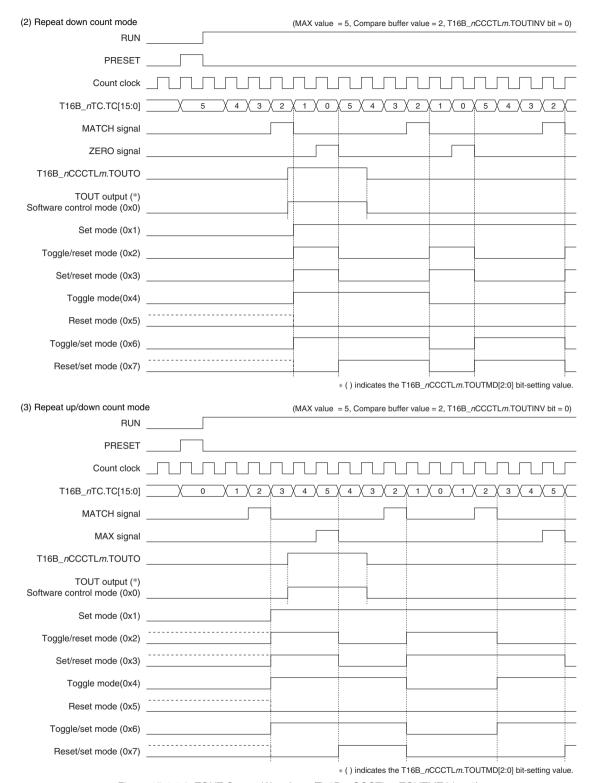
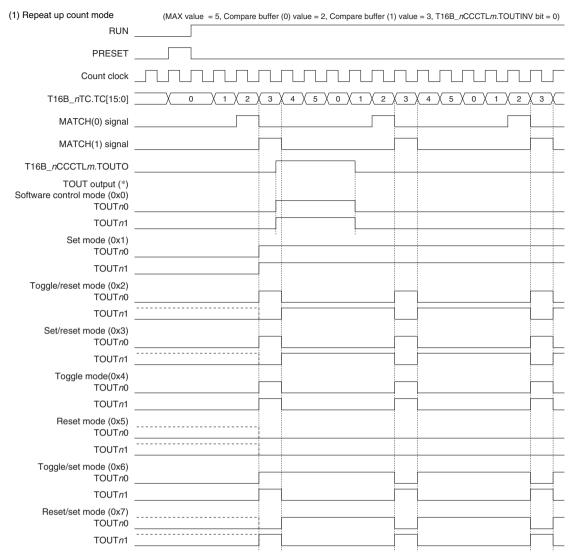
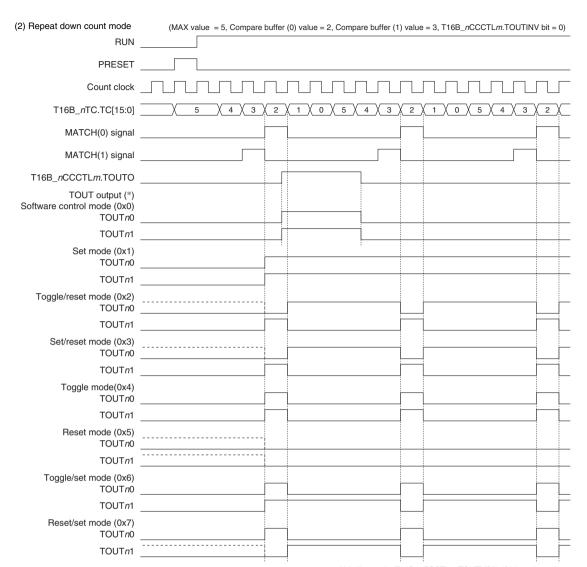




Figure 17.4.4.2 TOUT Output Waveform (T16B_nCCCTLm.TOUTMT bit = 0)

17 16-BIT PWM TIMERS (T16B)

* () indicates the T16B_nCCCTLm.TOUTMD[2:0] bit-setting value.

17 16-BIT PWM TIMERS (T16B)

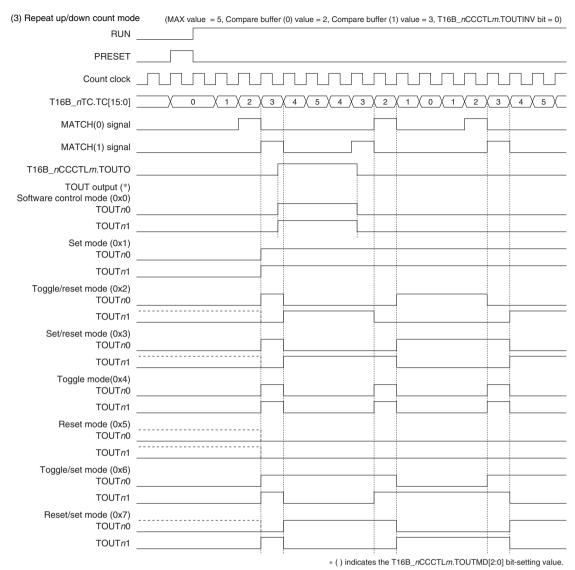


Figure 17.4.4.3 TOUT Output Waveform (T16B_nCCCTL0.TOUTMT bit = 1, T16B_nCCCTL1.TOUTMT bit = 0)

17.5 Interrupt

Each T16B channel has a function to generate the interrupt shown in Table 17.5.1.

Table 17.5.1 T16B Interrupt Function

Interrupt	Interrupt flag	Set condition	Clear condition
Capture	T16B_nINTF.CAPOWmIF	When the T16B_nINTF.CMPCAPmIF bit =1 and the T16B_	Writing 1
overwrite		n CCRm register is overwritten with new captured data in	
		capture mode	
Compare/	T16B_nINTF.CMPCAPmIF	When the counter value becomes equal to the compare	Writing 1
capture		buffer value in comparator mode	
		When the counter value is loaded to the T16B_nCCRm reg-	
		ister by a capture trigger input in capture mode	
Counter MAX	T16B_nINTF.CNTMAXIF	When the counter reaches the MAX value	Writing 1
Counter zero	T16B_nINTF.CNTZEROIF	When the counter reaches 0x0000	Writing 1

T16B provides interrupt enable bits corresponding to each interrupt flag. An interrupt request is sent to the CPU only when the interrupt flag, of which interrupt has been enabled by the interrupt enable bit, is set. For more information on interrupt control, refer to the "Interrupt" chapter.

17.6 DMA Transfer Requests

The T16B has a function to generate DMA transfer requests from the causes shown in Table 17.6.1.

Table 17.6.1 DMA Transfer Request Causes of T16B

Cause to request DMA transfer	DMA transfer request flag	Set condition	Clear condition
Compare/	Compare/capture flag	When the counter value becomes equal to the com-	When the
capture	(T16B_nINTF.CMPCAPmIF)	pare buffer value in comparator mode	DMA transfer
		When the counter value is loaded to the T16B_nCCRm	request is ac-
		register by a capture trigger input in capture mode	cepted
Counter MAX/	Counter MAX flag	When the counter reaches the MAX value in up or up/	When the
zero	(T16B_nINTF.CNTMAXIF)	down count mode	DMA transfer
	Counter zero flag	When the counter reaches 0x0000 in down count	request is ac-
	(T16B_nINTF.CNTZEROIF)	mode	cepted

The T16B provides DMA transfer request enable bits corresponding to each DMA transfer request flag shown above for the number of DMA channels. A DMA transfer request is sent to the pertinent channel of the DMA controller only when the DMA transfer request flag, of which DMA transfer has been enabled by the DMA transfer request enable bit, is set. The DMA transfer request flag also serves as an interrupt flag, therefore, both the DMA transfer request and the interrupt cannot be enabled at the same time. After a DMA transfer has completed, disable the DMA transfer to prevent unintended DMA transfer requests from being issued. For more information on the DMA control, refer to the "DMA Controller" chapter.

17.7 Control Registers

T16B Ch.n Clock Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks		
T16B_nCLK	15–9	_	0x00	_	R	_		
	8	DBRUN	0	H0	R/W			
	7–4	CLKDIV[3:0]	0x0	H0	R/W			
	3	-	0	-	R			
	2–0	CLKSRC[2:0]	0x0	H0	R/W			

Bits 15-9 Reserved

Bit 8 DBRUN

This bit sets whether the T16B Ch.n operating clock is supplied during debugging or not.

1 (R/W): Clock supplied during debugging 0 (R/W): No clock supplied during debugging

Bits 7-4 CLKDIV[3:0]

These bits select the division ratio of the T16B Ch.n operating clock (counter clock).

Bit 3 Reserved

Bits 2-0 CLKSRC[2:0]

These bits select the clock source of T16B Ch.n.

Table 17.7.1 Clock Source and Division Ratio Settings

	T16B_nCLK.CLKSRC[2:0] bits									
T16B nCLK.	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7		
CLKDIV[3:0] bits	IOSC	OSC1	osc3	EXOSC	EXCLn0	EXCLn1	EXCLn0 inverted input	EXCLn1 inverted input		
0xf	1/32,768	1/1	1/32,768	1/1	1/1	1/1	1/1	1/1		
0xe	1/16,384		1/16,384							
0xd	1/8,192		1/8,192							
0xc	1/4,096		1/4,096							
0xb	1/2,048		1/2,048							
0xa	1/1,024		1/1,024							
0x9	1/512		1/512							
0x8	1/256	1/256	1/256							
0x7	1/128	1/128	1/128							
0x6	1/64	1/64	1/64							
0x5	1/32	1/32	1/32							
0x4	1/16	1/16	1/16							
0x3	1/8	1/8	1/8							
0x2	1/4	1/4	1/4							
0x1	1/2	1/2	1/2							
0x0	1/1	1/1	1/1							

(Note) The oscillator circuits/external inputs that are not supported in this IC cannot be selected as the clock source.

T16B Ch.n Counter Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16B_nCTL	15–9	-	0x00	_	R	_
	8	MAXBSY	0	H0	R	
	7–6	_	0x0	-	R	
	5–4	CNTMD[1:0]	0x0	H0	R/W	
	3	ONEST	0	H0	R/W	
	2	RUN	0	H0	R/W	
	1	PRESET	0	H0	R/W	
	0	MODEN	0	H0	R/W	

Bits 15-9 Reserved

Bit 8 MAXBSY

This bit indicates whether data can be written to the T16B_nMC register or not.

1 (R): Busy status (cannot be written)

0 (R): Idle (can be written)

While this bit is 1, the T16B_nMC register is loading the MAX value. Data writing is prohibited during this period.

Bits 7-6 Reserved

Bits 5-4 CNTMD[1:0]

These bits select the counter up/down mode. The count mode is configured with this selection and the T16B_nCTL.ONEST bit setting (see Table 17.7.2).

Bit 3 ONEST

This bit selects the counter repeat/one-shot mode. The count mode is configured with this selection and the T16B_nCTL.CNTMD[1:0] bit settings (see Table 17.7.2).

Table 17.7.2 Count Mode

T16B nCTL.CNTMD[1:0] bits	Count mode						
TIOB_//CTL:CNTWID[1:0] bits	T16B_nCTL.ONEST bit = 1	T16B_nCTL.ONEST bit = 0					
0x3	Reserved						
0x2	One-shot up/down count mode	Repeat up/down count mode					
0x1	One-shot down count mode	Repeat down count mode					
0x0	One-shot up count mode	Repeat up count mode					

Bit 2 RUN

This bit starts/stops counting.

1 (W): Start counting0 (W): Stop counting1 (R): Counting0 (R): Idle

By writing 1 to this bit, the counter block starts count operations. However, the T16B_nCTL.MODEN bit must be set to 1 in conjunction with this bit or it must be set in advance. While the timer is running, writing 0 to the T16B_nCTL.RUN bit stops count operations. When the counter stops by the counter MAX/ZERO signal in one-shot mode, this bit is automatically cleared to 0.

Bit 1 PRESET

This bit resets the counter.

1 (W): Reset 0 (W): Ineffective

1 (R): Resetting in progress

0 (R): Resetting finished or normal operation

In up mode or up/down mode, the counter is cleared to 0x0000 by writing 1 to this bit. In down mode, the MAX value, which has been set to the T16B_nMC register, is preset to the counter. However, the T16B_nCTL.MODEN bit must be set to 1 in conjunction with this bit or it must be set in advance.

Bit 0 MODEN

This bit enables the T16B Ch.n operations.

1 (R/W): Enable (Start supplying operating clock) 0 (R/W): Disable (Stop supplying operating clock)

Note: The counter reset operation using the T16B_nCTL.PRESET bit and the counting start operation using the T16B_nCTL.RUN bit take effect only when the T16B_nCTL.MODEN bit = 1.

T16B Ch.n Max Counter Data Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16B nMC	15–0	MC[15:0]	0xffff	H0	R/W	_

Bits 15-0 MC[15:0]

These bits are used to set the MAX value to preset to the counter. For more information, refer to "Counter Block Operations - MAX counter data register."

Notes: • When one-shot mode is selected, do not alter the T16B_nMC.MC[15:0] bits (MAX value) during counting.

- Make sure the T16B_nCTL.MODEN bit is set to 1 before writing data to the T16B_nMC. MC[15:0] bits. If the T16B_nCTL.MODEN bit = 0 when writing to the T16B_nMC.MC[15:0] bits, set the T16B_nCTL.MODEN bit to 1 until the T16B_nCS.BSY bit is set to 0 from 1.
- Do not set the T16B_nMC.MC[15:0] bits to 0x0000.

T16B Ch.n Timer Counter Data Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16B_nTC	15–0	TC[15:0]	0x0000	H0	R	_

Bits 15-0 TC[15:0]

The current counter value can be read out through these bits.

T16B Ch.n Counter Status Register

- 102 Olim Ocalitor Clarac Hogicio.								
Register name	Bit	Bit name	Initial	Reset	R/W	Remarks		
T16B_nCS	15–8	_	0x00	_	R	_		
	7	CAPI5	0	H0	R			
	6	CAPI4	0	H0	R			
	5	CAPI3	0	H0	R			
	4	CAPI2	0	H0	R			
	3	CAPI1	0	H0	R			
	2	CAPI0	0	H0	R			
	1	UP_DOWN	1	H0	R			
	0	BSY	0	H0	R			

Bits 15-8 Reserved

Bit 7	CAPI5
Bit 6	CAPI4
Bit 5	CAPI3
Bit 4	CAPI2
Bit 3	CAPI1
Bit 2	CAPI0

These bits indicate the signal level currently input to the CAPnm pin.

1 (R): Input signal = High level 0 (R): Input signal = Low level

The following shows the correspondence between the bit and the CAPnm pin:

T16B_nCS.CAPI5 bit: CAPn5 pin T16B_nCS.CAPI4 bit: CAPn4 pin T16B_nCS.CAPI3 bit: CAPn3 pin T16B_nCS.CAPI2 bit: CAPn2 pin T16B_nCS.CAPI1 bit: CAPn1 pin T16B_nCS.CAPI0 bit: CAPn0 pin

Note: The configuration of the T16B_nCS.CAPIm bits depends on the model. The bits corresponding to the CAPnm pins that do not exist are read-only bits and are always fixed at 0.

Bit 1 UP_DOWN

This bit indicates the currently set count direction.

1 (R): Count up 0 (R): Count down

Bit 0 BSY

This bit indicates the counter operating status.

1 (R): Running 0 (R): Idle

T16B Ch.n Interrupt Flag Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16B_nINTF	15–14	_	0x0	_	R	_
	13	CAPOW5IF	0	H0	R/W	Cleared by writing 1.
	12	CMPCAP5IF	0	H0	R/W	
	11	CAPOW4IF	0	H0	R/W	
	10	CMPCAP4IF	0	H0	R/W	
	9	CAPOW3IF	0	H0	R/W	
	8	CMPCAP3IF	0	H0	R/W	
	7	CAPOW2IF	0	H0	R/W	
	6	CMPCAP2IF	0	H0	R/W	
	5	CAPOW1IF	0	H0	R/W	
	4	CMPCAP1IF	0	H0	R/W	
	3	CAPOW0IF	0	H0	R/W	
	2	CMPCAP0IF	0	H0	R/W	
	1	CNTMAXIF	0	H0	R/W	
	0	CNTZEROIF	0	H0	R/W	

Bits 15-14 Reserved

Bit 13	CAPOW5IF
Bit 12	CMPCAP5IF
Bit 11	CAPOW4IF
Bit 10	CMPCAP4IF
Bit 9	CAPOW3IF
Bit 8	CMPCAP3IF
Bit 7	CAPOW2IF
Bit 6	CMPCAP2IF
Bit 5	CAPOW1IF
Bit 4	CMPCAP1IF
Bit 3	CAPOW0IF
Bit 2	CMPCAP0IF
Bit 1	CNTMAXIF
Bit 0	CNTZEROIF

These bits indicate the T16B Ch.n interrupt cause occurrence status.

1 (R): Cause of interrupt occurred 0 (R): No cause of interrupt occurred

1 (W): Clear flag 0 (W): Ineffective

The following shows the correspondence between the bit and interrupt:

T16B_nINTF.CAPOW5IF bit: Capture 5 overwrite interrupt T16B_nINTF.CMPCAP5IF bit: Compare/capture 5 interrupt T16B_nINTF.CAPOW4IF bit: Capture 4 overwrite interrupt T16B_nINTF.CMPCAP4IF bit: Capture 3 overwrite interrupt T16B_nINTF.CAPOW3IF bit: Capture 3 overwrite interrupt T16B_nINTF.CAPOW2IF bit: Capture 2 overwrite interrupt T16B_nINTF.CAPOW2IF bit: Capture 2 overwrite interrupt T16B_nINTF.CAPOW1IF bit: Capture 1 overwrite interrupt T16B_nINTF.CAPOW1IF bit: Capture 1 overwrite interrupt T16B_nINTF.CAPOW0IF bit: Capture 0 overwrite interrupt T16B_nINTF.CAPOW0IF bit: Capture 0 interrupt T16B_nINTF.CAPOW0IF bit: Compare/capture 0 interrupt T16B_nINTF.CMPCAP0IF bit: Compare/capture 0 interrupt T16B_nINTF.CMPCAP0IF bit: Compare/capture 0 interrupt T16B_nINTF.CNTMAXIF bit: Counter MAX interrupt

T16B_nINTF.CNTZEROIF bit: Counter zero interrupt

Note: The configuration of the T16B_nINTF.CAPOWmIF and T16B_nINTF.CMPCAPmIF bits depends on the model. The bits corresponding to the comparator/capture circuits that do not exist are read-only bits and are always fixed at 0.

T16B Ch.n Interrupt Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16B_nINTE	15–14	_	0x0	_	R	_
	13	CAPOW5IE	0	H0	R/W	
	12	CMPCAP5IE	0	H0	R/W	
	11	CAPOW4IE	0	H0	R/W	
	10	CMPCAP4IE	0	H0	R/W	
	9	CAPOW3IE	0	H0	R/W	
	8	CMPCAP3IE	0	H0	R/W	
	7	CAPOW2IE	0	H0	R/W	
	6	CMPCAP2IE	0	H0	R/W	
	5	CAPOW1IE	0	H0	R/W	
	4	CMPCAP1IE	0	H0	R/W	
	3	CAPOW0IE	0	H0	R/W	
	2	CMPCAP0IE	0	H0	R/W	
	1	CNTMAXIE	0	H0	R/W	
	0	CNTZEROIE	0	H0	R/W	

Bits 15-14 Reserved

Bit 13	CAPOW5IE
Bit 12	CMPCAP5IE
Bit 11	CAPOW4IE
Bit 10	CMPCAP4IE
Bit 9	CAPOW3IE
Bit 8	CMPCAP3IE
Bit 7	CAPOW2IE
Bit 6	CMPCAP2IE
Bit 5	CAPOW1IE
Bit 4	CMPCAP1IE
Bit 3	CAPOW0IE
Bit 2	CMPCAP0IE
Bit 1	CNTMAXIE
Bit 0	CNTZEROIE

These bits enable T16B Ch.n interrupts.

1 (R/W): Enable interrupts 0 (R/W): Disable interrupts

The following shows the correspondence between the bit and interrupt:

T16B_nINTE.CAPOW5IE bit: Capture 5 overwrite interrupt T16B_nINTE.CMPCAP5IE bit: Compare/capture 5 interrupt T16B_nINTE.CAPOW4IE bit: Capture 4 overwrite interrupt T16B_nINTE.CMPCAP4IE bit: Compare/capture 4 interrupt T16B nINTE.CAPOW3IE bit: Capture 3 overwrite interrupt T16B_nINTE.CMPCAP3IE bit: Compare/capture 3 interrupt T16B_nINTE.CAPOW2IE bit: Capture 2 overwrite interrupt T16B_nINTE.CMPCAP2IE bit: Compare/capture 2 interrupt T16B_nINTE.CAPOW1IE bit: Capture 1 overwrite interrupt T16B_nINTE.CMPCAP1IE bit: Compare/capture 1 interrupt T16B_nINTE.CAPOW0IE bit: Capture 0 overwrite interrupt T16B_nINTE.CMPCAP0IE bit: Compare/capture 0 interrupt T16B_nINTE.CNTMAXIE bit: Counter MAX interrupt

T16B_nINTE.CNTZEROIE bit: Counter zero interrupt

- Notes: The configuration of the T16B nINTE.CAPOWmIE and T16B nINTE.CMPCAPmIE bits depends on the model. The bits corresponding to the comparator/capture circuits that do not exist are read-only bits and are always fixed at 0.
 - · To prevent generating unnecessary interrupts, the corresponding interrupt flag should be cleared before enabling interrupts.

T16B Ch.n Comparator/Capture m Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16B_nCCCTLm	15	SCS	0	H0	R/W	_
	14–12	CBUFMD[2:0]	0x0	H0	R/W	
	11–10	CAPIS[1:0]	0x0	H0	R/W	
	9–8	CAPTRG[1:0]	0x0	H0	R/W	
	7	_	0	_	R	
	6	TOUTMT	0	H0	R/W	
	5	TOUTO	0	H0	R/W	
	4–2	TOUTMD[2:0]	0x0	H0	R/W	
	1	TOUTINV	0	H0	R/W	
	0	CCMD	0	H0	R/W	

Bit 15 SCS

This bit selects either synchronous capture mode or asynchronous capture mode.

1 (R/W): Synchronous capture mode 0 (R/W): Asynchronous capture mode

For more information, refer to "Comparator/Capture Block Operations - Synchronous capture mode/ asynchronous capture mode." The T16B_nCCCTLm.SCS bit is control bit for capture mode and is ineffective in comparator mode.

Bits 14-12 CBUFMD[2:0]

These bits select the timing to load the comparison value written in the T16B_nCCRm register to the compare buffer. The T16B_nCCCTLm.CBUFMD[2:0] bits are control bits for comparator mode and are ineffective in capture mode.

Table 17.7.3 Timings to Load Comparison Value to Compare Buffer

		Timings to Load Comparison value to Compare Bunch				
T16B_nCCCTLm. CBUFMD[2:0] bits	Count mode	Comparison Value load timing				
0x7-0x5		Reserved				
0x4	Up mode	When the counter becomes equal to the comparison value set previously				
		Also the counter is reset to 0x0000 simultaneously.				
	Down mode	When the counter becomes equal to the comparison value set previously				
		Also the counter is reset to the MAX value simultaneously.				
	Up/down mode	When the counter becomes equal to the comparison value set previously				
		Also the counter is reset to 0x0000 simultaneously.				
0x3	Up mode	When the counter reverts to 0x0000				
	Down mode	When the counter reverts to the MAX value				
	Up/down mode	When the counter becomes equal to the comparison value set previously or				
		when the counter reverts to 0x0000				
0x2	Up mode	When the counter becomes equal to the comparison value set previously				
	Down mode					
	Up/down mode					
0x1	Up mode	When the counter reaches the MAX value				
	Down mode	When the counter reaches 0x0000				
	Up/down mode	When the counter reaches 0x0000 or the MAX value				
0x0	Up mode	At the CLK_T16Bn rising edge after writing to the T16B_nCCRm register				
	Down mode	· · · · · · · · · · · · · · · · · · ·				
	Up/down mode					

Bits 11-10 CAPIS[1:0]

These bits select the trigger signal for capturing (see Table 17.7.4). The T16B_nCCCTLm.CAPIS[1:0] bits are control bits for capture mode and are ineffective in comparator mode.

Bits 9-8 CAPTRG[1:0]

These bits select the trigger edge(s) of the trigger signal at which the counter value is captured in the T16B_nCCRm register in capture mode (see Table 17.7.4). The T16B_nCCCTLm.CAPTRG[1:0] bits are control bits for capture mode and are ineffective in comparator mode.

Table 17.7.4 Trigger Signal/Edge for Capturing Counter Value

T16B_nCCCTLm.	Trigger condition						
CAPTRG[1:0] bits	T16B_nCCCTL	m.CAPIS[1:0] bits (Trigger signal)					
(Trigger edge)	0x0 (External trigger signal)	0x2 (Software trigger signal = L) 0x3 (Software trigger signal = H)					
0x3 (↑ & ↓)	Rising or falling edge of the CAPnm pin input	Altering the T16B_nCCCTLm.CAPIS[1:0] bits from 0x2 to 0x3, or					
	signal	from 0x3 to 0x2					
0x2 (↓)	Falling edge of the CAPnm pin input signal	Altering the T16B_nCCCTLm.CAPIS[1:0] bits from 0x3 to 0x2					
0x1 (†)	Rising edge of the CAPnm pin input signal Altering the T16B_nCCCTLm.CAPIS[1:0] bits from 0x2 to 0x3						
0x0	Not triggered (disable capture function)						

Bit 7 Reserved

Bit 6 TOUTMT

This bit selects whether the comparator MATCH signal of another system is used for generating the TOUT*nm* signal or not.

1 (R/W): Generate TOUT using two comparator MATCH signals of the comparator circuit pair (0 and 1, 2 and 3, 4 and 5)

0 (R/W): Generate TOUT using one comparator MATCH signal of comparator m and the counter MAX or ZERO signals

The T16B_nCCCTLm.TOUTMT bit is control bit for comparator mode and is ineffective in capture mode.

Bit 5 TOUTO

This bit sets the TOUTnm signal output level when software control mode (T16B $_n$ CCCTLm.TOUT-MD[2:0] = 0x0) is selected for the TOUTnm output.

1 (R/W): High level output

0 (R/W): Low level output

The T16B_nCCCTLm.TOUTO bit is control bit for comparator mode and is ineffective in capture mode.

Bits 4-2 TOUTMD[2:0]

These bits configure how the TOUT*nm* signal waveform is changed by the comparator MATCH and counter MAX/ZERO signals.

The T16B_nCCCTLm.TOUTMD[2:0] bits are control bits for comparator mode and are ineffective in capture mode.

Table 17.7.5 TOUT Generation Mode

T16B_nCCCTLm.		TOUT	generation	mode and operations
TOUTMD[2:0] bits	T16B_nCCCTLm. TOUTMT bit	Count mode	Output signal	Change in the signal
0x7	Reset/set mode			
	0	Up count mode Up/down count mode	TOUTnm	The signal becomes inactive by the MATCH signal and it becomes active by the MAX signal.
		Down count mode	TOUTnm	The signal becomes inactive by the MATCH signal and it becomes active by the ZERO signal.
	1	All count modes	TOUTnm	The signal becomes inactive by the MATCH m signal and it becomes active by the MATCH $m+1$ signal.
			TOUTnm+1	The signal becomes inactive by the MATCH <i>m</i> +1 signal and it becomes active by the MATCH <i>m</i> signal.
0x6	Toggle/set mode		•	
	0	Up count mode Up/down count mode	TOUTnm	The signal is inverted by the MATCH signal and it becomes active by the MAX signal.
		Down count mode	TOUTnm	The signal is inverted by the MATCH signal and it becomes active by the ZERO signal.
	1	All count modes	TOUTnm	The signal is inverted by the MATCH <i>m</i> signal and it becomes active by the MATCH <i>m</i> +1 signal.
			TOUTnm+1	The signal is inverted by the MATCH <i>m</i> +1 signal and it becomes active by the MATCH <i>m</i> signal.
0x5	Reset mode			
	0	All count modes	TOUTnm	The signal becomes inactive by the MATCH signal.
	1	All count modes	TOUTnm	The signal becomes inactive by the MATCH m or MATCH $m+1$ signal.
			TOUTnm+1	The signal becomes inactive by the MATCH $m+1$ or MATCH m signal.

T16B_nCCCTLm.		TOUT	generation	mode and operations
TOUTMD[2:0] bits	T16B_nCCCTLm. TOUTMT bit	Count mode	Output signal	Change in the signal
0x4	Toggle mode			
	0	All count modes	TOUTnm	The signal is inverted by the MATCH signal.
	1	All count modes	TOUTnm	The signal is inverted by the MATCHm or MATCHm+1 signal.
			TOUTnm+1	The signal is inverted by the MATCHm+1 or MATCHm signal.
0x3	Set/reset mode			
	0	Up count mode Up/down count mode	TOUTnm	The signal becomes active by the MATCH signal and it becomes inactive by the MAX signal.
		Down count mode	TOUTnm	The signal becomes active by the MATCH signal and it becomes inactive by the ZERO signal.
	1	All count modes	TOUTnm	The signal becomes active by the MATCH <i>m</i> signal and it becomes inactive by the MATCH <i>m</i> +1 signal.
			TOUTnm+1	The signal becomes active by the MATCH <i>m</i> +1 signal and it becomes inactive by the MATCH <i>m</i> signal.
0x2	Toggle/reset mod	le		
	0	Up count mode Up/down count mode	TOUTnm	The signal is inverted by the MATCH signal and it becomes inactive by the MAX signal.
		Down count mode	TOUTnm	The signal is inverted by the MATCH signal and it becomes inactive by the ZERO signal.
	1	All count modes	TOUTnm	The signal is inverted by the MATCHm signal and it becomes inactive by the MATCHm+1 signal.
			TOUTnm+1	The signal is inverted by the MATCH <i>m</i> +1 signal and it becomes inactive by the MATCH <i>m</i> signal.
0x1	Set mode		•	
	0	All count modes	TOUTnm	The signal becomes active by the MATCH signal.
	1	All count modes	TOUTnm	The signal becomes active by the MATCH m or MATCH $m+1$ signal.
			TOUTnm+1	The signal becomes active by the MATCH $m+1$ or MATCH m signal.
0x0	Software control	mode		
	*	All count modes	TOUTnm	The signal becomes active by setting the T16B_nCCCTLm.TOUTO bit to 1 and it becomes inactive by setting to 0.

Bit 1 TOUTINV

This bit selects the TOUTnm signal polarity.

1 (R/W): Inverted (active low) 0 (R/W): Normal (active high)

The T16B_nCCCTLm.TOUTINV bit is control bit for comparator mode and is ineffective in capture mode.

Bit 0 CCMD

This bit selects the operating mode of the comparator/capture circuit m.

1 (R/W): Capture mode (T16B_nCCRm register = capture register)

0 (R/W): Comparator mode (T16B_nCCRm register = compare data register)

T16B Ch.n Compare/Capture m Data Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16B_nCCRm	15–0	CC[15:0]	0x0000	H0	R/W	_

Bits 15-0 CC[15:0]

In comparator mode, this register is configured as the compare data register and used to set the comparison value to be compared with the counter value.

In capture mode, this register is configured as the capture register and the counter value captured by the capture trigger signal is loaded.

T16B Ch.n Counter Max/Zero DMA Request Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16B_nMZDMAEN	15–0	MZDMAEN[15:0]	0x0000	H0	R/W	_

Bits 15-0 MZDMAEN[15:0]

These bits enable T16B to issue a DMA transfer request to the corresponding DMA controller channel (Ch.0-Ch.15) when the counter value reaches the MAX value or 0x0000.

1 (R/W): Enable DMA transfer request 0 (R/W): Disable DMA transfer request

Each bit corresponds to a DMA controller channel. The high-order bits for the unimplemented channels are ineffective.

T16B Ch.n Compare/Capture m DMA Request Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16B_nCCmDMAEN	15–0	CCmDMAEN[15:0]	0x0000	H0	R/W	_

Bits 15-0 CCmDMAEN[15:0]

These bits enable T16B to issue a DMA transfer request to the corresponding DMA controller channel (Ch.0–Ch.15) when the counter value reaches the compare data or is captured.

1 (R/W): Enable DMA transfer request 0 (R/W): Disable DMA transfer request

Each bit corresponds to a DMA controller channel. The high-order bits for the unimplemented channels are ineffective.

18 IR Remote Controller (REMC3)

18.1 Overview

The REMC3 circuit generates infrared remote control output signals. This circuit can also be applicable to an EL lamp drive circuit by adding a simple external circuit.

The features of the REMC3 are listed below.

- · Outputs an infrared remote control signal.
- · Includes a carrier generator.
- Flexible carrier signal generation and data pulse width modulation.
- Automatic data setting function for continuous data transmission.
- Output signal inverting function supporting various formats.
- EL lamp drive waveform can be generated for an application example.

Figure 18.1.1 shows the REMC3 configuration.

Table 18.1.1 REMC3 Channel Configuration of S1C31D41

Item 32-pin package		48-pin package	64-pin package
Number of channels	_	1 transmitt	ter channel

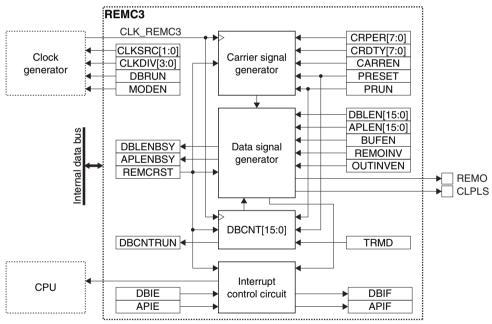


Figure 18.1.1 REMC3 Configuration

18.2 Output Pins and External Connections

18.2.1 List of Output Pins

Table 18.2.1.1 shows the REMC3 pin.

Table 18.2.1.1 REMC3 Pin

Pin name	I/O*	Initial status*	Function
REMO	0	O (L)	IR remote controller transmit data output
CLPLS	0	O (L)	IR remote controller clear pulse output

* Indicates the status when the pin is configured for the REMC3.

If the port is shared with the REMC3 pin and other functions, the REMC3 output function must be assigned to the port before activating the REMC3. For more information, refer to the "I/O Ports" chapter.

18.2.2 External Connections

Figure 18.2.2.1 shows a connection example between the REMC3 and an external infrared module.

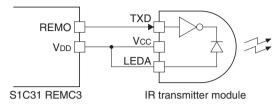


Figure 18.2.2.1 Connection Example Between REMC3 and External Infrared Module

18.3 Clock Settings

18.3.1 REMC3 Operating Clock

When using the REMC3, the REMC3 operating clock CLK_REMC3 must be supplied to the REMC3 from the clock generator. The CLK_REMC3 supply should be controlled as in the procedure shown below.

- 1. Enable the clock source in the clock generator if it is stopped (refer to "Clock Generator" in the "Power Supply, Reset, and Clocks" chapter).
- 2. Set the following REMC3CLK register bits:
 - REMC3CLK.CLKSRC[1:0] bits (Clock source selection)
 - REMC3CLK.CLKDIV[3:0] bits (Clock division ratio selection = Clock frequency setting)

18.3.2 Clock Supply in SLEEP Mode

When using REMC3 during SLEEP mode, the REMC3 operating clock CLK_REMC3 must be configured so that it will keep supplying by writing 0 to the CLGOSC_xxxxSLPC bit for the CLK_REMC3 clock source.

If the CLGOSC xxxxSLPC bit for the CLK_REMC3 clock source is 1, the CLK_REMC3 clock source is deactivated during SLEEP mode and REMC3 stops with the register settings maintained at those before entering SLEEP mode. After the CPU returns to normal mode, CLK_REMC3 is supplied and the REMC3 operation resumes.

18.3.3 Clock Supply During Debugging

The CLK_REMC3 supply during debugging should be controlled using the REMC3CLK.DBRUN bit.

The CLK_REMC3 supply to the REMC3 is suspended when the CPU enters debug state if the REMC3CLK.DB-

The CLK_REMC3 supply to the REMC3 is suspended when the CPU enters debug state if the REMC3CLK.DB-RUN bit = 0. After the CPU returns to normal operation, the CLK_REMC3 supply resumes. Although the REMC3 stops operating when the CLK_REMC3 supply is suspended, the output pin and registers retain the status before debug state was entered. If the REMC3CLK.DBRUN bit = 1, the CLK_REMC3 supply is not suspended and the REMC3 will keep operating in debug state.

18.4 Operations

18.4.1 Initialization

The REMC3 should be initialized with the procedure shown below.

- Write 1 to the REMC3DBCTL.REMCRST bit.
- (Reset REMC3)
- 2. Configure the REMC3CLK.CLKSRC[1:0] and REMC3CLK.CLKDIV[3:0] bits. (Configure operating clock)
- 3. Assign the REMC3 output function to the port. (Refer to the "I/O Ports" chapter.)

4. Configure the following REMC3DBCTL register bits:

Set the REMC3DBCTL.MODEN bit to 1. (Enable count operation clock)
 REMC3DBCTL.TRMD bit (Select repeat mode/one-shot mode)

- Set the REMC3DBCTL.BUFEN bit to 1. (Enable compare buffer)

- REMC3DBCTL.REMOINV bit (Configure inverse logic output signal)

5. Configure the following REMC3CARR register bits:

- REMC3CARR.CRPER[7:0] bit (Set carrier signal cycle)
- REMC3CARR.CRDTY[7:0] bit (Set carrier signal duty)

6. Configure the following REMC3CCTL register bits:

REMC3CCTL.CARREN bit (Enable/disable carrier modulation)
 REMC3CCTL.OUTINVEN bit (Configure output signal polarity)

7. Set the following bits when using the interrupt:

Write 1 to the interrupt flags in the REMC3INTF register. (Clear interrupt flags)
 Set the interrupt enable bits in the REMC3INTE register to 1. (Enable interrupts)

18.4.2 Data Transmission Procedures

Starting data transmission

The following shows a procedure to start data transmission.

Set the REMC3APLEN.APLEN[15:0] bits. (Set data signal duty)
 Set the REMC3DBLEN.DBLEN[15:0] bits. (Set data signal cycle)

3. Set the following REMC3DBCTL register bits:

Set the REMC3DBCTL.PRESET bit to 1. (Reset internal counters)
 Set the REMC3DBCTL.PRUN bit to 1. (Start counting)

Continuous data transmission control

The following shows a procedure to send data continuously after starting data transmission (after Step 3 above).

- 1. Set the duty and cycle for the subsequent data to the REMC3APLEN.APLEN[15:0] and REMC3DBLEN. DBLEN[15:0] bits, respectively, before a compare DB interrupt (REMC3INTF.DBIF bit = 1) occurs. (It is not necessary to rewrite settings when sending the same data with the current settings.)
- 2. Wait for a compare DB interrupt (REMC3INTF.DBIF bit = 1).
- 3. Repeat Steps 1 and 2 until the end of data.

Terminating data transmission

The following shows a procedure to terminate data transmission.

1. Wait for a compare DB interrupt (REMC3INTF.DBIF bit = 1).

2. Set the REMC3DBCTL.PRUN bit to 0. (Stop counting)

3. Set the REMC3DBCTL.MODEN bit to 0. (Disable count operation clock)

18.4.3 REMO Output Waveform

Carrier refers to infrared frequency in infrared remote control communication. Note, however, that carrier in this manual refers to sub-carrier used in infrared remote control communication, as REMC3 does not control infrared rays directly.

The REMC3 outputs the logical AND between the carrier signal output from the carrier generator and the data signal output from the data signal generator. Figure 18.4.3.1 shows an example of the output waveform.

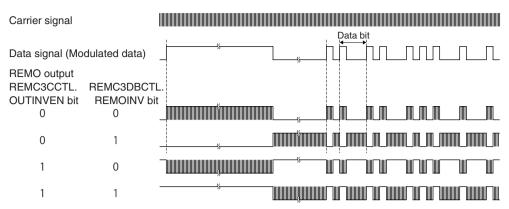


Figure 18.4.3.1 REMO Output Waveform Example

Carrier signal

The carrier signal is generated by comparing the values of the 8-bit counter for carrier generation that runs with CLK_REMC3 and the setting values of the REMC3CARR.CRDTY[7:0] and REMC3CARR.CRPER[7:0] bits. Figure 18.4.3.2 shows an example of the carrier signal generated.

Example) REMC3CARR.CRDTY[7:0] bits = 2, REMC3CARR.CRPER[7:0] bits = 8

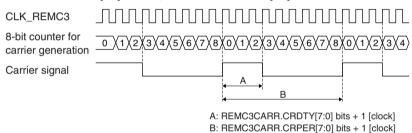


Figure 18.4.3.2 Example of Carrier Signal Generated

The carrier signal frequency and duty ratio can be calculated by the equations shown below.

Carrier frequency =
$$\frac{\text{fCLK_REMC3}}{\text{CRPER} + 1}$$
 Duty ratio = $\frac{\text{CRDTY} + 1}{\text{CRPER} + 1}$ (Eq. 18.1)

Where

fclk_remc3: CLK_REMC3 frequency [Hz]

CRPER: REMC3CARR.CRPER[7:0] bit-setting value (1–255)
CRDTY: REMC3CARR.CRDTY[7:0] bit-setting value (0–254)
* REMC3CARR.CRDTY[7:0] bits < REMC3CARR.CRPER[7:0] bits

The 8-bit counter for carrier generation is reset by the REMC3DBCTL.PRESET bit and is started/stopped by the REMC3DBCTL.PRUN bit in conjunction with the 16-bit counter for data signal generation. When the counter value is matched with the REMC3CARR.CRDTY[7:0] bits, the carrier signal waveform is inverted. When the counter value is matched with the REMC3CARR.CRPER[7:0] bits, the carrier signal waveform is inverted and the counter is reset to 0x00.

Data signal

The data signal is generated by comparing the values of the 16-bit counter for data signal generation (REMC3DBCNT.DBCNT[15:0] bits) that runs with CLK_REMC3 and the setting values of the REMC3A-PLEN.APLEN[15:0] and REMC3DBLEN.DBLEN[15:0] bits. Figure 18.4.3.3 shows an example of the data signal generated.

Example) REMC3APLEN.APLEN[15:0] bits = 0x0bd0, REMC3DBLEN.DBLEN[15:0] bits = 0x11b8, REMC3DBCTL.TRMD bit = 0 (repeat mode), REMC3DBCTL.REMOINV bit = 0 (signal logic non-inverted)

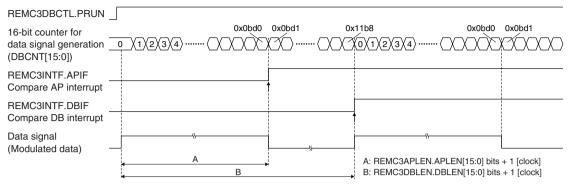


Figure 18.4.3.3 Example of Data Signal Generated

The data length and duty ratio of the pulse-width-modulated data signal can be calculated with the equations shown below.

Data length =
$$\frac{\text{DBLEN} + 1}{\text{fclk REMC3}}$$
 Duty ratio = $\frac{\text{APLEN} + 1}{\text{DBLEN} + 1}$ (Eq. 18.2)

Where

fclk_remc3: CLK_REMC3 frequency [Hz]

DBLEN: REMC3DBLEN.DBLEN[15:0] bit-setting value (1–65,535)

APLEN: REMC3APLEN.APLEN[15:0] bit-setting value (0–65,534)

* REMC3APLEN.APLEN[15:0] bits < REMC3DBLEN.DBLEN[15:0] bits

The 16-bit counter for data signal generation is reset by the REMC3DBCTL.PRESET bit and is started/ stopped by the REMC3DBCTL.PRUN bit. When the counter value is matched with the REMC3APLEN. APLEN[15:0] bits (compare AP), the data signal waveform is inverted. When the counter value is matched with the REMC3DBLEN.DBLEN[15:0] bits (compare DB), the data signal waveform is inverted and the counter is reset to 0x0000.

A different interrupt can be generated when the counter value is matched with the REMC3DBLEN. DBLEN[15:0] and REMC3APLEN.APLEN[15:0] bits, respectively.

Repeat mode and one-shot mode

When the 16-bit counter for data signal generation is set to repeat mode (REMC3DBCTL.TRMD bit = 0), the counter keeps operating until it is stopped using the REMC3DBCTL.PRUN bit. When the counter is set to one-shot mode (REMC3DBCTL.TRMD bit = 1), the counter stops automatically when the counter value is matched with the REMC3DBLEN.DBLEN[15:0] bit-setting value.

18.4.4 Continuous Data Transmission and Compare Buffers

Figure 18.4.4.1 shows an operation example of continuous data transmission with the compare buffer enabled.

Example) REMC3DBCTL.TRMD bit = 0 (repeat mode), REMC3DBCTL.BUFEN bit = 1 (compare buffer enabled), REMC3DBCTL.REMOINV bit = 0 (signal logic non-inverted)

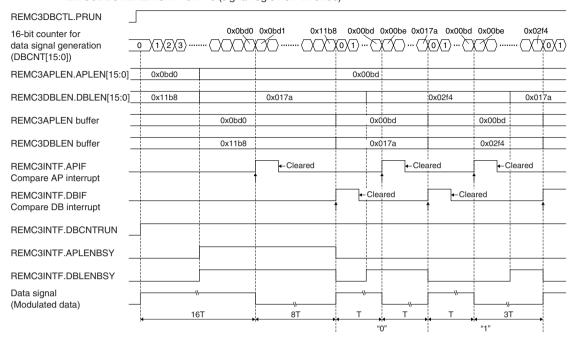


Figure 18.4.4.1 Continuous Data Transmission Example

When the compare buffer is disabled (REMC3DBCTL.BUFEN bit = 0), the 16-bit counter value is directly compared with the REMC3APLEN.APLEN[15:0] and REMC3DBLEN.DBLEN[15:0] bit values. The comparison value is altered immediately after the REMC3APLEN.APLEN[15:0] or REMC3DBLEN.DBLEN[15:0] bits are rewritten.

When the compare buffer is enabled (REMC3DBCTL.BUFEN bit = 1), the REMC3APLEN.APLEN[15:0] and REMC3DBLEN.DBLEN[15:0] bit values are loaded into the compare buffers provided respectively (REMC3A-PLEN buffer and REMC3DBLEN buffer) and the 16-bit counter value is compared with the compare buffers.

The comparison values are loaded into the compare buffers when the 16-bit counter is matched with the REMC3D-BLEN buffer (when the count for the data length has completed). Therefore, the next transmit data can be set during the current data transmission. When the compare buffers are enabled, the buffer status flags (REMC3INTF. APLENBSY bit and REMC3INTF.DBLENBSY bit) become effective. The flag is set to 1 when the setting value is written to the register and cleared to 0 when the written value is transferred to the buffer.

18.5 Interrupts

The REMC3 has a function to generate the interrupts shown in Table 18.5.1.

Table 18.5.1 REMC3 Interrupt Function

Interrupt	Interrupt flag	Set condition	Clear condition
Compare AP	REMC3INTF.APIF	When the REMC3APLEN register (or	Writing 1 to the interrupt flag or
		REMC3APLEN buffer) value and the 16-bit	the REMC3DBCTL.REMCRST bit
		counter for data signal generation are matched	
Compare DB	REMC3INTF.DBIF	When the REMC3DBLEN register (or	Writing 1 to the interrupt flag or
		REMC3DBLEN buffer) value and the 16-bit	the REMC3DBCTL.REMCRST bit
		counter for data signal generation are matched	

The REMC3 provides interrupt enable bits corresponding to each interrupt flag. An interrupt request is sent to the CPU only when the interrupt flag, of which interrupt has been enabled by the interrupt enable bit, is set. For more information on interrupt control, refer to the "Interrupt" chapter.

18.6 Application Example: Driving EL Lamp

The REMC3 can be used to simply drive an EL lamp as an application example. Figures 18.6.1 and 18.6.2 show an example of an EL lamp drive circuit and an example of the drive waveform generated, respectively. For details of settings and an example of components, refer to the Application Note provided separately.

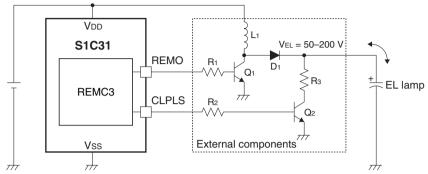


Figure 18.6.1 Example of EL Lamp Drive Circuit

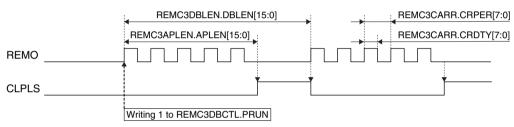


Figure 18.6.2 Example of Generated Drive Waveform

The REMO and CLPLS signals are output from the respective pins while the REMC3DBCTL.PRUN bit = 1. The difference between the setting values of the REMC3DBLEN.DBLEN[15:0] bits and REMC3APLEN.APLEN[15:0] bits becomes the CLPLS pulse width (high period).

18.7 Control Registers

REMC3 Clock Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	
REMC3CLK	15–9	_	0x00	_	R	-
	8	DBRUN	0	H0	R/W	
	7–4	CLKDIV[3:0]	0x0	H0	R/W	
	3–2	-	0x0	-	R	
	1–0	CLKSRC[1:0]	0x0	H0	R/W	

Bits 15-9 Reserved

Bit 8 DBRUN

This bit sets whether the REMC3 operating clock is supplied during debugging or not.

1 (R/W): Clock supplied during debugging 0 (R/W): No clock supplied during debugging

Bits 7-4 CLKDIV[3:0]

These bits select the division ratio of the REMC3 operating clock.

Bits 3-2 Reserved

Bits 1-0 CLKSRC[1:0]

These bits select the clock source of the REMC3.

Table 18.7.1 Clock Source and Division Ratio Settings

REMC3CLK.	REMC3CLK.CLKSRC[1:0] bits								
	0x0	0x1	0x2	0x3					
CLKDIV[3:0] bits	IOSC	OSC1	OSC3	EXOSC					
0xf	1/32,768	1/1	1/32,768	1/1					
0xe	1/16,384		1/16,384						
0xd	1/8,192		1/8,192						
0xc	1/4,096		1/4,096						
0xb	1/2,048		1/2,048						
0xa	1/1,024		1/1,024						
0x9	1/512		1/512						
0x8	1/256	1/256	1/256						
0x7	1/128	1/128	1/128						
0x6	1/64	1/64	1/64						
0x5	1/32	1/32	1/32						
0x4	1/16	1/16	1/16						
0x3	1/8	1/8	1/8						
0x2	1/4	1/4	1/4						
0x1	1/2	1/2	1/2						
0x0	1/1	1/1	1/1						

(Note) The oscillation circuits/external input that are not supported in this IC cannot be selected as the clock source.

Note: The REMC3CLK register settings can be altered only when the REMC3DBCTL.MODEN bit = 0.

REMC3 Data Bit Counter Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
REMC3DBCTL	15–10		0x00	_	R	_
	9	PRESET	0	H0/S0	R/W	Cleared by writing 1 to the
	8	PRUN	0	H0/S0	R/W	REMC3DBCTL.REMCRST bit.
	7–5	_	0x0	-	R	_
	4	REMOINV	0	H0	R/W	
	3	BUFEN	0	H0	R/W	
	2	TRMD	0	H0	R/W	
	1	REMCRST	0	H0	W	
	0	MODEN	0	H0	R/W	

Bits 15-10 Reserved

Bit 9 PRESET

This bit resets the internal counters (16-bit counter for data signal generation and 8-bit counter for carrier generation).

1 (W): Reset 0 (W): Ineffective

1 (R): Resetting in progress

0 (R): Resetting finished or normal operation

Before the counter can be reset using this bit, the REMC3DBCTL.MODEN bit must be set to 1.

This bit is cleared to 0 after the counter reset operation has finished or when 1 is written to the REMC3DBCTL.REMCRST bit.

Bit 8 PRUN

This bit starts/stops counting by the internal counters (16-bit counter for data signal generation and 8-bit counter for carrier generation).

1 (W): Start counting 0 (W): Stop counting

1 (R): Counting

0 (R): Idle

Before the counter can start counting by this bit, the REMC3DBCTL.MODEN bit must be set to 1. While the counter is running, writing 0 to the REMC3DBCTL.PRUN bit stops count operations. When the counter stops by occurrence of a compare DB in one-shot mode, this bit is automatically cleared to 0.

Bits 7-5 Reserved

Bit 4 REMOINV

This bit inverts the REMO output signal.

1 (R/W): Inverted 0 (R/W): Non-inverted

For more information, see Figure 18.4.3.1.

Bit 3 BUFEN

This bit enables or disables the compare buffers.

1 (R/W): Enable 0 (R/W): Disable

For more information, refer to "Continuous Data Transmission and Compare Buffers."

Note: The REMC3DBCTL.BUFEN bit must be set to 0 when setting the data signal duty and cycle for the first time.

Bit 2 TRMD

This bit selects the operation mode of the 16-bit counter for data signal generation.

1 (R/W): One-shot mode 0 (R/W): Repeat mode

For more information, refer to "REMO Output Waveform, Data signal."

Bit 1 REMCRST

This bit issues software reset to the REMC3.

1 (W): Issue software reset

0 (W): Ineffective

1 (R): Software reset is executing.

0 (R): Software reset has finished. (During normal operation)

Setting this bit resets the REMC3 internal counters and interrupt flags. This bit is automatically cleared after the reset processing has finished.

Note: After the data signal is output in one-shot mode, set the REMC3DBCTL.REMCRST bit to 1.

Bit 0 MODEN

This bit enables the REMC3 operations.

1 (R/W): Enable REMC3 operations (The operating clock is supplied.) 0 (R/W): Disable REMC3 operations (The operating clock is stopped.)

Note: If the REMC3DBCTL.MODEN bit is altered from 1 to 0 while sending data, the data being sent cannot be guaranteed. When setting the REMC3DBCTL.MODEN bit to 1 again after that, be sure to write 1 to the REMC3DBCTL.REMCRST bit as well.

REMC3 Data Bit Counter Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
REMC3DBCNT	15–0	DBCNT[15:0]	0x0000	H0/S0	R	Cleared by writing 1 to the
						REMC3DBCTL.REMCRST bit.

Bits 15-0 DBCNT[15:0]

The current value of the 16-bit counter for data signal generation can be read out through these bits.

REMC3 Data Bit Active Pulse Length Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
REMC3APLEN	15–0	APLEN[15:0]	0x0000	H0		Writing enabled when REMC3DBCTL. MODEN bit = 1.

Bits 15-0 APLEN[15:0]

These bits set the active pulse length of the data signal (high period when the REMC3DBCTL.RE-MOINV bit = 0 or low period when the REMC3DBCTL.REMOINV bit = 1).

The REMO pin output is set to the active level from the 16-bit counter for data signal generation = 0x0000 and it is inverted to the inactive level when the counter exceeds the REMC3APLEN. APLEN[15:0] bit-setting value. The data signal duty ratio is determined by this setting and the REMC3DBLEN.DBLEN[15:0] bit-setting. (See Figure 18.4.3.3.)

Before this register can be rewritten, the REMC3DBCTL.MODEN bit must be set to 1.

REMC3 Data Bit Length Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
REMC3DBLEN	15–0	DBLEN[15:0]	0x0000	H0	R/W	Writing enabled when REMC3DBCTL.
						MODEN bit = 1.

Bits 15-0 DBLEN[15:0]

These bits set the data length of the data signal (length of one cycle).

A data signal cycle begins with the 16-bit counter for data signal generation = 0x0000 and ends when the counter exceeds the REMC3DBLEN.DBLEN[15:0] bit-setting value. (See Figure 18.4.3.3.) Before this register can be rewritten, the REMC3DBCTL.MODEN bit must be set to 1.

REMC3 Status and Interrupt Flag Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
REMC3INTF	15–11	_	0x00	_	R	-
	10	DBCNTRUN	0	H0/S0	R	Cleared by writing 1 to the REMC3DBCTL.REMCRST bit.
	9	DBLENBSY	0	H0	R	Effective when the REMC3DBCTL.
	8	APLENBSY	0	H0	R	BUFEN bit = 1.
	7–2	-	0x00	_	R	-
	1	DBIF	0	H0/S0	R/W	Cleared by writing 1 to this bit or the REMC3DBCTL.REMCRST bit.
	0	APIF	0	H0/S0	R/W	REMOSDBOTE.REMORST bit.

Bits 15-11 Reserved

Bit 10 DBCNTRUN

This bit indicates whether the 16-bit counter for data signal generation is running or not. (See Figure 18.4.4.1.)

1 (R): Running (Counting)

0 (R): Idle

Bit 9 DBLENBSY

This bit indicates whether the value written to the REMC3DBLEN.DBLEN[15:0] bits is transferred to the REMC3DBLEN buffer or not. (See Figure 18.4.4.1.)

1 (R): Transfer to the REMC3DBLEN buffer has not completed.

0 (R): Transfer to the REMC3DBLEN buffer has completed.

While this bit is set to 1, writing to the REMC3DBLEN.DBLEN[15:0] bits is ineffective.

Bit 8 APLENBSY

This bit indicates whether the value written to the REMC3APLEN.APLEN[15:0] bits is transferred to the REMC3APLEN buffer or not. (See Figure 18.4.4.1.)

1 (R): Transfer to the REMC3APLEN buffer has not completed.

0 (R): Transfer to the REMC3APLEN buffer has completed.

While this bit is set to 1, writing to the REMC3APLEN.APLEN[15:0] bits is ineffective.

Bits 7-2 Reserved

Bit 1 DBIF Bit 0 APIF

These bits indicate the REMC3 interrupt cause occurrence status.

1 (R): Cause of interrupt occurred 0 (R): No cause of interrupt occurred

1 (W): Clear flag 0 (W): Ineffective

The following shows the correspondence between the bit and interrupt:

REMC3INTF.DBIF bit: Compare DB interrupt REMC3INTF.APIF bit: Compare AP interrupt

These interrupt flags are also cleared to 0 when 1 is written to the REMC3DBCTL.REMCRST bit.

REMC3 Interrupt Enable Register

			_			
Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
REMC3INTE	15–8	_	0x00	_	R	_
	7–2	-	0x00	-	R	
	1	DBIE	0	H0	R/W	
	0	APIE	0	H0	R/W	

Bits 15-2 Reserved

Bit 1 DBIE Bit 0 APIE

These bits enable REMC3 interrupts.

1 (R/W): Enable interrupts 0 (R/W): Disable interrupts

The following shows the correspondence between the bit and interrupt:

REMC3INTE.DBIE bit: Compare DB interrupt REMC3INTE.APIE bit: Compare AP interrupt

REMC3 Carrier Waveform Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
REMC3CARR	15–8	CRDTY[7:0]	0x00	H0	R/W	-
	7–0	CRPER[7:0]	0x00	H0	R/W	

Bits 15-8 CRDTY[7:0]

These bits set the high level period of the carrier signal.

The carrier signal is set to high level from the 8-bit counter for carrier generation = 0x00 and it is inverted to low level when the counter exceeds the REMC3CARR.CRDTY[7:0] bit-setting value. The carrier signal duty ratio is determined by this setting and the REMC3CARR.CRPER[7:0] bit-setting. (See Figure 18.4.3.2.)

Bits 7-0 CRPER[7:0]

These bits set the carrier signal cycle.

A carrier signal cycle begins with the 8-bit counter for carrier generation = 0x00 and ends when the counter exceeds the REMC3CARR.CRPER[7:0] bit-setting value. (See Figure 18.4.3.2.)

REMC3 Carrier Modulation Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
REMC3CCTL	15–9	_	0x00	_	R	_
	8	OUTINVEN	0	H0	R/W	
	7–1	_	0x00	_	R	
	0	CARREN	0	H0	R/W	

18 IR REMOTE CONTROLLER (REMC3)

Bits 15-9 Reserved

Bit 8 OUTINVEN

This bit inverts the REMO output polarity.

1 (R/W): Inverted 0 (R/W): Non-inverted

For more information, see Figure 18.4.3.1.

Bits 7-1 Reserved

Bit 0 CARREN

This bit enables carrier modulation.

1 (R/W): Enable carrier modulation

0 (R/W): Disable carrier modulation (output data signal only)

Note: When carrier modulation is disabled, the REMC3DBCTL.REMOINV bit should be set to 0.

19 12-bit A/D Converter (ADC12A)

19.1 Overview

The ADC12A is a successive approximation type 12-bit A/D converter.

The features of the ADC12A are listed below.

Conversion method: Successive approximation type

• Resolution: 12 bits

• Analog input voltage range: Reference voltage VREFA to Vss

Supports two conversion modes: 1. One-time conversion mode

2. Continuous conversion mode

· Supports three conversion triggers: 1. Software trigger

2. 16-bit timer underflow trigger

3. External trigger

• Can convert multiple analog input signals sequentially.

• Can generate conversion completion and overwrite error interrupts.

• Can issue a DMA transfer request when a conversion has completed.

Figure 19.1.1 shows the ADC12A configuration.

Table 19.1.1 ADC12A Configuration of S1C31D41

Item	32-pin package	48-pin package	64-pin package
Number of channels		1 channel (Ch.0)	
Number of analog signal inputs per channel		3 inputs -04, 07 *1)	Ch.0: 8 inputs (ADIN00–07 *1)
16-bit timer used as conversion clock and trigger sources	(Ch.0 ← 16-bit timer Ch.7	7
VREFA pin (reference voltage input)	Can be inpu	t externally or generated	l internally *2

^{*1} ADIN07 is connected to the temperature sensor output.

^{*2} The reference voltage generator output can be input as the reference voltage. For more information, refer to the "Temperature Sensor/Reference Voltage Generator" chapter.

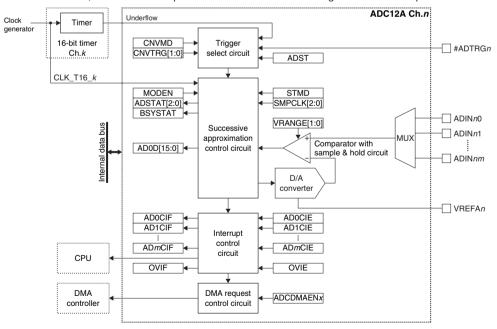


Figure 19.1.1 ADC12A Configuration

Note: In this chapter, *n*, *m*, and *k* refer to an ADC12A channel number, an analog input pin number, and a 16-bit timer channel number, respectively.

19.2 Input Pins and External Connections

19.2.1 List of Input Pins

Table 19.2.1.1 lists the ADC12A pins.

Table 19.2.1.1 List of ADC12A Pins

Pin name	I/O*	Initial status*	Function
ADIN <i>nm</i>	А	Hi-Z	Analog signal input
#ADTRGn	I	I	External trigger input
VREFA <i>n</i>	А	Hi-Z	Reference voltage input

* Indicates the status when the pin is configured for the ADC12A.

If the port is shared with the ADC12A pin and other functions, the ADC12A input function must be assigned to the port before activating the ADC12A. For more information, refer to the "I/O Ports" chapter.

19.2.2 External Connections

Figure 19.2.2.1 shows a connection diagram between the ADC12A and external devices.

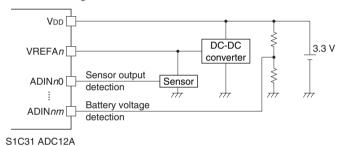


Figure 19.2.2.1 Connections between ADC12A and External Devices

19.3 Clock Settings

19.3.1 ADC12A Operating Clock

The 16-bit timer Ch.k operating clock CLK_T16_k is also used as the ADC12A operating clock. For more information on the CLK_T16_k settings and clock supply in SLEEP and DEBUG modes, refer to "Clock Settings" in the "16-bit Timers" chapter.

Note: When the CLK_T16_k supply stops during A/D conversion (e.g., when the CPU enters SLEEP or DEBUG mode), correct conversion results cannot be obtained even if the clock supply is resumed after that. In this case, perform A/D conversion again.

19.3.2 Sampling Time

The ADC12A includes a sample and hold circuit. The sampling time must be set so that it will satisfy the time required for acquiring input voltage (tACQ: acquisition time). Figure 19.3.2.1 shows an equivalent circuit of the analog input portion.

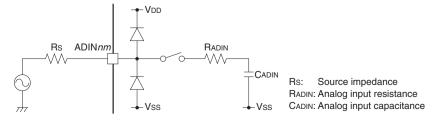


Figure 19.3.2.1 Equivalent Circuit of Analog Input Portion

For the RADIN and CADIN values in the equivalent circuit, refer to "12-bit A/D Converter Characteristics" in the "Electrical Characteristics" chapter. Based on these values, configure the ADC12A operating clock CLK_T16_k and the ADC12A_nTRG.SMPCLK[2:0] bits that set the sampling time so that these settings will satisfy the equations shown below.

$$tacq = 8 \times (Rs + Radin) \times Cadin$$
 (Eq. 19.1)

$$\frac{1}{fclk_adc} \times SMPCLK > tacq$$
 (Eq. 19.2)

Where

fclk_ADC: CLK_T16_k frequency [Hz]

SMPCLK: Sampling time = ADC12A_nTRG.SMPCLK[2:0] bit-setting (4 to 11 CLK_T16_k cycles)

The following shows the relationship between the sampling time and the maximum sampling rate.

Maximum sampling rate [sps] =
$$\frac{\text{fclk_ADC}}{\text{SMPCLK} + 13}$$
 (Eq. 19.3)

19.4 Operations

19.4.1 Initialization

The ADC12A should be initialized with the procedure shown below.

- 1. Assign the ADC12A input function to the ports. (Refer to the "I/O Ports" chapter.)
- 2. Configure the 16-bit timer Ch.k operating clock so that it will satisfy the sampling time.
- 3. Set the ADC12A_nCTL.MODEN bit to 1. (Enable ADC12A operations)
- 4. Configure the following ADC12A_nTRG register bits:

- ADC12A_nTRG.SMPCLK[2:0] bits (Set sampling time)

- ADC12A_nTRG.CNVTRG[1:0] bits (Select conversion start trigger source)

- ADC12A_nTRG.CNVMD bit (Set conversion mode)
- ADC12A_nTRG.STMD bit (Set data storing mode)

- ADC12A_nTRG.STAAIN[2:0] bits (Set analog input pin to be A/D converted first)

- ADC12A_nTRG.ENDAIN[2:0] bits (Set analog input pin to be A/D converted last)

5. Set the ADC12A_nCFG.VRANGE[1:0] bits. (Set operating voltage range according to VDD)

- 6. Set the following bits when using the interrupt:
 - Write 1 to the interrupt flags in the ADC12A_nINTF register. (Clear interrupt flags)
 - Set the interrupt enable bits in the ADC12A_nINTE register to 1. (Enable interrupts)
- 7. Configure the DMA controller and set the following ADC12A control bit when using DMA transfer:
 - Write 1 to the DMA transfer request enable bit in the

ADC12A_nDMAEN register. (Enable DMA transfer requests)

19.4.2 Conversion Start Trigger Source

The trigger source, which starts A/D conversion, can be selected from the three types shown below using the AD-C12A nTRG.CNVTRG[1:0] bits.

External trigger (#ADTRGn pin)

Writing 1 to the ADC12A_nCTL.ADST bit enables the ADC12A to accept trigger inputs. After that, the falling edge of the signal input to the #ADTRGn pin starts A/D conversion.

16-bit timer Ch.k underflow trigger

Writing 1 to the ADC12A_nCTL.ADST bit enables the ADC12A to accept trigger inputs. After that, A/D conversion is started when an underflow occurs in the 16-bit timer Ch.k.

Software trigger

Writing 1 to the ADC12A_nCTL.ADST bit starts A/D conversion.

Trigger inputs can be accepted while the ADC12A_nCTL.BSYSTAT bit is set to 0 and are ignored while set to 1. A/D conversion is actually started in sync with CLK_T16_k after a trigger is accepted.

Writing 0 to the ADC12A_nCTL.ADST bit stops A/D conversion after the one currently being executed has completed.

19.4.3 Conversion Mode and Analog Input Pin Settings

The ADC12A can be put into two conversion modes shown below using the ADC12A_nTRG.CNVMD bit. Each mode allows setting of analog input pin range to be A/D converted. The analog input pin range can be set using the ADC12A_nTRG.STAAIN[2:0] bits for specifying the first analog input pin and the ADC12A_nTRG.ENDAIN[2:0] bits for specifying the last analog input pin. The analog input signals within the specified range are A/D converted successively in ascending order of the pin numbers.

One-time conversion mode

Once the ADC12A executes A/D conversion for all the analog input signals within the specified range, it is automatically stopped.

Continuous conversion mode

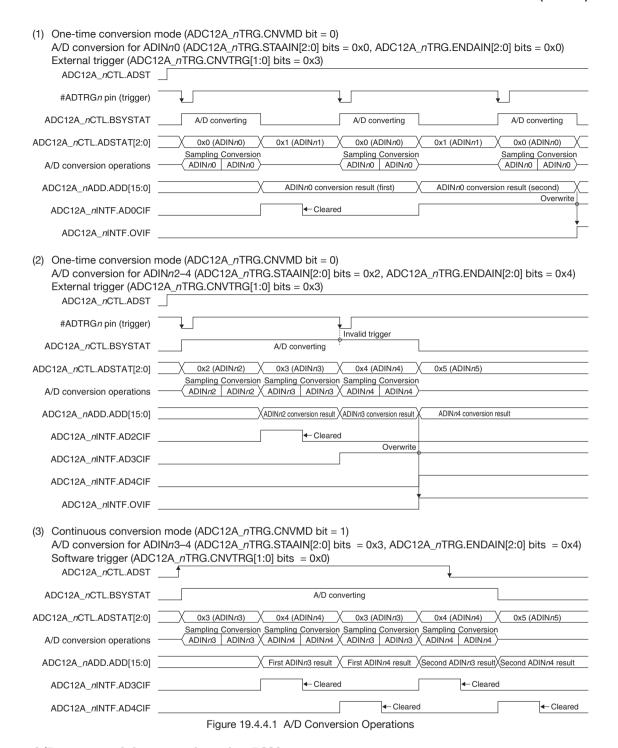
The ADC12A repeatedly executes A/D conversion within the specified range until 0 is written to the ADC12A_nCTL.ADST bit.

19.4.4 A/D Conversion Operations and Control Procedures

The following shows A/D conversion control procedures and the ADC12A operations.

Control procedure in one-time conversion mode

- 1. Write 1 to the ADC12A_nCTL.ADST bit.
- 2. Wait for an ADC12A interrupt.
 - i. If the ADC12A_nINTF.ADmCIF bit = 1 (analog input signal m A/D conversion completion interrupt), clear the ADC12A_nINTF.ADmCIF bit and then go to Step 3.
 - ii. If the ADC12A_nINTF.OVIF bit = 1 (A/D conversion result overwrite error interrupt), clear the ADC12A_nINTF.OVIF bit and terminate as an error or retry A/D conversion.
- 3. Read the A/D conversion result of the analog input m (ADC12A_nADD.ADD[15:0] bits).
 - * The 12-bit conversion results are located at the low-order 12 bits or high-order 12-bits within the ADC12A_nADD.ADD[15:0] bits according to the ADC12A_nTRG.STMD bit setting.
- 4. Repeat Steps 2 and 3 until A/D conversion for all the analog input pins within the specified range is completed.
- 5. To forcefully terminate the A/D conversion being executed, write 0 to the ADC12A_nCTL.ADST bit.


The ADC12A stops operating after the A/D conversion currently being executed has completed.

The ADC12A_nCTL.ADST bit must be cleared by writing 0 even if A/D conversion is completed and automatically stopped.

Control procedure in continuous conversion mode

- 1. Write 1 to the ADC12A_nCTL.ADST bit.
- 2. Wait for an ADC12A interrupt.
 - i. If the ADC12A_nINTF.ADmCIF bit = 1 (analog input signal m A/D conversion completion interrupt), clear the ADC12A_nINTF.ADmCIF bit and then go to Step 3.
 - ii. If the ADC12A_nINTF.OVIF bit = 1 (A/D conversion result overwrite error interrupt), clear the ADC12A_nINTF.OVIF bit and terminate as an error or retry A/D conversion.
- 3. Read the A/D conversion result of the analog input m (ADC12A_nADD.ADD[15:0] bits).
- 4. Repeat Steps 2 and 3 until terminating A/D conversion.
- 5. Write 0 to the ADC12A_nCTL.ADST bit.

The ADC12A stops operating after the A/D conversion currently being executed has completed.

A/D converted data transfer using DMA

By setting the ADC12A_nDMAEN.ADCDMAENx bit to 1 (DMA transfer request enabled), a DMA transfer request is sent to the DMA controller and the ADC12A_nADD register value is transferred to the specified memory via DMA Ch.x when the ADC12A_nINTF.ADmCIF bit is set to 1 (when A/D conversion for the analog input signal m has completed).

This automates reading and saving of A/D converted data.

The transfer source/destination and control data must be set for the DMA controller and the relevant DMA channel must be enabled to start a DMA transfer in advance. For more information on DMA, refer to the "DMA Controller" chapter.

Table	Table 19.4.4.1 DIMA Data Structure Configuration Example (Capture Data Transfer)				
Item		Setting example			
End pointer	Transfer source	ADC12A_nADD register address			
	Transfer destination	Memory address to which the last A/D converted data is stored			
Control data	dst_inc	0x1 (+2)			
	dst_size	0x1 (haflword)			
	src_inc	0x3 (no increment)			
	src_size	0x1 (halfword)			
	R_power	0x0 (arbitrated for every transfer)			
	n_minus_1	Number of transfer data			

0x1 (basic transfer)

Table 19.4.4.1 DMA Data Structure Configuration Example (Capture Data Transfer)

19.5 Interrupts

The ADC12A has a function to generate the interrupts shown in Table 19.5.1.

cycle ctrl

Table 19.5.1 ADC12A Interrupt Function

Interrupt	Interrupt flag	Set condition	Clear condition
Analog input signal <i>m</i> A/D conversion completion	ADC12A_nINTF.ADmCIF	When an analog input signal <i>m</i> A/D conversion result is loaded to the ADC12A_ <i>n</i> ADD register	Writing 1
A/D conversion result over- write error	ADC12A_nINTF.OVIF	When a new A/D conversion result is loaded to the ADC12A_nADD register while the ADC12A_nINTF.ADmCIF bit = 1	Writing 1

Note that the A/D conversion continues even if an A/D conversion result overwrite error has occurred. A/D conversion result overwrite errors are decided regardless of whether the ADC12A_nADD register has been read or not.

The ADC12A provides interrupt enable bits corresponding to each interrupt flag. An interrupt request is sent to the CPU only when the interrupt flag, of which interrupt has been enabled by the interrupt enable bit, is set. For more information on interrupt control, refer to the "Interrupt" chapter.

19.6 DMA Transfer Requests

The ADC12A has a function to generate DMA transfer requests from the causes shown in Table 19.6.1.

Table 19.6.1 DMA Transfer Request Causes of ADC12A

Cause to request DMA transfer	DMA transfer request flag	Set condition	Clear condition
Analog input signal <i>m</i> A/D	A/D conversion completion flag	When an analog input signal m A/	When the DMA
conversion completion	(ADC12A_nINTF.ADmCIF)	D conversion result is loaded to the	transfer request
		ADC12A_nADD register	is accepted

The ADC12A provides DMA transfer request enable bits corresponding to each DMA transfer request flag shown above for the number of DMA channels. A DMA transfer request is sent to the pertinent channel of the DMA controller only when the DMA transfer request flag, of which DMA transfer has been enabled by the DMA transfer request enable bit, is set. The DMA transfer request flag also serves as an interrupt flag, therefore, both the DMA transfer request and the interrupt cannot be enabled at the same time. After a DMA transfer has completed, disable the DMA transfer to prevent unintended DMA transfer requests from being issued. For more information on the DMA control, refer to the "DMA Controller" chapter.

19.7 Control Registers

ADC12A Ch.n Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
ADC12A_nCTL	15	_	0	_	R	_
	14–12	ADSTAT[2:0]	0x0	H0	R	
	11	_	0	-	R	
	10	BSYSTAT	0	H0	R	
	9–8	_	0x0	-	R	
	7–2	_	0x00	-	R	
	1	ADST	0	H0	R/W	
	0	MODEN	0	H0	R/W	

Bit 15 Reserved

Bits 14-12 ADSTAT[2:0]

These bits indicate the analog input pin number m being A/D converted.

Table 19.7.1 Relationship Between Control Bit Value and Analog Input Pin

• .
Analog input pin
ADINn7
ADINn6
ADINn5
ADINn4
ADINn3
ADINn2
ADINn1
ADINn0

These bits indicate the last converted analog input pin number after A/D conversion is forcefully terminated by writing 0 to the ADC12A_nCTL.ADST bit or automatically terminated in one-time conversion mode (ADC12A_nTRG.CNVMD = 0). If A/D conversion is stopped after the maximum analog input pin number (different in each model) has been completed, these bits indicate ADINn0.

Bit 11 Reserved

Bit 10 BSYSTAT

This bit indicates whether the ADC12A is executing A/D conversion or not.

1 (R/W): A/D converting

0 (R/W): Idle

Bits 9-2 Reserved

Bit 1 ADST

This bit starts A/D conversion or enables to accept triggers.

1 (R/W): Start sampling and conversion (software trigger)/

Enable trigger acceptance (external trigger, 16-bit timer underflow trigger)

0 (R/W): Terminate conversion

This bit does not revert to 0 automatically after A/D conversion has completed. Write 0 to this bit once and write 1 again to start another A/D conversion. After 0 is written to this bit to forcefully terminate conversion, the ADC12A stops after the A/D conversion being executed is completed. Therefore, this bit cannot be used to determine whether the ADC12A is executing A/D conversion or not.

Note: The data written to the ADC12A_nCTL.ADST bit must be retained for one or more CLK_T16_ *k* clock cycles when 1 is written or two or more CLK_T16_*k* clock cycles when 0 is written.

Bit 0 MODEN

This bit enables the ADC12A operations.

1 (R/W): Enable ADC12A operations (The operating clock is supplied.) 0 (R/W): Disable ADC12A operations (The operating clock is stopped.)

Note: After 0 is written to the ADC12A_nCTL.MODEN bit, the ADC12A executes a terminate processing. Before the clock source is deactivated, read the ADC12A_nCTL.MODEN bit to make sure that it is set to 0.

ADC12A Ch.n Trigger/Analog Input Select Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
ADC12A_nTRG	15–14	_	0x0	_	R	_
	13–11	ENDAIN[2:0]	0x0	H0	R/W	
	10–8	STAAIN[2:0]	0x0	H0	R/W	
	7	STMD	0	H0	R/W	
	6	CNVMD	0	H0	R/W	
	5–4	CNVTRG[1:0]	0x0	H0	R/W	
	3	_	0	-	R	
	2-0	SMPCLK[2:0]	0x7	H0	R/W	

Note: Make sure that the ADC12A_nCTL.BSYSTAT bit is set to 0 before altering the ADC12A_nTRG register.

Bits 15-14 Reserved

Bits 13-11 ENDAIN[2:0]

These bits set the analog input pin to be A/D converted last.

See Table 19.7.1 for the relationship between analog input pins and bit setting values.

Note: The analog input pin range to perform A/D conversion must be set as ADC12A_nTRG. ENDAIN[2:0] bits ≥ ADC12A_nTRG.STAAIN[2:0] bits.

Bits 10-8 STAAIN[2:0]

These bits set the analog input pin to be A/D converted first.

See Table 19.7.1 for the relationship between analog input pins and bit setting values.

Bit 7 STMD

This bit selects the data alignment when the conversion results are loaded into the A/D conversion result register (ADC12A_nADD.ADD[15:0] bits).

1 (R/W): Left justify 0 (R/W): Right justify

All the A/D conversion result registers change their data alignment immediately after this bit is altered. This does not affect the conversion results.

	ADC12A_nADD.ADD[15:0] bits															
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Left justified (ADC12A_nTRG.STMD bit = 1)	(MS	B)		12-	bit c	onve	ersio	n res	sult		(L	SB)	0	0	0	0
Right justified (ADC12A_nTRG.STMD bit = 0)	0	0	0	0	(MS	SB)		12-	bit c	onve	ersio	n res	sult		(L	SB)

Figure 19.7.1 Conversion Data Alignment

Bit 6 CNVMD

This bit sets the A/D conversion mode. 1 (R/W): Continuous conversion mode 0 (R/W): One-time conversion mode

Bits 5-4 CNVTRG[1:0]

These bits select a trigger source to start A/D conversion.

Table 19.7.2 Trigger Source Selection

ADC12A_nTRG.CNVTRG[1:0] bits	Trigger source
0x3	#ADTRGn pin (external trigger)
0x2	Reserved
0x1	16-bit timer Ch.k underflow
0x0	ADC12A_nCTL.ADST bit (software trigger)

Bit 3 Reserved

Bits 2-0 SMPCLK[2:0]

These bits set the analog input signal sampling time.

Table 19.7.3 Sampling Time Settings

ADC12A_nTRG.SMPCLK[2:0] bits	Sampling time (Number of CLK_T16_k cycles)
0x7	11 cycles
0x6	10 cycles
0x5	9 cycles
0x4	8 cycles
0x3	7 cycles
0x2	6 cycles
0x1	5 cycles
0x0	4 cycles

ADC12A Ch.n Configuration Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
ADC12A_nCFG	15–8	-	0x00	_	R	_
	7–2	_	0x00	-	R	
	1-0	VRANGE[1:0]	0x0	H0	R/W	

Note: Make sure that the ADC12A_nCTL.BSYSTAT bit is set to 0 before altering the ADC12A_nCFG register.

Bits 15-2 Reserved

Bits 1-0 VRANGE[1:0]

These bits set the A/D converter operating voltage range.

Table 19.7.4 A/D Converter Operating Voltage Range Setting

ADC12A_nCFG.VRANGE[1:0] bits	A/D converter operating voltage range
0x3	1.8 to 5.5 V
0x2	3.6 to 5.5 V
0x1	4.8 to 5.5 V
0x0	Conversion disabled

Notes: • A/D conversion will not be performed if the ADC12_nCFG.VRANGE[1:0] bits = 0x0. Set these bits to the value according to the operating voltage to perform A/D conversion.

• Be aware that ADC circuit current IADC flows if the ADC12_nCFG.VRANGE[1:0] bits are set to a value other than 0x0 when the ADC12_nCTL.BSYSTAT bit = 1.

ADC12A Ch.n Interrupt Flag Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
ADC12A_nINTF	15–9	_	0x00	-	R	_
	8	OVIF	0	H0	R/W	Cleared by writing 1.
	7	AD7CIF	0	H0	R/W	
	6	AD6CIF	0	H0	R/W	
	5	AD5CIF	0	H0	R/W	
	4	AD4CIF	0	H0	R/W	
	3	AD3CIF	0	H0	R/W	
	2	AD2CIF	0	H0	R/W	
	1	AD1CIF	0	H0	R/W	
	0	AD0CIF	0	H0	R/W	

Bits 15-9 Reserved

Bit 8 OVIF Bits 7–0 ADmCIF

These bits indicate the ADC12A interrupt cause occurrence status.

1 (R): Cause of interrupt occurred 0 (R): No cause of interrupt occurred

1 (W): Clear flag 0 (W): Ineffective

The following shows the correspondence between the bit and interrupt:

ADC12A_nINTF.OVIF bit: A/D conversion result overwrite error interrupt

ADC12A_nINTF.ADmCIF bit: Analog input signal m A/D conversion completion interrupt

ADC12A Ch.n Interrupt Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
ADC12A_nINTE	15–9	_	0x00	-	R	_
	8	OVIE	0	H0	R/W	
	7	AD7CIE	0	H0	R/W	
	6	AD6CIE	0	H0	R/W	
	5	AD5CIE	0	H0	R/W	
	4	AD4CIE	0	H0	R/W	
	3	AD3CIE	0	H0	R/W	
	2	AD2CIE	0	H0	R/W	
	1	AD1CIE	0	H0	R/W	
	0	AD0CIE	0	H0	R/W	

Bits 15-9 Reserved

Bit 8 OVIE Bits 7–0 ADmCIE

These bits enable ADC12A interrupts.

1 (R/W): Enable interrupts 0 (R/W): Disable interrupts

The following shows the correspondence between the bit and interrupt:

ADC12A_nINTE.OVIE bit: A/D conversion result overwrite error interrupt

ADC12A_nINTE.ADmCIE bit: Analog input signal m A/D conversion completion interrupt

ADC12A Ch.n DMA Request Enable Register m

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
ADC12A_nDMAENm	15–0	ADCDMAEN[15:0]	0x0000	H0	R/W	_

Bits 15-0 ADCDMAEN[15:0]

These bits enable ADC12A to issue a DMA transfer request to the corresponding DMA controller channel (Ch.0–Ch.15) when the A/D conversion for each analog input has completed.

1 (R/W): Enable DMA transfer request 0 (R/W): Disable DMA transfer request

Each bit corresponds to a DMA controller channel. The high-order bits for the unimplemented channels are ineffective.

ADC12A Ch.n Result Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
ADC12A_nADD	15–0	ADD[15:0]	0x0000	H0	R	_

Bits 15-0 ADD[15:0]

The A/D conversion results are set to these bits.

20 Temperature Sensor/Reference Voltage Generator (TSRVR)

20.1 Overview

The TSRVR is a peripheral circuit for the internal A/D converter that outputs the internal temperature sensor detection values and generates the reference voltage. The features of the TSRVR are listed below.

- Includes a temperature sensor that has a linear output characteristic and the sensor output can be measured using the internal A/D converter without external components being attached.
- Can supply a reference voltage (2.0 V, 2.5 V, or VDD selectable) to the internal A/D converter.
- Can supply the reference voltage generated in this circuit to external devices if this IC has the VREFA exclusive pin.

Figure 20.1.1 shows the TSRVR configuration.

Table 20.1.1 TSRVR Configuration of S1C31D41

	•			
Item	S1C31D41			
Number of channels	1 channel (Ch.0)			
Correspondence between TSRVR and internal A/D	TSRVR Ch.0 → ADC12A Ch.0			
converter channels				
A/D converter input connected to temperature sensor	ADIN07			
Reference voltage output to external devices	Unavailable			

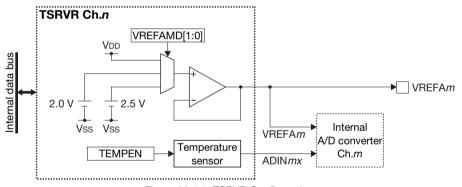


Figure 20.1.1 TSRVR Configuration

Note: In this chapter, *n* and *m* refer to a TSRVR channel number and an internal A/D converter channel number, respectively.

20.2 Output Pin and External Connections

20.2.1 Output Pin

Table 20.2.1.1 shows the TSRVR pin.

Table 20.2.1.1 TSRVR Pin

Pin name	I/O	Initial status	Function	
VREFA <i>m</i>	Α	Hi-Z	Reference voltage output	

If the port is shared with the TSRVR pin and other functions, the TSRVR output function must be assigned to the port before activating the TSRVR. For more information, refer to the "I/O Ports" chapter.

20.2.2 External Connections

Figure 20.2.2.1 shows connection diagrams between the TSRVR and external components.

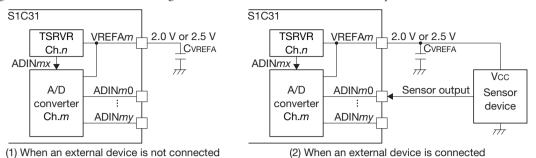


Figure 20.2.2.1 Connections between TSRVR and External Components

20.3 Operations

TSRVR should be configured before starting measurements using the internal A/D converter.

20.3.1 Reference Voltage Setting

The TSRVR output voltage can be supplied to the internal A/D converter as the reference voltage VREFAm when it is not supplied externally. The output voltage can be selected using the TSRVR_nVCTL.VREFAMD[1:0] bits. Connect CVREFA to the VREFAm pin when supplying the reference voltage from TSRVR. A/D conversion by the internal A/D converter should be started after the reference voltage stabilization time tVREFA has elapsed from the time when the output voltage is selected.

20.3.2 Temperature Sensor Setting

The temperature sensor output voltage can be directly measured using the internal A/D converter. The measurement should be started after the temperature sensor output stabilization time ttemp has elapsed from writing 1 to the TSRVR nTCTL.TEMPEN bit to activate the temperature sensor.

From the temperature sensor output voltage, the measured temperature can be calculated by the equations shown below.

$$T_{SEN} = \frac{(V_{TSEN} - V_{TREF}) \times 1,000}{\Delta V_{TEMP}} + T_{REF}$$
 (Eq. 20.1)

Where

Tsen: Actual temperature [°C]

VTSEN: Temperature sensor output voltage at temperature TSEN [V]

TREF: Reference temperature for calibration [°C]

VTREF: Temperature sensor output voltage at temperature TREF [V]

ΔVTEMP: Temperature sensor output voltage temperature coefficient [mV/°C] (Refer to the "Electrical Characteristics" electrical characteristics and the sensor output voltage temperature coefficient [mV/°C] (Refer to the "Electrical Characteristics" electrical characteristics and the sensor output voltage temperature coefficient [mV/°C] (Refer to the "Electrical Characteristics" electrical characteristics and the sensor output voltage temperature coefficient [mV/°C] (Refer to the "Electrical Characteristics" electrical characteristics and the sensor output voltage temperature coefficient [mV/°C] (Refer to the "Electrical Characteristics" electrical characteristics and the sensor output voltage temperature coefficient [mV/°C] (Refer to the "Electrical Characteristics" electrical characteristics and the sensor output voltage temperature coefficient [mV/°C] (Refer to the "Electrical Characteristics" electrical characteristics and the sensor output voltage temperature coefficient [mV/°C] (Refer to the "Electrical Characteristics" electrical characteristics and the sensor output voltage temperature coefficient [mV/°C] (Refer to the "Electrical Characteristics" electrical characteristics and the sensor output voltage temperature coefficient [mV/°C] (Refer to the "Electrical Characteristics" electrical characteristics and the sensor output voltage temperature characteristics and the sensor ou

acteristics" chapter.)

Convert the digital values corresponding to the respective temperatures, that are obtained by the internal A/D converter, into voltage values and assign them to VTSEN and VTREF.

$$V_{\text{(TSEN, TREF)}} = \frac{\text{ADD}}{4.096} \times \text{Vrefa}$$
 (Eq. 20.2)

Where

ADD: A/D conversion result at temperature Tsen or Tref (decimal)

VREFA: A/D converter reference voltage [V]

For details of the internal A/D converter, refer to the "12-bit A/D Converter" chapter.

20.4 Control Registers

TSRVR Ch.n Temperature Sensor Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
TSRVR_nTCTL	15–8	_	0x00	_	R	_
	7–1	_	0x00	H0	R	
	0	TEMPEN	0	H0	R/W	

Bits 15-1 Reserved

Bit 0 TEMPEN

This bit enables the temperature sensor operation. 1 (R/W): Enable temperature sensor output

0 (R/W): Disable temperature sensor output

TSRVR Ch.n Reference Voltage Generator Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
TSRVR_nVCTL	15–8	_	0x00	_	R	_
	7–2	-	0x00	H0	R	
	1–0	VREFAMD[1:0]	0x0	H0	R/W	

Bits 15-2 Reserved

Bits 1-0 VREFAMD[1:0]

These bits set the reference voltage generator output voltage.

Table 20.4.1 Output Voltage Settings

TSRVR_nVCTL.VREFAMD[1:0] bits	Output voltage
0x3	2.5 V output
0x2	2.0 V output
0x1	VDD level output
0x0	Hi-Z (An external voltage can be applied.)

Notes: • Be aware that VREFA operating current lyrefa flows when the TSRVR_nVCTL.VREFAMD[1:0] bits are set to 0x2 or 0x3.

• When the TSRVR_nVCTL.VREFAMD[1:0] bits are not set to 0x0, do not apply an external voltage to the VREFAm pin.

21 R/F Converter (RFC)

21.1 Overview

The RFC is a CR oscillation type A/D converter (R/F converter).

The features of the RFC are listed below.

- Converts the sensor resistance into a digital value by performing CR oscillation and counting the oscillation clock.
- Achieves high-precision measurement system with low errors by oscillating the reference resistor and the sensor
 in the same conditions to obtain the difference between them.
- Includes a 24-bit measurement counter to count the oscillation clocks.
- Includes a 24-bit time base counter to count the internal clock for equalizing the measurement time between the
 reference resistor and the sensor.
- Supports DC bias resistive sensors and AC bias resistive sensors. (Note: See the table below.)
 (A thermometer/hygrometer can be easily implemented by connecting a thermistor or a humidity sensor and a few passive elements (resistor and capacitor).)
- Allows measurement (counting) by inputting external clocks.
- · Provides an output and continuous oscillation function for monitoring the oscillation frequency.
- Can generate reference oscillation completion, sensor (A and B) oscillation completion, measurement counter overflow error, and time base counter overflow error interrupts.

Figure 21.1.1 shows the RFC configuration.

Table 21.1.1 RFC Channel Configuration of S1C31D41

Item	32-pin package	48-pin package	64-pin package		
Number of channels	_	- 1 channel (Ch.0)			
		Note: DC oscillation mod	node for resistive sensor		
		measurements can	only be used.		

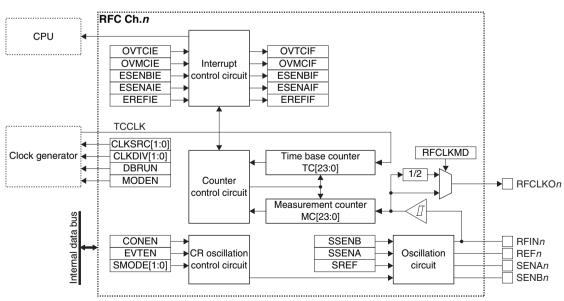


Figure 21.1.1 RFC Configuration

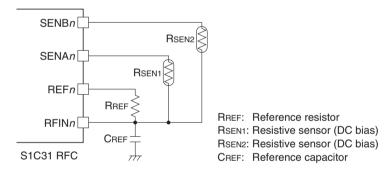
21.2 Input/Output Pins and External Connections

21.2.1 List of Input/Output Pins

Table 21.2.1.1 lists the RFC pins.

Table 21.2.1.1 List of RFC Pins

Pin name	I/O*	Initial status*	Function			
SENBn	Α	Hi-Z	Sensor B oscillation control pin			
SENAn	Α	Hi-Z	Sensor A oscillation control pin			
REFn	Α	Hi-Z	Reference oscillation control pin			
RFINn	Α	Vss	RFCLK input or oscillation control pin			
RFCLKOn	0	Hi-Z	RFCLK monitoring output pin			
			RFCLK is output to monitor the oscillation frequency.			


^{*} Indicates the status when the pin is configured for the RFC.

If the port is shared with the RFC pin and other functions, the RFC input/output function must be assigned to the port before activating the RFC. For more information, refer to the "I/O Ports" chapter.

Note: The RFIN*n* pin goes to Vss level when the port is switched. Be aware that large current may flow if the pin is biased by an external circuit.

21.2.2 External Connections

The figures below show connection examples between the RFC and external sensors. For the oscillation mode and external clock input mode, refer to "Operating Mode."

* Leave the unused pin (SENAn or SENBn) open if one resistive sensor only is used.

Figure 21.2.2.1 Connection Example in Resistive Sensor DC Oscillation Mode

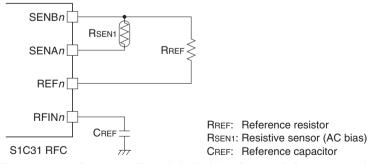
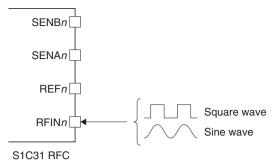



Figure 21.2.2.2 Connection Example in Resistive Sensor AC Oscillation Mode

* Leave the unused pins open.

Figure 21.2.2.3 External Clock Input in External Clock Input Mode

21.3 Clock Settings

21.3.1 RFC Operating Clock

When using the RFC, the RFC operating clock TCCLK must be supplied to the RFC from the clock generator. The TCCLK supply should be controlled as in the procedure shown below.

- 1. Enable the clock source in the clock generator if it is stopped (refer to "Clock Generator" in the "Power Supply, Reset, and Clocks" chapter).
- 2. Set the following RFC_nCLK register bits:
 - RFC_nCLK.CLKSRC[1:0] bits (Clock source selection)
 - RFC nCLK.CLKDIV[1:0] bits (Clock division ratio selection = Clock frequency setting)

The time base counter performs counting with TCCLK set here. Selecting a higher clock results in higher conversion accuracy, note, however, that the frequency should be determined so that the time base counter will not overflow during reference oscillation.

21.3.2 Clock Supply in SLEEP Mode

When using RFC during SLEEP mode, the RFC operating clock TCCLK must be configured so that it will keep supplying by writing 0 to the CLGOSC.xxxxSLPC bit for the TCCLK clock source.

21.3.3 Clock Supply in DEBUG Mode

The TCCLK supply during DEBUG mode should be controlled using the RFC nCLK.DBRUN bit.

The TCCLK supply to the RFC is suspended when the CPU enters DEBUG mode if the RFC_nCLK.DBRUN bit = 0. After the CPU returns to normal mode, the TCCLK supply resumes. Although the RFC stops operating when the TCCLK supply is suspended, the output pin and registers retain the status before DEBUG mode was entered. If the RFC_nCLK.DBRUN bit = 1, the TCCLK supply is not suspended and the RFC will keep operating in DEBUG mode.

21.4 Operations

21.4.1 Initialization

The RFC should be initialized with the procedure shown below.

- 1. Configure the RFC_nCLK.CLKSRC[1:0] and RFC_nCLK.CLKDIV[1:0] bits. (Configure operating clock)
- 2. Set the following bits when using the interrupt:
 - Write 1 to the interrupt flags in the RFC_nINTF register. (Clear interrupt flags)
 - Set the interrupt enable bits in the RFC_nINTE register to 1. (Enable interrupts)
- 3. Assign the RFC input/output function to the ports. (Refer to the "I/O Ports" chapter.)

21 R/F CONVERTER (RFC)

4. Configure the following RFC_nCTL register bits:

- RFC_nCTL.EVTEN bit (Enable/disable external clock input mode)

RFC_nCTL.SMODE[1:0] bits (Select oscillation mode)
 Set the RFC nCTL.MODEN bit to 1. (Enable RFC operations)

21.4.2 Operating Modes

The RFC has two oscillation modes that use the RFC internal oscillation circuit and an external clock input mode for measurements using an external input clock. The channels may be configured to a different mode from others.

Oscillation mode

The oscillation mode is selected using the RFC_nCTL.SMODE[1:0] bits.

DC oscillation mode for resistive sensor measurements

This mode performs measurements by DC driving the reference resistor and the resistive sensor to oscillate. Set the RFC into this mode when a DC bias resistive sensor is connected. This mode allows connection of two resistive sensors to a channel.

AC oscillation mode for resistive sensor measurements

This mode performs measurements by AC driving the reference resistor and the resistive sensor to oscillate. Set the RFC into this mode when an AC bias resistive sensor is connected. One resistive sensor only can be connected to a channel.

External clock input mode (event counter mode)

This mode enables input of external clock/pulses to perform counting similar to the internal oscillation clock. A sine wave may be input as well as a square wave (for the threshold value of the Schmitt input, refer to "R/F Converter Characteristics, High level Schmitt input threshold voltage V_{T+} and Low level Schmitt input threshold voltage V_{T+}" in the "Electrical Characteristics" chapter). This function is enabled by setting the RFC_nCTL. EVTEN bit to 1. The measurement procedure is the same as when the internal oscillation circuit is used.

21.4.3 RFC Counters

The RFC incorporates two counters shown below.

Measurement counter (MC)

The measurement counter is a 24-bit presettable up counter. Counting the reference oscillation clock and the sensor oscillation clock for the same duration of time using this counter minimizes errors caused by voltage, and unevenness of IC quality, as well as external parts and on-board parasitic elements. The counter values should be corrected via software after the reference and sensor oscillations are completed according to the sensor characteristics to determine the value being currently detected by the sensor.

Time base counter (TC)

The time base counter is a 24-bit presettable up/down counter. The time base counter counts up with TCCLK during reference oscillation to measure the reference oscillation time. During sensor oscillation, it counts down from the reference oscillation time and stops the sensor oscillation when it reaches 0x000000. This means that the sensor oscillation time becomes equal to the reference oscillation time. The value counted during reference oscillation should be saved in the memory. It can be reused at subsequent sensor oscillations omitting reference oscillations.

Counter initial value

To obtain the difference between the reference oscillation and sensor oscillation clock count values from the measurement counter simply, appropriate initial values must be set to the measurement counter before starting reference oscillation.

Connecting the reference element and sensor with the same resistance will result in <Initial value: n> = <Counter value at the end of sensor oscillation: m> (if error = 0). Setting a large <Initial value: n> increases the resolution of measurement. However, the measurement counter may overflow during sensor oscillation when the sensor value decreases below the reference element value (the measurement will be canceled). The initial value for the measurement counter should be determined taking the range of sensor value into consideration.

Counter value read

The measurement and time base counters operate on RFCCLK and TCCLK, respectively. Therefore, to read correctly by the CPU while the counter is running, read the counter value twice or more and check to see if the same value is read.

21.4.4 Converting Operations and Control Procedure

The time base counter should be set to 0x000000 before starting reference oscillation.

An R/F conversion procedure and the RFC operations are shown below. Although the following descriptions assume that the internal oscillation circuit is used, external clock input mode can be controlled with the same procedure

R/F control procedure

- 1. Set the initial value (0x000000 n) to the RFC_nMCH and RFC_nMCL registers (measurement counter).
- Clear the RFC_nTCH and RFC_nTCL registers (time base counter) to 0x000000.
- 3. Clear both the RFC_nINTF.EREFIF and RFC_nINTF.OVTCIF bits by writing 1.
- 4. Set the RFC_nTRG.SREF bit to 1 to start reference oscillation.
- 5. Wait for an RFC interrupt.
 - i. If the RFC_nINTF.EREFIF bit = 1 (reference oscillation completion), clear the RFC_nINTF.EREFIF bit and then go to Step 6.
 - ii. If the RFC_nINTF.OVTCIF bit = 1 (time base counter overflow error), clear the RFC_nINTF.OVTCIF bit and terminate measurement as an error or retry after altering the measurement counter initial value.
- Clear the RFC_nINTF.ESENAIF, RFC_nINTF.ESENBIF, and RFC_nINTF.OVMCIF bits by writing 1.
- 7. Set the RFC_nTRG.SSENA bit (sensor A) or the RFC_nTRG.SSENB bit (sensor B) corresponding to the sensor to be measured to 1 to start sensor oscillation (use the RFC_nTRG.SSENA bit in AC oscillation mode).
- 8. Wait for an RFC interrupt.
 - i. If the RFC_nINTF.ESENAIF bit = 1 (sensor A oscillation completion) or the RFC_nINTF.ESENBIF bit = 1 (sensor B oscillation completion), clear the RFC_nINTF.ESENAIF or RFC_nINTF.ESENBIF bit and then go to Step 9.
 - ii. If the RFC_nINTF.OVMCIF bit = 1 (measurement counter overflow error), clear the RFC_nINTF.OVMCIF bit and terminate measurement as an error or retry after altering the measurement counter initial value.
- Read the RFC_nMCH and RFC_nMCL registers (measurement counter) and correct the results depending on the sensor to obtain the detected value.

R/F converting operations

Reference oscillation

When the RFC_nTRG.SREF bit is set to 1 in Step 4 of the conversion procedure above, the RFC Ch.n starts CR oscillation using the reference resistor. The measurement counter starts counting up using the CR oscillation clock from the initial value that has been set. The time base counter starts counting up using TC-CLK from 0x000000.

When the measurement counter or the time base counter overflows (0xffffff \rightarrow 0x000000), the RFC_nTRG. SREF bit is cleared to 0 and the reference oscillation stops automatically.

The measurement counter overflow sets the RFC_nINTF.EREFIF bit to 1 indicating that the reference oscillation has been terminated normally. If the RFC_nINTE.EREFIE bit = 1, a reference oscillation completion interrupt request occurs at this point.

The time base counter overflow sets the RFC_nINTF.OVTCIF bit to 1 indicating that the reference oscillation has been terminated abnormally. If the RFC_nINTE.OVTCIE bit = 1, a time base counter overflow error interrupt request occurs at this point.

Sensor oscillation

When the RFC_nTRG.SSENA bit (sensor A) or the RFC_nTRG.SSENB bit (sensor B) is set to 1 in Step 7 of the conversion procedure above, the RFC Ch.n starts CR oscillation using the sensor. The measurement counter starts counting up using the CR oscillation clock from 0x000000. The time base counter starts counting down using TCCLK from the value at the end of reference oscillation.

When the time base counter reaches 0x000000 or the measurement counter overflows (0xffffff \rightarrow 0x000000), the RFC_nTRG.SSENA bit or the RFC_nTRG.SSENB bit that started oscillation is cleared to 0 and the sensor oscillation stops automatically.

The time base counter reaching 0x000000 sets the RFC_nINTF.ESENAIF bit (sensor A) or the RFC_nINTF.ESENBIF bit (sensor B) to 1 indicating that the sensor oscillation has been terminated normally. If the RFC_nINTE.ESENAIE bit = 1 or the RFC_nINTE.ESENBIE bit = 1, a sensor A or sensor B oscillation completion interrupt request occurs at this point.

The measurement counter overflow sets the RFC_nINTF.OVMCIF to 1 indicating that the sensor oscillation has been terminated abnormally. If the RFC_nINTE.OVMCIE bit = 1, a measurement counter overflow error interrupt request occurs at this point.

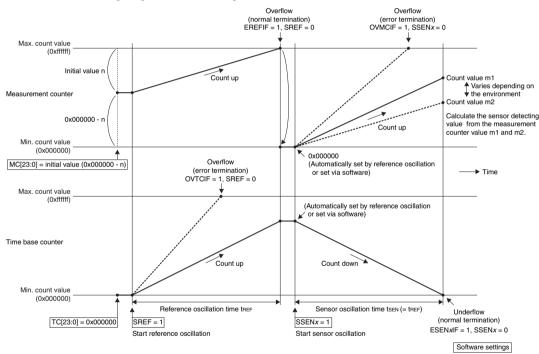


Figure 21.4.4.1 Counter Operations During Reference/Sensor Oscillation

Forced termination

To abort reference oscillation or sensor oscillation, write 0 to the RFC_nTRG.SREF bit (reference oscillation), the RFC_nTRG.SSENA bit (sensor A oscillation), or the RFC_nTRG.SSENB bit (sensor B oscillation) used to start the oscillation. The counters maintain the value at the point they stopped, note, however, that the conversion results cannot be guaranteed if the oscillation is resumed. When resuming oscillation, execute from counter initialization again.

Conversion error

Performing reference oscillation and sensor oscillation with the same resistor and capacitor results $n \approx m$. The difference between n and m is a conversion error. Table 21.4.4.1 lists the error factors. (n: measurement counter initial value, m: measurement counter value at the end of sensor oscillation)

Table 21.4.4.1 Error Factors

Error factor	Influence
External part tolerances	Large
Power supply voltage fluctuations	Large
Parasitic capacitance and resistance of the board	Middle
Temperature	Small
Unevenness of IC quality	Small

21.4.5 CR Oscillation Frequency Monitoring Function

The CR oscillation clock (RFCLK) generated during converting operation can be output from the RFCLKOn pin for monitoring. By setting the RFC_nCTL.CONEN bit to 1, the RFC Ch.n enters continuous oscillation mode that disables oscillation stop conditions to continue oscillating operations. In this case, set the the RFC_nTRG.SREF bit (reference oscillation), the RFC_nTRG.SSENA bit (sensor A oscillation), or the RFC_nTRG.SSENB bit (sensor B oscillation) to 1 to start oscillation. Set the bit to 0 to stop oscillation. Using this function helps easily measure the CR oscillation clock frequency. Furthermore, setting the RFC_nCTL.RFCLKMD bit to 1 changes the output clock to the divided-by-two RFCLK clock.

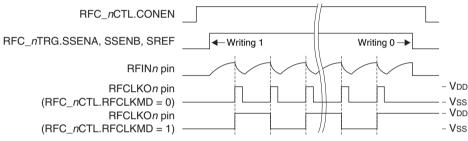


Figure 21.4.5.1 CR Oscillation Clock (RFCLK) Waveform

21.5 Interrupts

The RFC has a function to generate the interrupts shown in Table 21.5.1.

Table 21.5.1 RFC Interrupt Function

Interrupt	Interrupt flag	Set condition	Clear condition
Reference oscillation completion	RFC_nINTF.EREFIF	When reference oscillation has been completed normally due to a measurement counter overflow	Writing 1
Sensor A oscillation completion	_	When sensor A oscillation has been completed normally due to the time base counter reaching 0x000000	Writing 1
Sensor B oscillation completion	_	When sensor B oscillation has been completed normally due to the time base counter reaching 0x000000	Writing 1
Measurement counter overflow error	RFC_nINTF.OVMCIF	When sensor oscillation has been terminated abnormally due to a measurement counter overflow	Writing 1
Time base counter overflow error	RFC_nINTF.OVTCIF	When reference oscillation has been terminated abnormally due to a time base counter overflow	Writing 1

The RFC provides interrupt enable bits corresponding to each interrupt flag. An interrupt request is sent to the CPU only when the interrupt flag, of which interrupt has been enabled by the interrupt enable bit, is set. For more information on interrupt control, refer to the "Interrupt" chapter.

21.6 Control Registers

RFC Ch.n Clock Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RFC_nCLK	15–9	_	0x00	_	R	_
	8	DBRUN	1	H0	R/W	
	7–6	_	0x0	-	R	
	5–4	CLKDIV[1:0]	0x0	H0	R/W	
	3–2	_	0x0	_	R	
	1–0	CLKSRC[1:0]	0x0	H0	R/W	

Bits 15-9 Reserved

Bit 8 DBRUN

This bit sets whether the RFC operating clock is supplied in DEBUG mode or not.

1 (R/W): Clock supplied in DEBUG mode 0 (R/W): No clock supplied in DEBUG mode

Bits 7-6 Reserved

Bits 5-4 CLKDIV[1:0]

These bits select the division ratio of the RFC operating clock.

Bits 3-2 Reserved

Bits 1-0 CLKSRC[1:0]

These bits select the clock source of the RFC.

Table 21.6.1 Clock Source and Division Ratio Settings

RFC nCLK.		RFC_nCLK.CL	RFC_nCLK.CLKSRC[1:0] bits			
CLKDIV[1:0] bits	0x0	0x1	0x2	0x3		
CLKDIV[1:0] bits	IOSC	OSC1	OSC3	EXOSC		
0x3	1/8	1/1	1/8	1/1		
0x2	1/4		1/4			
0x1	1/2		1/2			
0x0	1/1		1/1			

(Note) The oscillation circuits/external input that are not supported in this IC cannot be selected as the clock source.

Note: The RFC nCLK register settings can be altered only when the RFC nCTL.MODEN bit = 0.

RFC Ch.n Control Register

111 0 01137 0						
Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RFC_nCTL	15–9	-	0x00	_	R	_
	8	RFCLKMD	0	H0	R/W	
	7	CONEN	0	H0	R/W	
	6	EVTEN	0	H0	R/W	
	5–4	SMODE[1:0]	0x0	H0	R/W	
	3–1	-	0x0	_	R	
	0	MODEN	0	H0	R/W	

Bits 15-9 Reserved

Bit 8 RFCLKMD

This bit sets the RFCLKOn pin to output the divided-by-two oscillation clock.

1 (R/W): Divided-by-two clock output 0 (R/W): Oscillation clock output

For more information, refer to "CR Oscillation Frequency Monitoring Function."

Bit 7 CONEN

This bit disables the automatic CR oscillation stop function to enable continuous oscillation function.

1 (R/W): Enable continuous oscillation 0 (R/W): Disable continuous oscillation

For more information, refer to "CR Oscillation Frequency Monitoring Function."

Bit 6 EVTEN

This bit enables external clock input mode (event counter mode).

1 (R/W): External clock input mode

0 (R/W): Normal mode

For more information, refer to "Operating Modes."

Note: Do not input an external clock before the RFC_nCTL.EVTEN bit is set to 1. The RFINn pin is pulled down to Vss level when the port function is switched for the R/F converter.

Bits 5-4 SMODE[1:0]

These bits configure the oscillation mode. For more information, refer to "Operating Modes."

Table 21.6.2 Oscillation Mode Selection

RFC_nCTL.SMODE[1:0] bits	Oscillation mode
0x3, 0x2	Reserved
0x1	AC oscillation mode for resistive sensor measurements
0x0	DC oscillation mode for resistive sensor measurements

Bits 3-1 Reserved

Bit 0 MODEN

This bit enables the RFC operations.

1 (R/W): Enable RFC operations (The operating clock is supplied.) 0 (R/W): Disable RFC operations (The operating clock is stopped.)

Note: If the RFC_nCTL.MODEN bit is altered from 1 to 0 during R/F conversion, the counter value being converted cannot be guaranteed. R/F conversion cannot be resumed.

RFC Ch.n Oscillation Trigger Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RFC_nTRG	15–8	_	0x00	_	R	_
	7–3	-	0x00	-	R	
	2	SSENB	0	H0	R/W	
	1	SSENA	0	H0	R/W	
	0	SREF	0	H0	R/W	

Bits 15-3 Reserved

Bit 2 SSENB

This bit controls CR oscillation for sensor B. This bit also indicates the CR oscillation status.

1 (W): Start oscillation0 (W): Stop oscillation1 (R): Being oscillated0 (R): Stopped

Note: Writing 1 to the RFC_nTRG.SSENB bit does not start oscillation when the RFC_nCTL. SMODE[1:0] bits = 0x1 (AC oscillation mode for resistive sensor measurements).

Bit 1 SSENA

This bit controls CR oscillation for sensor A. This bit also indicates the CR oscillation status.

1 (W): Start oscillation0 (W): Stop oscillation1 (R): Being oscillated0 (R): Stopped

Bit 0 SREF

This bit controls CR oscillation for the reference resistor. This bit also indicates the CR oscillation sta-

1 (W): Start oscillation0 (W): Stop oscillation1 (R): Being oscillated0 (R): Stopped

Notes: • Settings in this register are all ineffective when the RFC_nCTL.MODEN bit = 0 (RFC operation disabled).

- When writing 1 to the RFC_nTRG.SREF bit, the RFC_nTRG.SSENA bit, or the RFC_nTRG. SSENB bit to start oscillation, be sure to avoid having more than one bit set to 1.
- Be sure to clear the interrupt flags (RFC_nINTF.EREFIF bit, RFC_nINTF.ESENAIF bit, RFC_ nINTF.ESENBIF bit, RFC_nINTF.OVMCIF bit, and RFC_nINTF.OVTCIF bit) before starting oscillation using this register.

RFC Ch.n Measurement Counter Low and High Registers

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RFC_nMCL	15–0	MC[15:0]	0x0000	H0	R/W	_
RFC_nMCH	15–8	_	0x00	_	R	_
	7–0	MC[23:16]	0x00	H0	R/W	

Or

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RFC_nMCL	31–24	_	0x00	-	R	_
RFC_nMCH	23-0	MC[23:0]	0x000000	H0	R/W	

Bits 31-24 Reserved

Bits 23-0 MC[23:0]

Measurement counter data can be read and written through these bits.

Note: The measurement counter must be set from the low-order value (RFC_nMCL.MC[15:0] bits) first when data is set using a 16-bit access instruction. The counter may not be set to the correct value if the high-order value (RFC_nMCH.MC[23:16] bits) is written first.

RFC Ch.n Time Base Counter Low and High Registers

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RFC_nTCL	15–0	TC[15:0]	0x0000	H0	R/W	_
RFC_nTCH	15–8	_	0x00	_	R	_
	7–0	TC[23:16]	0x00	H0	R/W	

Or

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RFC_nTCL	31–24	_	0x00	_	R	_
RFC_nTCH	23-0	TC[23:0]	0x000000	H0	R/W	

Bits 31-24 Reserved

Bits 23-0 TC[23:0]

Time base counter data can be read and written through these bits.

Note: The time base counter must be set from the low-order value (RFC_nTCL.TC[15:0] bits) first when data is set using a 16-bit access instruction. The counter may not be set to the correct value if the high-order value (RFC_nTCH.TC[23:16] bits) is written first.

RFC Ch.n Interrupt Flag Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RFC_nINTF	15–8	_	0x00	_	R	_
	7–5	_	0x0	-	R	
	4	OVTCIF	0	H0	R/W	Cleared by writing 1.
	3	OVMCIF	0	H0	R/W	
	2	ESENBIF	0	H0	R/W	
	1	ESENAIF	0	H0	R/W	
	0	EREFIF	0	H0	R/W	

Bits 15-5 Reserved

Bit 4 OVTCIF
Bit 3 OVMCIF
Bit 2 ESENBIF
Bit 1 ESENAIF
Bit 0 FREFIF

These bits indicate the RFC interrupt cause occurrence status.

1 (R): Cause of interrupt occurred 0 (R): No cause of interrupt occurred

1 (W): Clear flag 0 (W): Ineffective

The following shows the correspondence between the bit and interrupt: RFC_nINTF.OVTCIF bit: Time base counter overflow error interrupt RFC_nINTF.OVMCIF bit: Measurement counter overflow error interrupt RFC_nINTF.ESENBIF bit: Sensor B oscillation completion interrupt RFC_nINTF.ESENAIF bit: Sensor A oscillation completion interrupt RFC_nINTF.EREFIF bit: Reference oscillation completion interrupt

RFC Ch.n Interrupt Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RFC_nINTE	15–8	_	0x00	_	R	_
	7–5	_	0x0	ı	R	
	4	OVTCIE	0	H0	R/W	
	3	OVMCIE	0	H0	R/W	
	2	ESENBIE	0	H0	R/W	
	1	ESENAIE	0	H0	R/W	
	0	EREFIE	0	H0	R/W	

Bits 15-5 Reserved

Bit 4	OVTCIE
Bit 3	OVMCIE
Bit 2	ESENBIE
Bit 1	ESENAIE
Bit 0	FREFIE

These bits enable RFC interrupts. 1 (R/W): Enable interrupts 0 (R/W): Disable interrupts

The following shows the correspondence between the bit and interrupt: RFC_nINTE.OVTCIE bit: Time base counter overflow error interrupt RFC_nINTE.OVMCIE bit: Measurement counter overflow error interrupt RFC_nINTE.ESENBIE bit: Sensor B oscillation completion interrupt RFC_nINTE.ESENAIE bit: Sensor A oscillation completion interrupt RFC_nINTE.EREFIE bit: Reference oscillation completion interrupt

22 HW Processor (HWP) and Sound Output (SDAC2)

22.1 Overview

HWP is a functional block having the "Sound Play" and "Memory Check" functions. It can work without any CPU resources by only issuing a command. SDAC2 converts the sound data generated by the HWP into PWM signals and outputs them to an external audio amplifier or an external amplifier circuit composed of discrete parts. The features of the HWP are listed below.

Sound Play function

- EPSON high quality and high compression algorithm (EOV: EPSON Original Sound Format)
 - Sampling Frequency: 15.625 kHzBitrate: 16/24 kbps
- Multi-channel mixer * See Table 21.1.1.
- Playback speed conversion (channel 0)
 - When using the speed conversion function alone, playback speed can be converted from 75% to 125% in 5% steps.
 - When using in combination with the pitch conversion function, playback speed can be converted from 85% to 115% in 5% steps.
- Playback pitch conversion (channel 0)
 - When using the pitch conversion function alone, playback pitch can be converted from 75% to 125% in 5% steps.
 - When using in combination with the speed conversion function, playback pitch can be converted from 90% to 110% in 5% steps.
- A silent period is inserted between phrases. Gapless play can also be selected. * See Table 21.1.1.
- · Sequential playing of multiple sound files
- · External QSPI-Flash* supported for storing sound data

Memory Check function

- Embedded RAM check (read/write check algorithm or March-C algorithm)
- Embedded Flash check (checksum or CRC algorithm)
- External QSPI-Flash* check (checksum or CRC algorithm)
- * Supports only QSPI Flash memories with XIP (eXecute-In-Place) mode.

Figure 21.1.1 shows the HWP configuration.

Table 22.1.1 HWP Channel Configuration of S1C31D41

l	tem	S1C31D41
Sound Play function	EOV play	Sampling frequency: 15.625 kHz
		Bitrate: 16/24 kbps
	Sound channel	2 channels
	Speed conversion	75% to 125% (5% steps) * Channel 0 only
	Pitch conversion	75% to 125% (5% steps) * Channel 0 only
	Simultaneous speed	Speed: 85% to 115% (5% steps)
	and pitch conversion	Pitch: 90% to 110% (5% steps)
		* Channel 0 only
	Sound output circuit	SDAC2
	Gapless play	Available
	Buzzer output	Available
Memory Check funct	ion	Available

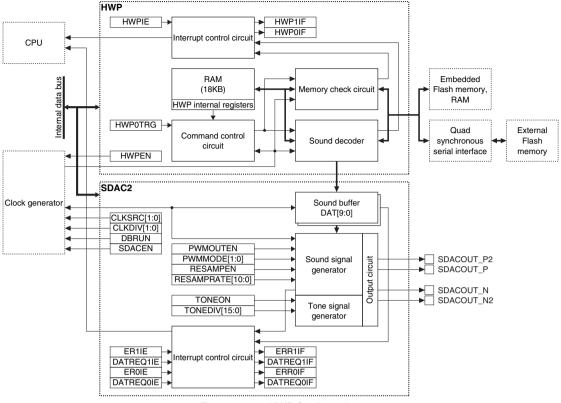


Figure 22.1.1 HWP Configuration

Notes: • In addition to the control registers in the MCU peripheral circuit area, the HWP has HWP internal registers (address 0x00156700 to address 0x0015674c) that are used for specifying the function and command to be executed and monitoring the operation state. These internal registers are switched between the Sound Play function registers and the Memory Check function registers according to the selected function.
In this chapter, the register names that begin with HWP or SDAC2 represent a control register in the MCU peripheral circuit area, other names represent a HWP internal register.

• For the specifications of sound data and the setting of the external Flash memory for storing sound data, refer to the application note or the sample software manual.

22.2 Output Pins and External Connections

22.2.1 List of Output Pins

Table 22.2.1.1 lists the SDAC2 output pins.

Table 22.2.1.1 SDAC2 Output Pins

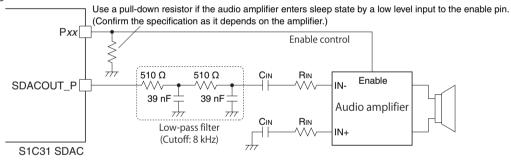
Pin name	e I/O Initial status*		Function
SDACOUT_P	0	O (L)	SDAC2 positive sound signal output (common to two-pin and four-pin output mode)
SDACOUT_N	0	O (L)	SDAC2 negative sound signal output (common to two-pin and four-pin output mode)
SDACOUT_P2	0	O (L)	SDAC2 positive sound signal 2 output (dedicated for four-pin output mode)
SDACOUT_N2	0	O (L)	SDAC2 negative sound signal 2 output (dedicated for four-pin output mode)

* Indicates the status when the pin is configured for SDAC2.

The SDAC2 output pins are shared with general-purpose I/O ports. These pins can be used in either two-pin output mode or four-pin output mode according to the external circuit configuration and are initially set to two-pin output mode (two-pin output mode combination 1 in the table below). When using them in four-pin output mode, switch the function of the ports for four-pin output dedicated pins to SDAC2 outputs. If the Sound Play function is not used, these pins can be switched to general-purpose I/O port pins. For details, refer to the "I/O Ports" chapter.

Note: If the audio amplifier has an enable signal input, use a general-purpose I/O port pin to output the external amplifier enable signal.

Pin	Two-pin ou	ıtput mode	Four-pin output mode						
Pin	Combination 1 Combination 2		Combination 1	Combination 2					
SDACOUT_P/P50	SDACOUT_P *1	_	_	SDACOUT_P *2					
SDACOUT_N/P51	SDACOUT_N *1	_	_	SDACOUT_N *2					
P03/SDACOUT_P2/UPMUX	-	_	SDACOUT_P2	SDACOUT_P2					
P04/SDACOUT_P/UPMUX	-	SDACOUT_P *2	SDACOUT_P *1	-					
P05/SDACOUT_N/UPMUX	-	SDACOUT_N *2	SDACOUT_N *1	-					
P06/SDACOUT N2/UPMUX	_	_	SDACOUT N2	SDACOUT N2					


Table 22.2.1.2 Output Mode Selection

Note: The SDACOUT_P and SDACOUT_N outputs are each assigned to two pins. Basically, use combination 1 (*1) and another (*2) should be configured for a general-purpose input/output pin or a UPMUX pin.

22.2.2 External Connections

Figures 22.2.2.1 and 22.2.2.2 show external circuit examples to input the SDAC2 sound signals to an external audio amplifier. The circuit configuration and component values should be modified according to the specifications of the audio amplifier to be used.

Sinale mode

* SDAC2MOD.PWMMODE[1:0] bits = 0x1

* SDAC2MOD.PWMMODE[1:0] bits = 0x1

Figure 22.2.2.1 Single Mode Connection Example

Differential mode

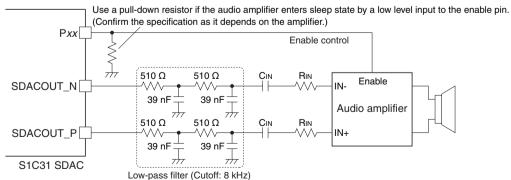
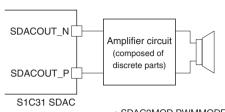
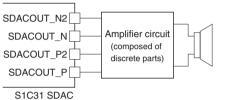



Figure 22.2.2.2 Differential Mode Connection Example

Figures 22.2.2.3 and 22.2.2.4 show examples to connect the SDAC2 sound signals to an external amplifier circuit composed of discrete parts. For more information on the amplifier circuit configuration, refer to an evaluation manual or application note.


Two-pin output mode

* SDAC2MOD.PWMMODE[1:0] bits = 0x3

Figure 22.2.2.3 Connection Example of SDAC2 with External Discrete Amplifier Circuit (Two-pin Output Mode)

Four-pin output mode

* SDAC2MOD.PWMMODE[1:0] bits = 0x3

Figure 22.2.2.4 Connection Example of SDAC2 with External Discrete Amplifier Circuit (Four-pin Output Mode)

22.3 Clock Settings

22.3.1 HWP Operating Clock

The HWP and the SDAC2 used for the Sound Play function operate with the SYSCLK (system clock) supplied from the clock generator. The HWP operating clock should be controlled as in the procedure shown below.

When executing the Sound Play function

- Configure SYSCLK in the clock generator (refer to "Clock Generator" in the "Power Supply, Reset, and Clocks" chapter).
 - SYSCLK source = OSC3
 - OSC3 oscillation frequency = 16 MHz
- 2. Set the following SDAC2CLK register bits (set in S1C31D41 regardless of the sound output destination):
 - Set the SDAC2CLK.CLKSRC[1:0] bits to 0x02. (Clock source = OSC3)
 - Set the SDAC2CLK.CLKDIV[1:0] bits to 0x0. (Clock division ratio = 1/1)

When executing the Memory Check function

Configure SYSCLK for operating the Memory Check function in the clock generator (refer to "Clock Generator" in the "Power Supply, Reset, and Clocks" chapter).

The Memory Check function allows the HWP to use SYSCLK at any arbitrary frequency.

22.3.2 Clock Supply in SLEEP Mode

The HWP and SDAC2 stop operating in SLEEP mode, as the SYSCLK stops. Do not put the IC into SLEEP mode while the HWP is operating. It is possible to put the IC into HALT mode while the HWP is operating.

22.3.3 Clock Supply in DEBUG Mode

The sound play and Memory Check functions can operate even in DEBUG mode, as SYSCLK is supplied. The SYSCLK supply to the SDAC2 during DEBUG mode can be controlled using the SDAC2CLK.DBRUN bit. The SDAC2CLK.DBRUN bit must be set to 1 when using the Sound Play function during DEBUG mode. Be aware that the sound cannot be output normally when SDAC2CLK.DBRUN bit = 0.

22.4 Operations

22.4.1 Sound Play Function

Initialization

When using the Sound Play function, initialize the SDAC2 and HWP in this order as shown below.

Initializing SDAC2

1. If the SDAC2 output pins are configured for general-purpose ports, assign the SDAC2 output function to the ports. (Refer to the "I/O Ports" chapter.)

To select two-pin output mode

- P5MODSEL register = (P5MODSEL register / 0x0003)
- POMODSEL register = (POMODSEL register & 0x0087)

To select four-pin output mode

- POMODSEL register = (POMODSEL register / 0x0078)
- P5MODSEL register = (P5MODSEL register & 0x00fc)
- 2. Configure the SDAC2 operating clock. (Refer to Section 21.3, "Clock Settings.")
 - Set the SDAC2CLK.CLKSRC[1:0] bits to 0x02. (Clock source = OSC3)
 - Set the SDAC2CLK.CLKDIV[1:0] bits to 0x0. (Clock division ratio = 1/1)
 - Set the SDAC2CLK.DBRUN bit to 1. (Enable clock supply in DEBUG mode)
- 3. Set the SDAC2 control register.
 - Set the SDAC2CTL.SDACEN bit. (Enable SDAC2)
 - Set the SDAC2CTL.RESAMPRATE[10:0] bits to 0x400. (Initialize audio sampling frequency)
 - Set the SDAC2CTL.RESAMPEN bit to 1. (Enable resampler)
 - Set the SDAC2CTL.TONEON bit to 0. (Disable square-wave tone generator)
- 4. Clear SDAC2 sound data registers.
 - Set the SDAC2_0DAT.DAT[9:0] bits to 0x000. (Clear Ch.0 sound data register)
 Set the SDAC2_1DAT.DAT[9:0] bits to 0x000. (Clear Ch.1 sound data register)
- 5. Disable SDAC2 interrupts to occur.
 - Set the SDAC2INTE register to 0x0000. (Disable interrupts)
 Write 0x000f to the SDAC2INTF register. (Clear interrupt flags)
- 6. Set the SDAC2 operating mode.

To use external audio amplifier

- Set the SDAC2MOD.PWMMODE[1:0] bits to 0x1. (Normal mode)

To use external amplifier circuit composed of discrete parts

- Set the SDAC2MOD.PWMMODE[1:0] bits to 0x3. (CPLM mode 2)

Initializing HWP (Sound Play function)

7. Set the HWPCTL.HWPEN bit to 0. (Disable HWP)

8. Set the following HWP internal register bits (Sound Play function register bits):

Set the FUNCTION.ID[7:0] bits to 0x01. (Select Sound Play function)
 INTMASK.TO_MUTE bit (Set mute interrupt mask)
 INTMASK.TO_PAUSE bit (Set pause interrupt mask)
 INTMASK.TO_PLAY bit (Set playback start interrupt mask)

- INTMASK.TO_IDLE bit (Set idle state interrupt mask)
- ROMADDR.ADDRESS[31:0] bits (Set sound ROM data start address)

- ROMSIZE.SIZE[31:0] bits (Set sound ROM data size)

- KEYCODE.KEYCODE[31:0] bits (Set key code)

- 9. Perform the following settings when using the HWP interrupt:
 - Set the HWP interrupt level (refer to the documents introduced in Section 3.4, such as "Cortex®-M0+Devices Generic User Guide").
 - Write 0 to all the interrupt flags in the HWPINTF register. (Clear interrupt flags)

Note: Be aware that the write value to clear flags is different from other peripheral circuits.

- Set the HWPINTE.HWPIE bit to 1. (Enable interrupts)

Checking HWP operation (Sound Play function)

- 10. Set the SDAC2MOD.PWMOUTEN bit to 1.
- (Enable sound output)
- 11. Enable the external amplifier using a general-purpose output port (if necessary).
 - * Set a wait time according to the amplifier specifications after being enabled.
- 12. Set the HWPCTL.HWPEN bit to 1.

(Enable HWP)

13. Wait until the HWPINTF.HWP0IF bit is set to 1 and the STATE_n.STATE[15:0] bits are set to 0x0001 (sp_state_idle = Sound Play function idle state).

Initialize the SDAC2 and HWP in this order again if the HWPINTF.HWP1IF bit = 1.

Sound play state transition

Figure 22.4.1.1 shows the sound play state transition diagram.

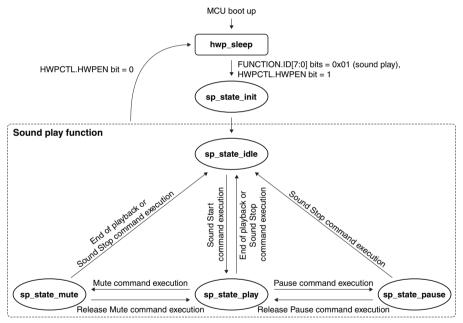


Figure 22.4.1.1 Sound Play State Transition Diagram

As shown in Figure 22.4.1.1, there are six operating states in the Sound Play function.

1) hwp sleep

After the MCU boots up, the HWP enters this state (HWPCTL.HWPEN bit = 0). In this state, the clock supply to the HWP stops. By setting the HWPCTL.HWPEN bit to 1 after configuring the Sound Play function registers as shown in "Initialization" above, the HWP transits to sp_state_init state.

2) sp state init

After the HWPCTL.HWPEN bit is set to 1, the HWP enters this state and initializes the internal circuit according to the settings of the Sound Play function registers. Upon completion of the initial processing, the HWP transits to sp_state_idle state.

3) sp state idle

This is a standby state in which the Sound Play function stops playback output. This state allows issuance of the Sound Start command. After the Sound Start command is issued, the HWP transits to sp_state_play state to start playback output.

4) sp_state_play

This is the state in which the HWP is performing playback output. This state allows issuance of the Sound Stop, Pause, or Mute command. When the sound data ends or the Sound Stop command is issued, the HWP stops playback output and returns to sp_state_idle state. When the Pause command is issued, the HWP transits to sp_state_pause state to pause playback output. When the Mute command is issued, the HWP transits to sp_state_mute state to mute the sound.

5) sp state pause

This is the state in which the playback output is paused. This state allows issuance of the Release Pause or Sound Stop command. When the Release Pause command is issued, the HWP transits to sp_state_play state to resume playback output. When the Sound Stop command is issued, the HWP terminates playback output and returns to sp_state_idle state.

6) sp_state_mute

This is the state in which the playback output is being continued with the sound muted. This state allows issuance of the Release Mute or Sound Stop command. When the Release Mute command is issued, the HWP transits to sp_state_play state to restore the volume. When the sound data ends or the Sound Stop command is issued, the HWP terminates playback output and returns to sp_state_idle state.

The current Ch.n operating state can be monitored by reading the STATE_n.STATE[15:0] bits (except hwp_sleep). Furthermore, an interrupt can be generated when a state transition to the designated state occurs.

Sound play commands

Table 22.4.1.1 lists the Sound Play function commands.

Table 22.4.1.1 List of Sound Play Commands

Table EE. T. T. Elect of Country Tay Communication					
Command	Function	Issuable state	Transit destination state		
Sound Start	Start playback output	sp_state_idle	sp_state_play		
Sound Stop Immediately	Stop playback output immediately	sp_state_play,	sp_state_idle		
		sp_state pause,			
		sp_state_mute			
Sound Stop after Current	Stop playback output after ending current phrase	sp_state_play,	sp_state_idle		
Phrase		sp_state pause,			
		sp_state_mute			
Pause Immediately	Pause playback output immediately	sp_state_play	sp_state_pause		
Pause after Current Phrase	Pause playback output after ending current phrase	sp_state_play	sp_state_pause		
Release Pause	Release pause state	sp_state_pause	sp_state_play		
Mute Immediately	Mute playback output immediately	sp_state_play	sp_state_mute		
Mute after Current Phrase	Mute playback output after ending current phrase	sp_state_play	sp_state_mute		
Release Mute	Release mute state	sp state mute	sp_state_play		

Each sound play command can be issued in the specific states. Follow the procedure below to issue a command.

- 1. Confirm that the STATE n.STATE[15:0] bits = issuable state.
- 2. Confirm that the STATUS.READY bit = 1.

(Command acceptable)

- 3. Configure the Sound Play function registers required to execute the command (if necessary).
- 4. Set the COMMAND_n.COMMAND[7:0] bits.

(Select command)

5. Write 1 to the HWPCMDTRG.HWP0TRG bit.

- (Trigger to issue command)
- 6. Wait until the HWPINTF.HWP0IF bit is set to 1 (interrupt).
- (Occurrence of state transition)
- 7. Confirm that the STATE n.STATE[15:0] bits = transit destination state (if necessary).

Playback start/stop

Single channel playback output start procedure

The following shows a Ch.n playback output start procedure:

- 1. Confirm that the STATE_n.STATE[15:0] bits = 0×00001 (sp_state_idle).
- 2. Confirm that the STATUS.READY bit = 1.

(Command acceptable)

3. Configure the following sound play register bits:

Set the COMMAND_n.COMMAND[7:0] bits to 0x01. (Select Sound Start command)
 Set the COMMAND_n.OPTION[7:0] bits. (Select gapless play option)
 SENTENCE_n.SENTENCE_NO[15:0] bits (Specify sentence number)
 VOLUME_n.VOLUME[15:0] bits (Specify volume level)
 REPEAT_n.REPEAT[15:0] bits (Specify repeat count)

SPEED_0.SPEED[15:0] bits
 PITCH_0.PITCH[15:0] bits
 Write 1 to the HWPCMDTRG.HWP0TRG bit.
 (Specify playback pitch, Ch.0 only)
 (Trigger to issue command)

5. Wait until the HWPINTF.HWP0IF bit is set to 1 (interrupt). (Occurrence of state transition)

The HWP starts sound data output of the specified sentence number from this point.

6. Confirm that the STATE_n.STATE[15:0] bits = 0×0002 (sp_state_play) as necessary.

7. Write 0 to the HWPINTF.HWP0IF bit. (Clear interrupt flag)

Playback is in progress.

8. Wait until the HWPINTF.HWP0IF bit is set to 1 (interrupt). (Occurrence of state transition)

9. Confirm that the STATE_n.STATE[15:0] bits = 0x0001 (sp_state_idle) as necessary.

When the sound data ends, playback output is automatically terminated and the Sound Play function transits to sp state idle state.

Note: The volume level can be adjusted by rewriting the VOLUME_n.VOLUME[15:0] bits even while playback is in progress. The playback speed and pitch cannot be changed while playback is in progress.

2-channel mix output start procedure

The HWP can output sound by mixing two channels, for instance, Ch.0 is used for voice and Ch.1 is used for BGM. To do this, the channels should be controlled continuously to start playback as shown below.

Ch.1 (BGM) output start procedure

1. Confirm that the STATE_1.STATE[15:0] bits = 0x0001 (sp_state_idle).

2. Confirm that the STATUS.READY bit = 1. (Command acceptable)

3. Configure the following sound play register bits:

Set the COMMAND_1.COMMAND[7:0] bits to 0x01.
 SENTENCE_1.SENTENCE_NO[15:0] bits
 VOLUME_1.VOLUME[15:0] bits
 REPEAT_1.REPEAT[15:0] bits
 Write 1 to the HWPCMDTRG.HWP0TRG bit.
 (Select Sound Start command)
 (Specify sentence number)
 (Specify volume level)
 (Specify repeat count)
 (Trigger to issue command)

5. Wait until the HWPINTF.HWP0IF bit is set to 1 (interrupt). (Occurrence of state transition)

The HWP starts BGM data output of the specified sentence number from this point.

6. Confirm that the STATE_1.STATE[15:0] bits = 0x0002 (sp_state_play) as necessary.

7. Write 0 to the HWPINTF.HWP0IF bit. (Clear interrupt flag)

Ch.0 (voice) output start procedure

8. Confirm that the STATE_0.STATE[15:0] bits = 0x0001 (sp_state_idle).

9. Confirm that the STATUS.READY bit = 1. (Command acceptable)

10. Configure the following sound play register bits:

Set the COMMAND_0.COMMAND[7:0] bits to 0x01.
 SENTENCE_0.SENTENCE_NO[15:0] bits
 VOLUME_0.VOLUME[15:0] bits
 REPEAT_0.REPEAT[15:0] bits
 SPEED_0.SPEED[15:0] bits
 PITCH_0.PITCH[15:0] bits
 Specify playback speed)
 PITCH_0.PITCH[15:0] bits

11. Write 1 to the HWPCMDTRG.HWP0TRG bit. (Trigger to issue command)

12. Wait until the HWPINTF.HWP0IF bit is set to 1 (interrupt). (Occurrence of state transition)

The HWP starts voice data output of the specified sentence number from this point.

13. Confirm that the STATE_0.STATE[15:0] bits = 0x0002 (sp_state_play) as necessary.

14. Write 0 to the HWPINTF.HWP0IF bit. (Clear interrupt flag)

:

Playback is in progress. (The SDAC2 outputs the mixed sound of $\hbox{Ch.0}$ and $\hbox{Ch.1.}$)

Confirming end of Ch.0 (voice) output

15. Wait until the HWPINTF.HWP0IF bit is set to 1 (interrupt). (Occurrence of state transition)

16. Confirm that the STATE_0.STATE[15:0] bits = 0x0001 (sp_state_idle) as necessary.

17. Write 0 to the HWPINTF.HWP0IF bit. (Clear interrupt flag)

Confirming end of Ch.1 (BGM) output

18. Wait until the HWPINTF.HWP0IF bit is set to 1 (interrupt). (Occurrence of state transition)

19. Confirm that the STATE 1.STATE [15:0] bits = 0x0001 (sp_state_idle) as necessary.

20. Write 0 to the HWPINTF.HWP0IF bit. (Clear interrupt flag)

Mute

Mute control

The sound can be muted during playback with the procedure shown below.

1. Confirm that the STATE_n.STATE[15:0] bits = 0×0002 (sp_state_play).

2. Confirm that the STATUS.READY bit = 1. (Command acceptable)

3. Set the COMMAND n.COMMAND[7:0] bits to 0x07 or 0x08.* (Select Mute command)

4. Write 1 to the HWPCMDTRG.HWP0TRG bit. (Trigger to issue command)

5. Wait until the HWPINTF.HWP0IF bit is set to 1 (interrupt). (Occurrence of state transition)

The HWP mutes the sound from this point.

6. Confirm that the STATE_n.STATE[15:0] bits = 0x0004 (sp_state_mute) as necessary.

7. Write 0 to the HWPINTF.HWP0IF bit. (Clear interrupt flag)

The above operation mutes the sound while playback output continues.

* Two mute commands are available. Setting the COMMAND_n.COMMAND[7:0] bits to 0x07 selects the Mute Immediately command; setting to 0x08 selects the Mute after Current Phrase command.

Mute Immediately command

When this command is issued by the trigger bit, the sound is muted immediately. At this time, a smoothing (fade-out) process for the playback output signal is carried out to suppress the occurrence of noise.

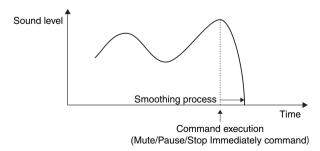


Figure 22.4.1.2 Smoothing Process when Playback Output is Suspended

Mute after Current Phrase command

The sound is muted after ending the phrase that is being output when the command is issued.

Sentence example: "The temperature is set at / 41 degrees."

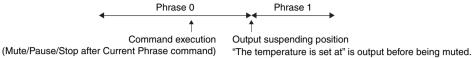


Figure 22.4.1.3 Example of Waiting for End of Phrase

Mute release

The mute state can be released with the procedure shown below.

- 1. Confirm that the STATE_n.STATE[15:0] bits = 0x0004 (sp_state_mute).
- 2. Confirm that the STATUS.READY bit = 1. (Command acceptable)
- 3. Set the COMMAND n.COMMAND[7:0] bits to 0x09. (Select Release Mute command)
- 4. Write 1 to the HWPCMDTRG.HWP0TRG bit. (Trigger to issue command)
- 5. Wait until the HWPINTF.HWP0IF bit is set to 1 (interrupt). (Occurrence of state transition) From this point, the volume returns to the level it was before being muted.
- 6. Confirm that the STATE n.STATE[15:0] bits = 0x0002 (sp_state_play) as necessary.
- 7. Write 0 to the HWPINTF.HWP0IF bit. (Clear interrupt flag)

When the volume returns back to the original level, a smoothing (fade-in) process for the playback output signal is carried out to suppress the occurrence of noise due to a sudden rise of the signal.

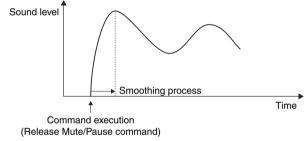


Figure 22.4.1.4 Smoothing Process when Playback Output is Resumed

When sound data ends in mute state

End of sound data automatically stops the muted playback output and the Sound Play function transits to sp_state_idle state. If the HWPINTF.HWP0IF bit is set to 1 (occurrence of state transition) before releasing the mute state, read the STATE *n*.STATE[15:0] bits and check to see if they are set to 0x0001 (sp_state_idle).

Pause

Pause control

During playback, it can be paused with the procedure shown below.

- 1. Confirm that the STATE_n.STATE[15:0] bits = 0x0002 (sp_state_play).
- 2. Confirm that the STATUS.READY bit = 1. (Command acceptable)
- 3. Set the COMMAND_n.COMMAND[7:0] bits to 0x04 or 0x05.* (Select Pause command)
- 4. Write 1 to the HWPCMDTRG.HWP0TRG bit. (Trigger to issue command)
- 5. Wait until the HWPINTF.HWP0IF bit is set to 1 (interrupt). (Occurrence of state transition)
 The HWP pauses the playback output from this point.
- 6. Confirm that the STATE_n.STATE[15:0] bits = 0x0003 (sp_state_pause) as necessary.
- 7. Write 0 to the HWPINTF.HWP0IF bit. (Clear interrupt flag)
- * Two pause commands are available. Setting the COMMAND_n.COMMAND[7:0] bits to 0x04 selects the Pause Immediately command; setting to 0x05 selects the Pause after Current Phrase command.

Pause Immediately command

When this command is issued by the trigger bit, the playback output is paused immediately. At this time, a smoothing (fade-out) process for the playback output signal is carried out to suppress the occurrence of noise. (See Figure 22.4.1.2.)

Pause after Current Phrase command

The playback output is paused after ending the phrase that is being output when the command is issued. (See Figure 22.4.1.3.)

Pause release

The pause state can be released with the procedure shown below.

- 1. Confirm that the STATE_n.STATE[15:0] bits = 0x0003 (sp_state_pause).
- 2. Confirm that the STATUS.READY bit = 1. (Command acceptable)
- 3. Set the COMMAND n.COMMAND[7:0] bits to 0x06. (Select Release Pause command)
- 4. Write 1 to the HWPCMDTRG.HWP0TRG bit. (Trigger to issue command)
- 5. Wait until the HWPINTF.HWP0IF bit is set to 1 (interrupt). (Occurrence of state transition)

The HWP resumes playback output from this point.

- 6. Confirm that the STATE_n.STATE[15:0] bits = 0×0002 (sp_state_play) as necessary.
- 7. Write 0 to the HWPINTF.HWP0IF bit. (Clear interrupt flag)

When the playback output is resumed, a smoothing (fade-in) process for the playback output signal is carried out to suppress the occurrence of noise due to a sudden rise of the signal. (See Figure 22.4.1.4.)

Terminating playback

In the playback state (sp_state_play), pause state (sp_state_pause), and mute state (sp_state_mute), the playback can be terminated to return the state to the idle state (sp_state_idle) with the procedure shown below.

- 1. Confirm that the STATE_n.STATE[15:0] bits = 0x0002 (sp_state_play), 0x0003 (sp_state_pause), or 0x0004 (sp_state_mute).
- 2. Confirm that the STATUS.READY bit = 1. (Command acceptable)
- 3. Set the COMMAND_n.COMMAND[7:0] bits to 0x02 or 0x03.* (Select Sound Stop command)
- 4. Write 1 to the HWPCMDTRG.HWP0TRG bit. (Trigger to issue command)
- 5. Wait until the HWPINTF.HWP0IF bit is set to 1 (interrupt). (Occurrence of state transition)

The HWP enters the idle state at this point.

- 6. Confirm that the STATE_n.STATE[15:0] bits = 0x0001 (sp_state_idle) as necessary.
- 7. Write 0 to the HWPINTF.HWP0IF bit. (Clear interrupt flag)
- * Two playback terminate commands are available. Setting the COMMAND_n.COMMAND[7:0] bits to 0x02 selects the Sound Stop Immediately command; setting to 0x03 selects the Sound Stop after Current Phrase command.

Sound Stop Immediately command

When this command is issued by the trigger bit, the playback output is terminated immediately. At this time, a smoothing (fade-out) process for the playback output signal is carried out to suppress the occurrence of noise. (See Figure 22.4.1.2.)

Sound Stop after Current Phrase command

The playback output is terminated after ending the phrase that is being output when the command is issued. (See Figure 22.4.1.3.)

In the pause or mute state, the playback is terminated by releasing the pause or mute state immediately regardless of which of the Sound Stop commands is issued.

Sound play error

When an error occurs during processing of the Sound Play function, the HWPINTF.HWP1IF bit is set to 1 (an interrupt can be generated). The error contents can be confirmed by reading the ERROR.ERROR[15:0] bits. As shown in Table 22.4.1.2, the ERROR.ERRORx bit corresponding to the error that has occurred is set to 1.

Table 22.4.1.2 List of Sound Play Errors

ERROR.ERROR[15:0] bits	Error	Meaning
0000 0000 0000 0000	error_no_error	No error has occurred.
Non-fatal error		
xxxx xxxx xxxx xxx1 (bit 0)	error_ch0_command	A command that is undefined or is ineffective in the cur-
		rent state has been specified in Ch.0.
xxxx xxxx xxxx xx1x (bit 1)	error_ch1_command	A command that is undefined or is ineffective in the cur-
		rent state has been specified in Ch.1.
xxxx xxxx xxxx x1xx (bit 2)	error_ch0_sentence_no	An invalid sentence number has been specified in Ch.0.
xxxx xxxx xxxx 1xxx (bit 3)	error_ch1_sentence_no	An invalid sentence number has been specified in Ch.1.
xxxx xxxx 1xxx xxxx (bit 7)	error_SDAC2_overflow	An overflow has occurred in the SDAC2 output signal.
Fatal error		
xxxx xxx1 xxxx xxxx (bit 8)	error_ch0_decode	Invalid sound data has been read in Ch.0.
xxxx xx1x xxxx xxxx (bit 9)	error_ch1_decode	Invalid sound data has been read in Ch.1.
xxx1 xxxx xxxx xxxx (bit 12)	error_rom_data_mount	The sound data ROM cannot be accessed.
x1xx xxxx xxxx xxxx (bit 14)	error_function_id	An undefined function ID has been specified.
1xxx xxxx xxxx xxxx (bit 15)	error_others	Another error has occurred.

When a non-fatal error has occurred, reissue a valid command.

When a fatal error has occurred, remove the cause of error and redo the processing from initialization.

Tone signal output

The SDAC2 provides a tone generation function to output a tone signal (square wave) with the frequency specified from the SDAC2 pins.

Before using this function, make sure that both Ch.0 and Ch.1 have terminated normal playback.

The following shows a procedure to start/stop tone signal output:

Starting output

- 1. Check if the STATE_n.STATE[15:0] bits = 0×0001 (sp_state_idle).
- 2. Set the SDAC2TONE.TONEDIV[15:0] bits. (Set tone signal (square wave) frequency)
- 3. Set the SDAC2CTL.TONEON bit to 1. (Start tone signal (square wave) output)

:

Output is in progress.

Terminating output

4. Set the SDAC2CTL.TONEON bit to 0. (Stop tone signal (square wave) output)

22.4.2 Memory Check Function

Initialization

Before using the Memory Check function, initialize the HWP as shown below.

- 1. Configure the HWP operating clock as necessary. (Refer to "Clock Settings.")
- 2. Set the HWPCTL.HWPEN bit to 0. (Disable HWP)
- 3. Set the following HWP internal register bits (Memory Check function register bits):
 - Set the FUNCTION.ID[7:0] bits to 0x03. (Select Memory Check function)
 INTMASK.TO_PROCESSING bit (Set check start interrupt mask)
 - INTMASK.TO_IDLE bit (Set check completed/idle state interrupt mask)
- 4. Set the following bits when using the interrupt:
- Write 1 to the interrupt flags in the HWPINTF register.
 Set the HWPINTE.HWPIE bit to 1.
 (Enable interrupts)
 Set the HWPCTL.HWPEN bit to 1.
- 6. Wait until the HWPINTF.HWP0IF bit is set to 1 and the STATE.STATE[15:0] bits are set to 0x0001 (mc_state_idle = Memory Check function idle state).

Initialize the HWP again if the HWPINTF. HWP1IF bit = 1.

Once the Memory Check function register bits have been set in Step 3, it is not necessary to set again until they need to be altered. When altering these register bits, perform the above processing from Step 2.

Memory check state transition

Figure 22.4.2.1 shows the memory check state transition diagram.

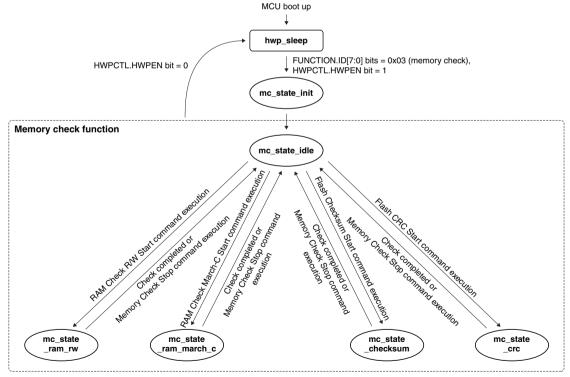


Figure 22.4.2.1 Memory check State Transition Diagram

As shown in the figure above, there are seven operating states in the Memory Check function.

1) hwp_sleep

After the MCU boots up, the HWP enters this state (HWPCTL.HWPEN bit = 0). In this state, the clock supply to the HWP stops. By setting the HWPCTL.HWPEN bit to 1 after configuring the Memory Check function registers as shown in "Initialization" above, the HWP transits to mc_state_init state.

2) mc_state_init

After the HWPCTL.HWPEN bit is set to 1, the HWP enters this state and initializes the internal circuit according to the settings of the Memory Check function registers. Upon completion of the initial processing, the HWP transits to mc_state_idle state.

3) mc state idle

This is the state in which the Memory Check function is idle. This state allows issuance of a memory check command. After a memory check command is issued, the HWP transits to a state from 4) to 7) to start memory check.

4) mc state ram rw

This is the state in which the HWP is performing the RAM read/write check. When the RAM Check R/W Start command is issued in mc_state_idle state, the HWP transits to this state. When the check has completed or the Memory Check Stop command is issued, the HWP returns to mc_state_idle state.

5) mc_state_ram_march_c

This is the state in which the HWP is performing the RAM check using the March-C algorithm. When the RAM Check March-C Start command is issued in mc_state_idle state, the HWP transits to this state. When the check has completed or the Memory Check Stop command is issued, the HWP returns to mc_state_idle state.

6) mc_state_checksum

This is the state in which the HWP is performing the Flash memory check that calculates the checksum. When the Flash Checksum Start command is issued in mc_state_idle state, the HWP transits to this state. When the check has completed or the Memory Check Stop command is issued, the HWP returns to mc_state_idle state.

7) mc_state_crc

This is the state in which the HWP is performing the Flash memory check that calculates the CRC. When the Flash CRC Start command is issued in mc_state_idle state, the HWP transits to this state. When the check has completed or the Memory Check Stop command is issued, the HWP returns to mc_state_idle state.

The current operating state can be monitored by reading the STATE.STATE[15:0] bits (except hwp_sleep). Furthermore, an interrupt can be generated when a state transition to the designated state occurs.

Memory check commands

Table 22.4.2.1 lists the Memory Check function commands.

Table 22.4.2.1 List of Memory Check Commands

·				
Command	Function	Issuable state	Transit destination state	
RAM Check R/W Start	Start RAM check (read/write)	mc_state_idle	mc_state_ram_rw	
RAM Check March-C Start	Start RAM check (March-C)	mc_state_idle	mc_state_ram_march_c	
Flash Checksum Start	Start Flash check (checksum)	mc_state_idle	mc_state_checksum	
Flash CRC Start	Start Flash check (CRC)	mc_state_idle	mc_state_crc	
Memory Check Stop	Stop memory check	mc_state_ram_rw,	mc_state_idle	
		mc_state_ram_march_c,		
		mc_state_checksum,		
		mc_state_crc		

The memory check start command can be issued only in mc_state_idle state.

Follow the procedure below to issue a command.

1. Confirm that the STATE.STATE[15:0] bits = 0x0001 (mc_state_idle).

2. Confirm that the STATUS.READY bit = 1. (Command acceptable)

3. Set the COMMAND.COMMAND[7:0] bits. (Select command)

4. Set the MEMADDR.ADDRESS[31:0] bits. (Specify check start address)

5. Set the MEMSIZE.SIZE[31:0] bits. (Specify check size (byte))

6. Set the INITVALUE.INITVALUE[31:0] bits to 0x00000000. (Specify Flash check initial value)

* It is not necessary in the RAM check.

7. Write 1 to the HWPCMDTRG.HWP0TRG bit. (Trigger to issue command)

8. Wait until the HWPINTF.HWP0IF bit is set to 1 (interrupt). (Occurrence of state transition)

9. Confirm that the STATE.STATE[15:0] bits = transit destination state (if necessary).

RAM check

The following shows the procedure to execute a RAM check:

1. Confirm that the STATE.STATE[15:0] bits = 0x0001 (mc_state_idle).

2. Confirm that the STATUS.READY bit = 1. (Command acceptable)

3. Set the COMMAND.COMMAND[7:0] bits or 0x02 or 0x03.* (Select command)

4. Set the MEMADDR.ADDRESS[31:0] bits. (Specify check start address)

5. Set the MEMSIZE.SIZE[31:0] bits. (Specify check size (byte))

6. Write 1 to the HWPCMDTRG.HWP0TRG bit. (Trigger to issue command)

7. Wait until the HWPINTF.HWP0IF bit is set to 1 (interrupt). (Occurrence of state transition)

The HWP starts the memory check from this point.

8. Confirm that the STATE.STATE[15:0] bits = 0x0002 (mc_state_ram_rw) or 0x0003 (mc_state_ram_march_c) as necessary.*

9. Write 0 to the HWPINTF.HWP0IF bit. (Clear interrupt flag)

:

The memory check is in progress.

:

10. Wait until the HWPINTF.HWP0IF bit is set to 1 (interrupt). (Occurrence of state transition)

The memory check is completed at this point.

11. Confirm that the STATE.STATE[15:0] bits = 0x0001 (mc_state_idle).

12. Write 0 to the HWPINTF.HWP0IF bit. (Clear interrupt flag)

13. Read the STATUS.PROCESSING[1:0] bits. (Confirm check result)

When the STATUS.PROCESSING[1:0] bits = 0x2, the check has completed without an error. So the processing can be terminated.

If the STATUS PROCESSING[1:0] bits = 0x3, an error has occurred. In this case, confirm the address where the error has occurred as follows:

14. Read the RESULT.RESULT[31:0] bits. (Confirm error address)

These bits hold the address where an error has occurred first.

* Two RAM check commands are available. Setting the COMMAND.COMMAND[7:0] bits to 0x02 selects the RAM Check R/W Start command; setting to 0x03 selects the RAM Check March-C Start command.

RAM Check R/W Start command

When this command is issued by the trigger bit, the HWP transits to mc_state_ram_rw state to execute the RAM read/write check. In this check, the HWP performs read-after-write verification for all addresses twice: first it writes 0x55aa, next 0xaa55.

RAM Check March-C Start command

When this command is issued by the trigger bit, the HWP transits to mc_state_ram_march_c state to execute the RAM marching test (March-C algorithm).

Note: When an error occurs during RAM check, the check is terminated at the address where the error has occurred.

Flash check

The following shows the procedure to execute a Flash check:

1. Confirm that the STATE.STATE[15:0] bits = 0x0001 (mc_state_idle).

2. Confirm that the STATUS.READY bit = 1. (Command acceptable)

3. Set the COMMAND.COMMAND[7:0] bits to 0x04 or 0x05.* (Select command)

4. Set the MEMADDR.ADDRESS[31:0] bits. (Specify check start address)

5. Set the MEMSIZE.SIZE[31:0] bits. (Specify check size (byte))

6 Set the INITVALUE.INITVALUE[31:0] bits to 0x00000000. (Specify Flash check initial value)

7. Write 1 to the HWPCMDTRG.HWP0TRG bit. (Trigger to issue command)

8. Wait until the HWPINTF.HWP0IF bit is set to 1 (interrupt). (Occurrence of state transition)

The HWP starts the memory check from this point.

9. Confirm that the STATE.STATE[15:0] bits = 0x0004 (mc_state_checksum) or 0x0005 (mc_state_crc) as necessary.*

10. Write 0 to the HWPINTF.HWP0IF bit. (Clear interrupt flag)

:

The memory check is in progress.

.

11. Wait until the HWPINTF.HWP0IF bit is set to 1 (interrupt). (Occurrence of state transition)

The memory check is completed at this point.

12. Confirm that the STATE.STATE[15:0] bits = 0x0001 (mc_state_idle).

13. Write 0 to the HWPINTF.HWP0IF bit. (Clear interrupt flag)

14. Confirm that the STATUS.PROCESSING[1:0] bits = 0x2 (check completed).

15. Read the RESULT.RESULT[31:0] bits. (Confirm check result)

These bits hold the checksum or CRC calculation result.

- 16. Compare the read calculation result with the original value.
- * Two Flash check commands are available. Setting the COMMAND.COMMAND[7:0] bits to 0x04 selects the Flash Checksum Start command; setting to 0x05 selects the Flash CRC Start command.

Flash Checksum Start command

When this command is issued by the trigger bit, the HWP transits to mc_state_checksum state to calculate the checksum from the specified Flash data.

Flash CRC Start command

When this command is issued by the trigger bit, the HWP transits to mc_state_crc state to calculate the CRC from the specified Flash data.

Note: The HWP uses memory mapped access mode (refer to the "Quad Synchronous Serial Interface" chapter) for the external QSPI-Flash check. Therefore, external Flash memories that do not support XIP (eXecute-In-Place) cannot be checked.

Terminating memory check

The following shows the procedure to terminate the memory check being executed.

- 1. Confirm that the STATE.STATE[15:0] bits = 0x0002 to 0x0005 (during memory check).
- 2. Confirm that the STATUS.READY bit = 1. (Command acceptable)
- 3. Set the COMMAND.COMMAND[7:0] bits to 0xff. (Select Memory Check Stop command)
- 4. Write 1 to the HWPCMDTRG.HWP0TRG bit. (Trigger to issue command)
- 5. Wait until the HWPINTF.HWP0IF bit is set to 1 (interrupt). (Occurrence of state transition)
- 6. Confirm that the STATE.STATE[15:0] bits = 0x0001 (mc_state_idle).
- 7. Write 0 to the HWPINTF.HWP0IF bit. (Clear interrupt flag)

Memory check error

When an error occurs during processing of the Memory Check function, the HWPINTF.HWP1IF bit is set to 1 (an interrupt can be generated). The error contents can be confirmed by reading the ERROR.ERROR[15:0] bits. As shown in Table 22.4.2.2, the ERROR.ERRORx bit corresponding to the error that has occurred is set to 1.

ERROR.ERROR[15:0] bits	Error	Meaning		
0000 0000 0000 0000	error_no_error	No error has occurred.		
Non-fatal error				
xxxx xxxx xxxx xxx1 (bit 0)	error_command	A command that is undefined or is ineffective in the current state has been specified.		
Fatal error				
x1xx xxxx xxxx xxxx (bit 14)	error_function_id	An undefined function ID has been specified.		
1xxx xxxx xxxx xxxx (bit 15)	error_others	Another error has occurred.		

Table 22.4.2.2 List of Memory Check Errors

When a non-fatal error has occurred, reissue a valid command.

When a fatal error has occurred, remove the cause of error and redo the processing from initialization.

22.4.3 External QSPI Flash Memory Access

Initialization

When accessing an external QSPI Flash memory through the HWP function, set it into memory mapped access mode as in the procedure below before performing the initialization described in Section 22.4.1 or 22.4.2.

- 1. Perform Steps 1 to 6 described in Section 15.5.3.
 - However, a part of Steps 3 and 6 must be changed as follows:
 - In Step 3, set the QSPI_nMB.XIPEXT[7:0] bits to the same value as the QSPI_nMB.XIPACT[7:0] bits.
 - In Step 6, set the interrupt enable bits in the QSPI_nINTE register to 0 (interrupt disabled).
- 2. Perform Steps 1 to 3 described in Section 15.5.6.

End processing

When switching the QSPI from memory mapped access mode to register access mode after the HPW function has been completed, follow the procedure below to terminate the memory mapped access.

- 1. Before disabling the HWP, set the mode byte for terminating the XIP session to the QSPI_nMB.XI-PEXT[7:0] bits.
- 2. Disable the HWP.
- 3. Perform the procedure described in Section 15.5.7.

22.5 Interrupts

The HWP has a function to generate the interrupts shown in Table 22.5.1.

Table 22.5.1 HWP Interrupt Function

Interrupt	Interrupt flag	Set condition	Clear condition
Error occurrence	HWPINTF.HWP1IF	When a sound play error (see Table 22.4.1.2) or a memory	Writing 0.
		check error (see Table 22.4.2.2) has occurred	
State transition		When a state transition of which the interrupt has not been masked occurs	Writing 0.

Interrupt enable

To enable HWP interrupts, the HWPINTE.HWPIE bit must be set to 1. An interrupt request is sent to the CPU only when the interrupt flag is set in this status. For more information on interrupt control, refer to the "Interrupt" chapter.

State transition interrupt mask

The HWP provides a HWP internal register that contains the interrupt mask bits used for setting whether to set the HWPINTF.HWP0IF bit (to generate an interrupt) or not when a state transition occurs. By setting the interrupt mask bits to 0, an interrupt can be generated when the corresponding state transition occurs.

Table 22.5.2 State Transition Interrupt Mask Bits

Function	Interrupt mask bit	State transition
Sound Play	INTMASK.TO_MUTE	sp_state_play state → sp_state_mute state
	INTMASK.TO_PAUSE	sp_state_play state → sp_state_pause state
	INTMASK.TO_PLAY	sp_state_idle, mute, pause state → sp_state_play state
	INTMASK.TO_IDLE	sp_state_init, mute, pause, play state → sp_state_idle state
Memory Check	INTMASK.TO_PROCESSING	mc_state_idle state → mc_state_ram_rw, ram_march_c, checksum, crc state
	INTMASK.TO_IDLE	mc_state_init, mc_state_ram_rw, ram_march_c, checksum, crc state → mc_state_
		idle state

22.6 HWP Internal Registers

The HWP internal registers are switched to the Sound Play function registers or the Memory Check function registers according to the set value of the FUNCTION.ID[7:0] bits when the HWPCTL.HWPEN bit is set to 1. Table 22.6.1 lists the HWP internal register map.

Table 22.6.1 HWP Internal Register Map

Address		Register name					
Address		Sound Play function		Memory Check function			
Base + 0x00	FUNCTION	Function ID Register	FUNCTION	Function ID Register			
Base + 0x02	INTMASK	Interrupt Mask Register	INTMASK	Interrupt Mask Register			
Base + 0x04	ROMADDR	ROM Address Register	MEMADDR	Memory Address Register			
Base + 0x08	ROMSIZE	ROM Size Register	MEMSIZE	Memory Size Register			
Base + 0x0c	KEYCODE	Key Code Register	INITVALUE	Initial Value Setting Register			
Base + 0x10	COMMAND_0	Ch.0 Command Register	COMMAND	Command Register			
Base + 0x12	COMMAND_1	Ch.1 Command Register	_	_			
Base + 0x14	SENTENCE_0	Ch.0 Sentence Number Setting Register	_	-			
Base + 0x16	SENTENCE_1	Ch.1 Sentence Number Setting Register	_	-			
Base + 0x18	VOLUME_0	Ch.0 Volume Control Register	_	_			
Base + 0x1a	VOLUME_1	Ch.1 Volume Control Register	_	_			
Base + 0x1c	REPEAT_0	Ch.0 Repeat Control Register	_	_			
Base + 0x1e	REPEAT_1	Ch.1 Repeat Control Register	_	_			
Base + 0x20	SPEED_0	Ch.0 Playback Speed Conversion Register	_	_			
Base + 0x24	PITCH_0	Ch.0 Playback Pitch Conversion Register	_	_			
Base + 0x40	STATE_0	Ch.0 State Monitor Register	STATE	State Monitor Register			
Base + 0x42	STATE_1	Ch.1 State Monitor Register	-	-			
Base + 0x44	ERROR	Error Status Register	ERROR	Error Status Register			
Base + 0x46	STATUS	Operating Status Register	STATUS	Operating Status Register			
Base + 0x48	_	_	RESULT	Calculation Result Register			
Base + 0x4c	VERSION	Version Number Register	VERSION	Version Number Register			

Base = 0x00156700

22.6.1 Sound Play Function Registers

Function ID Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
FUNCTION	15–8	-	х	_	R/W	_
	7–0	ID[7:0]	Х	-	R/W	

Bits 15-8 Reserved

Set to 0x00 when writing data to this register.

Bits 7-0 ID[7:0]

These bits select the function to be executed in the HWP.

Table 22.6.1.1 Function ID

FUNCTION.ID[7:0] bits	HWP function
0x03	Memory Check function
0x01	Sound Play function using SDAC2
Other	Setting prohibited (error)

Interrupt Mask Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
INTMASK	15–8	-	х	_	R/W	_
(Sound Play)	7–4	_	Х	_	R/W	
	3	TO_MUTE	Х	_	R/W	
	2	TO_PAUSE	Х	_	R/W	
	1	TO_PLAY	Х	-	R/W	
	0	TO_IDLE	Х	-	R/W	

Bits 15-4 Reserved

Set to 0x000 when writing data to this register.

Bit 3 TO_MUTE
Bit 2 TO_PAUSE
Bit 1 TO_PLAY

Bit 0

TO_IDLE

These bits set whether the interrupt request when a state transition occurs during executing the Sound Play function is enabled or not.

1 (W): Mask interrupt (disabled)

0 (W): Enable interrupt

For more information on the state transition interrupts that can be masked with these bits, refer to Table 22.5.2.

ROM Address Register

		•				
Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
ROMADDR	31–0	ADDRESS[31:0]	х	_	R/W	_
(Sound Play)						

Bits 31-0 ADDRESS[31:0]

These bits specify the sound data ROM start address.

The address should be specified with a value shown below.

In case of internal Flash:

0x00 0000, ..., 0x02 fff0 (16-byte alignment)

In case of external OSPI-Flash:

0x00 0000 + OFFSET

0x10 0000 + OFFSET

0x20 0000 + OFFSET

...

0xe0 0000 + OFFSET

0xf0 0000 + OFFSET

* The OFFSET is 0x04 0000, the start address of the memory mapped access area for external Flash memory (refer to "Figure 4.1.1 Memory Map").

ROM Size Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
ROMSIZE	31–0	SIZE[31:0]	х	_	R/W	_
(Sound Play)						

Bits 31-0 ADDRESS[31:0]

These bits specify the sound data ROM size in bytes.

The following shows the maximum size that can be specified.

In case of internal Flash:

0x03 0000 bytes (192K bytes) or less

In case of external QSPI-Flash:

0x100 0000 bytes (16M bytes) or less

Key Code Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
KEYCODE	31–0	KEYCODE[31:0]	х	_	R/W	_
(Sound Play)						

Bits 31-0 KEYCODE[31:0]

These bits specify the key code.

Write the key code provided by Seiko Epson.

Ch.n Command Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
COMMAND_n	15–8	OPTION[7:0]	х	_	R/W	_
(Sound Play)	7–0	COMMAND[7:0]	Х	_	R/W	

Bits 15-8 OPTION[7:0]

These bits select a command option (gapless play/silent period insertion).

Table 22.6.1.2 Command Option Selection

COMMAND_n. OPTION[7:0] bits	Command Option
0xff-0x02	Setting prohibited (error)
0x01	Gapless play enable Sound will be played without a silent period inserted (gap = 0 ms) between phrases.
0x00	Gapless play disable Sound will be played with about 100 ms of a silent period (gap) inserted between phrases.

Notes: • During 2-channel mix output with Ch.0 and Ch.1, gapless play cannot be performed (gapless play is disabled for both channels).

 Depending on the contents of the sentence to play, the played voice may be difficult to hear even if gapless play is enabled. Conduct sufficient evaluation when using the gapless play function.

Bits 7-0 COMMAND[7:0]

These bits select a sound play command to be executed.

Table 22.6.1.3 Sound Play Command Selection

COMMAND_n.COMMAND[7:0] bits	Sound play command
0xff-0x0a	Setting prohibited (error)
0x09	Release Mute
0x08	Mute after Current Phrase
0x07	Mute Immediately
0x06	Release Pause
0x05	Pause after Current Phrase
0x04	Pause Immediately
0x03	Sound Stop after Current Phrase
0x02	Sound Stop Immediately
0x01	Sound Start
0x00	No operation

Ch.n Sentence Number Setting Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SENTENCE_n	15–0	SENTENCE_NO[15:0]	х	_	R/W	_
(Sound Play)						

Bits 15-0 SENTENCE_NO[15:0]

These bits specify the sentence number of the sound to be played.

Set the sentence number that was listed in the "Voice Creation Tool (ESPER2)."

Ch.n Volume Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
VOLUME_n	15–0	VOLUME[15:0]	х	-	R/W	_
(Sound Play)						

Bits 15-0 VOLUME[15:0]

These bits specify the playback volume.

表22.6.1.4 Volume Setting

	•
VOLUME_n.VOLUME[15:0] bits	Volume level
0xff-0x80	Setting prohibited (error)
0x7f	0 db
0x7e	-0.5 db
0x7d	-1.0 db
:	Can be specified in 0.5 db steps.
0x02	-62.5 db
0x01	-63.0 db
0x00	Silent

Ch.n Repeat Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
REPEAT_n (Sound Play)	15–0	REPEAT[15:0]	х	_	R/W	_

Bits 15-0 REPEAT[15:0]

These bits specify the number of repeat playbacks.

Table 22.6.1.5 Setting of Number of Repeat Playbacks

REPEAT_n.REPEAT[15:0] bits	Playback counts
0xff	Repeat until Sound Stop command
	execution
0xfe	254 times
0x7e	253 times
0x7d	252 times
:	:
0x3	3 times
0x02	2 times
0x01	1 time (no repetition)
0x00	Setting prohibited

Ch.0 Playback Speed Conversion Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SPEED_0	15–0	SPEED[15:0]	х	_	R/W	_
(Sound Play)						

Bits 15-0 SPEED[15:0]

These bits specify the playback speed.

When converting the speed in combination with pitch conversion, the speed setting value should be specified within the range shown in Table 22.6.1.6.

When converting the speed alone without pitch conversion, the PITCH_0.PITCH[15:0] bits should be set to 0x00 and the speed setting value should be specified within the range shown in Table 22.6.1.7.

Table 22.6.1.6 Playback Speed Setting (0x5a ≤ PITCH_0.PITCH[15:0] bits ≤ 0x6e)

SPEED_0.SPEED[15:0] bits	Play	back speed
0x73	115%	Fast
0x6e	110%	↑
0x69	105%	
0x64	100%	Standard speed
0x5f	95%	
0x5a	90%	↓
0x55	85%	Slow
Other	Setti	ng prohibited

Table 22.6.1.7 Playback Speed Setting (PITCH_0.PITCH[15:0] bits = 0x00)

SPEED_0.SPEED[15:0] bits	PI	ayback speed
0x7d	125%	Fast
0x78	120%	↑
0x73	115%	
0x6e	110%	
0x69	105%	
0x64	100%	Standard speed
0x5f	95%	
0x5a	90%	
0x55	85%	
0x50	80%	↓ ↓
0x4b	75%	Slow
Other	Set	ting prohibited

Ch.0 Playback Pitch Conversion Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
PITCH_0	15–0	PITCH[15:0]	х	_	R/W	_
(Sound Play)						

Bits 15-0 PITCH[15:0]

These bits specify the playback pitch (or musical interval).

When converting the pitch in combination with speed conversion, the pitch setting value should be specified within the range shown in Table 22.6.1.8.

When converting the pitch alone without speed conversion, the SPEED_0.SPEED[15:0] bits should be set to 0x00 and the pitch setting value should be specified within the range shown in Table 22.6.1.9.

Table 22.6.1.8 Pitch Setting $(0x55 \le SPEED_0.SPEED[15:0]$ bits $\le 0x73$)

PITCH_0.PITCH[15:0] bits		Pitch
0x6e	110%	High
0x69	105%	↑
0x64	100%	Standard pitch
0x5f	95%	↓
0x5a	90%	Low
Other	Setti	ng prohibited

Table 22.6.1.9 Pitch Setting (SPEED_0.SPEED[15:0] bits = 0x00)

PITCH_0.PITCH[15:0] bits		Pitch			
0x7d	125%	High			
0x78	120%	↑			
0x73	115%				
0x6e	110%				
0x69	105%				
0x64	100%	Standard pitch			
0x5f	95%				
0x5a	90%				
0x55	85%				
0x50	80%	↓			
0x4b	75%	Low			
Other	Setting prohibited				

Table 22.6.1.10 6.1.10 Setting Values to Convert Speed and Pitch Simultaneously

								- 1						
			PITCH_0.PITCH[15:0] bits											
			0x7d	0x78	0x73	0x6e	0x69	0x64	0x5f	0x5a	0x55	0x50	0x4b	0x00
			125%	120%	115%	110%	105%	100%	95%	90%	85%	80%	75%	ı
	0x7d	125%	-	-	-	-	-	-	-	-	-	-	-	1
	0x78	120%	-	-	-	-	-	-	-	-	_	ı	ı	/
	0x73	115%	-	-	-	1	1	1	1	1	-	-	-	/
	0x6e	110%	-	-	-	1	1	1	1	1	-	_	_	/
SPEED 0.	0x69	105%	-	-	-	1	1	1	1	1	-	-	-	1
_	0x64	100%	-	-	-	1	1	1	1	1	-	-	- - -	1
SPEED[15:0]	0x5f	95%	-	-	-	1	1	1	1	1	-	-	-	1
bits	0x5a	90%	-	-	-	1	1	1	1	1	-	-	-	1
	0x55	85%	-	-	-	1	1	1	1	1	-	-	-	1
	0x50	80%	-	-	-	-	-	-	-	-	-	-	-	1
	0x4b	75%	-	-	-	-	-	-	-	-	-	-	-	/
	0x00	-	1	1	1	1	1	1	1	1	1	1	1	1

Ch.n State Monitor Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
STATE_n	15–0	STATE[15:0]	х	-	R	_
(Sound Play)						

Bits 15-0 STATE[15:0]

These bits indicate the current state of the Sound Play function.

Table 22.6.1.11 State Monitor

STATE_n.STATE[15:0] bits	State
0x0004	sp_state_mute
0x0003	sp_state_pause
0x0002	sp_state_play
0x0001	sp_state_idle
0x0000	sp_state_init

Error Status Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
ERROR	15–0	ERROR[15:0]	Х	-	R	_

Bits 15-0 ERROR[15:0]

These bits indicate the error that has occurred while the HWP is running. For the errors that may occur in the Sound Play function, refer to Table 22.4.1.2.

Operating Status Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
STATUS	15–9	_	х	_	R	_
(Sound Play)	8	SOUNDOUT	х	_	R	
	7–1	-	х	-	R	
	0	READY	Х	_	R	

Bits 15-9 Reserved

Bit 8 SOUNDOUT

This bit indicates whether the HWP is performing playback output or not.

1 (R): During playback (sp_state_play, sp_state_mute)
0 (R): Stop (sp_state_init, sp_state_idle, sp_state_pause)

Bits 7-1 Reserved

Bit 0 READY

This bit indicates the HWP operating status (whether a command is acceptable or not).

1 (R): Ready (Command is acceptable.)
0 (R): Busy (Command is not acceptable.)

Version Number Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
VERSION	15–8	MAJOR[7:0]	х	-	R	_
	7–0	MINOR[7:0]	Х	-	R	

Bits 15–8 MAJOR[7:0] Bits 7–0 MINOR[7:0]

These bits indicate the HWP version number.

Version number = MAJOR[7:0] . MINOR[7:0]

22.6.2 Memory Check Function Register

Function ID Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
FUNCTION	15–8	_	х	_	R/W	_
	7–0	ID[7:0]	х	_	R/W	

Bits 15-8 Reserved

Set to 0x00 when writing data to this register.

Bits 7-0 ID[7:0]

These bits select the function to be executed in the HWP. (Refer to Table 22.6.1.1.)

Set to 0x03 when executing the Memory Check function.

Interrupt Mask Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
INTMASK	15–8	_	х	-	R/W	_
(Memory Check)	7–2	-	х	_	R/W	
	1	TO_PROCESSING	х	-	R/W	
	0	TO_IDLE	х	-	R/W	

Bits 15-2 Reserved

Set to 0x000(0) when writing data to this register.

Bit 1 TO PROCESSING

Bit 0 TO IDLE

These bits set whether the interrupt request when a state transition occurs during executing the Memory Check function is enabled or not.

1 (W): Mask interrupt (disabled)

0 (W): Enable interrupt

For more information on the state transition interrupts that can be masked with these bits, refer to Table 22.5.2.

Memory Address Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MEMADDR	31–0	ADDRESS[31:0]	х	_	R/W	_
(Memory Check)						

Bits 31-0 ADDRESS[31:0]

These bits specify the memory check start address.

The address should be specified within the range shown below.

In case of RAM:

 $0x15\ 0000, \dots, 0x15\ 1fff$ $0x15\ 3000, \dots, 0x15\ 67ff$

In case of internal Flash:

 $0x00\ 0000, \cdots, 0x02\ ffff$

In case of external QSPI-Flash:

 $0x00\ 0000 + OFFSET, \dots, 0x0f\ ffff + OFFSET$

* The OFFSET is 0x04 0000, the start address of the memory mapped access area for external Flash memory (refer to "Figure 4.1.1 Memory Map").

Memory Size Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MEMSIZE	31–0	SIZE[31:0]	х	_	R/W	_
(Memory Check)						

Bits 31-0 SIZE[31:0]

These bits specify the size in bytes of the memory to be checked.

Initial Value Setting Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
INITVALUE	31–0	INITVALUE[31:0]	х	_	R/W	_
(Memory Check)						

Bits 31-0 INITVALUE[31:0]

These bits set the initial value used for the calculation of the Flash check (checksum, CRC). Normally, set to 0x0000 0000.

Command Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
COMMAND	15–8	_	х	_	R/W	_
(Memory Check)	7–0	COMMAND[7:0]	Х	-	R/W	

Bits 15-8 Reserved

Set to 0x00 when writing data to this register.

Bits 7-0 COMMAND[7:0]

These bits select a memory check command to be executed.

Table 22.6.2.1 Memory Check Command Selection

COMMAND.COMMAND[7:0] bits	Memory check command
0xff	Memory Check Stop
0xfe-0x06	Setting prohibited (error)
0x05	Flash CRC Start
0x04	Flash Checksum Start
0x03	RAM Check March-C Start
0x02	RAM Check R/W Start
0x00, 0x01	No operation

State Monitor Register

		9.000				
Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
STATE	15–0	STATE[15:0]	х	_	R	_
(Memory Check)						

Bits 15-0 STATE[15:0]

These bits indicate the current state of the Memory Check function.

Table 22.6.2.2 State Monitor

STATE.STATE[15:0] bits	State
0x0005	mc_state_crc
0x0004	mc_state_checksum
0x0003	mc_state_ram_march_c
0x0002	mc_state_ram_rw
0x0001	mc_state_idle
0x0000	mc_state_init

Error Status Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
ERROR	15–0	ERROR[15:0]	х	-	R	_

Bits 15-0 ERROR[15:0]

These bits indicate the error that has occurred while the HWP is running. For the errors that may occur in the Memory Check function, refer to Table 22.4.2.2.

Operating Status Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
STATUS	15–10	_	х	_	R	_
(Memory Check)	9–8	PROCESSING[1:0]	х	-	R	
	7–1	_	х	-	R	
	0	READY	х	-	R	

Bits 15-10 Reserved

Bits 9-8 PROCESSING[1:0]

These bits indicate the memory check processing status.

Table 22.6.2.3 Memory Check Processing Status

STATUS.	Memory check p	rocessing status
PROCESSING[1:0] bits	RAM check	Flash check
0x0003	Terminated with an error	-
0x0002	Completed successfully	Completed
0x0001	During checking	During checking
0x0000	During standby	During standby

Bits 7-1 Reserved

Bit 0 READY

This bit indicates the HWP operating status (whether a command is acceptable or not).

1 (R): Ready (Command is acceptable.)
0 (R): Busy (Command is not acceptable.)

Calculation Result Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RESULT	31–0	RESULT[31:0]	х	-	R	_
(Memory Check)						

Bits 31-0 RESULT[31:0]

These bits indicate the memory check result.

When the RAM check has completed

Indicates the address where a first error has occurred.

When the Flash check has completed

Indicates the checksum/CRC calculation result. Compare it with the original value to confirm whether there is an error or not.

Version Number Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
VERSION	15–8	MAJOR[7:0]	х	_	R	_
	7–0	MINOR[7:0]	Х	-	R	

Bits 15–8 MAJOR[7:0]

Bits 7–0 MINOR[7:0]

These bits indicate the HWP version number.

Version number = MAJOR[7:0] . MINOR[7:0]

22.7 Control Registers

HWP Control Register

		,				
Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
HWPCTL	15–8	_	0x00	_	R	_
	7–1	-	0x00	_	R	
	0	HWPEN	0	H0	R/W	

Bits 15-1 Reserved

Bit 0 HWPEN

This bit enables the HWP operations.

1 (R/W): Enable HWP operations (The operating clock is supplied.) 0 (R/W): Disable HWP operations (The operating clock is stopped.)

HWP Interrupt Flag Register

		9 9				
Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
HWPINTF	15–8	_	0x00	_	R	_
	7–2	-	0x00	_	R	
	1	HWP1IF	0	H0	R/W	Cleared by writing 0.
	0	HWP0IF	0	H0	R/W	

Bits 15-2 Reserved

Bit 1 HWP1IF Bit 0 HWP0IF

These bits indicate the HWP interrupt cause occurrence status.

1 (R): Cause of interrupt occurred 0 (R): No cause of interrupt occurred

1 (W): Setting prohibited

0 (W): Clear flag

The following shows the correspondence between the bit and interrupt:

HWPINTF.HWP1IF bit: Error occurrence interrupt HWPINTF.HWP0IF bit: State transition interrupt

Note: Be aware that the writing value to clear the flags is different from other peripheral circuits.

HWP Interrupt Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
HWPINTE	15–8	_	0x00	_	R	_
	7–1	-	0x00	-	R	
	0	HWPIE	0	H0	R/W	

Bits 15-1 Reserved

Bit 0 HWPIE

This bit enables HWP interrupts. 1 (R/W): Enable interrupts 0 (R/W): Disable interrupts

HWP Command Trigger Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
HWPCMDTRG	15–8	-	0x00	_	R	_
	7–1	_	0x00	-	R	
	0	HWP0TRG	0	H0	R/W	

Bits 15-1 Reserved

Bit 0 HWP0TRG

This bit starts executing the command specified by the HWP internal register.

1 (W): Trigger to issue command

0 (W): Setting prohibited

1 (R): In command issuing process

0 (R): Command issuance completed/standby to issue command

SDAC2 Clock Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SDAC2CLK	15–9	_	0x00	-	R	_
	8	DBRUN	0	H0	R/W	
	7–6	_	0x0	-	R	
	5–4	CLKDIV[1:0]	0x0	H0	R/W	
	3–2	_	0x0	-	R	
	1–0	CLKSRC[1:0]	0x0	H0	R/W	

Bits 15-9 Reserved

Bit 8 DBRUN

This bit sets whether the SDAC2 operating clock is supplied in DEBUG mode or not.

1 (R/W): Clock supplied in DEBUG mode 0 (R/W): No clock supplied in DEBUG mode

Bits 7-6 Reserved

Bits 5-4 CLKDIV[1:0]

These bits select the division ratio of the SDAC2 operating clock.

Bits 3-2 Reserved

Bits 1-0 CLKSRC[1:0]

These bits select the clock source of SDAC2.

Table 22.7.1 Clock Source and Division Ratio Settings

SDAC2CLK.	SDAC2CLK.CLKSRC[1:0] bits									
CLKDIV[1:0] bits	0x0	0x1	0x2	0x3						
CLKDIV[1:0] bits	IOSC	OSC1	OSC3	EXOSC						
0x3	Reserved		Reserved	Reserved						
0x2	1/4	Decembed	1/4	1/4						
0x1	1/2	Reserved	1/2	1/2						
0x0	1/1]	1/1	1/1						

(Note) The oscillation circuits/external input that are not supported in this IC cannot be selected as the clock source.

Note: The SDAC2CLK register settings can be altered only when the SDAC2CTL.SDACEN bit = 0.

SDAC2 Control Register

		9				
Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SDAC2CTL	15–8	_	0x00	_	R	_
	7–4	_	0x00	_	R	
	3	TONEON	0	H0	R/W	
	2	-	0	-	R	
	1	RESAMPEN	0	H0	R/W	
	0	SDACEN	0	H0	R/W	

Bits 15-4 Reserved

Bit 3 TONEON

This bit enables the square-wave tone generator.

1 (R/W): Turn on square-wave tone 0 (R/W): Turn off square-wave tone

Bit 2 Reserved

Bit 1 RESAMPEN

This bit enables the resampler. 1 (R/W): Enable resampler 0 (R/W): Disable resampler

Bit 0 SDACEN

This bit enables the SDAC operations.

1 (R/W): Enable SDAC operations (The operating clock is supplied.) 0 (R/W): Disable SDAC operations (The operating clock is stopped.)

SDAC2 Mode Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SDAC2MOD	15–9	_	0x00	_	R	_
	8	PWMOUTEN	0	H0	R/W	
	7–2	-	0x00	H0	R	
	1–0	PWMMODE[1:0]	0x00	H0	R/W	

Bits 15-9 Reserved

Bit 8 PWMOUTEN

This bit enables the SDAC2 output pins to output the PWM signals.

1 (R/W): Enable PWM signal output 0 (R/W): Disable PWM signal output

Bits 7-2 Reserved

Bits 1-0 PWMMODE[1:0]

These bits set th SDAC2 operating mode.

Table 22.7.2 SDAC2 Operating Mode

SDAC2MOD.PWMMODE[1:0] bits	Mode
0x3	CPLM mode 2
0x2	CPLM mode 1
0x1	Normal mode
0x0	Buzzer mode

SDAC2 Ch.n Data Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SDAC2_nDAT	15–10	_	0x00	_	R	_
	9–0	DAT[9:0]	0x000	HO	R/W	

Bits 15-10 Reserved

Bits 9-0 DAT[9:0]

These bits store sound data.

Note: This register is used by the HWP. Do not write any data to this register while the HWP operation is enabled (HWPCTL.HWPEN bit = 1).

SDAC2 Interrupt Flag Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SDAC2INTF	15–8	_	0x00	-	R	_
	7–4	_	0x0	-	R	
	3	ERR1IF	0	H0	R/W	Cleared by writing 1.
	2	DATREQ1IF	0	H0	R/W	
	1	ERR0IF	0	H0	R/W	
	0	DATREQ0IF	0	H0	R/W	

Bits 15-4 Reserved

Bit 3 ERR1IF

Bit 2 DATREQ1IF

Bit 1 ERROIF

Bit 0 DATREQ0IF

These bits indicate the SDAC2 interrupt cause occurrence status.

1 (R): Cause of interrupt occurred 0 (R): No cause of interrupt occurred

1 (W): Clear flag 0 (W): Ineffective

The following shows the correspondence between the bit and interrupt:

SDAC2INTF.ERR1IF bit: Ch.1 error occurrence interrupt
SDAC2INTF.DATREQ1IF bit: Ch.1 data request interrupt
SDAC2INTF.ERR0IF bit: Ch.0 error occurrence interrupt
SDAC2INTF.DATREQ0IF bit: Ch.0 data request interrupt

Note: This register is used by the HWP. Do not write any data to this register while the HWP operation is enabled (HWPCTL.HWPEN bit = 1).

SDAC2 Interrupt Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SDAC2INTE	15–8	-	0x00	_	R	_
	7–2	_	0x00	-	R	
	3	ERR1IE	0	H0	R/W	
	2	DATREQ1IE	0	H0	R/W	
	1	ERR0IE	0	H0	R/W	
	0	DATREQ0IE	0	H0	R/W	

Bits 15-4 Reserved

Bit 3 ERR1IE
Bit 2 DATREQ1IE
Bit 1 ERR0IE
Bit 0 DATREQ0IE

These bits enable SDAC2 interrupts.

1 (R/W): Enable interrupts 0 (R/W): Disable interrupts

The following shows the correspondence between the bit and interrupt:

SDAC2INTE.ERR1IE bit: Ch.1 error occurrence interrupt
SDAC2INTE.DATREQ1IE bit: Ch.1 data request interrupt
SDAC2INTE.ERR0IE bit: Ch.0 error occurrence interrupt
SDAC2INTE.DATREQ0IE bit: Ch.0 data request interrupt

Note: This register is used by the HWP. Do not write any data to this register while the HWP operation is enabled (HWPCTL.HWPEN bit = 1).

SDAC2 Resampler Rate Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SDAC2RESAMP	15–11	_	0x00	-	R	_
	10-0	RESAMPRATE[10:0]	0x400	H0	R/W	

Bits 15-11 Reserved

Bits 10-0 RESAMPRATE[10:0]

These bits set the audio sampling frequency of the SDAC2.

The audio sampling frequency is calculated as follows:

Sampling frequency = $fsdac2cLK \times (1,024 / RESAMPRATE)$ (Eq. 22.1)

where

fSDAC2CLK: SDAC2 operating clock frequency set using the SDAC2CLK register [Hz]

RESAMPRATE: Value set in the SDAC2RESAMP.RESAMPRATE[10:0] bits

Note: This register is used by the HWP. Do not write any data to this register while the HWP operation is enabled (HWPCTL.HWPEN bit = 1).

SDAC2 Tone Divider Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SDAC2TONE	15–0	TONEDIV[15:0]	0x4000	H0	R/W	_

Bits 15-0 TONEDIV[15:0]

These bits set the frequency of the square-wave tone frequency when the SDAC2CTL.TONEON bit = 1 (square-wave tone generator enabled).

The tone frequency is calculated as follows:

Tone frequency = $fsdac2clk / [(4 \times TONEDIV + 4) \times 2]$ (Eq. 22.2)

where

fsdac2clk: SDAC2 operating clock frequency set using the SDAC2CLK register [Hz]

TONEDIV: Value set in the SDAC2TONE.TONEDIV[15:0] bits

23 Electrical Characteristics

23.1 Absolute Maximum Ratings

(Vss = 0 V)

Item	Symbol	Condition	Rated value	Unit
Power supply voltage	VDD		-0.3 to 7.0	V
QSPI-Flash interface power supply	VDDQSPI		-0.3 to 7.0	V
voltage				
Flash programming voltage	VPP		-0.3 to 8.0	V
Input voltage	Vı	#RESET, TEST, P10-17, P40, P42-43, PD2-D3	-0.3 to V _{DD} + 0.5	V
		P00-07, P20-27, P30-37, P41, P44-45,	-0.3 to 7.0	V
		P50-56, P60-65, PD0-D1		
Output voltage	Vo		-0.3 to V _{DD} + 0.5	V
High level output current	Іон	1 pin	-10	mA
		Total of all pins	-20	mA
Low level output current	loL	1 pin	10	mA
		Total of all pins	20	mA
Operating temperature	Ta		-40 to 85	°C
Storage temperature	Tstg		-65 to 125	°C

23.2 Recommended Operating Conditions

(Vss = 0 V) *1

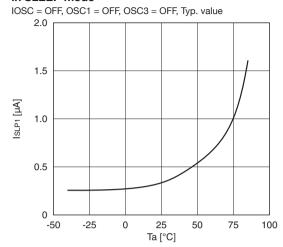
			• • • • •				
Item	Symbol	Condition			Тур.	Max.	Unit
Power supply voltage	VDD	For normal operation			-	5.5	V
		V _{D1} voltage m	ode = mode1	1.8	-	3.6	V
		For Flash prog	gramming	2.2	-	5.5	V
QSPI-Flash interface power supply	VDDQSPI	For P60-65	When QSPI is used	3.0	-	3.6	V
voltage		and QSPI	When QSPI is not used	1.8	-	5.5	V
OSC1 oscillator oscillation frequency	fosc1	Crystal oscilla	tor	-	32.768	-	kHz
OSC3 oscillator oscillation frequency	fosc3	Crystal/ceramic oscillator			-	16.3	MHz
EXOSC external clock frequency	fexosc	When supplied from an external oscillator			-	16.3	MHz
Bypass capacitor between Vss and VDD	C _{PW1}			-	3.3	-	μF
Capacitor between Vss and VD1	CPW2			-	1.0	1.2	μF
Capacitor between Vss and VDDQSPI	CVDDQSPI			_	3.3	_	μF
Gate capacitor for OSC1 oscillator	C _{G1}	When crystal	oscillator is used *2	0	-	25	pF
Drain capacitor for OSC1 oscillator	C _{D1}	When crystal	oscillator is used *2	-	0	-	pF
Gate capacitor for OSC3 oscillator	Свз	When crystal/	ceramic oscillator is used *2	0	-	100	pF
Drain capacitor for OSC3 oscillator	Срз	When crystal/ceramic oscillator is used *2			-	100	pF
Debug pin pull-up resistors	RDBG1-2	*3			100	-	kΩ
Capacitor between Vss and VPP	CVPP				0.1	-	μF
Capacitor between Vss and VREFA	CVREFA			_	0.1	-	μF

^{*1} The potential variation of the Vss voltage should be suppressed to within ±0.3 V on the basis of the ground potential of the MCU mounting board while the Flash is being programmed, as it affects the Flash memory characteristics (programming count).

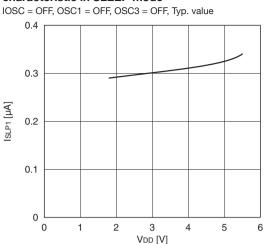
^{*2} The component values should be determined after performing matching evaluation of the resonator mounted on the printed circuit board actually used.

^{*3} RDBG1-2 are not required when using the debug pins as general-purpose I/O ports.

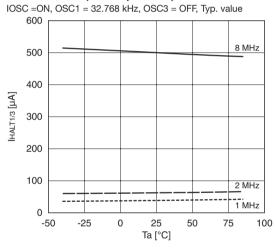
^{*4} The component values should be determined after evaluating operations using an actual mounting board.

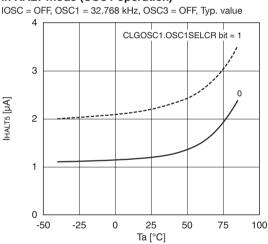

23.3 Current Consumption

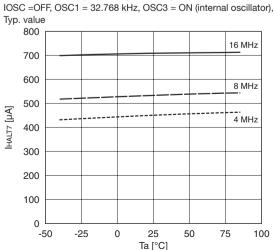
Unless otherwise specified: VDD = 1.8 to 5.5 V, Vss = 0 V, Ta = 25°C, EXOSC = OFF, PWGACTL.REGMODE[1:0] bits = 0x0 (automatic mode), PWGACTL.REGSEL bit = 1 (mode0), FLASHCWAIT.RDWAIT[1:0] bits = 0x1 (2 cycles)


Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Current	ISLP1	IOSC = OFF, OSC1 = OFF, OSC3 = OFF	-	0.34	4	μΑ
consumption in	ISLP2	IOSC = OFF, OSC1 = OFF, OSC3 = OFF, PWGACTL.REGSEL bit = 0 (mode1)	-	0.27	3.5	μΑ
SLEEP mode	ISLP3	IOSC = OFF, OSC1 = 32.768 kHz*3, OSC3 = OFF, RTCA = ON	-	0.90	6	μA
	ISLP4	IOSC = OFF, OSC1 = 32.768 kHz ³ , OSC3 = OFF, RTCA = ON, PWGACTL.REGSEL bit = 0 (mode1)	-	0.80	5.5	μA
Current	IHALT1	IOSC = 8 MHz*1, OSC1 = 32.768 kHz*3, OSC3 = OFF, SYSCLK = IOSC	_	500	710	μA
consumption in	IHALT2	IOSC = 2 MHz*2, OSC1 = 32.768 kHz*3, OSC3 = OFF, SYSCLK = IOSC	_	120	172	μA
HALT mode	Інацтз	IOSC = 2 MHz*2, OSC1 = 32.768 kHz*3, OSC3 = OFF, SYSCLK = IOSC, PWGACTL.REGSEL bit = 0 (mode1)	-	70	100	μA
	IHALT4	IOSC = OFF, OSC1 = 32.768 kHz*3, OSC3 = OFF, SYSCLK = OSC1	_	1.5	8	μΑ
		IOSC = OFF, OSC1 = 32 kHz*4, OSC3 = OFF, SYSCLK = OSC1	_	2.5	12	μΑ
	IHALT5	IOSC = OFF, OSC1 = 32.768 kHz*3, OSC3 = OFF, SYSCLK = OSC1, PWGACTL.REGSEL bit = 0 (mode1)	-	1.2	7.5	μА
		IOSC = OFF, OSC1 = 32 kHz*4, OSC3 = OFF, SYSCLK = OSC1, PWGACTL.REGSEL bit = 0 (mode1)	-	2.2	11.5	μΑ
	IHALT6	IOSC = OFF, OSC1 = 32.768 kHz*3, OSC3 = 16 MHz (ceramic oscillator)*5, SYSCLK = OSC3	-	630	1,050	μA
	IHALT7	IOSC = OFF, OSC1 = 32.768 kHz+3, OSC3 = 16 MHz (internal oscillator)+6, SYSCLK = OSC3	-	710	1,060	μA
	IHALT8*7	IOSC = OFF, OSC1 = OFF, OSC3 = 16 MHz (internal oscillator)*6, SYSCLK = OSC3, HWP/SDAC = ON		4,500	5,500	μA
Current	IRUN1*8	IOSC = 8 MHz*1, OSC1 = 32.768 kHz*3, OSC3 = OFF, SYSCLK = IOSC	_	1,750	2,580	μA
consumption in	IRUN2*8	IOSC = 2 MHz*2, OSC1 = 32.768 kHz*3, OSC3 = OFF, SYSCLK = IOSC	_	430	650	μA
RUN mode	IRUN3*8	IOSC = 2 MHz*2, OSC1 = 32.768 kHz*3, OSC3 = OFF, SYSCLK = IOSC, PWGACTL.REGSEL bit = 0 (mode1)	-	260	390	μA
	IRUN4*8	IOSC = OFF, OSC1 = 32.768 kHz*3, OSC3 = OFF, SYSCLK = OSC1	_	6.5	14	μΑ
		IOSC = OFF, OSC1 = 32 kHz*4, OSC3 = OFF, SYSCLK = OSC1		7.5	18	μA
	IRUN5*8	IOSC = OFF, OSC1 = 32.768 kHz*3, OSC3 = OFF, SYSCLK = OSC1, PWGACTL.REGSEL bit = 0 (mode1)	-	5	12	μA
		IOSC = OFF, OSC1 = 32 kHz ⁻⁴ , OSC3 = OFF, SYSCLK = OSC1, PWGACTL.REGSEL bit = 0 (mode1)	-	6	14	μA
	IRUN6*8	IOSC = OFF, OSC1 = 32.768 kHz*3, OSC3 = 16 MHz (ceramic oscillator)*5, SYSCLK = OSC3	-	3,150	4,780	μA
	IRUN7*8	IOSC = OFF, OSC1 = 32.768 kHz*3, OSC3 = 16 MHz (internal oscillator)*6, SYSCLK = OSC3	-	3,200	4,800	μA
	IRUN8*9	IOSC = OFF, OSC1 = OFF, OSC3 = 16 MHz (internal oscillator)*6, SYSCLK = OSC3, HWP/SDAC = ON	-	5,600	8,500	μA

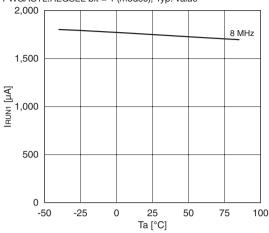
- *1 IOSC oscillator: CLGIOSC.IOSCFQ[1:0] bits = 0x2
- *2 IOSC oscillator: CLGIOSC.IOSCFQ[1:0] bits = 0x1
- *3 OSC1 oscillator: CLGOSC1.OSC1SELCR bit = 0, CLGOSC1.INV1N[1:0] bits = 0x0, CLGOSC1.CGI1[2:0] bits = 0x0, CLGOSC1. OSDEN bit = 0, C_{G1} = C_{D1} = 0 pF, Crystal resonator = C-002RX (manufactured by Seiko Epson Corporation, R₁ = 50 kΩ (Max.), C_L = 7 pF)
- *4 OSC1 oscillator: CLGOSC1.OSC1SELCR bit = 1
- *5 OSC3 oscillator: CLGOSC3.OSC3MD bit = 1, CLGOSC3.OSC3INV[1:0] bits = 0x3, Cg3 = Cp3 = 10 pF
- *6 OSC3 oscillator: CLGOSC3.OSC3MD bit = 0, CLGOSC3.OSC3FQ[1:0] bits = 0x3
- *7 The current consumption value was measured when the HWP and SDAC2 was performing playback of 2 channels, SPEED_0. SPEED[15:0] bits = 0x7d (playback speed: 125%), PITCH_0.PITCH[15:0] bits = 0x00, and CPU was in HALT mode.
- *8 The current consumption values were measured when a test program consisting of 60.5 % ALU instructions, 17 % branch instructions, 12 % RAM read instructions, and 10.5 % RAM write instructions was executed continuously in the Flash memory.
- *9 The current consumption value was measured when the HWP and SDAC2 was performing playback of 2 channels, SPEED_0. SPEED[15:0] bits = 0x7d (playback speed: 125%), PITCH_0.PITCH[15:0] bits = 0x00, and the CPU was executing a loop containing a NOP instruction.


Current consumption-temperature characteristic in SLEEP mode

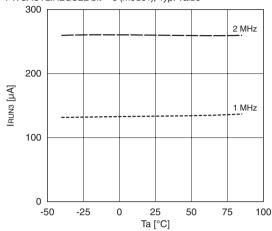

Current consumption-power supply voltage characteristic in SLEEP mode


Current consumption-temperature characteristic in HALT mode (IOSC operation)

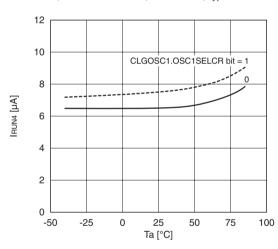
Current consumption-temperature characteristic in HALT mode (OSC1 operation)



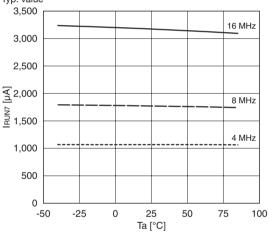
Current consumption-temperature characteristic in HALT mode (OSC3 operation)


Current consumption-temperature characteristic in RUN mode (IOSC operation)

IOSC = ON, OSC1 = 32.768 kHz, OSC3 = OFF PWGACTL.REGSEL bit = 1 (mode0), Typ. value


Current consumption-temperature characteristic in RUN mode (IOSC operation)

IOSC = ON, OSC1 = 32.768 kHz, OSC3 = OFF PWGACTL.REGSEL bit = 0 (mode1), Typ. value


Current consumption-temperature characteristic in RUN mode (OSC1 operation)

IOSC = OFF, OSC1 = 32.768 kHz, OSC3 = OFF, Typ. value

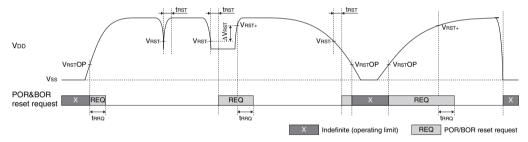
Current consumption-temperature characteristic in RUN mode (OSC3 operation)

IOSC = OFF, OSC1 = 32.768 kHz, OSC3 = ON (internal oscillator), Typ. value

23.4 System Reset Controller (SRC) Characteristics

#RESET pin characteristics

Unless otherwise specified: VDD = 1.8 to 5.5 V, Vss = 0 V, Ta = -40 to 85°C


Item	Symbol	Condition	Min.	Тур.	Max.	Unit
High level Schmitt input threshold voltage	V _{T+}		$0.5 \times V_{DD}$	-	$0.8 \times V_{DD}$	V
Low level Schmitt input threshold voltage	VT-		0.2 × VDD	_	0.5 × VDD	V
Schmitt input hysteresis voltage	ΔVτ		180	-	-	mV
Input pull-up resistance	RIN		100	200	500	kΩ
Pin capacitance	Cin		-	_	15	pF
Reset Low pulse width	tsr		25	_	-	μs

POR/BOR characteristics

Unless otherwise specified: $V_{DD} = 1.8$ to 5.5 V, $V_{SS} = 0$ V, $T_{A} = -40$ to 85° C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
POR/BOR canceling voltage	VRST+		1.15	-	1.75	V
POR/BOR detection voltage	VRST-		1.05	-	1.60	V
POR/BOR hysteresis voltage	ΔVRST		40	60	-	mV
POR/BOR detection response time	trst		_	-	500	μs
POR/BOR operating limit voltage	VRSTOP		_	0.5	0.95	V
POR/BOR reset request hold time	trrq		0.01	_	4	ms

Note: When performing a power-on-reset again after the power is turned off, decrease the V_{DD} voltage to V_{RST}OP or less.

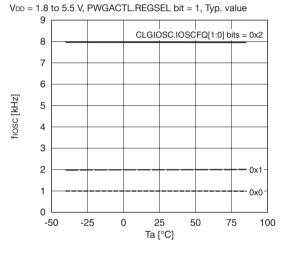
Reset hold circuit characteristics

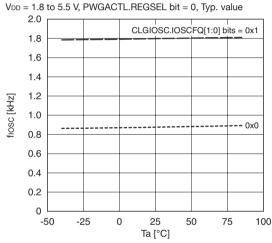
Unless otherwise specified: VDD = 1.8 to 5.5 V, Vss = 0 V, Ta = -40 to $85^{\circ}C$

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Reset hold time*1	trstr		0.5	_	1.8	ms

^{*1} Time until the internal reset signal is negated after the reset request is canceled.

23.5 Clock Generator (CLG) Characteristics

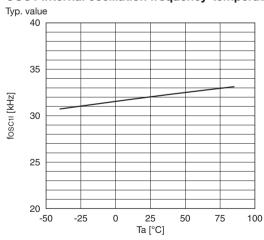

Oscillator circuit characteristics including resonators change depending on conditions (board pattern, components used, etc.). Use these characteristic values as a reference and perform matching evaluation using the actual printed circuit board.


IOSC oscillator circuit characteristics

Unless otherwise specified: VDD = 1.8 to 5.5 V, Vss = 0 V, Ta = -40 to 85°C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Oscillation start time	tstal		-	_	3	μs
Oscillation frequency	fiosc	CLGIOSC.IOSCFQ[1:0] bits = 0x2,	7.2	8	8.4	MHz
		PWGACTL.REGSEL bit = 1				
		CLGIOSC.IOSCFQ[1:0] bits = 0x1,	1.8	2	2.1	MHz
		PWGACTL.REGSEL bit = 1				
		CLGIOSC.IOSCFQ[1:0] bits = 0x0,	0.9	1	1.05	MHz
		PWGACTL.REGSEL bit = 1				
		CLGIOSC.IOSCFQ[1:0] bits = 0x1,	1.62	1.8	1.89	MHz
		PWGACTL.REGSEL bit = 0				
		CLGIOSC.IOSCFQ[1:0] bits = 0x0,	0.78	0.9	1.02	MHz
		PWGACTL.REGSEL bit = 0				

IOSC oscillation frequency-temperature characteristic

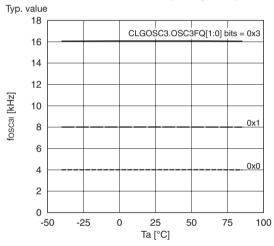

OSC1 oscillator circuit characteristics

Unless otherwise specified: VDD = 1.8 to 5.5 V, Vss = 0 V, Ta = 25°C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Crystal oscillator	tsta1C	CLGOSC1.OSC1SELCR bit = 0,	_	-	3	s
oscillation start time*1		CLGOSC1.INV1N[1:0] bits = $0x1$,				
		CLGOSC1.INV1B[1:0] bits = 0x2,				
		CLGOSC1.OSC1BUP bit = 1				
Crystal oscillator	CGI1C	CLGOSC1.OSC1SELCR bit = 0,	-	12	-	pF
internal gate capacitance		CLGOSC1.CGI1[2:0] bits = 0x0				
		CLGOSC1.OSC1SELCR bit = 0,	-	14	-	pF
		CLGOSC1.CGI1[2:0] bits = 0x1				
		CLGOSC1.OSC1SELCR bit = 0,	-	16	-	pF
		CLGOSC1.CGI1[2:0] bits = 0x2				
		CLGOSC1.OSC1SELCR bit = 0,	-	18	-	pF
		CLGOSC1.CGI1[2:0] bits = 0x3				
		CLGOSC1.OSC1SELCR bit = 0,	-	19	-	pF
		CLGOSC1.CGI1[2:0] bits = 0x4				
		CLGOSC1.OSC1SELCR bit = 0,	-	21	-	pF
		CLGOSC1.CGI1[2:0] bits = 0x5				
		CLGOSC1.OSC1SELCR bit = 0,	_	23	-	pF
		CLGOSC1.CGI1[2:0] bits = 0x6				
		CLGOSC1.OSC1SELCR bit = 0,	-	24	-	pF
		CLGOSC1.CGI1[2:0] bits = 0x7				
Crystal oscillator	CDI1C	CLGOSC1.OSC1SELCR bit = 0,	-	6	-	pF
internal drain capacitance						
Crystal oscillator	losc1c	CLGOSC1.OSC1SELCR bit = 0,	-	70	-	%
oscillator circuit		CLGOSC1.INV1N/INV1B[1:0] bits = 0x0				
current - oscillation inverter		CLGOSC1.OSC1SELCR bit = 0,	-	100	-	%
drivability ratio *1		CLGOSC1.INV1N/INV1B[1:0] bits = 0x1 (reference)				
		CLGOSC1.OSC1SELCR bit = 0,	_	130	-	%
		CLGOSC1.INV1N/INV1B[1:0] bits = 0x2				
		CLGOSC1.OSC1SELCR bit = 0,	-	300	-	%
		CLGOSC1.INV1N/INV1B[1:0] bits = 0x3				
Crystal oscillator	losd1c	CLGOSC1.OSC1SELCR bit = 0,	_	0.025	0.1	μΑ
oscillation stop detector current		CLGOSC1.OSDEN bit = 1				•
Internal oscillator	tsta11	CLGOSC1.OSC1SELCR bit = 1	-	-	100	μs
oscillation start time						
Internal oscillator	fosc11	CLGOSC1.OSC1SELCR bit = 1	31.04	32	32.96	kHz
oscillation frequency						

^{*1} CLGOSC1.CGI1[2:0] bits = 0x0, Crystal resonator = C-002RX (manufactured by Seiko Epson Corporation, R₁ = 50 kΩ (Max.), CL = 7 pF)

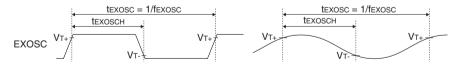
OSC1 internal oscillation frequency-temperature characteristic


OSC3 oscillator circuit characteristics

Unless otherwise specified: VDD = 1.8 to 5.5 V, Vss = 0 V, Ta = 25°C

Item	Symbol	Condition	Та	Min.	Тур.	Max.	Unit
Crystal/ceramic oscillator	tsta3C	CLGOSC3.OSC3MD bit = 1, Crystal	resonator	_	-	20	ms
oscillation start time		CLGOSC3.OSC3MD bit = 1, Ceramic	c resonator	-	-	1	ms
Crystal/ceramic oscillator internal gate capacitance	Сызс	CLGOSC3.OSC3MD bit = 1		_	5	_	pF
Crystal/ceramic oscillator internal drain capacitance	Сызс	CLGOSC3.OSC3MD bit = 1		_	5	_	pF
Internal oscillator oscillation start time	tsta3I	CLGOSC3.OSC3MD bit = 0		_	_	200	μs
Internal oscillator	foscai	CLGOSC3.OSC3MD bit = 0,	0 to 85°C	15.84	16	16.16	MHz
oscillation frequency		CLGOSC3.OSC3FQ[1:0] bits = 0x3	-40 to 0°C	15.76	16	16.24	MHz
		CLGOSC3.OSC3MD bit = 0,	0 to 85°C	7.92	8	8.08	MHz
		CLGOSC3.OSC3FQ[1:0] bits = 0x1	-40 to 0°C	7.88	8	8.12	MHz
		CLGOSC3.OSC3MD bit = 0,	0 to 85°C	3.96	4	4.04	MHz
		CLGOSC3.OSC3FQ[1:0] bits = 0x0	-40 to 0°C	3.94	4	4.06	MHz
		CLGOSC3.OSC3MD bit = 0,		15.84	16	16.16	MHz
		CLGOSC3.OSC3FQ[1:0] bits = 0x3 *	1				

^{*1} Corrected value immediately after the auto-trimming operation has completed.


OSC3 internal oscillation frequency-temperature characteristic

EXOSC external clock input characteristics

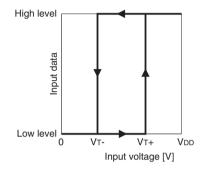
Unless otherwise specified: VDD = 1.8 to 5.5 V, Vss = 0 V, Ta = -40 to 85°C

•						
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
EXOSC external clock duty ratio	texoscd	texoscd = texosch/texosc	46	-	54	%
High level Schmitt input threshold voltage	V _{T+}		$0.5 \times V_{DD}$	-	$0.8 \times V_{DD}$	V
Low level Schmitt input threshold voltage	VT-		$0.2 \times V_{DD}$	-	$0.5 \times V_{DD}$	V
Schmitt input hysteresis voltage	ΔVτ		180	_	_	mV

23.6 Flash Memory Characteristics

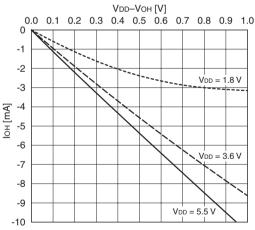
Unless otherwise specified: VDD = 2.2 to 5.5 V *1, Vss = 0 V, Ta = -40 to 85°C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Programming count *2	CFEP	Programmed data is guaranteed to be retained for	1,000	-	-	times
		10 years.				

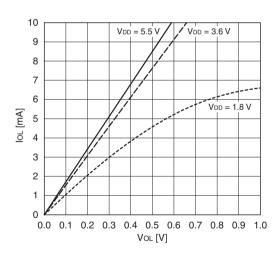

^{*1} The potential variation of the Vss voltage should be suppressed to within ±0.3 V on the basis of the ground potential of the MCU mounting board while the Flash is being programmed, as it affects the Flash memory characteristics (programming count).

^{*2} Assumed that Erasing + Programming as count of 1. The count includes programming in the factory for shipment with ROM data programmed.

23.7 Input/Output Port (PPORT) Characteristics


Unless otherwise specified: VDD = 1.8 to 5.5 V, Vss = 0 V, Ta = -40 to 85°C

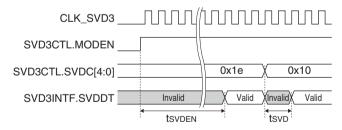
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
High level Schmitt input threshold	V _{T+}		$0.5 \times V_{DD}$	-	0.8 × VDD	V
voltage						
Low level Schmitt input threshold	VT-		$0.2 \times V_{DD}$	_	$0.5 \times V_{DD}$	V
voltage						
Schmitt input hysteresis voltage	ΔV_T		180	_	-	mV
High level output current	Іон	$V_{OH} = 0.9 \times V_{DD}$	-	-	-0.5	mA
Low level output current	lol	$Vol = 0.1 \times Vdd$	0.5	-	-	mA
Leakage current	ILEAK		-150	-	150	nA
Input pull-up resistance	RINU		100	200	500	kΩ
Input pull-down resistance	RIND		100	200	500	kΩ
Pin capacitance	Cin		_	-	15	рF


High-level output current characteristic

Ta = 85°C, Max. value

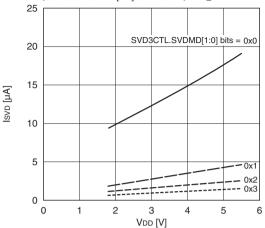
Low-level output current characteristic

Ta = 85°C, Min. value


23.8 Supply Voltage Detector (SVD3) Characteristics

Unless otherwise specified: $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$, $V_{SS} = 0 \text{ V}$, $T_{A} = -40 \text{ to } 85^{\circ}\text{C}$

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
EXSVDn pin input voltage range	VEXSVD		0	-	VDD	V
EXSVDn input impedance	Rexsvd	SVD3CTL.SVDC[4:0] bits = 0x00	253	279	305	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x01	274	302	330	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x02	317	348	380	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x03 SVD3CTL.SVDC[4:0] bits = 0x04	338 380	371 418	405 456	kΩ kΩ
		SVD3CTL.SVDC[4:0] bits = 0x04 SVD3CTL.SVDC[4:0] bits = 0x05	421	464	507	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x06	443	487	531	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x07	464	511	557	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x08	486	534	581	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x09	507	557	607	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x0a	528	580	631	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x0b	551	603	655	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x0c	571	626	682	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x0d	593	649	705	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x0e	616	672	727	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x0f	635	695	754	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x10	658	718	777	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x11	679	741	804	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x12	698	765	833	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x13	739	812	885	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x14	761	834	908	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x15	804	880	955	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x16	842	929	1,016	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x17	878	948	1,019	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x18	893	972	1,052	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x19	922	993	1,064	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x1a	963	1,041	1,119	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x1b	982	1,063	1,145	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x1c	1,001	1,086	1,171	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x1d	1,022	1,110	1,198	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x1e	1,054	1,129	1,204	kΩ
EVSVDs detection voltage	Vove na	SVD3CTL SVDC[4:0] bits = 0x1f	1,072	1,154	1,237	kΩ V
EXSVDn detection voltage	VSVD_EXT	SVD3CTL.SVDC[4:0] bits = 0x00	1.17 1.27	1.2	1.23 1.33	V
		SVD3CTL.SVDC[4:0] bits = 0x01 SVD3CTL.SVDC[4:0] bits = 0x02	1.46	1.5	1.54	V
		SVD3CTL.SVDC[4:0] bits = 0x03	1.56	1.6	1.64	V
		SVD3CTL.SVDC[4:0] bits = 0x04	1.76	1.8	1.85	V
		SVD3CTL.SVDC[4:0] bits = 0x05	1.95	2.0	2.05	V
		SVD3CTL.SVDC[4:0] bits = 0x06	2.05	2.1	2.15	V
		SVD3CTL.SVDC[4:0] bits = 0x07	2.15	2.2	2.26	V
		SVD3CTL.SVDC[4:0] bits = 0x08	2.24	2.3	2.36	V
		SVD3CTL.SVDC[4:0] bits = 0x09	2.34	2.4	2.46	V
		SVD3CTL.SVDC[4:0] bits = 0x0a	2.44	2.5	2.56	V
		SVD3CTL.SVDC[4:0] bits = 0x0b	2.54	2.6	2.67	V
		SVD3CTL.SVDC[4:0] bits = 0x0c	2.63	2.7	2.77	V
		SVD3CTL.SVDC[4:0] bits = 0x0d	2.73	2.8	2.87	V
		SVD3CTL.SVDC[4:0] bits = 0x0e	2.83	2.9	2.97	V
		SVD3CTL.SVDC[4:0] bits = 0x0f	2.93	3.0	3.08	V
		SVD3CTL.SVDC[4:0] bits = 0x10	3.02	3.1	3.18	V
		SVD3CTL.SVDC[4:0] bits = 0x11	3.12	3.2	3.28	V
		SVD3CTL.SVDC[4:0] bits = 0x12	3.22	3.3	3.38	V
		SVD3CTL.SVDC[4:0] bits = 0x13	3.41	3.5	3.59	V
		SVD3CTL.SVDC[4:0] bits = 0x14	3.51	3.6	3.69	V
		SVD3CTL.SVDC[4:0] bits = 0x15	3.71	3.8	3.90	V
		SVD3CTL.SVDC[4:0] bits = 0x16	3.90	4.0	4.10	V
		SVD3CTL.SVDC[4:0] bits = 0x17	4.00	4.1	4.20	V
		SVD3CTL.SVDC[4:0] bits = 0x18	4.10	4.2	4.31	V
		SVD3CTL.SVDC[4:0] bits = 0x19 SVD3CTL.SVDC[4:0] bits = 0x1a	4.19 4.39	4.3 4.5	4.41 4.61	V
		SVD3CTL.SVDC[4:0] bits = 0x1a SVD3CTL.SVDC[4:0] bits = 0x1b	4.39	4.5	4.61	V
		SVD3CTL.SVDC[4:0] bits = 0x1b SVD3CTL.SVDC[4:0] bits = 0x1c	4.49	4.6	4.72	V
		SVD3CTL.SVDC[4:0] bits = 0x1c SVD3CTL.SVDC[4:0] bits = 0x1d	4.58	4.7	4.82	V
		SVD3CTL.SVDC[4:0] bits = 0x1d SVD3CTL.SVDC[4:0] bits = 0x1e	4.78	4.9	5.02	V
		SVD3CTL.SVDC[4:0] bits = 0x1f	4.88	5.0	5.13	V
23-10	1	Seiko Enson Corporation		1D41 TFC		


Item	Symbol	Condition	Min.	Тур.	Max.	Unit
SVD detection voltage	Vsvd	SVD3CTL.SVDC[4:0] bits = 0x04	1.76	1.8	1.85	V
		SVD3CTL.SVDC[4:0] bits = 0x05	1.95	2.0	2.05	V
		SVD3CTL.SVDC[4:0] bits = 0x06	2.05	2.1	2.15	V
		SVD3CTL.SVDC[4:0] bits = 0x07	2.15	2.2	2.26	V
		SVD3CTL.SVDC[4:0] bits = 0x08	2.24	2.3	2.36	V
		SVD3CTL.SVDC[4:0] bits = 0x09	2.34	2.4	2.46	V
		SVD3CTL.SVDC[4:0] bits = 0x0a	2.44	2.5	2.56	V
		SVD3CTL.SVDC[4:0] bits = 0x0b	2.54	2.6	2.67	V
		SVD3CTL.SVDC[4:0] bits = 0x0c	2.63	2.7	2.77	V
		SVD3CTL.SVDC[4:0] bits = 0x0d	2.73	2.8	2.87	V
		SVD3CTL.SVDC[4:0] bits = 0x0e	2.83	2.9	2.97	V
		SVD3CTL.SVDC[4:0] bits = 0x0f	2.93	3.0	3.08	V
		SVD3CTL.SVDC[4:0] bits = 0x10	3.02	3.1	3.18	V
		SVD3CTL.SVDC[4:0] bits = 0x11	3.12	3.2	3.28	V
		SVD3CTL.SVDC[4:0] bits = 0x12	3.22	3.3	3.38	V
		SVD3CTL.SVDC[4:0] bits = 0x13	3.41	3.5	3.59	V
		SVD3CTL.SVDC[4:0] bits = 0x14	3.51	3.6	3.69	V
		SVD3CTL.SVDC[4:0] bits = 0x15	3.71	3.8	3.90	V
		SVD3CTL.SVDC[4:0] bits = 0x16	3.90	4.0	4.10	V
		SVD3CTL.SVDC[4:0] bits = 0x17	4.00	4.1	4.20	V
		SVD3CTL.SVDC[4:0] bits = 0x18	4.10	4.2	4.31	V
		SVD3CTL.SVDC[4:0] bits = 0x19	4.19	4.3	4.41	V
		SVD3CTL.SVDC[4:0] bits = 0x1a	4.39	4.5	4.61	V
		SVD3CTL.SVDC[4:0] bits = 0x1b	4.49	4.6	4.72	V
		SVD3CTL.SVDC[4:0] bits = 0x1c	4.58	4.7	4.82	V
		SVD3CTL.SVDC[4:0] bits = 0x1d	4.68	4.8	4.92	V
		SVD3CTL.SVDC[4:0] bits = 0x1e	4.78	4.9	5.02	V
		SVD3CTL.SVDC[4:0] bits = 0x1f	4.88	5.0	5.13	V
SVD circuit enable response time	tsvden	*1	-	-	500	μs
SVD circuit response time	tsvd		-	-	60	μs
SVD circuit current	Isvd	SVD3CTL.SVDMD[1:0] bits = 0x0,	_	19	35	μA
		SVD3CTL.SVDC[4:0] bits = 0x04				
		CLK_SVD3 = 32 kHz, Ta = 25°C				
		SVD3CTL.SVDMD[1:0] bits = 0x1,	-	4.7	7.7	μA
		SVD3CTL.SVDC[4:0] bits = 0x04,				
		CLK_SVD3 = 32 kHz, Ta = 25°C				
		SVD3CTL.SVDMD[1:0] bits = 0x2,	-	2.5	4.1	μA
		SVD3CTL.SVDC[4:0] bits = 0x04,				
		CLK_SVD3 = 32 kHz, Ta = 25°C				
		SVD3CTL.SVDMD[1:0] bits = 0x3,	_	1.5	2.4	μA
		SVD3CTL.SVDC[4:0] bits = 0x04,				
		CLK_SVD3 = 32 kHz, Ta = 25°C				

^{*1} If CLK_SVD3 is configured in the neighborhood of 32 kHz, the SVD3INTF.SVDDT bit is masked during the tsvDEN period and it retains the previous value.

SVD circuit current - power supply voltage characteristic

 $Ta = 25^{\circ}C$, SVD3CTL.SVDC[4:0] bits = 0x04, $CLK_SVD3 = 32$ kHz, Typ. value

23.9 UART (UART3) Characteristics

Unless otherwise specified: $V_{DD} = 1.8$ to 5.5 V, $V_{SS} = 0$ V, $T_{A} = -40$ to 85° C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Transfer baud rate	UBRT1	Normal mode	150	-	460,800	bps
	UBRT2	IrDA mode	150	-	115,200	bps

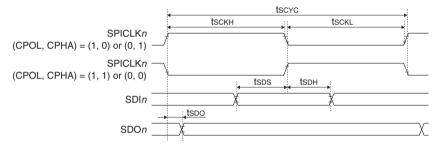
23.10 Synchronous Serial Interface (SPIA) Characteristics

Master mode

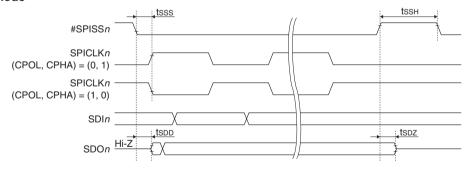
Unless otherwise specified: Vss = 0 V, Ta = -40 to 85°C

Item	Symbol	Condition	V DD	V _{D1} output	Min.	Тур.	Max.	単位
SPICLK0 cycle time	tscyc		1.8 to 5.5 V	mode0	250	-	-	ns
			1.8 to 3.6 V	mode1	1,000	_	-	ns
SPICLK0 High pulse width	tsckh		1.8 to 5.5 V	mode0	100	_	-	ns
			1.8 to 3.6 V	mode1	400	-	-	ns
SPICLK0 Low pulse width	tsckl		1.8 to 5.5 V	mode0	100	-	-	ns
			1.8 to 3.6 V	mode1	400	_	-	ns
SDI0 setup time	tsps		1.8 to 5.5 V	mode0	90	_	-	ns
			1.8 to 3.6 V	mode1	275	-	-	ns
SDI0 hold time	tsph		1.8 to 5.5 V	mode0	10	-	-	ns
			1.8 to 3.6 V	mode1	40	-	-	ns
SDO0 output delay time	tspo	CL = 15 pF *1	1.8 to 5.5 V	mode0	-	-	40	ns
			1.8 to 3.6 V	mode1	_	_	135	ns

^{*1} CL = Pin load


Slave mode

Unless otherwise specified: Vss = 0 V, Ta = -40 to 85°C


Item	Symbol	Condition	V DD	V _{D1} output	Min.	Тур.	Max.	単位
SPICLK0 cycle time	tscyc		1.8 to 5.5 V	mode0	250	-	-	ns
			1.8 to 3.6 V	mode1	1,000	_	-	ns
SPICLK0 High pulse width	tsckh		1.8 to 5.5 V	mode0	100	_	-	ns
			1.8 to 3.6 V	mode1	400	-	-	ns
SPICLK0 Low pulse width	tsckl		1.8 to 5.5 V	mode0	100	-	-	ns
			1.8 to 3.6 V	mode1	400	-	-	ns
SDI0 setup time	tsps		1.8 to 5.5 V	mode0	20	-	-	ns
			1.8 to 3.6 V	mode1	60	-	-	ns
SDI0 hold time	tsdн		1.8 to 5.5 V	mode0	25	-	-	ns
			1.8 to 3.6 V	mode1	120	-	-	ns
SDO0 output delay time	tspo	C _L = 15 pF *1	1.8 to 5.5 V	mode0	-	-	100	ns
			1.8 to 3.6 V	mode1	-	_	360	ns
#SPISS0 setup time	tsss		1.8 to 5.5 V	mode0	20	-	-	ns
			1.8 to 3.6 V	mode1	60	-	-	ns
#SPISS0 High pulse width	tssн		1.8 to 5.5 V	mode0	100	_	-	ns
			1.8 to 3.6 V	mode1	400	_	-	ns
SDO0 output start time	tsdd	C _L = 15 pF *1	1.8 to 5.5 V	mode0	-	-	100	ns
			1.8 to 3.6 V	mode1	-	-	360	ns
SDO0 output stop time	tsdz	C _L = 15 pF *1	1.8 to 5.5 V	mode0	-	-	100	ns
			1.8 to 3.6 V	mode1	_	_	360	ns

^{*1} CL = Pin load

Master and slave modes

Slave mode

23.11 Quad Synchronous Serial Interface (QSPI) Characteristics

Master mode

Unless otherwise specified: $V_{DDQSPI} = 3.0$ to 3.6 V, $V_{SS} = 0$ V, $T_{a} = -40$ to $85^{\circ}C$

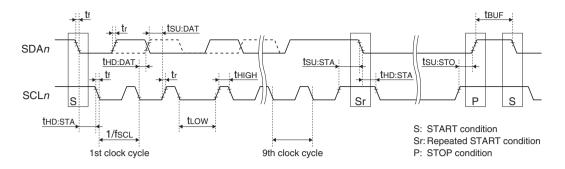
Item	Symbol	Condition	V _{D1} output	Min.	Тур.	Max.	単位
QSPICLKn cycle time	tscyc		mode0	125	-	_	ns
			mode1	500	-	-	ns
QSPICLKn High pulse width	tscкн		mode0	50	-	-	ns
			mode1	200	_	-	ns
QSPICLKn Low pulse width	tsckl		mode0	50	_	-	ns
			mode1	200	-	-	ns
QSDIOn[3:0] setup time	tsps		mode0	35	-	-	ns
			mode1	120	-	-	ns
QSDIOn[3:0] hold time	tsdh		mode0	10	_	_	ns
			mode1	40	-	-	ns
QSDIOn[3:0] output delay time	tspo	CL = 15 pF *1	mode0	-	-	35	ns
			mode1	-	-	120	ns

^{*1} CL = Pin load

Slave mode

Unless otherwise specified: VDDQSPI = 3.0 to 3.6 V, Vss = 0 V, Ta = -40 to 85°C

Item	Symbol	Condition	V _{D1} output	Min.	Тур.	Max.	単位
QSPICLKn cycle time	tscyc		mode0	150	-	_	ns
			mode1	500	-	-	ns
QSPICLKn High pulse width	tsckh		mode0	60	-	-	ns
			mode1	200	-	-	ns
QSPICLKn Low pulse width	tsckl		mode0	60	-	-	ns
			mode1	200	-	-	ns
QSDIOn[3:0] setup time	tsps		mode0	10	-	-	ns
			mode1	30	-	-	ns
QSDIOn[3:0] hold time	tsdh		mode0	10	-	-	ns
			mode1	50	-	-	ns
QSDIOn[3:0] output delay time	tspo	CL = 15 pF *1	mode0	-	-	60	ns
			mode1	-	-	220	ns
#QSPISSn setup time	tsss		mode0	10	-	-	ns
			mode1	30	-	-	ns
#QSPISSn High pulse width	tssH		mode0	60	-	-	ns
			mode1	200	-	-	ns
QSDIOn[3:0] output start time	tsdd	CL = 15 pF *1	mode0	-	-	60	ns
			mode1	-	-	220	ns
QSDIOn[3:0] output stop time	tspz	CL = 15 pF *1	mode0	-	_	60	ns
			mode1	-	_	220	ns


^{*1} CL = Pin load

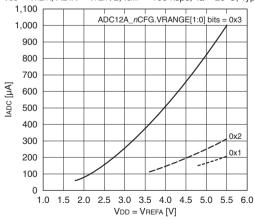
23.12 I²C (I2C) Characteristics

Unless otherwise specified: VDD = 1.8 to 5.5 V, Vss = 0 V, Ta = -40 to 85°C

14		Condition	Standard mode			Fast mode			11
Item	Symbol	Condition	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
SCLn frequency	fscL		0	_	100	0	_	400	kHz
Hold time (repeated)	thd:sta		4.0	_	-	0.6	_	-	μs
START condition *									
SCLn Low pulse width	tLow		4.7	_	-	1.3	_	_	μs
SCLn High pulse width	thigh		4.0	_	-	0.6	_	-	μs
Repeated START condition	tsu:sta		4.7	_	-	0.6	-	-	μs
setup time									
Data hold time	thd:dat		0	_	-	0	_	-	μs
Data setup time	tsu:dat		250	_	-	100	-	-	ns
SDAn, SCLn rise time	tr		-	_	1,000	-	_	300	ns
SDAn, SCLn fall time	tf		-	_	300	-	_	300	ns
STOP condition setup time	tsu:sto		4.0	_	-	0.6	_	-	μs
Bus free time	tbur		4.7	_	-	1.3	_	-	μs

^{*} After this period, the first clock pulse is generated.

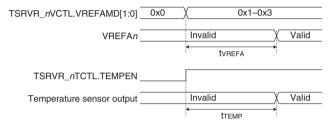
23.13 12-bit A/D Converter (ADC12A) Characteristics

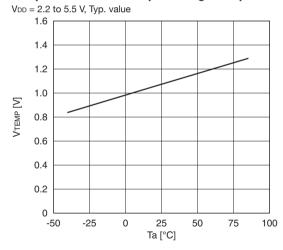

Unless otherwise specified: $V_{DD} = 2.5$ to 5.5 V, $V_{REFAn} = 1.8$ to 5.5 V, $V_{SS} = 0$ V, $T_{A} = -40$ to 85° C, $V_{A} = -40$ to $V_{A} = -40$ to

Item	Symbol	Condition	V DD	Min.	Тур.	Max.	Unit
VREFAn voltage range	VREFA			1.8	-	VDD	V
A/D conversion clock	fCLK_ADC12A			16	_	2,200	kHz
frequency							
Sampling rate *1	fsmp			-	_	100	ksps
Integral nonlinearity *2	INL	VDD = VREFAn *3		-	_	±3	LSB
Differential nonlinearity	DNL	VDD = VREFAn *3		-	_	±3	LSB
Zero-scale error	ZSE	VDD = VREFAn *3		_	_	±5	LSB
Full-scale error	FSE	VDD = VREFAn *3		_	_	±5	LSB
Analog input resistance	RADIN			-	_	4	kΩ
Analog input capacitance	CADIN			-	_	30	pF
A/D converter circuit	IADC	ADC12A_nCFG.VRANGE[1:0] bits = 0x3,	3.6 V	-	400	700	μΑ
current		VDD = VREFA, ADIN = VREFA/2, fSMP = 100 ksps,					
		Ta = 25°C					
		ADC12A_nCFG.VRANGE[1:0] bits = 0x2,	4.8 V	-	230	470	μΑ
		VDD = VREFA, ADIN = VREFA/2, fSMP = 100 ksps,					
		Ta = 25°C					
		ADC12A_nCFG.VRANGE[1:0] bits = 0x1,	5.5 V	-	210	390	μΑ
		VDD = VREFA, ADIN = VREFA/2, fSMP = 100 ksps,					
		Ta = 25°C					

- *1 The Max. value is the value when the A/D conversion clock frequency fcLK_ADC12A = 2,000 kHz.
- *2 Integral nonlinearity is measured at the end point line.
- *3 The error will be increased according to the potential difference between V_{DD} and VREFAn.

A/D converter current consumption-power supply voltage characteristic


VDD = VREFA, ADIN = VREFA/2, fSMP = 100 ksps, Ta = 25°C, Typ. value

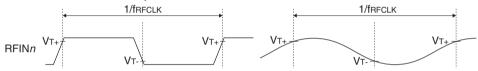

23.14 Temperature Sensor/Reference Voltage Generator (TSRVR) Characteristics

Unless otherwise specified: VDD = 1.8 to 5.5 V, Vss = 0 V, Ta = -40 to 105°C

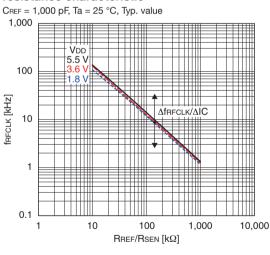
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
VREFA (2.5 V) output voltage	Vv025	V _{DD} = 2.7 to 5.5 V	2.4	2.5	2.6	V
VREFA (2.0 V) output voltage	Vv020	V _{DD} = 2.2 to 5.5 V	1.9	2.0	2.1	V
VREFA (VDD) output voltage	Vvodd	V _{DD} = 1.8 to 5.5 V	VDD - 0.1	VDD	VDD + 0.1	V
VREFA (2.5/2.0 V) operating current	Ivo ₁	V _{DD} = 5.5 V, Ta = 25°C	25	40	60	μΑ
VREFA (VDD) operating current	Ivo2	V _{DD} = 5.5 V, Ta = 25°C	-	0	0.1	μΑ
VREFA output voltage stabilization time	tvrefa	CVREFA = 0.1 µF	-	1.5	5	ms
Temperature sensor output voltage	VTEMP	VDD = 2.2 to 5.5 V, Ta = 25°C	1.04	1.07	1.10	V
Temperature sensor output voltage	ΔV TEMP	V _{DD} = 2.2 to 5.5 V	-	3.6 ± 3%	$3.6 \pm 7\%$	mV/°C
temperature coefficient						
Temperature sensor operating current	IVTEMP	V _{DD} = 5.5 V, Ta = 25°C	10	16	22	μΑ
Temperature sensor output stabilization time	t TEMP		-	-	200	μs

Temperature sensor output voltage-temperature characteristic

23.15 R/F Converter (RFC) Characteristics


R/F converter characteristics change depending on conditions (board pattern, components used, etc.). Use these characteristic values as a reference and perform evaluation using the actual printed circuit board.

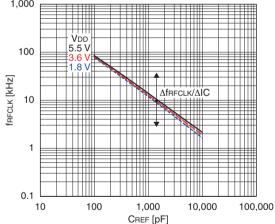
Unless otherwise specified: VDD = 1.8 to 5.5 V, Vss = 0 V, Ta = -40 to 85 °C


Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Reference/sensor oscillation frequency	freclk		1	_	1,000	kHz
Reference/sensor oscillation frequency	Δfrfclk/ΔIC	Ta = 25 °C *1	-40	-	40	%
IC deviation						
Reference resistor/resistive sensor	RREF, RSEN		10	-	-	kΩ
resistance						
Reference capacitance	CREF		100	-	-	pF
Time base counter clock frequency	ftcclk		_	-	4.2	MHz
High level Schmitt input threshold	V _{T+}		$0.5 \times V_{DD}$	-	0.8 × VDD	V
voltage						
Low level Schmitt input threshold	V _T -		0.2 × VDD	-	0.5 × VDD	V
voltage						
Schmitt input hysteresis voltage	ΔVτ		120	-	_	mV
R/F converter operating current	IRFC	Cref = 1,000 pF, Rref/Rsen = 100 k Ω ,	-	200	350	μΑ
		Ta = 25 °C, VDD = 3.6 V				

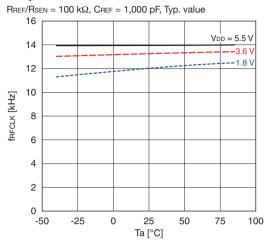
^{*1} In this characteristic, unevenness between production lots, and variations in measurement board, resistances and capacitances are taken into account.

Waveforms for external clock input mode

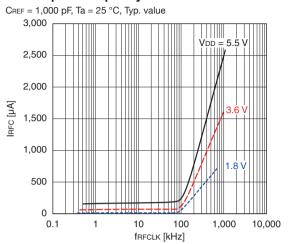
RFC reference/sensor oscillation frequencyresistance characteristic

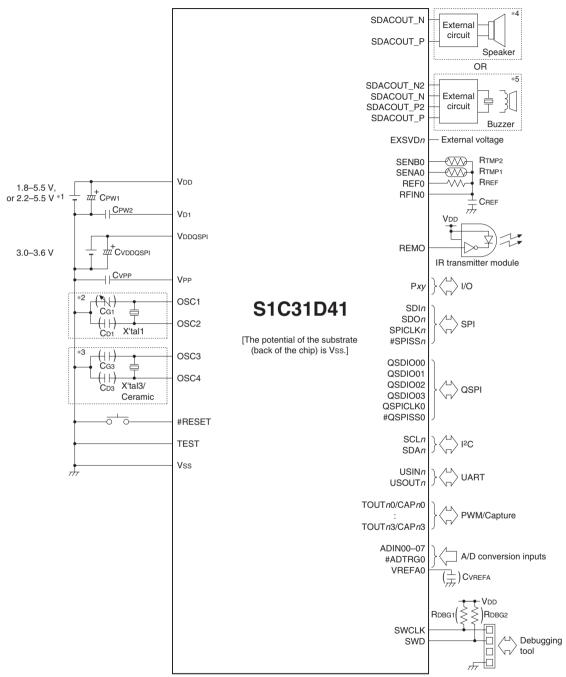


RFC reference/sensor oscillation frequencycapacitance characteristic


Capacitance characteristic

RREF/RSEN = 100 kΩ, Ta = 25 °C, Typ. value


1,000


RFC reference/sensor oscillation frequencytemperature characteristic

RFC reference/sensor oscillation current consumption-frequency characteristic

24 Basic External Connection Diagram

- *1: For Flash programming
- *2: When OSC1 crystal oscillator is selected
- *3: When OSC3 crystal/ceramic oscillator is selected
- *4: Two-pin output mode
- *5: Four-pin output mode
- (): Do not mount components if unnecessary.

Sample external components

Symbol	Name	Recommended components	
X'tal1	32 kHz crystal resonator	C-002RX (R ₁ = 50 kΩ (Max.), C _L = 7 pF) manufactured by Seiko Epson Corporation	
C _{G1}	OSC1 gate capacitor Trimmer capacitor or ceramic capacitor		
C _{D1}	OSC1 drain capacitor	Ceramic capacitor	
X'tal3	Crystal resonator	FA-238V (16 MHz) manufactured by Seiko Epson Corporation	
Ceramic	Ceramic resonator	CSBLA_J (1 MHz) manufactured by Murata Manufacturing Co., Ltd.	
Свз	OSC3 gate capacitor	Ceramic capacitor	
Срз	OSC3 drain capacitor	Ceramic capacitor	
CPW1	Bypass capacitor between Vss and VDD	Ceramic capacitor or electrolytic capacitor	
CPW2	Capacitor between Vss and VD1	Ceramic capacitor	
CVDDQSPI	Capacitor between Vss and VDDQSPI	Ceramic capacitor or electrolytic capacitor	
RREF	RFC reference resistor	Thick film chip resistor	
RTMP1, 2	Resistive sensors	Temperature sensor 103AP-2 manufactured by SEMITEC Corporation	
		Humidity sensor C15-M53R manufactured by SHINYEI Technology Co.,Ltd.	
		(* In AC oscillation mode for resistive sensor measurements)	
CREF	RFC reference capacitor	Ceramic capacitor	
CVREFA	Capacitor between Vss and VREFA	Ceramic capacitor	
RDBG1-2	Debug pin pull-up resistor	Thick film chip resistor	
CVPP	Capacitor between Vss and VPP	Ceramic capacitor	

^{*} For recommended component values, refer to "Recommended Operating Conditions" in the "Electrical Characteristics" chapter. However, the final values should be determined after evaluating operations using an actual mounting board.

25 Package

TQFP12-32PIN (P-TQFP032-0707-0.80)

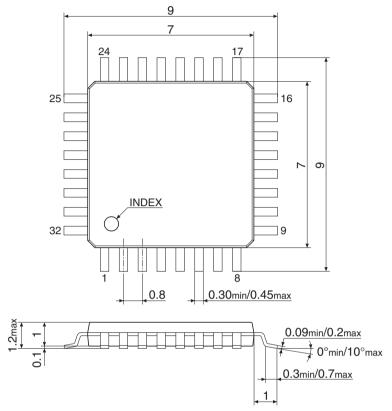


Figure 25.1 TQFP12-32PIN Package Dimensions

TQFP12-48PIN (P-TQFP048-0707-0.50)

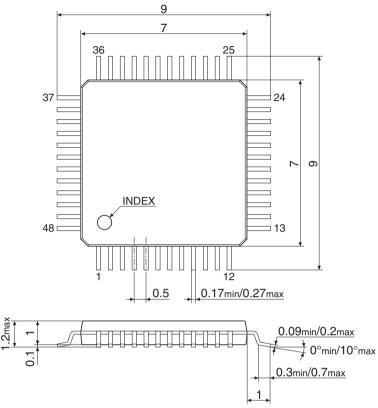


Figure 25.2 TQFP12-48PIN Package Dimensions

QFP13-64PIN (P-LQFP064-1010-0.50)

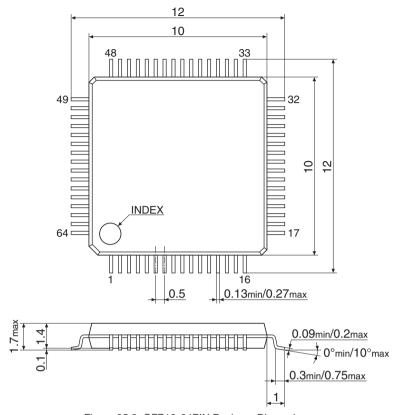


Figure 25.3 QFP13-64PIN Package Dimensions

Appendix A List of Peripheral Circuit Control Registers

0x002	0 0000				S	ystem Register (SYS)	
Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	SYSPROT	15–0	PROT[15:0]	0x0000	H0	R/W	-
0000	(System						
	Protect Register)						

0x002	0 0020					Pow	er Generator (PWGA)
Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	PWGACTL	15–8	-	0x00	_	R	_
0020	(PWGA Control	7–6	_	0x0	_	R	
	Register)	5	REGDIS	0	H0	R/WP	
		4	REGSEL	1	H0	R/WP	
		3–2	_	0x0	_	R	
		1–0	REGMODE[1:0]	0x0	H0	R/WP	

0x002	0 0040–0x0020	005a				C	lock Generator (CLG)
Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	CLGSCLK	15	WUPMD	0	H0	R/WP	_
0040	(CLG System Clock	14	_	0	_	R	
	Control Register)	13–12	WUPDIV[1:0]	0x0	H0	R/WP	
		11–10	-	0x0	_	R	
		9–8	WUPSRC[1:0]	0x0	H0	R/WP	
		7–6	-	0x0	_	R	
		5–4	CLKDIV[1:0]	0x2	H0	R/WP	
		3–2	_	0x0	_	R	
		1–0	CLKSRC[1:0]	0x0	H0	R/WP	
0x0020	CLGOSC	15–12	-	0x0	_	R	_
0042	(CLG Oscillation	11	EXOSCSLPC	1	H0	R/W	
	Control Register)	10	OSC3SLPC	1	H0	R/W	
		9	OSC1SLPC	1	H0	R/W	
	8	IOSCSLPC	1	H0	R/W		
		7–4	-	0x0	_	R	
		3	EXOSCEN	0	H0	R/W	
		2	OSC3EN	0	H0	R/W	
		1	OSC1EN	0	H0	R/W	
		0	IOSCEN	1	H0	R/W	
0x0020	CLGIOSC	15–8	-	0x00	_	R	_
0044	(CLG IOSC Control	7–2	_	0x00	_	R	
	Register)	1–0	IOSCFQ[1:0]	0x2	H0	R/WP	
0x0020	CLGOSC1	15	_	0	_	R	_
0046	(CLG OSC1 Control	14	OSDRB	1	H0	R/WP	
	Register)	13	OSDEN	0	H0	R/WP	
		12	OSC1BUP	1	H0	R/WP	
		11	OSC1SELCR	0	H0	R/WP	
		10–8	CGI1[2:0]	0x0	H0	R/WP	
		7–6	INV1B[1:0]	0x2	H0	R/WP	
		5–4	INV1N[1:0]	0x1	H0	R/WP	
		3–2	_	0x0	_	R	
		1–0	OSC1WT[1:0]	0x2	H0	R/WP	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	CLGOSC3	15–12	_	0x0	_	R	-
0048	(CLG OSC3 Control	11–10	OSC3FQ[1:0]	0x1	H0	R/WP	-
	Register)	9	OSC3MD	0	H0	R/WP	-
		8	_	0	_	R	
		7–6	_	0x0	-	R	
		5–4	OSC3INV[1:0]	0x3	H0	R/WP	
		3	OSC3STM	0	H0	R/WP	
		2-0	OSC3WT[2:0]	0x6	H0	R/WP	
0x0020	CLGINTF	15–9	_	0x00	-	R	_
004c	(CLG Interrupt Flag	8	OSC3TERIF	0	H0	R/W	Cleared by writing 1.
	Register)	7	_	0	-	R	-
		6	(reserved)	0	H0	R	
		5	OSC1STPIF	0	H0	R/W	Cleared by writing 1.
		4	OSC3TEDIF	0	H0	R/W	1
		3	_	0	_	R	_
		2	OSC3STAIF	0	H0	R/W	Cleared by writing 1.
		1	OSC1STAIF	0	H0	R/W	1
		0	IOSCSTAIF	0	H0	R/W	
0x0020	CLGINTE	15–9	_	0x00	-	R	_
004e	(CLG Interrupt Enable	8	OSC3TERIE	0	H0	R/W	
	Register)	7	_	0	_	R	
		6	(reserved)	0	H0	R/W	-
		5	OSC1STPIE	0	H0	R/W	
		4	OSC3TEDIE	0	H0	R/W	
		3	_	0	-	R	
		2	OSC3STAIE	0	H0	R/W	
		1	OSC1STAIE	0	H0	R/W	
		0	IOSCSTAIE	0	H0	R/W	
0x0020	CLGFOUT	15–8	_	0x00	_	R	-
0050	(CLG FOUT Control	7	_	0	-	R	
	Register)	6–4	FOUTDIV[2:0]	0x0	H0	R/W	
		3–2	FOUTSRC[1:0]	0x0	H0	R/W	
		1	_	0	-	R	
		0	FOUTEN	0	H0	R/W	
0x0020	CLGTRIM1	15–14	_	0x0	-	R	_
0052	(CLG Oscillation Frequency Trimming	13–8	IOSCLSAJ[5:0]	*	H0	R/WP	Determined by factory adjustment.
	Register 1)	7–6	_	0x0	-	R	-
		5–0	IOSCHSAJ[5:0]	*	H0	R/WP	Determined by factory adjustment.
0x0020	CLGTRIM2	15–8	_	0x00	-	R	-
0054	(CLG Oscillation	7–6	_	0x0	-	R	
	Frequency Trimming Register 2)	5–0	OSC1SAJ[5:0]	*	H0	R/WP	Determined by factory adjustment.
0x0020	CLGTRIM3	15–9	_	0x00	_	R	-
005a	(CLG Oscillation Frequency Trimming Register 3)	8–0	OSC3SAJ[8:0]	*	H0	R/WP	* Determined by factory adjustment.

0x002	0 0080					Cach	e Controller (CACHE)
Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	CACHECTL	15–8	-	0x00	_	R	_
0800	(CACHE Control	7–2	-	0x00	-	R	
	Register)	1	-	1	_	R	
		0	CACHEEN	0	H0	R/W	

0x0020 00a0-0x0020 00a4

Watchdog Timer (WDT2)

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	WDT2CLK	15–9	_	0x00	_	R	_
00a0	(WDT2 Clock Control	8	DBRUN	0	H0	R/WP	
	Register)	7–6	_	0x0	_	R	
		5–4	CLKDIV[1:0]	0x0	H0	R/WP	
		3–2	_	0x0	-	R	
		1–0	CLKSRC[1:0]	0x0	H0	R/WP	
0x0020	WDT2CTL	15–11	_	0x00	-	R	_
00a2	(WDT2 Control	10–9	MOD[1:0]	0x0	H0	R/WP	
	Register)	8	STATNMI	0	H0	R	
		7–5	_	0x0	_	R	
		4	WDTCNTRST	0	H0	WP	Always read as 0.
		3–0	WDTRUN[3:0]	0xa	HO	R/WP	_
0x0020	WDT2CMP	15–10	_	0x00	-	R	_
00a4	(WDT2 Counter Compare Match Register)	9–0	CMP[9:0]	0x3ff	H0	R/WP	

0x0020 00c0-0x0020 00d2

Real-time Clock (RTCA)

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	RTCACTLL	7	Dit name	0	neset	R	hemarks
00c0	(RTCACTEL	<u> </u>	RTCBSY		-	R	_
0000	Register (Low Byte))	6		0	H0		0, 1,
	Tregister (LOW Dyte))	5	RTCHLD	0	H0	R/W	Cleared by setting the RTCACTLL.RTCRST bit to 1.
		4	RTC24H	0	H0	R/W	_
		3	_	0	_	R	
		2	RTCADJ	0	H0	R/W	Cleared by setting the RTCACTLL.RTCRST bit to 1.
		1	RTCRST	0	H0	R/W	_
		0	RTCRUN	0	H0	R/W	
0x0020 00c1	RTCACTLH (RTCA Control	7	RTCTRMBSY	0	H0	R	_
0001	Register (High Byte))	6–0	RTCTRM[6:0]	0x00	H0	W	Read as 0x00.
0x0020	RTCAALM1	15	_	0	-	R	_
00c2	(RTCA Second Alarm	14-12	RTCSHA[2:0]	0x0	H0	R/W	
	Register)	11–8	RTCSLA[3:0]	0x0	H0	R/W	
		7–0	_	0x00	_	R	
0x0020	RTCAALM2	15	_	0	-	R	_
00c4	(RTCA Hour/Minute	14	RTCAPA	0	H0	R/W	
	Alarm Register)	13–12	RTCHHA[1:0]	0x0	H0	R/W	
		11–8	RTCHLA[3:0]	0x0	H0	R/W	
		7	_	0	_	R	
		6–4	RTCMIHA[2:0]	0x0	H0	R/W	
		3–0	RTCMILA[3:0]	0x0	H0	R/W	
0x0020	RTCASWCTL	15–12	BCD10[3:0]	0x0	H0	R	_
00c6	(RTCA Stopwatch	11–8	BCD100[3:0]	0x0	H0	R	1
	Control Register)	7–5	_	0x0	-	R	1
		4	SWRST	0	H0	W	Read as 0.
		3–1	_	0x0	_	R	-
		0	SWRUN	0	H0	R/W]

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	RTCASEC	15	_	0	_	R	-
00c8	(RTCA Second/1Hz	14–12	RTCSH[2:0]	0x0	H0	R/W	1
	Register)	11–8	RTCSL[3:0]	0x0	H0	R/W]
		7	RTC1HZ	0	H0	R	Cleared by setting the
		6	RTC2HZ	0	H0	R	RTCACTLL.RTCRST bit to 1.
		5	RTC4HZ	0	H0	R]
		4	RTC8HZ	0	H0	R	1
		3	RTC16HZ	0	H0	R]
		2	RTC32HZ	0	H0	R]
		1	RTC64HZ	0	H0	R	
		0	RTC128HZ	0	H0	R	
0x0020	RTCAHUR	15	_	0	-	R	
00ca	(RTCA Hour/Minute	14	RTCAP	0	H0	R/W	
	Register)		RTCHH[1:0]	0x1	H0	R/W	
			RTCHL[3:0]	0x2	H0	R/W	
		7	-	0	-	R	
		6–4	RTCMIH[2:0]	0x0	H0	R/W	_
		3–0	RTCMIL[3:0]	0x0	H0	R/W	
0x0020	RTCAMON	15–13		0x0	-	R	
00сс	(RTCA Month/Day	12	RTCMOH	0	H0	R/W	_
	Register)		RTCMOL[3:0]	0x1	H0	R/W	
		7–6	_	0x0	-	R	_
			RTCDH[1:0]	0x0	H0	R/W	
		3–0	RTCDL[3:0]	0x1	H0	R/W	
0x0020	RTCAYAR	15–11	-	0x00	-	R	
00ce	(RTCA Year/Week		RTCWK[2:0]	0x0	H0	R/W	
	Register)		RTCYH[3:0]	0x0	H0	R/W	-
0.0000	DECAINE	3–0	RTCYL[3:0]	0x0	H0	R/W	
0x0020	RTCAINTF	15	RTCTRMIF	0	H0	R/W	Cleared by writing 1.
00d0	(RTCA Interrupt Flag Register)	14	SW1IF	0	H0	R/W	-
	ricgister)	13	SW10IF	0	H0	R/W	-
		12	SW100IF	0	H0	R/W	
		11–9	ALARMIF	0x0		R/W	Cleared by writing 1
		7	T1DAYIF	0	H0 H0	R/W	Cleared by writing 1.
		6	T1HURIF	0	H0	R/W	-
		5	T1MINIF	0	H0	R/W	-
		4	T1SECIF	0	H0	R/W	-
		3	T1_2SECIF	0	H0	R/W	-
		2	T1_4SECIF	0	H0	R/W	-
		1	T1_8SECIF	0	H0	R/W	-
		0	T1_32SECIF	0	H0	R/W	-
0x0020	RTCAINTE	15	RTCTRMIE	0	H0	R/W	_
00d2	(RTCA Interrupt En-	14	SW1IE	0	H0	R/W	-
	able Register)	13	SW10IE	0	H0	R/W	-
		12	SW100IE	0	H0	R/W	-
		11–9	-	0x0	-	R	-
		8	ALARMIE	0	H0	R/W	-
		7	T1DAYIE	0	H0	R/W	1
		6	T1HURIE	0	H0	R/W	1
		5	T1MINIE	0	H0	R/W	1
		4	T1SECIE	0	H0	R/W	1
		3	T1_2SECIE	0	H0	R/W	1
		2	T1_4SECIE	0	H0	R/W	1
1		_					4
		1	T1_8SECIE	0	H0	R/W	

0x0020 0100-0x0020 0106

Supply Voltage Detector (SVD3)

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	SVD3CLK	15–9	_	0x00	-	R	_
0100	(SVD3 Clock Control	8	DBRUN	1	H0	R/WP	
	Register)	7	_	0	_	R	
		6–4	CLKDIV[2:0]	0x0	H0	R/WP	
		3–2	_	0x0	-	R	
		1–0	CLKSRC[1:0]	0x0	H0	R/WP	
0x0020	SVD3CTL	15	VDSEL	0	H1	R/WP	_
0102	(SVD3 Control Register)	14–13	SVDSC[1:0]	0x0	H0	R/WP	Writing takes effect when the SVD3CTL.SVDMD[1:0] bits are not 0x0.
		12–8	SVDC[4:0]	0x1e	H1	R/WP	_
		7–4	SVDRE[3:0]	0x0	H1	R/WP	
		3	EXSEL	0	H1	R/WP	
		2–1	SVDMD[1:0]	0x0	H0	R/WP	
		0	MODEN	0	H1	R/WP	
0x0020	SVD3INTF	15–9	_	0x00	_	R	_
0104	(SVD3 Status and In-	8	SVDDT	Х	_	R	
	terrupt Flag Register)	7–1	_	0x00	-	R	
		0	SVDIF	0	H1	R/W	Cleared by writing 1.
0x0020	SVD3INTE	15–8	_	0x00	ı	R	
0106	(SVD3 Interrupt En-	7–1	_	0x00	Ī	R	
	able Register)	0	SVDIE	0	H0	R/W	

0x0020 0160-0x0020 016c

16-bit Timer (T16) Ch.0

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	T16_0CLK	15–9	_	0x00	-	R	_
0160	(T16 Ch.0 Clock	8	DBRUN	0	H0	R/W	
	Control Register)	7–4	CLKDIV[3:0]	0x0	H0	R/W	
		3–2	_	0x0	-	R	
		1–0	CLKSRC[1:0]	0x0	H0	R/W	
0x0020	T16_0MOD	15–8	-	0x00	-	R	_
0162	(T16 Ch.0 Mode	7–1	-	0x00	-	R	
	Register)	0	TRMD	0	H0	R/W	
0x0020	T16_0CTL	15–9	-	0x00	-	R	_
0164	(T16 Ch.0 Control	8	PRUN	0	H0	R/W	
	Register)	7–2	_	0x00	-	R	
		1	PRESET	0	H0	R/W	
		0	MODEN	0	H0	R/W	
0x0020	T16_0TR	15–0	TR[15:0]	0xffff	H0	R/W	_
0166	(T16 Ch.0 Reload						
	Data Register)						
0x0020	T16_0TC	15–0	TC[15:0]	0xffff	H0	R	_
0168	(T16 Ch.0 Counter						
0x0020	Data Register) T16 OINTF	15–8		0x00	_	R	
0x0020 016a	(T16 Ch.0 Interrupt	7–1	_		_	R	<u> </u>
010a	Flag Register)			0x00	-		Oleaned horomitical
0.000	0 0 /	0	UFIF	0	H0	R/W	Cleared by writing 1.
0x0020	T16_0INTE	15–8	-	0x00	_	R	-
016c	(T16 Ch.0 Interrupt	7–1	-	0x00	-	R	
	Enable Register)	0	UFIE	0	H0	R/W	

0x0020 01b0

Flash Controller (FLASHC)

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	FLASHCWAIT	15–9	_	0x00	-	R	_
0.20	(FLASHC Flash Read	8	(reserved)	0	H0	R/WP	
	Cycle Register)	7–2	_	0x00	-	R	
		1-0	RDWAIT[1:0]	0x1	HO	R/WP	

0x002	0 0200–0x0020	02e2					I/O Ports (PPC)R	Γ)
Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks	32 pin	48 pin	64 pin
0x0020	P0DAT	15	P0OUT7	0	H0	R/W	_	<u> </u>	<u> </u>	1
0200	(P0 Port Data	14	P0OUT6	0	H0	R/W	_	-	1	1
	Register)	13	P0OUT5	0	H0	R/W		-	1	1
		12	P0OUT4	0	H0	R/W	1	-	1	1
		11	P0OUT3	0	H0	R/W	1	-	1	1
		10	P0OUT2	0	H0	R/W	1	-	1	1
		9	P0OUT1	0	H0	R/W	1	<u> </u>	-	1
		8	P0OUT0	0	H0	R/W		<u> </u>	-	1
		7	P0IN7	0	H0	R	_	1-	l -	1
		6	P0IN6	0	H0	R	-	_	1	1
		5	P0IN5	0	HO	R	-	-	1	1
		4	P0IN4	0	HO	R	-	_	1	1
		3	P0IN3	0	HO	R	-	_	1	1
		2	P0IN2	0	HO	R	-	-	1	1
		1	P0IN1	0	H0	R	-	-	-	1
		0	P0IN0	0	H0	R	-		<u> </u>	1
0x0020	POIOEN	15	POIEN7	0	H0	R/W	_	+-		1
0202	(P0 Port Enable	14	POIEN6	0	H0	R/W	-		1	1
0202	Register)	13	POIEN5	0	H0	R/W	-	-	1	1
	,	12	POIEN4	0	H0	R/W	-	-	1	1
		11	POIEN3	0	H0	R/W	-		1	1
		10	POIEN2	0	H0	R/W	-	<u> </u>	1	1
		9	POIEN1	0	H0	R/W		-	-	1
		8	POIENO	0	H0	R/W		=	Η_	1
		7	POOEN7	0	H0	R/W	_	╀	⊢	1
		6	P00EN6	0	H0	R/W	-	=	-	1
		5	POOEN5	0	H0	R/W	-	-	1	1
			POOEN4	0	H0		-	<u> </u>	1	1
		3	POOEN3	0		R/W R/W	-	<u> </u>	1	1
		2	POOENS POOEN2		H0	R/W	-	\vdash	1	1
			POOEN2 POOEN1	0	H0		_	F	+	1
		1		0	H0	R/W	-	-	├-	1
00000	DODOTI	0	PODENO	0	H0	R/W		-	 -	-
0x0020 0204	PORCTL (P0 Port Pull-up/down	15	POPDPU/	0	H0	R/W	-	-	-	1
0204	Control Register)	14	POPDPU6	0	H0	R/W	_	<u> </u>	1	1
	Control Hegister)	13	P0PDPU5	0	H0	R/W	_	_	1	1
		12	P0PDPU4	0	H0	R/W	_	_	1	1
		11	P0PDPU3	0	H0	R/W	-	<u> </u>	1	1
		10	P0PDPU2	0	H0	R/W	_	<u> -</u>	/	1
		9	P0PDPU1	0	H0	R/W	_	<u> </u>	<u> </u>	/
		8	P0PDPU0	0	H0	R/W		 -	<u> -</u>	1
		7	P0REN7	0	H0	R/W	-	_	<u> -</u>	/
		6	P0REN6	0	H0	R/W	=	_	/	/
		5	P0REN5	0	H0	R/W	-	_	1	/
		4	P0REN4	0	H0	R/W	_	_	1	1
		3	P0REN3	0	H0	R/W		_	1	1
		2	P0REN2	0	H0	R/W		_	1	1
		1	P0REN1	0	H0	R/W		<u>_</u>	<u> -</u>	1
		0	P0REN0	0	H0	R/W		-	-	1

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks	32 pin	48 pin	64 pin
0x0020	POINTF	15–8	_	0x00	-	R	-	-	_	_
0206	(P0 Port Interrupt	7	P0IF7	0	H0	R/W	Cleared by writ-	-	-	1
	Flag Register)	6	P0IF6	0	H0	R/W	ing 1.	-	1	1
		5	P0IF5	0	H0	R/W		-	1	1
		4	P0IF4	0	H0	R/W		-	1	1
		3	P0IF3	0	H0	R/W		-	1	1
		2	P0IF2	0	H0	R/W		-	1	1
		1	P0IF1	0	H0	R/W		-	_	1
		0	P0IF0	0	H0	R/W		-	-	1
0x0020	POINTCTL	15	P0EDGE7	0	H0	R/W	-	T-	_	1
0208	(P0 Port Interrupt	14	P0EDGE6	0	H0	R/W		_	1	1
	Control Register)	13	P0EDGE5	0	H0	R/W]	_	1	1
		12	P0EDGE4	0	H0	R/W]	-	1	1
		11	P0EDGE3	0	H0	R/W		-	1	1
		10	P0EDGE2	0	H0	R/W		-	1	1
		9	P0EDGE1	0	H0	R/W		_	_	1
		8	P0EDGE0	0	H0	R/W		_	-	1
		7	P0IE7	0	H0	R/W	_	1-	-	1
		6	P0IE6	0	H0	R/W	•	-	1	1
		5	P0IE5	0	H0	R/W		_	1	1
		4	P0IE4	0	H0	R/W		_	1	1
		3	P0IE3	0	HO	R/W			1	1
		2	P0IE2	0	HO	R/W		-	1	1
		1	P0IE1	0	HO	R/W		<u> </u>	<u> </u>	1
		0	POIEO	0	H0	R/W		-	-	/
0x0020	P0CHATEN	15–8	_	0x00	_	R	_	+-	-	
020a	(P0 Port Chattering	7	P0CHATEN7	0	H0	R/W	_	+-	_	/
	Filter Enable Register)		POCHATEN6	0	H0	R/W	-		1	1
		5	POCHATEN5	0	H0	R/W		-	1	1
		4	POCHATEN4	0	H0	R/W	-		1	1
		3	POCHATEN3	0	H0	R/W			1	1
		2	POCHATEN2	0	H0	R/W		-	1	1
		1	POCHATEN1	0	H0	R/W		H	_	1
		0	POCHATENO	0	H0	R/W		H		1
0x0020	POMODSEL	15–8	I CONALINO	0x00	-	R		+-	H	-
020c	(P0 Port Mode Select		P0SEL7	0	H0	R/W	<u>-</u>	╫	F	_
0200	Register)	6	POSEL6	0	H0	R/W	-	H	_	1
		5	POSEL5	0	H0	R/W		-	1	1
		4	POSEL4	0		R/W		_	1	1
				_	H0			-	-	-
		3	POSEL3	0	H0	R/W		<u> </u>	1	✓ ✓
		2	POSEL2	0	H0	R/W		_	1	1
		1	POSEL1	0	H0	R/W		-	-	H-
0.0000	DOENOOFI	0	POSELO	0	H0	R/W		┼-	<u> </u>	V
0x0020	POFNCSEL		P07MUX[1:0]	0x0	H0	R/W	-	-	_	1
020e	(P0 Port Function Select Register)		P06MUX[1:0]	0x0	H0	R/W		<u> </u>	/	/
	oeieui negistei)		P05MUX[1:0]	0x0	H0	R/W		_	1	/
		9–8	P04MUX[1:0]	0x0	H0	R/W		_	/	1
		7–6	P03MUX[1:0]	0x0	H0	R/W		<u>_</u>	1	/
		5–4	P02MUX[1:0]	0x0	H0	R/W		<u> </u>	1	/
		3–2	P01MUX[1:0]	0x0	H0	R/W		<u>_</u>	<u> -</u>	1
		1–0	P00MUX[1:0]	0x0	H0	R/W		-	<u> -</u>	1

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks	32 pin	48 pin	64 pin
0x0020	P1DAT	15	P1OUT7	0	H0	R/W	_	1	1	1
0210	(P1 Port Data	14	P1OUT6	0	H0	R/W		1	1	1
	Register)	13	P1OUT5	0	H0	R/W		1	1	1
		12	P1OUT4	0	H0	R/W		1	1	1
		11	P1OUT3	0	H0	R/W		1	1	1
		10	P1OUT2	0	H0	R/W		1	1	1
		9	P1OUT1	0	H0	R/W		_	_	1
		8	P1OUT0	0	H0	R/W		_	-	1
		7	P1IN7	0	H0	R	_	1	1	1
		6	P1IN6	0	H0	R		1	1	1
		5	P1IN5	0	H0	R		1	1	1
		4	P1IN4	0	H0	R		1	1	1
		3	P1IN3	0	H0	R	1	1	1	1
		2	P1IN2	0	H0	R	1	1	1	1
		1	P1IN1	0	H0	R	1	_	-	1
		0	P1IN0	0	H0	R	1	_	-	1
0x0020	P1IOEN	15	P1IEN7	0	H0	R/W	_	1	1	1
0212	(P1 Port Enable	14	P1IEN6	0	H0	R/W	1	1	1	1
	Register)	13	P1IEN5	0	HO	R/W	-	1	1	1
		12	P1IEN4	0	HO	R/W	_	1	1	1
		11	P1IEN3	0	HO	R/W	-	1	1	1
		10	P1IEN2	0	H0	R/W	-	1	1	1
		9	P1IEN1	0	HO	R/W	-	Ė	Ė	1
		8	P1IEN0	0	H0	R/W	-	<u> </u>	-	1
		7	P10EN7	0	H0	R/W		1	1	1
		6	P10EN6	0	H0	R/W	-	1	1	1
		5		0			-	1	1	1
			P10EN5		H0	R/W	-	1	1	1
		4	P10EN4	0	H0	R/W	-	1	1	1
		3	P10EN3	0	H0	R/W	-	1	-	1
		2	P10EN2	0	H0	R/W	-	_	1	-
		1	P10EN1	0	H0	R/W	-	_	-	1
0.0000	DADOTI	0	P10EN0	0	H0	R/W		-	-	1
0x0020	P1RCTL	15	P1PDPU7	0	H0	R/W	- 	1	1	1
0214	(P1 Port Pull-up/down Control Register)	14	P1PDPU6	0	H0	R/W	 	1	1	1
	Control negister)	13	P1PDPU5	0	H0	R/W	=	1	1	1
		12	P1PDPU4	0	H0	R/W	_	1	1	1
		11	P1PDPU3	0	H0	R/W	_	1	1	1
		10	P1PDPU2	0	H0	R/W		1	1	1
		9	P1PDPU1	0	H0	R/W		_	_	1
		8	P1PDPU0	0	H0	R/W		_	_	1
		7	P1REN7	0	H0	R/W	_	1	1	1
		6	P1REN6	0	H0	R/W		1	1	1
		5	P1REN5	0	H0	R/W		1	1	1
		4	P1REN4	0	H0	R/W		1	1	1
		3	P1REN3	0	H0	R/W		1	1	1
		2	P1REN2	0	H0	R/W		1	1	1
		1	P1REN1	0	H0	R/W]	_	-	1
		0	P1REN0	0	H0	R/W	1	_	-	1
0x0020	P1INTF	15–8	_	0x00	-	R	_	-	-	<u> </u>
0216	(P1 Port Interrupt	7	P1IF7	0	H0	R/W	Cleared by writ-	1	1	1
	Flag Register)	6	P1IF6	0	H0	R/W	ing 1.	1	1	1
		5	P1IF5	0	HO	R/W	1 ~	1	1	1
		4	P1IF4	0	H0	R/W	1	1	1	1
		3	P1IF3	0	H0	R/W	1	1	1	1
		2	P1IF2	0	H0	R/W	-	1	1	1
		1	P1IF1	0	H0	R/W	-	<u> </u>	-	1
							-	<u> </u>	⊢	1
		0	P1IF0	0	H0	R/W	L			L *

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks	32 pin	48 pin	64 pin
0x0020	P1INTCTL	15	P1EDGE7	0	H0	R/W	_	1	1	1
0218	(P1 Port Interrupt	14	P1EDGE6	0	H0	R/W		1	1	1
	Control Register)	13	P1EDGE5	0	H0	R/W		1	1	1
		12	P1EDGE4	0	H0	R/W		1	1	1
		11	P1EDGE3	0	H0	R/W		1	1	1
		10	P1EDGE2	0	H0	R/W		1	1	1
		9	P1EDGE1	0	H0	R/W		-	-	1
		8	P1EDGE0	0	H0	R/W		-	-	1
		7	P1IE7	0	H0	R/W	_	1	1	1
		6	P1IE6	0	H0	R/W		1	1	1
		5	P1IE5	0	H0	R/W		1	1	1
		4	P1IE4	0	H0	R/W		1	1	1
		3	P1IE3	0	H0	R/W		1	1	1
		2	P1IE2	0	H0	R/W		1	1	1
		1	P1IE1	0	H0	R/W		-	-	1
		0	P1IE0	0	H0	R/W		-	_	1
0x0020	P1CHATEN	15–8	_	0x00	-	R	_	-	-	-
021a	(P1 Port Chattering	7	P1CHATEN7	0	H0	R/W	_	1	1	1
	Filter Enable Register)	6	P1CHATEN6	0	H0	R/W		1	1	1
		5	P1CHATEN5	0	H0	R/W		1	1	1
		4	P1CHATEN4	0	H0	R/W		1	1	1
		3	P1CHATEN3	0	H0	R/W		1	1	1
		2	P1CHATEN2	0	H0	R/W		1	1	1
		1	P1CHATEN1	0	H0	R/W		-	-	1
		0	P1CHATEN0	0	H0	R/W		-	_	1
0x0020	P1MODSEL	15–8	_	0x00	_	R	_	1-	-	-
021c	(P1 Port Mode Select	7	P1SEL7	0	H0	R/W	_	1	1	1
	Register)	6	P1SEL6	0	H0	R/W		1	1	1
		5	P1SEL5	0	H0	R/W		1	1	1
		4	P1SEL4	0	H0	R/W		1	1	1
		3	P1SEL3	0	H0	R/W		1	1	1
		2	P1SEL2	0	H0	R/W		1	1	1
		1	P1SEL1	0	H0	R/W		-	-	1
		0	P1SEL0	0	H0	R/W		-	_	1
0x0020	P1FNCSEL	15–14	P17MUX[1:0]	0x0	H0	R/W	_	1	1	1
021e	(P1 Port Function	13–12	P16MUX[1:0]	0x0	H0	R/W		1	1	1
	Select Register)	11–10	P15MUX[1:0]	0x0	H0	R/W		1	1	1
		9–8	P14MUX[1:0]	0x0	H0	R/W		1	1	1
		7–6	P13MUX[1:0]	0x0	H0	R/W		1	1	1
			P12MUX[1:0]	0x0	H0	R/W		1	1	1
		3–2	P11MUX[1:0]	0x0	H0	R/W		<u> </u>	_	1
		1–0	P10MUX[1:0]	0x0	H0	R/W		<u> </u>	_	1
0x0020	P2DAT	15	P2OUT7	0	H0	R/W		<u>_</u>	_	1
0220	(P2 Port Data	14	P2OUT6	0	H0	R/W		_	_	1
	Register)	13	P2OUT5	0	H0	R/W		_	_	1
		12	P2OUT4	0	H0	R/W		<u> </u>	_	1
		11	P2OUT3	0	H0	R/W		<u> </u>	1	1
		10	P2OUT2	0	H0	R/W		_	1	1
		9	P2OUT1	0	H0	R/W		<u>_</u>	1	1
		8	P2OUT0	0	H0	R/W		1	1	1
		7	P2IN7	0	H0	R		<u>_</u>	-	1
		6	P2IN6	0	H0	R	_	L	-	1
		5	P2IN5	0	H0	R	_	_	_	1
		4	P2IN4	0	H0	R	_	_	_	1
		3	P2IN3	0	H0	R		L	1	1
		2	P2IN2	0	H0	R	_	_	1	1
		1	P2IN1	0	H0	R		_	1	1
		0	P2IN0	0	H0	R		1	1	1

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks	32 pin		64 pin
0x0020	P2IOEN	15	P2IEN7	0	H0	R/W	_	-	-	1
0222	(P2 Port Enable	14	P2IEN6	0	H0	R/W		-	-	1
	Register)	13	P2IEN5	0	H0	R/W		_	-	1
		12	P2IEN4	0	H0	R/W		_	-	1
		11	P2IEN3	0	H0	R/W		_	1	1
		10	P2IEN2	0	H0	R/W		_	1	1
		9	P2IEN1	0	H0	R/W		_	1	1
		8	P2IEN0	0	H0	R/W		1	1	1
		7	P2OEN7	0	H0	R/W	_	T-	-	1
		6	P2OEN6	0	H0	R/W		_	-	1
		5	P2OEN5	0	H0	R/W		_	-	1
		4	P2OEN4	0	H0	R/W		-	-	1
		3	P2OEN3	0	H0	R/W		-	1	1
		2	P2OEN2	0	H0	R/W		-	1	1
		1	P2OEN1	0	H0	R/W		-	1	1
		0	P2OEN0	0	H0	R/W		1	1	1
0x0020	P2RCTL	15	P2PDPU7	0	H0	R/W	_	T-	T-	1
0224	(P2 Port Pull-up/down	14	P2PDPU6	0	H0	R/W		_	<u> </u>	1
	Control Register)	13	P2PDPU5	0	H0	R/W		_	Ι-	1
		12	P2PDPU4	0	H0	R/W		_	İ-	1
		11	P2PDPU3	0	H0	R/W		_	1	1
		10	P2PDPU2	0	HO	R/W		_	1	1
		9	P2PDPU1	0	HO	R/W	-	-	1	1
		8	P2PDPU0	0	HO	R/W	-	1	1	1
		7	P2REN7	0	HO	R/W	_	1_	<u> </u>	1
		6	P2REN6	0	H0	R/W	-	-	 -	1
		5	P2REN5	0	H0	R/W	-		 	1
		4	P2REN4	0	H0	R/W	-		+	1
		3	P2REN3	0	H0	R/W	-		1	1
		2	P2REN2	0	H0	R/W	-		1	1
		1	P2REN1	0	H0	R/W	_		1	1
		0	P2REN0	0	H0	R/W	_	1	1	1
0x0020	P2INTF	15–8	_	0x00	_	R	_	†	i -	<u>-</u>
0226	(P2 Port Interrupt	7	P2IF7	0	H0	R/W	Cleared by writ-	+_	+-	1
0220	Flag Register)	6	P2IF6	0	H0	R/W	ing 1.		╁	1
		5	P2IF5	0	H0	R/W		H	+-	1
		4	P2IF4	0	H0	R/W	_		+-	1
		3	P2IF3	0	H0	R/W	_		/	1
		2	P2IF2	0	H0	R/W	-	H	1	1
			P2IF1	0	H0	R/W	-	-	1	1
		0	P2IF0	0	H0	R/W	-	-	1	1
0x0020	P2INTCTL	15	P2EDGE7	0	H0	R/W		+	ļ*	1
0228	(P2 Port Interrupt		P2EDGE7			R/W	-	-	⊢	1
0220	Control Register)	14		0	H0		_	F	⊢	1
	Control Hogictor)	13	P2EDGE5	0	H0	R/W		-	├-	V
		12	P2EDGE4	0	H0	R/W R/W	_	-	-	V
		11	P2EDGE3	0	H0	-	_	-	H .	1
		10	P2EDGE2	0	H0	R/W	-	<u> </u>	1	1
		9	P2EDGE1	0	H0	R/W	-	-	1	1
		8	P2EDGE0	0	H0	R/W		/	1	1
		7	P2IE7	0	H0	R/W	-	<u> </u>	 -	1
		6	P2IE6	0	H0	R/W	-	<u> </u>	 -	1
		5	P2IE5	0	H0	R/W	4	-	-	1
		4	P2IE4	0	H0	R/W	4	<u>_</u>	 -	1
		3	P2IE3	0	H0	R/W	_	_	/	1
		2	P2IE2	0	H0	R/W	_	_	1	1
		1	P2IE1	0	H0	R/W	_	_	1	1
		0	P2IE0	0	H0	R/W		1	1	1

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks	32 pin	48 pin	64 pin
0x0020	P2CHATEN	15–8	_	0x00	-	R	_	-	-	<u> </u>
022a	(P2 Port Chattering	7	P2CHATEN7	0	H0	R/W	-	-	-	1
	Filter Enable Register)	6	P2CHATEN6	0	H0	R/W		-	-	1
		5	P2CHATEN5	0	H0	R/W		_	-	1
		4	P2CHATEN4	0	H0	R/W		_	-	1
		3	P2CHATEN3	0	H0	R/W		_	1	1
		2	P2CHATEN2	0	H0	R/W		_	1	1
		1	P2CHATEN1	0	H0	R/W		_	1	1
		0	P2CHATEN0	0	H0	R/W		1	1	1
0x0020	P2MODSEL	15–8	_	0x00	_	R	_	-	_	_
022c	(P2 Port Mode Select	7	P2SEL7	0	H0	R/W	_	_	_	1
	Register)	6	P2SEL6	0	H0	R/W		_	_	1
		5	P2SEL5	0	H0	R/W		_	_	1
		4	P2SEL4	0	H0	R/W		_	-	1
		3	P2SEL3	0	H0	R/W		_	1	1
		2	P2SEL2	0	H0	R/W		_	1	1
		1	P2SEL1	0	H0	R/W		_	1	1
		0	P2SEL0	0	H0	R/W		1	1	1
0x0020	P2FNCSEL	15–14	P27MUX[1:0]	0x0	H0	R/W	_	_	_	1
022e	(P2 Port Function		P26MUX[1:0]	0x0	H0	R/W		_	_	1
	Select Register)	11–10	P25MUX[1:0]	0x0	H0	R/W		_	_	1
		9–8	P24MUX[1:0]	0x0	H0	R/W		_	_	1
		7–6	P23MUX[1:0]	0x0	H0	R/W		_	1	1
		5–4	P22MUX[1:0]	0x0	H0	R/W		_	1	1
		3–2	P21MUX[1:0]	0x0	H0	R/W		_	1	1
		1–0	P20MUX[1:0]	0x0	H0	R/W		1	1	1
0x0020	P3DAT	15	P3OUT7	0	H0	R/W	_	_	_	1
0230	(P3 Port Data	14	P3OUT6	0	H0	R/W		_	_	1
	Register)	13	P3OUT5	0	H0	R/W		_	1	1
		12	P3OUT4	0	H0	R/W		_	1	1
		11	P3OUT3	0	H0	R/W	_	_	1	1
		10	P3OUT2	0	H0	R/W		1	1	1
		9	P3OUT1	0	H0	R/W		1	1	1
		8	P3OUT0	0	H0	R/W		-	_	1
		7	P3IN7	0	H0	R	_	_	_	1
		6	P3IN6	0	H0	R		_	_	1
		5	P3IN5	0	H0	R		_	1	1
		4	P3IN4	0	H0	R		_	1	1
		3	P3IN3	0	H0	R		_	1	1
		2	P3IN2	0	H0	R		1	1	1
		1	P3IN1	0	H0	R	_	1	1	1
		0	P3IN0	0	H0	R		-	-	1
0x0020	P3IOEN	15	P3IEN7	0	H0	R/W	<u> </u> -	_	-	1
0232	(P3 Port Enable	14	P3IEN6	0	H0	R/W	=	_	-	1
	Register)	13	P3IEN5	0	H0	R/W	=	_	1	1
		12	P3IEN4	0	H0	R/W	-	_	1	1
		11	P3IEN3	0	H0	R/W	-	_	/	1
		10	P3IEN2	0	H0	R/W	-	V	/	1
		9	P3IEN1	0	H0	R/W	-	/	/	1
		8	P3IEN0	0	H0	R/W		-	-	1
		7	P3OEN7	0	H0	R/W	-	<u> </u>	-	1
		6	P30EN6	0	H0	R/W	-	<u> </u>	_	1
		5	P30EN5	0	H0	R/W	-	-	1	1
		4	P30EN4	0	H0	R/W	-	-	1	1
		3	P3OEN3	0	H0	R/W	-		1	1
		2	P30EN2	0	H0	R/W	-	1	1	1
		1	P30EN1	0	H0	R/W	-	/	1	1
		0	P3OEN0	0	H0	R/W		<u> </u>	-	/

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks	32 pin	48 pin	64 pin
0x0020	P3RCTL	15	P3PDPU7	0	H0	R/W	_	_	_	1
0234	(P3 Port Pull-up/down	14	P3PDPU6	0	H0	R/W		_	-	1
	Control Register)	13	P3PDPU5	0	H0	R/W		_	1	1
		12	P3PDPU4	0	H0	R/W		_	1	1
		11	P3PDPU3	0	H0	R/W		_	1	1
		10	P3PDPU2	0	H0	R/W		1	1	1
		9	P3PDPU1	0	H0	R/W		1	1	1
		8	P3PDPU0	0	H0	R/W		_	-	1
		7	P3REN7	0	H0	R/W	_	-	-	1
		6	P3REN6	0	H0	R/W		-	_	1
		5	P3REN5	0	H0	R/W		-	1	1
		4	P3REN4	0	H0	R/W		-	1	1
		3	P3REN3	0	H0	R/W		_	1	1
		2	P3REN2	0	H0	R/W		1	1	1
		1	P3REN1	0	H0	R/W		1	1	1
		0	P3REN0	0	H0	R/W		-	-	1
0x0020	P3INTF	15–8	_	0x00	_	R	_	1-	l –	İ-
0236	(P3 Port Interrupt	7	P3IF7	0	H0	R/W	Cleared by writ-	1-	T-	1
	Flag Register)	6	P3IF6	0	H0	R/W	ing 1.	_	-	1
		5	P3IF5	0	H0	R/W		_	1	1
		4	P3IF4	0	H0	R/W		_	1	1
		3	P3IF3	0	H0	R/W	-	_	1	1
		2	P3IF2	0	H0	R/W	-	1	1	1
		1	P3IF1	0	H0	R/W	-	1	1	1
		0	P3IF0	0	H0	R/W	-	_	† <u> </u>	1
0x0020	P3INTCTL	15	P3EDGE7	0	HO	R/W	_	1_	 	1
0238	(P3 Port Interrupt	14	P3EDGE6	0	HO	R/W	-	-	 -	1
	Control Register)	13	P3EDGE5	0	H0	R/W	-	-	1	1
		12	P3EDGE4	0	H0	R/W	-	-	1	1
		11	P3EDGE3	0	H0	R/W	-		1	1
		10	P3EDGE2	0	H0	R/W	-	1	1	1
		9	P3EDGE1	0	H0	R/W	-	1	1	1
		8	P3EDGE0	0	H0	R/W	-	Ė	<u> </u>	1
		7	P3IE7	0	H0	R/W		-	 	1
		6	P3IE6	0	H0	R/W		H	₭	1
		5	P3IE5	0	H0	R/W	-	H	/	1
		4	P3IE4	0	H0	R/W	_	F	1	1
		3	P3IE3	0	H0	R/W	_	F	1	1
				0		R/W	-	-	1	1
		2	P3IE2	_	H0		-	—	٠.	/
		0	P3IE1	0	H0	R/W	-	/	/	1
00000	DOCUMEN		P3IE0		H0	R/W		-	⊢	-
0x0020 023a	P3CHATEN (P3 Port Chattering	15–8	POOLIATENIZ	0x00	-	R	_	├-	⊢	-
023a	Filter Enable Register)	7	P3CHATEN7	0	H0	R/W	-	_	는	1
	I mor Enable Hegister)	6	P3CHATEN6	0	H0	R/W	-	<u> </u>	 -	1
		5	P3CHATEN5	0	H0	R/W	-	_	1	1
		4	P3CHATEN4	0	H0	R/W	-	-	1	1
		3	P3CHATEN3	0	H0	R/W	-	-	1	1
		2	P3CHATEN2	0	H0	R/W	-	1	1	1
		1	P3CHATEN1	0	H0	R/W	_	1	/	/
		0	P3CHATEN0	0	H0	R/W		-	<u> </u>	✓

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks	32 pin	48 pin	64 pin
0x0020	P3MODSEL	15–8	_	0x00	_	R	_	<u> </u>	-	-
023c	(P3 Port Mode Select	7	P3SEL7	0	H0	R/W	-	-	-	1
	Register)	6	P3SEL6	0	H0	R/W		_	-	1
		5	P3SEL5	0	H0	R/W		_	1	1
		4	P3SEL4	0	H0	R/W		_	1	1
		3	P3SEL3	0	H0	R/W			1	1
		2	P3SEL2	0	H0	R/W		1	1	1
		1	P3SEL1	0	H0	R/W		1	1	1
		0	P3SEL0	0	H0	R/W		_ -	_	1
0x0020	P3FNCSEL	15–14	P37MUX[1:0]	0x0	H0	R/W	_	_	_	1
023e	(P3 Port Function	13–12	P36MUX[1:0]	0x0	H0	R/W		_	_	1
	Select Register)	11–10	P35MUX[1:0]	0x0	H0	R/W		_	1	1
		9–8	P34MUX[1:0]	0x0	H0	R/W		_	1	1
		7–6	P33MUX[1:0]	0x0	H0	R/W		_	1	1
		5–4	P32MUX[1:0]	0x0	H0	R/W		1	1	1
		3–2	P31MUX[1:0]	0x0	H0	R/W		1	1	1
		1–0	P30MUX[1:0]	0x0	H0	R/W			_	1
0x0020	P4DAT	15–14	_	0x0	_	R	_		_	_
0240	(P4 Port Data	13	P4OUT5	0	H0	R/W	_	_	1	1
	Register)	12	P4OUT4	0	H0	R/W		1	1	1
		11	P4OUT3	0	H0	R/W		1	1	1
		10	P4OUT2	0	H0	R/W		1	1	1
		9	P4OUT1	0	H0	R/W		_	-	1
		8	P4OUT0	0	H0	R/W			-	1
		7–6	_	0x0	_	R	_		_	-
		5	P4IN5	0	H0	R]-	_	1	1
		4	P4IN4	0	H0	R		1	1	1
		3	P4IN3	0	H0	R		1	1	1
		2	P4IN2	0	H0	R		1	1	1
		1	P4IN1	0	H0	R		_	_	1
		0	P4IN0	0	H0	R			_	1
0x0020	P4IOEN	15–14	_	0x0	_	R	_		_	-
0242	(P4 Port Enable	13	P4IEN5	0	H0	R/W	_	_	1	1
	Register)	12	P4IEN4	0	H0	R/W		1	1	1
		11	P4IEN3	0	H0	R/W		1	1	1
		10	P4IEN2	0	H0	R/W		1	1	1
		9	P4IEN1	0	H0	R/W		_	_	1
		8	P4IEN0	0	H0	R/W		_	_	1
		7–6	_	0x0	-	R	_	-	_	-
		5	P4OEN5	0	H0	R/W	_	-	1	1
		4	P4OEN4	0	H0	R/W		1	1	1
		3	P4OEN3	0	H0	R/W		1	1	1
		2	P40EN2	0	H0	R/W]	1	1	1
		1	P40EN1	0	H0	R/W]	-	-	1
		0	P40EN0	0	H0	R/W]	_	_	1

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks	32 pin	48 pin	64 pin
0x0020	P4RCTL	15–14	_	0x0	-	R	_	-	_	_
0244	(P4 Port Pull-up/down	13	P4PDPU5	0	H0	R/W	_	_	1	1
	Control Register)	12	P4PDPU4	0	H0	R/W		1	1	1
		11	P4PDPU3	0	H0	R/W		1	1	1
		10	P4PDPU2	0	H0	R/W		1	1	1
		9	P4PDPU1	0	H0	R/W		_	_	1
		8	P4PDPU0	0	H0	R/W		-	-	1
		7–6	_	0x0	_	R	_	-	_	–
		5	P4REN5	0	H0	R/W	_	-	1	1
		4	P4REN4	0	H0	R/W		1	1	1
		3	P4REN3	0	H0	R/W		1	1	1
		2	P4REN2	0	H0	R/W		1	1	1
		1	P4REN1	0	H0	R/W		-	-	1
		0	P4REN0	0	H0	R/W		-	-	1
0x0020	P4INTF	15–8	_	0x00	_	R	_	_	_	-
0246	(P4 Port Interrupt	7–6	_	0x0	_	R		-	_	_
	Flag Register)	5	P4IF5	0	H0	R/W	Cleared by writ-	-	1	1
		4	P4IF4	0	H0	R/W	ing 1.	1	1	1
		3	P4IF3	0	H0	R/W		1	1	1
		2	P4IF2	0	H0	R/W		1	1	1
		1	P4IF1	0	H0	R/W		-	-	1
		0	P4IF0	0	H0	R/W		-	-	1
0x0020	P4INTCTL	15–14	-	0x0	-	R	-	-	-	-
0248	(P4 Port Interrupt	13	P4EDGE5	0	H0	R/W	_	-	1	1
	Control Register)	12	P4EDGE4	0	H0	R/W		1	1	1
		11	P4EDGE3	0	H0	R/W		1	1	1
		10	P4EDGE2	0	H0	R/W		1	1	1
		9	P4EDGE1	0	H0	R/W		_	-	1
		8	P4EDGE0	0	H0	R/W		-		1
		7–6	_	0x0	_	R	_	-	_	_
		5	P4IE5	0	H0	R/W	_	-	1	1
		4	P4IE4	0	H0	R/W		1	1	1
		3	P4IE3	0	H0	R/W		1	1	1
		2	P4IE2	0	H0	R/W		1	1	1
		1	P4IE1	0	H0	R/W		_	_	1
		0	P4IE0	0	H0	R/W		-	_	1
0x0020	P4CHATEN	15–8	_	0x00	_	R	_	_	_	_
024a	(P4 Port Chattering	7–6	_	0x0	_	R		_	_	_
	Filter Enable Register)	5	P4CHATEN5	0	H0	R/W	_	_	1	1
		4	P4CHATEN4	0	H0	R/W		1	1	1
		3	P4CHATEN3	0	H0	R/W		1	1	1
		2	P4CHATEN2	0	H0	R/W		1	1	1
		1	P4CHATEN1	0	H0	R/W		_	_	1
		0	P4CHATEN0	0	H0	R/W		-	_	1
0x0020	P4MODSEL	15–8	_	0x00	_	R]-	_	_	_
024c	(P4 Port Mode Select	7–6	_	0x0	_	R		_	_	_
	Register)	5	P4SEL5	0	H0	R/W		_	1	1
		4	P4SEL4	0	H0	R/W		1	1	1
		3	P4SEL3	0	H0	R/W		1	1	1
		2	P4SEL2	0	H0	R/W		1	1	1
		1	P4SEL1	0	H0	R/W			_	1
		0	P4SEL0	0	H0	R/W		_	-	1

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks	32 pin		
0x0020	P4FNCSEL	15–12	_	0x0	H0	R/W	_	-	_	_
024e	(P4 Port Function	11–10	P45MUX[1:0]	0x0	H0	R/W	_	-	1	1
	Select Register)	9–8	P44MUX[1:0]	0x0	H0	R/W		1	1	1
		7–6	P43MUX[1:0]	0x0	H0	R/W		1	1	1
		5–4	P42MUX[1:0]	0x0	H0	R/W		1	1	1
		3–2	P41MUX[1:0]	0x0	H0	R/W		-	1-	1
		1–0	P40MUX[1:0]	0x0	H0	R/W		-	†	1
0x0020	P5DAT	15	_	0	_	R	_	†-	†	†=
0250	(P5 Port Data	14	P5OUT6	0	H0	R/W	_	1_	1	1
	Register)	13	P5OUT5	0	HO	R/W	-	-	1	1
		12	P5OUT4	0	H0	R/W	-	1	1	1
		11	P5OUT3	0	H0	R/W	-	Ė	÷	1
		10	P5OUT2	0	H0	R/W	-	-	+-	1
		9	P50UT1	0	H0	R/W	-	1	/	1
		8	P5OUT0	0	H0	R/W	-	1	1	1
		7	_		_ HU			-	\ <u>'</u>	-
				0		R R	_	+	-	-
		6	P5IN6	0	H0		<u> </u> -	-	1	1
		5	P5IN5	0	H0	R	_	<u> </u>	ļ.,	-
		4	P5IN4	0	H0	R	_	/	1	1
		3	P5IN3	0	H0	R	-	<u> </u>	├-	1
		2	P5IN2	0	H0	R	-	Ļ	ļ-	1
		1	P5IN1	0	H0	R		/	1	1
		0	P5IN0	0	H0	R		1	/	1
0x0020	P5IOEN	15	_	0	-	R	-	-	-	-
0252	(P5 Port Enable	14	P5IEN6	0	H0	R/W	_	_	1	/
	Register)	13	P5IEN5	0	H0	R/W		<u> </u>	1	1
		12	P5IEN4	0	H0	R/W		1	1	1
		11	P5IEN3	0	H0	R/W		<u>_</u>	<u> </u>	1
		10	P5IEN2	0	H0	R/W		<u>_</u>	上	1
		9	P5IEN1	0	H0	R/W		1	1	1
		8	P5IEN0	0	H0	R/W		1	1	1
		7	_	0	_	R	_	-	_	-
		6	P50EN6	0	H0	R/W	_	-	1	1
		5	P50EN5	0	H0	R/W		-	1	1
		4	P50EN4	0	H0	R/W		1	1	1
		3	P50EN3	0	H0	R/W		_	-	1
		2	P50EN2	0	H0	R/W		-	T-	1
		1	P50EN1	0	H0	R/W	-	1	1	1
		0	P50EN0	0	H0	R/W		1	1	1
0x0020	P5RCTL	15	_	0	-	R	_	1-	1-	T-
0254	(P5 Port Pull-up/down	14	P5PDPU6	0	H0	R/W	_	†-	1	1
	Control Register)	13	P5PDPU5	0	H0	R/W	-	-	1	1
		12	P5PDPU4	0	H0	R/W	-	1	1	1
		11	P5PDPU3	0	HO	R/W	-		+	1
		10	P5PDPU2	0	H0	R/W	-	-	†_	1
		9	P5PDPU1	0	H0	R/W	-	1	1	1
		8	P5PDPU0	0	H0	R/W	-	1	1	1
		7	F3FDF00		-	R		+	+	+
			DEDENIC	0				+-	-	- /
		6	P5REN6	0	H0	R/W	-	<u> </u>	1	-
		5	P5REN5	0	H0	R/W	-	<u> </u>	1	1
		4	P5REN4	0	H0	R/W	-	1	/	1
		3	P5REN3	0	H0	R/W	_	-	 -	1
		2	P5REN2	0	H0	R/W		_	1-	1
		1	P5REN1	0	H0	R/W	_	1	1	1
		0	P5REN0	0	H0	R/W		1	1	1

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks	32 pin	48 pin	64 pin
0x0020	P5INTF	15–8	_	0x00	_	R	-	-	-	-
0256	(P5 Port Interrupt	7	_	0	-	R	_	-	-	-
	Flag Register)	6	P5IF6	0	H0	R/W	Cleared by writ-	-	1	1
		5	P5IF5	0	H0	R/W	ing 1.	-	1	1
		4	P5IF4	0	H0	R/W		1	1	1
		3	P5IF3	0	H0	R/W		-	_	1
		2	P5IF2	0	H0	R/W		-	-	1
		1	P5IF1	0	H0	R/W		1	1	1
		0	P5IF0	0	H0	R/W		1	1	1
0x0020	P5INTCTL	15	_	0	-	R	_	-	_	-
0258	(P5 Port Interrupt	14	P5EDGE6	0	H0	R/W	_	_	1	1
	Control Register)	13	P5EDGE5	0	H0	R/W		_	1	1
		12	P5EDGE4	0	H0	R/W		1	1	1
		11	P5EDGE3	0	H0	R/W		_	-	1
		10	P5EDGE2	0	H0	R/W		-	-	1
		9	P5EDGE1	0	H0	R/W		1	1	1
		8	P5EDGE0	0	H0	R/W		1	1	1
		7	_	0	_	R	_	-	_	_
		6	P5IE6	0	H0	R/W	_	_	1	1
		5	P5IE5	0	H0	R/W		_	1	1
		4	P5IE4	0	H0	R/W		1	1	1
		3	P5IE3	0	H0	R/W		_	_	1
		2	P5IE2	0	H0	R/W		_	_	1
		1	P5IE1	0	H0	R/W		1	1	1
		0	P5IE0	0	H0	R/W		1	1	1
0x0020	P5CHATEN	15–8	_	0x00	-	R	_	-	_	<u> </u>
025a	(P5 Port Chattering	7	_	0	-	R	_	<u> -</u>	_	<u> </u>
	Filter Enable Register)	6	P5CHATEN6	0	H0	R/W	_	<u>_</u>	1	1
		5	P5CHATEN5	0	H0	R/W		<u>_</u>	1	1
		4	P5CHATEN4	0	H0	R/W		1	1	1
		3	P5CHATEN3	0	H0	R/W		<u>_</u>	_	1
		2	P5CHATEN2	0	H0	R/W		<u>_</u>	_	1
		1	P5CHATEN1	0	H0	R/W		1	1	1
		0	P5CHATEN0	0	H0	R/W		1	1	1
0x0020	P5MODSEL	15–8	_	0x00	-	R	-	-	_	-
025c	(P5 Port Mode Select	7	_	0	-	R	-	-	_	<u> -</u>
	Register)	6	P5SEL6	0	H0	R/W	_	<u> </u>	1	1
		5	P5SEL5	0	H0	R/W		<u>_</u>	1	1
		4	P5SEL4	0	H0	R/W		1	1	1
		3	P5SEL3	0	H0	R/W		<u>_</u>	_	1
		2	P5SEL2	0	H0	R/W		<u>_</u>	_	1
		1	P5SEL1	1	H0	R/W		1	1	1
		0	P5SEL0	1	H0	R/W		1	1	1
0x0020	P5FNCSEL	15–14		0x0	-	R	-	-	<u> -</u>	ᄂ
025e	(P5 Port Function		P56MUX[1:0]	0x0	H0	R/W		<u> -</u>	1	1
	Select Register)		P55MUX[1:0]	0x0	H0	R/W		_	1	1
		9–8	P54MUX[1:0]	0x0	H0	R/W		1	1	1
		7–6	P53MUX[1:0]	0x0	H0	R/W		<u> </u>	<u> -</u>	1
		5–4	P52MUX[1:0]	0x0	H0	R/W		<u>_</u>	_	1
		3–2	P51MUX[1:0]	0x0	H0	R/W		1	1	1
		1–0	P50MUX[1:0]	0x0	H0	R/W		1	1	1

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks	32 pin	48 pin	64 pin
0x0020	P6DAT	15–14	_	0x0	-	R	_	-	_	_
0260	(P6 Port Data	13	P6OUT5	0	H0	R/W	_	1	1	1
	Register)	12	P6OUT4	0	H0	R/W		1	1	1
		11	P6OUT3	0	H0	R/W		1	1	1
		10	P6OUT2	0	H0	R/W		1	1	1
		9	P6OUT1	0	H0	R/W		1	1	1
		8	P6OUT0	0	H0	R/W		1	1	1
		7–6	-	0x0	-	R	_	-	_	-
		5	P6IN5	0	H0	R	_	1	1	1
		4	P6IN4	0	H0	R		1	1	1
		3	P6IN3	0	H0	R		1	1	1
		2	P6IN2	0	H0	R		1	1	1
		1	P6IN1	0	H0	R		1	1	1
		0	P6IN0	0	H0	R		1	1	1
0x0020	P6IOEN	15–14	_	0x0	_	R	_	-	_	-
0262	(P6 Port Enable	13	P6IEN5	0	H0	R/W	_	1	1	1
	Register)	12	P6IEN4	0	H0	R/W		1	1	1
		11	P6IEN3	0	H0	R/W		1	1	1
		10	P6IEN2	0	H0	R/W		1	1	1
		9	P6IEN1	0	H0	R/W		1	1	1
		8	P6IEN0	0	H0	R/W		1	1	1
		7–6	_	0x0	-	R	_	-	_	_
		5	P60EN5	0	H0	R/W	_	1	1	1
		4	P60EN4	0	H0	R/W		1	1	1
		3	P6OEN3	0	H0	R/W		1	1	1
		2	P60EN2	0	H0	R/W		1	1	1
		1	P6OEN1	0	H0	R/W		1	1	1
		0	P60EN0	0	H0	R/W		1	1	1
0x0020	P6RCTL	15–14	_	0x0	-	R	-	-	_	_
0264	(P6 Port Pull-up/down		P6PDPU5	0	H0	R/W	_	1	1	1
	Control Register)	12	P6PDPU4	0	H0	R/W		1	1	1
		11	P6PDPU3	0	H0	R/W		1	1	1
		10	P6PDPU2	0	H0	R/W		1	1	1
		9	P6PDPU1	0	H0	R/W		1	1	1
		8	P6PDPU0	0	H0	R/W		1	1	1
		7–6	_	0x0	-	R	_	-	_	_
		5	P6REN5	0	H0	R/W		✓	1	1
		4	P6REN4	0	H0	R/W	-	✓	1	1
		3	P6REN3	0	H0	R/W		1	1	1
		2	P6REN2	0	H0	R/W		1	1	/
		1	P6REN1	0	H0	R/W		1	/	1
		0	P6REN0	0	H0	R/W		1	1	/
0x0020	P6INTF	15–8	_	0x00	_	R		_	_	-
0266	(P6 Port Interrupt	7–6	_	0x0	-	R		-	_	_
	Flag Register)	5	P6IF5	0	H0	R/W	Cleared by writ-	1	1	1
		4	P6IF4	0	H0	R/W	ing 1.	1	1	1
		3	P6IF3	0	H0	R/W		1	1	1
		2	P6IF2	0	H0	R/W		1	1	1
		1	P6IF1	0	H0	R/W		1	/	1
		0	P6IF0	0	H0	R/W		1	1	1

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks	32 pin	48 pin	64 pin
0x0020	P6INTCTL	15–14	_	0x0	-	R	_	-	-	<u> </u>
0268	(P6 Port Interrupt	13	P6EDGE5	0	H0	R/W	_	1	1	1
	Control Register)	12	P6EDGE4	0	H0	R/W	1	1	1	1
		11	P6EDGE3	0	H0	R/W	1	1	1	1
		10	P6EDGE2	0	H0	R/W	1	1	1	1
		9	P6EDGE1	0	H0	R/W	1	1	1	1
		8	P6EDGE0	0	H0	R/W	1	1	1	1
		7–6	_	0x0	_	R	_	+	-	_
		5	P6IE5	0	H0	R/W	_	1	1	1
		4	P6IE4	0	H0	R/W	-	1	1	1
		3	P6IE3	0	H0	R/W	-	1	1	1
		2	P6IE2	0	H0	R/W	-	1	1	1
		1	P6IE1	0	H0	R/W	-	/	1	1
						-	-	1	1	1
0.0000	DOCULATEN	0	P6IE0	0	H0	R/W		-	-	i i
0x0020	P6CHATEN	15–8	_	0x00	-	R	-	_	-	_
026a	(P6 Port Chattering Filter Enable Register)	7–6		0x0	-	R		<u> </u>	-	_
	Filler Eriable negister)	5	P6CHATEN5	0	H0	R/W		/	1	1
		4	P6CHATEN4	0	H0	R/W		1	1	1
		3	P6CHATEN3	0	H0	R/W		1	1	1
		2	P6CHATEN2	0	H0	R/W		1	1	1
		1	P6CHATEN1	0	H0	R/W		1	1	1
		0	P6CHATEN0	0	H0	R/W		1	1	1
0x0020	P6MODSEL	15–8	_	0x00	_	R	_	-	-	-
026c	(P6 Port Mode Select	7–6	_	0x0	_	R		-	-	-
	Register)	5	P6SEL5	0	H0	R/W	_	1	1	1
		4	P6SEL4	0	H0	R/W	1	1	1	1
		3	P6SEL3	0	H0	R/W	1	1	1	1
		2	P6SEL2	0	H0	R/W	1	1	1	1
		1	P6SEL1	0	H0	R/W	1	1	1	1
		0	P6SEL0	0	HO	R/W	-	1	1	1
0x0020	P6FNCSEL	15–12	_	0x0	HO	R/W	_	+	-	_
026e	(P6 Port Function		P65MUX[1:0]	0x0	H0	R/W	_	1	1	/
0200	Select Register)	9–8	P64MUX[1:0]	0x0	H0	R/W	-	1	1	1
	,	7–6	P63MUX[1:0]	0x0	H0	R/W	-	1	1	1
		5–4	P62MUX[1:0]	0x0	H0	R/W	-	1	1	1
		3–2	P61MUX[1:0]	+	H0	R/W	-	1	1	1
				0x0			-	1	1	1
0.0000	DDDAT	1-0	P60MUX[1:0]	0x0	H0	R/W		-	-	
0x0020	PDDAT (Pd Port Data	15–12	- DDOLITO	0x0	-	R	_	-	-	-
02d0	1,	11	PDOUT3	0	H0	R/W		1	1	1
	Register)		PDOUT2	0	H0	R/W	-	/	/	1
		9	PDOUT1	0	H0	R/W	_	1	1	1
		8	PDOUT0	0	H0	R/W		1	1	1
		7–4	_	0x0	-	R	-	-	-	-
		3	PDIN3	0	H0	R		1	1	1
		2	PDIN2	0	H0	R		1	1	1
		1	PDIN1	0	H0	R		1	1	1
		0	PDIN0	0	H0	R		1	1	1
0x0020	PDIOEN	15–12	_	0x0	_	R	_	-	_	-
02d2	(Pd Port Enable	11	PDIEN3	0	H0	R/W	_	1	1	1
	Register)	10	PDIEN2	0	H0	R/W	1	1	1	1
		9	PDIEN1	0	H0	R/W	1	1	1	1
		8	PDIEN0	0	HO	R/W	1	1	1	1
		7–4	_	0x0	_	R	_	1-	1	
		3	PDOEN3	0	H0	R/W	_	1	/	1
		2	PDOEN2	0	H0	R/W	-	1	1	1
		1	PDOEN1	0	H0	R/W	-	1	1	1
					H0		-	1	1	1
		0	PDOEN0	0	по	R/W		-	'	-

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks	32 pin	48 pin	64 pin
0x0020	PDRCTL	15–12	_	0x0	_	R	-	Τ-	<u> </u>	T-
02d4	(Pd Port Pull-up/down	11	PDPDPU3	0	H0	R/W	-	1	1	1
	Control Register)	10	PDPDPU2	0	H0	R/W		1	1	1
		9	PDPDPU1	0	H0	R/W		1	1	1
		8	PDPDPU0	0	H0	R/W		1	1	1
		7–4	-	0x0	-	R	_	-	-	-
		3	PDREN3	0	H0	R/W	_	1	1	1
		2	PDREN2	0	H0	R/W		1	1	1
		1	PDREN1	0	H0	R/W		1	1	1
		0	PDREN0	0	H0	R/W		1	1	1
0x0020	PDMODSEL	15–8	-	0x00	-	R	_	Τ-	-	T-
02dc	(Pd Port Mode Select	7–4	-	0x0	-	R		_	-	-
	Register)	3	PDSEL3	0	H0	R/W	-	1	1	1
		2	PDSEL2	0	H0	R/W		1	1	1
		1	PDSEL1	1	H0	R/W		1	1	1
		0	PDSEL0	1	H0	R/W		1	1	1
0x0020	PDFNCSEL	15–8	-	0x00	H0	R/W	_	-	-	-
02de	(Pd Port Function	7–6	PD3MUX[1:0]	0x0	H0	R/W	-	1	1	1
	Select Register)	5–4	PD2MUX[1:0]	0x0	H0	R/W		1	1	1
		3–2	PD1MUX[1:0]	0x0	H0	R/W		1	1	1
		1–0	PD0MUX[1:0]	0x0	H0	R/W		1	1	1
0x0020	PPORTCLK	15–9	-	0x00	-	R	-	Τ-	_	T-
02e0	(P Port Clock Control	8	DBRUN	0	H0	R/WP	-	1	1	1
	Register)	7–4	CLKDIV[3:0]	0x0	H0	R/WP		1	1	1
		3–2	-	0x0	-	R	_	-	-	-
		1–0	CLKSRC[1:0]	0x0	H0	R/WP	_	1	1	1
0x0020	PPORTINTFGRP	15–8	-	0x00	-	R	_	-	-	-
02e2	(P Port Interrupt Flag	7	-	0	-	R		_	_	-
	Group Register)	6	P6INT	0	H0	R	-	1	1	1
		5	P5INT	0	H0	R		1	1	1
		4	P4INT	0	H0	R		1	1	1
		3	P3INT	0	H0	R		1	1	1
		2	P2INT	0	H0	R		1	1	1
		1	P1INT	0	H0	R]	1	1	1
	0	POINT	0	H0	R]	_	1	1	

		20 031e

Universal Port Multiplexer (UPMUX)

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks	32 pin	48 pin	64 pin
0x0020	UPMUXP0MUX0	15–13	P01PPFNC[2:0]	0x0	H0	R/W	-	<u> </u>	-	1
0300	(P00-01 Universal	12–11	P01PERICH[1:0]	0x0	H0	R/W				
	Port Multiplexer	10–8	P01PERISEL[2:0]	0x0	H0	R/W				
	Setting Register)	7–5	P00PPFNC[2:0]	0x0	H0	R/W		-	-	1
		4–3	P00PERICH[1:0]	0x0	H0	R/W				
		2-0	P00PERISEL[2:0]	0x0	H0	R/W				
0x0020	UPMUXP0MUX1	15–13	P03PPFNC[2:0]	0x0	H0	R/W	_	-	1	1
0302	Port Multiplexer	12-11	P03PERICH[1:0]	0x0	H0	R/W				
		10–8	P03PERISEL[2:0]	0x0	H0	R/W				
	Setting Register)	7–5	P02PPFNC[2:0]	0x0	H0	R/W		-	1	1
		4–3	P02PERICH[1:0]	0x0	H0	R/W				
		2–0	P02PERISEL[2:0]	0x0	H0	R/W				
0x0020	UPMUXP0MUX2	15–13	P05PPFNC[2:0]	0x0	H0	R/W	-	T-	1	1
0304	(P04-05 Universal	12–11	P05PERICH[1:0]	0x0	H0	R/W				
	Port Multiplexer	10–8	P05PERISEL[2:0]	0x0	H0	R/W				
	Setting Register)	7–5	P04PPFNC[2:0]	0x0	H0	R/W		-	1	1
		4–3	P04PERICH[1:0]	0x0	H0	R/W				
		2–0	P04PERISEL[2:0]	0x0	H0	R/W				

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks	32 pin	48 pin	64 pin
0x0020	UPMUXP0MUX3	15–13	P07PPFNC[2:0]	0x0	H0	R/W	_	T-	-	1
0306	(P06-07 Universal	12–11	P07PERICH[1:0]	0x0	H0	R/W				
	Port Multiplexer	10–8	P07PERISEL[2:0]	0x0	H0	R/W				
	Setting Register)	7–5	P06PPFNC[2:0]	0x0	H0	R/W		-	1	1
		4–3	P06PERICH[1:0]	0x0	H0	R/W				
		2–0	P06PERISEL[2:0]	0x0	H0	R/W				
0x0020	UPMUXP1MUX0	15–13	P11PPFNC[2:0]	0x0	H0	R/W	_	-	1	1
0308	(P10–11 Universal	12–11	P11PERICH[1:0]	0x0	H0	R/W				
	Port Multiplexer	10–8	P11PERISEL[2:0]	0x0	H0	R/W				
	Setting Register)	7–5	P10PPFNC[2:0]	0x0	H0	R/W		-	-	1
		4–3	P10PERICH[1:0]	0x0	H0	R/W				
		2-0	P10PERISEL[2:0]	0x0	H0	R/W				
0x0020	UPMUXP1MUX1	15–13	P13PPFNC[2:0]	0x0	H0	R/W	_	1	1	1
030a	(P12-13 Universal	12–11	P13PERICH[1:0]	0x0	H0	R/W				
	Port Multiplexer	10–8	P13PERISEL[2:0]	0x0	H0	R/W				
	Setting Register)	7–5	P12PPFNC[2:0]	0x0	H0	R/W		1	1	1
		4–3	P12PERICH[1:0]	0x0	H0	R/W				
		2-0	P12PERISEL[2:0]	0x0	H0	R/W				
0x0020	UPMUXP1MUX2	15-13	P15PPFNC[2:0]	0x0	H0	R/W	_	1	1	1
030c	(P14-15 Universal	12-11	P15PERICH[1:0]	0x0	H0	R/W				
	Port Multiplexer	10–8	P15PERISEL[2:0]	0x0	H0	R/W				
	Setting Register)	7–5	P14PPFNC[2:0]	0x0	H0	R/W		1	1	1
		4–3	P14PERICH[1:0]	0x0	H0	R/W				
		2-0	P14PERISEL[2:0]	0x0	H0	R/W				
0x0020	UPMUXP1MUX3	15-13	P17PPFNC[2:0]	0x0	H0	R/W	-	1	1	1
030e	(P16-17 Universal	12-11	P17PERICH[1:0]	0x0	H0	R/W				
	Port Multiplexer	10–8	P17PERISEL[2:0]	0x0	H0	R/W				
	Setting Register)	7–5	P16PPFNC[2:0]	0x0	H0	R/W		1	1	1
		4–3	P16PERICH[1:0]	0x0	H0	R/W				
		2-0	P16PERISEL[2:0]	0x0	H0	R/W				
0x0020	UPMUXP2MUX0	15–13	P21PPFNC[2:0]	0x0	H0	R/W	-	T-	1	1
0310	(P20-21 Universal	12-11	P21PERICH[1:0]	0x0	H0	R/W				
	Port Multiplexer	10–8	P21PERISEL[2:0]	0x0	H0	R/W				
	Setting Register)	7–5	P20PPFNC[2:0]	0x0	H0	R/W		1	1	1
		4–3	P20PERICH[1:0]	0x0	H0	R/W				
		2-0	P20PERISEL[2:0]	0x0	H0	R/W				
0x0020	UPMUXP2MUX1	15–13	P23PPFNC[2:0]	0x0	H0	R/W	_	-	1	1
0312	(P22-23 Universal	12-11	P23PERICH[1:0]	0x0	H0	R/W				
	Port Multiplexer	10–8	P23PERISEL[2:0]	0x0	H0	R/W				
	Setting Register)	7–5	P22PPFNC[2:0]	0x0	H0	R/W		-	1	1
		4–3	P22PERICH[1:0]	0x0	H0	R/W				
		2-0	P22PERISEL[2:0]	0x0	H0	R/W				
0x0020	UPMUXP2MUX2	15–13	P25PPFNC[2:0]	0x0	H0	R/W	-	-	-	1
0314	(P24-25 Universal	12-11	P25PERICH[1:0]	0x0	H0	R/W				
	Port Multiplexer	10–8	P25PERISEL[2:0]	0x0	H0	R/W				
	Setting Register)	7–5	P24PPFNC[2:0]	0x0	H0	R/W		-	-	1
		4–3	P24PERICH[1:0]	0x0	H0	R/W				
		2-0	P24PERISEL[2:0]	0x0	H0	R/W				
0x0020	UPMUXP2MUX3	15–13	P27PPFNC[2:0]	0x0	H0	R/W	_	T -	-	1
0316	(P26-27 Universal	12-11	P27PERICH[1:0]	0x0	H0	R/W				
	Port Multiplexer		P27PERISEL[2:0]	0x0	H0	R/W				
	Setting Register)	7–5	P26PPFNC[2:0]	0x0	H0	R/W]	_	T -	1
		4–3	P26PERICH[1:0]	0x0	H0	R/W	1			
		2-0	P26PERISEL[2:0]	0x0	H0	R/W	1			

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks	32 pin	48 pin	64 pin
0x0020	UPMUXP3MUX0	15–13	P31PPFNC[2:0]	0x0	H0	R/W	-	1	1	1
0318	(P30-31 Universal	12-11	P31PERICH[1:0]	0x0	H0	R/W				
	Port Multiplexer	10–8	P31PERISEL[2:0]	0x0	H0	R/W				
	Setting Register)	7–5	P30PPFNC[2:0]	0x0	H0	R/W		_	-	1
		4–3	P30PERICH[1:0]	0x0	H0	R/W				
		2-0	P30PERISEL[2:0]	0x0	H0	R/W				
0x0020	UPMUXP3MUX1	15–13	P33PPFNC[2:0]	0x0	H0	R/W	_	-	1	1
031a	(P32-33 Universal	12-11	P33PERICH[1:0]	0x0	H0	R/W				
	Port Multiplexer	10–8	P33PERISEL[2:0]	0x0	H0	R/W				
	Setting Register)	7–5	P32PPFNC[2:0]	0x0	H0	R/W		1	1	1
		4–3	P32PERICH[1:0]	0x0	H0	R/W				
		2-0	P32PERISEL[2:0]	0x0	H0	R/W				
0x0020	UPMUXP3MUX2	15–13	P35PPFNC[2:0]	0x0	H0	R/W	-	T -	1	1
031c	(P34-35 Universal	12-11	P35PERICH[1:0]	0x0	H0	R/W				
	Port Multiplexer	10–8	P35PERISEL[2:0]	0x0	H0	R/W				
	Setting Register)	7–5	P34PPFNC[2:0]	0x0	H0	R/W		_	1	1
		4–3	P34PERICH[1:0]	0x0	H0	R/W				
		2-0	P34PERISEL[2:0]	0x0	H0	R/W				
0x0020	UPMUXP3MUX3	15–13	P37PPFNC[2:0]	0x0	H0	R/W	-		1	1
031e	(P36 Universal Port	12-11	P37PERICH[1:0]	0x0	H0	R/W				
		10–8	P37PERISEL[2:0]	0x0	H0	R/W	1			
		7–5	P36PPFNC[2:0]	0x0	H0	R/W	1	_	1	1
		4–3	P36PERICH[1:0]	0x0	H0	R/W	1			
		2-0	P36PERISEL[2:0]	0x0	H0	R/W	1			

0x0020 0380-0x0020 0394

UART (UART3) Ch.0

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	UART3_0CLK	15–9	_	0x00	-	R	_
0380	(UART3 Ch.0 Clock	8	DBRUN	0	H0	R/W	
	Control Register)	7–6	_	0x0	_	R	
		5–4	CLKDIV[1:0]	0x0	H0	R/W	
		3–2	_	0x0	-	R	
		1–0	CLKSRC[1:0]	0x0	H0	R/W	
0x0020	UART3_0MOD	15–13	_	0x00	-	R	_
0382	(UART3 Ch.0 Mode	12	PECAR	0	H0	R/W	
	Register)	11	CAREN	0	H0	R/W	
		10	BRDIV	0	H0	R/W	
		9	INVRX	0	H0	R/W	
		8	INVTX	0	H0	R/W	
		7	_	0	_	R	
		6	PUEN	0	H0	R/W	
		5	OUTMD	0	H0	R/W	
		4	IRMD	0	H0	R/W	
		3	CHLN	0	H0	R/W	
		2	PREN	0	H0	R/W	
		1	PRMD	0	H0	R/W	
		0	STPB	0	H0	R/W	
0x0020	UART3_0BR	15–12	_	0x0	_	R	_
0384	(UART3 Ch.0 Baud-	11–8	FMD[3:0]	0x0	H0	R/W	
	Rate Register)	7–0	BRT[7:0]	0x00	H0	R/W	
0x0020	UART3_0CTL	15–8	_	0x00	_	R	_
0386	(UART3 Ch.0 Control	7–2	_	0x00	_	R	
	Register)	1	SFTRST	0	H0	R/W	
		0	MODEN	0	H0	R/W	
0x0020 0388	UART3_0TXD (UART3 Ch.0 Trans-	15–8	_	0x00	-	R	_
0300	mit Data Register)	7–0	TXD[7:0]	0x00	H0	R/W	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	UART3_0RXD	15–8	_	0x00	-	R	_
038a	(UART3 Ch.0 Receive Data Register)	7–0	RXD[7:0]	0x00	H0	R	
0x0020	UART3_0INTF	15–10	_	0x00	_	R	_
038c	(UART3 Ch.0 Status	9	RBSY	0	H0/S0	R	
	and Interrupt Flag	8	TBSY	0	H0/S0	R	
	Register)	7	_	0	_	R	
		6	TENDIF	0	H0/S0	R/W	Cleared by writing 1.
		5	FEIF	0	H0/S0	R/W	Cleared by writing 1 or read-
		4	PEIF	0	H0/S0	R/W	ing the UART3_0RXD register.
		3	OEIF	0	H0/S0	R/W	Cleared by writing 1.
		2	RB2FIF	0	H0/S0	R	Cleared by reading the
		1	RB1FIF	0	H0/S0	R	UART3_0RXD register.
		0	TBEIF	1	H0/S0	R	Cleared by writing to the UART3_0TXD register.
0x0020	UART3_0INTE	15–8	_	0x00	_	R	_
038e	(UART3 Ch.0	7	-	0	_	R	
	Interrupt Enable	6	TENDIE	0	H0	R/W	
	Register)	5	FEIE	0	H0	R/W	
		4	PEIE	0	H0	R/W	
		3	OEIE	0	H0	R/W	
		2	RB2FIE	0	H0	R/W	
		1	RB1FIE	0	H0	R/W	
		0	TBEIE	0	H0	R/W	
0x0020 0390	UART3_0 TBEDMAEN	15–8	_	0x00	_	R	_
	(UART3 Ch.0 Transmit Buffer	7–4	_	0x0	_	R	
	Empty DMA Request Enable Register)	3–0	TBEDMAEN[3:0]	0x0	H0	R/W	
0x0020 0392	UART3_0 RB1FDMAEN	15–8	_	0x00	-	R	-
	(UART3 Ch.0 Receive Buffer One Byte Full	7–4	_	0x0	-	R	
	DMA Request Enable Register)	3–0	RB1FDMAEN[3:0]	0x0	H0	R/W	
0x0020	UART3_0CAWF	15–8	_	0x00	_	R	_
0394	(UART3 Ch.0 Carrier Waveform Register)	7–0	CRPER[7:0]	0x00	H0	R/W	

0x0020 03a0-0x0020 03ac

16-bit Timer (T16) Ch.1

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	T16_1CLK	15–9	_	0x00	-	R	_
03a0	(T16 Ch.1 Clock	8	DBRUN	0	H0	R/W	
	Control Register)	7–4	CLKDIV[3:0]	0x0	H0	R/W	
		3–2	_	0x0	_	R	
		1–0	CLKSRC[1:0]	0x0	H0	R/W	
0x0020	T16_1MOD	15–8	-	0x00	-	R	_
03a2	(T16 Ch.1 Mode	7–1	_	0x00	-	R	
	Register)	0	TRMD	0	H0	R/W	
0x0020	T16_1CTL	15–9	_	0x00	-	R	-
03a4	(T16 Ch.1 Control	8	PRUN	0	H0	R/W	
	Register)	7–2	_	0x00	-	R	
		1	PRESET	0	H0	R/W	
		0	MODEN	0	H0	R/W	
0x0020	T16_1TR	15–0	TR[15:0]	0xffff	H0	R/W	_
03a6	(T16 Ch.1 Reload						
	Data Register)						

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	T16_1TC	15–0	TC[15:0]	0xffff	H0	R	_
03a8	(T16 Ch.1 Counter						
	Data Register)						
0x0020	T16_1INTF	15–8	_	0x00	-	R	_
03aa	(T16 Ch.1 Interrupt	7–1	_	0x00	_	R	
	Flag Register)	0	UFIF	0	H0	R/W	Cleared by writing 1.
0x0020	T16_1INTE	15–8	_	0x00	-	R	_
03ac	(T16 Ch.1 Interrupt	7–1	_	0x00	-	R	
	Enable Register)	0	UFIE	0	H0	R/W	

0x002	0 03b0-0x0020	03be		Synch	ronous	Serial	Interface (SPIA) Ch.0
Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	SPIA_0MOD	15–12	-	0x0	_	R	-
03b0	(SPIA Ch.0 Mode	11–8	CHLN[3:0]	0x7	H0	R/W	
	Register)	7–6	_	0x0	-	R	
		5	PUEN	0	H0	R/W	
		4	NOCLKDIV	0	H0	R/W	
		3	LSBFST	0	H0	R/W	
		2	СРНА	0	H0	R/W	
		1	CPOL	0	H0	R/W	
		0	MST	0	H0	R/W	
0x0020	SPIA_0CTL	15–8	_	0x00	_	R	
03b2	(SPIA Ch.0 Control	7–2	-	0x00	-	R	
	Register)	1	SFTRST	0	H0	R/W	
		0	MODEN	0	H0	R/W	
0x0020 03b4	SPIA_OTXD (SPIA Ch.0 Transmit Data Register)	15–0	TXD[15:0]	0x0000	H0	R/W	_
0x0020 03b6	SPIA_0RXD (SPIA Ch.0 Receive Data Register)	15–0	RXD[15:0]	0x0000	H0	R	-
0x0020	SPIA_0INTF	15–8	_	0x00	-	R	_
03b8	(SPIA Ch.0 Interrupt	7	BSY	0	H0	R	
	Flag Register)	6–4	-	0x0	-	R	
		3	OEIF	0	H0/S0	R/W	Cleared by writing 1.
		2	TENDIF	0	H0/S0	R/W	
		1	RBFIF	0	H0/S0	R	Cleared by reading the SPIA_0RXD register.
		0	TBEIF	1	H0/S0	R	Cleared by writing to the SPIA_0TXD register.
0x0020	SPIA_0INTE	15–8	_	0x00	-	R	_
03ba	(SPIA Ch.0 Interrupt	7–4	_	0x0	_	R	
	Enable Register)	3	OEIE	0	H0	R/W	
		2	TENDIE	0	H0	R/W	
		1	RBFIE	0	H0	R/W	
		0	TBEIE	0	H0	R/W	
0x0020 03bc	SPIA_0TBEDMAEN (SPIA Ch.0 Transmit	15–8	_	0x00	-	R	-
	Buffer Empty DMA	7–4	_	0x0	_	R	
	Request Enable Register)	3–0	TBEDMAEN[3:0]	0x0	H0	R/W	
0x0020 03be	SPIA_0RBFDMAEN (SPIA Ch.0 Receive	15–8	_	0x00	_	R	
	Buffer Full DMA	7–4	_	0x0	_	R	
	Request Enable Register)	3–0	RBFDMAEN[3:0]	0x0	H0	R/W	

0x0020 03c0-0x0020 03d6

I²C (I2C) Ch.0

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	I2C_0CLK	15–9	_	0x00	_	R	-
03c0	(I2C Ch.0 Clock	8	DBRUN	0	H0	R/W	
	Control Register)	7–6	-	0x0	_	R	
		5–4	CLKDIV[1:0]	0x0	H0	R/W	
		3–2	_	0x0	-	R	
		1–0	CLKSRC[1:0]	0x0	H0	R/W	
0x0020	I2C_0MOD	15–8	_	0x00	_	R	_
03c2	(I2C Ch.0 Mode	7–3	_	0x00	_	R	
	Register)	2	OADR10	0	H0	R/W	
		1	GCEN	0	H0	R/W	
		0	_	0	_	R	
0x0020	I2C_0BR	15–8	_	0x00	_	R	
03c4	(I2C Ch.0 Baud-Rate	7	_	0	_	R	_
	Register)	6–0	BRT[6:0]	0x7f	H0	R/W	
0x0020	I2C_0OADR	15–10	_	0x00	-	R	-
03c8	(I2C Ch.0 Own Address Register)	9–0	OADR[9:0]	0x000	H0	R/W	
0x0020	I2C_0CTL	15–8	_	0x00	_	R	_
03ca	(I2C Ch.0 Control	7–6	_	0x0	-	R	
	Register)	5	MST	0	H0	R/W	
		4	TXNACK	0	H0/S0	R/W	
		3	TXSTOP	0	H0/S0	R/W	
		2	TXSTART	0	H0/S0	R/W	
		1	SFTRST	0	H0	R/W	
		0	MODEN	0	H0	R/W	
0x0020 03cc	I2C_0TXD (I2C Ch.0 Transmit	15–8	_	0x00	_	R	_
0300	Data Register)	7–0	TXD[7:0]	0x00	H0	R/W	
0x0020 03ce	I2C_0RXD (I2C Ch.0 Receive	15–8	_	0x00	-	R	_
	Data Register)	7–0	RXD[7:0]	0x00	H0	R	
0x0020	I2C_0INTF	15–13	_	0x0	_	R	_
03d0	(I2C Ch.0 Status	12	SDALOW	0	H0	R	
	and Interrupt Flag	11	SCLLOW	0	H0	R	
	Register)	10	BSY	0	H0/S0	R	
		9	TR	0	H0	R	
		8	_	0	_	R	
		7	BYTEENDIF	0	H0/S0	R/W	Cleared by writing 1.
		6	GCIF	0	H0/S0	R/W	_
		5	NACKIF	0	H0/S0	R/W	
		4	STOPIF	0	H0/S0	R/W	-
		3	STARTIF	0	H0/S0	R/W	-
		2	ERRIF	0	H0/S0	R/W	
		1	RBFIF	0	H0/S0	R	Cleared by reading the I2C_0RXD register.
		0	TBEIF	0	H0/S0	R	Cleared by writing to the I2C_0TXD register.
0x0020	I2C_0INTE	15–8	_	0x00		R	
03d2	(I2C Ch.0 Interrupt	7	BYTEENDIE	0	H0	R/W	
	Enable Register)	6	GCIE	0	H0	R/W	
		5	NACKIE	0	H0	R/W	
		4	STOPIE	0	H0	R/W	
		3	STARTIE	0	H0	R/W	
		2	ERRIE	0	H0	R/W	
		1	RBFIE	0	H0	R/W	
		0	TBEIE	0	H0	R/W	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	I2C_0TBEDMAEN	15–8	_	0x00	-	R	_
03d4	(I2C Ch.0 Transmit Buffer Empty DMA	7–4	_	0x0	_	R	
	Request Enable Register)	3–0	TBEDMAEN[3:0]	0x0	H0	R/W	
0x0020 03d6	I2C_0RBFDMAEN (I2C Ch.0 Receive	15–8	_	0x00	-	R	_
0000	Buffer Full DMA	7–4	_	0x0	_	R	
	Request Enable Register)	3–0	RBFDMAEN[3:0]	0x0	H0	R/W	

0x0020 0400-0x0020 042c

16-bit PWM Timer (T16B) Ch.0

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	T16B_0CLK	15–9	_	0x00	_	R	_
0400	(T16B Ch.0 Clock	8	DBRUN	0	H0	R/W	
	Control Register)	7–4	CLKDIV[3:0]	0x0	H0	R/W	
		3	_	0	-	R	
		2–0	CLKSRC[2:0]	0x0	H0	R/W	
0x0020	T16B_0CTL	15–9	_	0x00	_	R	_
0402	(T16B Ch.0 Counter	8	MAXBSY	0	H0	R	
	Control Register)	7–6	_	0x0	_	R	
		5–4	CNTMD[1:0]	0x0	H0	R/W	
		3	ONEST	0	H0	R/W	
		2	RUN	0	H0	R/W	
		1	PRESET	0	H0	R/W	
		0	MODEN	0	H0	R/W	
0x0020 0404	T16B_0MC (T16B Ch.0 Max Counter Data Register)	15–0	MC[15:0]	0xffff	H0	R/W	_
0x0020 0406	T16B_0TC (T16B Ch.0 Timer Counter Data Register)	15–0	TC[15:0]	0x0000	Н0	R	_
0x0020	T16B_0CS	15–8	_	0x00	_	R	_
0408	(T16B Ch.0 Counter	7–6	_	0x0	_	R	
	Status Register)	5	CAPI3	0	H0	R	
		4	CAPI2	0	H0	R	
		3	CAPI1	0	H0	R	
		2	CAPI0	0	H0	R	
		1	UP_DOWN	1	H0	R	
		0	BSY	0	H0	R	
0x0020	T16B_0INTF	15–10	_	0x00	-	R	_
040a	(T16B Ch.0 Interrupt	9	CAPOW3IF	0	H0	R/W	Cleared by writing 1.
	Flag Register)	8	CMPCAP3IF	0	H0	R/W	
		7	CAPOW2IF	0	H0	R/W	
		6	CMPCAP2IF	0	H0	R/W	
		5	CAPOW1IF	0	H0	R/W	
		4	CMPCAP1IF	0	H0	R/W	
		3	CAPOW0IF	0	H0	R/W	
		2	CMPCAP0IF	0	H0	R/W	
		1	CNTMAXIF	0	H0	R/W	
		0	CNTZEROIF	0	H0	R/W	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	T16B_0INTE	15–10	_	0x00	-	R	_
040c	(T16B Ch.0 Interrupt	9	CAPOW3IE	0	H0	R/W	
	Enable Register)	8	CMPCAP3IE	0	H0	R/W	
		7	CAPOW2IE	0	H0	R/W	
		6	CMPCAP2IE	0	H0	R/W	
		5	CAPOW1IE	0	H0	R/W	
		4	CMPCAP1IE	0	H0	R/W	-
		3	CAPOW0IE	0	H0	R/W	
		2	CMPCAP0IE	0	H0	R/W	-
		1	CNTMAXIE	0	H0	R/W	-
		0	CNTZEROIE	0	H0	R/W	-
0x0020	T16B 0MZDMAEN	15–8	_	0x00	_	R	_
040e	(T16B Ch.0 Counter	10 0		OXOO			
0.00	Max/Zero DMA	7–4	_	0x0	_	R	
	Request Enable Register)	3–0	MZDMAEN[3:0]	0x0	H0	R/W	
0x0020	T16B_0CCCTL0	15	SCS	0	H0	R/W	-
0410	(T16B Ch.0 Compare/	14–12	CBUFMD[2:0]	0x0	H0	R/W	1
	Capture 0 Control		CAPIS[1:0]	0x0	H0	R/W	
	Register)	9–8	CAPTRG[1:0]	0x0	H0	R/W	1
		7	_	0	_	R	-
		6	TOUTMT	0	H0	R/W	
		5	TOUTO	0	H0	R/W	
		4–2	TOUTMD[2:0]	0x0	H0	R/W	-
		1	TOUTINV	0	H0	R/W	-
		0	CCMD	0	H0	R/W	-
0x0020	T16B_0CCR0	_	CC[15:0]	0x0000	H0	R/W	_
0412	(T16B Ch.0 Compare/ Capture 0 Data Register)	10 0	00[10.0]	ОХОООО	110	1000	
0x0020	T16B_0CC0DMAEN	15–8	_	0x00	-	R	_
0414	(T16B Ch.0 Compare/ Capture 0 DMA	7–4	_	0x0	_	R	-
	Request Enable Register)	3–0	CC0DMAEN[3:0]	0x0	H0	R/W	
0x0020	T16B 0CCCTL1	15	SCS	0	H0	R/W	_
0418	(T16B Ch.0 Compare/		CBUFMD[2:0]	0x0	H0	R/W	1
	Capture 1 Control		CAPIS[1:0]	0x0	H0	R/W	1
	Register)	9–8	CAPTRG[1:0]	0x0	HO	R/W	1
		7	-	0	_	R	1
		6	TOUTMT	0	H0	R/W	-
		5	TOUTO	0	H0	R/W	1
			TOUTMD[2:0]	0x0	H0	R/W	-
		1	TOUTINV	0	H0	R/W	-
		0	CCMD	0	HO	R/W	1
0x0020	T16B_0CCR1		CC[15:0]	0x0000	H0	R/W	_
041a	(T16B Ch.0 Compare/ Capture 1 Data	10 0	00[10.0]	0,0000	110	10,00	
0,0000	Register)	1F 0		0,00		П	
0x0020 041c	T16B_0CC1DMAEN (T16B Ch.0 Compare/	15–8	-	0x00	_	R	
0410	Capture 1 DMA	7–4	_	0x0	-	R	
	Request Enable Register)	3–0	CC1DMAEN[3:0]	0x0	H0	R/W	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	T16B_0CCCTL2	15	SCS	0	H0	R/W	_
0420	(T16B Ch.0 Compare/	14–12	CBUFMD[2:0]	0x0	H0	R/W	
	Capture 2 Control	11–10	CAPIS[1:0]	0x0	H0	R/W	
	Register)	9–8	CAPTRG[1:0]	0x0	H0	R/W	
		7	_	0	_	R	
		6	TOUTMT	0	H0	R/W	
		5	TOUTO	0	H0	R/W	
		4–2	TOUTMD[2:0]	0x0	H0	R/W	
		1	TOUTINV	0	H0	R/W	
		0	CCMD	0	H0	R/W	
0x0020 0422	T16B_0CCR2 (T16B Ch.0 Compare/ Capture 2 Data Register)	15–0	CC[15:0]	0x0000	H0	R/W	_
0x0020	T16B_0CC2DMAEN	15–8	_	0x00	_	R	_
0424	(T16B Ch.0 Compare/ Capture 2 DMA	7–4	_	0x0	_	R	
	Request Enable Register)	3–0	CC2DMAEN[3:0]	0x0	H0	R/W	
0x0020	T16B_0CCCTL3	15	SCS	0	H0	R/W	_
0428	(T16B Ch.0 Compare/	14–12	CBUFMD[2:0]	0x0	H0	R/W	
	Capture 3 Control	11–10	CAPIS[1:0]	0x0	H0	R/W	
	Register)	9–8	CAPTRG[1:0]	0x0	H0	R/W	
		7	_	0	-	R	
		6	TOUTMT	0	H0	R/W	
		5	TOUTO	0	H0	R/W	
		4–2	TOUTMD[2:0]	0x0	H0	R/W	
		1	TOUTINV	0	H0	R/W	
		0	CCMD	0	H0	R/W	
0x0020 042a	T16B_0CCR3 (T16B Ch.0 Compare/ Capture 3 Data	15–0	CC[15:0]	0x0000	H0	R/W	_
0.000	Register)	45.6		0.00			
0x0020 042c	T16B_0CC3DMAEN (T16B Ch.0 Compare/	15–8	_	0x00	_	R	_
U42C	Capture 3 DMA	7–4	_	0x0	_	R	
	Request Enable Register)	3–0	CC3DMAEN[3:0]	0x0	H0	R/W	

0x0020 0440-0x0020 046c

16-bit PWM Timer (T16B) Ch.1

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	T16B_1CLK	15–9	_	0x00	_	R	_
0440	(T16B Ch.1 Clock	8	DBRUN	0	H0	R/W	
	Control Register)	7–4	CLKDIV[3:0]	0x0	H0	R/W	
		3	-	0	_	R	
		2–0	CLKSRC[2:0]	0x0	H0	R/W	
0x0020	T16B_1CTL	15–9	-	0x00	_	R	_
0442	(T16B Ch.1 Counter	8	MAXBSY	0	H0	R	
	Control Register)	7–6	-	0x0	-	R	
		5–4	CNTMD[1:0]	0x0	H0	R/W	
		3	ONEST	0	H0	R/W	
		2	RUN	0	H0	R/W	
		1	PRESET	0	H0	R/W	
		0	MODEN	0	H0	R/W	
0x0020	T16B_1MC	15–0	MC[15:0]	0xffff	H0	R/W	_
0444	(T16B Ch.1 Max						
	Counter Data Register)						
0x0020	T16B_1TC	15–0	TC[15:0]	0x0000	H0	R	-
0446	(T16B Ch.1 Timer						
	Counter Data Register)						

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	T16B_1CS	15–8	_	0x00	-	R	<u> </u> _
0448	(T16B Ch.1 Counter	7–6	_	0x0	_	R	1
	Status Register)	5	CAPI3	0	H0	R	1
		4	CAPI2	0	H0	R	1
		3	CAPI1	0	H0	R	1
		2	CAPI0	0	H0	R	1
		1	UP_DOWN	1	H0	R	_
		0	BSY	0	H0	R	_
0x0020	T16B_1INTF	15–10	_	0x00	-	R	-
044a	(T16B Ch.1 Interrupt	9	CAPOW3IF	0	H0	R/W	Cleared by writing 1.
	Flag Register)	8	CMPCAP3IF	0	H0	R/W	1
		7	CAPOW2IF	0	H0	R/W	
		6	CMPCAP2IF	0	H0	R/W	
		5	CAPOW1IF	0	H0	R/W]
		4	CMPCAP1IF	0	H0	R/W]
		3	CAPOW0IF	0	H0	R/W	
		2	CMPCAP0IF	0	H0	R/W	_
		1	CNTMAXIF	0	H0	R/W	_
		0	CNTZEROIF	0	H0	R/W	1
0x0020	T16B_1INTE	15-10	_	0x00	-	R	-
044c	(T16B Ch.1 Interrupt	9	CAPOW3IE	0	H0	R/W	
	Enable Register)	8	CMPCAP3IE	0	H0	R/W	1
		7	CAPOW2IE	0	H0	R/W	1
		6	CMPCAP2IE	0	H0	R/W	1
		5	CAPOW1IE	0	H0	R/W	1
		4	CMPCAP1IE	0	H0	R/W	_
		3	CAPOW0IE	0	H0	R/W	_
		2	CMPCAP0IE	0	H0	R/W	_
		1	CNTMAXIE	0	H0	R/W	1
		0	CNTZEROIE	0	H0	R/W]
0x0020 044e	T16B_1MZDMAEN (T16B Ch.1 Counter	15–8	_	0x00	_	R	_
	Max/Zero DMA	7–4	_	0x0	-	R	
	Request Enable Register)	3–0	MZDMAEN[3:0]	0x0	H0	R/W	
0x0020	T16B_1CCCTL0	15	SCS	0	H0	R/W	_
0450	(T16B Ch.1 Compare/	14–12	CBUFMD[2:0]	0x0	H0	R/W	
	Capture 0 Control	11–10	CAPIS[1:0]	0x0	H0	R/W	
	Register)	9–8	CAPTRG[1:0]	0x0	H0	R/W	
		7	_	0	_	R	
		6	TOUTMT	0	H0	R/W	
		5	TOUTO	0	H0	R/W	
		4–2	TOUTMD[2:0]	0x0	H0	R/W	
		1	TOUTINV	0	H0	R/W	
		0	CCMD	0	H0	R/W	
0x0020 0452	T16B_1CCR0 (T16B Ch.1 Compare/ Capture 0 Data Register)	15–0	CC[15:0]	0x0000	H0	R/W	_
0x0020 0454	T16B_1CC0DMAEN (T16B Ch.1 Compare/	15–8	_	0x00	-	R	-
0404	Capture 0 DMA	7–4	_	0x0	_	R	
	Request Enable Register)	3–0	CC0DMAEN[3:0]	0x0	H0	R/W	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	T16B_1CCCTL1	15	SCS	0	H0	R/W	_
0458	(T16B Ch.1 Compare/	14–12	CBUFMD[2:0]	0x0	H0	R/W	
	Capture 1 Control	11–10	CAPIS[1:0]	0x0	H0	R/W	
	Register)	9–8	CAPTRG[1:0]	0x0	H0	R/W	
		7	_	0	_	R	
		6	TOUTMT	0	H0	R/W	
		5	TOUTO	0	H0	R/W	
		4–2	TOUTMD[2:0]	0x0	H0	R/W	
		1	TOUTINV	0	H0	R/W	
		0	CCMD	0	H0	R/W	
0x0020 045a	T16B_1CCR1 (T16B Ch.1 Compare/ Capture 1 Data Register)	15–0	CC[15:0]	0x0000	H0	R/W	_
0x0020	T16B_1CC1DMAEN	15–8	_	0x00	-	R	_
045c	(T16B Ch.1 Compare/ Capture 1 DMA	7–4	_	0x0	_	R	
	Request Enable Register)	3–0	CC1DMAEN[3:0]	0x0	H0	R/W	
0x0020	T16B_1CCCTL2	15	SCS	0	H0	R/W	_
0460	(T16B Ch.1 Compare/	14–12	CBUFMD[2:0]	0x0	H0	R/W	
	Capture 2 Control	11–10	CAPIS[1:0]	0x0	H0	R/W	
	Register)	9–8	CAPTRG[1:0]	0x0	H0	R/W	
		7	_	0	-	R	
		6	TOUTMT	0	H0	R/W	
		5	TOUTO	0	H0	R/W	
		4–2	TOUTMD[2:0]	0x0	H0	R/W	
		1	TOUTINV	0	H0	R/W	
		0	CCMD	0	H0	R/W	
0x0020 0462	T16B_1CCR2 (T16B Ch.1 Compare/ Capture 2 Data Register)	15–0	CC[15:0]	0x0000	H0	R/W	_
0x0020 0464	T16B_1CC2DMAEN (T16B Ch.1 Compare/	15–8	_	0x00	-	R	_
0404	Capture 2 DMA	7–4	_	0x0	-	R	
	Request Enable Register)	3–0	CC2DMAEN[3:0]	0x0	H0	R/W	
0x0020	T16B_1CCCTL3	15	SCS	0	H0	R/W	_
0468	(T16B Ch.1 Compare/		CBUFMD[2:0]	0x0	H0	R/W	
	Capture 3 Control	11–10	CAPIS[1:0]	0x0	H0	R/W	
	Register)	9–8	CAPTRG[1:0]	0x0	H0	R/W	
		7	_	0	_	R	
		6	TOUTMT	0	H0	R/W	
		5	TOUTO	0	H0	R/W	_
		4–2	TOUTMD[2:0]	0x0	H0	R/W	
		1	TOUTINV	0	H0	R/W	
0.0000	T10D 100D0	0	CCMD	0	H0	R/W	
0x0020 046a	T16B_1CCR3 (T16B Ch.1 Compare/ Capture 3 Data Register)	15–0	CC[15:0]	0x0000	H0	R/W	
0x0020	T16B_1CC3DMAEN (T16B Ch.1 Compare/	15–8	_	0x00	-	R	-
046c	Capture 3 DMA	7–4	_	0x0	-	R	
	Request Enable Register)	3–0	CC3DMAEN[3:0]	0x0	H0	R/W	

0x0020 0480-0x0020 048c

16-bit Timer (T16) Ch.3

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	T16_3CLK	15–9	_	0x00	-	R	_
0480	(T16 Ch.3 Clock	8	DBRUN	0	H0	R/W	
	Control Register)	7–4	CLKDIV[3:0]	0x0	H0	R/W	
		3–2	-	0x0	-	R	
		1–0	CLKSRC[1:0]	0x0	H0	R/W	
0x0020	T16_3MOD	15–8	-	0x00	-	R	_
0482	(T16 Ch.3 Mode	7–1	-	0x00	-	R	
	Register)	0	TRMD	0	H0	R/W	
0x0020	T16_3CTL	15–9	-	0x00	-	R	-
0484	(T16 Ch.3 Control	8	PRUN	0	H0	R/W	
	Register)	7–2	-	0x00	_	R	
		1	PRESET	0	H0	R/W	
		0	MODEN	0	H0	R/W	
0x0020 0486	T16_3TR (T16 Ch.3 Reload Data Register)	15–0	TR[15:0]	0xffff	H0	R/W	_
0x0020 0488	T16_3TC (T16 Ch.3 Counter Data Register)	15–0	TC[15:0]	0xffff	H0	R	-
0x0020	T16_3INTF	15–8	_	0x00	-	R	-
048a	(T16 Ch.3 Interrupt	7–1	-	0x00	-	R	
	Flag Register)	0	UFIF	0	H0	R/W	Cleared by writing 1.
0x0020	T16_3INTE	15–8	-	0x00	-	R	_
048c	(T16 Ch.3 Interrupt	7–1	-	0x00	_	R	
	Enable Register)	0	UFIE	0	H0	R/W]

0x0020 04a0-0x0020 04ac

16-bit Timer (T16) Ch.4

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	T16_4CLK	15–9	-	0x00	-	R	_
04a0	(T16 Ch.4 Clock	8	DBRUN	0	H0	R/W	
	Control Register)	7–4	CLKDIV[3:0]	0x0	H0	R/W	
		3–2	_	0x0	-	R	
		1–0	CLKSRC[1:0]	0x0	H0	R/W	
0x0020	T16_4MOD	15–8	-	0x00	-	R	_
04a2	(T16 Ch.4 Mode	7–1	-	0x00	-	R	
	Register)	0	TRMD	0	H0	R/W	
0x0020	T16_4CTL	15–9	-	0x00	-	R	_
04a4	(T16 Ch.4 Control	8	PRUN	0	H0	R/W	
	Register)	7–2	_	0x00	-	R	
		1	PRESET	0	H0	R/W	
		0	MODEN	0	H0	R/W	
0x0020	T16_4TR	15–0	TR[15:0]	0xffff	H0	R/W	_
04a6	(T16 Ch.4 Reload						
	Data Register)						
0x0020	T16_4TC	15–0	TC[15:0]	0xffff	H0	R	-
04a8	(T16 Ch.4 Counter						
0.0000	Data Register)	45.0		0.00			
0x0020	T16_4INTF (T16 Ch.4 Interrupt	15–8	_	0x00	-	R	<u> </u> -
04aa	1,	7–1	-	0x00	-	R	
	Flag Register)	0	UFIF	0	H0	R/W	Cleared by writing 1.
0x0020	T16_4INTE	15–8	-	0x00	_	R	<u> </u> -
04ac	(T16 Ch.4 Interrupt	7–1	-	0x00	_	R	
	Enable Register)	0	UFIE	0	H0	R/W	

0x0020 04c0-0x0020 04cc

16-bit Timer (T16) Ch.5

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	T16_5CLK	15–9	-	0x00	-	R	_
04c0	(T16 Ch.5 Clock	8	DBRUN	0	H0	R/W	
	Control Register)	7–4	CLKDIV[3:0]	0x0	H0	R/W	
		3–2	-	0x0	-	R	
		1–0	CLKSRC[1:0]	0x0	H0	R/W	
0x0020	T16_5MOD	15–8	-	0x00	-	R	_
04c2	(T16 Ch.5 Mode	7–1	-	0x00	-	R	
	Register)	0	TRMD	0	H0	R/W	
0x0020	T16_5CTL	15–9	-	0x00	-	R	_
04c4	(T16 Ch.5 Control	8	PRUN	0	H0	R/W	
	Register)	7–2	-	0x00	-	R	
		1	PRESET	0	H0	R/W	
		0	MODEN	0	H0	R/W	
0x0020	T16_5TR (T16 Ch.5 Reload	15–0	TR[15:0]	0xffff	H0	R/W	_
04c6	Data Register)						
0x0020	T16_5TC	15–0	TC[15:0]	0xffff	H0	R	_
04c8	(T16 Ch.5 Counter Data Register)						
0x0020	T16_5INTF	15–8	_	0x00	_	R	_
04ca	(T16 Ch.5 Interrupt	7–1	_	0x00	_	R	
	Flag Register)	0	UFIF	0	H0	R/W	Cleared by writing 1.
0x0020	T16_5INTE	15–8	_	0x00	_	R	_
04cc	(T16 Ch.5 Interrupt	7–1	_	0x00	_	R	
	Enable Register)	0	UFIE	0	H0	R/W	

0x0020 04d0-0x0020 04de

Synchronous Serial Interface (SPIA) Ch.2

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	SPIA_2MOD	15–12	_	0x0	-	R	_
04d0	(SPIA Ch.2 Mode	11–8	CHLN[3:0]	0x7	H0	R/W	
	Register)	7–6	_	0x0	_	R	
		5	PUEN	0	H0	R/W	
		4	NOCLKDIV	0	H0	R/W	
		3	LSBFST	0	H0	R/W	
		2	СРНА	0	H0	R/W	
		1	CPOL	0	H0	R/W]
		0	MST	0	H0	R/W	
0x0020	SPIA_2CTL	15–8	_	0x00	_	R	_
04d2	(SPIA Ch.2 Control	7–2	_	0x00	_	R	
	Register)	1	SFTRST	0	H0	R/W	
		0	MODEN	0	H0	R/W	
0x0020 04d4	SPIA_2TXD (SPIA Ch.2 Transmit Data Register)	15–0	TXD[15:0]	0x0000	H0	R/W	-
0x0020 04d6	SPIA_2RXD (SPIA Ch.2 Receive Data Register)	15–0	RXD[15:0]	0x0000	H0	R	-
0x0020	SPIA_2INTF	15–8	_	0x00	-	R	_
04d8	(SPIA Ch.2 Interrupt	7	BSY	0	H0	R	
	Flag Register)	6–4	_	0x0	-	R	
		3	OEIF	0	H0/S0	R/W	Cleared by writing 1.
		2	TENDIF	0	H0/S0	R/W]
		1	RBFIF	0	H0/S0	R	Cleared by reading the SPIA_2RXD register.
		0	TBEIF	1	H0/S0	R	Cleared by writing to the SPIA_2TXD register.

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	SPIA_2INTE	15–8	_	0x00	-	R	_
04da	(SPIA Ch.2 Interrupt	7–4	_	0x0	_	R	
	Enable Register)	3	OEIE	0	H0	R/W	
		2	TENDIE	0	H0	R/W	
		1	RBFIE	0	H0	R/W	
		0	TBEIE	0	H0	R/W	
0x0020	SPIA_2TBEDMAEN	15–8	_	0x00	_	R	_
04dc	(SPIA Ch.2 Transmit Buffer Empty DMA	7–4	_	0x0	_	R	
	Request Enable Register)	3–0	TBEDMAEN[3:0]	0x0	H0	R/W	
0x0020 04de	SPIA_2RBFDMAEN (SPIA Ch.2 Receive	15–8	_	0x00	-	R	_
0-400	Buffer Full DMA	7–4	_	0x0	-	R	
	Request Enable Register)	3–0	RBFDMAEN[3:0]	0x0	H0	R/W	

0x0020 0600-0x0020 0614

UART (UART3) Ch.1

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	UART3_1CLK	15–9	_	0x00	_	R	_
0600	(UART3 Ch.1 Clock	8	DBRUN	0	H0	R/W	
	Control Register)	7–6	-	0x0	-	R	
	5–4	CLKDIV[1:0]	0x0	H0	R/W		
		3–2	-	0x0	_	R	
		1–0	CLKSRC[1:0]	0x0	H0	R/W	
0x0020	UART3_1MOD	15-13	_	0x00	_	R	-
0602	(UART3 Ch.1 Mode	12	PECAR	0	H0	R/W	
	Register)	11	CAREN	0	H0	R/W	
		10	BRDIV	0	H0	R/W	
		9	INVRX	0	H0	R/W	
		8	INVTX	0	H0	R/W	
		7	_	0	-	R	
		6	PUEN	0	H0	R/W	
		5	OUTMD	0	H0	R/W	
		4	IRMD	0	H0	R/W	
		3	CHLN	0	H0	R/W	
		2	PREN	0	H0	R/W	
		1	PRMD	0	H0	R/W	
		0	STPB	0	H0	R/W	
0x0020	UART3_1BR	15–12	_	0x0	_	R	_
0604	(UART3 Ch.1 Baud-	11–8	FMD[3:0]	0x0	H0	R/W	
	Rate Register)	7–0	BRT[7:0]	0x00	H0	R/W	
0x0020	UART3_1CTL	15–8	_	0x00	-	R	_
0606	(UART3 Ch.1 Control	7–2	_	0x00	-	R	
	Register)	1	SFTRST	0	H0	R/W	
		0	MODEN	0	H0	R/W	
0x0020	UART3_1TXD (UART3 Ch.1 Trans-	15–8	_	0x00	-	R	_
0608	mit Data Register)	7–0	TXD[7:0]	0x00	H0	R/W	
0x0020	UART3_1RXD (UART3 Ch.1 Receive	15–8	_	0x00	-	R	_
060a	Data Register)	7–0	RXD[7:0]	0x00	H0	R	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	UART3_1INTF	15–10	-	0x00	-	R	_
060c	(UART3 Ch.1 Status	9	RBSY	0	H0/S0	R	
	and Interrupt Flag	8	TBSY	0	H0/S0	R	
	Register)	7	-	0	-	R	
		6	TENDIF	0	H0/S0	R/W	Cleared by writing 1.
		5	FEIF	0	H0/S0	R/W	Cleared by writing 1 or read-
		4	PEIF	0	H0/S0	R/W	ing the UART3_1RXD register.
		3	OEIF	0	H0/S0	R/W	Cleared by writing 1.
		2	RB2FIF	0	H0/S0	R	Cleared by reading the
		1	RB1FIF	0	H0/S0	R	UART3_1RXD register.
		0	TBEIF	1	H0/S0	R	Cleared by writing to the
0x0020	UART3 1INTE	15–8		0x00	_	R	UART3_1TXD register.
060e	(UART3 Ch.1	7	<u>-</u>	0.000	_	R	_
0000	Interrupt Enable	6	TENDIE	0	H0	R/W	
	Register)	5	FEIE	0	H0	R/W	
		4	PEIE	0	HO	R/W	
		3	OEIE	0	H0	R/W	
		2	RB2FIE	0	H0	R/W	
		1	RB1FIE	0	H0	R/W	
		0	TBEIE	0	H0	R/W	
0x0020	UART3 1	15–8	_	0x00	-	R	_
0610	TBEDMAEN	15 0		0,00		''	
	(UART3 Ch.1	7–4	_	0x0	_	R	
	Transmit Buffer						
	Empty DMA Request Enable Register)	3–0	TBEDMAEN[3:0]	0x0	H0	R/W	
0x0020	UART3_1	15–8	_	0x00	-	R	_
0612	RB1FDMAEN						
	(UART3 Ch.1 Receive Buffer One Byte Full	7–4	_	0x0	_	R	
	DMA Request Enable	3–0	RB1FDMAEN[3:0]	0x0	H0	R/W	
	Register)						
0x0020	UART3_1CAWF	15–8	-	0x00	_	R	-
0614	(UART3 Ch.1 Carrier Waveform Register)	7–0	CRPER[7:0]	0x00	H0	R/W	

0x0020 0620-0x0020 0634

UART (UART3) Ch.2

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	UART3_2CLK	15–9	_	0x00	-	R	_
0620	(UART3 Ch.2 Clock	8	DBRUN	0	H0	R/W	
	Control Register)	7–6	_	0x0	-	R	
		5–4	CLKDIV[1:0]	0x0	H0	R/W	
		3–2	_	0x0	-	R	
		1–0	CLKSRC[1:0]	0x0	H0	R/W	
0x0020	UART3_2MOD	15–13	_	0x00	-	R	_
0622	(UART3 Ch.2 Mode	12	PECAR	0	H0	R/W	
	Register)	11	CAREN	0	H0	R/W	
		10	BRDIV	0	H0	R/W	
		9	INVRX	0	H0	R/W	
		8	INVTX	0	H0	R/W	
		7	_	0	-	R	
		6	PUEN	0	H0	R/W	
		5	OUTMD	0	H0	R/W	
		4	IRMD	0	H0	R/W	
		3	CHLN	0	H0	R/W	
		2	PREN	0	H0	R/W	
		1	PRMD	0	H0	R/W	
		0	STPB	0	H0	R/W	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	UART3_2BR	15–12	_	0x0	-	R	-
0624	(UART3 Ch.2 Baud-	11–8	FMD[3:0]	0x0	H0	R/W	
	Rate Register)	7–0	BRT[7:0]	0x00	H0	R/W	
0x0020	UART3_2CTL	15–8	_	0x00	-	R	-
0626	(UART3 Ch.2 Control	7–2	_	0x00	-	R	
	Register)	1	SFTRST	0	H0	R/W	
		0	MODEN	0	H0	R/W	
0x0020	UART3_2TXD	15–8	_	0x00	-	R	_
0628	(UART3 Ch.2 Trans- mit Data Register)	7–0	TXD[7:0]	0x00	H0	R/W	-
0x0020	UART3_2RXD	15–8	_	0x00	-	R	_
062a	(UART3 Ch.2 Receive Data Register)	7–0	RXD[7:0]	0x00	H0	R	-
0x0020	UART3_2INTF	15–10	_	0x00	-	R	_
062c	(UART3 Ch.2 Status	9	RBSY	0	H0/S0	R	
	and Interrupt Flag	8	TBSY	0	H0/S0	R	
	Register)	7	_	0	-	R	
		6	TENDIF	0	H0/S0	R/W	Cleared by writing 1.
		5	FEIF	0	H0/S0	R/W	Cleared by writing 1 or read-
		4	PEIF	0	H0/S0	R/W	ing the UART3_2RXD register.
		3	OEIF	0	H0/S0	R/W	Cleared by writing 1.
		2	RB2FIF	0	H0/S0	R	Cleared by reading the
		1	RB1FIF	0	H0/S0	R	UART3_2RXD register.
		0	TBEIF	1	H0/S0	R	Cleared by writing to the UART3_2TXD register.
0x0020	UART3_2INTE	15–8	_	0x00	-	R	
062e	(UART3 Ch.2	7	_	0	-	R	1
	Interrupt Enable	6	TENDIE	0	H0	R/W	1
	Register)	5	FEIE	0	H0	R/W	
		4	PEIE	0	H0	R/W	
		3	OEIE	0	H0	R/W	
		2	RB2FIE	0	H0	R/W	
		1	RB1FIE	0	H0	R/W	
		0	TBEIE	0	H0	R/W	
0x0020 0630	UART3_2 TBEDMAEN	15–8	_	0x00	-	R	-
	(UART3 Ch.2 Transmit Buffer	7–4	_	0x0	-	R	
	Empty DMA Request Enable Register)	3–0	TBEDMAEN[3:0]	0x0	H0	R/W	
0x0020 0632	UART3_2 RB1FDMAEN	15–8	_	0x00	-	R	-
3302	(UART3 Ch.2 Receive Buffer One Byte Full	7–4	_	0x0	-	R	
	DMA Request Enable Register)	3–0	RB1FDMAEN[3:0]	0x0	H0	R/W	
0x0020	UART3 2CAWF	15–8	_	0x00	_	R	_
0634	(UART3 Ch.2 Carrier	7–0	CRPER[7:0]		LIO		-
	Waveform Register)	7-0	ONFEN[1.U]	0x00	H0	R/W	

0x0020 0660-0x0020 066c

16-bit Timer (T16) Ch.6

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	T16_6CLK	15–9	-	0x00	-	R	_
0660	(T16 Ch.6 Clock	8	DBRUN	0	H0	R/W	
	Control Register)	7–4	CLKDIV[3:0]	0x0	H0	R/W	
		3–2	-	0x0	-	R	
		1–0	CLKSRC[1:0]	0x0	H0	R/W	
0x0020	T16_6MOD	15–8	_	0x00	-	R	_
0662	(T16 Ch.6 Mode	7–1	_	0x00	-	R	
	Register)	0	TRMD	0	H0	R/W	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	T16_6CTL	15–9	-	0x00	-	R	_
0664	(T16 Ch.6 Control	8	PRUN	0	H0	R/W	
	Register)	7–2	-	0x00	-	R	
		1	PRESET	0	H0	R/W	
		0	MODEN	0	H0	R/W	
0x0020 0666	T16_6TR (T16 Ch.6 Reload Data Register)	15–0	TR[15:0]	0xffff	H0	R/W	_
0x0020 0668	T16_6TC (T16 Ch.6 Counter Data Register)	15–0	TC[15:0]	0xffff	H0	R	_
0x0020	T16_6INTF	15–8	-	0x00	-	R	_
066a	(T16 Ch.6 Interrupt	7–1	-	0x00	-	R	
	Flag Register)	0	UFIF	0	H0	R/W	Cleared by writing 1.
0x0020	T16_6INTE	15–8	_	0x00	-	R	_
066c	(T16 Ch.6 Interrupt	7–1	_	0x00	-	R	
	Enable Register)	0	UFIE	0	H0	R/W	

0x0020 0670-0x0020 067e Synchronous Serial Interface (SPIA) Ch.1 Address Register name Bit Bit name Initial Reset R/W Remarks 0x0020 SPIA_1MOD 15-12 0x0 R (SPIA Ch.1 Mode 0670 11-8 CHLN[3:0] 0x7 H₀ R/W Register) 7–6 0x0 R **PUEN** 0 H0 R/W 5 4 NOCLKDIV 0 H0 R/W 3 **LSBFST** 0 H0 R/W 2 0 H0 R/W **CPHA** 1 **CPOL** 0 H0 R/W 0 MST 0 H0 R/W 0x0020 SPIA 1CTL 15-8 0x00 R 0672 (SPIA Ch.1 Control 7–2 0x00 R Register) R/W H0 1 SFTRST 0 MODEN R/W 0 0 H₀ 0x0020 SPIA_1TXD 0x0000 H0 R/W 15-0 TXD[15:0] 0674 (SPIA Ch.1 Transmit Data Register) 0x0020 SPIA 1RXD 15-0 RXD[15:0] 0x0000 H₀ R 0676 (SPIA Ch.1 Receive Data Register) 0x0020 SPIA 1INTF 15–8 0x00 R (SPIA Ch.1 Interrupt 0678 7 **BSY** H0 R 0 Flag Register) 6-4 0x0 R H0/S0 R/W 3 OEIF 0 Cleared by writing 1. 2 TENDIF 0 H0/S0 R/W Cleared by reading the 1 **RBFIF** 0 H0/S0 R SPIA_1RXD register. 0 TBEIF 1 H0/S0 R Cleared by writing to the SPIA_1TXD register. SPIA_1INTE 0x0020 15-8 0x00 R 067a (SPIA Ch.1 Interrupt 7–4 R 0x0 Enable Register) 3 OEIE 0 H0 R/W 2 TENDIE 0 R/W H₀ R/W RBFIE 1 0 H₀ 0 TBEIE 0 H0 R/W 0x0020 SPIA_1TBEDMAEN 15-8 0x00 R (SPIA Ch.1 Transmit 067c 7-4 0x0 R Buffer Empty DMA Request Enable 3-0 TBEDMAEN[3:0] 0x0 H₀ R/W Register)

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	SPIA_1RBFDMAEN	15–8	_	0x00	_	R	_
	(SPIA Ch.1 Receive Buffer Full DMA	7–4	_	0x0	_	R	
	Request Enable Register)	3–0	RBFDMAEN[3:0]	0x0	H0	R/W	

0x0020 0680-0x0020 068c

16-bit Timer (T16) Ch.2

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	T16_2CLK	15–9	_	0x00	-	R	_
0680	(T16 Ch.2 Clock	8	DBRUN	0	H0	R/W	
	Control Register)	7–4	CLKDIV[3:0]	0x0	H0	R/W	
		3–2	_	0x0	-	R	
		1–0	CLKSRC[1:0]	0x0	H0	R/W	
0x0020	T16_2MOD	15–8	_	0x00	-	R	_
0682	(T16 Ch.2 Mode	7–1	_	0x00	-	R	
	Register)	0	TRMD	0	H0	R/W	
0x0020	T16_2CTL	15–9	-	0x00	_	R	_
0684	(T16 Ch.2 Control	8	PRUN	0	H0	R/W	
	Register)	7–2	_	0x00	_	R	
		1	PRESET	0	H0	R/W	
		0	MODEN	0	H0	R/W	
0x0020	T16_2TR	15–0	TR[15:0]	0xffff	H0	R/W	_
0686	(T16 Ch.2 Reload Data Register)						
0x0020	T16_2TC	15–0	TC[15:0]	0xffff	H0	R	_
0688	(T16 Ch.2 Counter						
	Data Register)						
0x0020	T16_2INTF	15–8	_	0x00	_	R	_
068a	(T16 Ch.2 Interrupt	7–1	_	0x00	-	R	
	Flag Register)	0	UFIF	0	H0	R/W	Cleared by writing 1.
0x0020	T16_2INTE	15–8	_	0x00	-	R]-
068c	(T16 Ch.2 Interrupt	7–1		0x00	_	R	
	Enable Register)	0	UFIE	0	H0	R/W	

0x0020 0690-0x0020 06a8

Quad Synchronous Serial Interface (QSPI) Ch.0

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	QSPI_0MOD	15–12	CHDL[3:0]	0x7	H0	R/W	_
0690	(QSPI Ch.0 Mode	11–8	CHLN[3:0]	0x7	H0	R/W	
	Register)	7–6	TMOD[1:0]	0x0	H0	R/W	
		5	PUEN	0	H0	R/W	
		4	NOCLKDIV	0	H0	R/W	
		3	LSBFST	0	H0	R/W	
		2	CPHA	0	H0	R/W	
		1	CPOL	0	H0	R/W	
		0	MST	0	H0	R/W	
0x0020	QSPI_0CTL	15–8	-	0x00	-	R	_
0692	(QSPI Ch.0 Control	7–4	-	0x0	-	R	
	Register)	3	DIR	0	H0	R/W	
		2	MSTSSO	1	H0	R/W	
		1	SFTRST	0	H0	R/W	
		0	MODEN	0	H0	R/W	
0x0020 0694	QSPI_0TXD (QSPI Ch.0 Transmit Data Register)	15–0	TXD[15:0]	0x0000	H0	R/W	-
0x0020 0696	QSPI_0RXD (QSPI Ch.0 Receive Data Register)	15–0	RXD[15:0]	0x0000	H0	R	-

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	QSPI_0INTF	15–8	_	0x00	_	R	_
0698	(QSPI Ch.0 Interrupt	7	BSY	0	H0	R	_
	Flag Register)	6	MMABSY	0	H0	R	-
		5–4	_	0x0	_	R	
		3	OEIF	0	H0/S0	R/W	Cleared by writing 1.
		2	TENDIF	0	H0/S0	R/W	
		1	RBFIF	0	H0/S0	R	Cleared by reading the QSPI_0RXD register.
		0	TBEIF	1	H0/S0	R	Cleared by writing to the QSPI_0TXD register.
0x0020	QSPI_0INTE	15–8	_	0x00	-	R	_
069a	(QSPI Ch.0 Interrupt	7–4	_	0x0	-	R	
	Enable Register)	3	OEIE	0	H0	R/W	
		2	TENDIE	0	H0	R/W	
		1	RBFIE	0	H0	R/W	
		0	TBEIE	0	H0	R/W	
0x0020 069c	QSPI_0TBEDMAEN (QSPI Ch.0 Transmit	15–8	_	0x00	-	R	_
	Buffer Empty DMA	7–4	_	0x0	_	R	
	Request Enable Register)	3–0	TBEDMAEN[3:0]	0x0	H0	R/W	
0x0020	QSPI_0RBFDMAEN (QSPI Ch.0 Receive	15–8	_	0x00	_	R	_
069e	Buffer Full DMA	7–4	_	0x0	-	R	
	Request Enable Register)	3–0	RBFDMAEN[3:0]	0x0	H0	R/W	
0x0020	QSPI_0FRLDMAEN	15–8	_	0x00	-	R	-
06a0	(QSPI Ch.0 FIFO Data Ready DMA Request	7–4	_	0x0	_	R	
	Enable Register)	3–0	FRLDMAEN[3:0]	0x0	H0	R/W	
0x0020	QSPI_0MMACFG1	15–8	_	0x00	-	R	-
06a2	(QSPI Ch.0 Memory	7–4	_	0x0	-	R	_
	Mapped Access Configuration Register 1)	3–0	TCSH[3:0]	0x0	H0	R/W	
0x0020 06a4	QSPI_0RMADRH (QSPI Ch.0 Remap- ping Start Address	15–4	RMADR[31:20]	0x000	H0	R/W	_
	High Register)	3-0	_	0x0	_	R	-
0x0020	QSPI 0MMACFG2			0x0 0x7	H0	R/W	
06a6	(QSPI Ch.0 Memory	11–8	DUMLN[3:0]	0x7	H0	R/W	-
	Mapped Access Con-	7–6	DATTMOD[1:0]	0x0	H0	R/W	-
	figuration Register 2)	5–4	DUMTMOD[1:0]	0x0	H0	R/W	-
		3–2	ADRTMOD[1:0]	0x0	H0	R/W	-
		1	ADRCYC	0	H0	R/W	1
		0	MMAEN	0	H0	R/W	-
0x0020	QSPI_0MB	15–8	XIPACT[7:0]	0x00	H0	R/W	_
06a8	(QSPI Ch.0 Mode Byte Register)	7–0	XIPEXT[7:0]	0x00	H0	R/W	-

0x002	0 06c0-0x0020	06d6					I ² C (I2C) Ch.1
Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	I2C_1CLK	15–9	_	0x00	-	R	_
06c0	(I2C Ch.1 Clock	8	DBRUN	0	H0	R/W	
	Control Register)	7–6	_	0x0	-	R	
		5–4	CLKDIV[1:0]	0x0	H0	R/W	
		3–2	_	0x0	-	R	
		1–0	CLKSRC[1:0]	0x0	H0	R/W	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	I2C 1MOD	15–8	_	0x00	-	R	_
	(I2C Ch.1 Mode	7–3	_	0x00	_	R	
	Register)	2	OADR10	0	H0	R/W	
		1	GCEN	0	H0	R/W	
		0	_	0	-	R	
0x0020	I2C 1BR	15–8	_	0x00	-	R	_
I I	(I2C Ch.1 Baud-Rate	7	_	0	_	R	
	Register)	6–0	BRT[6:0]	0x7f	H0	R/W	
0x0020	I2C_1OADR	15–10	<u> </u>	0x00	_	R	_
1	(I2C Ch.1 Own	0.0	OADDIO OI		110	DAM	
	Address Register)	9–0	OADR[9:0]	0x000	H0	R/W	
0x0020	I2C_1CTL	15–8	_	0x00	-	R	_
	(I2C Ch.1 Control	7–6	_	0x0	-	R	
	Register)	5	MST	0	H0	R/W	
		4	TXNACK	0	H0/S0	R/W	
		3	TXSTOP	0	H0/S0	R/W	
		2	TXSTART	0	H0/S0	R/W	
		1	SFTRST	0	H0	R/W	
		0	MODEN	0	H0	R/W	
1	I2C_1TXD	15–8	_	0x00	-	R	_
	(I2C Ch.1 Transmit Data Register)	7–0	TXD[7:0]	0x00	H0	R/W	
	I2C_1RXD	15–8	_	0x00	-	R	-
	(I2C Ch.1 Receive Data Register)	7–0	RXD[7:0]	0x00	H0	R	
	I2C_1INTF	15–13	_	0x0	_	R	_
	(I2C Ch.1 Status	12	SDALOW	0	H0	R	-
	and Interrupt Flag	11	SCLLOW	0	H0	R	-
I I	Register)	10	BSY	0	H0/S0	R	
	,	9	TR	0	H0	R	-
		8	- -	0	110	R	-
		7	BYTEENDIF	0	H0/S0	R/W	Cleared by writing 1.
		6	GCIF	0	H0/S0	R/W	Cleared by Writing 1.
		5	NACKIF	0	H0/S0	R/W	-
		4	STOPIF	0	H0/S0	R/W	
		3	STARTIF	0	H0/S0	R/W	-
		2	ERRIF	0	H0/S0	R/W	
		1	RBFIF	0	H0/S0	R	Cleared by reading the
							I2C_1RXD register.
		0	TBEIF	0	H0/S0	R	Cleared by writing to the I2C_1TXD register.
	I2C_1INTE	15–8	_	0x00	-	R	
	(I2C Ch.1 Interrupt	7	BYTEENDIE	0	H0	R/W	
	Enable Register)	6	GCIE	0	H0	R/W	
		5	NACKIE	0	H0	R/W	
		4	STOPIE	0	H0	R/W	
		3	STARTIE	0	H0	R/W	
		2	ERRIE	0	H0	R/W	
		1	RBFIE	0	H0	R/W	
		0	TBEIE	0	H0	R/W	
	I2C_1TBEDMAEN (I2C Ch.1 Transmit	15–8	_	0x00	-	R	_
	Buffer Empty DMA	7–4	_	0x0	-	R	
1	Request Enable Register)	3–0	TBEDMAEN[3:0]	0x0	H0	R/W	
0x0020	I2C_1RBFDMAEN (I2C Ch.1 Receive	15–8	_	0x00	-	R	-
	Buffer Full DMA	7–4	_	0x0	-	R	
1	Request Enable Register)	3–0	RBFDMAEN[3:0]	0x0	H0	R/W	

0x0020 06e0-0x0020 06f6 I2C (I2C) Ch.2 R/W Address Register name Bit Bit name Initial Reset Remarks 0x0020 I2C 2CLK 15–9 0x00 R 06e0 (I2C Ch.2 Clock 8 DBRUN 0 H0 R/W Control Register) 7–6 0x0 R 5-4 CLKDIV[1:0] 0x0 H₀ R/W 3–2 0x0 R 1-0 CLKSRC[1:0] 0x0 H₀ R/W 0x0020 I2C 2MOD 15–8 0x00 R (I2C Ch.2 Mode 06e2 7–3 0x00 R Register) R/W 2 OADR10 0 HΩ R/W **GCEN** 0 H0 1 O O R I2C 2BR 0x0020 15–8 0x00 R (I2C Ch.2 Baud-Rate 06e4 O R Register) 6-0 0x7f H0 R/W BRT[6:0] 0x0020 I2C 2OADR 15-10 0x00 R 06e8 (I2C Ch.2 Own 9-0 OADR[9:0] 0x000 HO R/W Address Register) 0x0020 I2C 2CTL 15-8 0x00 R 06ea (I2C Ch.2 Control 7–6 0x0 R Register) R/W 5 MST 0 H₀ H0/S0 R/W 4 **TXNACK** 0 H0/S0 3 TXSTOP 0 R/W 2 **TXSTART** 0 H0/S0 R/W 1 SFTRST 0 H₀ R/W R/W 0 MODEN 0 H₀ 0x0020 I2C 2TXD 15–8 0x00 R 06ec (I2C Ch.2 Transmit 7-0 TXD[7:0] 0x00 H₀ R/W Data Register) 0x0020 I2C 2RXD 15-8 0x00 R (I2C Ch.2 Receive 06ee R 7-0 RXD[7:0] 0x00 H₀ Data Register) 0x0020 I2C 2INTF 15-13 0x0 R 06f0 (I2C Ch.2 Status SDALOW 0 HΩ R 12 and Interrupt Flag 11 SCLLOW 0 H₀ R Register) 10 **BSY** 0 H0/S0 R 9 TR 0 H₀ R 8 0 R H0/S0 R/W 7 BYTEENDIF 0 Cleared by writing 1. 6 **GCIF** 0 H0/S0 R/W 5 NACKIF 0 H0/S0 R/W 4 STOPIF 0 H0/S0 R/W 3 0 R/W STARTIF H0/S0 2 **ERRIF** 0 H0/S0 R/W RBFIF 0 H0/S0 R Cleared by reading the 1 I2C_2RXD register. 0 **TBEIF** 0 H0/S0 R Cleared by writing to the I2C_2TXD register. 0x0020 I2C 2INTE 0x00 15 - 8R (I2C Ch.2 Interrupt 06f2 7 BYTEENDIE 0 H0 R/W **Enable Register)** 0 R/W 6 **GCIE** H0 5 NACKIE 0 H₀ R/W 4 STOPIE 0 HΩ R/W

3

2

0

STARTIE

FRRIF

RBFIE

TBEIE

0

0

0

0

R/W

R/W

R/W

R/W

H₀

HO

H0

H₀

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	I2C_2TBEDMAEN (I2C Ch.2 Transmit	15–8	_	0x00	_	R	_
06f4	Buffer Empty DMA	7–4	_	0x0	-	R	
	Request Enable Register)	3–0	TBEDMAEN[3:0]	0x0	H0	R/W	
0x0020 06f6	I2C_2RBFDMAEN (I2C Ch.2 Receive	15–8	_	0x00	_	R	_
0010	Buffer Full DMA	7–4	_	0x0	-	R	
	Request Enable Register)	3–0	RBFDMAEN[3:0]	0x0	H0	R/W	

0x0020 0720-0x0020 0732

IR Remote Controller (REMC3)

0x0020 REMC3CLK (REMC3 Clock Cotrol Register) 0x0020 REMC3DBCTL (REMC3 Data Bit Counter Control Register) 0x0020 REMC3DBCNT (REMC3 Data Bit Counter Register) 0x0020 REMC3DBCNT (REMC3 Data Bit Counter Register)	7-4 3-2 1-0 15-10 9 8 7-5 4 3 2 1 0	- DBRUN CLKDIV[3:0] - CLKSRC[1:0] - PRESET PRUN - REMOINV BUFEN TRMD REMCRST MODEN DBCNT[15:0]	0x00 0x0 0x0 0x0 0x0 0x00 0 0 0 0 0 0 0 0 0 0 0 0	- H0 H0 - H0 - H0/S0 H0/S0 - H0 H0 H0 H0 H0 H0/S0	R R/W R/W R R/W R/W R/W R/W R/W R/W R/W	- Cleared by writing 1 to the REMC3DBCTL.REMCRST bit.
0x0020 REMC3DBCTL (REMC3 Data Bit Counter Control Register) 0x0020 REMC3DBCNT (REMC3 Data Bit Counter Register)	7-4 3-2 1-0 15-10 9 8 7-5 4 3 2 1 0	CLKDIV[3:0] - CLKSRC[1:0] - PRESET PRUN - REMOINV BUFEN TRMD REMCRST MODEN	0x0 0x0 0x0 0x00 0 0 0 0 0 0 0	H0 - H0 - H0/S0 H0/S0 - H0 H0 H0 H0	R/W R R/W R R/W R/W R/W R R/W R/W R/W R/	REMC3DBCTL.REMCRST bit.
0x0020 REMC3DBCTL (REMC3 Data Bit Counter Control Register) 0x0020 REMC3DBCNT (REMC3 Data Bit Counter Register)	3-2 1-0 15-10 9 8 7-5 4 3 2 1 0	- CLKSRC[1:0] - PRESET PRUN - REMOINV BUFEN TRMD REMCRST MODEN	0x0 0x0 0x00 0 0 0 0x0 0 0 0	- H0 - H0/S0 H0/S0 - H0 H0 H0	R R/W R R/W R/W R/W R/W R/W W R/W	REMC3DBCTL.REMCRST bit.
0722 (REMC3 Data Bit Counter Control Register) 0x0020 REMC3DBCNT (REMC3 Data Bit Counter Register) 0x0020 REMC3APLEN	1-0 15-10 9 8 7-5 4 3 2 1 0	PRESET PRUN - REMOINV BUFEN TRMD REMCRST	0x0 0x00 0 0 0x0 0 0 0 0	H0 - H0/S0 H0/S0 - H0 H0 H0 H0	R/W R R/W R/W R/W R/W R/W R/W R/W R/W	REMC3DBCTL.REMCRST bit.
0722 (REMC3 Data Bit Counter Control Register) 0x0020 REMC3DBCNT (REMC3 Data Bit Counter Register) 0x0020 REMC3APLEN	15-10 9 8 7-5 4 3 2 1 0 15-0	PRESET PRUN - REMOINV BUFEN TRMD REMCRST	0x00 0 0 0x0 0 0 0 0	- H0/S0 H0/S0 - H0 H0 H0 H0	R R/W R/W R R/W R/W R/W R/W W R/W	REMC3DBCTL.REMCRST bit.
0722 (REMC3 Data Bit Counter Control Register) 0x0020 REMC3DBCNT (REMC3 Data Bit Counter Register) 0x0020 REMC3APLEN	9 8 7-5 4 3 2 1 0	PRESET PRUN - REMOINV BUFEN TRMD REMCRST MODEN	0 0 0x0 0 0 0 0	H0/S0 - H0 H0 H0 H0 H0	R/W R/W R R/W R/W R/W W R/W	REMC3DBCTL.REMCRST bit.
Ox0020 REMC3DBCNT (REMC3 Data Bit Counter Register) Ox0020 REMC3APLEN	8 7-5 4 3 2 1 0 15-0	PRUN - REMOINV BUFEN TRMD REMCRST MODEN	0 0x0 0 0 0 0	H0/S0 - H0 H0 H0 H0 H0	R/W R/W R/W W R/W	REMC3DBCTL.REMCRST bit.
0x0020 REMC3DBCNT 0724 (REMC3 Data Bit Counter Register) 0x0020 REMC3APLEN	7-5 4 3 2 1 0 15-0	- REMOINV BUFEN TRMD REMCRST MODEN	0x0 0 0 0 0	- H0 H0 H0 H0	R R/W R/W R/W W R/W	bit.
0724 (REMC3 Data Bit Counter Register) 0x0020 REMC3APLEN	4 3 2 1 0 15–0	BUFEN TRMD REMCRST MODEN	0 0 0 0	H0 H0 H0 H0	R/W R/W R/W W R/W	
0724 (REMC3 Data Bit Counter Register) 0x0020 REMC3APLEN	3 2 1 0 15–0	BUFEN TRMD REMCRST MODEN	0 0 0 0	H0 H0 H0 H0	R/W R/W W R/W	
0724 (REMC3 Data Bit Counter Register) 0x0020 REMC3APLEN	2 1 0 15–0	TRMD REMCRST MODEN	0 0	H0 H0 H0	R/W W R/W	
0724 (REMC3 Data Bit Counter Register) 0x0020 REMC3APLEN	1 0 15–0	REMCRST MODEN	0	H0 H0	W R/W	
0724 (REMC3 Data Bit Counter Register) 0x0020 REMC3APLEN	0 15–0	MODEN	0	H0	R/W	
0724 (REMC3 Data Bit Counter Register) 0x0020 REMC3APLEN	15–0			_		Oleaned house will an all to 11
0724 (REMC3 Data Bit Counter Register) 0x0020 REMC3APLEN		DBCNT[15:0]	0x0000	H0/S0	R	Oleane al le constitue et de 1 e 11
	15–0					Cleared by writing 1 to the REMC3DBCTL.REMCRST bit.
Active Pulse Leng Register)	th	APLEN[15:0]	0x0000	H0	R/W	Writing enabled when REMC3DBCTL.MODEN bit = 1.
0x0020 REMC3DBLEN 0728 (REMC3 Data Bit Length Register)	15–0	DBLEN[15:0]	0x0000	H0	R/W	Writing enabled when REMC3DBCTL.MODEN bit = 1.
0x0020 REMC3INTF	15–11	-	0x00	-	R	-
072a (REMC3 Status and Interrupt Flag Register)	10	DBCNTRUN	0	H0/S0	R	Cleared by writing 1 to the REMC3DBCTL.REMCRST bit.
	9	DBLENBSY	0	H0	R	Effective when the
	8	APLENBSY	0	H0	R	REMC3DBCTL.BUFEN bit = 1.
	7–2	_	0x00	-	R	_
	1	DBIF	0	H0/S0	R/W	Cleared by writing 1 to this bit or the REMC3DBCTL.
	0	APIF	0	H0/S0	R/W	REMCRST bit.
0x0020 REMC3INTE	15–8	-	0x00	_	R	_ -
072c (REMC3 Interrupt	7–2	-	0x00	-	R	
Enable Register)	1	DBIE	0	H0	R/W	
	0	APIE	0	H0	R/W	
0x0020 REMC3CARR 0730 (REMC3 Carrier	15–8	CRDTY[7:0]	0x00	H0	R/W	-
Waveform Registe	er) 7-0	CRPER[7:0]	0x00	H0	R/W	
0x0020 REMC3CCTL	15–9	-	0x00	_	R	-
0732 (REMC3 Carrier	8	OUTINVEN	0	H0	R/W]
Modulation Contro	ol 7–1	-	0x00	_	R	
Register)	0	CARREN	0	H0	R/W	

0x0020 0780-0x0020 078c

16-bit Timer (T16) Ch.7

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	T16_7CLK	15–9	_	0x00	_	R	_
0780	(T16 Ch.7 Clock	8	DBRUN	0	H0	R/W	
	Control Register)	7–4	CLKDIV[3:0]	0x0	H0	R/W	
		3–2	-	0x0	-	R	
		1–0	CLKSRC[1:0]	0x0	H0	R/W	
0x0020	T16_7MOD	15–8	-	0x00	-	R	_
0782	(T16 Ch.7 Mode	7–1	-	0x00	-	R	
	Register)	0	TRMD	0	H0	R/W	
0x0020	T16_7CTL	15–9	-	0x00	-	R	_
0784	(T16 Ch.7 Control	8	PRUN	0	H0	R/W	
	Register)	7–2	-	0x00	-	R	
		1	PRESET	0	H0	R/W	
		0	MODEN	0	H0	R/W	
0x0020 0786	T16_7TR (T16 Ch.7 Reload	15–0	TR[15:0]	0xffff	H0	R/W	_
0700	Data Register)						
0x0020	T16_7TC	15–0	TC[15:0]	0xffff	H0	R	_
0788	(T16 Ch.7 Counter Data Register)						
0x0020	T16_7INTF	15–8	_	0x00	-	R	_
078a	(T16 Ch.7 Interrupt	7–1	_	0x00	_	R	
	Flag Register)	0	UFIF	0	H0	R/W	Cleared by writing 1.
0x0020	T16_7INTE	15–8	_	0x00	_	R	_
078c	(T16 Ch.7 Interrupt	7–1	_	0x00	_	R	
	Enable Register)	0	UFIE	0	H0	R/W	

0x0020 07a0-0x0020 07bc

12-bit A/D Converter (ADC12A) Ch.0

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	ADC12A_0CTL	15	_	0	-	R	_
07a2	(ADC12A Ch.0	14–12	ADSTAT[2:0]	0x0	H0	R	
	Control Register)	11	_	0	-	R	
		10	BSYSTAT	0	H0	R	
		9–8	_	0x0	-	R	
		7–2	_	0x00	-	R	
		1	ADST	0	H0	R/W	
		0	MODEN	0	H0	R/W	
0x0020	ADC12A_0TRG	15–14	_	0x0	-	R	_
07a4	(ADC12A Ch.0	13–11	ENDAIN[2:0]	0x0	H0	R/W	
	Trigger/Analog Input	10–8	STAAIN[2:0]	0x0	H0	R/W	
	Select Register)	7	STMD	0	H0	R/W	
		6	CNVMD	0	H0	R/W	
		5–4	CNVTRG[1:0]	0x0	H0	R/W	
		3	_	0	-	R	
		2-0	SMPCLK[2:0]	0x7	H0	R/W	
0x0020	ADC12A_0CFG	15–8	_	0x00	-	R	_
07a6	(ADC12A Ch.0 Con-	7–2	_	0x00	_	R	
	figuration Register)	1–0	VRANGE[1:0]	0x0	H0	R/W	
0x0020	ADC12A_0INTF	15–9	_	0x00	_	R	_
07a8	(ADC12A Ch.0	8	OVIF	0	H0	R/W	Cleared by writing 1.
	Interrupt Flag	7	AD7CIF	0	H0	R/W	
	Register)	6	AD6CIF	0	H0	R/W	
		5	AD5CIF	0	H0	R/W	
		4	AD4CIF	0	H0	R/W	
		3	AD3CIF	0	H0	R/W	
		2	AD2CIF	0	H0	R/W	
		1	AD1CIF	0	H0	R/W	
		0	AD0CIF	0	H0	R/W	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	ADC12A_0INTE	15–9	_	0x00	_	R	_
07aa	(ADC12A Ch.0	8	OVIE	0	H0	R/W	
	Interrupt Enable	7	AD7CIE	0	H0	R/W	
	Register)	6	AD6CIE	0	H0	R/W	
		5	AD5CIE	0	H0	R/W	
		4	AD4CIE	0	H0	R/W	
		3	AD3CIE	0	H0	R/W	
		2	AD2CIE	0	H0	R/W	
		1	AD1CIE	0	H0	R/W	
		0	AD0CIE	0	H0	R/W	
0x0020	ADC12A_0DMAEN0	15–8	-	0x00	_	R	_
07ac	(ADC12A Ch.0 DMA Request Enable	7–4	_	0x0	_	R	
	Register 0)	3–0	ADCDMAEN[3:0]	0x0	H0	R/W	
0x0020	ADC12A_0DMAEN1	15–8	_	0x00	-	R	-
07ae	(ADC12A Ch.0 DMA Request Enable	7–4	_	0x0	_	R	
	Register 1)	3–0	ADCDMAEN[3:0]	0x0	H0	R/W	
0x0020	ADC12A_0DMAEN2	15–8	_	0x00	-	R	_
07b0	(ADC12A Ch.0 DMA Request Enable	7–4	_	0x0	-	R	
	Register 2)	3–0	ADCDMAEN[3:0]	0x0	H0	R/W	
0x0020	ADC12A_0DMAEN3	15–8	_	0x00	-	R	_
07b2	(ADC12A Ch.0 DMA Request Enable	7–4	_	0x0	_	R	
	Register 3)	3–0	ADCDMAEN[3:0]	0x0	H0	R/W	
0x0020	ADC12A_0DMAEN4	15–8	_	0x00	-	R	_
07b4	(ADC12A Ch.0 DMA Request Enable	7–4	_	0x0	_	R	
	Register 4)	3–0	ADCDMAEN[3:0]	0x0	H0	R/W	
0x0020	ADC12A_0DMAEN5	15–8	_	0x00	_	R	-
07b6	(ADC12A Ch.0 DMA Request Enable	7–4	_	0x0	_	R	
	Register 5)	3–0	ADCDMAEN[3:0]	0x0	H0	R/W	
0x0020	ADC12A_0DMAEN6	15–8	_	0x00	-	R	_
07b8	(ADC12A Ch.0 DMA Request Enable	7–4	_	0x0	_	R	
	Register 6)	3–0	ADCDMAEN[3:0]	0x0	H0	R/W	
0x0020	ADC12A_0DMAEN7	15–8	-	0x00	-	R	_
07ba	(ADC12A Ch.0 DMA Request Enable	7–4	_	0x0	-	R	1
	Register 7)	3–0	ADCDMAEN[3:0]	0x0	H0	R/W	1
0x0020 07bc	ADC12A_0ADD (ADC12A Ch.0	15–0	ADD[15:0]	0x0000	H0	R	_
	Result Register)						

0x0020 07c0-0x0020 07c2 Temperature Sensor/Reference Voltage Generator (TSRVR) Ch.0

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	TSRVR_0TCTL	15–8	_	0x00	-	R	_
07c0	(TSRVR Ch.0 Temperature Sensor	7–1	_	0x00	H0	R	
	Control Register)	0	TEMPEN	0	H0	R/W	
0x0020	TSRVR_0VCTL	15–8	_	0x00	-	R	-
07c2	(TSRVR Ch.0 Reference Voltage	7–2	_	0x00	H0	R	
	Generator Control Register)	1–0	VREFAMD[1:0]	0x0	H0	R/W	

0x0020 0840-0x0020 0850

R/F Converter (RFC) Ch.0

OXOUL	.0 00+0 0X0020						converter (iii o) onlo
Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	RFC_0CLK	15–9	-	0x00	-	R	-
0840	(RFC Ch.0 Clock	8	DBRUN	1	H0	R/W	
	Control Register)	7–6	_	0x0	_	R	
		5–4	CLKDIV[1:0]	0x0	H0	R/W	
		3–2	_	0x0	-	R	
		1–0	CLKSRC[1:0]	0x0	H0	R/W	
0x0020	RFC_0CTL	15–9	_	0x00	_	R	_
0842	(RFC Ch.0 Control	8	RFCLKMD	0	H0	R/W	
	Register)	7	CONEN	0	H0	R/W	1
		6	EVTEN	0	H0	R/W	1
		5–4	SMODE[1:0]	0x0	H0	R/W	
		3–1	_	0x0	_	R	
		0	MODEN	0	H0	R/W	
0x0020	RFC 0TRG	15–8	_	0x00	-	R	_
0844	(RFC Ch.0 Oscillation	7–3	_	0x00	_	R	-
	Trigger Register)	2	SSENB	0	H0	R/W	-
		1	SSENA	0	HO	R/W	-
		0	SREF	0	H0	R/W	-
0x0020	RFC 0MCL	15–0	MC[15:0]	0x0000	H0	R/W	_
0846	(RFC Ch.0 Measure-	10 0	[WO[10.0]	OXOCCO	110	'''	
0010	ment Counter Low						
	Register)						
0x0020	RFC_0MCH	15–8	_	0x00	_	R	_
0848	(RFC Ch.0 Measure-						
	ment Counter High	7–0	MC[23:16]	0x00	H0	R/W	
	Register)						
0x0020	RFC_0TCL	15–0	TC[15:0]	0x0000	H0	R/W	-
084a	(RFC Ch.0 Time Base						
0.000	Counter Low Register)	45.0		0.00			
0x0020	RFC_0TCH (RFC Ch.0 Time Base	15–8	_	0x00	-	R	_
084c	Counter High Register)	7–0	TC[23:16]	0x00	H0	R/W	
0x0020	RFC 0INTF	15–8		0x00		R	
084e	(RFC Ch.0 Interrupt	7–5		0x0		R	-
0040	Flag Register)	4	OVTCIF	0	H0	R/W	Cleared by writing 1.
	l ag ragian,	3	OVICIF	0	H0	R/W	Cleared by writing 1.
				-			-
		2	ESENBIF	0	H0	R/W	-
		1	ESENAIF	0	H0	R/W	-
0.0000	DEO OINTE	0	EREFIF	0	H0	R/W	
0x0020	RFC_0INTE	15–8	-	0x00	_	R	-
0850	(RFC Ch.0 Interrupt Enable Register)	7–5	- OVECTOR	0x0	-	R	-
	Lilable negister)	4	OVTCIE	0	H0	R/W	-
		3	OVMCIE	0	H0	R/W	-
		2	ESENBIE	0	H0	R/W	_
		1	ESENAIE	0	H0	R/W	
		0	EREFIE	0	H0	R/W	

0x0020 0860-0x0020 087e

Sound DAC (SDAC2)

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	SDAC2CLK	15–9	_	0x00	-	R	_
0860	(SDAC2 Clock Con-	8	DBRUN	0	H0	R/W	
	trol Register)	7–6	_	0x0	-	R	
		5–4	CLKDIV[1:0]	0x0	H0	R/W	
		3–2	_	0x0	-	R	
		1–0	CLKSRC[1:0]	0x0	H0	R/W	

APPENDIX A LIST OF PERIPHERAL CIRCUIT CONTROL REGISTERS

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	SDAC2CTL	15–8	_	0x00	-	R	_
0862	(SDAC2 Control	7–4	_	0x00	-	R	
	Register)	3	TONEON	0	H0	R/W	
		2	-	0	_	R	
		1	RESAMPEN	0	H0	R/W	
		0	SDACEN	0	H0	R/W	
0x0020	SDAC2MOD	15–9	-	0x00	_	R	_
0864	(SDAC2 Mode	8	PWMOUTEN	0	H0	R/W	
	Register)	7–2	_	0x00	H0	R	
		1–0	PWMMODE[1:0]	0x00	H0	R/W	
0x0020	SDAC2_0DAT	15–10	-	0x00	_	R	_
0866	(SDAC2 Ch.0 Data Register)	9–0	DAT[9:0]	0x000	H0	R/W	
0x0020	SDAC2INTF	15–8	_	0x00	_	R	_
0868	(SDAC2 Interrupt Flag	7–4	_	0x0	_	R	
	Register)	3	ERR1IF	0	H0	R/W	Cleared by writing 1.
		2	DATREQ1IF	0	H0	R/W	
		1	ERR0IF	0	H0	R/W	
		0	DATREQ0IF	0	H0	R/W	
0x0020	SDAC2INTE	15–8	_	0x00	_	R	_
086a	(SDAC2 Interrupt	7–2	_	0x00	_	R	
	Enable Register)	3	ERR1IE	0	H0	R/W	
		2	DATREQ1IE	0	H0	R/W	
		1	ERR0IE	0	H0	R/W	
		0	DATREQ0IE	0	H0	R/W	
0x0020	SDAC2RESAMP	15–11	_	0x00	-	R	_
0870	(SDAC2 Resampler Rate Register)	10–0	RESAMPRATE[10:0]	0x400	H0	R/W	
0x0020 0878	SDAC2TONE (SDAC2 Tone Divider Register)	15–0	TONEDIV[15:0]	0x4000	H0	R/W	_
0x0020	SDAC2_1DAT	15–10	_	0x00	-	R	_
087e	(SDAC2 Ch.1 Data Register)	9–0	DAT[9:0]	0x000	H0	R/W	

0x002	0 08a0-0x0020		HW Processor (HWP)				
Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	HWPCTL	15–8	-	0x00	_	R	_
08a2	(HWP Control	7–1	-	0x00	-	R	
	Register)	0	HWPEN	0	H0	R/W	
0x0020	HWPINTF	15–8	-	0x00	_	R	-
08a4	(HWP Interrupt Flag	7–2	-	0x00	-	R	
	Register)	1	HWP1IF	0	H0	R/W	Cleared by writing 0.
		0	HWP0IF	0	H0	R/W	
0x0020	HWPINTE	15–8	-	0x00	_	R	-
08a6	(HWP Interrupt	7–1	_	0x00	_	R	
	Enable Register)	0	HWPIE	0	H0	R/W	
0x0020	HWPCMDTRG	15–8	-	0x00	_	R	-
08a8	(HWP Command Trig-	7–1	-	0x00	_	R	
	ger Register)	0	HWP0TRG	0	H0	R/W	

0x0020 1000-0x0020 2014

DMA Controller (DMAC)

	1	2017			_		The Controller (DIVIAC)
Address		Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	DMACSTAT	31–24		0x00	_	R	_
1000	(DMAC Status	23–21		0x0	-	R	
	Register)		CHNLS[4:0]	*	H0	R	* Number of channels implemented - 1
		15–8	_	0x00	-	R	<u> </u> -
		7–4	STATE[3:0]	0x0	H0	R	
		3–1	-	0x0	-	R	
		0	MSTENSTAT	0	H0	R	
0x0020	DMACCFG	31–24		0x00	-	R	_
1004	(DMAC Configuration	23–16	-	0x00	-	R	
	Register)	15–8	_	0x00	_	R	
		7–1	_	0x00	-	R	
		0	MSTEN	_	_	W	
0x0020 1008	DMACCPTR (DMAC Control Data	31–7	CPTR[31:7]	0x000 0000	H0	R/W	_
	Base Pointer Register)	6–0	CPTR[6:0]	0x00	H0	R	
0x0020 100c	DMACACPTR (DMAC Alternate Control Data Base Pointer Register)	31–0	ACPTR[31:0]	_	H0	R	_
0x0020	DMACSWREQ	31–24	_	_	_	R	_
1014	(DMAC Software	23–16		_	_	R	
	Request Register)	15–8	_	_	_	R	
		7–4	_	_	_	R	
		3–0	SWREQ[3:0]	_	_	W	
0x0020	DMACRMSET	31–24		0x00	_	R	_
1020	(DMAC Request	23–16		0x00	_	R	
	Mask Set Register)	15–8	_	0x00	_	R	
		7–4	_	0x0	_	R	
		3–0	RMSET[3:0]	0x0	H0	R/W	
0x0020	DMACRMCLR	31–24	_	_	-	R	_
1024	(DMAC Request	23–16	_	_	-	R	
	Mask Clear Register)	15–8	_	_	-	R	
		7–4	_	_	-	R	
		3–0	RMCLR[3:0]	_	_	W	
0x0020	DMACENSET	31–24	_	0x00	_	R	_
1028	(DMAC Enable Set	23-16	_	0x00	_	R	
	Register)	15–8	_	0x00	_	R	
		7–4	_	0x0	_	R	
		3–0	ENSET[3:0]	0x0	H0	R/W	
0x0020	DMACENCLR	31–24	-	_	_	R	_
102c	(DMAC Enable Clear	23-16	_	_	_	R	
	Register)	15–8	_	_	-	R	
		7–4	_	_	_	R	
		3–0	ENCLR[3:0]	_	_	W	
0x0020	DMACPASET	31–24	_	0x00	-	R	_
1030	(DMAC Primary-Alter-	23–16	_	0x00	-	R	
	nate Set Register)	15–8	_	0x00	-	R	
		7–4		0x0	-	R	
			PASET[3:0]	0x0	H0	R/W	
0x0020	DMACPACLR	31–24	_	_	-	R	
1034	(DMAC Primary-Alter-	23–16	_	_	-	R	
	nate Clear Register)	15–8	_	-	-	R	
		7–4	_	_	_	R	
1	I	3–0	PACLR[3:0]	_		W	

APPENDIX A LIST OF PERIPHERAL CIRCUIT CONTROL REGISTERS

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x0020	DMACPRSET	31–24	_	0x00	_	R	-
1038	(DMAC Priority Set	23-16	_	0x00	-	R	-
	Register)	15–8	_	0x00	-	R	_
		7–4	_	0x0	-	R	
		3–0	PRSET[3:0]	0x0	H0	R/W	
0x0020	DMACPRCLR	31–24		_	-	R	_
103c	(DMAC Priority Clear	23–16	_	_	_	R	1
	Register)	15–8	_	_	_	R	1
		7–4	_	_	_	R	
		3–0	PRCLR[3:0]	_	_	W	
0x0020	DMACERRIF	31–24		0x00	_	R	_
104c	(DMAC Error Interrupt			0x00	_	R	-
	Flag Register)	15–8	_	0x00	_	R	-
		7–1	_	0x00	_	R	-
		0	ERRIF	0	H0	R/W	Cleared by writing 1.
0x0020	DMACENDIF	31–24		0x00	-	R	l l l l l l l l l l l l l l l l l l l
2000	(DMAC Transfer	23–16		0x00	_	R	-
	Completion Interrupt	15–8	_	0x00	_	R	-
	Flag Register)	7–4	_	0x0	_	R	-
		3–0	ENDIF[3:0]	0x0	H0	R/W	Cleared by writing 1.
0x0020	DMACENDIESET	31–24		0x00	-	R	_
2008	(DMAC Transfer	23–16		0x00	_	R	-
	Completion Interrupt	15–8	_	0x00	_	R	-
	Enable Set Register)	7–4	_	0x0	_	R	-
		3–0	ENDIESET[3:0]	0x0	H0	R/W	-
0x0020	DMACENDIECLR	31–24		-	-	R	_
200c	(DMAC Transfer	23–16		_	_	R	-
	Completion Interrupt	15–8	_	_	_	R	-
	Enable Clear Register)	7–4	_	_	_	R	-
		3–0	ENDIECLR[3:0]	_	_	W	-
0x0020	DMACERRIESET	31–24		0x00	_	R	_
2010	(DMAC Error Interrupt			0x00	_	R	-
	Enable Set Register)	15–8	_	0x00	_	R	-
	,	7–1	_	0x00	_	R	-
		0	ERRIESET	0	H0	R/W	-
0x0020	DMACERRIECLR	31–24	_	0x00	-	R	_
2014	(DMAC Error Interrupt			0x00	_	R	1
2314	Enable Clear Register)		_	0x00	_	R	-
		7–1	_	0x00	_	R	-
		0	ERRIECLR			W	-
		U	ERRIEULK	_	_	VV	

Appendix B Power Saving

Current consumption will vary dramatically, depending on CPU operating mode, operation clock frequency, peripheral circuits being operated, and VDI regulator operating mode. Listed below are the control methods for saving power.

B.1 Operating Status Configuration Examples for Power Saving

Table B.1.1 lists typical examples of operating status configuration with consideration given to power saving.

Operating status	Current	V _{D1}	OSC1	IOSC/ OSC3/	RTCA	СРИ	Current consumption listed in electrical
configuration	consumption			EXOSC			characteristics
Standby	1		OFF		OFF	SLEEP	ISLP1-2
Clock counting	Low	Economy		OFF		SLEEP with OSC1SLPC	ISLP3-4
Low-speed processing						OSC1 RUN	IRUN4-5
Peripheral circuit operations			ON		ON	SLEEP or HALT	IHALT4-5
High-speed processing	High	Normal		ON		IOSC/OSC3/EXOSC	IRUN1-3, 6-7

Table B.1.1 Typical Operating Status Configuration Examples

If the current consumption order by the operating status configuration shown in Table B.1.1 is different from one that is listed in "Electrical Characteristics," check the settings shown below.

PWGACTL.REGMODE[1:0] bits of the power generator

If the PWGACTL.REGMODE[1:0] bits of the power generator is 0x2 (normal mode) when the CPU enters SLEEP mode, current consumption in SLEEP mode will be larger than ISLP that is listed in "Electrical Characteristics." Set the PWGACTL.REGMODE[1:0] bits to 0x3 (economy mode) or 0x0 (automatic mode) before placing the CPU into SLEEP mode.

CLGOSC.IOSCSLPC/OSC1SLPC/OSC3SLPC/EXOSCSLPC bits of the clock generator

Setting the CLGOSC.IOSCSLPC, OSC1SLPC, OSC3SLPC, or EXOSCSLPC bit of the clock generator to 0 disables the oscillator circuit stop control when the CPU enters SLEEP mode. To stop the oscillator circuits during SLEEP mode, set these bits to 1.

MODEN bits of the peripheral circuits

Setting the MODEN bit of each peripheral circuit to 1 starts supplying the operating clock enabling the peripheral circuit to operate. To reduce current consumption, set the MODEN bits of unnecessary peripheral circuits to 0. Note that the real-time clock has no MODEN bit, therefore, current consumption does not vary if it is counting or idle.

OSC1 (crystal) oscillator circuit configurations

The OSC1 (crystal) oscillator circuit provides some configuration items to support various crystal resonators with ranges from cylinder type through surface-mount type. These configurations trade off current consumption for performance as shown below.

- The lower oscillation inverter gain setting (CLGOSC1.INV1B[1:0]/INV1N[1:0] bits) decreases current consumption.
- The lower OSC1 internal gate capacitance setting (CLGOSC1.CGI1[2:0] bits) decreases current consumption.
- Using lower OSC1 external gate and drain capacitances decreases current consumption.
- Using a crystal resonator with lower CL value decreases current consumption.

However, these configurations may reduce the oscillation margin and increase the frequency error, therefore, be sure to perform matching evaluation using the actual printed circuit board.

OSC3 (crystal/ceramic) oscillator circuit configurations

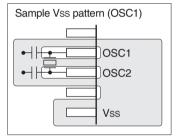
The OSC3 (crystal/ceramic) oscillator circuit provides some configuration items to support various crystal and ceramic resonators. These configurations trade off current consumption for performance as shown below.

- The lower oscillation inverter gain setting (CLGOSC3.OSC3INV[1:0] bits) decreases current consumption.
- Using lower OSC3 external gate and drain capacitances decreases current consumption.
- Using a resonator with lower CL value decreases current consumption.

However, these configurations may reduce the oscillation margin and increase the frequency error, therefore, be sure to perform matching evaluation using the actual printed circuit board.

B.2 Other Power Saving Methods

Supply voltage detector configuration

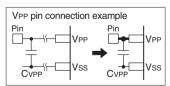

Continuous operation mode (SVD3CTL.SVDMD[1:0] bits = 0x0) always detects the power supply voltage, therefore, it increases current consumption. Set the supply voltage detector to intermittent operation mode or turn it on only when required.

Appendix C Mounting Precautions

This section describes various precautions for circuit board design and IC mounting.

OSC1/OSC3 oscillator circuit

- Oscillation characteristics depend on factors such as components used (resonator, CG, CD) and circuit board
 patterns. In particular, with crystal resonators, select the appropriate capacitors (CG, CD) only after fully
 evaluating components actually mounted on the circuit board.
- Oscillator clock disturbances caused by noise may cause malfunctions. To prevent such disturbances, consider the following points.
- (1) Components such as a resonator, resistors, and capacitors connected to the OSC1 (OSC3) and OSC2 (OSC4) pins should have the shortest connections possible.
- (2) Wherever possible, avoid locating digital signal lines within 3 mm of the OSC1 (OSC3) and OSC2 (OSC4) pins or related circuit components and wiring. Rapidly-switching signals, in particular, should be kept at a distance from these components. Since the spacing between layers of multi-layer printed circuit boards is a mere 0.1 mm to 0.2 mm, the above precautions also apply when positioning digital signal lines on other layers.
 - Never place digital signal lines alongside such components or wiring, even if more than 3 mm distance or located on other layers. Avoid crossing wires.
- (3) Use Vss to shield the OSC1 (OSC3) and OSC2 (OSC4) pins and related wiring (including wiring for adjacent circuit board layers). Layers wired should be adequately shielded as shown to the right. Fully ground adjacent layers, where possible. At minimum, shield the area at least 5 mm around the above pins and wiring.
 - Even after implementing these precautions, avoid configuring digital signal lines in parallel, as described in (2) above. Avoid crossing even on discrete layers, except for lines carrying signals with low switching frequencies.


- (4) After implementing these precautions, check the FOUT pin output clock waveform by running the actual application program within the product.
 - For the OSC1 waveform, enlarge the areas before and after the clock rising and falling edges and take special care to confirm that the regions approximately 100 ns to either side are free of clock or spiking noise. For the OSC3 waveform, confirm that the frequency is as designed, is free of noise, and has minimal jitter.
 - Failure to observe precautions (1) to (3) adequately may lead to noise in OSC1CLK and jitter in OSC3CLK. Noise in the OSC1CLK will destabilize timers that use OSC1CLK as well as CPU operations. Jitter in the OSC3 output will reduce operating frequencies.

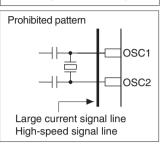
#RESET pin

Components such as a switch and resistor connected to the #RESET pin should have the shortest connections possible to prevent noise-induced resets.

VPP pin

Connect a capacitor CVPP between the Vss and VPP pins to suppress fluctuations within VPP ± 1 V. The CVPP should be placed as close to the VPP pin as possible and use a sufficiently thick wiring pattern that allows current of several tens of mA to flow.

Power supply circuit


Sudden power supply fluctuations due to noise will cause malfunctions. Consider the following issues.

 Connections from the power supply to the VDD and Vss pins should be implemented via the shortest, thickest patterns possible. (2) If a bypass capacitor is connected between VDD and Vss, connections between the VDD and Vss pins should be as short as possible.

Bypass capacitor connection example VDD VDD VSS CPW1 VSS VSS

Signal line location

- To prevent electromagnetically-induced noise arising from mutual induction, large-current signal lines should not be positioned close to pins susceptible to noise, such as oscillator and analog measurement pins.
- Locating signal lines in parallel over significant distances or crossing signal lines operating at high speed will cause malfunctions due to noise generated by mutual interference.

Unused pins

- (1) I/O port (P) pins
 Unused pins should be left open. The control registers should be fixed at the initial status.
- (2) OSC1, OSC2, OSC3, OSC4, and EXOSC pins

 If the OSC1 crystal oscillator circuit is not used, the OSC1 and OSC2 pins should be left open. If the OSC3 crystal/ceramic oscillator circuit or EXOSC input circuit is not used, the pin should be configured as a general-purpose I/O port. The control registers should be fixed at the initial status (disabled).

Miscellaneous

Minor variations over time may result in electrical damage arising from disturbances in the form of voltages exceeding the absolute maximum rating when mounting the product in addition to physical damage. The following factors can give rise to these variations:

- (1) Electromagnetically-induced noise from industrial power supplies used in mounting reflow, reworking after mounting, and individual characteristic evaluation (testing) processes
- (2) Electromagnetically-induced noise from a solder iron when soldering

In particular, during soldering, take care to ensure that the soldering iron GND (tip potential) has the same potential as the IC GND.

Appendix D Measures Against Noise

To improve noise immunity, take measures against noise as follows:

Noise Measures for VDD, VDDQSPI, and Vss Power Supply Pins

When noise falling below the rated voltage is input, an IC malfunction may occur. If desired operations cannot be achieved, take measures against noise on the circuit board, such as designing close patterns for circuit board power supply circuits, adding noise-filtering decoupling capacitors, and adding surge/noise prevention components on the power supply line.

For the recommended patterns on the circuit board, see "Mounting Precautions" in Appendix.

Noise Measures for #RESET Pin

If noise is input to the #RESET pin, the IC may be reset. Therefore, the circuit board must be designed properly taking noise measures into consideration.

For the recommended patterns on the circuit board, see "Mounting Precautions" in Appendix.

Noise Measures for Oscillator Pins

The oscillator input pins must pass a signal of small amplitude, so they are hypersensitive to noise. Therefore, the circuit board must be designed properly taking noise measures into consideration.

For the recommended patterns on the circuit board, see "Mounting Precautions" in Appendix.

Noise Measures for Interrupt Input Pins

This product is able to generate a port input interrupt when the input signal changes. The interrupt is generated when an input signal edge is detected, therefore, an interrupt may occur if the signal changes due to extraneous noise. To prevent occurrence of unexpected interrupts due to extraneous noise, enable the chattering filter circuit when using the port input interrupt.

For details of the port input interrupt and chattering filter circuit, see the "I/O Ports" chapter.

Noise Measures for UART Pins

This product includes a UART for asynchronous communications. The UART starts receive operation when it detects a low level input from the SINn pin. Therefore, a receive operation may be started if the SINn pin is set to low due to extraneous noise. In this case, a receive error will occur or invalid data will be received.

To prevent the UART from malfunction caused by extraneous noise, take the following measures:

- Stop the UART operations while asynchronous communication is not performed.
- Execute the resending process via software after executing the receive error handler with a parity check.

For details of the pin functions and the function switch control, see the "I/O Ports" chapter. For the UART control and details of receive errors, see the "UART" chapter.

Noise Measures for Input Pins Connected to Signal with High Driving Capability Such As Power Supply

There is a possibility of a large current flow into the pins that are directly connected to a power supply or an output of a device with high driving capability if noise is input to those pins. To prevent this, connect a 30 Ω or more pin protection resistor to the pins in series. The resistance value should be determined by evaluating it on the mounting board.

When connecting a power supply directly to the VREFA pin, insert a 100 Ω resistor in series. This resistance does not affect the A/D converter characteristics.

Revision History

Code No.	Page	Contents
414190500	All	New establishment
414190501	1-3	1.1 Features
		Added the following annotation to Table 1.1.1.
		*2 SLEEP mode refers to deep sleep mode in the Cortex®-M0+ processor. The RAM retains data even in SLEEP mode.
	2-14	2.4.2 Transition between Operating Modes
	2-14	SLEEP mode
		Added the following description:
		The RAM retains data even in SLEEP mode.
	4-2	4.3.1 Flash Memory Pin
		Deleted the following description:
		For the VPP voltage, refer to "Recommended Operating Conditions, Flash programming voltage VPP" in the "Electrical Characteristics" chapter.
	7-6	7.4.2 Port Input/Output Control
	. •	Chattering filter function
		The equation number was corrected.
		(Eq. 6.2) → (Eq. 7.2)
	15-1	15.1 Overview
		Corrected the description.
		- 1M-byte external Flash memory <u>mapped access area</u> that allows programmable re-mapping. Added an item to Table 15.1.1.
		Memory mapped access area for external Flash memory: 1M-byte area beginning with address
		<u>0x0004_0000</u>
	15-8, 9	15.4 Data Format
		Figures 15.4.1 and 15.4.2
		Added the following bit setting:
		<u>QSPI_nMOD.CHDL[3:0] bits = 0x7</u> Figure 15.4.3
		Added the following bit setting:
		QSPI_nMOD.CHDL[3:0] bits = $0x3$
	15-10, 11	15.5.2 Memory Mapped Access Mode
		Figures 15.5.2.1 and 15.5.2.2
		Corrected the description.
		The QSPI treats the dummy cycle as <u>6 cycles including</u> 1 driving cycle. (QSPI_nMMACFG2.DUMDL[3:0] bits = 0x0, QSPI_nMMACFG2.DUMLN[3:0] bits = 0x5)
		The QSPI treats the data cycle as 2 cycles including 2 driving cycles.
		$(QSPI_nMOD.CHDL[3:0] $ bits = 0x1, $QSPI_nMOD.CHLN[3:0] $ bits = 0x1)
	15-11	15.5.2 Memory Mapped Access Mode
		Corrected the description.
		The memory mapped access area for external Flash memory in the system memory area is used to map
	15-17	the external Flash memory and to access from the CPU. 15.5.6 Data Reception in Memory Mapped Access Mode
	13-17	Data receiving procedure
		Corrected the description.
		4. Read the memory mapped access area for external Flash memory with an 8, 16, or 32-bit memory
		read instruction.
		This operation directly reads data within the 1M-byte external Flash memory area remapped to the
	15.00	memory mapped access area for external Flash memory at Step 2.
	15-29	15.8 Control Registers QSPI Ch.n Mode Register
		Deleted the following description of the CHDL[3:0] bits:
		This setting is required to output the XIP confirmation bit to Micron Flash memories or to output the
		mode byte to Spansion Flash memories.
	15-35	15.8 Control Registers
		QSPI Ch.n Memory Mapped Access Configuration Register 2
		Modified the register table. DUMDL[3:0], DUMLN[3:0]: Initial = 0x0 → 0x7
	15-37	15.8 Control Registers
	10-01	QSPI Ch.n Mode Byte Register
		Added the following description to the XIPEXT[7:0] bits:
		However, set these bits as follows when the HW processor (HWP) is used:
		• Before enabling the HWP, set to the same value as the QSPI_nMB.XIPACT[7:0] bits.
		• Before disabling the HWP, set to the mode byte for terminating the XIP session.

REVISION HISTORY

Code No.	Page	Contents						
414190501	16-7	16-7 16.4.3 Data Reception in Master Mode						
		Data receiving procedure						
		Added Step 1. (The old step numbers were carried down in order.)						
		1. When receiving one-byte data, write 1 to the I2CnCTL.TXNACK bit.						
	16-9	16.4.3 Data Reception in Master Mode						
		Data reception using DMA						
		Corrected the description.						
		This automates the data receiving procedure Steps 6, 8, and 10 described above.						
	22-17	22.4.3 External QSPI Flash Memory Access						
		Added a new section.						
	22-30	22.7 Control Registers						
		SDAC2 Control Register						
		Added a description on "Bit 0 SDACEN."						
	AP-A-37	Appendix A List of Peripheral Circuit Control Registers						
		QSPI_0MMACFG2 (QSPI Ch.0 Memory Mapped Access Configuration Register 2)						
		Modified the register table.						
		DUMDL[3:0], DUMLN[3:0]: Initial = $0x0 \rightarrow 0x7$						

International Sales Operations

America

Epson America, Inc.

Headquarter: 3840 Kilroy Airport Way

Long Beach, California 90806-2452 USA

Phone: +1-562-290-4677

San Jose Office: 214 Devcon Drive San Jose, CA 95112 USA

Phone: +1-800-228-3964 or +1-408-922-0200

Europe

Epson Europe Electronics GmbH

Riesstrasse 15, 80992 Munich, Germany Fax: +49-89-14005-110 Phone: +49-89-14005-0

Asia

Epson (China) Co., Ltd.

4th Floor, Tower 1 of China Central Place, 81 Jianguo Road, Chaoyang District, Beijing 100025, China

Phone: +86-10-8522-1199 Fax: +86-10-8522-1120

Shanghai Branch

Room 1701 & 1704, 17 Floor, Greenland Center II, 562 Dong An Road, Xu Hui District, Shanghai, China Phone: +86-21-5330-4888 Fax: +86-21-5423-4677

Shenzhen Branch

Room 804-805, 8 Floor, Tower 2, Ali Center, No.3331 Keyuan South RD (Shenzhen bay), Nanshan District, Shenzhen 518054, China

Phone: +86-10-3299-0588

Fax: +86-10-3299-0560

Epson Taiwan Technology & Trading Ltd.

15F, No.100, Songren Rd, Sinyi Dist, Taipei City 110, Taiwan Phone: +886-2-8786-6688

Epson Singapore Pte., Ltd.

1 HarbourFront Place.

#03-02 HarbourFront Tower One, Singapore 098633 Phone: +65-6586-5500 Fax: +65-6271-3182

Epson Korea Co., Ltd

10F Posco Tower Yeoksam, Teheranro 134 Gangnam-gu, Seoul, 06235, Korea Phone: +82-2-3420-6695

Seiko Epson Corp. Sales & Marketing Division

Device Sales & Marketing Department

29th Floor, JR Shinjuku Miraina Tower, 4-1-6 Shinjuku, Shinjuku-ku, Tokyo 160-8801, Japan