EPSON

CMOS 32-BIT SINGLE CHIP MICROCONTROLLER S1C31W65 Technical Manual

NOTICE: PLEASE READ THE FOLLOWING NOTICE CAREFULLY BEFORE USING THIS DOCUMENT

The contents of this document are subject to change without notice.

- 1. This document may not be copied, reproduced, or used for any other purpose, in whole or in part, without the consent of the Seiko Epson Corporation ("Epson").
- 2. Before purchasing or using Epson products, please contact our sales representative for the latest information and always be sure to check the latest information published on Epson's official web sites and other sources.
- 3. Information provided in this document such as application circuits, programs, usage, etc., are for reference purposes only. Using the application circuits, programs, usage, etc. in the design of your equipment or systems is your own responsibility. Epson makes no guarantees against any infringements or damages to any third parties' intellectual property rights or any other rights resulting from the information. This document does not grant you any licenses, intellectual property rights or any other rights with respect to Epson products owned by Epson or any third parties.
- 4. Epson is committed to constantly improving quality and reliability, but semiconductor products in general are subject to malfunction and failure. By using Epson products, you shall be responsible for your hardware. Software and systems must be designed well enough to prevent death or injury as well as any property damage even if any of the malfunctions or failures might be caused by Epson products. When designing your products using Epson products, please be sure to check and comply with the latest information regarding Epson products (this document, specifications, data sheets, manuals, Epson's web site, etc.). When using the information included above materials such as product data, charts, technical contents, programs, algorithms and application circuit examples, you shall evaluate your products both on a stand-alone basis as well as within your overall systems. You shall be solely responsible for deciding whether or not to adopt and use Epson products.
- 5. Epson has prepared this document and programs provided in this document carefully to be accurate and dependable, but Epson does not guarantee that the information and the programs are always accurate and complete. Epson assumes no responsibility for any damages which you incur due to misinformation in this document and the programs.
- 6. No dismantling, analysis, reverse engineering, modification, alteration, adaptation, reproduction, etc., of Epson products is allowed.
- 7. Epson products have been designed, developed and manufactured to be used in general electronic applications (office equipment, communications equipment, measuring instruments, home electronics, etc.) ("General Purpose") and applications which is individually listed in this document or designated by Epson ("Designated Purpose"). Epson products are NOT intended for any use beyond the General Purpose and Designated Purpose uses that requires particular/higher quality or reliability in order to refrain from causing any malfunction or failure leading to death, injury, serious property damage or severe impact on society, including, but not limited to those listed below ("Particular Purpose"). Therefore, you are advised to use Epson products only for General Purpose and Designated Purpose uses. Should you desire to buy and use Epson products for a Particular Purpose, Epson makes no warranty and disclaims with respect to Epson products, whether express or implied, including without limitation any implied warranty of merchantability or fitness for any Particular Purpose. Please be sure to contact our sales representative and obtain approval in advance.

[Examples of Particular Purpose]

- Space equipment (artificial satellites, rockets, etc.) /
- Transportation vehicles and their control equipment (automobiles, aircraft, trains, ships, etc.) /
- Medical equipment / Relay equipment to be placed on ocean floor /
- Power station control equipment / Disaster or crime prevention equipment / Traffic control equipment / Financial equipment

Other applications requiring similar levels of reliability as those listed above. Please be sure to contact our sales representative for details of the other applications.

- 8. Epson products listed in this document and our associated technologies shall not be used in any equipment or systems that laws and regulations in Japan or any other countries prohibit to manufacture, use or sell. Furthermore, Epson products and our associated technologies shall not be used for developing weapons of mass destruction, or any other military purposes or applications. If exporting Epson products or our associated technologies, you shall comply with the Foreign Exchange and Foreign Trade Control Act in Japan, Export Administration Regulations in the U.S.A. (EAR) and other export-related laws and regulations in Japan and any other countries and follow the required procedures as provided by the relevant laws and regulations.
- Epson assumes no responsibility for any damages (whether direct or indirect) caused by or in relation with your non-compliance with the terms and conditions in this document.
- 10. Epson assumes no responsibility for any damages (whether direct or indirect) incurred by any third party that you assign, transfer, loan, etc., Epson products to.
- 11. For more details or other concerns about this document, please contact our sales representative.
- 12. Company names and product names listed in this document are trademarks or registered trademarks of their respective companies.

Evaluation board/kit and Development tool important notice

- 1. Epson evaluation board/kit or development tool is designed for use for engineering evaluation, demonstration, or development purposes only. Do not use it for other purposes. It is not intended to meet the requirements of design for finished products.
- 2. Epson evaluation board/kit or development tool is intended for use by an electronic engineer and is not a consumer product. The user should use it properly and in a safe manner. Epson dose not assume any responsibility or liability of any kind of damage and/or fire coursed by the use of it. The user should cease to use it when any abnormal issue occurs even during proper and safe use.
- 3. The part used for Epson evaluation board/kit or development tool may be changed without any notice.

Preface

This is a technical manual for designers and programmers who develop a product using the S1C31W65. This document describes the functions of the IC, embedded peripheral circuit operations, and their control methods.

Notational conventions and symbols in this manual

Register address

Peripheral circuit chapters do not provide control register addresses. Refer to "Peripheral Circuit Area" in the "Memory and Bus" chapter or "List of Peripheral Circuit Control Registers" in the Appendix.

Register and control bit names

In this manual, the register and control bit names are described as shown below to distinguish from signal and pin names.

XXX register: Represents a register including its all bits.

XXX.YYY bit: Represents the one control bit YYY in the XXX register.

XXX.ZZZ[1:0] bits: Represents the two control bits ZZZ1 and ZZZ0 in the XXX register.

Register table contents and symbols

Initial: Value set at initialization

Reset: Initialization condition. The initialization condition depends on the reset group (H0, H1, or S0). For more information on the reset groups, refer to "Initialization Conditions (Reset Groups)" in the "Power Supply, Reset, and Clocks" chapter.

R/W: R = Read only bit

W = Write only bit

WP = Write only bit with a write protection using the SYSPROT.PROT[15:0] bits

R/W = Read/write bit

R/WP = Read/write bit with a write protection using the SYSPROT.PROT[15:0] bits

Control bit read/write values

This manual describes control bit values in a hexadecimal notation except for one-bit values (and except when decimal or binary notation is required in terms of explanation). The values are described as shown below according to the control bit width.

 1 bit:
 0 or 1

 2 to 4 bits:
 0x0 to 0xf

 5 to 8 bits:
 0x00 to 0xff

 9 to 12 bits:
 0x000 to 0xfff

 13 to 16 bits:
 0x0000 to 0xffff

Decimal: 0 to 9999... Binary: 0b0000... to 0b1111...

Channel number

Multiple channels may be implemented in some peripheral circuits (e.g., 16-bit timer, etc.). The peripheral circuit chapters use 'n' as the value that represents the channel number in the register and pin names regardless of the number of channel actually implemented. Normally, the descriptions are applied to all channels. If there is a channel that has different functions from others, the channel number is specified clearly. Example) T16_nCTL register of the 16-bit timer

If one channel is implemented (Ch.0 only): $T16_nCTL = T16_0CTL$ only If two channels are implemented (Ch.0 and Ch.1): $T16_nCTL = T16_0CTL$ and $T16_1CTL$

For the number of channels implemented in the peripheral circuits of this IC, refer to "Features" in the "Overview" chapter.

Low power mode

This manual describes the low power modes as HALT mode and SLEEP mode. These terms refer to sleep mode and deep sleep mode in the Cortex[®]-M0+ processor, respectively.

- Contents -

	Pre	ace	i
	Not	ational conventions and symbols in this manual	i
		-	
1		ew	
		Features	
	1.2	Block Diagram	. 1-3
	1.3	Pins	. 1-4
		1.3.1 Pin Configuration Diagram	. 1-4
		1.3.2 Pin Descriptions	. 1-5
0	Dowor	Supply, Reset, and Clocks	0.1
2			
	2.1	Power Generator (PWGA)	
		2.1.1 Overview	
		2.1.2 Pins	
		2.1.3 VD1 Regulator Operation Mode	
		2.1.4 VD1 Regulator Voltage Mode	
	2.2	System Reset Controller (SRC)	. 2-3
		2.2.1 Overview	. 2-3
		2.2.2 Input Pin	. 2-4
		2.2.3 Reset Sources	. 2-4
		2.2.4 Reset Request Flag	. 2-5
		2.2.5 #RESET Pin Input Control	. 2-5
		2.2.6 Initialization Conditions (Reset Groups)	
	2.3	Clock Generator (CLG)	. 2-7
		2.3.1 Overview	
		2.3.2 Input/Output Pins	
		2.3.3 Clock Sources	
		2.3.4 Operations	
	24	Operating Mode	
	2.4	2.4.1 Initial Boot Sequence	
		2.4.1 Transition between Operating Modes	
	0.5		
		Interrupts	
	2.6	Control Registers	
		PWGA Control Register	
		SRC Reset Request Flag Register	
		SRC #RESET Port Control Register	
		CLG System Clock Control Register CLG Oscillation Control Register	
		CLG IOSC Control Register	
		CLG OSC1 Control Register	
		CLG OSC3 Control Register	
		CLG Interrupt Flag Register	
		CLG Interrupt Enable Register	
		CLG FOUT Control Register	
		CLG Oscillation Frequency Trimming Register 1	
		CLG Oscillation Frequency Trimming Register 2	
2			
3		nd Debugger	
		Overview	
	3.2	CPU	. 3-1
	3.3	Debugger	. 3-1
		3.3.1 List of Debugger Input/Output Pins	. 3-1
		3.3.2 External Connection	. 3-1

	3.4	Reference Documents	3-2
4	Memo	ry and Bus	.4-1
	4.1	Overview	4-1
	4.2	Bus Access Cycle	4-2
		Flash Memory	
		4.3.1 Flash Memory Pin	
		4.3.2 Flash Bus Access Cycle Setting	
		4.3.3 Flash Programming	4-2
	4.4	RAM	4-3
		Display Data RAM	
		Peripheral Circuit Control Registers	
	1.0	4.6.1 System-Protect Function	
	17	Control Registers	
	4.7	System Protect Register	
		FLASHC Flash Read Cycle Register	
F	Intown	pt	
5		-	
		Overview	
	5.2	Vector Table	
		5.2.1 Vector Table Offset Address (VTOR)	
		5.2.2 Priority of Interrupts	
		Peripheral Circuit Interrupt Control	
	5.4	NMI	5-3
6	DMA C	Controller (DMAC)	.6-1
	6.1	Overview	6-1
	6.2	Operations	6-2
		6.2.1 Initialization	
	6.3	Priority	6-2
		Data Structure	
		6.4.1 Transfer Source End Pointer	
		6.4.2 Transfer Destination End Pointer	
		6.4.3 Control Data	
	6.5	DMA Transfer Mode	
		6.5.1 Basic Transfer	
		6.5.2 Auto-Request Transfer	6-5
		6.5.3 Ping-Pong Transfer	6-6
		6.5.4 Memory Scatter-Gather Transfer	6-7
		6.5.5 Peripheral Scatter-Gather Transfer	6-8
	6.6	DMA Transfer Cycle	6-9
	6.7	Interrupts	6-9
	6.8	Control Registers	6-10
		DMAC Status Register	
		DMAC Configuration Register	6-10
		DMAC Control Data Base Pointer Register	
		DMAC Alternate Control Data Base Pointer Register	
		DMAC Software Request Register DMAC Request Mask Set Register	
		DMAC Request Mask Set Register	
		DMAC Enable Set Register	
		DMAC Enable Clear Register	
		DMAC Primary-Alternate Set Register	
		DMAC Primary-Alternate Clear Register	6-13

CONTENTS

DMAC Priority Set Register	
DMAC Priority Clear Register	
DMAC Error Interrupt Flag Register	
DMAC Transfer Completion Interrupt Flag Register	
DMAC Transfer Completion Interrupt Enable Set Register	
DMAC Transfer Completion Interrupt Enable Clear Register	
DMAC Error Interrupt Enable Set Register	
DMAC Error Interrupt Enable Clear Register	
7 I/O Ports (PPORT)	7-1
7.1 Overview	
7.2 I/O Cell Structure and Functions	
7.2.1 Schmitt Input	
7.2.2 Over Voltage Tolerant Fail-Safe Type I/O Cell	
7.2.3 Pull-Up/Pull-Down	
7.2.4 CMOS Output and High Impedance State	
7.3 Clock Settings	
7.3.1 PPORT Operating Clock	
7.3.2 Clock Supply in SLEEP Mode	
7.3.3 Clock Supply During Debugging	7-3
7.4 Operations	
7.4.1 Initialization	
7.4.2 Port Input/Output Control	7-5
7.5 Interrupts	
7.6 Control Registers	
Px Port Data Register	
Px Port Enable Register	
Px Port Pull-up/down Control Register	
Px Port Interrupt Flag Register	
Px Port Interrupt Control Register	
Px Port Chattering Filter Enable Register	
Px Port Mode Select Register	
Px Port Function Select Register	
P Port Clock Control Register	
P Port Interrupt Flag Group Register	
7.7 Control Register and Port Function Configuration of this IC	
7.7.1 P0 Port Group	
7.7.2 P1 Port Group	
7.7.3 P2 Port Group	
7.7.4 P3 Port Group	
7.7.5 P4 Port Group	
7.7.6 P5 Port Group	
7.7.7 P6 Port Group	
7.7.8 Pd Port Group	
7.7.9 Common Registers between Port Groups	
8 Universal Port Multiplexer (UPMUX)	8-1
8.1 Overview	
8.2 Peripheral Circuit I/O Function Assignment	
8.3 Control Registers	
Pxy-xz Universal Port Multiplexer Setting Register	
9 Watchdog Timer (WDT2)	9-1
9.1 Overview	
9.2 Clock Settings	

	9.2.1 WDT2 Operating Clock	9-1
	9.2.2 Clock Supply in DEBUG Mode	9-1
	9.3 Operations	9-2
	9.3.1 WDT2 Control	
	9.3.2 Operations in HALT and SLEEP Modes	
	9.4 Control Registers	
	WDT2 Clock Control Register	
	WDT2 Control Register	
	WDT2 Counter Compare Match Register	
10	Real-Time Clock (RTCA)	10-1
	10.1 Overview	10-1
	10.2 Output Pin and External Connection	
	10.2.1 Output Pin	
	10.3 Clock Settings	
	10.3.1 RTCA Operating Clock	
	10.3.2 Theoretical Regulation Function	
	10.4 Operations	10-3
	10.4.1 RTCA Control	10-3
	10.4.2 Real-Time Clock Counter Operations	10-4
	10.4.3 Stopwatch Control	
	10.4.4 Stopwatch Count-up Pattern	
	10.5 Interrupts	
	10.6 Control Registers	
	RTCA Control Register (Low Byte)	
	RTCA Control Register (High Byte) RTCA Second Alarm Register	
	RTCA Hour/Minute Alarm Register	
	RTCA Stopwatch Control Register	
	RTCA Second/1Hz Register	
	RTCA Hour/Minute Register	
	RTCA Month/Day Register	
	RTCA Year/Week Register	
	RTCA Interrupt Flag Register	
	RTCA Interrupt Enable Register	
	Supply Voltage Detector (SVD4)	
11		
	11.1 Overview	
	11.2 Input Pins and External Connection	11-2
	11.2.1 Input Pins	
	11.2.2 External Connection	11-2
	11.3 Clock Settings	11-2
	11.3.1 SVD4 Operating Clock	
	11.3.2 Clock Supply in SLEEP Mode	
	11.3.3 Clock Supply in DEBUG Mode	
	11.4 Operations	
	11.4.1 SVD4 Control	
	11.4.2 SVD4 Operations	
	11.5 SVD4 Interrupt and Reset	
	11.5.1 SVD4 Interrupt	
	11.5.2 SVD Reset	
	11.6 Control Registers	11-5
	SVD4 Ch.n Clock Control Register	11-5
	SVD4 Ch.n Control Register	11-6

		SVD4 Ch.n Status and Interrupt Flag Register	
		SVD4 Ch.n Interrupt Enable Register	11-8
12	16-bit	Timers (T16)	12-1
	12.1	Overview	12-1
	12.2	Input Pin	12-1
		Clock Settings	
		12.3.1 T16 Operating Clock	
		12.3.2 Clock Supply in SLEEP Mode	
		12.3.3 Clock Supply During Debugging	
		12.3.4 Event Counter Clock	
	124	Operations	
		12.4.1 Initialization	
		12.4.2 Counter Underflow	
		12.4.3 Operations in Repeat Mode	
		12.4.4 Operations in One-shot Mode	
		12.4.5 Counter Value Read	
	12.5	Interrupt	
		Control Registers	
	12.0	T16 Ch.n Clock Control Register	
		T16 Ch.n Mode Register	
		T16 Ch.n Control Register	
		T16 Ch.n Reload Data Register	12-6
		T16 Ch.n Counter Data Register	12-6
		T16 Ch.n Interrupt Flag Register	
		T16 Ch.n Interrupt Enable Register	12-7
13	UART	(UART3)	13-1
	13.1	Overview	13-1
	13.2	Input/Output Pins and External Connections	13-2
		13.2.1 List of Input/Output Pins	
		13.2.2 External Connections	
		13.2.3 Input Pin Pull-Up Function	13-2
		13.2.4 Output Pin Open-Drain Output Function	
		13.2.5 Input/Output Signal Inverting Function	13-2
	13.3	Clock Settings	13-2
		13.3.1 UART3 Operating Clock	
		13.3.2 Clock Supply in SLEEP Mode	
		13.3.3 Clock Supply During Debugging	13-3
		13.3.4 Baud Rate Generator	
	13.4	Data Format	13-3
		Operations	
	10.0	13.5.1 Initialization	
		13.5.2 Data Transmission	
		13.5.3 Data Reception	
		13.5.4 IrDA Interface	
		13.5.5 Carrier Modulation	
	13.6	Receive Errors	
	10.0	13.6.1 Framing Error	
		13.6.2 Parity Error	
		13.6.3 Overrun Error	
	13.7	Interrupts	
		DMA Transfer Requests	
	13.9	Control Registers 1	13-11

		UART3 Ch.n Clock Control Register	
		UART3 Ch.n Mode Register	
		UART3 Ch.n Baud-Rate Register	
		UART3 Ch.n Control Register	
		UART3 Ch.n Transmit Data Register	
		UART3 Ch.n Receive Data Register	
		UART3 Ch. <i>n</i> Status and Interrupt Flag Register UART3 Ch. <i>n</i> Interrupt Enable Register	
		UART3 Ch.n Transmit Buffer Empty DMA Request Enable Register	
		UART3 Ch. <i>n</i> Receive Buffer One Byte Full DMA Request Enable Register	
		UART3 Ch. <i>n</i> Carrier Waveform Register	
1/	Synchi	ronous Serial Interface (SPIA)	
14		Overview	
		Input/Output Pins and External Connections	
	14.2	14.2.1 List of Input/Output Pins	
		14.2.1 List of input/Output Fins	
		14.2.3 Pin Functions in Master Mode and Slave Mode	
		14.2.4 Input Pin Pull-Up/Pull-Down Function	
	14.3	Clock Settings	
		14.3.1 SPIA Operating Clock	
		14.3.2 Clock Supply During Debugging	
		14.3.3 SPI Clock (SPICLKn) Phase and Polarity	14-4
	14.4	Data Format	14-5
	14.5	Operations	14-5
		14.5.1 Initialization	
		14.5.2 Data Transmission in Master Mode	
		14.5.3 Data Reception in Master Mode	
		14.5.4 Terminating Data Transfer in Master Mode	
		14.5.5 Data Transfer in Slave Mode	
		14.5.6 Terminating Data Transfer in Slave Mode	
	14.6	Interrupts	
		DMA Transfer Requests	
		•	
	14.8	Control Registers	
		SPIA Ch.n Mode Register	
		SPIA Ch. <i>n</i> Control Register SPIA Ch. <i>n</i> Transmit Data Register	
		SPIA Ch.n Receive Data Register	
		SPIA Ch.n Interrupt Flag Register	
		SPIA Ch.n Interrupt Enable Register	
		SPIA Ch.n Transmit Buffer Empty DMA Request Enable Register	
		SPIA Ch.n Receive Buffer Full DMA Request Enable Register	14-16
15	I ² C (I20	C)	15-1
	15.1	Overview	15-1
	15.2	Input/Output Pins and External Connections	15-2
		15.2.1 List of Input/Output Pins	
		15.2.2 External Connections	
	15.2	Clock Settings	
	10.0	15.3.1 I2C Operating Clock	
		15.3.1 120 Operating Clock	
		15.3.3 Baud Rate Generator	
	15.4	Operations	
		15.4.1 Initialization	
		15.4.2 Data Transmission in Master Mode	15-5

CONTENTS

	15.4.3 Data Reception in Master Mode	15-7
	15.4.4 10-bit Addressing in Master Mode	15-10
	15.4.5 Data Transmission in Slave Mode	15-11
	15.4.6 Data Reception in Slave Mode	15-13
	15.4.7 Slave Operations in 10-bit Address Mode	15-15
	15.4.8 Automatic Bus Clearing Operation	15-15
	15.4.9 Error Detection	15-16
15.5	Interrupts	15-17
	DMA Transfer Requests	
	Control Registers	
	I2C Ch.n Clock Control Register	
	I2C Ch.n Mode Register	
	I2C Ch.n Baud-Rate Register	15-19
	I2C Ch.n Own Address Register	15-20
	I2C Ch.n Control Register	15-20
	I2C Ch.n Transmit Data Register	
	I2C Ch.n Receive Data Register	
	I2C Ch.n Status and Interrupt Flag Register	
	I2C Ch.n Interrupt Enable Register	
	I2C Ch.n Transmit Buffer Empty DMA Request Enable Register	
	I2C Ch.n Receive Buffer Full DMA Request Enable Register	19-24
16 16-bit	PWM Timers (T16B)	16-1
16.1	Overview	16-1
16.2	Input/Output Pins	16-2
	Clock Settings	
	16.3.1 T16B Operating Clock	
	16.3.2 Clock Supply in SLEEP Mode	
	16.3.3 Clock Supply During Debugging	
	16.3.4 Event Counter Clock	
16 /	Operations	
10.4	16.4.1 Initialization	
	16.4.2 Counter Block Operations	
	16.4.3 Comparator/Capture Block Operations	
	16.4.4 TOUT Output Control	
10 5	Interrupt	
	•	
	DMA Transfer Requests	
16.7	Control Registers	
	T16B Ch.n Clock Control Register	
	T16B Ch.n Counter Control Register	
	T16B Ch.n Max Counter Data Register T16B Ch.n Timer Counter Data Register	
	T16B Ch.n Counter Status Register	
	T16B Ch.n Interrupt Flag Register	
	T16B Ch.n Interrupt Enable Register	
	T16B Ch.n Comparator/Capture m Control Register	
	T16B Ch.n Compare/Capture m Data Register	16-31
	T16B Ch.n Counter Max/Zero DMA Request Enable Register	
	T16B Ch.n Compare/Capture m DMA Request Enable Register	16-32
17 Sound	Generator (SNDA)	17-1
	Overview	
	Output Pins and External Connections	
17.2	17.2.1 List of Output Pins	
	17.2.1 List of Output Firis	
		11-2

CONTENTS

		17.2.3 External Connections	17-2
	17.3	Clock Settings	17-3
		17.3.1 SNDA Operating Clock	
		17.3.2 Clock Supply in SLEEP Mode	
		17.3.3 Clock Supply in DEBUG Mode	
	17.4	Operations	
		17.4.1 Initialization	
		17.4.2 Buzzer Output in Normal Buzzer Mode	
		17.4.3 Buzzer Output in One-shot Buzzer Mode	
		17.4.4 Output in Melody Mode	
	17 5	Interrupts	
		DMA Transfer Requests	
		-	
	17.7	Control Registers	
		SNDA Clock Control Register SNDA Select Register	
		SNDA Select negister	
		SNDA Data Register	
		SNDA Interrupt Flag Register	
		SNDA Interrupt Enable Register	
		SNDA Sound Buffer Empty DMA Request Enable Register	17-14
18	IR Ren	note Controller (REMC3)	18-1
		Overview	
		Output Pins and External Connections	
	10.2	18.2.1 List of Output Pins	
		18.2.2 External Connections	
	10.0		
	18.3	Clock Settings	
		18.3.1 REMC3 Operating Clock	
		18.3.2 Clock Supply in SLEEP Mode	
		18.3.3 Clock Supply During Debugging	
	18.4	Operations	
		18.4.1 Initialization	
		18.4.2 Data Transmission Procedures	
		18.4.3 REMO Output Waveform	
		18.4.4 Continuous Data Transmission and Compare Buffers	
		Interrupts	
	18.6	Application Example: Driving EL Lamp	18-7
	18.7	Control Registers	18-7
		REMC3 Clock Control Register	
		REMC3 Data Bit Counter Control Register	
		REMC3 Data Bit Counter Register	
		REMC3 Data Bit Active Pulse Length Register	
		REMC3 Data Bit Length Register REMC3 Status and Interrupt Flag Register	
		REMC3 Interrupt Enable Register	
		REMC3 Carrier Waveform Register	
		REMC3 Carrier Modulation Control Register	
10	12_hit	A/D Converter (ADC12A)	10_1
19			
		Overview	
	19.2	Input Pins and External Connections	
		19.2.1 List of Input Pins	
			10 1
		19.2.2 External Connections Clock Settings	

			ADC12A Operating Clock		
		19.3.2	Sampling Time	19	-2
	19.4	Operatio	ons	19	-3
			Initialization		
		19.4.2	Conversion Start Trigger Source	19	-3
		19.4.3	Conversion Mode and Analog Input Pin Settings	19	-4
		19.4.4	A/D Conversion Operations and Control Procedures	19	-4
	19.5	Interrupt	ts	19	-6
		-	ansfer Requests		
			Registers		
	1011		2A Ch.n Control Register		
			2A Ch.n Trigger/Analog Input Select Register		
		ADC1	2A Ch.n Configuration Register	. 19	-9
			2A Ch.n Interrupt Flag Register		
			2A Ch.n Interrupt Enable Register		
			2A Ch.n DMA Request Enable Register m		
		ADC1	2A Ch.n Result Register	19-	11
20	Tempe	rature S	Sensor/Reference Voltage Generator (TSRVR)	20	-1
	20.1	Overviev	W	20	-1
	20.2	Output F	Pin and External Connections	20	-1
		-	Output Pin		
			External Connections		
	20.3		ons		
		-	Reference Voltage Setting		
			Temperature Sensor Setting		
	20.4		Registers		
			R Ch.n Temperature Sensor Control Register		
			R Ch.n Reference Voltage Generator Control Register		
21		rivor (l (CD8D)	21	-1
21		•	w		
	21.2		Pins and External Connections		
			List of Output Pins		
		21.2.2	External Connections		
	21.3	~			
			ettings		
		21.3.1	ettings LCD8D Operating Clock	21	
		21.3.1 21.3.2	ettings LCD8D Operating Clock Clock Supply in SLEEP Mode	21 21	-3
		21.3.1 21.3.2 21.3.3	ettings LCD8D Operating Clock Clock Supply in SLEEP Mode Clock Supply in DEBUG Mode	21 21 21	-3 -3
	01.4	21.3.1 21.3.2 21.3.3 21.3.4	ettings LCD8D Operating Clock Clock Supply in SLEEP Mode Clock Supply in DEBUG Mode Frame Frequency	21 21 21 21	-3 -3 -3
	21.4	21.3.1 21.3.2 21.3.3 21.3.4 LCD Pov	ettings LCD8D Operating Clock Clock Supply in SLEEP Mode Clock Supply in DEBUG Mode Frame Frequency wer Supply	21 21 21 21 21	-3 -3 -3 -4
	21.4	21.3.1 21.3.2 21.3.3 21.3.4 LCD Pov 21.4.1	ettings LCD8D Operating Clock Clock Supply in SLEEP Mode Clock Supply in DEBUG Mode Frame Frequency wer Supply Internal Generation Mode	21 21 21 21 21 21 21	-3 -3 -3 -4 -4
	21.4	21.3.1 21.3.2 21.3.3 21.3.4 LCD Pov 21.4.1 21.4.2	ettings LCD8D Operating Clock Clock Supply in SLEEP Mode Clock Supply in DEBUG Mode Frame Frequency wer Supply Internal Generation Mode External Voltage Application Mode 1.	21 21 21 21 21 21 21 21	-3 -3 -4 -4 -4
	21.4	21.3.1 21.3.2 21.3.3 21.3.4 LCD Pov 21.4.1 21.4.2 21.4.3	ettings LCD8D Operating Clock Clock Supply in SLEEP Mode Clock Supply in DEBUG Mode Frame Frequency wer Supply Internal Generation Mode External Voltage Application Mode 1 External Voltage Application Mode 2	21 21 21 21 21 21 21 21 21	-3 -3 -4 -4 -4 -4
	21.4	21.3.1 21.3.2 21.3.3 21.3.4 LCD Pov 21.4.1 21.4.2 21.4.3 21.4.4	ettings LCD8D Operating Clock Clock Supply in SLEEP Mode Clock Supply in DEBUG Mode Frame Frequency wer Supply Internal Generation Mode External Voltage Application Mode 1 External Voltage Application Mode 2 External Voltage Application Mode 3	21 21 21 21 21 21 21 21 21	-3 -3 -4 -4 -4 -5 -5
		21.3.1 21.3.2 21.3.3 21.3.4 LCD Pov 21.4.1 21.4.2 21.4.3 21.4.4 21.4.5	ettings LCD8D Operating Clock Clock Supply in SLEEP Mode Clock Supply in DEBUG Mode Frame Frequency wer Supply Internal Generation Mode External Voltage Application Mode 1 External Voltage Application Mode 2 External Voltage Application Mode 3 LCD Power Supply Circuit Settings	21 21 21 21 21 21 21 21 21 21 21 21	-3 -3 -4 -4 -4 -5 -5 -6
		21.3.1 21.3.2 21.3.3 21.3.4 LCD Pov 21.4.1 21.4.2 21.4.3 21.4.4 21.4.5 Operatio	ettings LCD8D Operating Clock Clock Supply in SLEEP Mode Clock Supply in DEBUG Mode Frame Frequency wer Supply Internal Generation Mode External Voltage Application Mode 1 External Voltage Application Mode 2 External Voltage Application Mode 3 LCD Power Supply Circuit Settings Dns	21 21 21 21 21 21 21 21 21 21 21 21 21	-3 -3 -4 -4 -5 -5 -6 -6
		21.3.1 21.3.2 21.3.3 21.3.4 LCD Pov 21.4.1 21.4.2 21.4.3 21.4.4 21.4.5 Operatio 21.5.1	ettings LCD8D Operating Clock Clock Supply in SLEEP Mode Clock Supply in DEBUG Mode Frame Frequency wer Supply Internal Generation Mode External Voltage Application Mode 1 External Voltage Application Mode 2 External Voltage Application Mode 3 LCD Power Supply Circuit Settings ons Initialization	21 21 21 21 21 21 21 21 21 21 21 21 21	-3 -3 -4 -4 -5 -5 -6 -6
		21.3.1 21.3.2 21.3.3 21.3.4 LCD Pov 21.4.1 21.4.2 21.4.3 21.4.4 21.4.5 Operatio 21.5.1 21.5.2	ettings LCD8D Operating Clock Clock Supply in SLEEP Mode Clock Supply in DEBUG Mode Frame Frequency wer Supply Internal Generation Mode External Voltage Application Mode 1 External Voltage Application Mode 2 External Voltage Application Mode 3 LCD Power Supply Circuit Settings ons Initialization Display On/Off	21 21 21 21 21 21 21 21 21 21 21 21 21 2	-3 -3 -4 -4 -5 -5 -6 -6 -7
		21.3.1 21.3.2 21.3.3 21.3.4 LCD Pov 21.4.1 21.4.2 21.4.3 21.4.4 21.4.5 Operatio 21.5.1 21.5.2 21.5.3	ettings LCD8D Operating Clock Clock Supply in SLEEP Mode Clock Supply in DEBUG Mode Frame Frequency wer Supply Internal Generation Mode External Voltage Application Mode 1 External Voltage Application Mode 2 External Voltage Application Mode 3 LCD Power Supply Circuit Settings Initialization Display On/Off Inverted Display	21 21 21 21 21 21 21 21 21 21 21 21 21 2	-3 -3 -4 -4 -5 -5 -6 -6 -7 -7
		21.3.1 21.3.2 21.3.3 21.3.4 LCD Pov 21.4.1 21.4.2 21.4.3 21.4.4 21.4.5 Operatio 21.5.1 21.5.2 21.5.3 21.5.4	ettings LCD8D Operating Clock Clock Supply in SLEEP Mode Clock Supply in DEBUG Mode Frame Frequency wer Supply Internal Generation Mode External Voltage Application Mode 1 External Voltage Application Mode 2 External Voltage Application Mode 3 LCD Power Supply Circuit Settings Initialization Display On/Off Inverted Display Drive Duty Switching	 21 2	-3 -3 -4 -4 -5 -6 -6 -7 -7 -7
		21.3.1 21.3.2 21.3.3 21.3.4 LCD Pov 21.4.1 21.4.2 21.4.3 21.4.4 21.4.5 Operatic 21.5.1 21.5.2 21.5.3 21.5.4 21.5.5	ettings LCD8D Operating Clock Clock Supply in SLEEP Mode Clock Supply in DEBUG Mode Frame Frequency wer Supply Internal Generation Mode External Voltage Application Mode 1 External Voltage Application Mode 2 External Voltage Application Mode 3 LCD Power Supply Circuit Settings Initialization Display On/Off Inverted Display Drive Duty Switching Drive Waveforms	 21 	-3 -3 -4 -4 -5 -5 -6 -7 -7 -7 -7 -8
		21.3.1 21.3.2 21.3.3 21.3.4 LCD Pov 21.4.1 21.4.2 21.4.3 21.4.4 21.4.5 Operatio 21.5.1 21.5.2 21.5.3 21.5.4 21.5.5 21.5.6	ettings LCD8D Operating Clock Clock Supply in SLEEP Mode Clock Supply in DEBUG Mode Frame Frequency wer Supply Internal Generation Mode External Voltage Application Mode 1 External Voltage Application Mode 2 External Voltage Application Mode 3 LCD Power Supply Circuit Settings Initialization Display On/Off Inverted Display Drive Duty Switching	21 21 21 21 21 21 21 21 21 21 21 21 21 2	-3 -3 -4 -4 -5 -5 -6 -6 -7 -7 -7 -7 -7 -17

	21.6	Display Data RAM	21-17
		21.6.1 Display Area Selection	
		21.6.2 Segment Pin Assignment	
		21.6.3 Common Pin Assignment	21-18
	21.7	Interrupt	21-20
	21.8	Control Registers	21-20
		LCD8D Clock Control Register	
		LCD8D Control Register	
		LCD8D Timing Control Register 1 LCD8D Timing Control Register 2	
		LCD8D Power Control Register	
		LCD8D Display Control Register	
		LCD8D COM Pin Control Register 0	21-24
		LCD8D Interrupt Flag Register	
		LCD8D Interrupt Enable Register	21-25
22	R/F Co	onverter (RFC)	.22-1
	22.1	Overview	. 22-1
	22.2	Input/Output Pins and External Connections	. 22-2
		22.2.1 List of Input/Output Pins	
		22.2.2 External Connections	22-2
	22.3	Clock Settings	. 22-3
		22.3.1 RFC Operating Clock	. 22-3
		22.3.2 Clock Supply in SLEEP Mode	
		22.3.3 Clock Supply in DEBUG Mode	
	22.4	Operations	
		22.4.1 Initialization	
		22.4.2 Operating Modes	
		22.4.3 RFC Counters	
		22.4.4 Converting Operations and Control Procedure	
	00 F	Interrupts	
	22.6	Control Registers RFC Ch.n Clock Control Register	
		RFC Ch.n Control Register	
		RFC Ch.n Oscillation Trigger Register	
		RFC Ch.n Measurement Counter Low and High Registers	
		RFC Ch.n Time Base Counter Low and High Registers	
		RFC Ch.n Interrupt Flag Register	
		RFC Ch.n Interrupt Enable Register	
23		cal Characteristics	
	23.1	Absolute Maximum Ratings	23-1
	23.2	Recommended Operating Conditions	. 23-1
	23.3	Current Consumption	23-2
	23.4	System Reset Controller (SRC) Characteristics	23-4
	23.5	Clock Generator (CLG) Characteristics	23-5
	23.6	Flash Memory Characteristics	23-7
	23.7	Input/Output Port (PPORT) Characteristics	23-8
	23.8	Supply Voltage Detector (SVD4) Characteristics	23-9
		UART (UART3) Characteristics	
		Synchronous Serial Interface (SPIA) Characteristics	
		I I ² C (I2C) Characteristics	
		2 LCD Driver (LCD8D) Characteristics	

23.13 R/F Converter (RFC) Characte	eristics	23-19				
23.14 12-bit A/D Converter (ADC12	A) Characteristics	23-21				
23.15 Temperature Sensor/Reference	ce Voltage Generator (TSRVR) Characteristics	23-22				
24 Basic External Connection Diagra	am	24-1				
25 Package		25-1				
Appendix A List of Peripheral Circuit	t Control Registers	AP-A-1				
0x4000 0000	System Register (SYS)	AP-A-1				
0x4000 0020	Power Generator (PWGA)	AP-A-1				
0x4000 0040–0x4000 0050	Clock Generator (CLG)					
0x4000 0060-0x4000 0062	System Reset Controller (SRC)					
0x4000 00a0-0x4000 00a4	Watchdog Timer (WDT2)					
0x4000 00c0-0x4000 00d2	Real-time Clock (RTCA)					
0x4000 0100-0x4000 0106	Supply Voltage Detector (SVD4) Ch.0					
0x4000 0140-0x4000 014c	16-bit Timer (T16) Ch.0					
0x4000 01b0	Flash Controller (FLASHC)					
0x4000 0200-0x4000 02e2	I/O Ports (PPORT)					
0x4000 0300-0x4000 031e	Universal Port Multiplexer (UPMUX)					
0x4000 0380–0x4000 0394	UART (UART3) Ch.0					
0x4000 03a0-0x4000 03ac	16-bit Timer (T16) Ch.1					
0x4000 03b0-0x4000 03be	Synchronous Serial Interface (SPIA) Ch.0					
0x4000 03c0-0x4000 03d6	l ² C (l2C) Ch.0					
0x4000 0400-0x4000 042c	16-bit PWM Timer (T16B) Ch.0					
0x4000 0440-0x4000 046c	16-bit PWM Timer (T16B) Ch.1					
0x4000 0480-0x4000 048c	16-bit Timer (T16) Ch.3					
0x4000 04a0-0x4000 04ac	16-bit Timer (T16) Ch.4					
0x4000 04c0-0x4000 04cc	16-bit Timer (T16) Ch.5					
0x4000 0600–0x4000 0614	UART (UART3) Ch.1					
0x4000 0660–0x4000 066c	16-bit Timer (T16) Ch.6					
0x4000 0670-0x4000 067e 0x4000 0680-0x4000 068c	Synchronous Serial Interface (SPIA) Ch.1 16-bit Timer (T16) Ch.2					
0x4000 0680-0x4000 0680 0x4000 06c0-0x4000 06d6	I ² C (I2C) Ch.1					
0x4000 0700–0x4000 070c	Sound Generator (SNDA)					
0x4000 0720-0x4000 0732	IR Remote Controller (REMC3)					
0x4000 0740–0x4000 076c	16-bit PWM Timer (T16B) Ch.2					
0x4000 0780–0x4000 078c	16-bit Timer (T16) Ch.7					
0x4000 07a0-0x4000 07bc	12-bit A/D Converter (ADC12A) Ch.0					
0x4000 07c0-0x4000 07c2	Temperature Sensor/					
	Reference Voltage Generator (TSRVR) Ch.0	AP-A-31				
0x4000 0800–0x4000 0812	LCD Driver (LCD8D)					
0x4000 0840–0x4000 0850	R/F Converter (RFC) Ch.0					
0x4000 1000–0x4000 2014	DMA Controller (DMAC)					
B.1 Operating Status Configuration	Examples for Power Saving	AP-B-1				
B.2 Other Power Saving Methods		AP-B-2				
Appendix C Mounting Precautions		AP-C-1				
Appendix D Measures Against Noise	Appendix D Measures Against Noise AP-D-1					

Revision History

1 Overview

The S1C31W65 is a 32-bit MCU with an Arm[®] Cortex[®]-M0+ processor included that features low-power operation. It incorporates a lot of serial interface circuits and is suitable for various kinds of battery-driven controller applications.

1.1 Features

		Table 1.1.1 Features
Model		S1C31W65
CPU		
CPU		Arm® 32-bit RISC processor Cortex®-M0+
Other		Serial-wire debug ports (SW-DP) and a micro trace buffer (MTB) included
Embedded Flash r	nemory	
Capacity		128K bytes (for both instructions and data)
Erase/program cou	nt	1,000 times (min.) * When being programmed by the dedicated flash loader
Other		On-board programming function
		Flash programming voltage can be generated internally.
Embedded RAMs		
General-purpose R	AM	16K bytes (shared with MTB)
Display RAM		112 bytes
DMA Controller (D	MAC)	
Number of channel		4 channels
Data transfer path		Memory to memory, memory to peripheral, and peripheral to memory
Transfer mode		Basic, ping-pong, scatter-gather
DMA trigger source)	UART3, SPIA, I2C, T16B, SNDA, ADC12A, and software
Clock generator (
System clock source		4 sources (IOSC/OSC1/OSC3/EXOSC)
	ency (operating frequency)	V _{D1} voltage mode = mode0: 33 MHz (max.)
	oney (operating nequency)	V_{D1} voltage mode = mode1: 2.16 MHz (max.)
IOSC oscillator circ	uit (boot clock source)	V_{D1} voltage mode = mode0: $32/24/16/12/8/2/1$ MHz (typ.) selectable embedded oscillator
	(Vb1 voltage mode = mode1: 2/1 MHz (typ.) selectable embedded oscillator
		2 µs (max.) starting time (time from cancelation of SLEEP state to vector table read
		by the CPU when the system clock = 32 MHz)
OSC1 oscillator cire	cuit	32.768 kHz (typ.) crystal oscillator
	Sur	32 kHz (typ.) embedded oscillator
		Oscillation stop detection circuit included
OSC3 oscillator cire	quit	33 MHz (max.) crystal/ceramic oscillator
	Suit	32/24/16/12/8 MHz (typ.) selectable embedded oscillator
EXOSC clock input		33 MHz (max.) square or sine wave input
Other		Configurable system clock division ratio
		Configurable system clock used at wake up from SLEEP state
		Operating clock frequency for the CPU and all peripheral circuits is selectable.
I/O port (PPORT)		
Number of general-	I/O ports	63 bits (max.)
purpose ports	Output port	1 bit
	Other	Pins are shared with the peripheral I/O.
Input interrupt	Number of interrupt ports	56 bits (max.)
	Interrupt type	Rising edge interrupts and falling edge interrupts can be enabled individually.
Number of ports th	at support universal port	32 bits
multiplexer (UPMU)		A peripheral circuit I/O function selected via software can be assigned to each port.
Timers		A perprieral circuit i/o function selected via software can be assigned to each port.
Watchdog timer (W		Generates NMI or watchdog timer reset.
	012)	Programmable NMI/reset generation cycle
Real-time clock (RT		128–1 Hz counter, second/minute/hour/day/day of the week/month/year counters
near-une Clock (RI		Theoretical regulation function for 1-second correction
16 bit timer (T16)		Alarm and stopwatch functions 8 channels
16-bit timer (T16)		
		Generates the SPIA master clock and the ADC12A trigger signal.
16-bit PWM timer ((B011)	3 channels
		Event counter/capture function
		PWM waveform generation function
		Number of PWM output or capture input ports: 4 ports/channel

Supply voltage detector (SVD4)			
Number of channels	1 channel		
Detection voltage	VDD or an external voltage (2 external detection	tion ports are available.)	
Detection level	VDD: 32 levels (1.7 to 5.0 V)/external voltage	e: 32 levels (1.7 to 5.0 V)	
Other	Intermittent operation mode		
	Generates an interrupt or reset according t	o the detection level evaluation.	
Serial interfaces	1		
UART (UART3)	2 channels		
	Baud-rate generator included, IrDA1.0 sup		
	Open drain output, signal polarity, and bau	-	
	Infrared communication carrier modulation	output function	
Synchronous serial interface (SPIA)	2 channels 2 to 16-bit variable data length		
	The 16-bit timer (T16) can be used for the b	agud rate generator in master mode	
I ² C (I2C) *1	2 channels	Saud-rate generator in master mode.	
1-0 (120)	Baud-rate generator included		
Sound generator (SNDA)	Dadd-rate generator included		
Buzzer output function	512 Hz to 16 kHz output frequencies		
	One-shot output function		
Melody generation function	Pitch: 128 Hz to 16 kHz ≈ C3 to C6		
	Duration: 7 notes/rests (Half note/rest to th	irty-second note/rest)	
	Tempo: 16 tempos (30 to 480)		
	Tie/slur may be specified.		
IR remote controller (REMC3)			
Number of transmitter channels	1 channel		
Other	EL lamp drive waveform can be generated (I	by the hardware) for an application example	
	Output inversion function		
12-bit A/D converter (ADC12A)			
Conversion method	Successive approximation type		
Resolution	12 bits		
Number of conversion channels	1 channel		
Number of analog signal inputs	8 ports/channel (The temperature sensor o	utput is connected to a port.)	
Temperature sensor/reference voltage gen	· · · ·		
Temperature sensor circuit	Sensor output can be measured using ADC		
Reference voltage generator	Reference voltage for ADC12A is selectable	e from 2.0 V, 2.5 V, VDD, and external input.	
LCD driver (LCD8D)	50.050 5.0.00M(max) 50.050 1.4.0		
LCD output LCD contrast	52 SEG × 5–8 COM(max.), 56 SEG × 1–4 C 32 levels	OW(max.)	
LCD drive waveform		bla	
Other	2 types (Waveform A, Waveform B) selectable 1/3 or 1/2 bias power supply with voltage booster included, external voltage can be		
other	applied.	booster included, external voltage can be	
R/F converter (RFC)			
Conversion method	CR oscillation type with 24-bit counters		
Number of conversion channels	1 channel (Up to two sensors can be conne	ected.)	
Supported sensors	DC-bias resistive sensors		
Reset			
#RESET pin	Reset when the reset pin is set to low.	Can be enabled/disabled using a register.	
Power-on reset	Reset at power on.		
Brownout reset	Reset when the power supply voltage drop	S	
Key entry reset			
	Reset when the P00 to P01/P02/P03 keys	Can be enabled/disabled using a register.	
	are pressed simultaneously.		
Watchdog timer reset	are pressed simultaneously. Reset when the watchdog timer overflows.		
Watchdog timer reset Supply voltage detector reset	are pressed simultaneously. Reset when the watchdog timer overflows. Reset when the supply voltage detector		
Supply voltage detector reset	are pressed simultaneously. Reset when the watchdog timer overflows.		
Supply voltage detector reset Interrupt	are pressed simultaneously. Reset when the watchdog timer overflows. Reset when the supply voltage detector detects the set voltage level.		
Supply voltage detector reset Interrupt Non-maskable interrupt	are pressed simultaneously. Reset when the watchdog timer overflows. Reset when the supply voltage detector detects the set voltage level. 6 systems (Reset, NMI, HardFault, SVCall,		
Supply voltage detector reset Interrupt	are pressed simultaneously. Reset when the watchdog timer overflows. Reset when the supply voltage detector detects the set voltage level. 6 systems (Reset, NMI, HardFault, SVCall, External interrupt: 1 system		
Supply voltage detector reset Interrupt Non-maskable interrupt Programmable interrupt	are pressed simultaneously. Reset when the watchdog timer overflows. Reset when the supply voltage detector detects the set voltage level. 6 systems (Reset, NMI, HardFault, SVCall,		
Supply voltage detector reset Interrupt Non-maskable interrupt Programmable interrupt Power supply voltage	are pressed simultaneously. Reset when the watchdog timer overflows. Reset when the supply voltage detector detects the set voltage level. 6 systems (Reset, NMI, HardFault, SVCall, External interrupt: 1 system Internal interrupt: 26 systems		
Supply voltage detector reset Interrupt Non-maskable interrupt Programmable interrupt Power supply voltage Vod operating voltage	are pressed simultaneously. Reset when the watchdog timer overflows. Reset when the supply voltage detector detects the set voltage level. 6 systems (Reset, NMI, HardFault, SVCall, External interrupt: 1 system Internal interrupt: 26 systems 1.8 to 5.5 V		
Supply voltage detector reset Interrupt Non-maskable interrupt Programmable interrupt Power supply voltage Vob operating voltage Vob operating voltage for Flash programming	are pressed simultaneously. Reset when the watchdog timer overflows. Reset when the supply voltage detector detects the set voltage level. 6 systems (Reset, NMI, HardFault, SVCall, External interrupt: 1 system Internal interrupt: 26 systems 1.8 to 5.5 V 2.2 to 5.5 V		
Supply voltage detector reset Interrupt Non-maskable interrupt Programmable interrupt Power supply voltage Vob operating voltage Vob operating voltage for Flash programming Vob operating voltage when LCD driver is used	are pressed simultaneously. Reset when the watchdog timer overflows. Reset when the supply voltage detector detects the set voltage level. 6 systems (Reset, NMI, HardFault, SVCall, External interrupt: 1 system Internal interrupt: 26 systems 1.8 to 5.5 V 2.2 to 5.5 V		
Supply voltage detector reset Interrupt Non-maskable interrupt Programmable interrupt Power supply voltage Vod operating voltage for Flash programming Vod operating voltage for Flash programming Vod operating voltage when LCD driver is used Operating temperature	are pressed simultaneously. Reset when the watchdog timer overflows. Reset when the supply voltage detector detects the set voltage level. 6 systems (Reset, NMI, HardFault, SVCall, External interrupt: 1 system Internal interrupt: 26 systems 1.8 to 5.5 V 2.2 to 5.5 V 1.8 to 5.5 V		
Supply voltage detector reset Interrupt Non-maskable interrupt Programmable interrupt Power supply voltage Vob operating voltage for Flash programming Vob operating voltage for Flash programming Vob operating voltage when LCD driver is used Operating temperature Operating temperature	are pressed simultaneously. Reset when the watchdog timer overflows. Reset when the supply voltage detector detects the set voltage level. 6 systems (Reset, NMI, HardFault, SVCall, External interrupt: 1 system Internal interrupt: 26 systems 1.8 to 5.5 V 2.2 to 5.5 V 1.8 to 5.5 V -40 to 105°C		
Supply voltage detector reset Interrupt Non-maskable interrupt Programmable interrupt Power supply voltage Vob operating voltage for Flash programming Vob operating voltage for Flash programming Operating temperature Operating temperature Flash programming temperature range	are pressed simultaneously. Reset when the watchdog timer overflows. Reset when the supply voltage detector detects the set voltage level. 6 systems (Reset, NMI, HardFault, SVCall, External interrupt: 1 system Internal interrupt: 26 systems 1.8 to 5.5 V 2.2 to 5.5 V 1.8 to 5.5 V		
Supply voltage detector reset Interrupt Non-maskable interrupt Programmable interrupt Vob operating voltage Vob operating voltage for Flash programming Vob operating voltage when LCD driver is used Operating temperature Operating temperature range Flash programming temperature range Current consumption (Typ. value)	are pressed simultaneously. Reset when the watchdog timer overflows. Reset when the supply voltage detector detects the set voltage level. 6 systems (Reset, NMI, HardFault, SVCall, External interrupt: 1 system Internal interrupt: 26 systems 1.8 to 5.5 V 2.2 to 5.5 V 1.8 to 5.5 V -40 to 105°C -40 to 85°C	PendSV, SysTic)	
Supply voltage detector reset Interrupt Non-maskable interrupt Programmable interrupt Power supply voltage Vob operating voltage for Flash programming Vob operating voltage for Flash programming Operating temperature Operating temperature Flash programming temperature range	are pressed simultaneously. Reset when the watchdog timer overflows. Reset when the supply voltage detector detects the set voltage level. 6 systems (Reset, NMI, HardFault, SVCall, External interrupt: 1 system Internal interrupt: 26 systems 1.8 to 5.5 V 2.2 to 5.5 V 2.2 to 5.5 V -40 to 105°C -40 to 85°C 0.3 µA IOSC = OFF, OSC1 = OFF, OSC3 =	PendSV, SysTic)	
Supply voltage detector reset Interrupt Non-maskable interrupt Programmable interrupt Vob operating voltage Vob operating voltage for Flash programming Vob operating temperature Operating temperature Gperating temperature range Flash programming temperature range Current consumption (Typ. value)	are pressed simultaneously. Reset when the watchdog timer overflows. Reset when the supply voltage detector detects the set voltage level. 6 systems (Reset, NMI, HardFault, SVCall, External interrupt: 1 system Internal interrupt: 26 systems 1.8 to 5.5 V 2.2 to 5.5 V 1.8 to 5.5 V -40 to 105°C -40 to 85°C	PendSV, SysTic)	

Current consumption (Typ. value)	
RUN mode	195 µA/MHz VD1 voltage mode = mode0, CPU = IOSC (16 MHz)
	130 µA/MHz VD1 voltage mode = mode1, CPU = IOSC (2 MHz)
Shipping form	
Package *4	TQFP15-100PIN (P-TQFP100-1414-0.50, 14 × 14 mm, t = 1.2 mm, 0.5 mm pitch)

*1 The input filter in I2C (SDA and SCL inputs) does not comply with the standard for removing noise spikes less than 50 ns.

*2 SLEEP mode refers to deep sleep mode in the Cortex®-M0+ processor. The RAM retains data even in SLEEP mode.

*3 HALT mode refers to sleep mode in the Cortex®-M0+ processor.

*4 Shown in parentheses is a JEITA package name.

1.2 Block Diagram

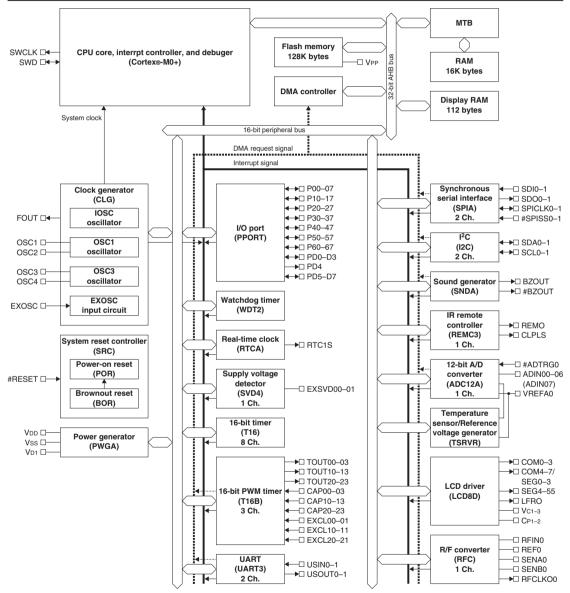


Figure 1.2.1 S1C31W65 Block Diagram

1.3 Pins

1.3.1 Pin Configuration Diagram

TQFP15-100PIN

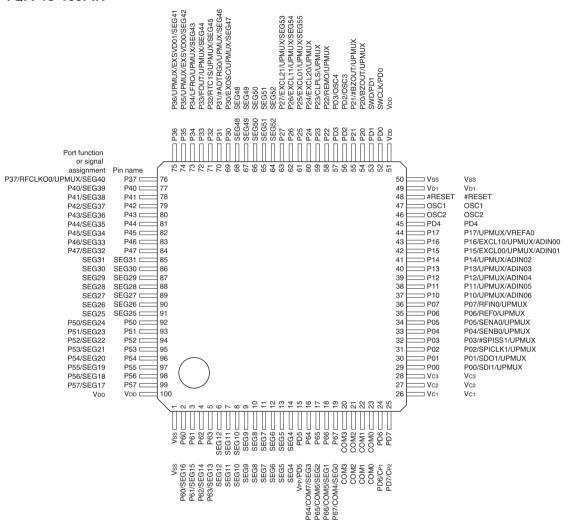


Figure 1.3.1.1 S1C31W65 Pin Configuration Diagram (TQFP15-100PIN)

1.3.2 Pin Descriptions

Symbol meanings

Assigned signal: The signal listed at the top of each pin is assigned in the initial state. The pin function must be switched via software to assign another signal (see the "I/O Ports" chapter).

I/O:	I O I/O P A Hi-Z	= Input = Output = Input/output = Power supply = Analog signal = High impedance state
Initial state:	I (Pull-up) I (Pull-down) Hi-Z O (H) O (L)	 Input with pulled up Input with pulled down High impedance state High level output Low level output

Tolerant fail-safe structure:

1

= Over voltage tolerant fail-safe type I/O cell included (see the "I/O Ports" chapter)

Table 1.3.2.1	Pin Description
---------------	-----------------

Pin name	Assigned signal	I/O	Initial state	Tolerant fail-safe structure	Function
Vdd	Vdd	P	-	-	Power supply (+)
Vss	Vss	Р	-	-	GND
V _{D1}	VD1	Α	-	-	VD1 regulator output
Vc1-3	Vc1-3	Р	-	_	LCD panel driver power supply
OSC1	OSC1	A	-	_	OSC1 oscillator circuit input
OSC2	OSC2	A	-	_	OSC1 oscillator circuit output
#RESET	#RESET	1	I (Pull-up)	-	Reset input
P00	P00	I/O	Hi-Z	1	I/O port
	SDI1	1	1		Synchronous serial interface Ch.1 data input
	UPMUX	I/O	1		User-selected I/O (universal port multiplexer)
P01	P01	I/O	Hi-Z	1	I/O port
	SDO1	0	1		Synchronous serial interface Ch.1 data output
	UPMUX	I/O	1		User-selected I/O (universal port multiplexer)
P02	P02	I/O	Hi-Z	1	I/O port
	SPICLK1	I/O	1		Synchronous serial interface Ch.1 clock input/output
	UPMUX	I/O			User-selected I/O (universal port multiplexer)
P03	P03	I/O	Hi-Z	1	I/O port
	#SPISS1	1	1		Synchronous serial interface Ch.1 slave-select input
	UPMUX	I/O	1		User-selected I/O (universal port multiplexer)
P04	P04	I/O	Hi-Z	1	I/O port
	SENB0	A	1		R/F converter Ch.0 sensor B oscillator pin
	UPMUX	I/O	1		User-selected I/O (universal port multiplexer)
P05	P05	I/O	Hi-Z	1	I/O port
	SENA0	Α			R/F converter Ch.0 sensor A oscillator pin
	UPMUX	I/O	1		User-selected I/O (universal port multiplexer)
P06	P06	I/O	Hi-Z	1	I/O port
	REF0	A			R/F converter Ch.0 reference oscillator pin
	UPMUX	I/O	1		User-selected I/O (universal port multiplexer)
P07	P07	I/O	Hi-Z	-	I/O port
	RFIN0	A	1		R/F converter Ch.0 oscillation input
	UPMUX	I/O	1		User-selected I/O (universal port multiplexer)
P10	P10	1/0	Hi-Z	_	I/O port
	UPMUX	I/O			User-selected I/O (universal port multiplexer)
	ADIN06	A	1		12-bit A/D converter Ch.0 analog signal input 6
P11	P11	1/0	Hi-Z	-	I/O port
	UPMUX	1/0	1		User-selected I/O (universal port multiplexer)
	ADIN05	A	1		12-bit A/D converter Ch.0 analog signal input 5
P12	P12	1/0	Hi-Z	-	I/O port
	UPMUX	1/0			User-selected I/O (universal port multiplexer)
	ADIN04	A	1		12-bit A/D converter Ch.0 analog signal input 4

Pin name	Assigned signal	I/O	Initial state	Tolerant fail-safe structure	Function
P13	P13	1/0	Hi-Z	-	I/O port
	UPMUX	I/O			User-selected I/O (universal port multiplexer)
	ADIN03	A			12-bit A/D converter Ch.0 analog signal input 3
P14	P14	I/O	Hi-Z	-	I/O port
	UPMUX	I/O			User-selected I/O (universal port multiplexer)
	ADIN02	A			12-bit A/D converter Ch.0 analog signal input 2
P15	P15	1/0	Hi-Z	-	I/O port
	EXCL00				16-bit PWM timer Ch.0 event counter input 0
	UPMUX	1/0			User-selected I/O (universal port multiplexer)
	ADIN01	A			12-bit A/D converter Ch.0 analog signal input 1
P16	P16	1/0	Hi-Z	_	I/O port
10	EXCL10	1			16-bit PWM timer Ch.1 event counter input 0
	UPMUX	1/0			User-selected I/O (universal port multiplexer)
	ADIN00	A			12-bit A/D converter Ch.0 analog signal input 0
P17	P17	1/0	Hi-Z	_	I/O port
-17				-	
		1/0			User-selected I/O (universal port multiplexer)
200	VREFA0	A			12-bit A/D converter Ch.0 reference voltage input
P20	P20	1/0	Hi-Z	1	I/O port
	BZOUT	0			Sound generator output
	UPMUX	1/0			User-selected I/O (universal port multiplexer)
P21	P21	I/O	Hi-Z	1	I/O port
	#BZOUT	0			Sound generator inverted output
	UPMUX	I/O			User-selected I/O (universal port multiplexer)
22	P22	1/0	Hi-Z	1	I/O port
	REMO	0			IR remote controller transmit data output
	UPMUX	1/0			User-selected I/O (universal port multiplexer)
23	P23	1/0	Hi-Z	1	I/O port
20	CLPLS	0		•	IR remote controller clear pulse output
	UPMUX	1/0			User-selected I/O (universal port multiplexer)
24	P24	1/0	Hi-Z	1	I/O port
-24	EXCL20	-		~	
					16-bit PWM timer Ch.2 event counter input 0
205	UPMUX	1/0	11. 7		User-selected I/O (universal port multiplexer)
25	P25	1/0	Hi-Z	1	I/O port
	EXCL01				16-bit PWM timer Ch.0 event counter input 1
	UPMUX	1/0			User-selected I/O (universal port multiplexer)
	SEG55	A			LCD segment output
26	P26	I/O	Hi-Z	1	I/O port
	EXCL11	1			16-bit PWM timer Ch.1 event counter input 1
	UPMUX	I/O			User-selected I/O (universal port multiplexer)
	SEG54	A			LCD segment output
P27	P27	1/0	Hi-Z	1	I/O port
	EXCL21	1			16-bit PWM timer Ch.2 event counter input 1
	UPMUX	1/0			User-selected I/O (universal port multiplexer)
	SEG53	A			LCD segment output
P30	P30	1/0	Hi-Z	1	I/O port
50	EXOSC	1/0	111-2	v	Clock generator external clock input
	UPMUX	_			
		1/0			User-selected I/O (universal port multiplexer)
201	SEG47	A	11: 7		LCD segment output
P31	P31	1/0	Hi-Z	1	I/O port
	#ADTRG0				12-bit A/D converter Ch.0 trigger input
	UPMUX	1/0			User-selected I/O (universal port multiplexer)
	SEG46	A	ļ		LCD segment output
° 32	P32	I/O	Hi-Z	1	I/O port
	RTC1S	0			Real-time clock 1-second cycle pulse output
	UPMUX	I/O			User-selected I/O (universal port multiplexer)
	SEG45	A			LCD segment output
-33	P33	1/0	Hi-Z	1	I/O port
	FOUT	0			Clock external output
	UPMUX	1/0			User-selected I/O (universal port multiplexer)
	SEG44	A	1		12-bit A/D converter Ch.0 analog signal input 3

1 OVERVIEW

Pin name	Assigned signal	I/O	Initial state	Tolerant fail-safe structure	Function
P34	P34	I/O	Hi-Z	1	I/O port
	LFRO	0			LCD frame signal monitor output
	UPMUX	I/O			User-selected I/O (universal port multiplexer)
	SEG43	A			LCD segment output
P35	P35	I/O	Hi-Z	1	I/O port
	UPMUX	I/O			User-selected I/O (universal port multiplexer)
	EXSVD00	Α	1		Supply voltage detector Ch.0 external voltage detection input 0
	SEG42	A			LCD segment output
P36	P36	I/O	Hi-Z	1	I/O port
	UPMUX	1/0			User-selected I/O (universal port multiplexer)
	EXSVD01	Α			Supply voltage detector Ch.0 external voltage detection input 1
	SEG41	A			LCD segment output
P37	P37	1/0	Hi-Z	1	I/O port
	RFCLKO0	0		•	R/F converter Ch.0 clock monitor output
	UPMUX	1/0			User-selected I/O (universal port multiplexer)
	SEG40	A			LCD segment output
P40	P40	1/0	Hi-Z	1	I/O port
1 40				v	
P41	SEG39 P41	A 1/0	Hi-Z	1	LCD segment output
F41				<i>v</i>	I/O port
D40	SEG38	A	11: 7		LCD segment output
P42	P42	1/0	Hi-Z	1	I/O port
	SEG37	A			LCD segment output
P43	P43	1/0	Hi-Z	1	I/O port
	SEG36	A			LCD segment output
P44	P44	I/O	Hi-Z	1	I/O port
	SEG35	A			LCD segment output
P45	P45	I/O	Hi-Z	1	I/O port
	SEG34	A			LCD segment output
P46	P46	I/O	Hi-Z	1	I/O port
	SEG33	A			LCD segment output
P47	P47	I/O	Hi-Z	1	I/O port
	SEG32	A			LCD segment output
P50	P50	1/0	Hi-Z	1	I/O port
	SEG24	A			LCD segment output
P51	P51	1/0	Hi-Z	1	I/O port
	SEG23	A			LCD segment output
P52	P52	1/0	Hi-Z	1	I/O port
2	SEG22	A		•	LCD segment output
P53	P53	1/0	Hi-Z	1	I/O port
1.00	SEG21	A		·	LCD segment output
P54	P54	1/0	Hi-Z	1	I/O port
1 34	SEG20	A	111-2	v	LCD segment output
DEE	1				
P55	P55	1/0	Hi-Z	1	I/O port
P56	SEG19 P56	A I/O		/	LCD segment output I/O port
F 30		-	Hi-Z	\checkmark	
DEZ	SEG18	A	11: 7		LCD segment output
P57	P57	1/0	Hi-Z	\checkmark	I/O port
D 22	SEG17	A			LCD segment output
P60	P60	1/0	Hi-Z	1	I/O port
	SEG16	Α			LCD segment output
P61	P61	I/O	Hi-Z	1	I/O port
	SEG15	A	ļ		LCD segment output
P62	P62	I/O	Hi-Z	1	I/O port
	SEG14	Α			LCD segment output
P63	P63	I/O	Hi-Z	1	I/O port
	SEG13	Α			LCD segment output
P64	P64	I/O	Hi-Z	1	I/O port
	COM7	Α			LCD common output
	SEG3	A	1		LCD segment output
P65	P65	I/O	Hi-Z	1	I/O port
1 00		1		-	
1 05	COM6	A			LCD common output

Pin name	Assigned signal	I/O	Initial state	Tolerant fail-safe structure	Function
P66	P66	1/0	Hi-Z	1	I/O port
	COM5	Α			LCD common output
	SEG1	Α			LCD segment output
P67	P67	1/0	Hi-Z	1	I/O port
	COM4	A			LCD common output
	SEG0	Α			LCD segment output
PD0	SWCLK	I	I (Pull-up)	1	Serial-wire debugger clock input
	PD0	I/O			I/O port
PD1	SWD	1/0	I (Pull-up)	1	Serial-wire debugger data input/output
	PD1	1/0			I/O port
PD2	PD2	1/0	Hi-Z	-	I/O port
	OSC3	A			OSC3 oscillator circuit input
PD3	PD3	1/0	Hi-Z	-	I/O port
	OSC4	A			OSC3 oscillator circuit output
PD4	PD4	0	O (L)	-	Output port
PD5	Vpp	Р	Hi-Z	1	Power supply for Flash programming
	PD5	1/0			I/O port
PD6	PD6	1/0	Hi-Z	-	I/O port (power supply voltage: Vc3)
	CP1	Α			LCD voltage boost capacitor connect pin
PD7	PD7	1/0	Hi-Z	-	I/O port (power supply voltage: Vc3)
	CP2	Α			LCD voltage boost capacitor connect pin
COM0-3	COM0-3	A	Hi-Z	-	LCD common outputs
SEG4–12, 25–31, 48–52	SEG4–12, 25–31, 48–52	A	Hi-Z	-	LCD segment outputs

Note: In the peripheral circuit descriptions, the assigned signal name is used as the pin name.

Universal port multiplexer (UPMUX)

The universal port multiplexer (UPMUX) allows software to select the peripheral circuit input/output function to be assigned to each pin from those listed below.

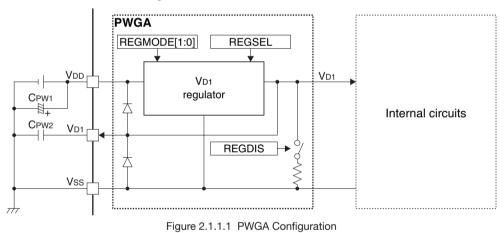
Peripheral circuit	Signal to be assigned	I/O	Channel number n	Function
Synchronous serial	SDIn	Ι	<i>n</i> = 0	SPIA Ch.n data input
interface	SDO <i>n</i>	0		SPIA Ch.n data output
(SPIA)	SPICLKn	I/O		SPIA Ch.n clock input/output
	#SPISSn	Ι		SPIA Ch.n slave-select input
I ² C	SCLn	I/O	<i>n</i> = 0, 1	I2C Ch.n clock input/output
(I2C)	SDAn	I/O		I2C Ch.n data input/output
UART	USINn	Ι	<i>n</i> = 0, 1	UART3 Ch.n data input
(UART3)	USOUTn	0		UART3 Ch.n data output
16-bit PWM timer	TOUTn0/CAPn0	I/O	<i>n</i> = 0, 1, 2	T16B Ch.n PWM output/capture input 0
(T16B)	TOUTn1/CAPn1	I/O		T16B Ch.n PWM output/capture input 1
	TOUTn2/CAPn2	I/O		T16B Ch.n PWM output/capture input 2
	TOUTn3/CAPn3	I/O]	T16B Ch.n PWM output/capture input 3

Table 1.3.3.2 Peripheral Circuit Input/output Function Selectable by UPMUX

Note: Do not assign a function to two or more pins simultaneously.

2 Power Supply, Reset, and Clocks

The power supply, reset, and clocks in this IC are managed by the embedded power generator, system reset controller, and clock generator, respectively.


2.1 Power Generator (PWGA)

2.1.1 Overview

PWGA is the power generator that controls the internal power supply system to drive this IC with stability and low power. The main features of PWGA are outlined below.

- Embedded VDI regulator
 - The VD1 regulator generates the VD1 voltage to drive internal circuits, this makes it possible to keep current consumption constant independent of the VDD voltage level.
 - The VDI regulator supports two operation modes, normal mode and economy mode, and setting the VDI regulator into economy mode at light loads helps achieve low-power operations.
 - The VD1 regulator supports two voltage modes, mode0 and mode1, and setting the VD1 regulator into mode1 during low-speed operation helps achieve low-power operations.

Figure 2.1.1.1 shows the PWGA configuration.

2.1.2 Pins

Table 2.1.2.1 lists the PWGA pins.

Table 2.1.2.1 List of PWGA Pins

		10010 2111211 210	
Pin name	I/O	Initial status	Function
Vdd	Р	-	Power supply (+)
Vss	Р	-	GND
VD1	А	-	VD1 regulator output pin

For the VDD operating voltage range and recommended external parts, refer to "Recommended Operating Conditions, Power supply voltage VDD" in the "Electrical Characteristics" chapter and the "Basic External Connection Diagram" chapter, respectively.

2.1.3 VD1 Regulator Operation Mode

The VD1 regulator supports two operation modes, normal mode and economy mode. Setting the VD1 regulator into economy mode at light loads helps achieve low-power operations. Table 2.1.3.1 lists examples of light load conditions in which economy mode can be set.

Table 2.1.3.1 Examples of Light Load Conditions in which Economy Mode Can be Set

Light load condition	Exceptions
SLEEP mode (when all oscillators are stopped, or OSC1 only is active)	When a clock source except for
HALT mode (when OSC1 only is active)	OSC1 is active
RUN mode (when OSC1 only is active)	

The VD1 regulator also supports automatic mode in which the hardware detects a light load condition and automatically switches between normal mode and economy mode. Use the VD1 regulator in automatic mode when no special control is required.

2.1.4 VD1 Regulator Voltage Mode

The VD1 regulator supports two voltage modes, mode0 and mode1.

When the IC runs with a low-speed clock, setting the VD1 regulator into mode1 reduces power consumption.

When the voltage mode is switched, the system clock source automatically stops operating and it resumes operating after the voltage has stabilized. Table 2.1.4.1 shows the stop period of the system clock.

Table 2.1.4.1 System Clock Stop Period After Switching Voltage Mode

System clock	Stop period
IOSC	2,048 cycles
OSC1	Number of cycles set using the CLGOSC1.OSC1WT[1:0] bits

Procedure to switch from mode0 to mode1

1. Set the MODEN bits of the peripheral circuits to 0. (Stop using peripheral circuits)
--	---------------------------------

- 2. Write 0x0096 to the SYSPROT.PROT[15:0] bits.
- 3. Switch the system clock to a low-speed clock (OSC1, IOSC 2 MHz or 1 MHz).
- 4. Stop OSC3 and EXOSC.
- 5. Configure the following PWGACTL register bits.

	6 6						
	- Set the PWGACTL.REGSEL bit to 0.	(Switch to mode1)					
	- Set the PWGACTL.REGDIS bit to 1.	(Discharge)					
	- Set the PWGACTL.REGMODE[1:0] bits to 0x2.	(Set to normal mode)					
6.	Configure the following PWGACTL register bits after the system clo	ock supply has resumed.					
	- Set the PWGACTL.REGDIS bit to 0.	(Stop discharging)					
	- Set the PWGACTL.REGMODE[1:0] bits to 0x0.	(Set to automatic mode)					
7.	Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits.	(Set system protection)					
Procedure to switch from mode1 to mode0							
1.	Set the MODEN bits of the peripheral circuits to 0.	(Stop using peripheral circuits)					
2.	Write 0x0096 to the SYSPROT.PROT[15:0] bits.	(Remove system protection)					
3.	Configure the following PWGACTL register bits.						
	- Set the PWGACTL.REGSEL bit to 1.	(Switch to mode0)					
	- Set the PWGACTL.REGMODE[1:0] bits to 0x2.	(Set to normal mode)					
4.	Set the PWGACTL.REGMODE[1:0] bits to 0x0						
	after the system clock supply has resumed.	(Set to automatic mode)					
5.	Switch the system clock to a high-speed clock.						

- 6. Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits. (Set system protection)
- **Note**: After the voltage mode has been switched, correct the RTC, as the RTC operating clock is also stopped for the period set using the CLGOSC1.OSC1WT[1:0] bits.

(Remove system protection)

2.2 System Reset Controller (SRC)

2.2.1 Overview

SRC is the system reset controller that resets the internal circuits according to the requests from the reset sources to archive steady IC operations. The main features of SRC are outlined below.

- Embedded reset hold circuit maintains reset state to boot the system safely while the internal power supply is unstable after power on or the oscillation frequency is unstable after the clock source is initiated.
- · Supports reset requests from multiple reset sources.
 - #RESET pin*
 - POR and BOR*
 - Reset request from the CPU
 - Key-entry reset*
 - Watchdog timer reset*
 - Supply voltage detector reset*
 - Peripheral circuit software reset (supports some peripheral circuits only)
 - * SRC allows software to check the generated reset request after a reset has occurred.
- #RESET pin control function
 - External reset input can be enabled/disabled.
 - The pull-up resistor can be enabled/disabled.
- The CPU registers and peripheral circuit control bits will be reset with an appropriate initialization condition according to changes in status.

Figure 2.2.1.1 shows the SRC configuration.

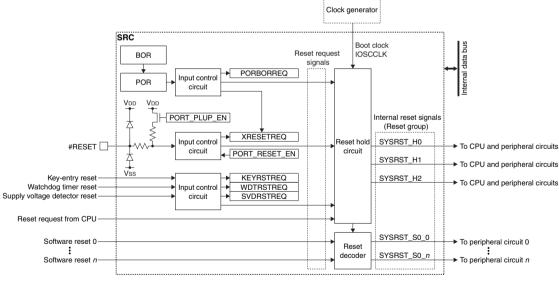


Figure 2.2.1.1 SRC Configuration

2.2.2 Input Pin

Table 2.2.2.1 shows the SRC input pin.

Table 2.2.2.1 SRC Pin				
Pin name	I/O	Initial status	Function	
#RESET		l (Pull-up)	Reset input	

The #RESET pin is connected to the noise filter that removes pulses not conforming to the requirements. The #RE-SET pin includes a pull-up resistor that can be enabled/disabled using the SRCRESETPCTL.PORT_PLUP_EN bit. For the #RESET pin characteristics, refer to "#RESET pin characteristics" in the "Electrical Characteristics" chapter.

2.2.3 Reset Sources

The reset source refers to causes that request system initialization. The following shows the reset sources.

#RESET pin

Inputting a reset signal with a certain low level period to the #RESET pin issues a reset request.

POR and BOR

POR (Power On Reset) issues a reset request when the rise of VDD is detected. BOR (Brownout Reset) issues a reset request when a certain VDD voltage level is detected. Reset requests from these circuits ensure that the system will be reset properly when the power is turned on and the supply voltage is out of the operating voltage range. Figure 2.2.3.1 shows an example of POR and BOR internal reset operation according to variations in VDD.

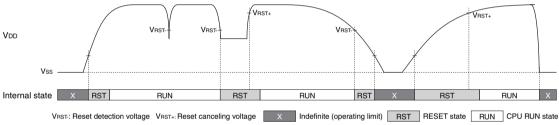


Figure 2.2.3.1 Example of Internal Reset by POR and BOR

For the POR and BOR electrical specifications, refer to "POR/BOR characteristics" in the "Electrical Characteristics" chapter.

Reset request from the CPU

The CPU issues a reset request by writing 1 to the AIRCR.SYSRESETREQ bit in the Cortex[®]-M0+ Application Interrupt and Reset Control Register. For more information, refer to the "ARM[®]v6-M Architecture Reference Manual."

Key-entry reset

Inputting a low level signal of a certain period to the I/O port pins configured to a reset input issues a reset request. This function must be enabled using an I/O port register. For more information, refer to the "I/O Ports" chapter.

Watchdog timer reset

Setting the watchdog timer into reset mode will issue a reset request when the counter overflows. This helps return the runaway CPU to a normal operating state. For more information, refer to the "Watchdog timer" chapter.

Supply voltage detector reset

By enabling the low power supply voltage detection reset function, the supply voltage detector will issue a reset request when a drop in the power supply voltage is detected. This makes it possible to put the system into reset state if the IC must be stopped under a low voltage condition. For more information, refer to the "Supply Voltage Detector" chapter.

Peripheral circuit software reset

Some peripheral circuits provide a control bit for software reset (MODEN or SFTRST). Setting this bit initializes the peripheral circuit control bits. Note, however, that the software reset operations depend on the peripheral circuit. For more information, refer to "Control Registers" in each peripheral circuit chapter.

Note: The MODEN bit of some peripheral circuits does not issue software reset.

2.2.4 Reset Request Flag

Reset source	Reset request flag	Set	Clear
POR/BOR	SRCRESETREQ.P	When a POR/BOR reset request is issued	Writing 1
	ORBORREQ		
#RESET pin	SRCRESETREQ.	When a low level pulse is input to the #RESET pin or a POR/BOR	Writing 1
	XRESETREQ	reset request is issued	
Watchdog timer reset	SRCRESETREQ.	When the watchdog timer issues a reset request due to a counter	Writing 1
	WDTRSTREQ	overflow	
Supply voltage	SRCRESETREQ.	When the supply voltage detector issues a reset request due to a	Writing 1
detector reset	SVDRSTREQ	drop in the power supply voltage	
Key-entry reset	SRCRESETREQ.	When the I/O port issues a reset request due to a low level input to	Writing 1
	KEYRSTREQ	the specified ports	

Table 2.2.4.1 Reset Request Flag

When a reset request is issued from a reset source, the corresponding reset request flag (SRCRESETREQ.xxxxREQ bit) is set to 1 (except for reset requests from the CPU and software reset requests from peripheral circuits). This makes it possible to determine the reset source, which issued a reset, after the MCU has rebooted by reading the reset request flag that has been set. The SRCRESETREQ.xxxREQ bit, which has been set, is cleared by writing 1 via software.

Note that the reset request flag (SRCRESETREQ.XRESETREQ bit) of the #RESET pin is also set by a POR/BOR reset request (SRCRESETREQ.PORBORREQ bit = 1). When a reset has been issued by the #RESET pin, the SR-CRESETREQ.XRESETREQ bit is set to 1 and the SRCRESETREQ.PORBORREQ bit is set to 0.

2.2.5 #RESET Pin Input Control

The #RESET pin functions as the external reset input pin by setting the SRCRESETPCTL.PORT_RESET_EN bit to 1. If the SRCRESETPCTL.PORT_RESET_EN bit = 0, the #RESET pin input is fixed at a high level to disable #RESET inputs.

The #RESET pin has a built-in pull-up resistor and it can be disabled by setting the SRCRESETPCTL.PORT_PLUP_EN bit to 0.

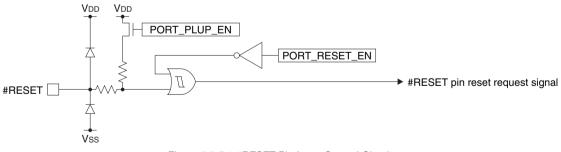


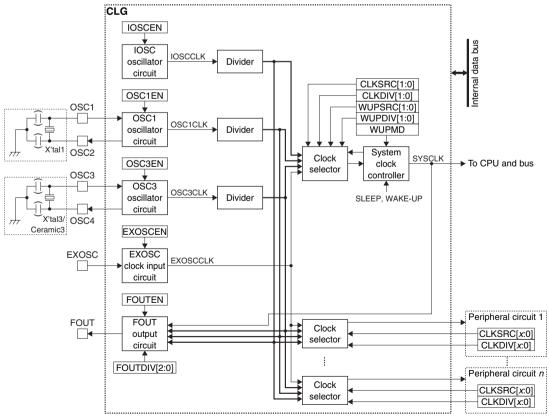
Figure 2.2.5.1 #RESET Pin Input Control Circuit

2.2.6 Initialization Conditions (Reset Groups)

A different initialization condition is set for the CPU registers and peripheral circuit control bits, individually. The reset group refers to an initialization condition. Initialization is performed when a reset source included in a reset group issues a reset request. Table 2.2.6.1 lists the reset groups. For the reset group to initialize the registers and control bits, refer to the "CPU and Debugger" chapter or "Control Registers" in each peripheral circuit chapter.

Reset group	Reset source	Reset cancelation timing			
HO	#RESET pin	Reset state is maintained for the reset			
	POR and BOR	hold time tRSTR after the reset request is			
	Reset request from the CPU	canceled.			
	Key-entry reset				
	Supply voltage detector reset				
	Watchdog timer reset				
H1	#RESET pin				
	POR and BOR				
	Reset request from the CPU				
H2	POR and BOR				
S0	Peripheral circuit software reset	Reset state is canceled immediately			
	(MODEN and SFTRST bits. The	after the reset request is canceled.			
	software reset operations de-				
	pend on the peripheral circuit.				

Table 2.2.6.1 List of Reset Groups


2.3 Clock Generator (CLG)

2.3.1 Overview

CLG is the clock generator that controls the clock sources and manages clock supply to the CPU and the peripheral circuits. The main features of CLG are outlined below.

- Supports multiple clock sources.
 - IOSC oscillator circuit that oscillates with a fast startup and no external parts required
 - Low-power OSC1 oscillator circuit in which the oscillator type can be specified from high-precision 32.768 kHz crystal oscillator (an external resonator is required) and internal oscillator
 - High-speed OSC3 oscillator circuit in which the oscillator type can be specified from crystal/ceramic oscillator (an external resonator is required) and internal oscillator
 - EXOSC clock input circuit that allows input of square wave and sine wave clock signals
- The system clock (SYSCLK), which is used as the operating clock for the CPU and bus, and the peripheral circuit operating clocks can be configured individually by selecting the suitable clock source and division ratio.
- The 8 MHz clock output from the IOSC oscillator circuit is used as the boot clock for fast booting.
- Controls the oscillator and clock input circuits to enable/disable according to the operating mode, RUN or SLEEP mode.
- Provides a flexible system clock switching function at SLEEP mode cancelation.
 - The clock sources to be stopped in SLEEP mode can be selected.
 - SYSCLK to be used at SLEEP mode cancelation can be selected from all clock sources.
 - The oscillator and clock input circuit on/off state can be maintained or changed at SLEEP mode cancelation.
- Provides the FOUT function to output an internal clock for driving external ICs or for monitoring the internal state.

Figure 2.3.1.1 shows the CLG configuration.

2.3.2 Input/Output Pins

Table 2.3.2.1 lists the CLG pins.

Pin name	I/O*	Initial status*	Function	
OSC1	A	-	OSC1 oscillator circuit input	
OSC2	A	-	OSC1 oscillator circuit output	
OSC3	A	-	OSC3 oscillator circuit input	
OSC4	A	-	OSC3 oscillator circuit output	
EXOSC	I	I	EXOSC clock input	
FOUT	0	O (L)	FOUT clock output	

Table 2.3.2.1 List of CLG Pins

* Indicates the status when the pin is configured for CLG.

If the port is shared with the CLG input/output function and other functions, the CLG function must be assigned to the port. For more information, refer to the "I/O Ports" chapter.

2.3.3 Clock Sources

IOSC oscillator circuit

The IOSC oscillator circuit features a fast startup and no external parts are required for oscillating. Figure 2.3.3.1 shows the configuration of the IOSC oscillator circuit.

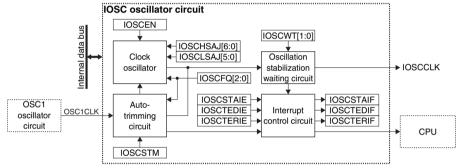


Figure 2.3.3.1 IOSC Oscillator Circuit Configuration

The IOSC oscillator circuit output clock IOSCCLK is used as SYSCLK at booting. The IOSCCLK frequency can be selected using the CLGIOSC.IOSCFQ[2:0] bits. The IOSC oscillator circuit is equipped with an autotrimming function that automatically adjusts the frequency. This helps reduce frequency deviation due to unevenness in manufacturing quality, temperature, and changes in voltage. For more information on the autotrimming function and the oscillation characteristics, refer to "IOSC oscillation auto-trimming function" in this chapter and "IOSC oscillator circuit characteristics" in the "Electrical Characteristics" chapter, respectively.

OSC1 oscillator circuit

The OSC1 oscillator circuit is a low-power oscillator circuit that allows software to select the oscillator type from two different types shown below. Figure 2.3.3.2 shows the configuration of the OSC1 oscillator circuit.

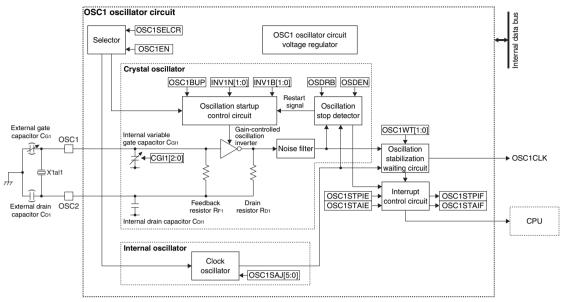


Figure 2.3.3.2 OSC1 Oscillator Circuit Configuration

Crystal oscillator

This oscillator circuit includes a gain-controlled oscillation inverter and a variable gate capacitor allowing use of various crystal resonators (32.768 kHz typ.) with ranges from cylinder type through surface-mount type. The oscillator circuit also includes a feedback resistor and a drain resistor, so no external parts are required except for a crystal resonator. The embedded oscillation stop detector, which detects oscillation stop and restarts the oscillator, allows the system to operate in safety under adverse environments that may stop the oscillation. The oscillation startup control circuit operates for a set period of time after the oscillation is enabled to assist the oscillator in initiating, this makes it possible to use a low-power resonator that is difficult to start up.

Note: Depending on the circuit board or the crystal resonator type used, an external gate capacitor C_{G1} and a drain capacitor C_{D1} may be required.

Internal oscillator

This 32 kHz oscillator circuit operates without any external parts.

When the internal oscillator circuit is used, set the OSC1 pin level to Vss and leave the OSC2 pin open.

For the recommended parts and the oscillation characteristics, refer to the "Basic External Connection Diagram" chapter and "OSC1 oscillator circuit characteristics" in the "Electrical Characteristics" chapter, respectively.

OSC3 oscillator circuit

The OSC3 oscillator circuit is a high-speed oscillator that allows software to select the oscillator type from two different types shown below. Figure 2.3.3.3 shows the configuration of the OSC3 oscillator circuit.

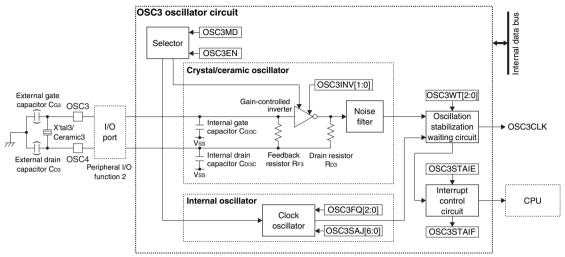


Figure 2.3.3.3 OSC3 Oscillator Circuit Configuration

Crystal/ceramic oscillator

This oscillator circuit includes a feedback resistor and a drain resistor, so no external part is required except for a crystal/ceramic resonator. The embedded gain-controlled inverter allows selection of the resonator from a wide frequency range.

Note: Depending on the circuit board or the crystal resonator type used, an external gate capacitor CG3 and a drain capacitor CD3 may be required.

Internal oscillator

This oscillator circuit operates without any external parts. The OSC3CLK frequency can be selected using the CLGOSC3.OSC3FQ[2:0] bits.

For the recommended parts and the oscillation characteristics, refer to the "Basic External Connection Diagram" chapter and the "Electrical Characteristics" chapter, respectively.

EXOSC clock input

EXOSC is an external clock input circuit that supports square wave and sine wave clocks. Figure 2.3.3.4 shows the configuration of the EXOSC clock input circuit.

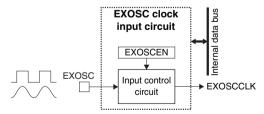


Figure 2.3.3.4 EXOSC Clock Input Circuit

EXOSC has no oscillation stabilization waiting circuit included, therefore, it must be enabled when a stabilized clock is being supplied. For the input clock characteristics, refer to "EXOSC external clock input characteristics" in the "Electrical Characteristics" chapter.

2.3.4 Operations

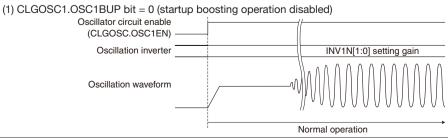
Oscillation start time and oscillation stabilization waiting time

The oscillation start time refers to the time after the oscillator circuit is enabled until the oscillation signal is actually sent to the internal circuits. The oscillation stabilization waiting time refers to the time it takes the clock to stabilize after the oscillation starts. To avoid malfunctions of the internal circuits due to an unstable clock during this period, the oscillator circuit includes an oscillation stabilization waiting circuit that can disable supplying the clock to the system until the designated time has elapsed. Figure 2.3.4.1 shows the relationship between the oscillation start time and the oscillation stabilization waiting time.

Figure 2.3.4.1 Oscillation Start Time and Oscillation Stabilization Waiting Time

The oscillation stabilization waiting times for the IOSC, OSC1, and OSC3 oscillator circuits can be set using the CLGIOSC.IOSCWT[1:0] bits, CLGOSC1.OSC1WT[1:0] bits, and CLGOSC3.OSC3WT[2:0] bits, respectively. To check whether the oscillation stabilization waiting time is set properly and the clock is stabilized immediately after the oscillation starts or not, monitor the oscillation clock using the FOUT output function.

The oscillation stabilization waiting time for the IOSC oscillator circuit is fixed at 16 IOSCCLK clocks when the IOSC frequency is 2 MHz or lower. When the frequency is 8 MHz or higher, set to 8 IOSCCLK clocks or more.


The oscillation stabilization waiting time for the OSC1 oscillator circuit should be set to 16,384 OSC1CLK clocks or more when crystal oscillator is selected, or 4,096 OSC1CLK clocks or more when internal oscillator is selected.

The oscillation stabilization waiting time for the OSC3 oscillator circuit should be set to 1,024 OSC3CLK clocks or more when crystal/ceramic oscillator is selected, or 16 OSC3CLK clocks or more when internal oscillator is selected.

When the oscillation stabilization waiting operation has completed, the oscillator circuit sets the oscillation stabilization waiting completion flag and starts clock supply to the internal circuits.

Note: The oscillation stabilization waiting time is always expended at start of oscillation even if the oscillation stabilization waiting completion flag has not be cleared to 0.

When the oscillation startup control circuit in the OSC1 oscillator circuit is enabled by setting the CLGOSC1.OS-C1BUP bit to 1, it uses the high-gain oscillation inverter for a set period of time (startup boosting operation) after the oscillator circuit is enabled (by setting the CLGOSC.OSC1EN bit to 1) to reduce oscillation start time. Note, however, that the oscillation operation may become unstable if there is a large gain differential between normal operation and startup boosting operation. Furthermore, the oscillation start time being actually reduced depends on the characteristics of the resonator used. Figure 2.3.4.2 shows an operation example when the oscillation startup control circuit is used.

2 POWER SUPPLY, RESET, AND CLOCKS

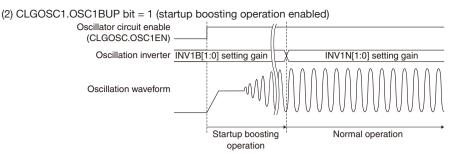


Figure 2.3.4.2 Operation Example when the Oscillation Startup Control Circuit is Used

Oscillation start procedure for the IOSC oscillator circuit

Follow the procedure shown below to start oscillation of the IOSC oscillator circuit.

- 1. Write 1 to the CLGINTF.IOSCSTAIF bit. (Clear interrupt flag)
- 2. Write 1 to the CLGINTE.IOSCSTAIE bit. (Enable interrupt)
- 3. Write 0x0096 to the SYSPROT.PROT[15:0] bits. (Remove system protection)
- 4. Configure the following CLGIOSC register bits:
 - CLGIOSC.IOSCWT[1:0] bit (Set oscillation stabilization waiting time)
 CLGIOSC.IOSCFQ[2:0] bit (Select frequency)
- 5. Set the CLGTRIM1.IOSCLSAJ[5:0] bits (fiosc = 2/1 MHz) or CLGTRIM1.IOSCHSAJ[6:0] bits (fiosc = 32/24/16/12/8 MHz) as necessary. (Finely adjust oscillation frequency)
- 6. Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits. (Set system protection)
- 7. Write 1 to the CLGOSC.IOSCEN bit. (Start oscillation)
- 8. IOSCCLK can be used if the CLGINTF.IOSCSTAIF bit = 1 after an interrupt occurs.

The setting values of the CLGTRIM1.IOSCLSAJ[5:0] and CLGTRIM1.IOSCHSAJ[6:0] bits should be determined after performing evaluation using the populated circuit board.

Note: Make sure the CLGOSC.IOSCEN bit is set to 0 (while the IOSC oscillation is halted) when setting the CLGTRIM1.IOSCLSAJ[5:0] or CLGTRIM1.IOSCHSAJ[6:0] bits.

Oscillation start procedure for the OSC1 oscillator circuit

Follow the procedure shown below to start oscillation of the OSC1 oscillator circuit.

- 1. Write 1 to the CLGINTF.OSC1STAIF bit. (Clear interrupt flag) 2. Write 1 to the CLGINTE.OSC1STAIE bit. (Enable interrupt) 3. Write 0x0096 to the SYSPROT.PROT[15:0] bits. (Remove system protection) 4. Configure the following CLGOSC1 register bits: - CLGOSC1.OSC1SELCR bit (Select oscillator type) - CLGOSC1.OSC1WT[1:0] bits (Set oscillation stabilization waiting time) In addition to the above, configure the following bits when using the crystal oscillator: - CLGOSC1.INV1N[1:0] bits (Set oscillation inverter gain) - CLGOSC1.CGI1[2:0] bits (Set internal gate capacitor) - CLGOSC1.INV1B[1:0] bits (Set oscillation inverter gain for startup boosting period) - CLGOSC1.OSC1BUP bit (Enable/disable oscillation startup control circuit) 5. When using the internal oscillator, set the CLGTRIM2.OSC1SAJ[5:0] bits as necessary. (Finely adjust oscillation frequency) 6. Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits. (Set system protection)
- 7. When a value official data of a constraint of the state of the stat
- 7. Write 1 to the CLGOSC.OSC1EN bit. (Start oscillation)
- 8. OSC1CLK can be used if the CLGINTF.OSC1STAIF bit = 1 after an interrupt occurs.

The setting values of the CLGOSC1.INV1N[1:0], CLGOSC1.CGI1[2:0], CLGOSC1.OSC1WT[1:0], CLGOSC1.INV1B[1:0], and CLGTRIM2.OSC1SAJ[5:0] bits should be determined after performing evaluation using the populated circuit board.

Note: Make sure the CLGOSC.OSC1EN bit is set to 0 (while the OSC1 oscillation is halted) when setting the CLGTRIM2.OSC1SAJ[5:0] bits.

Oscillation start procedure for the OSC3 oscillator circuit

Follow the procedure shown below to start oscillation of the OSC3 oscillator circuit.

- Write 1 to the CLGINTF.OSC3STAIF bit. (Clear interrupt flag)
 Write 1 to the CLGINTE.OSC3STAIE bit. (Enable interrupt)
- 3. Write 0x0096 to the SYSPROT.PROT[15:0] bits. (Remove system protection)
- 4. Configure the following CLGOSC1 register bits:
 CLGOSC3.OSC3MD bit (Select oscillator type)
 CLGOSC3.OSC3WT[2:0] bits (Set oscillation stabilization waiting time)
 - In addition to the above, configure the following bits when using the crystal/ceramic oscillator:
 - CLGOSC3.OSC3INV[1:0] bits (Set oscillation inverter gain)
 - Configure the following bits when using the internal oscillator:
 - CLGOSC3.OSC3FQ[2:0] bits (Select frequency)
- 5. When using the internal oscillator, set the CLGTRIM2.OSC3SAJ[6:0] bits as necessary.

(Finely adjust oscillation frequency)

- 6. Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits. (Set system protection)
- 7. When using the crystal/ceramic oscillator, assign the OSC3 oscillator input/output functions to the ports. (Refer to the "I/O Ports" chapter.)
- 8. Write 1 to the CLGOSC.OSC3EN bit. (Start oscillation)
- 9. OSC3CLK can be used if the CLGINTF.OSC3STAIF bit = 1 after an interrupt occurs.

The setting values of the CLGOSC3.OSC3INV[1:0], CLGOSC3.OSC3WT[2:0], and CLGTRIM2. OSC3SAJ[6:0] bits should be determined after performing evaluation using the populated circuit board.

Note: Make sure the CLGOSC.OSC3EN bit is set to 0 (while the OSC3 oscillation is halted) when setting the CLGTRIM2.OSC3SAJ[6:0] bits.

System clock switching

The CPU boots using IOSCCLK as SYSCLK. After booting, the clock source of SYSCLK can be switched according to the processing speed required. The SYSCLK frequency can also be set by selecting the clock source division ratio, this makes it possible to run the CPU at the most suitable performance for the process to be executed. The CLGSCLK.CLKSRC[1:0] and CLGSCLK.CLKDIV[1:0] bits are used for this control. The CLGSCLK register bits are protected against writings by the system protect function, therefore, the system protection must be removed by writing 0x0096 to the SYSPROT.PROT[15:0] bits before the register setting can be altered. For the transition between the operating modes including the system clock switching, refer to "Operating Mode."

Clock control in SLEEP mode

Whether the clock sources being operated are stopped or not when the CPU enters SLEEP mode (deep sleep mode) can be selected in each source individually. This allows the CPU to fast switch between SLEEP mode and RUN mode, and the peripheral circuits to continue operating without disabling the clock in SLEEP mode. The CLGOSC.IOSCSLPC, CLGOSC.OSC1SLPC, CLGOSC.OSC3SLPC, and CLGOSC.EXOSCSLPC bits are used for this control. Figure 2.3.4.3 shows a control example.

2 POWER SUPPLY, RESET, AND CLOCKS

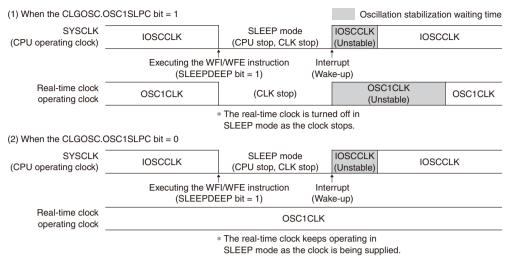


Figure 2.3.4.3 Clock Control Example in SLEEP Mode

The SYSCLK condition (clock source and division ratio) at wake-up from SLEEP mode to RUN mode can also be configured. This allows flexible clock control according to the wake-up process. Configure the clock using the CLGSCLK.WUPSRC[1:0] and CLGSCLK.WUPDIV[1:0] bits, and write 1 to the CLGSCLK.WUPMD bit to enable this function.

(1) When the CLGSCLK			Oscillation stabilization waiting tim			
SYSCLK (CPU operating clock)	OSC1CLK	SLEEP mode (CPU stop, CLK stop)		OSC1CLK (Unstable)		OSC1CLK
	0	↑ FI/WFE instruction EEP bit = 1)	f Interru (Wake-			
	CLGSCLK.CLKSRC[1:0] = 0x1 (OSC1) * Starting up with the same clock as one CLGSCLK.WUPSRC[1:0] = 0x1 (OSC1) that used before SLEEP mode was enter					
(2) When the CLGSCLK	WUPMD bit = 1 and the CL	GSCLK.WUPSRC[1:0] bits = 0	x0		
SYSCLK (CPU operating clock)	OSCICLK			OSCCLK Jnstable)	IOSCCI K	
	0	· · · ·) * S	CLGSCLK.CI CLGSCLK.CI CLGSCLK.W Switching to P	_KSRC[1:0] = UPSRC[1:0] = OSC that feat /s high-speed	= 0x0 (IOSC) tures fast

Clock external output (FOUT)

The FOUT pin can output the clock generated by a clock source or its divided clock to outside the IC. This allows monitoring the oscillation frequency of the oscillator circuit or supplying an operating clock to external ICs. Follow the procedure shown below to start clock external output.

- 1. Assign the FOUT function to the port. (Refer to the "I/O Ports" chapter.)
- 2. Configure the following CLGFOUT register bits:
 - CLGFOUT.FOUTSRC[1:0] bits (Select clock source)
 - CLGFOUT.FOUTDIV[2:0] bits (Set clock division ratio)
 - Set the CLGFOUT.FOUTEN bit to 1. (Enable clock external output)

IOSC oscillation auto-trimming function

The auto-trimming function adjusts the IOSCCLK clock frequency selected using the CLGIOSC.IOSCFQ[2:0] bits by trimming the clock with reference to the high precision OSC1CLK clock generated by the OSC1 oscillator circuit. Follow the procedure shown below to enable the auto-trimming function.

- 1. After enabling the OSC1 oscillation, check if the stabilized clock is supplied (CLGINTF.OSC1STAIF bit = 1).
- 2. After enabling the IOSC oscillation, check if the stabilized clock is supplied (CLGINTF.IOSCSTAIF bit = 1).
- 3. Write 0x0096 to the SYSPROT.PROT[15:0] bits. (Remove system protection)
- 4. If 1 or 2 MHz IOSC has been selected as the SYSCLK clock source, set the CLGSCLK.CLKSRC[1:0] bits to a value other than 0x0 (IOSC).
- 5. Configure the following CLGINTF register bits:
 - Write 1 to the CLGINTF.IOSCTEDIF bit. (Clear interrupt flag)
 - Write 1 to the CLGINTF.IOSCTERIF bit.
- 6. Configure the following CLGINTF register bits:
 - Set the CLGINTE.IOSCTEDIE bit to 1.
 - Set the CLGINTE.IOSCTERIE bit to 1.
- 7. Write 1 to the CLGIOSC.IOSCSTM bit. (Enable IOSC oscillation auto-trimming)

(Clear interrupt flag)

(Enable interrupt)

(Enable interrupt)

- 8. Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits. (Set system protection)
- The trimmed IOSCCLK can be used if the CLGINTF.IOSCTEDIF bit = 1 after an interrupt occurs. If the CLGINTF.IOSCTERIF bit = 1, an error has occurred during the auto-trimming operation (the clock has not been adjusted).

After the trimming operation has completed, the CLGIOSC.IOSCSTM bit automatically reverts to 0. Although the trimming time depends on the temperature, an average of several 10 ms is required. When IOSCCLK is being used as the system clock or a peripheral circuit clock, do not use the auto-trimming function.

OSC1 oscillation stop detection function

The oscillation stop detection function restarts the OSC1 oscillator circuit when it detects oscillation stop under adverse environments that may stop the oscillation. Follow the procedure shown below to enable the oscillation stop detection function.

- 1. After enabling the OSC1 oscillation, check if the stabilized clock is supplied (CLGINTF.OSC1STAIF bit = 1).
- 2. Write 1 to the CLGINTF.OSC1STPIF bit. (Clear interrupt flag)
- 3. Write 1 to the CLGINTE.OSC1STPIE bit. (Enable interrupt)
- 4. Write 0x0096 to the SYSPROT.PROT[15:0] bits. (Remove system protection)
- 5. Set the following CLGOSC1 register bits:
 - Set the CLGOSC1.OSDRB bit to 1. (Enable OSC1 restart function)
 - Set the CLGOSC1.OSDEN bit to 1. (Enable oscillation stop detection function)
- 6. Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits. (Set system protection)
- The OSC1 oscillation stops if the CLGINTF.OSC1STPIF bit = 1 after an interrupt occurs. If the CLGOSC1.OSDRB bit = 1, the hardware restarts the OSC1 oscillator circuit.

Note: Enabling the oscillation stop detection function increase the oscillation stop detector current (losD1).

2.4 Operating Mode

2.4.1 Initial Boot Sequence

Figure 2.4.1.1 shows the initial boot sequence after power is turned on.

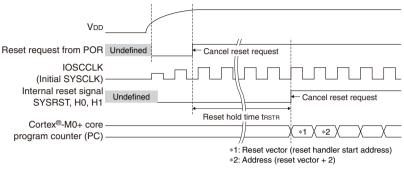


Figure 2.4.1.1 Initial Boot Sequence

Note: The reset cancelation time at power-on varies according to the power rise time and reset request cancelation time.

For the reset hold time tRSTR, refer to "Reset hold circuit characteristics" in the "Electrical Characteristics" chapter.

2.4.2 Transition between Operating Modes

State transitions between operating modes shown in Figure 2.4.2.1 take place in this IC.

RUN mode

RUN mode refers to the state in which the CPU is executing the program. A transition to this mode takes place when the system reset request from the system reset controller is canceled. RUN mode is classified into "IOSC RUN," "OSC1 RUN," "OSC3 RUN," and "EXOSC RUN" by the SYSCLK clock source.

HALT mode

When the Cortex[®]-M0+ core executes the WFI or WFE instruction with the SLEEPDEEP bit of the Cortex[®]-M0+ System Control Register set to 0, it suspends program execution and stops operating. This state is referred to HALT mode in this IC. In this mode, the clock sources and peripheral circuits keep operating. This mode can be set while no software processing is required and it reduces power consumption as compared with RUN mode. HALT mode is classified into "IOSC HALT," "OSC1 HALT," "OSC3 HALT," and "EXOSC HALT" by the SYSCLK clock source.

SLEEP mode

When the Cortex[®]-M0+ core executes the WFI or WFE instruction with the SLEEPDEEP bit of the Cortex[®]-M0+ System Control Register set to 1, it suspends program execution and stops operating. This state is referred to SLEEP mode in this IC. In this mode, the clock sources stop operating as well.

However, the clock source in which the CLGOSC.IOSCSLPC/OSC3SLPC/EXOSCSLPC bit is set to 0 keeps operating, so the peripheral circuits with the clock being supplied can also operate. By setting this mode when no software processing and peripheral circuit operations are required, power consumption can be less than HALT mode.

The RAM retains data even in SLEEP mode.

2 POWER SUPPLY, RESET, AND CLOCKS

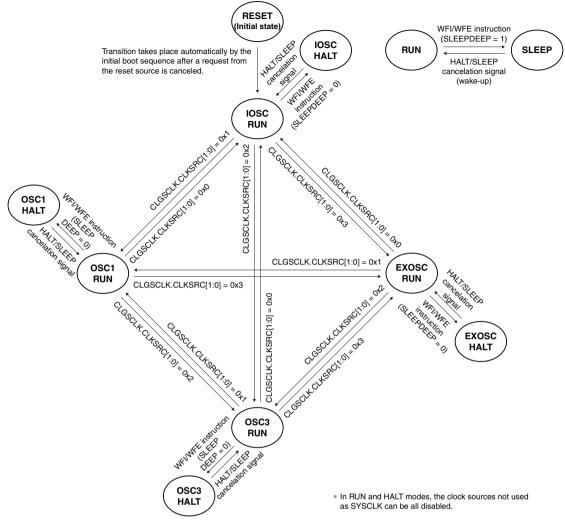


Figure 2.4.2.1 Operating Mode-to-Mode State Transition Diagram

Canceling HALT or SLEEP mode

The conditions listed below generate the HALT/SLEEP cancelation signal to cancel HALT or SLEEP mode and put the CPU into RUN mode.

- · Interrupt request from a peripheral circuit
- NMI from the watchdog timer
- Reset request

2.5 Interrupts

CLG has a function to generate the interrupts shown in Table 2.5.1.

Interrupt	Interrupt flag	Set condition	Clear condition
IOSC oscillation stabiliza-	CLGINTF.IOSCSTAIF	When the IOSC oscillation stabilization waiting	Writing 1
tion waiting completion		operation has completed after the oscillation starts	
OSC1 oscillation stabili-	CLGINTF.OSC1STAIF	When the OSC1 oscillation stabilization waiting	Writing 1
zation waiting completion		operation has completed after the oscillation starts	
OSC3 oscillation stabili-	CLGINTF.OSC3STAIF	When the OSC3 oscillation stabilization waiting	Writing 1
zation waiting completion		operation has completed after the oscillation starts	
OSC1 oscillation stop	CLGINTF.OSC1STPIF	When OSC1CLK is stopped, or when the CLGOSC.	Writing 1
		OSC1EN or CLGOSC1.OSDEN bit setting is al-	
		tered from 1 to 0.	
IOSC oscillation auto-	CLGINTF.IOSCTEDIF	When the IOSC oscillation auto-trimming opera-	Writing 1
trimming completion		tion has completed	
IOSC oscillation auto-	CLGINTF.IOSCTERIF	When the IOSC oscillation auto-trimming opera-	Writing 1
trimming error		tion has terminated due to an error	

Table 2.5.1	CLG Interrupt	Functions
10010 2.0.1		i anotionio

CLG provides interrupt enable bits corresponding to each interrupt flag. An interrupt request is sent to the CPU only when the interrupt flag, of which interrupt has been enabled by the interrupt enable bit, is set. For more information on interrupt control, refer to the "Interrupt" chapter.

2.6 Control Registers

PWGA Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	
PWGACTL	15–8	_	0x00	-	R	-
	7–6	-	0x0	-	R	
	5	REGDIS	0	H0	R/WP	
	4	REGSEL	1	H0	R/WP	
	3–2	-	0x0	-	R	
	1–0	REGMODE[1:0]	0x0	H0	R/WP	

Bits 15-6 Reserved

Bit 5 REGDIS

This bit enables the VD1 regulator discharge function. 1 (R/WP): Enable 0 (R/WP): Disable

Bit 4 REGSEL

This bit controls the VD1 regulator voltage mode. 1 (R/WP): mode0 0 (R/WP): mode1

Bits 3–2 Reserved

Bits 1-0 REGMODE[1:0]

These bits control the VDI regulator operating mode.

Table 2.6.1	Internal Regulato	r Operating Mode
-------------	-------------------	------------------

······································						
PWGACTL.REGMODE[1:0] bits	Operating mode					
0x3	Economy mode					
0x2	Normal mode					
0x1	Reserved					
0x0	Automatic mode					

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks	
SRCRESETREQ	15–8	-	0x00	-	R	_	
	7–5	-	0x0	-	R		
	4	PORBORREQ	1	H2	R/W	Cleared by writing 1.	
	3	XRESETREQ	1	H2	R/W		
	2	WDTRSTREQ	0	H1	R/W		
	1	SVDRSTREQ	0	H1	R/W		
	0	KEYRSTREQ	0	H1	R/W		

SRC Reset Request Flag Register

Bits 15–5 Reserved

Bit 4	PORBORREQ

Bit 3 XRESETREQ

Bit 2 WDTRSTREQ

Bit 1 SVDRSTREQ

Bit 0 KEYRSTREQ

These bits indicate the reset request statuses.

- 1 (R): Reset requested
- 0 (R): No reset requested
- 1 (W): Clear flag
- 0 (W): Ineffective

Each bit corresponds to the reset source as follows: SRCRESETREO PORBORREO bit: POR and BOR

SKCKESETKEQ.FORDORKEQ UIL	FOR allu DOK
SRCRESETREQ.XRESETREQ bit:	#RESET pin
SRCRESETREQ.WDTRSTREQ bit:	Watchdog timer reset
SRCRESETREQ.SVDRSTREQ bit:	Supply voltage detector reset
SRCRESETREQ.KEYRSTREQ bit:	Key-entry reset

SRC #RESET Port Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SRCRESETPCTL	15–8	_	0x00	-	R	_
	7	-	0	_	R	
	6–4	(reserved)	0x0	H2	R/WP	Do not write 1.
	3	-	0	-	R	-
	2	(reserved)	0	H2	R/WP	Do not write 1.
	1	PORT_PLUP_EN	1	H2	R/WP	-
	0	PORT_RESET_EN	1	H2	R/WP	

Bits 15–2 Reserved

Bit 1 PORT_PLUP_EN

This bit enables the pull-up of the #RESET pin. 1 (R/WP): Enable pull-up 0 (R/WP): Disable pull-up

Bit 0 PORT_RESET_EN

This bit enables the #RESET pin to input the external reset signal. 1 (R/WP): Enable external reset input 0 (R/WP): Disable external reset input

CLG System Clock Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
CLGSCLK	15	WUPMD	0	HO	R/WP	-
	14	-	0	-	R	
	13–12	WUPDIV[1:0]	0x0	H0	R/WP	
	11–10	-	0x0	-	R	
	9–8	WUPSRC[1:0]	0x0	H0	R/WP	
	7–6	-	0x0	-	R	
	5–4	CLKDIV[1:0]	0x0	H0	R/WP	
	3–2	-	0x0	-	R	
	1–0	CLKSRC[1:0]	0x0	HO	R/WP	

Bit 15 WUPMD

This bit enables the SYSCLK switching function at wake-up.

1 (R/WP): Enable

0 (R/WP): Disable

When the CLGSCLK.WUPMD bit = 1, setting values of the CLGSCLK.WUPSRC[1:0] bits and the CLGSCLK.WUPDIV[1:0] bits are loaded to the CLGSCLK.CLKSRC[1:0] bits and the CLGSCLK. CLKDIV[1:0] bits, respectively, at wake-up from SLEEP mode to switch SYSCLK. When the CLG-SCLK.WUPMD bit = 0, the CLGSCLK.CLKSRC[1:0] and CLGSCLK.CLKDIV[1:0] bits are not altered at wake-up.

Bit 14 Reserved

Bits 13-12 WUPDIV[1:0]

These bits select the SYSCLK division ratio for resetting the CLGSCLK.CLKDIV[1:0] bits at wake-up. This setting is ineffective when the CLGSCLK.WUPMD bit = 0.

Bits 11–10 Reserved

Bits 9–8 WUPSRC[1:0]

These bits select the SYSCLK clock source for resetting the CLGSCLK.CLKSRC[1:0] bits at wake-up. When a currently stopped clock source is selected, it will automatically start oscillating or clock input at wake-up. However, this setting is ineffective when the CLGSCLK.WUPMD bit = 0.

CLGSCLK.	CLGSCLK.WUPSRC[1:0] bits							
WUPDIV[1:0] bits	0x0 0x1		0x2	0x3				
	IOSCCLK	OSC1CLK	OSC3CLK	EXOSCCLK				
0x3	1/8	Reserved	1/16	Reserved				
0x2	1/4	Reserved	1/8	Reserved				
0x1	1/2	1/2	1/2	Reserved				
0x0	1/1	1/1	1/1	1/1				

Table 2.6.2 SYSCLK Clock Source and Division Ratio Settings at Wake-up

Bits 7–6 Reserved

Bits 5-4 CLKDIV[1:0]

These bits set the division ratio of the clock source to determine the SYSCLK frequency.

Bits 3–2 Reserved

Bits 1-0 CLKSRC[1:0]

These bits select the SYSCLK clock source. When a currently stopped clock source is selected, it will automatically start oscillating or clock input.

	CLGSCLK.CLKSRC[1:0] bits							
CLGSCLK.	0x0	0x1	0x2	0x3				
CLKDIV[1:0] bits	IOSCCLK	OSC1CLK	OSC3CLK	EXOSCCLK				
0x3	1/8	Reserved	1/16	Reserved				
0x2	1/4	Reserved	1/8	Reserved				
0x1	1/2	1/2	1/2	Reserved				
0x0	1/1	1/1	1/1	1/1				

Table 2.6.3 SYSCLK Clock Source and Division Ratio Settings

CLG Oscillation Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
CLGOSC	15–12	_	0x0	-	R	-
	11	EXOSCSLPC	1	H0	R/W	
	10	OSC3SLPC	1	H0	R/W	
	9	OSC1SLPC	1	H0	R/W	
	8	IOSCSLPC	1	H0	R/W	
	7–4	-	0x0	-	R	
	3	EXOSCEN	0	H0	R/W	
	2	OSC3EN	0	H0	R/W	
	1	OSC1EN	0	H0	R/W	
	0	IOSCEN	1	H0	R/W	

Bits 15–12 Reserved

Bit 11 EXOSCSLPC

Bit 10 OSC3SLPC

Bit 9 OSC1SLPC

Bit 8 IOSCSLPC

These bits control the clock source operations in SLEEP mode. 1 (R/W): Stop clock source in SLEEP mode 0 (R/W): Continue operation state before SLEEP

Each bit corresponds to the clock source as follows: CLGOSC.EXOSCSLPC bit: EXOSC clock input CLGOSC.OSC3SLPC bit: OSC3 oscillator circuit CLGOSC.OSC1SLPC bit: OSC1 oscillator circuit CLGOSC.IOSCSLPC bit: IOSC oscillator circuit

Bits 7–4 Reserved

- Bit 3 EXOSCEN
- Bit 2 OSC3EN
- Bit 1 OSC1EN

Bit 0 IOSCEN

These bits control the clock source operation. 1(R/W): Start oscillating or clock input

0(R/W): Stop oscillating or clock input

Each bit corresponds to the clock source as follows: CLGOSC.EXOSCEN bit: EXOSC clock input CLGOSC.OSC3EN bit: OSC3 oscillator circuit CLGOSC.OSC1EN bit: OSC1 oscillator circuit CLGOSC.IOSCEN bit: IOSC oscillator circuit

CLG IOSC Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
CLGIOSC	15–8	-	0x00	_	R	_
	7	-	0	-	R	
	6–5	IOSCWT[1:0]	0x3	H0	R/WP	
	4	IOSCSTM	0	H0	R/WP	
	3	-	0	-	R	
	2–0	IOSCFQ[2:0]	0x3	H0	R/WP	

Bits 15–7 Reserved

Bits 6–5 IOSCWT[1:0]

These bits set the oscillation stabilization waiting time for the IOSC oscillator circuit (8 MHz-32 MHz).

CLGIOSC.IOSCWT[1:0] bits	Oscillation stabilization waiting time
0x3	2,048 clocks
0x2	16 clocks
0x1	8 clocks
0x0	Setting prohibited

Bit 4 IOSCSTM

This bit controls the IOSCCLK auto-trimming function.

- 1 (WP): Start trimming
- 0 (WP): Stop trimming
- 1 (R): Trimming is executing.
- 0 (R): Trimming has finished. (Trimming operation inactivated.)

This bit is automatically cleared to 0 when trimming has finished.

- **Notes:** Do not use IOSCCLK as the system clock or peripheral circuit clocks while the CLGIOSC. IOSCSTM bit = 1.
 - The auto-trimming function does not work if the OSC1 oscillator circuit is stopped. Make sure the CLGINTF.OSC1STAIF bit is set to 1 before starting the trimming operation.
 - Be sure to avoid altering the CLGIOSC.IOSCFQ[2:0] bits while the auto-trimming is being executed.

Bit 3 Reserved

Bits 2–0 IOSCFQ[2:0]

These bits select the IOSCCLK frequency.

lubic	2.0.0 TOOOOEI(Triequency	0010011011
CLGIOSC.	IOSCCLK	frequency
IOSCFQ[2:0] bits	VD1 voltage mode = mode0	VD1 voltage mode = mode1
0x7	32 MHz	
0x6	24 MHz	
0x5	16 MHz	Catting probibited
0x4	12 MHz	Setting prohibited
0x3	8 MHz	
0x2	Setting prohibited	
0x1	2 MHz	2 MHz
0x0	1 MHz	1 MHz

Table 2.6.5 IOSCCLK Frequency Selection

CLG OSC1 Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
CLGOSC1	15	-	0	-	R	-
	14	OSDRB	1	H0	R/WP	
	13	OSDEN	0	H0	R/WP	
	12	OSC1BUP	1	H0	R/WP	
	11	OSC1SELCR	0	H0	R/WP	
	10–8	CGI1[2:0]	0x0	H0	R/WP	
	7–6	INV1B[1:0]	0x2	H0	R/WP	
	5–4	INV1N[1:0]	0x1	H0	R/WP	
	3–2	-	0x0	-	R	
	1–0	OSC1WT[1:0]	0x2	H0	R/WP	

Bit 15 Reserved

Bit 14 OSDRB

This bit enables the OSC1 oscillator circuit restart function by the oscillation stop detector when OSC1 oscillation stop is detected.

1 (R/WP): Enable (Restart the OSC1 oscillator circuit when oscillation stop is detected.) 0 (R/WP): Disable

Bit 13 OSDEN

This bit controls the oscillation stop detector in the OSC1 oscillator circuit. 1 (R/WP): OSC1 oscillation stop detector on 0 (R/WP): OSC1 oscillation stop detector off

Note: Do not write 1 to the CLGOSC1.OSDEN bit before stabilized OSC1CLK is supplied. Furthermore, the CLGOSC1.OSDEN bit should be set to 0 when the CLGOSC.OSC1EN bit is set to 0.

Bit 12 OSC1BUP

This bit enables the oscillation startup control circuit in the OSC1 oscillator circuit. 1 (R/WP): Enable (Activate booster operation at startup.) 0 (R/WP): Disable

Bit 11 OSC1SELCR

This bit selects an oscillator type of the OSC1 oscillator circuit. 1 (R/WP): Internal oscillator 0 (R/WP): Crystal oscillator

Bits 10-8 CGI1[2:0]

These bits set the internal gate capacitance in the OSC1 oscillator circuit.

Table 2.6.6 OSC1 Interna	al Gate Capacitance Setting
CLGOSC1.CGI1[2:0] bits	Capacitance
0x7	Max.
0x6	1
0x5	
0x4	
0x3	
0x2	
0x1	↓
0x0	Min.

For more information, refer to "OSC1 oscillator circuit characteristics, Internal gate capacitance CGII" in the "Electrical Characteristics" chapter.

Bits 7-6 INV1B[1:0]

These bits set the oscillation inverter gain that will be applied at boost startup of the OSC1 oscillator circuit.

CLGOSC1.INV1B[1:0] bits	Inverter gain
0x3	Max.
0x2	↑
0x1	↓
0x0	Min.

Note: The CLGOSC1.INV1B[1:0] bits must be set to a value equal to or larger than the CLGOSC1. INV1N[1:0] bits.

Bits 5-4 INV1N[1:0]

These bits set the oscillation inverter gain applied at normal operation of the OSC1 oscillator circuit.

Table 2.6.8 Setting Oscillation Inverter Gain at OSC1 Normal Operation

CLGOSC1.INV1N[1:0] bits	Inverter gain
0x3	Max.
0x2	Ŷ
0x1	Ļ
0x0	Min.

Bits 3–2 Reserved

Bits 1-0 OSC1WT[1:0]

These bits set the oscillation stabilization waiting time for the OSC1 oscillator circuit.

Table 2.6.9 OSC1 Oscillation Stabilization Waiting Time Setting

CLGOSC1.OSC1WT[1:0] bits	Oscillation stabilization waiting time
0x3	65,536 clocks
0x2	16,384 clocks
0x1	4,096 clocks
0x0	Reserved

CLG OSC3 Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remar
CLGOSC3	15–13	-	0x0	-	R	-
	12–10	OSC3FQ[2:0]	0x5	HO	R/WP	
	9	OSC3MD	0	H0	R/WP	
	8	-	0	-	R	
	7–6	-	0x0	-	R	
	5–4	OSC3INV[1:0]	0x3	H0	R/WP	
	3	-	0	-	R	
	2–0	OSC3WT[2:0]	0x6	HO	R/WP	

Bits 15–13 Reserved

Bits 12-10 OSC3FQ[2:0]

These bits set the OSC3CLK frequency when internal oscillator is selected as the OSC3 oscillator type.

Table 2.6.10 OSC3CLK Frequency Setting (OSC3 Internal Oscillator)

	, J()
CLGOSC3.OSC3FQ[2:0] bits	OSC3CLK frequency
0x7	32 MHz
0x6	24 MHz
0x5	16 MHz
0x4	12 MHz
0x3–0x0	8 MHz

Bit 9 OSC3MD

This bit selects an oscillator type of the OSC3 oscillator circuit. 1 (R/WP): Crystal/ceramic oscillator 0 (R/WP): Internal oscillator

Bits 8–6 Reserved

Bits 5–4 OSC3INV[1:0]

These bits set the oscillation inverter gain when crystal/ceramic oscillator is selected as the OSC3 oscillator type.

Table 2.6.11 OSC3 Oscillation Inverter Gain Setting

CLGOSC3.OSC3INV[1:0] bits	Inverter gain
0x3	Max.
0x2	↑
0x1	Ļ
0x0	Min.

Bit 3 Reserved

Bits 2-0 OSC3WT[2:0]

These bits set the oscillation stabilization waiting time for the OSC3 oscillator circuit.

Table 2.6.12 USU3 Oscillation Stabilization Waiting Time Setting			
CLGOSC3.OSC3WT[2:0] bits	Oscillation stabilization waiting time		
0x7	65,536 clocks		
0x6	16,384 clocks		
0x5	4,096 clocks		
0x4	1,024 clocks		
0x3	256 clocks		
0x2	64 clocks		
0x1	16 clocks		
0x0	4 clocks		

Table 2.6.12 OSC3 Oscillation Stabilization Waiting Time Setting

CLG Interrupt Flag Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
CLGINTF	15–9	-	0x00	_	R	-
	8	IOSCTERIF	0	H0	R/W	Cleared by writing 1.
	7	-	0	-	R	-
	6	(reserved)	0	H0	R	
	5	OSC1STPIF	0	H0	R/W	Cleared by writing 1.
	4	IOSCTEDIF	0	H0	R/W	
	3	-	0	-	R	_
	2	OSC3STAIF	0	H0	R/W	Cleared by writing 1.
	1	OSC1STAIF	0	HO	R/W	
	0	IOSCSTAIF	0	H0	R/W	

Bits 15-9, 7, 6, 3 Reserved

- Bit 8 IOSCTERIF
- Bit 5 OSC1STPIF
- Bit 4 IOSCTEDIF
- Bit 2 OSC3STAIF
- Bit 1 OSC1STAIF

Bit 0 IOSCSTAIF

These bits indicate the CLG interrupt cause occurrence statuses.

- 1 (R): Cause of interrupt occurred
- 0 (R): No cause of interrupt occurred
- 1 (W): Clear flag
- 0 (W): Ineffective

Each bit corresponds to the interrupt as follows:

CLGINTF.IOSCTERIF bit: IOSC oscillation auto-trimming error interrupt CLGINTF.OSC1STPIF bit: OSC1 oscillation stop interrupt CLGINTF.IOSCTEDIF bit: IOSC oscillation auto-trimming completion interrupt CLGINTF.OSC3STAIF bit: OSC3 oscillation stabilization waiting completion interrupt CLGINTF.OSC1STAIF bit: OSC1 oscillation stabilization waiting completion interrupt CLGINTF.IOSCSTAIF bit: IOSC oscillation stabilization waiting completion interrupt

Note: The CLGINTF.IOSCSTAIF bit is 0 after system reset is canceled, but IOSCCLK has already been stabilized.

CLG Interrupt Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
CLGINTE	15–9	_	0x00	-	R	-
	8	IOSCTERIE	0	HO	R/W	
	7	-	0	-	R	
	6	(reserved)	0	H0	R	
	5	OSC1STPIE	0	H0	R/W	
	4	IOSCTEDIE	0	H0	R/W	
	3	-	0	-	R	
	2	OSC3STAIE	0	H0	R/W	
	1	OSC1STAIE	0	HO	R/W	
	0	IOSCSTAIE	0	H0	R/W	

Bits 15-9, 7, 6, 3 Reserved

- Bit 8 IOSCTERIE
- Bit 5 OSC1STPIE
- Bit 4 IOSCTEDIE
- Bit 2 OSC3STAIE
- Bit 1 OSC1STAIE
- Bit 0 IOSCSTAIE

These bits enable the CLG interrupts.

- 1 (R/W): Enable interrupts
- 0 (R/W): Disable interrupts

Each bit corresponds to the interrupt as follows:

CLGINTE.IOSCTERIE bit: IOSC oscillation auto-trimming error interrupt

CLGINTE.OSC1STPIE bit: OSC1 oscillation stop interrupt

CLGINTE.IOSCTEDIE bit: IOSC oscillation auto-trimming completion interrupt

CLGINTE.OSC3STAIE bit: OSC3 oscillation stabilization waiting completion interrupt

CLGINTE.OSC1STAIE bit: OSC1 oscillation stabilization waiting completion interrupt

CLGINTE.IOSCSTAIE bit: IOSC oscillation stabilization waiting completion interrupt

CLG FOUT Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
CLGFOUT	15–8	-	0x00	-	R	-
	7	-	0	-	R	
	6–4	FOUTDIV[2:0]	0x0	H0	R/W	
	3–2	FOUTSRC[1:0]	0x0	H0	R/W	
	1	-	0	-	R	
	0	FOUTEN	0	H0	R/W	

Bits 15–7 Reserved

Bits 6-4 FOUTDIV[2:0]

These bits set the FOUT clock division ratio.

Bits 3–2 FOUTSRC[1:0]

These bits select the FOUT clock source.

Table 2.6.13		Clock Source	and	Division	Ratio Settings
Table 2.0.13	FUUT	CIOCK SOURCE	anu	DIVISION	nalio Sellings

CLGFOUT.	CLGFOUT.FOUTSRC[1:0] bits							
FOUTDIV[2:0] bits	0x0	0x1	0x2	0x3				
FOUTDIV[2:0] bits	IOSCCLK	OSC1CLK	OSC3CLK	SYSCLK				
0x7	1/128	1/32,768	1/128	Reserved				
0x6	1/64	1/4,096	1/64	Reserved				
0x5	1/32	1/1,024	1/32	Reserved				
0x4	1/16	1/256	1/16	Reserved				
0x3	1/8	1/8	1/8	Reserved				
0x2	1/4	1/4	1/4	Reserved				
0x1	1/2	1/2	1/2	Reserved				
0x0	1/1	1/1	1/1	1/1				

Note: When the CLGFOUT.FOUTSRC[1:0] bits are set to 0x3, the FOUT output will be stopped in SLEEP/HALT mode as SYSCLK is stopped.

Bit 1 Reserved

Bit 0 FOUTEN

This bit controls the FOUT clock external output.

- 1 (R/W): Enable external output
- 0 (R/W): Disable external output
- **Note**: Since the FOUT signal generated is out of sync with writings to the CLGFOUT.FOUTEN bit, a glitch may occur when the FOUT output is enabled or disabled.

CLG Oscillation Frequency Trimming Register 1

			<u> </u>			
Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
CLGTRIM1	15–14	_	0x0	-	R	_
	13–8	IOSCLSAJ[5:0]	*	H0	R/WP	* Determined by factory adjustment.
	7	-	0	-	R	-
	6–0	IOSCHSAJ[6:0]	*	H0	R/WP	* Determined by factory adjustment.

Bits 15–14 Reserved

Bits 13-8 IOSCLSAJ[5:0]

These bits set the frequency trimming value for the IOSC internal oscillator circuit. This setting affects the low-speed oscillation frequencies (1 MHz and 2 MHz).

Table 2.6.14 Low-Speed Oscillation Frequency Trimming Setting of IOSC Internal Oscillator Circuit

CLGTRIM1.IOSCLSAJ[5:0] bits	IOSC oscillation frequency (2/1 MHz)
0x3f	High
:	:
0x00	Low

Bit 7 Reserved

Bits 6–0 IOSCHSAJ[6:0]

These bits set the frequency trimming value for the IOSC internal oscillator circuit. This setting affects the high-speed oscillation frequencies (8 MHz to 32 MHz).

Table 2.6.15 High-Speed Oscillation Frequency Trimming Setting of IOSC Internal Oscillator Circuit

CLGTRIM1.IOSCHSAJ[6:0] bits	IOSC oscillation frequency (32/24/16/12/8 MHz)
0x7f	High
:	:
0x00	Low

2 POWER SUPPLY, RESET, AND CLOCKS

Note: The initial values of the CLGTRIM1.IOSCLSAJ[5:0] and CLGTRIM1.IOSCHSAJ[6:0] bits were adjusted so that the IOSC oscillator circuit characteristics described in the "Electrical Characteristics" chapter can be guaranteed. Be aware that the frequency characteristics may not be satisfied when these settings are altered. When altering these settings, always make sure that the IOSC oscillator circuit is inactive.

CLG Oscillation F	requency	Trimming	Register 2
--------------------------	----------	----------	------------

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks		
CLGTRIM2	15	-	0	-	R	-		
	14–8	OSC3SAJ[6:0]	*	H0	R/WP	* Determined by factory adjustment.		
	7–6	-	0x0	-	R			
	5–0	OSC1SAJ[5:0]	*	HO	R/WP	* Determined by factory adjustment.		

Bit 15 Reserved

Bits 14-8 OSC3SAJ[6:0]

These bits set the frequency trimming value for the OSC3 internal oscillator circuit. This setting does not affect the OSC3 crystal/ceramic oscillation frequency.

Table 2.6.16 Oscillation Frequency Trimming Setting of OSC3 Internal Oscillator Circuit

CLGTRIM2.OSC3SAJ[6:0] bits	OSC3 internal oscillator frequency
0x7f	High
:	:
0x00	Low

Note: The initial value of the CLGTRIM2.OSC3SAJ[6:0] bits was adjusted so that the OSC3 oscillator circuit characteristics described in the "Electrical Characteristics" chapter can be guaranteed. Be aware that the frequency characteristic may not be satisfied when this setting is altered. When altering this setting, always make sure that the OSC3 oscillator circuit is inactive.

Bits 7–6 Reserved

Bits 5-0 OSC1SAJ[5:0]

These bits set the frequency trimming value for the OSC1 internal oscillator circuit. This setting does not affect the OSC1 crystal oscillation frequency.

Table 2.6.17 Oscillation Frequency Trimming Setting of OSC1 Internal Oscillator Circuit

CLGTRIM2.OSC1SAJ[5:0] bits	OSC1 internal oscillator frequency
0x3f	High
:	:
0x00	Low

Note: The initial value of the CLGTRIM2.OSC1SAJ[5:0] bits was adjusted so that the OSC1 oscillator circuit characteristics described in the "Electrical Characteristics" chapter can be guaranteed. Be aware that the frequency characteristic may not be satisfied when this setting is altered. When altering this setting, always make sure that the OSC1 oscillator circuit is inactive.

3 CPU and Debugger

3.1 Overview

This IC incorporates a Cortex®-M0+ CPU manufactured by Arm Ltd.

3.2 CPU

The following shows the system configuration of the Cortex®-M0+ CPU embedded in this IC:

- Cortex[®]-M0+ core
- 32-bit single-cycle multiplier
- Nested vectored interrupt controller (NVIC)
- System timer (Systick)
- Serial-wire debug port (SW-DP)
- Micro trace buffer (MTB)
- Number of hardware break points: 4
- Number of watch points: 2

3.3 Debugger

This IC includes a serial-wire debug port (SW-DP).

3.3.1 List of Debugger Input/Output Pins

Table 3.3.3.1 lists the debug pins.

Table 3.3.1.1	List of Debug Pins
---------------	--------------------

Pin name	I/O	Initial state	Function	
SWCLK	0	0	On-chip debugger clock input pin	
			Input a clock from a debugging tool.	
SWD	I/O	I	On-chip debugger data input/output pin	
			Used to input/output debugging data.	

The debugger input/output pins are shared with general-purpose I/O ports and are initially set as the debug pins. If the debugging function is not used, these pins can be switched to general-purpose I/O port pins. For details, refer to the "I/O Ports" chapter.

3.3.2 External Connection

Figure 3.3.2.1 shows a connection example between this IC and a debugging tool when performing debugging.

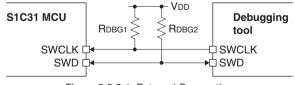


Figure 3.3.2.1 External Connection

For the recommended pull-up resistor value, refer to "Recommended Operating Conditions, Debug pin pull-up resistors RDBG1-2" in the "Electrical Characteristics" chapter. RDBG1 and RDBG2 are not required when using the debug pins as general-purpose I/O port pins.

3.4 Reference Documents

Arm Ltd. provides various documents for developing a system with a $Cortex^{(B)}-M0+$ CPU included. For detailed information on the $Cortex^{(B)}-M0+$ CPU that are not described in this manual, refer to the following documents:

- 1. ARM®v6-M Architecture Reference Manual
- 2. Cortex[®]-M0+Technical Reference Manual
- 3. Cortex[®]-M0+ Devices Generic User Guide

These documents can be downloaded from the document site of Arm Ltd.

https://developer.arm.com/documentation

4 Memory and Bus

4.1 Overview

This IC supports up to 4G bytes of accessible memory space for both instructions and data. The features are listed below.

- · Embedded Flash memory that supports on-board programming
- Write-protect function to protect system control registers

Figure 4.1.1 shows the memory map.

0xffff		Reserved
0xf022	4000	
0xf022	3fff	MTB area (144K bytes)
		(Device size: 32 bits)
0xf020	0000	(Device size: 32 bits)
0xf01f	ffff	
		Reserved
0xf000	1000	
0xf000	Offf	System ROM table area (4K bytes)
0 5000		(Device size: 32 bits)
0xf000	0000	
0xefff	ffff	Reserved area for Cortex [®] -M0+ (256M bytes)
0	0000	(Device size: 32 bits)
0xe000	0000	
0xdfff	ffff	Reserved
011/000	2000	Reserved
0x4000	3000	
0x4000	2fff	Peripheral circuit area (8K bytes)
0x4000	1000	(Device size: 32 bits)
0x4000	0fff	
0x4000	UTTT	Peripheral circuit area (4K bytes)
0x4000	0000	(Device size: 16 bits)
0x3fff	ffff	
UXJIII	TTTT	Reserved
0x2020	0200	
0x2020	01ff	
0112020	0111	
		Display data RAM area (112 bytes)
0	0000	(Device size: 32 bits)
0x2020	0000	
0x201f	ffff	Peeerved
0x2000	4000	Reserved
0x2000 0x2000	4000 3fff	
0x2000	JIII	RAM area (16K bytaa)
		RAM area (16K bytes)
		(Device size: 32 bits)
0x2000	0000	. ,
0x1fff	ffff	
		Reserved
0x0002	0000	
0×0001	ffff	
		Flash area (128K bytes)
		(Device size: 32 bits)
0 0000	0000	
0×0000	0000	

Figure 4.1.1 Memory Map

4.2 Bus Access Cycle

The CPU uses the system clock for bus access operations. First, "Bus access cycle," "Device size," and "Access size" are defined as follows:

- Bus access cycle: One system clock period = 1 cycle
- Device size: Bit width of the memory and peripheral circuits that can be accessed in one cycle
- Access size: Access size designated by the CPU instructions (e.g., LDR Rt, [Rn] \rightarrow 32-bit data transfer)

Table 4.2.1 lists numbers of bus access cycles by different device size and access size. The peripheral circuits can be accessed with an 8- or 16-bit instruction.

Device size	Access size	Number of bus access cycles
8 bits	8 bits	1
	16 bits	2
	32 bits	4
16 bits	8 bits	1
	16 bits	1
	32 bits	2
32 bits	8 bits	1
	16 bits	1
	32 bits	1

Table 4.2.1 Number of Bus Access Cycles

4.3 Flash Memory

The Flash memory is used to store application programs and data. Address 0x0 in the Flash area is defined as the vector table base address by default, therefore a vector table must be located beginning from this address. For more information on the vector table, refer to "Vector Table" in the "Interrupt" chapter.

4.3.1 Flash Memory Pin

Table 4.3.1.1 shows the Flash memory pin.

Table 4.3.1.1 Flash Memory Pin

Pin name	I/O	Initial status	Function
Vpp	Р	-	Flash programming power supply

4.3.2 Flash Bus Access Cycle Setting

There is a limit of frequency to access the Flash memory with no wait cycle, therefore, the number of bus access cycles for reading must be changed according to the system clock frequency. The number of bus access cycles for reading can be configured using the FLASHCWAIT.RDWAIT[1:0] bits. Select a setting for higher frequency than the system clock.

4.3.3 Flash Programming

The Flash memory supports on-board programming, so it can be programmed using a flash loader. The VPP voltage can be supplied from the internal voltage booster. Be sure to connect CVPP between the Vss and VPP pins for generating the voltage using the internal power supply.

Notes: • When programming the Flash memory, 2.2 V or more VDD voltage is required.

• Be sure to avoid using the VPP pin output for driving external circuits.

4.4 RAM

The RAM can be used to execute the instruction codes copied from another memory as well as storing variables or other data. This allows higher speed processing and lower power consumption than Flash memory.

4.5 Display Data RAM

The embedded display data RAM is used to store display data for the LCD driver. Areas unused for display data in the display data RAM can be used as a general-purpose RAM. For specific information on the display data RAM, refer to "Display Data RAM" in the "LCD Driver" chapter.

4.6 Peripheral Circuit Control Registers

The control registers for the peripheral circuits are located in the 12K-byte area beginning with address 0x4000 0000. Table 4.6.1 shows the control register map. For details of each control register, refer to "List of Peripheral Circuit Registers" in the appendix or "Control Registers" in each peripheral circuit chapter.

Peripheral circuit	Address		Register name
System register (SYS)	0x4000 0000	SVSPBOT	System Protect Register
Power generator (PWGA)	0x4000 0020		PWGA Control Register
Clock generator(CLG)	0x4000 0020		CLG System Clock Control Register
Clock generator (OEG)	0x4000 0040		CLG Oscillation Control Register
	0x4000 0042		CLG IOSC Control Register
	0x4000 0044		CLG OSC1 Control Register
	0x4000 0048		CLG OSC3 Control Register
	0x4000 0048 0x4000 004c		CLG USCS Control Register
	0x4000 004c		CLG Interrupt Enable Register
	0x4000 004e		, , , , , , , , , , , , , , , , , , ,
	0x4000 0050 0x4000 0052		CLG FOUT Control Register
			CLG Oscillation Frequency Trimming Register 1
0	0x4000 0054		CLG Oscillation Frequency Trimming Register 2
System reset controller (SRC)	0x4000 0060		SRC Reset Request Flag Register
	0x4000 0062		SRC #RESET Port Control Register
Watchdog timer (WDT2)	0x4000 00a0		WDT2 Clock Control Register
	0x4000 00a2		WDT2 Control Register
	0x4000 00a4		WDT2 Counter Compare Match Register
Real-time clock (RTCA)	0x4000 00c0	-	RTCA Control Register (Low Byte)
	0x4000 00c1	RTCACTLH	RTCA Control Register (High Byte)
	0x4000 00c2		RTCA Second Alarm Register
	0x4000 00c4		RTCA Hour/Minute Alarm Register
		RTCASWCTL	RTCA Stopwatch Control Register
	0x4000 00c8		RTCA Second/1Hz Register
	0x4000 00ca		RTCA Hour/Minute Register
	0x4000 00cc		RTCA Month/Day Register
	0x4000 00ce		RTCA Year/Week Register
	0x4000 00d0	RTCAINTF	RTCA Interrupt Flag Register
	0x4000 00d2		RTCA Interrupt Enable Register
Supply voltage detector	0x4000 0100	SVD4_0CLK	SVD4 Ch.0 Clock Control Register
(SVD4) Ch.0	0x4000 0102	SVD4_0CTL	SVD4 Ch.0 Control Register
	0x4000 0104	SVD4_0INTF	SVD4 Ch.0 Status and Interrupt Flag Register
	0x4000 0106	SVD4_0INTE	SVD4 Ch.0 Interrupt Enable Register
16-bit timer (T16) Ch.0	0x4000 0140	T16_0CLK	T16 Ch.0 Clock Control Register
	0x4000 0142	T16_0MOD	T16 Ch.0 Mode Register
	0x4000 0144	T16_0CTL	T16 Ch.0 Control Register
	0x4000 0146	T16_0TR	T16 Ch.0 Reload Data Register
	0x4000 0148		T16 Ch.0 Counter Data Register
	0x4000 014a		T16 Ch.0 Interrupt Flag Register
	0x4000 014c		T16 Ch.0 Interrupt Enable Register
Flash controller (FLASHC)		FLASHCWAIT	FLASHC Flash Read Cycle Register

Table 4.6.1 Peripheral Circuit Control Register Map

Address		Register name
	PPORTP0DAT	P0 Port Data Register
		P0 Port Enable Register
0x4000 0204	PPORTPORCTL	P0 Port Pull-up/down Control Register
0x4000 0206	PPORTPOINTF	P0 Port Interrupt Flag Register
0x4000 0208	PPORTPOINTCTL	P0 Port Interrupt Control Register
0x4000 020a	PPORTP0CHATEN	P0 Port Chattering Filter Enable Register
		P0 Port Mode Select Register
		P0 Port Function Select Register
		P1 Port Data Register
-		P1 Port Enable Register
-		P1 Port Pull-up/down Control Register
		P1 Port Interrupt Flag Register
		P1 Port Interrupt Control Register
		P1 Port Chattering Filter Enable Register
		P1 Port Mode Select Register
		P1 Port Function Select Register
		P2 Port Data Register
		P2 Port Enable Register
		P2 Port Pull-up/down Control Register
		P2 Port Interrupt Flag Register
		P2 Port Interrupt Control Register
		P2 Port Chattering Filter Enable Register P2 Port Mode Select Register
		P2 Port Function Select Register
		P3 Port Data Register
		P3 Port Enable Register
		P3 Port Pull-up/down Control Register
		P3 Port Interrupt Flag Register
		P3 Port Interrupt Control Register
-		P3 Port Chattering Filter Enable Register
		P3 Port Mode Select Register
		P3 Port Function Select Register
		P4 Port Data Register
		P4 Port Enable Register
0x4000 0244	PPORTP4RCTL	P4 Port Pull-up/down Control Register
0x4000 0246	PPORTP4INTF	P4 Port Interrupt Flag Register
0x4000 0248	PPORTP4INTCTL	P4 Port Interrupt Control Register
		P4 Port Chattering Filter Enable Register
0x4000 024c	PPORTP4MODSEL	P4 Port Mode Select Register
0x4000 024e	PPORTP4FNCSEL	P4 Port Function Select Register
		P5 Port Data Register
0x4000 0252	PPORTP5IOEN	P5 Port Enable Register
		P5 Port Pull-up/down Control Register
0x4000 0256	PPORTP5INTF	P5 Port Interrupt Flag Register
0x4000 0258	PPORTP5INTCTL	P5 Port Interrupt Control Register
0x4000 025a	PPORTP5CHATEN	P5 Port Chattering Filter Enable Register
0x4000 025c	PPORTP5MODSEL	P5 Port Mode Select Register
0x4000 025e	PPORTP5FNCSEL	P5 Port Function Select Register
0x4000 0260	PPORTP6DAT	P6 Port Data Register
		P6 Port Enable Register
		P6 Port Pull-up/down Control Register
		P6 Port Interrupt Flag Register
		P6 Port Interrupt Control Register
		P6 Port Chattering Filter Enable Register
		P6 Port Mode Select Register
		P6 Port Function Select Register
		Pd Port Data Register
	PPORTPDIOEN	Pd Port Enable Register
		,
	PPORTPORCTI	
0x4000 02d4	PPORTPDRCTL PPORTPDMODSEL	Pd Port Pull-up/down Control Register
0x4000 02d4 0x4000 02dc	PPORTPDMODSEL	Pd Port Mode Select Register
0x4000 02d4 0x4000 02dc	PPORTPDMODSEL PPORTPDFNCSEL	
	0x4000 0200 0x4000 0202 0x4000 0204 0x4000 0208 0x4000 0208 0x4000 0208 0x4000 0202 0x4000 0202 0x4000 0202 0x4000 0202 0x4000 0210 0x4000 0211 0x4000 0214 0x4000 0216 0x4000 0218 0x4000 0210 0x4000 0211 0x4000 0212 0x4000 0214 0x4000 0222 0x4000 0223 0x4000 0224 0x4000 0226 0x4000 0231 0x4000 0232 0x4000 0233 0x4000 0234 0x4000 0244 0x4000 0244 0x4000	0x4000 0200 PPORTPODAT 0x4000 0202 PPORTPOICEN 0x4000 0204 PPORTPORCTL 0x4000 0206 PPORTPOINTF 0x4000 0208 PPORTPOINTCTL 0x4000 0200 PPORTPOINTCTL 0x4000 0200 PPORTPOCHATEN 0x4000 0200 PPORTPOFNCSEL 0x4000 0210 PPORTPIENT 0x4000 0211 PPORTPIENT 0x4000 0212 PPORTPIENT 0x4000 0214 PPORTPIENT 0x4000 0216 PPORTPIINTF 0x4000 0216 PPORTPIENCSEL 0x4000 0217 PPORTPIENCSEL 0x4000 0216 PPORTPIENT 0x4000 0217 PPORTPIENT 0x4000 0218 PPORTPIENT 0x4000 0220 PPORTPIENT 0x4000 0221 PPORTP2DAT 0x4000 0222 PPORTP2INT 0x4000 0224 PPORTP2INTE 0x4000 0226 PPORTP2INTE 0x4000 0230 PPORTP3INT 0x4000 0230 PPORTP3INT 0x4000 0234 PPORTP3INT 0x4000 0236

Peripheral circuit	Address		Register name
Universal port multiplexer	0x4000 0300	UPMUXP0MUX0	P00–01 Universal Port Multiplexer Setting Register
(UPMUX)	0x4000 0302	UPMUXP0MUX1	P02–03 Universal Port Multiplexer Setting Register
	0x4000 0304	UPMUXP0MUX2	P04–05 Universal Port Multiplexer Setting Register
	0x4000 0306	UPMUXP0MUX3	P06–07 Universal Port Multiplexer Setting Register
	0x4000 0308	UPMUXP1MUX0	P10–11 Universal Port Multiplexer Setting Register
	0x4000 030a	UPMUXP1MUX1	P12–13 Universal Port Multiplexer Setting Register
	0x4000 030c	UPMUXP1MUX2	P14–15 Universal Port Multiplexer Setting Register
	0x4000 030e	UPMUXP1MUX3	P16–17 Universal Port Multiplexer Setting Register
	0x4000 0310	UPMUXP2MUX0	P20–21 Universal Port Multiplexer Setting Register
	0x4000 0312	UPMUXP2MUX1	P22–23 Universal Port Multiplexer Setting Register
	0x4000 0314	UPMUXP2MUX2	P24–25 Universal Port Multiplexer Setting Register
	0x4000 0316	UPMUXP2MUX3	P26–27 Universal Port Multiplexer Setting Register
	0x4000 0318	UPMUXP3MUX0	P30–31 Universal Port Multiplexer Setting Register
		UPMUXP3MUX1	P32–33 Universal Port Multiplexer Setting Register
	0x4000 031c		P34–35 Universal Port Multiplexer Setting Register
		UPMUXP3MUX3	P36–37 Universal Port Multiplexer Setting Register
UART (UART3) Ch.0		UART3_0CLK	UART3 Ch.0 Clock Control Register
	0x4000 0382	_	UART3 Ch.0 Mode Register
	0x4000 0384	UART3 0BR	UART3 Ch.0 Baud-Rate Register
	0x4000 0386		UART3 Ch.0 Control Register
	0x4000 0388	_	UART3 Ch.0 Transmit Data Register
		UART3 ORXD	UART3 Ch.0 Receive Data Register
	0x4000 038c	UART3 0INTF	UART3 Ch.0 Status and Interrupt Flag Register
	0x4000 038e	UART3_0INTE	UART3 Ch.0 Interrupt Enable Register
		UART3_0INTE	UART3 Ch.0 Transmit Buffer Empty DMA Request
	0x4000 0390	TBEDMAEN	Enable Register
	0x4000 0392	UART3 0	UART3 Ch.0 Receive Buffer One Byte Full DMA
	0,4000 0392	RB1FDMAEN	Request Enable Register
	0x4000 0394	UART3_0CAWF	UART3 Ch.0 Carrier Waveform Register
16-bit timer (T16) Ch.1	0x4000 0394 0x4000 03a0	T16_1CLK	T16 Ch.1 Clock Control Register
To-bit timer (TTO) Ch. I	0x4000 03a0	T16_1MOD	T16 Ch.1 Mode Register
	0x4000 03a4		T16 Ch.1 Control Register
	0x4000 03a6		T16 Ch.1 Reload Data Register
	0x4000 03a8		T16 Ch.1 Counter Data Register
	0x4000 03aa		T16 Ch.1 Interrupt Flag Register
<u> </u>	0x4000 03ac		T16 Ch.1 Interrupt Enable Register
Synchronous serial interface	0x4000 03b0		SPIA Ch.0 Mode Register
(SPIA) Ch.0	0x4000 03b2		SPIA Ch.0 Control Register
	0x4000 03b4		SPIA Ch.0 Transmit Data Register
	0x4000 03b6		SPIA Ch.0 Receive Data Register
	0x4000 03b8		SPIA Ch.0 Interrupt Flag Register
	0x4000 03ba		SPIA Ch.0 Interrupt Enable Register
		SPIA_0TBEDMAEN	SPIA Ch.0 Transmit Buffer Empty DMA Request Enable Register
	0x4000 03be	SPIA_0RBFDMAEN	SPIA Ch.0 Receive Buffer Full DMA Request Enable Register
I ² C (I2C) Ch.0	0x4000 03c0	I2C OCLK	I2C Ch.0 Clock Control Register
	0x4000 03c2		I2C Ch.0 Mode Register
	0x4000 03c4		I2C Ch.0 Baud-Rate Register
	0x4000 03c8		I2C Ch.0 Own Address Register
	0x4000 03ca		I2C Ch.0 Control Register
	0x4000 03cc		I2C Ch.0 Transmit Data Register
	0x4000 03cc		I2C Ch.0 Receive Data Register
			<u> </u>
	0x4000 03d0		I2C Ch.0 Status and Interrupt Flag Register
	0x4000 03d2		I2C Ch.0 Interrupt Enable Register
	0x4000 03d4	I2C_0TBEDMAEN	I2C Ch.0 Transmit Buffer Empty DMA Request Enable Register
	0x4000 03d6	I2C_0RBFDMAEN	I2C Ch.0 Receive Buffer Full DMA Request Enable Register

Peripheral circuit	Address		Register name
16-bit PWM timer (T16B)	0x4000 0400	T16B_0CLK	T16B Ch.0 Clock Control Register
Ch.0	0x4000 0402	T16B_0CTL	T16B Ch.0 Counter Control Register
	0x4000 0404	_	T16B Ch.0 Max Counter Data Register
	0x4000 0406	_	T16B Ch.0 Timer Counter Data Register
	0x4000 0408		T16B Ch.0 Counter Status Register
	0x4000 040a		T16B Ch.0 Interrupt Flag Register
	0x4000 040c		T16B Ch.0 Interrupt Enable Register
		T16B_0MZDMAEN	T16B Ch.0 Counter Max/Zero DMA Request Enable Register
		T16B_0CCCTL0	T16B Ch.0 Compare/Capture 0 Control Register
	-	T16B_0CCR0	T16B Ch.0 Compare/Capture 0 Data Register
	0x4000 0414	T16B_0CC0DMAEN	T16B Ch.0 Compare/Capture 0 DMA Request Enable Register
	0x4000 0418	T16B_0CCCTL1	T16B Ch.0 Compare/Capture 1 Control Register
	0x4000 041a	T16B_0CCR1	T16B Ch.0 Compare/Capture 1 Data Register
	0x4000 041c	T16B_0CC1DMAEN	T16B Ch.0 Compare/Capture 1 DMA Request Enable Register
	0x4000 0420	T16B_0CCCTL2	T16B Ch.0 Compare/Capture 2 Control Register
	0x4000 0422	T16B_0CCR2	T16B Ch.0 Compare/Capture 2 Data Register
	0x4000 0424	T16B_0CC2DMAEN	T16B Ch.0 Compare/Capture 2 DMA Request Enable Register
	0x4000 0428	T16B_0CCCTL3	T16B Ch.0 Compare/Capture 3 Control Register
	0x4000 042a	T16B_0CCR3	T16B Ch.0 Compare/Capture 3 Data Register
	0x4000 042c	T16B_0CC3DMAEN	T16B Ch.0 Compare/Capture 3 DMA Request Enable
			Register
6-bit PWM timer (T16B)	0x4000 0440	_	T16B Ch.1 Clock Control Register
Ch.1	0x4000 0442		T16B Ch.1 Counter Control Register
	0x4000 0444	_	T16B Ch.1 Max Counter Data Register
	0x4000 0446		T16B Ch.1 Timer Counter Data Register
	0x4000 0448		T16B Ch.1 Counter Status Register
	0x4000 044a		T16B Ch.1 Interrupt Flag Register
	0x4000 044c		T16B Ch.1 Interrupt Enable Register
	0x4000 044e	T16B_1MZDMAEN	T16B Ch.1 Counter Max/Zero DMA Request Enable Register
	0x4000 0450	T16B_1CCCTL0	T16B Ch.1 Compare/Capture 0 Control Register
	0x4000 0452	T16B_1CCR0	T16B Ch.1 Compare/Capture 0 Data Register
	0x4000 0454	T16B_1CC0DMAEN	T16B Ch.1 Compare/Capture 0 DMA Request Enable Register
	0x4000 0458	T16B_1CCCTL1	T16B Ch.1 Compare/Capture 1 Control Register
	0x4000 045a	T16B_1CCR1	T16B Ch.1 Compare/Capture 1 Data Register
	0x4000 045c	T16B_1CC1DMAEN	T16B Ch.1 Compare/Capture 1 DMA Request Enable Register
	0x4000 0460	T16B_1CCCTL2	T16B Ch.1 Compare/Capture 2 Control Register
	0x4000 0462	T16B_1CCR2	T16B Ch.1 Compare/Capture 2 Data Register
	0x4000 0464	T16B_1CC2DMAEN	T16B Ch.1 Compare/Capture 2 DMA Request Enable Register
	0x4000 0468	T16B_1CCCTL3	T16B Ch.1 Compare/Capture 3 Control Register
	0x4000 046a	T16B_1CCR3	T16B Ch.1 Compare/Capture 3 Data Register
	0x4000 046c	T16B_1CC3DMAEN	T16B Ch.1 Compare/Capture 3 DMA Request Enable Register
6-bit timer (T16) Ch.3	0x4000 0480	T16_3CLK	T16 Ch.3 Clock Control Register
	0x4000 0482	T16_3MOD	T16 Ch.3 Mode Register
	0x4000 0484	T16_3CTL	T16 Ch.3 Control Register
	0x4000 0486	T16_3TR	T16 Ch.3 Reload Data Register
	0x4000 0488	T16_3TC	T16 Ch.3 Counter Data Register
	0x4000 048a	T16_3INTF	T16 Ch.3 Interrupt Flag Register
	0x4000 048c	T16_3INTE	T16 Ch.3 Interrupt Enable Register
6-bit timer (T16) Ch.4	0x4000 04a0	T16_4CLK	T16 Ch.4 Clock Control Register
•	0x4000 04a2	T16_4MOD	T16 Ch.4 Mode Register
	0x4000 04a4	T16_4CTL	T16 Ch.4 Control Register
	0x4000 04a6		T16 Ch.4 Reload Data Register
	0x4000 04a8		T16 Ch.4 Counter Data Register
	0x4000 04aa	T16_4INTF	T16 Ch.4 Interrupt Flag Register

Peripheral circuit	Address		Register name
16-bit timer (T16) Ch.5	0x4000 04c0	T16_5CLK	T16 Ch.5 Clock Control Register
	0x4000 04c2	_	T16 Ch.5 Mode Register
	0x4000 04c4		T16 Ch.5 Control Register
	0x4000 04c6		T16 Ch.5 Reload Data Register
	0x4000 04c8		T16 Ch.5 Counter Data Register
	0x4000 04ca		T16 Ch.5 Interrupt Flag Register
	0x4000 04cc		T16 Ch.5 Interrupt Enable Register
UART (UART3) Ch.1	-	UART3_1CLK	UART3 Ch.1 Clock Control Register
		UART3 1MOD	UART3 Ch.1 Mode Register
	0x4000 0604		UART3 Ch.1 Baud-Rate Register
		UART3_1CTL	UART3 Ch.1 Control Register
		UART3 1TXD	UART3 Ch.1 Transmit Data Register
		UART3_1RXD	UART3 Ch.1 Receive Data Register
		UART3_1INTF	UART3 Ch.1 Status and Interrupt Flag Register
		UART3_1INTE	UART3 Ch.1 Interrupt Enable Register
	0x4000 0610	_	UART3 Ch.1 Transmit Buffer Empty DMA Request
	0×4000.0610	TBEDMAEN	Enable Register UART3 Ch.1 Receive Buffer One Byte Full DMA
	0x4000 0612	_	
	0×4000.0614	RB1FDMAEN	Request Enable Register
16 bit timer (T10) Ob 0	0x4000 0614		UART3 Ch.1 Carrier Waveform Register
16-bit timer (T16) Ch.6	0x4000 0660		T16 Ch.6 Clock Control Register
	0x4000 0662	_	T16 Ch.6 Mode Register
	0x4000 0664		T16 Ch.6 Control Register
	0x4000 0666	_	T16 Ch.6 Reload Data Register
	0x4000 0668		T16 Ch.6 Counter Data Register
	0x4000 066a	_	T16 Ch.6 Interrupt Flag Register
	0x4000 066c		T16 Ch.6 Interrupt Enable Register
Synchronous serial interface	0x4000 0670	SPIA_1MOD	SPIA Ch.1 Mode Register
(SPIA) Ch.1	0x4000 0672	SPIA_1CTL	SPIA Ch.1 Control Register
	0x4000 0674	SPIA_1TXD	SPIA Ch.1 Transmit Data Register
	0x4000 0676	SPIA_1RXD	SPIA Ch.1 Receive Data Register
	0x4000 0678	SPIA_1INTF	SPIA Ch.1 Interrupt Flag Register
	0x4000 067a	SPIA_1INTE	SPIA Ch.1 Interrupt Enable Register
	0x4000 067c	SPIA_1TBEDMAEN	SPIA Ch.1 Transmit Buffer Empty DMA Request Enable
			Register
	0x4000 067e	SPIA_1RBFDMAEN	SPIA Ch.1 Receive Buffer Full DMA Request Enable
			Register
16-bit timer (T16) Ch.2	0x4000 0680	T16_2CLK	T16 Ch.2 Clock Control Register
	0x4000 0682	T16_2MOD	T16 Ch.2 Mode Register
	0x4000 0684	T16_2CTL	T16 Ch.2 Control Register
	0x4000 0686	T16_2TR	T16 Ch.2 Reload Data Register
	0x4000 0688	T16_2TC	T16 Ch.2 Counter Data Register
	0x4000 068a	T16_2INTF	T16 Ch.2 Interrupt Flag Register
	0x4000 068c	T16 2INTE	T16 Ch.2 Interrupt Enable Register
I ² C (I2C) Ch.1	0x4000 06c0		I2C Ch.1 Clock Control Register
()	0x4000 06c2		I2C Ch.1 Mode Register
	0x4000 06c4		I2C Ch.1 Baud-Rate Register
	0x4000 06c8	_	I2C Ch.1 Own Address Register
	0x4000 06ca		I2C Ch.1 Control Register
	0x4000 06cc		I2C Ch.1 Transmit Data Register
	0x4000 06ce		I2C Ch.1 Receive Data Register
	0x4000 06d0		I2C Ch.1 Status and Interrupt Flag Register
	0x4000 06d2		I2C Ch.1 Interrupt Enable Register
			I2C Ch.1 Transmit Buffer Empty DMA Request Enable
	0,4000 0004	I2C_1TBEDMAEN	Register
	0x4000.0646	I2C 1RBFDMAEN	I2C Ch.1 Receive Buffer Full DMA Request Enable
			Register
Sound generator (SNDA)	0x4000 0700		SNDA Clock Control Register
Sound generator (SINDA)			
	0x4000 0702		SNDA Select Register
	0x4000 0704		SNDA Control Register
	0x4000 0706		SNDA Data Register
	0x4000 0708	-	SNDA Interrupt Flag Register
	0x4000 070a		SNDA Interrupt Enable Register
	0x4000 070c	SNDAEMDMAEN	SNDA Sound Buffer Empty DMA Request Enable
			Register

Peripheral circuit	Address		Register name
IR remote controller (REMC3)	0x4000 0720		REMC3 Clock Control Register
		REMC3DBCTL	REMC3 Data Bit Counter Control Register
		REMC3DBCNT	REMC3 Data Bit Counter Register
		REMC3APLEN	REMC3 Data Bit Active Pulse Length Register
		REMC3DBLEN	REMC3 Data Bit Length Register
	0x4000 072a		REMC3 Status and Interrupt Flag Register
	0x4000 072c	REMC3INTE	REMC3 Interrupt Enable Register
	0x4000 0730	REMC3CARR	REMC3 Carrier Waveform Register
	0x4000 0732	REMC3CCTL	REMC3 Carrier Modulation Control Register
16-bit PWM timer (T16B)	0x4000 0740	T16B_2CLK	T16B Ch.2 Clock Control Register
Ch.2	0x4000 0742	T16B_2CTL	T16B Ch.2 Counter Control Register
	0x4000 0744	T16B_2MC	T16B Ch.2 Max Counter Data Register
	0x4000 0746	T16B_2TC	T16B Ch.2 Timer Counter Data Register
	0x4000 0748	T16B_2CS	T16B Ch.2 Counter Status Register
	0x4000 074a	T16B_2INTF	T16B Ch.2 Interrupt Flag Register
	0x4000 074c	T16B_2INTE	T16B Ch.2 Interrupt Enable Register
	0x4000 074e	T16B_2MZDMAEN	T16B Ch.2 Counter Max/Zero DMA Request Enable Register
	0x4000 0750	T16B_2CCCTL0	T16B Ch.2 Compare/Capture 0 Control Register
	0x4000 0752	T16B_2CCR0	T16B Ch.2 Compare/Capture 0 Data Register
	0x4000 0754	T16B_2CC0DMAEN	T16B Ch.2 Compare/Capture 0 DMA Request Enable
			Register
	0x4000 0758	T16B_2CCCTL1	T16B Ch.2 Compare/Capture 1 Control Register
	0x4000 075a	T16B_2CCR1	T16B Ch.2 Compare/Capture 1 Data Register
		T16B_2CC1DMAEN	T16B Ch.2 Compare/Capture 1 DMA Request Enable
			Register
	0x4000 0760	T16B 2CCCTL2	T16B Ch.2 Compare/Capture 2 Control Register
		T16B 2CCR2	T16B Ch.2 Compare/Capture 2 Data Register
	0x4000 0764	T16B_2CC2DMAEN	T16B Ch.2 Compare/Capture 2 DMA Request Enable
			Register
	0x4000 0768	T16B_2CCCTL3	T16B Ch.2 Compare/Capture 3 Control Register
	0x4000 076a		T16B Ch.2 Compare/Capture 3 Data Register
16-bit timer (T16) Ch.7	0x4000 0780	T16_7CLK	T16 Ch.7 Clock Control Register
	0x4000 0782	T16_7MOD	T16 Ch.7 Mode Register
	0x4000 0784	T16_7CTL	T16 Ch.7 Control Register
	0x4000 0786		T16 Ch.7 Reload Data Register
	0x4000 0788		T16 Ch.7 Counter Data Register
	0x4000 078a		T16 Ch.7 Interrupt Flag Register
	0x4000 078c		T16 Ch.7 Interrupt Enable Register
12-bit A/D converter	0x4000 07a2		ADC12A Ch.0 Control Register
ADC12A)		ADC12A_0TRG	ADC12A Ch.0 Trigger/Analog Input Select Register
ADC 12A)		ADC12A_0CFG	ADC12A Ch.0 Configuration Register
		ADC12A_0INTF	ADC12A Ch.0 Interrupt Flag Register
		ADC12A_0INTE	ADC12A Ch.0 Interrupt Enable Register
			ADC12A Ch.0 DMA Request Enable Register 0
		ADC12A_0DMAEN1	ADC12A Ch.0 DMA Request Enable Register 1
		ADC12A_0DMAEN2	ADC12A Ch.0 DMA Request Enable Register 2 ADC12A Ch.0 DMA Request Enable Register 3
	0x4000 07b2		· · · · ·
		ADC12A_0DMAEN4	ADC12A Ch.0 DMA Request Enable Register 4
		ADC12A_0DMAEN5	ADC12A Ch.0 DMA Request Enable Register 5
		ADC12A_0DMAEN6	ADC12A Ch.0 DMA Request Enable Register 6
		ADC12A_0DMAEN7	ADC12A Ch.0 DMA Request Enable Register 7
		ADC12A_0ADD	ADC12A Ch.0 Result Register
emperature sensor/reference		TSRVR_0TCTL	TSRVR Ch.0 Temperature Sensor Control Register
oltage generator (TSRVR)	0x4000 07c2	TSRVR_0VCTL	TSRVR Ch.0 Reference Voltage Generator Control Regist
_CD driver (LCD8D)	0x4000 0800	LCD8DCLK	LCD8D Clock Control Register
	0x4000 0802	LCD8DCTL	LCD8D Control Register
	0x4000 0804	LCD8DTIM1	LCD8D Timing Control Register 1
	0x4000 0806	LCD8DTIM2	LCD8D Timing Control Register 2
	0x4000 0808	LCD8DPWR	LCD8D Power Control Register
	0x4000 080a	LCD8DDSP	LCD8D Display Control Register
	0x4000 080c	LCD8DCOMC0	LCD8D COM Pin Control Register 0
	0x4000 0810	LCD8DINTF	LCD8D Interrupt Flag Register

Peripheral circuit	Address		Register name
R/F converter (RFC) Ch.0	0x4000 0840	RFC_0CLK	RFC Ch.0 Clock Control Register
	0x4000 0842	RFC_0CTL	RFC Ch.0 Control Register
	0x4000 0844	RFC_0TRG	RFC Ch.0 Oscillation Trigger Register
	0x4000 0846	RFC_0MCL	RFC Ch.0 Measurement Counter Low Register
	0x4000 0848	RFC_0MCH	RFC Ch.0 Measurement Counter High Register
	0x4000 084a	RFC_0TCL	RFC Ch.0 Time Base Counter Low Register
	0x4000 084c	RFC_0TCH	RFC Ch.0 Time Base Counter High Register
	0x4000 084e	RFC_0INTF	RFC Ch.0 Interrupt Flag Register
	0x4000 0850	RFC_0INTE	RFC Ch.0 Interrupt Enable Register
DMA controller (DMAC)	0x4000 1000	DMACSTAT	DMAC Status Register
	0x4000 1004	DMACCFG	DMAC Configuration Register
	0x4000 1008	DMACCPTR	DMAC Control Data Base Pointer Register
	0x4000 100c	DMACACPTR	DMAC Alternate Control Data Base Pointer Register
	0x4000 1014	DMACSWREQ	DMAC Software Request Register
	0x4000 1020	DMACRMSET	DMAC Request Mask Set Register
	0x4000 1024	DMACRMCLR	DMAC Request Mask Clear Register
	0x4000 1028	DMACENSET	DMAC Enable Set Register
	0x4000 102c	DMACENCLR	DMAC Enable Clear Register
	0x4000 1030	DMACPASET	DMAC Primary-Alternate Set Register
	0x4000 1034	DMACPACLR	DMAC Primary-Alternate Clear Register
	0x4000 1038	DMACPRSET	DMAC Priority Set Register
	0x4000 103c	DMACPRCLR	DMAC Priority Clear Register
	0x4000 104c	DMACERRIF	DMAC Error Interrupt Flag Register
	0x4000 2000	DMACENDIF	DMAC Transfer Completion Interrupt Flag Register
	0x4000 2008	DMACENDIESET	DMAC Transfer Completion Interrupt Enable Set Register
	0x4000 200c	DMACENDIECLR	DMAC Transfer Completion Interrupt Enable Clear Register
	0x4000 2010	DMACERRIESET	DMAC Error Interrupt Enable Set Register
	0x4000 2014	DMACERRIECLR	DMAC Error Interrupt Enable Clear Register

4.6.1 System-Protect Function

The system-protect function protects control registers and bits from writings. They cannot be rewritten unless write protection is removed by writing 0x0096 to the SYSPROT.PROT[15:0] bits. This function is provided to prevent deadlock that may occur when a system-related register is altered by a runaway CPU. See "Control Registers" in each peripheral circuit to identify the registers and bits with write protection.

Note: Once write protection is removed using the SYSPROT.PROT[15:0] bits, write enabled status is maintained until write protection is applied again. After the registers/bits required have been altered, apply write protection.

4.7 Control Registers

System Protect Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SYSPROT	15–0	PROT[15:0]	0x0000	H0	R/W	-

Bits 15-0 PROT[15:0]

These bits protect the control registers related to the system against writings.0x0096 (R/W):Disable system protectionOther than 0x0096 (R/W):Enable system protection

While the system protection is enabled, any data will not be written to the affected control bits (bits with "WP" or "R/WP" appearing in the R/W column).

FLASHC Flash Read Cycle Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
FLASHCWAIT	15–8	-	0x00	-	R	-
	7–2	-	0x00	-	R	
	1–0	RDWAIT[1:0]	0x1	H0	R/WP	

Bits 15–2 Reserved

Bits 1–0 RDWAIT[1:0]

These bits set the number of bus access cycles for reading from the Flash memory.

· · · · · · · · · · · · · · · · · · ·							
FLASHCWAIT.	Number of bus	System clock frequency					
RDWAIT[1:0] bits	access cycles	PWGACTL. REGSEL bit = 0	PWGACTL. REGSEL bit = 1				
0x3	4						
0x2	3	2.2 MHz (max.)	33 MHz (max.)				
0x1	2						
0x0	1	1.2 MHz (max.)	17.2 MHz (max.)				

Table 4.7.1 Setting Number of Bus Access Cycles for Flash Read

Notes: • Be sure to set the FLASHCWAIT.RDWAIT[1:0] bits before the system clock is configured.

• When the FLASHCWAIT.RDWAIT[1:0] bit setting is altered from 0x2 to 0x1, add two NOP instructions immediately after that.

Program example: FLASHC->WAIT_b.RDWAIT = 1; asm("NOP"); asm("NOP"); CLG->OSC b.IOSCEN = 0;

5 Interrupt

5.1 Overview

This IC includes a nested vectored interrupt controller (NVIC). For detailed information on the NVIC, refer to the documents introduced in Section 3.4, such as "ARM[®]v6-M Architecture Reference Manual." Figure 5.1.1 shows the configuration of the interrupt system.

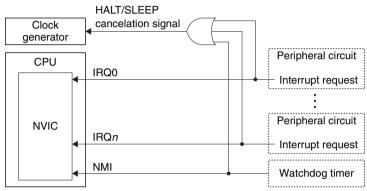


Figure 5.1.1 Configuration of Interrupt System

5.2 Vector Table

The vector table contains the vectors to the interrupt handler routines (handler routine start address) that will be read by the CPU to execute the handler when an interrupt occurs.

Table 5.2.1 shows the vector table.

Interrupt number	IRQ number	Vector address	Hardware interrupt name	Cause of hardware interrupt	Priority
-	-	VTOR + 0x00	(Stack pointer initial value)	-	-
1	-	VTOR + 0x04	Reset	Low input to the #RESET pin	-3
				Power-on reset	
				Key reset	
				 Watchdog timer overflow *1 	
				 Supply voltage detector reset 	
2	-14	VTOR + 0x08	NMI	Watchdog timer overflow *1	-2
3	-13	VTOR + 0x0c	HardFault	Bus error	-1
				Undefined instruction	
				 Unaligned address etc. 	
4–10	-	-	Reserved	-	-
11	-5	VTOR + 0x2c	SVCall	SVC instruction	Configurable
12–13	-	-	Reserved	-	-
14	-2	VTOR + 0x38	PendSV	-	
15	-1	VTOR + 0x3c	SysTick	SysTick timer underflow	
16	0	VTOR + 0x40	DMA controller interrupt	DMA transfer completion	
				DMA transfer error	
17	1	VTOR + 0x44	Supply voltage detector	 Power supply voltage drop detection]
			Ch.0 interrupt	 Power supply voltage rise detection 	
18	2	VTOR + 0x48	Port interrupt	Port input	Configurable
19	3	VTOR + 0x4c	Clock generator interrupt	IOSC oscillation stabilization waiting completion	
				 OSC1 oscillation stabilization waiting completion 	
				OSC3 oscillation stabilization waiting completion	
				OSC1 oscillation stop	
				 IOSC oscillation auto-trimming completion 	
				 IOSC oscillation auto-trimming error 	

VTOR initial value = 0x0

Interrupt number	IRQ number	Vector address	Hardware interrupt name	Cause of hardware interrupt	Priority
20	4	VTOR + 0x50	Real-time clock interrupt	 1-day, 1-hour, 1-minute, and 1-second 1/32-second, 1/8-second, 1/4-second, and 1/2-second Stopwatch 1 Hz, 10 Hz, and 100 Hz Alarm 	
01				Theoretical regulation completion	_
21	5	VTOR + 0x54	16-bit timer Ch.0 interrupt	Underflow	_
22	6	VTOR + 0x58	UART Ch.0 interrupt	End of transmission Framing error Parity error Overrun error Receive buffer two bytes full Receive buffer one byte full Transmit buffer empty	
23	7	VTOR + 0x5c	16-bit timer Ch.1 interrupt	Underflow	_
24	8	VTOR + 0x60	Synchronous serial interface Ch.0 interrupt	End of transmission Receive buffer full Transmit buffer empty Overrun error	
25	9	VTOR + 0x64	I ² C Ch.0 interrupt	End of data transfer General call address reception NACK reception STOP condition START condition Error detection Receive buffer full Transmit buffer empty	
26	10	VTOR + 0x68	16-bit PWM timer Ch.0 interrupt	Capture overwrite Compare/capture Counter MAX Counter zero	
27	11	VTOR + 0x6c	16-bit PWM timer Ch.1 interrupt	 Capture overwrite Compare/capture Counter MAX Counter zero 	Configurable
28	12	VTOR + 0x70	UART Ch.1 interrupt	 End of transmission Framing error Parity error Overrun error Receive buffer two bytes full Receive buffer one byte full Transmit buffer empty 	
29	13	VTOR + 0x74	16-bit timer Ch.2 interrupt	Underflow	_
30	-	_	Reserved	_	
31	15	VTOR + 0x7c	I ² C Ch.1 interrupt	End of data transfer General call address reception NACK reception STOP condition START condition Error detection Receive buffer full Transmit buffer empty	
32	16	VTOR + 0x80	IR remote controller interrupt	Compare AP Compare DB	
33	17	VTOR + 0x84	LCD driver interrupt	Frame	_
34	18	VTOR + 0x88	16-bit timer Ch.3 interrupt	Underflow	_
35	19	VTOR + 0x8c	16-bit PWM timer Ch.2 interrupt	Capture overwrite Compare/capture Counter MAX Counter zero	
36	20	VTOR + 0x90	Synchronous serial interface Ch.1 interrupt	 End of transmission Receive buffer full Transmit buffer empty Overrun error 	
37	21	VTOR + 0x94	Sound generator interrupt	Sound buffer emptySound output completion	

Interrupt number	IRQ number	Vector address	Hardware interrupt name	Cause of hardware interrupt	Priority
38	22	VTOR + 0x98	R/F converter Ch.0	Reference oscillation completion	
			interrupt	 Sensor A oscillation completion 	
				 Sensor B oscillation completion 	
				 Measurement counter overflow error 	
				 Time base counter overflow error 	
39	23	VTOR + 0x9c	16-bit timer Ch.4 interrupt	Underflow	
40	24	VTOR + 0xa0	16-bit timer Ch.5 interrupt	Underflow	Configurable
41	25	VTOR + 0xa4	16-bit timer Ch.6 interrupt	Underflow	Configurable
42	26	VTOR + 0xa8	16-bit timer Ch.7 interrupt	Underflow	
43	27	VTOR + 0xac	12-bit A/D converter	 Analog input signal <i>m</i> A/D conversion 	
			interrupt	completion	
				 Analog input signal <i>m</i> A/D conversion result 	
				overwrite error]
44-47	-	-	Reserved	_	

*1 Either reset or NMI can be selected as the watchdog timer interrupt via software.

5.2.1 Vector Table Offset Address (VTOR)

The Cortex[®]-M0+ Vector Table Offset Register (VTOR) is provided to set the offset (start) address of the vector table in which interrupt vectors are programmed. "VTOR" described in Table 5.2.1 means the value set to this register. After an initial reset, VTOR is set to address 0x0. Therefore, even when the vector table location is changed, it is necessary that at least the reset vector be written to this address. For more information on VTOR, refer to the documents introduced in Section 3.4, such as "Cortex[®]-M0+ Devices Generic User Guide."

5.2.2 Priority of Interrupts

The priorities of SVCall, PendSV, and SysTick are configurable to the desired levels using the Cortex[®]-M0+ System Handler Priority Registers (SHPR2 and SHPR3). The priorities of the interrupt number 16 or later are configurable to the desired levels using the Cortex[®]-M0+ Interrupt Priority Registers (NVIC_IPR0–7). The priority value can be set within a range of 0 to 192 (a lower value has a higher priority). The priorities of reset, NMI, and HardFault are fixed at the predefined values. For more information, refer to the documents introduced in Section 3.4, such as "Cortex[®]-M0+ Devices Generic User Guide."

5.3 Peripheral Circuit Interrupt Control

The peripheral circuit that generates interrupts includes an interrupt enable bit and an interrupt flag for each interrupt cause.

Interrupt flag: The flag is set to 1 when the interrupt cause occurs. The clear condition depends on the peripheral circuit.

Interrupt enable bit: By setting this bit to 1 (interrupt enabled), an interrupt request will be sent to the CPU when the interrupt flag is set to 1. When this bit is set to 0 (interrupt disabled), no interrupt request will be sent to the CPU even if the interrupt flag is set to 1. An interrupt request is also sent to the CPU if the status is changed to interrupt enabled when the interrupt flag is 1.

For specific information on causes of interrupts, interrupt flags, and interrupt enable bits, refer to the respective peripheral circuit descriptions.

Note: To prevent occurrence of unnecessary interrupts, the corresponding interrupt flag should be cleared before setting the interrupt enable bit to 1 (interrupt enabled) and before terminating the interrupt handler routine.

5.4 NMI

The watchdog timer embedded in this IC can generate a non-maskable interrupt (NMI). This interrupt takes precedence over other interrupts and is unconditionally accepted by the CPU.

For detailed information on generating NMI, refer to the "Watchdog Timer" chapter.

6 DMA Controller (DMAC)

6.1 Overview

The main features of the DMAC are outlined below.

- Supports byte, halfword, and word transfers.
- Each DMAC channel can be configured to different transfer conditions independently.
- Supports memory-to-memory, memory-to-peripheral circuit, and peripheral circuit-to-memory transfers.
- Supports hardware DMA requests from peripheral circuits and software DMA requests.
- Priority level for each channel is selectable from two levels.
- DMA transfers are allowed even if the CPU is placed into HALT mode.

Figure 6.1.1 shows the configuration of the DMAC.

Table 6.1.1	DMAC Channel Configuration of S1C31W65
-------------	--

Item	S1C31W65
Number of channels	4 channels (Ch.0 to Ch.3)
Transfer source memories	Internal Flash memory, external Flash memory, RAM, and display data RAM
Transfer destination memories	RAM and display data RAM
Transfer source peripheral circuits	UART3, SPIA, I2C, T16B, and ADC12A
Transfer destination peripheral circuits	UART3, SPIA, I2C, T16B, and SNDA

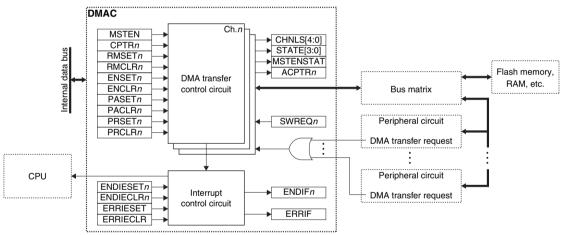


Figure 6.1.1 DMAC Configuration

6.2 Operations

6.2.1 Initialization

The DMAC should be initialized with the procedure shown below.

- 1. Set the data structure base address to the DMACCPTR register.
- 2. Configure the data structure for the channels to be used.
 - Set the control data.
 - Set the transfer source end pointer.
 - Set the transfer destination end pointer.
- 3. Set the DMACCFG.MSTEN bit to 1. (Enable DMAC)
- 4. Configure the DMACRMSET and DMACRMCLR registers.

(Configure masks for DMA transfer requests from peripheral circuits)

- 5. Configure the DMACENSET and DMACENCLR registers. (Enable channels used)
- 6. Configure the DMACPASET and DMACPACLR registers. (Select data structure used)
- 7. Configure the DMACPRSET and DMACPRCLR registers. (Set priorities)
- 8 Set the following registers when using the interrupt:
- Write 1 to the interrupt flags in the DMACENDIF and DMACERRIF registers. (Clear interrupt flags)
 Configures the DMACENDIESET/DMACENDIECLR
- and DMACERRIESET/DMACERRIECLR registers. (Enable/disable interrupts)
- 9. Set the DMA request enable bits of the peripheral circuits that use DMA transfer to 1.
- 10. To issue a software DMA request to Ch.n, write 1 to the DMACSWREQ.SWREQn bit.

6.3 Priority

If DMA requests are issued to two or more channels, the DMA transfers are performed in order from the highestpriority channel. The channel of which the priority level is set to 1 by the DMACPRSET.PRSET*n* bit has the highest priority. If two or more channels have been set to the same priority level, the smaller channel number takes precedence.

6.4 Data Structure

To perform DMA transfers, a data structure that contains basic transfer control information must be provided. The data structure consists of two blocks, primary data structure and alternate data structure, and one of them is used according to the DMA transfer mode.

The data structure can be located at an arbitrary address in the RAM area by setting the base address to the DMAC-CPTR.CPTR[31:0] bits.

The data structure for each channel consists of a transfer source end pointer, a transfer destination end pointer, and control data. An area of 16 bytes \times 2 is allocated in the RAM for each channel.

The whole size of the data structure and the alternate data structure base address depend on the number of channels implemented.

		-	
Number of channels	Data structure	Primary data structure	Alternate data structure
implemented	size	base address	base address
1	32 bytes	DMACCPTR.CPTR[31:0] (CPTR[4:0] = 0x00)	DMACCPTR.CPTR[31:0] + 0x010
2	64 bytes	DMACCPTR.CPTR[31:0] (CPTR[5:0] = 0x00)	DMACCPTR.CPTR[31:0] + 0x020
3 to 4	128 bytes	DMACCPTR.CPTR[31:0] (CPTR[6:0] = 0x00)	DMACCPTR.CPTR[31:0] + 0x040
5 to 8	256 bytes	DMACCPTR.CPTR[31:0] (CPTR[7:0] = 0x00)	DMACCPTR.CPTR[31:0] + 0x080
9 to 16	512 bytes	DMACCPTR.CPTR[31:0] (CPTR[8:0] = 0x000)	DMACCPTR.CPTR[31:0] + 0x100
17 to 32	1,024 bytes	DMACCPTR.CPTR[31:0] (CPTR[9:0] = 0x000)	DMACCPTR.CPTR[31:0] + 0x200

Table 6.4.1 Data Structure Size According to Number of Channels Implemented

Alternate data structure	e	Primary data structure	9		
Ch.31 (alternate)		Ch.31 (primary)			
Ch.30 (alternate)	0x3f0	Ch.30 (primary)	0x1f0		
Ch.29 (alternate)	0x3e0	Ch.29 (primary)	0x1e0		
Ch.28 (alternate)	0x3d0	Ch.28 (primary)	0x1d0		
Ch.27 (alternate)	0x3c0	Ch.27 (primary)	0x1c0		
Ch.26 (alternate)	0x3b0	Ch.26 (primary)	0x1b0		
Ch.25 (alternate)	0x3a0 0x390	Ch.25 (primary)	0x1a0 0x190		
Ch.24 (alternate)	0x390	Ch.24 (primary)	0x190 0x180		
Ch.23 (alternate)	0x380 0x370	Ch.23 (primary)	0x180 0x170		
Ch.22 (alternate)	0x370 0x360	Ch.22 (primary)	0x170 0x160		
Ch.21 (alternate)	0x350	Ch.21 (primary)	0x150		
Ch.20 (alternate)	0x340	Ch.20 (primary)	0x130 0x140		
Ch.19 (alternate)	0x340 0x330	Ch.19 (primary)	0x140 0x130		
Ch.18 (alternate)	0x320	Ch.18 (primary)	0x130 0x120		
Ch.17 (alternate)	0x320	Ch.17 (primary)	0x120 0x110		
Ch.16 (alternate)	0x300	Ch.16 (primary)	0x100		
Ch.15 (alternate)	0x300 0x2f0	Ch.15 (primary)	0x0f0		
Ch.14 (alternate)	0x2e0	Ch.14 (primary)	0x0e0		
Ch.13 (alternate)	0x2e0 0x2d0	Ch.13 (primary)	0x0d0		
Ch.12 (alternate)	0x2d0 0x2c0	Ch.12 (primary)	0x0c0		
Ch.11 (alternate)	0x2b0	Ch.11 (primary)	0x0b0		
Ch.10 (alternate)	0x2b0 0x2a0	Ch.10 (primary)	0x0a0		
Ch.9 (alternate)	0x240 0x290	Ch.9 (primary)	0x090		
Ch.8 (alternate)	0x290	Ch.8 (primary)	0x080		
Ch.7 (alternate)	0x270	Ch.7 (primary)	0x070		
Ch.6 (alternate)	0x270 0x260	Ch.6 (primary)	0x060		
Ch.5 (alternate)	0x250	Ch.5 (primary)	0x050		
Ch.4 (alternate)	0x230	Ch.4 (primary)	0x040		
Ch.3 (alternate)	0x240 0x230	Ch.3 (primary)	0x030	Reserved 0x00c	-
Ch.2 (alternate)	0x230	Ch.2 (primary)	0x020	Control data	
Ch.1 (alternate)	0x220 0x210	Ch.1 (primary)	0x010	I ransfer destination end pointer	
Ch.0 (alternate)	0x210	Ch.0 (primary)	_0x000	Transfer source end pointer	
	04200	r	0.000		'

Offset

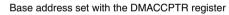
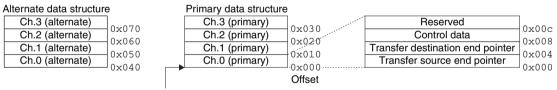



Figure 6.4.1 Data Structure Address Map (when 32 channels are implemented)

Base address set with the DMACCPTR register

Figure 6.4.2 Data Structure Address Map (when 4 channels are implemented)

The alternate data structure base address can be determined from the DMACACPTR.ACPTR[31:0] bits.

6.4.1 Transfer Source End Pointer

Set the source data end address. The address of data to be transferred should be set as it is if the transfer source address is not incremented.

6.4.2 Transfer Destination End Pointer

Set the address to which the last transfer data is written. The address for writing transfer data should be set as it is if the transfer destination address is not incremented.

6.4.3 Control Data

Set the DMA transfer information. Figure 6.4.3.1 shows the constituent elements of the control data.

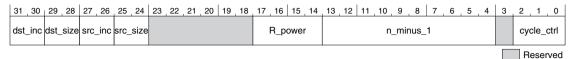


Figure 6.4.3.1 Constituent Elements of Control Data

dst_inc

Set the increment value of the transfer destination address. The setting value must be equal to or larger than the transfer data size when the address is incremented.

dst_inc	Increment value	
0x3	No increment	
0x2	+4	
0x1	+2	
0x0	+1	

Table 6.4.3.1 Increment Value of Transfer Destination Address

dst_size

Set the size of the data to be written to the transfer destination. It should be the same value as the src_size.

Table 6.4.3.2 Size of Data Written to Transfer Destination

dst_size	Data size
0x3	Reserved
0x2	Word
0x1	Halfword
0x0	Byte

src_inc

Set the increment value of the transfer source address. The setting value must be equal to or larger than the transfer data size when the address is incremented.

src_inc	Increment value
0x3	No increment
0x2	+4

+2

+1

Table 6.4.3.3 Increment Value of Transfer Source Address

src_size

Set the size of the data to be read from the transfer source. It should be the same value as the dst_size.

Table 6.4.3.4 Size of Data Read from Transfer Source

src_size	Data size
0x3	Reserved
0x2	Word
0x1	Halfword
0x0	Byte

R_power

Set the arbitration cycle during successive data transfer.

0x1

0x0

Arbitration cycle $(2^R) = 2^{R_power}$

When the DMAC is performing a successive transfer, it suspends the data transfer at the cycle set with R_power. If DMA requests have been issued at that point, the DMAC re-arbitrates them according to their priorities and then performs a DMA transfer for the channel with the highest priority. If the arbitration cycle setting value is larger than the number of successive data transfers, successive data transfers will not be suspended.

n_minus_1

Set the number of DMA transfers to be executed successively.

Number of successive transfers $(N) = n_{minus_1} + 1$

When the set number of successive transfers has completed, a transfer completion interrupt occurs.

cycle_ctrl

Set the DMA transfer mode. For detailed information on each transfer mode, refer to Section 6.5, "DMA Transfer Mode."

Table 6.4.3.5 DIVIA Transfer Mode		
cycle_ctrl	DMA transfer mode	
0x7	Peripheral scatter-gather transfer	
	(for alternate data structure)	
0x6	Peripheral scatter-gather transfer	
	(for primary data structure)	
0x5	Memory scatter-gather transfer	
	(for alternate data structure)	
0x4	Memory scatter-gather transfer	
	(for primary data structure)	
0x3	Ping-pong transfer	
0x2	Auto-request transfer	
0x1	Basic transfer	
0x0	Stop	

Table 6.4.3.5 DMA Transfer Mode

6.5 DMA Transfer Mode

6.5.1 Basic Transfer

This is the basic DMA transfer mode. In this mode, DMA transfer starts when a DMA transfer request from a peripheral circuit or a software DMA request is issued, and it continues until it is completed for the set number of successive transfers or it is suspended at the arbitration cycle. To resume the DMA transfer suspended at the arbitration cycle, a DMA transfer request must be reissued.

When the set number of successive transfers has completed, a transfer completion interrupt occurs.

DMA transfer operation	- ↓ DMA transfer 2 → · · · · · · · · · · · · · · · · · ·	(DMA transfer 3)(DMA transfer 4)	(DMA transfer 7)(DMA transfer 8)
DMACENDIF.ENDIFn			
	DMA transfer request	DMA transfer request	DMA transfer request

Figure 6.5.1.1 Basic Transfer Operation Example (N = 8, $2^{R} = 2$)

6.5.2 Auto-Request Transfer

Similar to the basic transfer, DMA transfer starts when a DMA transfer request from a peripheral circuit or a software DMA request is issued, and it continues until it is completed for the set number of successive transfers or it is suspended at the arbitration cycle. The DMAC resumes the DMA transfer suspended at the arbitration cycle without a DMA transfer request being reissued.

When the set number of successive transfers has completed, a transfer completion interrupt occurs.

DMA transfer operation	DMA transfer 1 \DMA transfer 2 \ \DMA transfer 3 \DMA transfer 4 \ \DMA transfer 7 \DMA transfer 8 \
DMACENDIF.ENDIFn	
	DMA transfer request

DMA transfer request

Figure 6.5.2.1 Auto-Request Transfer Operation Example (N = 8, $2^{R} = 2$)

6.5.3 Ping-Pong Transfer

In ping-pong transfer mode, the DMAC performs basic transfers repeatedly while switching between the primary data structure and alternate data structure. The data structures are referred alternately, and DMA transfer is terminated when the control data with cycle_ctrl set to 0x0 is referred. A transfer completion interrupt occurs each time a transfer using a data structure is completed.

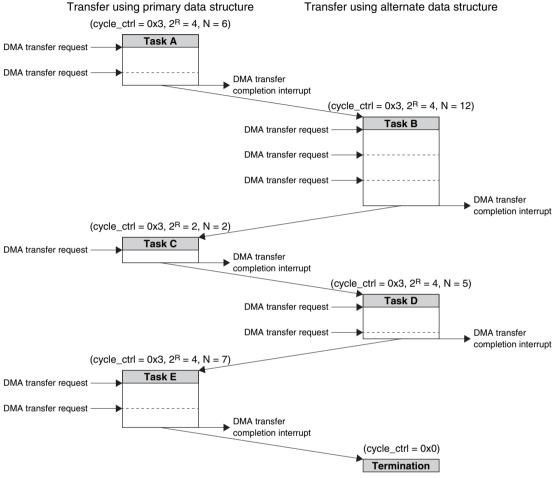


Figure 6.5.3.1 Ping-Pong Transfer Operation Example

DMA transfer procedure

- 1. Start data transfer by following the procedure shown in Section 6.2.1, "Initialization." In Step 2 of the initialization procedure, set Task A and Task B to the primary data structure and the alternate data structure, respectively.
- 2. Set Task C to the primary data structure after a DMA transfer completion interrupt has occurred by Task A.
- 3. Set Task D to the alternate data structure when a DMA transfer completion interrupt has occurred by Task B.
- 4. Repeat Steps 2 and 3.
- 5. Set cycle_ctrl to 0x0 after a DMA transfer completion interrupt has occurred by the next to last task.
- 6. The DMA transfer is completed when a DMA transfer completion interrupt occurs by the last task.

6.5.4 Memory Scatter-Gather Transfer

In scatter-gather transfer mode, first the DMAC, using the primary data structure, copies a data structure from the data structure table, which has been prepared with multiple data structures included in advance, to the alternate data structure, and then it performs DMA transfer using the alternate data structure. The DMAC performs this operation repeatedly. By programming the transfer mode of the data structure located at the end of the table as a basic transfer, the DMA transfer can be terminated with a transfer completion interrupt. This mode requires a DMA transfer request only for starting the first data transfer. Subsequent data transfers are performed by auto-requests.

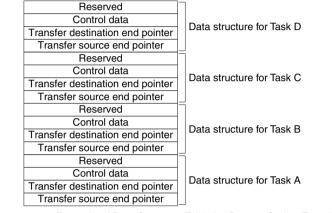


Figure 6.5.4.1 Example of Data Structure Table for Scatter-Gather Transfer

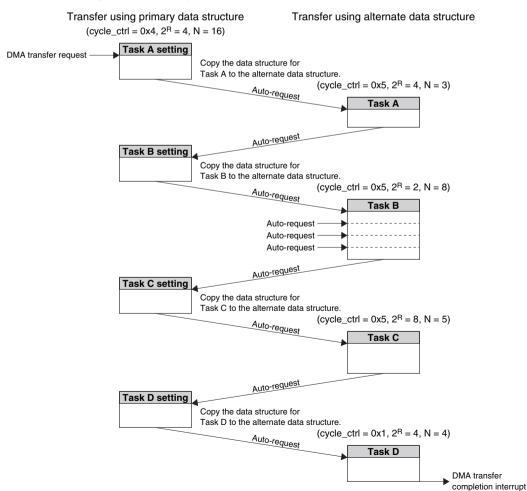


Figure 6.5.4.2 Memory Scatter-Gather Transfer Operation Example

DMA transfer procedure

- Configure the data structure table for scatter-gather transfer. Set the cycle_ctrl for the last task to 0x1 and those for other tasks to 0x5.
- 2. Start data transfer by following the procedure shown in Section 6.2.1, "Initialization." In Step 2 of the initialization procedure, configure the primary data structure with the control data shown below.

```
Transfer source end pointer = Data structure table end address

Transfer destination end pointer = Alternate data structure end address

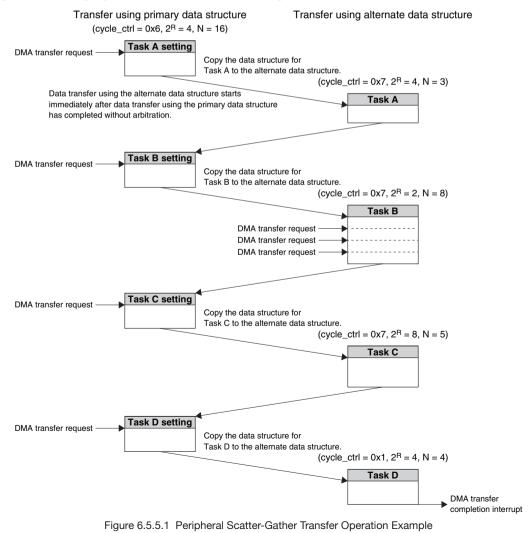
dst_inc = 0x2

dst_size = 0x2

src_inc = 0x2

src_size = 0x2

R_power = 0x2


n_minus_1 = Number of tasks × 4 - 1

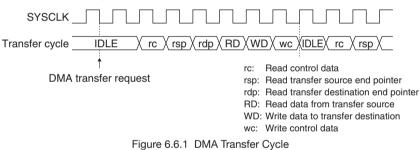
cycle_ctrl = 0x4
```

3. The DMA transfer is completed when a DMA transfer completion interrupt occurs.

6.5.5 Peripheral Scatter-Gather Transfer

In memory scatter-gather transfer mode, the second and subsequent DMA transfers are performed by auto-requests. On the other hand, in peripheral scatter-gather transfer mode, all DMA transfers are performed by a DMA transfer request issued by a peripheral circuit or a software DMA request.

DMA transfer procedure


- Configure the data structure table for scatter-gather transfer. Set the cycle_ctrl for the last task to 0x1 and those for other tasks to 0x7.
- 2. Start data transfer by following the procedure shown in Section 6.2.1, "Initialization." In Step 2 of the initialization procedure, configure the primary data structure with the control data shown below.

```
Transfer source end pointer = Data structure table end address
Transfer destination end pointer = Alternate data structure end address
dst_inc = 0x2
dst_size = 0x2
src_inc = 0x2
src_size = 0x2
R_power = 0x2
n_minus_1 = Number of tasks × 4 - 1
cycle_ctrl = 0x6
```

- 3. Issue a DMA transfer request in each task using a peripheral circuit or via software.
- 4. The DMA transfer is completed when a DMA transfer completion interrupt occurs.

6.6 DMA Transfer Cycle

A DMA transfer requires several clock cycles to execute. Figure 6.6.1 shows a detailed DAM transfer cycle. Note that the number of clock cycles for a DMA transfer may be increased due to a conflict with an access from the CPU or the Flash bus access cycle setting.

6.7 Interrupts

The DMAC has a function to generate the interrupts shown in Table 6.7.1.

Table 6.7.1	DMAC Interrupt Function
-------------	-------------------------

Interrupt	Interrupt flag	Set condition	Clear condition
DMA transfer completion	DMACENDIF.ENDIFn	When DMA transfers for a set number of	Writing 1
		successive transfers have completed	
DMA transfer error	DMACERRIF.ERRIF	When an AHB bus error has occurred	Writing 1

The DMAC provides interrupt enable bits corresponding to each interrupt flag. An interrupt request is sent to the CPU only when the interrupt flag, of which interrupt has been enabled by the interrupt enable bit, is set. For more information on interrupt control, refer to the "Interrupt" chapter.

6.8 Control Registers

DMAC Status Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACSTAT	31–24	-	0x00	-	R	_
	23–21	-	0x0	-	R	
	20–16	CHNLS[4:0]	*	H0	R	* Number of channels implemented - 1
	15–8	-	0x00	-	R	_
	7–4	STATE[3:0]	0x0	H0	R	
	3–1	_	0x0	-	R	
	0	MSTENSTAT	0	H0	R	

Bits 31–21 Reserved

Bits 20-16 CHNLS[4:0]

These bits show the number of DMAC channels implemented in this IC.

Number of channels implemented = CHNLS + 1

Bits 15–8 Reserved

Bits 7-4 STATE[3:0]

These bits indicates the DMA transfer status.

Table 6.8.1 DMA Transfer Status

DMACSTAT.STATE[3:0] bits	DMA transfer status
0xf–0xbf	Reserved
0xa	Peripheral scatter-gather transfer is in progress.
0x9	Transfer has completed.
0x8	Transfer has been suspended.
0x7	Control data is being written.
0x6	Standby for transfer request to be cleared.
0x5	Transfer data is being written.
0x4	Transfer data is being read.
0x3	Transfer destination end pointer is being read.
0x2	Transfer source end pointer is being read.
0x1	Control data is being read.
0x0	Idle

Bits 3–1 Reserved

Bit 0 MSTENSTAT

This bit indicates the DMA controller status.

- 1 (R): DMA controller is operating.
- 0 (R): DMA controller is idle.

DMAC Configuration Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACCFG	31–24	-	0x00	-	R	-
	23–16	-	0x00	-	R	
	15–8	-	0x00	-	R	-
	7–1	-	0x00	-	R	
	0	MSTEN	-	-	W	

Bits 31–1 Reserved

Bit 0 MSTEN

This bit enables the DMA controller.

1 (W): Enable

0 (W): Disable

DMAC Control Data Base Pointer Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACCPTR	31–0	CPTR[31:0]	0x0000 0000	H0	R/W	-

Bits 31-0 CPTR[31:0]

These bits set the leading address of the data structure.

Depending on the number of channels implemented, low-order bits are configured for read only.

Table 6.8.2 CPTR Writable/Read-Only Bits Depending On Number of Channel Implemented

Number of channel implemented	Writable bits	Read-only bits
1	CPTR[31:5]	CPTR[4:0]
2	CPTR[31:6]	CPTR[5:0]
3–4	CPTR[31:7]	CPTR[6:0]
5–8	CPTR[31:8]	CPTR[7:0]
9–16	CPTR[31:9]	CPTR[8:0]
17–32	CPTR[31:10]	CPTR[9:0]

DMAC Alternate Control Data Base Pointer Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACACPTR	31–0	ACPTR[31:0]	-	HO	R	-

Bits 31-0 ACPTR[31:0]

These bits show the alternate data structure base address.

DMAC Software Request Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACSWREQ	31–0	SWREQ[31:0]	-	_	W	-

Bits 31-0 SWREQ [31:0]

These bits issue a software DMA transfer request to each channel.

1 (W): Issue a software DMA transfer request

0 (W): Ineffective

Each bit corresponds to a DMAC channel (e.g. bit *n* corresponds to Ch.*n*). The high-order bits for the unimplemented channels are ineffective.

DMAC Request Mask Set Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACRMSET	31–0	RMSET[31:0]	0x0000	H0	R/W	-
			0000			

Bits 31–0 RMSET[31:0]

These bits mask DMA transfer requests from peripheral circuits.

1 (W): Mask DMA transfer requests from peripheral circuits

- 0 (W): Ineffective
- 1 (R): DMA transfer requests from peripheral circuits have been disabled.
- 0 (R): DMA transfer requests from peripheral circuits have been enabled.

Each bit corresponds to a DMAC channel. The high-order bits for the unimplemented channels are ineffective.

DMAC Request Mask Clear Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACRMCLR	31–0	RMCLR[31:0]	-	-	W	_

Bits 31-0 RMCLR[31:0]

These bits cancel the mask state of DMA transfer requests from peripheral circuits

1 (W): Cancel mask state of DMA transfer requests from peripheral circuits (The DMACRMSET register is cleared to 0.)

0 (W): Ineffective

Each bit corresponds to a DMAC channel. The high-order bits for the unimplemented channels are ineffective.

DMAC Enable Set Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACENSET	31–0	ENSET[31:0]	0x0000 0000	H0	R/W	-

Bits 31–0 ENSET[31:0]

These bits enable each DMAC channel.

1 (W): Enable DMAC channel

- 0 (W): Ineffective
- 1 (R): Enabled

0 (R): Disabled

These bits are cleared after the DMA transfer has completed.

Each bit corresponds to a DMAC channel. The high-order bits for the unimplemented channels are ineffective.

DMAC Enable Clear Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACENCLR	31–0	ENCLR[31:0]	-	-	W	_

Bits 31-0 ENCLR[31:0]

These bits disable each DMAC channel.

1 (W): Disable DMAC channel (The DMACENSET register is cleared to 0.)

0 (W): Ineffective

Each bit corresponds to a DMAC channel. The high-order bits for the unimplemented channels are ineffective.

DMAC Primary-Alternate Set Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACPASET	31–0	PASET[31:0]	0x0000 0000	H0	R/W	-

Bits 31-0 PASET[31:0]

These bits enable the alternate data structures.

- 1 (W): Enable alternate data structure
- 0 (W): Ineffective
- 1 (R): The alternate data structure has been enabled.
- 0 (R): The primary data structure has been enabled.

Each bit corresponds to a DMAC channel. The high-order bits for the unimplemented channels are ineffective.

DMAC Primary-Alternate Clear Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACPACLR	31–0	PACLR[31:0]	-	-	W	-

Bits 31-0 PACLR[31:0]

These bits disable the alternate data structures.

1 (W): Disable alternate data structure (The DMACPASET register is cleared to 0.)

0 (W): Ineffective

Each bit corresponds to a DMAC channel. The high-order bits for the unimplemented channels are ineffective.

DMAC Priority Set Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACPRSET	31–0	PRSET[31:0]	0x0000	H0	R/W	-
			0000			

Bits 31-0 PRSET[31:0]

These bits increase the priority of each channel.

- 1 (W): Increase priority
- 0 (W): Ineffective

1 (R): Priority = High

0 (R): Priority = Normal

Each bit corresponds to a DMAC channel. The high-order bits for the unimplemented channels are ineffective.

DMAC Priority Clear Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACPRCLR	31–0	PRCLR[31:0]	_	-	W	-

Bits 31-0 PRCLR[31:0]

These bits decrease the priority of each channel.

1(W): Decrease priority (The DMACPRSET register is cleared to 0.)

0 (W): Ineffective

Each bit corresponds to a DMAC channel. The high-order bits for the unimplemented channels are ineffective.

DMAC Error Interrupt Flag Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACERRIF	31–24	_	0x00	-	R	_
	23–16	-	0x00	-	R	
	15–8	-	0x00	-	R	
	7–1	-	0x00	-	R	
	0	ERRIF	0	H0	R/W	Cleared by writing 1.

Bits 31–1 Reserved

Bit 0 ERRIF

This bit indicates the DMAC error interrupt cause occurrence status.

- 1 (R): Cause of interrupt occurred
- 0 (R): No cause of interrupt occurred
- 1 (W): Clear flag
- 0 (W): Ineffective

DMAC Transfer Completion Interrupt Flag Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACENDIF	31–0	ENDIF[31:0]	0x0000 0000	H0	R/W	Cleared by writing 1.

Bits 31-0 ENDIF[31:0]

These bits indicate the DMA transfer completion interrupt cause occurrence status of each DMAC channel.

1 (R): Cause of interrupt occurred

0 (R): No cause of interrupt occurred

1 (W): Clear flag

0 (W): Ineffective

Each bit corresponds to a DMAC channel. The high-order bits for the unimplemented channels are ineffective.

DMAC Transfer Completion Interrupt Enable Set Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACENDIESET	31–0	ENDIESET[31:0]	0x0000 0000	H0	R/W	-

Bits 31–0 ENDIESET[31:0]

These bits enable DMA transfer completion interrupts to be generated from each DMAC channel.

- 1 (W): Enable interrupt
- 0 (W): Ineffective
- 1 (R): Interrupt has been enabled.
- 0 (R): Interrupt has been disabled.

Each bit corresponds to a DMAC channel. The high-order bits for the unimplemented channels are ineffective.

DMAC Transfer Completion Interrupt Enable Clear Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACENDIECLR	31–0	ENDIECLR[31:0]	-	-	W	_

Bits 31–0 ENDIECLR[31:0]

These bits disable DMA transfer completion interrupts to be generated from each DMAC channel.

1 (W): Disable interrupt (The DMACENDIESET register is cleared to 0.)

0 (W): Ineffective

Each bit corresponds to a DMAC channel. The high-order bits for the unimplemented channels are ineffective.

DMAC Error Interrupt Enable Set Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACERRIESET	31–24	-	0x00	-	R	-
	23–16	-	0x00	-	R	
	15–8	-	0x00	-	R	
	7–1	-	0x00	-	R	
	0	ERRIESET	0	H0	R/W	

Bits 31–1 Reserved

Bit 0 ERRIESET

This bit enables DMA error interrupts.

- 1 (W): Enable interrupt
- 0 (W): Ineffective
- 1 (R): Interrupt has been enabled.
- 0 (R): Interrupt has been disabled.

DMAC Error Interrupt Enable Clear Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACERRIECLR	31–24	-	0x00	-	R	-
	23–16	-	0x00	-	R	
	15–8	-	0x00	-	R	
	7–1	-	0x00	-	R	
	0	ERRIECLR	-	-	W	

Bits 31–1 Reserved

Bit 0 ERRIECLR

This bit disables DMA error interrupts.

1 (W): Disable interrupt (The DMACERRIESET register is cleared to 0.)

0 (W): Ineffective

7 I/O Ports (PPORT)

7.1 Overview

PPORT controls the I/O ports. The main features are outlined below.

- Allows port-by-port function configurations.
 - Each port can be configured with or without a pull-up or pull-down resistor.
 - Each port can be configured with or without a chattering filter.
 - Allows selection of the function (general-purpose I/O port (GPIO) function, up to four peripheral I/O functions) to be assigned to each port.
- Ports, except for those shared with debug pins, are initially placed into Hi-Z state. (No current passes through the pin during this Hi-Z state.)
- **Note:** '*x*', which is used in the port names P*xy*, register names, and bit names, refers to a port group ($x = 0, 1, 2, \dots, d$) and '*y*' refers to a port number ($y = 0, 1, 2, \dots, 7$).

Figure 7.1.1 shows the configuration of PPORT.

Table 7.1.1	Port Configuration	of S1C31W65
-------------	--------------------	-------------

Item	S1C31W65						
Port groups included	P0[7:0], P1[7:0], P2[7:0], P3[7:0], P4[7:0], P5[7:0], P6[7:0], Pd[7:0]						
Ports with general-purpose I/O function (GPIO)	P0[7:0], P1[7:0], P2[7:0], P3[7:0], P4[7:0], P5[7:0], P6[7:0], Pd[7:0]						
	(Pd4: output only)						
Ports with interrupt function	P0[7:0], P1[7:0], P2[7:0], P3[7:0], P4[7:0], P5[7:0], P6[7:0]						
Ports for debug function	Pd[1:0]						
Key-entry reset function	Supported (P0[3:0])						

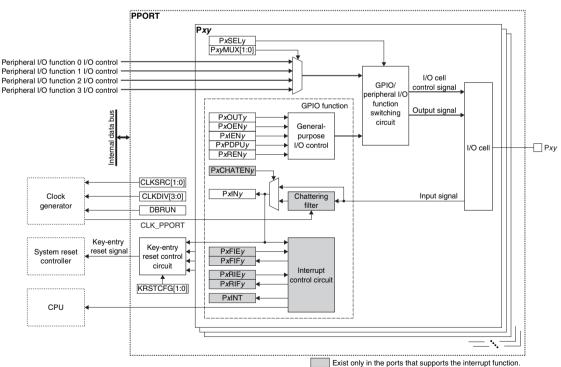
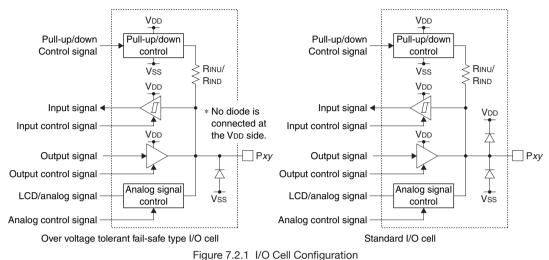



Figure 7.1.1 PPORT Configuration

7.2 I/O Cell Structure and Functions

Figure 7.2.1 shows the I/O cell Configuration.

Refer to "Pin Descriptions" in the "Overview" chapter for the cell type, either the over voltage tolerant fail-safe type I/O cell or the standard I/O cell, included in each port.

7.2.1 Schmitt Input

The input functions are all configured with the Schmitt interface level. When a port is set to input disable status (PPORTPxIOEN.PxIENy bit = 0), unnecessary current is not consumed if the Pxy pin is placed into floating status.

7.2.2 Over Voltage Tolerant Fail-Safe Type I/O Cell

The over voltage tolerant fail-safe type I/O cell allows interfacing without passing unnecessary current even if a voltage exceeding VDD is applied to the port. Also unnecessary current is not consumed when the port is externally biased without supplying VDD. However, be sure to avoid applying a voltage exceeding the recommended maximum operating power supply voltage to the port.

7.2.3 Pull-Up/Pull-Down

The GPIO port has a pull-up/pull-down function. Either pull-up or pull-down may be selected for each port individually. This function may also be disabled for the port that does not require pulling up/down.

When the port level is switched from low to high through the pull-up resistor included in the I/O cell or from high to low through the pull-down resistor, a delay will occur in the waveform rising/falling edge depending on the time constant by the pull-up/pull-down resistance and the pin load capacitance. The rising/falling time is commonly determined by the following equation:

$t_{PR} = -R_{INU} \times (C_{IN} + C_{BOARD}) \times \ln(1 - V_{T+}/V_{DD})$	(Eq. 7.1)
$tpf = -Rind \times (Cin + Cboard) \times ln(1 - Vt/Vdd)$	

Where

Ļ	leie	
	tpr:	Rising time (port level = low \rightarrow high) [second]
	tpf:	Falling time (port level = high \rightarrow low) [second]
	VT+:	High level Schmitt input threshold voltage [V]
	VT-:	Low level Schmitt input threshold voltage [V]
	RINU/RIND:	Pull-up/pull-down resistance [Ω]
	CIN:	Pin capacitance [F]
	CBOARD:	Parasitic capacitance on the board [F]

7.2.4 CMOS Output and High Impedance State

The I/O cells except for analog output can output signals in the VDD and Vss levels. Also the GPIO ports may be put into high-impedance (Hi-Z) state.

7.3 Clock Settings

7.3.1 PPORT Operating Clock

When using the chattering filter for entering external signals to PPORT, the PPORT operating clock CLK_PPORT must be supplied to PPORT from the clock generator.

The CLK_PPORT supply should be controlled as in the procedure shown below.

- 1. Enable the clock source in the clock generator if it is stopped (refer to "Clock Generator" in the "Power Supply, Reset, and Clocks" chapter).
- 2. Write 0x0096 to the SYSPROT.PROT[15:0] bits. (Remove system protection)
- 3. Set the following PPORTCLK register bits:
 - PPORTCLK.CLKSRC[1:0] bitsPPORTCLK.CLKDIV[3:0] bits
- (Clock source selection)
- (Clock division ratio selection = Clock frequency setting)
- 4. Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits. (Set system protection)

Settings in Step 3 determine the input sampling time of the chattering filter.

7.3.2 Clock Supply in SLEEP Mode

When using the chattering filter function during SLEEP mode, the PPORT operating clock CLK_PPORT must be configured so that it will keep suppling by writing 0 to the CLGOSC*xxxx*SLPC bit for the CLK_PPORT clock source.

If the CLGOSC.xxxxSLPC bit for the CLK_PPORT clock source is 1, the CLK_PPORT clock source is deactivated during SLEEP mode and it disables the chattering filter function regardless of the PPORTPxCHATEN.Px-CHATENy bit setting (chattering filter enabled/disabled).

7.3.3 Clock Supply During Debugging

The CLK_PPORT supply during debugging should be controlled using the PPORTCLK.DBRUN bit.

The CLK_PPORT supply to PPORT is suspended when the CPU enters debug state if the PPORTCLK.DBRUN bit = 0. After the CPU returns to normal operation, the CLK_PPORT supply resumes. The PPORT chattering filter stops operating when the CLK_PPORT supply is suspended. If the chattering filter is enabled in PPORT, the input port function is also deactivated. However, the control registers can be altered. If the PPORTCLK.DBRUN bit = 1, the CLK_PPORT supply is not suspended and the chattering filter will keep operating in a debug state.

7.4 Operations

7.4.1 Initialization

After a reset, the ports except for the debugging function are configured as shown below.

- Port input: Disabled
- Port output: Disabled
- Pull-up: Off
- Pull-down: Off
- Port pins: High impedance state
- Port function: Configured to GPIO

This status continues until the ports are configured via software. The debugging function ports are configured for debug signal input/output.

Initial settings when using a port for a peripheral I/O function

When using the Pxy port for a peripheral I/O function, perform the following software initial settings:

1. Set the following PPORTPxIOEN register bits:

	- Set the PPORTPxIOEN.PxIENy bit to 0.	(Disable input)
	- Set the PPORTPxIOEN.PxOENy bit to 0.	(Disable output)
2.	Set the PPORTPxMODSEL.PxSELy bit to 0.	(Disable peripheral I/O function)
3.	Initialize the peripheral circuit that uses the pin.	
4.	Set the PPORTPxFNCSEL.PxyMUX[1:0] bits.	(Select peripheral I/O function)
5.	Set the PPORTPxMODSEL.PxSELy bit to 1.	(Enable peripheral I/O function)

For the list of the peripheral I/O functions that can be assigned to each port of this IC, refer to "Control Register and Port Function Configuration of this IC." For the specific information on the peripheral I/O functions, refer to the respective peripheral circuit chapter.

Initial settings when using a port as a general-purpose output port (only for the ports with GPIO function)

When using the Pxy port pin as a general-purpose output pin, perform the following software initial settings:

1.	Set the PPORTPxIOEN.PxOENy bit to 1.	(Enable output)
2.	Set the PPORTP <i>x</i> MODSEL.P <i>x</i> SEL <i>y</i> bit to 0.	(Enable GPIO function)

Initial settings when using a port as a general-purpose input port (only for the ports with GPIO function)

When using the Pxy port pin as a general-purpose input pin, perform the following software initial settings:

- 1. Write 0 to the PPORTPxINTCTL.PxIEy bit. * (Disable interrupt)
- 2. When using the chattering filter, configure the PPORT operating clock (see "PPORT Operating Clock") and set the PPORTP.xCHATEN.P.xCHATENy bit to 1.*

When the chattering filter is not used, set the PPORTPxCHATEN.PxCHATENy bit to 0 (supply of the PPORT operating clock is not required).

- 3. Configure the following PPORTPxRCTL register bits when pulling up/down the port using the internal pull-up or down resistor:
 - PPORTPxRCTL.PxPDPUy bit (Select pull-up or pull-down resistor)
 - Set the PPORTP*x*RCTL.P*x*REN*y* bit to 1. (Enable pull-up/down)

Set the PPORTPxRCTL.PxRENy bit to 0 if the internal pull-up/down resistors are not used.

- 4. Set the PPORTP*x*MODSEL.P*x*SEL*y* bit to 0. (Enable GPIO function)
- 5. Configure the following bits when using the port input interrupt: *
 - Write 1 to the interrupt flags in the PPORTPxINTF register. (Clear interrupt flag)
 - Set the interrupt enable bits in the PPORTPxINTCTL register to 1. (Enable interrupt)
- 6. Set the following PPORTPxIOEN register bits:
 - Set the PPORTPxIOEN.PxOENy bit to 0. (Disable output)
 - Set the PPORTPxIOEN.PxIENy bit to 1. (Enable input)
- * Steps 1 and 5 are required for the ports with an interrupt function. Step 2 is required for the ports with a chattering filter function.

Table 7.4.1.1 lists the port status according to the combination of data input/output control and pull-up/down control.

PPORTPxIOEN. PxIENy bit	PPORTPxIOEN. PxOENy bit	PPORTPxRCTL. PxRENy bit	PPORTPxRCTL. PxPDPUy bit	Input	Output	Pull-up/pull-down condition
0	0	0	×	Disa	bled	Off (Hi-Z) *1
0	0	1	0	Disa	bled	Pulled down
0	0	1	1	Disa	bled	Pulled up
1	0	0	×	Enabled	Disabled	Off (Hi-Z) *2
1	0	1	0	Enabled	Disabled	Pulled down
1	0	1	1	Enabled	Disabled	Pulled up
0	1	0	×	Disabled	Enabled	Off
0	1	1	0	Disabled	Enabled	Off
0	1	1	1	Disabled	Enabled	Off
1	1	1	0	Enabled	Enabled	Off
1	1	1	1	Enabled	Enabled	Off

Table 7.4.1.1 GPIO Port Control List

*1: Initial status. Current does not flow if the pin is placed into floating status.

*2: Use of the pull-up or pull-down function is recommended, as undesired current will flow if the port input is set to floating status.

Note: If the PPORTPxMODSEL.PxSELy bit for the port without a GPIO function is set to 0, the port goes into initial status (refer to "Initial Settings"). The GPIO control bits are configured to a read-only bit always read out as 0.

7.4.2 Port Input/Output Control

Peripheral I/O function control

The port for which a peripheral I/O function is selected is controlled by the peripheral circuit. For more information, refer to the respective peripheral circuit chapter.

Setting output data to a GPIO port

Write data (1 = high output, 0 = low output) to be output from the Pxy pin to the PPORTPxDAT.PxOUTy bit.

Reading input data from a GPIO port

The data (1 = high input, 0 = low input) input from the Pxy pin can be read out from the PPORTPxDAT.PxINy bit.

Chattering filter function

Some ports have a chattering filter function and it can be controlled in each port. This function is enabled by setting the PPORTPxCHATEN.PxCHATENy bit to 1. The input sampling time to remove chattering is determined by the CLK_PPORT frequency configured using the PPORTCLK register in common to all ports. The chattering filter removes pulses with a shorter width than the input sampling time.

Input sampling time = $\frac{2 \text{ to } 3}{\text{CLK}_{PPORT} \text{ frequency [Hz]}}$ [second] (Eq. 7.2)

Make sure the Pxy port interrupt is disabled before altering the PPORTCLK register and PPORTPxCHATEN. PxCHATENy bit settings. A Pxy port interrupt may erroneously occur if these settings are altered in an interrupt enabled status. Furthermore, enable the interrupt after a lapse of four or more CLK_PPORT cycles from enabling the chattering filter function.

If the clock generator is configured so that it will supply CLK_PPORT to PPORT in SLEEP mode, the chattering filter of the port will function even in SLEEP mode. If CLK_PPORT is configured to stop in SLEEP mode, PPORT inactivates the chattering filter during SLEEP mode to input pin status transitions directly to itself.

Key-entry reset function

This function issues a reset request when low-level pulses are input to all the specified ports simultaneously. Make the following settings when using this function:

- 1. Configure the ports to be used for key-entry reset as general-purpose input ports (refer to "Initial settings when using a port as a general-purpose input port (only for the ports with GPIO function)").
- 2. Configure the input pin combination for key-entry reset using the PPORTCLK.KRSTCFG[1:0] bits.

7 I/O PORTS (PPORT)

Note: When enabling the key-entry reset function, be sure to configure the port pins to be used for it as general-purpose input pins before setting the PPORTCLK.KRSTCFG[1:0] bits.

PPORT issues a reset request immediately after all the input pins specified by the PPORTCLK.KRSTCFG[1:0] bits are set to a low level if the chattering filter function is disabled (initial status). To issue a reset request only when low-level signals longer than the time configured are input, enable the chattering filter function for all the ports used for key-entry reset.

The pins configured for key-entry reset can also be used as general-purpose input pins.

7.5 Interrupts

When the GPIO function is selected for the port with an interrupt function, the port input interrupt function can be used.

Interrupt	Interrupt flag	Set condition	Clear condition						
Port input	PPORTPxINTF.PxFIFy	Falling edge of the input signal	Writing 1						
interrupt	PPORTPxINTF.PxRIFy	Rising edge of the input signal	Writing 1						
	PPORTINTFGRP.PxINT	Setting an interrupt flag in the port group	Clearing PPORTPxINTF register						

Table 7.5.1 Port Input Interrupt Function

Interrupt enable

PPORT provides interrupt enable bits (PPORTPxINTCTL.PxFIEy and PxRIEy bits) corresponding to each interrupt flag. An interrupt request is sent to the CPU only when the interrupt flag, of which interrupt has been enabled by the interrupt enable bit, is set. Setting the interrupt enable bits allows port input interrupts to be generated at the falling edge, rising edge, or both edges of the input signal. For more information on interrupt control, refer to the "Interrupt" chapter.

Interrupt check in port group unit

When interrupts are enabled in two or more port groups, check the PPORTINTFGRP.PxINT bit in the interrupt handler first. It helps minimize the handler codes for finding the port that has generated an interrupt. If this bit is set to 1, an interrupt has occurred in the port group. Next, check the interrupt flag in the PPORTPxINTF register of the port group that has been set to 1 to determine the port that has generated an interrupt. Clearing the PPORTPxINTF register also clears the PPORTINTFGRP.PxINT bit. If a port input interrupt is disabled by the interrupt enable bit in the PPORTPxINTCTL register, the PPORTINTFGRP.PxINT bit will not be set even if the corresponding interrupt flag is set to 1.

7.6 Control Registers

This section describes the same control registers of all port groups as a single register. For the register and bit configurations in each port group and their initial values, refer to "Control Register and Port Function Configuration of this IC."

Px Port Data Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
PPORTP <i>x</i> DAT	15–8	PxOUT[7:0]	0x00	H0	R/W	-
	7–0	PxIN[7:0]	0x00	H0	R	

*1: This register is effective when the GPIO function is selected.

*2: The bit configuration differs depending on the port group.

*3: The initial value may be changed by the port.

Bits 15-8 PxOUT[7:0]

These bits are used to set data to be output from the GPIO port pins.

- 1 (R/W): Output high level from the port pin
- 0 (R/W): Output low level from the port pin

When output is enabled (PPORTPxIOEN.PxOENy bit = 1), the port pin outputs the data set here. Although data can be written when output is disabled (PPORTPxIOEN.PxOENy bit = 0), it does not affect the pin status. These bits do not affect the outputs when the port is used as a peripheral I/O function.

Bits 7-0 PxIN[7:0]

The GPIO port pin status can be read out from these bits.

1 (R): Port pin = High level

0 (R): Port pin = Low level

The port pin status can be read out when input is enabled (PPORTPxIOEN.PxIENy bit = 1). When input is disabled (PPORTPxIOEN.PxIENy bit = 0), these bits are always read as 0.

When the port is used for a peripheral I/O function, the input value cannot be read out from these bits.

Px Port Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
PPORTPxIOEN	15–8	PxIEN[7:0]	0x00	H0	R/W	-
	7–0	PxOEN[7:0]	0x00	H0	R/W	

*1: This register is effective when the GPIO function is selected.

*2: The bit configuration differs depending on the port group.

Bits 15-8 PxIEN[7:0]

These bits enable/disable the GPIO port input.

1 (R/W): Enable (The port pin status is input.)

0 (R/W): Disable (Input data is fixed at 0.)

When both data output and data input are enabled, the pin output status controlled by this IC can be read.

These bits do not affect the input control when the port is used as a peripheral I/O function.

Bits 7–0 PxOEN[7:0]

These bits enable/disable the GPIO port output.

1 (R/W): Enable (Data is output from the port pin.)

0 (R/W): Disable (The port is placed into Hi-Z.)

These bits do not affect the output control when the port is used as a peripheral I/O function.

Px Port Pull-up/down Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
PPORTPxRCTL	15–8	PxPDPU[7:0]	0x00	H0	R/W	-
	7–0	PxREN[7:0]	0x00	H0	R/W	

*1: This register is effective when the GPIO function is selected.

*2: The bit configuration differs depending on the port group.

Bits 15–8 PxPDPU[7:0]

These bits select either the pull-up resistor or the pull-down resistor when using a resistor built into the port.

1 (R/W): Pull-up resistor

0 (R/W): Pull-down resistor

The selected pull-up/down resistor is enabled when the PPORTPxRCTL.PxRENy bit = 1.

Bits 7–0 PxREN[7:0]

These bits enable/disable the port pull-up/down control.

1 (R/W): Enable (The built-in pull-up/down resistor is used.)

0 (R/W): Disable (No pull-up/down control is performed.)

Enabling this function pulls up or down the port when output is disabled (PPORTP*x*IOEN.P*x*OEN*y* bit = 0). When output is enabled (PPORTP*x*IOEN.P*x*OEN*y* bit = 1), the PPORTP*x*RCTL.P*x*REN*y* bit setting is ineffective regardless of how the PPORTP*x*IOEN.P*x*IEN*y* bit is set and the port is not pulled up/down. These bits do not affect the pull-up/down control when the port is used as a peripheral I/O function.

Px Port Interrupt Flag Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks						
PPORTP <i>x</i> INTF	15–8	PxFIF[7:0]	0x00	H0	R/W	Cleared by writing 1.						
	7–0	PxRIF[7:0]	0x00	H0	R/W	-						

*1: This register is effective when the GPIO function is selected.

*2: The bit configuration differs depending on the port group.

Bits 15-8 PxFIF[7:0]

Bits 7–0 PxRIF[7:0]

These bits indicate the port input interrupt cause occurrence status.

- 1 (R): Cause of interrupt occurred
- 0 (R): No cause of interrupt occurred
- 1 (W): Clear flag
- 0 (W): Ineffective

The following shows the correspondence between the bit and interrupt: PPORTPxINTF.PxFIFy bit: Pxy port input falling edge interrupt PPORTPxINTF.PxRIFy bit: Pxy port input rising edge interrupt

Px Port Interrupt Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
PPORTPxINTCTL	15–8	PxFIE[7:0]	0x00	H0	R/W	-
	7–0	PxRIE[7:0]	0x00	H0	R/W	

*1: This register is effective when the GPIO function is selected.

*2: The bit configuration differs depending on the port group.

Bits 15-8 PxFIE[7:0]

Bits 7–0 PxRIE[7:0]

These bits enable port input interrupts.

- 1 (R/W): Enable interrupts
- 0 (R/W): Disable interrupts

The following shows the correspondence between the bit and interrupt: PPORTPxINTCTL.PxFIEy bit: Pxy port input falling edge interrupt PPORTPxINTCTL.PxRIEy bit: Pxy port input rising edge interrupt

Note: To prevent generating unnecessary interrupts, the corresponding interrupt flag should be cleared before enabling interrupts.

Px Port Chattering Filter Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
PPORTPxCHATEN	15–8	-	0x00	-	R	-
	7–0	PxCHATEN[7:0]	0x00	H0	R/W	

*1: The bit configuration differs depending on the port group.

Bits 15–8 Reserved

Bits 7–0 PxCHATEN[7:0]

These bits enable/disable the chattering filter function.

1 (R/W): Enable (The chattering filter is used.)

0 (R/W): Disable (The chattering filter is bypassed.)

Px Port Mode Select Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
PPORTP <i>x</i> MODSEL	15–8	-	0x00	-	R	_
	7–0	PxSEL[7:0]	0x00	H0	R/W	

*1: The bit configuration differs depending on the port group.

*2: The initial value may be changed by the port.

Bits 15–8 Reserved

Bits 7–0 PxSEL[7:0]

These bits select whether each port is used for the GPIO function or a peripheral I/O function.

1 (R/W): Use peripheral I/O function

0 (R/W): Use GPIO function

Px Port Function Select Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
PPORTPxFNCSEL	15–14	Px7MUX[1:0]	0x0	HO	R/W	_
	13–12	Px6MUX[1:0]	0x0	H0	R/W	
	11–10	Px5MUX[1:0]	0x0	H0	R/W	
	9–8	Px4MUX[1:0]	0x0	H0	R/W	
	7–6	Px3MUX[1:0]	0x0	H0	R/W	
	5–4	Px2MUX[1:0]	0x0	HO	R/W	
	3–2	Px1MUX[1:0]	0x0	HO	R/W	
	1–0	Px0MUX[1:0]	0x0	H0	R/W	

*1: The bit configuration differs depending on the port group.

*2: The initial value may be changed by the port.

Bits 15-14 Px7MUX[1:0]

÷.

Bits 1-0 Px0MUX[1:0]

2

These bits select the peripheral I/O function to be assigned to each port pin.

PPORTPxFNCSEL.PxyMUX[1:0] bits	Peripheral I/O function				
0x3	Function 3				
0x2	Function 2				
0x1	Function 1				
0x0	Function 0				

Table 7.6.1 Selecting Peripheral I/O Function

This selection takes effect when the PPORTPxMODSEL.PxSELy bit = 1.

P Port Clock Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
PPORTCLK	15–9	-	0x00	_	R	_
	8	DBRUN	0	H0	R/WP	
	7–4	CLKDIV[3:0]	0x0	H0	R/WP	
	3–2	KRSTCFG[1:0]	0x0	H0	R/WP	
	1–0	CLKSRC[1:0]	0x0	H0	R/WP	

Bits 15–9 Reserved

Bit 8 DBRUN

This bit sets whether the PPORT operating clock is supplied during debugging or not. 1 (R/WP): Clock supplied during debugging 0 (R/WP): No clock supplied during debugging

Bits 7–4 CLKDIV[3:0]

These bits select the division ratio of the PPORT operating clock (chattering filter clock).

Bits 3–2 KRSTCFG[1:0]

These bits configure the key-entry reset function.

Table 7.6.2	Kev-Entry I	Reset Function	Settinas
			001

PPORTCLK.KRSTCFG[1:0] bits	key-entry reset
0x3	Reset when P0[3:0] inputs = all low
0x2	Reset when P0[2:0] inputs = all low
0x1	Reset when P0[1:0] inputs = all low
0x0	Disable

7 I/O PORTS (PPORT)

Bits 1–0 CLKSRC[1:0]

These bits select the clock source of PPORT (chattering filter).

The PPORT operating clock should be configured by selecting the clock source using the PPORT-CLK.CLKSRC[1:0] bits and the clock division ratio using the PPORTCLK.CLKDIV[3:0] bits as shown in Table 7.6.3. These settings determine the input sampling time of the chattering filter.

		PPORTCLK.CLKSRC[1:0] bits							
PPORTCLK.CLKDIV[3:0] - bits	0x0	0x1	0x2	0x3					
DILS	IOSC	OSC1	OSC3	EXOSC					
0xf		1/32,768		1/1					
0xe		1/16,384							
0xd		1/8,192							
0xc		1/4,096							
0xb		1/2,048]					
0xa		1/1,024]					
0x9		1/512							
0x8		1/256							
0x7		1/128							
0x6									
0x5]							
0x4]							
0x3]							
0x2									
0x1		1/2		1					
0x0		1/1		1					

(Note) The oscillation circuits/external input that are not supported in this IC cannot be selected as the clock source.

P Port Interrupt Flag Group Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
PPORTINTFGRP	15–13	-	0x0	-	R	-
	12	PCINT	0	HO	R	
	11	PBINT	0	H0	R	
	10	PAINT	0	H0	R	
	9	P9INT	0	H0	R	
	8	P8INT	0	H0	R	
	7	P7INT	0	H0	R	
	6	P6INT	0	H0	R	
	5	P5INT	0	H0	R	
	4	P4INT	0	H0	R	
	3	P3INT	0	H0	R	
	2	P2INT	0	H0	R	
	1	P1INT	0	HO	R	
	0	POINT	0	H0	R	

*1: Only the bits corresponding to the port groups that support interrupts are provided.

Bits 15–13 Reserved

Bits 12–0 PxINT

These bits indicate that Px port group includes a port that has generated an interrupt.

- 1 (R): A port generated an interrupt
- 0 (R): No port generated an interrupt

The PPORTINTFGRP.PxINT bit is cleared when the interrupt flag for the port that has generated an interrupt is cleared.

7.7 Control Register and Port Function Configuration of this IC

This section shows the PPORT control register/bit configuration in this IC and the list of peripheral I/O functions selectable for each port.

7.7.1 P0 Port Group

The P0 port group supports the GPIO and interrupt functions.

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
PPORTP0DAT (P0 Port Data	15–8	P0OUT[7:0]	0x00	H0	R/W	-
Register)	7–0	P0IN[7:0]	0x00	H0	R	
PPORTPOIOEN (P0 Port Enable	15–8	P0IEN[7:0]	0x00	H0	R/W	-
Register)	7–0	P0OEN[7:0]	0x00	H0	R/W	
PPORTPORCTL (P0 Port Pull-up/down	15–8	P0PDPU[7:0]	0x00	H0	R/W	-
Control Register)	7–0	P0REN[7:0]	0x00	H0	R/W	
PPORTPOINTF (P0 Port Interrupt	15–8	P0FIF[7:0]	0x00	H0	R/W	Cleared by writing 1.
Flag Register)	7–0	P0RIF[7:0]	0x00	H0	R/W	
PPORTPOINTCTL (P0 Port Interrupt	15–8	P0FIE[7:0]	0x00	H0	R/W	-
Control Register)	7–0	P0RIE[7:0]	0x00	H0	R/W	
PPORTP0CHATEN (P0 Port Chattering	15–8	-	0x00	-	R	-
Filter Enable Register)	7–0	P0CHATEN[7:0]	0x00	H0	R/W	
PPORTP0MODSEL (P0 Port Mode Select	15–8	-	0x00	-	R	-
Register)	7–0	P0SEL[7:0]	0x00	H0	R/W	
PPORTPOFNCSEL	15–14	P07MUX[1:0]	0x0	HO	R/W	-
(P0 Port Function	13–12	P06MUX[1:0]	0x0	H0	R/W	
Select Register)	11–10	P05MUX[1:0]	0x0	H0	R/W	
	9–8	P04MUX[1:0]	0x0	H0	R/W	
	7–6	P03MUX[1:0]	0x0	H0	R/W	
	5–4	P02MUX[1:0]	0x0	H0	R/W	
	3–2	P01MUX[1:0]	0x0	HO	R/W	
	1–0	P00MUX[1:0]	0x0	HO	R/W	

	<u> </u>	–		
Table 7.7.1.1	Control	Registers	for P0	Port Group

Table 7.7.1.2 P0 Port Group Function Assignment

	P0SELy = 0	P0SELy = 1									
Port name	GPIO	P0yMUX = 0x0 (Function 0)		P0yMUX = 0x1 (Function 1)		P0yMUX = 0x2 (Function 2)		P0yMUX = 0x3 (Function 3)			
		Peripheral	Pin	Peripheral	Pin	Peripheral	Pin	Peripheral	Pin		
P00	P00	SPIA Ch.1	SDI1	UPMUX	*1	-	-	-	-		
P01	P01	SPIA Ch.1	SDO1	UPMUX	*1	-	-	-	-		
P02	P02	SPIA Ch.1	SPICLK1	UPMUX	*1	-	-	-	-		
P03	P03	SPIA Ch.1	#SPISS1	UPMUX	*1	-	-	-	-		
P04	P04	RFC Ch.0	SENB0	UPMUX	*1	-	-	-	-		
P05	P05	RFC Ch.0	SENA0	UPMUX	*1	-	-	-	-		
P06	P06	RFC Ch.0	REF0	UPMUX	*1	-	-	-	-		
P07	P07	RFC Ch.0	RFIN0	UPMUX	*1	-	-	-	-		

7.7.2 P1 Port Group

The P1 port group supports the GPIO and interrupt functions.

Table 7.7.2.1 Control Registers for P1 Port Group

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
PPORTP1DAT	15–8	P1OUT[7:0]	0x00	H0	R/W	-
(P1 Port Data Register)	7–0	P1IN[7:0]	0x00	H0	R	
PPORTP1IOEN (P1 Port Enable	15–8	P1IEN[7:0]	0x00	H0	R/W	-
(PT Port Enable Register)	7–0	P10EN[7:0]	0x00	H0	R/W	
PPORTP1RCTL	15–8	P1PDPU[7:0]	0x00	HO	R/W	-
(P1 Port Pull-up/down Control Register)	7–0	P1REN[7:0]	0x00	H0	R/W	
PPORTP1INTF	15–8	P1FIF[7:0]	0x00	H0	R/W	Cleared by writing 1.
(P1 Port Interrupt Flag Register)	7–0	P1RIF[7:0]	0x00	H0	R/W	
PPORTP1INTCTL	15–8	P1FIE[7:0]	0x00	H0	R/W	-
(P1 Port Interrupt Control Register)	7–0	P1RIE[7:0]	0x00	H0	R/W	
PPORTP1CHATEN	15–8	-	0x00	-	R	-
(P1 Port Chattering Filter Enable Register)	7–0	P1CHATEN[7:0]	0x00	H0	R/W	
PPORTP1MODSEL	15–8	-	0x00	-	R	-
(P1 Port Mode Select Register)	7–0	P1SEL[7:0]	0x00	H0	R/W	
PPORTP1FNCSEL	15–14	P17MUX[1:0]	0x0	H0	R/W	-
(P1 Port Function	13–12	P16MUX[1:0]	0x0	H0	R/W	
Select Register)	11-10	P15MUX[1:0]	0x0	H0	R/W	
	9–8	P14MUX[1:0]	0x0	H0	R/W	
	7–6	P13MUX[1:0]	0x0	H0	R/W	
	5–4	P12MUX[1:0]	0x0	H0	R/W	
	3–2	P11MUX[1:0]	0x0	H0	R/W]
	1–0	P10MUX[1:0]	0x0	H0	R/W	

Table 7.7.2.2 P1 Port Group Function Assignment

	P1SELy = 0	P1SELy = 1										
Port		P1yMUX =		-		-	X = 0x2	P1yMUX = 0x3				
name	GPIO	(Func	tion 0)	(Func	tion 1)	(Function 2)		(Function 3)				
		Peripheral	Pin	Peripheral	Pin	Peripheral	Pin	Peripheral	Pin			
P10	P10	-	-	UPMUX	*1	ADC12A	ADIN06	-	-			
P11	P11	-	-	UPMUX	*1	ADC12A	ADIN05	-	-			
P12	P12	-	-	UPMUX	*1	ADC12A	ADIN04	-	-			
P13	P13	-	-	UPMUX	*1	ADC12A	ADIN03	-	-			
P14	P14	-	-	UPMUX	*1	ADC12A	ADIN02	-	-			
P15	P15	T16B Ch.0	EXCL00	UPMUX	*1	ADC12A	ADIN01	-	-			
P16	P16	T16B Ch.1	EXCL10	UPMUX	*1	ADC12A	ADIN00	-	-			
P17	P17	-	-	UPMUX	*1	ADC12A	VREFA0	-	-			

7.7.3 P2 Port Group

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
PPORTP2DAT	15–8	P2OUT[7:0]	0x00	H0	R/W	-
(P2 Port Data Register)	7–0	P2IN[7:0]	0x00	H0	R	
PPORTP2IOEN	15–8	P2IEN[7:0]	0x00	HO	R/W	-
(P2 Port Enable Register)	7–0	P2OEN[7:0]	0x00	H0	R/W	
PPORTP2RCTL	15–8	P2PDPU[7:0]	0x00	H0	R/W	-
(P2 Port Pull-up/down Control Register)	7–0	P2REN[7:0]	0x00	H0	R/W	
PPORTP2INTF	15–8	P2FIF[7:0]	0x00	H0	R/W	Cleared by writing 1.
(P2 Port Interrupt Flag Register)	7–0	P2RIF[7:0]	0x00	H0	R/W	
PPORTP2INTCTL	15–8	P2FIE[7:0]	0x00	HO	R/W	-
(P2 Port Interrupt Control Register)	7–0	P2RIE[7:0]	0x00	H0	R/W	
PPORTP2CHATEN	15–8	-	0x00	-	R	-
(P2 Port Chattering Filter Enable Register)	7–0	P2CHATEN[7:0]	0x00	H0	R/W	
PPORTP2MODSEL	15–8	-	0x00	-	R	-
(P2 Port Mode Select Register)	7–0	P2SEL[7:0]	0x00	H0	R/W	
		P27MUX[1:0]	0x0	H0	R/W	_
(P2 Port Function	13–12	P26MUX[1:0]	0x0	H0	R/W	
Select Register)	11–10	P25MUX[1:0]	0x0	H0	R/W]
	9–8	P24MUX[1:0]	0x0	H0	R/W	
	7–6	P23MUX[1:0]	0x0	H0	R/W	
	5–4	P22MUX[1:0]	0x0	HO	R/W	
	3–2	P21MUX[1:0]	0x0	H0	R/W]
	1–0	P20MUX[1:0]	0x0	HO	R/W	

Table 7.7.3.1 Control Registers for P2 Port Group

Table 7.7.3.2	P2 Port	Group	Function	Assignment
10010 1.1.0.2	1 2 1 010	aroup	i anotion	/ looigininoine

	P2SELy = 0		P2SELy = 1										
Port		P2yMU	P2yMUX = 0x0		= 0x0 P2yMUX = 0x1 P2yM		P2yMUX = 0x2		P2yMUX = 0x3				
name	GPIO	(Funct	tion 0)	(Function 1)		(Function 2)		(Function 3)					
		Peripheral	Pin	Peripheral Pin P		Peripheral	Pin	Peripheral	Pin				
P20	P20	SNDA	BZOUT	UPMUX	*1	-	-	-	-				
P21	P21	SNDA	#BZOUT	UPMUX	*1	-	-	-	-				
P22	P22	REMC3	REMO	UPMUX	*1	-	-	-	-				
P23	P23	REMC3	CLPLS	UPMUX	*1	-	-	-	-				
P24	P24	T16 Ch.2	EXCL20	UPMUX	*1	-	-	-	-				
P25	P25	T16 Ch.0	EXCL01	UPMUX	*1	-	-	LCD8D	SEG55				
P26	P26	T16 Ch.1	EXCL11	UPMUX	*1	-	-	LCD8D	SEG54				
P27	P27	T16 Ch.2	EXCL21	UPMUX	*1	-	-	LCD8D	SEG53				

7.7.4 P3 Port Group

The P3 port group supports the GPIO and interrupt functions.

Table 7.7.4.1 Control Registers for P3 Port Group

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
PPORTP3DAT	15–8	P3OUT[7:0]	0x00	H0	R/W	-
(P3 Port Data Register)	7–0	P3IN[7:0]	0x00	H0	R	
PPORTP3IOEN	15–8	P3IEN[7:0]	0x00	HO	R/W	-
(P3 Port Enable Register)	7–0	P3OEN[7:0]	0x00	H0	R/W	
PPORTP3RCTL	15–8	P3PDPU[7:0]	0x00	HO	R/W	-
(P3 Port Pull-up/down Control Register)	7–0	P3REN[7:0]	0x00	H0	R/W	
PPORTP3INTF	15–8	P3FIF[7:0]	0x00	HO	R/W	Cleared by writing 1.
(P3 Port Interrupt Flag Register)	7–0	P3RIF[7:0]	0x00	H0	R/W	
PPORTP3INTCTL	15–8	P3FIE[7:0]	0x00	HO	R/W	-
(P3 Port Interrupt Control Register)	7–0	P3RIE[7:0]	0x00	H0	R/W	
PPORTP3CHATEN	15–8	-	0x00	-	R	-
(P3 Port Chattering Filter Enable Register)	7–0	P3CHATEN[7:0]	0x00	H0	R/W	
PPORTP3MODSEL	15–8	-	0x00	-	R	-
(P3 Port Mode Select Register)	7–0	P3SEL[7:0]	0x00	H0	R/W	
PPORTP3FNCSEL	15–14	P37MUX[1:0]	0x0	H0	R/W	-
(P3 Port Function	13–12	P36MUX[1:0]	0x0	H0	R/W	
Select Register)	11–10	P35MUX[1:0]	0x0	H0	R/W	
	9–8	P34MUX[1:0]	0x0	H0	R/W	
	7–6	P33MUX[1:0]	0x0	H0	R/W	
	5–4	P32MUX[1:0]	0x0	H0	R/W	
	3–2	P31MUX[1:0]	0x0	H0	R/W]
	1–0	P30MUX[1:0]	0x0	H0	R/W	

Table 7.7.4.2 P3 Port Group Function Assignment

	P3SELy = 0	P3SELy = 1									
Port		P3yMUX = 0x0		P3yMUX = 0x1		P3yMU	X = 0x2	P3yMUX = 0x3			
name	GPIO	(Func	tion 0)	(Func	(Function 1)		(Function 2)		(Function 3)		
		Peripheral	Pin	Peripheral Pin I		Peripheral	Pin	Peripheral	Pin		
P30	P30	CLG	EXOSC	UPMUX	*1	-	-	LCD8D	SEG47		
P31	P31	ADC12A	#ADTRG0	UPMUX	*1	-	-	LCD8D	SEG46		
P32	P32	RTCA	RTC1S	UPMUX	*1	-	-	LCD8D	SEG45		
P33	P33	CLG	FOUT	UPMUX	*1	-	-	LCD8D	SEG44		
P34	P34	LCD8D	LFRO	UPMUX	*1	-	-	LCD8D	SEG43		
P35	P35	-	-	UPMUX	*1	SVD4 Ch.0	EXSVD00	LCD8D	SEG42		
P36	P36	-	-	UPMUX	*1	SVD4 Ch.0	EXSVD01	LCD8D	SEG41		
P37	P37	RFC Ch.0	RFCLKO0	UPMUX	*1	-	_	LCD8D	SEG40		

7.7.5 P4 Port Group

The P4 port group supports the GPIO and interrupt functions.

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
PPORTP4DAT	15–8	P4OUT[7:0]	0x00	H0	R/W	-
(P4 Port Data Register)	7–0	P4IN[7:0]	0x00	H0	R	
PPORTP4IOEN	15–8	P4IEN[7:0]	0x00	H0	R/W	-
(P4 Port Enable Register)	7–0	P4OEN[7:0]	0x00	H0	R/W	
PPORTP4RCTL	15–8	P4PDPU[7:0]	0x00	H0	R/W	-
(P4 Port Pull-up/down Control Register)	7–0	P4REN[7:0]	0x00	H0	R/W	
PPORTP4INTF	15–8	P4FIF[7:0]	0x00	H0	R/W	Cleared by writing 1.
(P4 Port Interrupt Flag Register)	7–0	P4RIF[7:0]	0x00	H0	R/W	
PPORTP4INTCTL	15–8	P4FIE[7:0]	0x00	H0	R/W	-
(P4 Port Interrupt Control Register)	7–0	P4RIE[7:0]	0x00	H0	R/W	
PPORTP4CHATEN	15–8	-	0x00	-	R	-
(P4 Port Chattering Filter Enable Register)	7–0	P4CHATEN[7:0]	0x00	H0	R/W	
PPORTP4MODSEL	15–8	-	0x00	-	R	-
(P4 Port Mode Select Register)	7–0	P4SEL[7:0]	0x00	H0	R/W	
PPORTP4FNCSEL		P47MUX[1:0]	0x3	H0	R/W	-
(P4 Port Function	13–12	P46MUX[1:0]	0x3	H0	R/W	
Select Register)	11–10	P45MUX[1:0]	0x3	H0	R/W	
	9–8	P44MUX[1:0]	0x3	H0	R/W	
	7–6	P43MUX[1:0]	0x3	H0	R/W	
	5–4	P42MUX[1:0]	0x3	H0	R/W]
	3–2	P41MUX[1:0]	0x3	H0	R/W]
	1–0	P40MUX[1:0]	0x3	H0	R/W	

Table 7.7.5.1 Control Registers for P4 Port Group

Table 7 7 5 2	P4 Port Group	Function	Assianment
Table 1.1.3.2	F4 FUIL GIUUP	T UNCLION	Assignment

	P4SELy = 0	P4SELy = 1									
Port		P4yMUX = 0x0		P4yMUX = 0x1		-	X = 0x2	P4yMUX = 0x3			
name	GPIO	(Funct	tion 0)	(Func	tion 1)	(Function 2)		(Function 3)			
		Peripheral	Pin	Peripheral	Pin	Peripheral	Pin	Peripheral	Pin		
P40	P40	-	-	-	-	-	-	LCD8D	SEG39		
P41	P41	-	-	-	-	-	-	LCD8D	SEG38		
P42	P42	-	-	-	-	-	-	LCD8D	SEG37		
P43	P43	-	-	-	-	-	-	LCD8D	SEG36		
P44	P44	-	-	-	-	-	-	LCD8D	SEG35		
P45	P45	-	-	-	-	-	-	LCD8D	SEG34		
P46	P46	-	-	-	-	-	-	LCD8D	SEG33		
P47	P47	-	-	-	-	-	-	LCD8D	SEG32		

7.7.6 P5 Port Group

The P5 port group supports the GPIO and interrupt functions.

Table 7.7.6.1 Control Registers for P5 Port Group

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
PPORTP5DAT	15–8	P5OUT[7:0]	0x00	H0	R/W	-
(P5 Port Data Register)	7–0	P5IN[7:0]	0x00	H0	R	
PPORTP5IOEN	15–8	P5IEN[7:0]	0x00	HO	R/W	-
(P5 Port Enable Register)	7–0	P50EN[7:0]	0x00	H0	R/W	
PPORTP5RCTL	15–8	P5PDPU[7:0]	0x00	H0	R/W	-
(P5 Port Pull-up/down Control Register)	7–0	P5REN[7:0]	0x00	H0	R/W	
PPORTP5INTF	15–8	P5FIF[7:0]	0x00	HO	R/W	Cleared by writing 1.
(P5 Port Interrupt Flag Register)	7–0	P5RIF[7:0]	0x00	H0	R/W	
PPORTP5INTCTL	15–8	P5FIE[7:0]	0x00	H0	R/W	-
(P5 Port Interrupt Control Register)	7–0	P5RIE[7:0]	0x00	H0	R/W	
PPORTP5CHATEN	15–8	_	0x00	-	R	-
(P5 Port Chattering Filter Enable Register)	7–0	P5CHATEN[7:0]	0x00	H0	R/W	
PPORTP5MODSEL	15–8	-	0x00	-	R	-
(P5 Port Mode Select Register)	7–0	P5SEL[7:0]	0x00	H0	R/W	
PPORTP5FNCSEL	15–14	P57MUX[1:0]	0x3	H0	R/W	_
(P5 Port Function		P56MUX[1:0]	0x3	HO	R/W	
Select Register)	11–10	P55MUX[1:0]	0x3	HO	R/W	
	9–8	P54MUX[1:0]	0x3	HO	R/W	
	7–6	P53MUX[1:0]	0x3	H0	R/W	
	5–4	P52MUX[1:0]	0x3	HO	R/W	
	3–2	P51MUX[1:0]	0x3	H0	R/W	
	1–0	P50MUX[1:0]	0x3	H0	R/W	

Table 7.7.6.2 P5 Port Group Function Assignment

	P5SELy = 0		P5SELy = 1						
Port		P5yMU	X = 0x0	P5yMU	X = 0x1	P5yMU	X = 0x2	P5yMU	X = 0x3
name	GPIO	(Func	tion 0)	(Func	tion 1)	(Function 2)		(Function 3)	
		Peripheral	Pin	Peripheral	Pin	Peripheral	Pin	Peripheral	Pin
P50	P50	-	-	-	-	-	-	LCD8D	SEG24
P51	P51	-	-	-	-	-	-	LCD8D	SEG23
P52	P52	-	-	-	-	-	-	LCD8D	SEG22
P53	P53	-	-	-	-	-	-	LCD8D	SEG21
P54	P54	-	-	-	-	-	-	LCD8D	SEG20
P55	P55	-	-	-	-	-	-	LCD8D	SEG19
P56	P56	-	-	-	-	-	-	LCD8D	SEG18
P57	P57	-	-	-	-	-	-	LCD8D	SEG17

7.7.7 P6 Port Group

The P6 port group supports the GPIO and interrupt functions.

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
PPORTP6DAT	15–8	P6OUT[7:0]	0x00	H0	R/W	-
(P6 Port Data Register)	7–0	P6IN[7:0]	0x00	H0	R	
PPORTP6IOEN	15–8	P6IEN[7:0]	0x00	H0	R/W	-
(P6 Port Enable Register)	7–0	P60EN[7:0]	0x00	H0	R/W	
PPORTP6RCTL	15–8	P6PDPU[7:0]	0x00	H0	R/W	-
(P6 Port Pull-up/down Control Register)	7–0	P6REN[7:0]	0x00	H0	R/W	
PPORTP6INTF	15–8	P6FIF[7:0]	0x00	H0	R/W	Cleared by writing 1.
(P6 Port Interrupt Flag Register)	7–0	P6RIF[7:0]	0x00	H0	R/W	
PPORTP6INTCTL	15–8	P6FIE[7:0]	0x00	H0	R/W	-
(P6 Port Interrupt Control Register)	7–0	P6RIE[7:0]	0x00	H0	R/W	
PPORTP6CHATEN	15–8	-	0x00	-	R	-
(P6 Port Chattering Filter Enable Register)	7–0	P6CHATEN[7:0]	0x00	H0	R/W	
PPORTP6MODSEL	15–8	-	0x00	-	R	-
(P6 Port Mode Select Register)	7–0	P6SEL[7:0]	0x00	H0	R/W	
PPORTP6FNCSEL		P67MUX[1:0]	0x3	H0	R/W	-
(P6 Port Function		P66MUX[1:0]	0x3	H0	R/W	
Select Register)	11–10	P65MUX[1:0]	0x3	H0	R/W	
	9–8	P64MUX[1:0]	0x3	H0	R/W	
	7–6	P63MUX[1:0]	0x3	H0	R/W	
	5–4	P62MUX[1:0]	0x3	H0	R/W]
	3–2	P61MUX[1:0]	0x3	H0	R/W]
	1–0	P60MUX[1:0]	0x3	H0	R/W	

Table 7.7.7.1 Control Registers for P6 Port Group

Table 7 7 7 2	P6 Port Group	Function	Assignment
10010 1.1.1.2	i o i oit aioup	i unotion	Assignment

	P6SELy = 0	P6SELy = 1									
Port	0010	P6yMU		-	X = 0x1	-	X = 0x2	-	UX = 0x3		
name	GPIO	(Funct	,		tion 1)		tion 2)		(Function 3)		
		Peripheral	Pin	Peripheral	Pin	Peripheral	Pin	Peripheral	Pin		
P60	P60	-	-	-	-	-	-	LCD8D	SEG16		
P61	P61	-	-	-	-	-	-	LCD8D	SEG15		
P62	P62	-	-	-	-	-	-	LCD8D	SEG14		
P63	P63	-	-	-	-	-	-	LCD8D	SEG13		
P64	P64	-	-	-	-	-	-	LCD8D	COM7/SEG3		
P65	P65	-	-	-	-	-	-	LCD8D	COM6/SEG2		
P66	P66	-	-	-	-	-	-	LCD8D	COM5/SEG1		
P67	P67	-	-	-	-	-	-	LCD8D	COM4/SEG0		

7.7.8 Pd Port Group

The Pd port group supports the GPIO function. Two ports Pd0–Pd1 are configured as debugging function ports at initialization.

Table 7.7.8.1 Control Registers for Pd Port Group									
Register name	Bit	Bit name	Initial	Reset	R/W	Remarks			
PPORTPDDAT	15–8	PDOUT[7:0]	0x00	HO	R/W	_			
(Pd Port Data	7–5	PDIN[7:5]	0x0	HO	R				
Register)	4	(reserved)	0	-	R				
	3–0	PDIN[3:0]	0x00	HO	R				
PPORTPDIOEN	15–13	PDIEN[7:5]	0x0	HO	R/W	_			
(Pd Port Enable	12	(reserved)	0	H0	R/W				
Register)	11–8	PDIEN[3:0]	0x0	H0	R/W				
	7–0	PDOEN[7:0]	0x10	H0	R/W				
PPORTPDRCTL	15–13	PDPDPU[7:5]	0x0	H0	R/W	-			
(Pd Port Pull-up/down	12	(reserved)	0	HO	R/W				
Control Register)	11–8	PDPDPU[3:0]	0x0	H0	R/W				
	7–5	PDREN[7:5]	0x0	HO	R/W				
	4	(reserved)	0	HO	R/W				
	3–0	PDREN[3:0]	0x0	H0	R/W				
PPORTPDINTF	15–0	_	0x0000	-	R	-			
PPORTPDINTCTL PPORTPDCHATEN									
PPORTPDMODSEL	15–8	_	0x00		R				
(Pd Port Mode Select	7–0		000	110		-			
Register)	7-0	PDSEL[7:0]	0x23	HO	R/W				
	15–14	PD7MUX[1:0]	0x0	H0	R/W	_			
(Pd Port Function	13–12	PD6MUX[1:0]	0x0	H0	R/W				
Select Register)	11–10	PD5MUX[1:0]	0x2	H0	R/W				
	9–8	(reserved)	0x0	H0	R/W				
	7–6	PD3MUX[1:0]	0x0	H0	R/W				
	5–4	PD2MUX[1:0]	0x0	H0	R/W				
	3–2	PD1MUX[1:0]	0x0	HO	R/W				
	1–0	PD0MUX[1:0]	0x0	HO	R/W				

Table 7.7.8.2 Pd Port Group Function Assignment

	PdSELy = 0	ELy = 0 PdSELy = 1							
Port		PdyMUX = 0x0		PdyMUX = 0x1		PdyMU	X = 0x2	PdyMUX = 0x3 (Function 3)	
name	GPIO	(Func	tion 0)	(Function 1)		(Function 2)			
		Peripheral	Pin	Peripheral	Pin	Peripheral	Pin	Peripheral	Pin
Pd0	Pd0	CPU	SWCLK	-	-	-	-	-	-
Pd1	Pd1	CPU	SWD	-	-	-	-	-	-
Pd2	Pd2	-	-	-	-	CLG	OSC3	-	-
Pd3	Pd3	-	-	-	-	CLG	OSC4	-	-
Pd4	Pd4	-	-	-	-	-	-	-	-
Pd5	Pd5	-	-	-	-	FLASHC	Vpp	-	-
Pd6	Pd6	-	-	-	-	LCD8D	CP1	-	-
Pd7	Pd7	-	-	-	-	LCD8D	CP2	-	-

Table 7.7.9.1 Control Registers for Common Use with Port Groups									
Register name	Bit	Bit name	Initial	Reset	R/W	Remarks			
PPORTCLK	15–9	-	0x00	-	R	-			
(P Port Clock Control	8	DBRUN	0	H0	R/WP				
Register)	7–4	CLKDIV[3:0]	0x0	H0	R/WP				
	3–2	KRSTCFG[1:0]	0x0	H0	R/WP				
	1–0	CLKSRC[1:0]	0x0	H0	R/WP				
PPORTINTFGRP	15–8	-	0x00	-	R	-			
(P Port Interrupt Flag	7	-	0	-	R				
Group Register)	6	P6INT	0	H0	R				
	5	P5INT	0	H0	R				
	4	P4INT	0	H0	R				
	3	P3INT	0	H0	R				
	2	P2INT	0	H0	R				
	1	P1INT	0	H0	R				
	0	POINT	0	H0	R				

7.7.9 Common Registers between Port Groups

8 Universal Port Multiplexer (UPMUX)

8.1 Overview

UPMUX is a multiplexer that allows software to assign the desired peripheral I/O function to an I/O port. The main features are outlined below.

- Allows programmable assignment of the I²C, SPI, UART, and 16-bit PWM timer peripheral I/O functions to the P0, P1, P2, and P3 port groups.
- The peripheral I/O function assigned via UPMUX is enabled by setting the PPORTPxFNCSEL.PxyMUX[1:0] bits to 0x1.
- **Note:** '*x*', which is used in the port names P*xy*, register names, and bit names, refers to a port group (x = 0, 1, 3) and '*y*' refers to a port number ($y = 0, 1, 2, \dots, 7$).

Figure 8.1.1 shows the configuration of UPMUX.

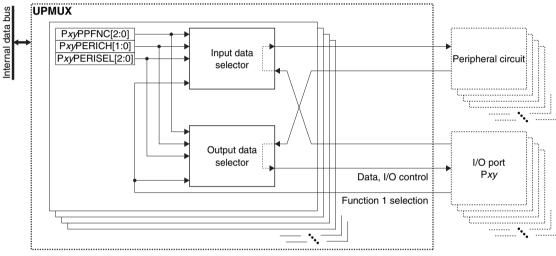


Figure 8.1.1 UPMUX Configuration

8.2 Peripheral Circuit I/O Function Assignment

An I/O function of a peripheral circuit supported may be assigned to peripheral I/O function 1 of an I/O port listed above. The following shows the procedure to assign a peripheral I/O function and enable it in the I/O port:

1.	Configure the PPORTPxIOEN register of the I/O port.	
	- Set the PPORTPxIOEN.PxIENy bit to 0.	(Disable input)
	- Set the PPORTPxIOEN.PxOENy bit to 0.	(Disable output)
2.	Set the PPORTP <i>x</i> MODSEL.P <i>x</i> SEL <i>y</i> bit of the I/O port to 0.	(Disable peripheral I/O function)
3.	Set the following UPMUXP x MUX n register bits ($n = 0$ to 3).	
	- UPMUXPxMUXn.PxyPERISEL[2:0] bits	(Select peripheral circuit)
	- UPMUXPxMUXn.PxyPERICH[1:0] bits	(Select peripheral circuit channel)
	- UPMUXPxMUXn.PxyPPFNC[2:0] bits	(Select function to assign)
4.	Initialize the peripheral circuit.	
5.	Set the PPORTPxFNCSEL.PxyMUX[1:0] bits of the I/O port to 0x1.	(Select peripheral I/O function 1)
6.	Set the PPORTP <i>x</i> MODSEL.P <i>x</i> SEL <i>y</i> bit of the I/O port to 1.	(Enable peripheral I/O function)

8.3 Control Registers

Pxy-xz Universal Port Multiplexer Setting Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
UPMUXPxMUXn	15–13	PxzPPFNC[2:0]	0x0	HO	R/W	-
	12-11	PxzPERICH[1:0]	0x0	H0	R/W	
	10–8	PxzPERISEL[2:0]	0x0	H0	R/W	
	7–5	PxyPPFNC[2:0]	0x0	H0	R/W	
	4–3	PxyPERICH[1:0]	0x0	H0	R/W	
	2–0	PxyPERISEL[2:0]	0x0	H0	R/W	

*1: 'x' in the register name refers to a port group number and 'n' refers to a register number (0-3).

*2: 'x' in the bit name refers to a port group number, 'y' refers to an even port number (0, 2, 4, 6), and 'z' refers to an odd port number (z = y + 1).

Bits 15-13 PxzPPFNC[2:0]

Bits 7–5 PxyPPFNC[2:0]

These bits specify the peripheral I/O function to be assigned to the port. (See Table 8.3.1.)

Bits 12-11 PxzPERICH[1:0]

Bits 4–3 PxyPERICH[1:0]

These bits specify a peripheral circuit channel number. (See Table 8.3.1.)

Bits 10-8 PxzPERISEL[2:0]

Bits 2–0 PxyPERISEL[2:0]

These bits specify a peripheral circuit. (See Table 8.3.1.)

Table 8.3.1 Peripheral I/O Function Selections

	UPMUXPxMUXn.PxyPERISEL[2:0] bits (Peripheral circuit)									
UPMUXPxMUXn.	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7		
PxyPPFNC[2:0] bits	None *	I2C	SPIA	UART3	T16B	Reserved	Reserved	Reserved		
(Peripheral I/O		UPMU	XPxMUXn.Px	yPERICH[1:0] bits (Periph	eral circuit cl	nannel)			
function)	-	0x0-0x1	0x0	0x0-0x1	0x0-0x2	-	-	-		
	-	Ch.0–1	Ch.0	Ch.0–1	Ch.0–2	-	-	-		
0x0	None *	None *	None *	None *	None *	None *	None *	None *		
0x1		SCLn	SDIn	USINn	TOUTn0/					
0/1					CAPn0					
0x2		SDAn	SDOn	USOUTn	TOUTn1/	-				
0/2					CAPn1					
0x3			SPICLKn		TOUTn2/					
0,0	Reserved				CAPn2	Reserved	Reserved	Reserved		
0x4			#SPISSn		TOUTn3/					
0,4		Reserved	#01100//	Reserved	CAPn3			i I		
0x5		Reserved					ĺ			
0x6			Reserved		Reserved					
0x7										

* "None" means no assignment. Selecting this will put the Pxy pin into Hi-Z status when peripheral I/O function 1 is selected and enabled in the I/O port.

Note: Do not assign a peripheral input function to two or more I/O ports. Although the I/O ports output the same waveforms when an output function is assigned to two or more I/O port, a skew occurs due to the internal delay.

9 Watchdog Timer (WDT2)

9.1 Overview

WDT2 restarts the system if a problem occurs, such as when the program cannot be executed normally. The features of WDT2 are listed below.

- Includes a 10-bit up counter to count NMI/reset generation cycle.
- A counter clock source and clock division ratio are selectable.
- Can generate a reset or NMI in a cycle given via software.
- Can generate a reset at the next NMI generation cycle after an NMI is generated.

Figure 9.1.1 shows the configuration of WDT2.

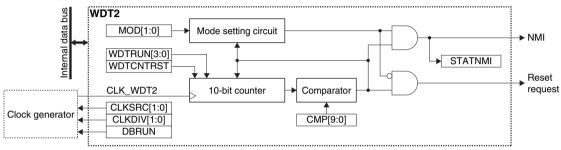


Figure 9.1.1 WDT2 Configuration

9.2 Clock Settings

9.2.1 WDT2 Operating Clock

When using WDT2, the WDT2 operating clock CLK_WDT2 must be supplied to WDT2 from the clock generator. The CLK_WDT2 supply should be controlled as in the procedure shown below.

- 1. Write 0x0096 to the SYSPROT.PROT[15:0] bits. (Remove system protection)
- 2. Enable the clock source in the clock generator if it is stopped (refer to "Clock Generator" in the "Power Supply, Reset, and Clocks" chapter).
- 3. Set the following WDT2CLK register bits:

 WDT2CLK.CLKSRC[1:0] bits
 (Clock source selection)

 WDT2CLK.CLKDIV[1:0] bits
 (Clock division ratio selection = Clock frequency setting)
- 4. Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits. (Set system protection)

9.2.2 Clock Supply in DEBUG Mode

The CLK_WDT2 supply during DEBUG mode should be controlled using the WDT2CLK.DBRUN bit. The CLK_WDT2 supply to WDT2 is suspended when the CPU enters DEBUG mode if the WDT2CLK.DBRUN bit = 0. After the CPU returns to normal mode, the CLK_WDT2 supply resumes. Although WDT2 stops operating when the CLK_WDT2 supply is suspended, the register retains the status before DEBUG mode was entered. If the WDT2CLK.DBRUN bit = 1, the CLK_WDT2 supply is not suspended and WDT2 will keep operating in DEBUG mode.

9.3 Operations

9.3.1 WDT2 Control

Activating WDT2

WDT2 should be initialized and started up with the procedure listed below.

1.	Write 0x0096 to the SYSPROT.PROT[15:0] bits.	(Remove system protection)
2.	Configure the WDT2 operating clock.	
3.	Set the WDT2CTL.MOD[1:0] bits.	(Select WDT2 operating mode)
4.	Set the WDT2CMP.CMP[9:0] bits.	(Set NMI/reset generation cycle)
5.	Write 1 to the WDT2CTL.WDTCNTRST bit.	(Reset WDT2 counter)
6.	Write a value other than 0xa to the WDT2CTL.WDTRUN[3:0] bits.	(Start up WDT2)
7	White a seclar other than 0.0006 to the CVCDDOT DDOT[15.0] hite	

7. Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits. (Set system protection)

NMI/reset generation cycle

Use the following equation to calculate the WDT2 NMI/reset generation cycle.

$t_{WDT} = \frac{CMP + CMP}{CMP + CMP +$	<u>1</u> (Eq. 9.1)
CLK_WI	DT2 (Eq. 9.1)
Where	
twdt:	NMI/reset generation cycle [second]
OT IT IT DO	

CLK_WDT2: WDT2 operating clock frequency [Hz] CMP: Setting value of the WDT2CMP.CMP[9:0] bits

Example) twDT = 2.5 seconds when CLK_WDT2 = 256 Hz and the WDT2CMP.CMP[9:0] bits = 639

Resetting WDT2 counter

To prevent an unexpected NMI/reset to be generated by WDT2, its embedded counter must be reset periodically via software while WDT2 is running.

1.	Write 0x0096 to the SYSPROT.PROT[15:0] bits.	(Remove system protection)
2.	Write 1 to the WDT2CTL.WDTCNTRST bit.	(Reset WDT2 counter)

3. Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits. (Set system protection)

A location should be provided for periodically processing this routine. Process this routine within the twDT cycle. After resetting, WDT2 starts counting with a new NMI/reset generation cycle.

Occurrence of counter compare match

If WDT2 is not reset within the two cycle for any reason and the counter reaches the setting value of the WDT2CMP.CMP[9:0] bits, a compare match occurs to cause WDT2 to issue an NMI or reset according to the setting of the WDT2CTL.MOD[1:0] bits.

If an NMI is issued, the WDT2CTL.STATNMI bit is set to 1. This bit can be cleared to 0 by writing 1 to the WDT2CTL.WDTCNTRST bit. Be sure to clear the WDT2CTL.STATNMI bit in the NMI handler routine, If a compare match occurs, the counter is automatically reset to 0 and it continues counting.

Deactivating WDT2

WDT2 should be stopped with the procedure listed below.

1. Write 0x0096 to the SYSPROT.PROT[15:0] bits. 2. Write 0xa to the WDT2CTL.WDTRUN[3:0] bits. (Remove system protection) (Stop WDT2)

3. Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits. (Set system protection)

9.3.2 Operations in HALT and SLEEP Modes

During HALT mode

WDT2 operates in HALT mode. HALT mode is therefore cleared by an NMI or reset if it continues for more than the NMI/reset generation cycle and the CPU executes the interrupt handler. To disable WDT2 in HALT mode, stop WDT2 by writing 0xa to the WDT2CTL.WDTRUN[3:0] bits before setting to HALT mode. Reset WDT2 before resuming operations after HALT mode is cleared.

During SLEEP mode

WDT2 operates in SLEEP mode if the selected clock source is running. SLEEP mode is cleared by an NMI or reset if it continues for more than the NMI/reset generation cycle and the CPU executes the interrupt handler. Therefore, stop WDT2 by setting the WDT2CTL.WDTRUN[3:0] bits before setting to SLEEP mode.

If the clock source stops in SLEEP mode, WDT2 stops. To prevent generation of an unnecessary NMI or reset after clearing SLEEP mode, reset WDT2 before setting to SLEEP mode. WDT2 should also be stopped as required using the WDT2CTL.WDTRUN[3:0] bits.

9.4 Control Registers

	IDIZ Olock Control negistel						
Register name	Bit	Bit name	Initial	Reset	R/W	Remarks	
WDT2CLK	15–9	-	0x00	_	R	-	
	8	DBRUN	0	H0	R/WP		
	7–6	-	0x0	-	R		
	5–4	CLKDIV[1:0]	0x0	H0	R/WP		
	3–2	-	0x0	-	R		
	1–0	CLKSRC[1:0]	0x0	HO	R/WP		

WDT2 Clock Control Register

Bits 15–9 Reserved

Bit 8 DBRUN

This bit sets whether the WDT2 operating clock is supplied in DEBUG mode or not. 1 (R/WP): Clock supplied in DEBUG mode 0 (R/WP): No clock supplied in DEBUG mode

Bits 7–6 Reserved

Bits 5–4 CLKDIV[1:0]

These bits select the division ratio of the WDT2 operating clock (counter clock). The clock frequency should be set to around 256 Hz.

Bits 3–2 Reserved

Bits 1–0 CLKSRC[1:0]

These bits select the clock source of WDT2.

Table 9.4.1 Clock Source and Division Ratio Settings

WDT2CLK.	WDT2CLK.CLKSRC[1:0] bits					
CLKDIV[1:0] bits	0x0	0x1	0x2	0x3		
CLKDIV[1:0] bits	IOSC	OSC1	OSC3	EXOSC		
0x3	1/65,536	1/128	1/65,536	1/1		
0x2	1/32,768		1/32,768			
0x1	1/16,384]	1/16,384			
0x0	1/8,192		1/8,192			

(Note) The oscillation circuits/external input that are not supported in this IC cannot be selected as the clock source.

WDT2 Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
WDT2CTL	15–11	-	0x00	-	R	_
	10–9	MOD[1:0]	0x0	H0	R/WP	
	8	STATNMI	0	H0	R	
	7–5	-	0x0	-	R	
	4	WDTCNTRST	0	H0	WP	Always read as 0.
	3–0	WDTRUN[3:0]	0xa	H0	R/WP	_

Bits 15–11 Reserved

Bits 10-9 MOD[1:0]

These bits set the WDT2 operating mode.

Table 9.4.2	Operating	Mode Setting
10010 0.4.2	operating	mode octing

WDT2CTL. MOD[1:0] bits	Operating mode	Description
0x3	Reserved	-
0x2		If the WDT2CTL.STATNMI bit is not cleared to 0 after an NMI has occurred due to a counter compare match, WDT2 issues a reset when the next compare match occurs.
0x1	NMI mode	WDT2 issues an NMI when a counter compare match occurs.
0x0	RESET mode	WDT2 issues a reset when a counter compare match occurs.

Bit 8 STATNMI

This bit indicates that a counter compare match and NMI have occurred.

1 (R): NMI (counter compare match) occurred

0 (R): NMI not occurred

When the NMI generation function of WDT2 is used, read this bit in the NMI handler routine to confirm that WDT2 was the source of the NMI.

The WDT2CTL.STATNMI bit set to 1 is cleared to 0 by writing 1 to the WDT2CTL.WDTCNTRST bit.

Bits 7–5 Reserved

Bit 4 WDTCNTRST

This bit resets the 10-bit counter and the WDT2CTL.STATNMI bit.

- 1 (WP): Reset
- 0 (WP): Ignored
- 0 (R): Always 0 when being read

Bits 3–0 WDTRUN[3:0]

These bits control WDT2 to run and stop.

Oxa (WP):	Stop
Values other than 0xa (WP):	Run
0xa (R):	Idle
0x0 (R):	Running

Always 0x0 is read if a value other than 0xa is written.

Since an NMI or reset may be generated immediately after running depending on the counter value, WDT2 should also be reset concurrently when running WDT2.

WDT2 Counter Compare Match Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
WDT2CMP	15–10	-	0x00	-	R	-
	9–0	CMP[9:0]	0x3ff	H0	R/WP	

Bits 15–10 Reserved

Bits 9-0 CMP[9:0]

These bits set the NMI/reset generation cycle.

The value set in this register is compared with the 10-bit counter value while WDT2 is running, and an NMI or reset is generated when they are matched.

10 Real-Time Clock (RTCA)

10.1 Overview

RTCA is a real-time clock with a perpetual calendar function. The main features of RTCA are outlined below.

- Includes a BCD real-time clock counter to implement a time-of-day clock (second, minute, and hour) and calendar (day, day of the week, month, and year with leap year supported).
- Provides a hold function for reading correct counter values by suspending the real-time clock counter operation.
- 24-hour or 12-hour mode is selectable.
- Capable of controlling the starting and stopping of the time-of-day clock.
- Provides a 30-second correction function to adjust time using a time signal.
- Includes a 1 Hz counter to count 128 to 1 Hz.
- Includes a BCD stopwatch counter with 1/100-second counting supported.
- Provides a theoretical regulation function to correct clock error due to frequency tolerance with no external parts required.

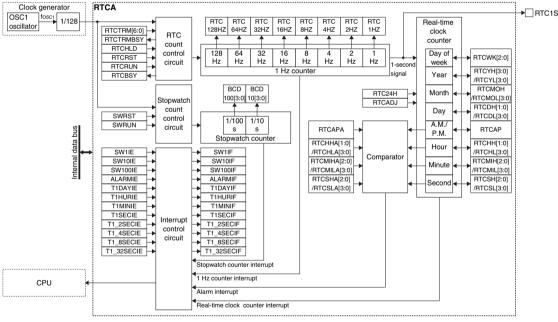


Figure 10.1.1 shows the configuration of RTCA.

Figure 10.1.1 RTCA Configuration

10.2 Output Pin and External Connection

10.2.1 Output Pin

Table 10.2.1.1 shows the RTCA pin.

Table	10.2.1.1	RTCA Pin

Pin name	I/O*	Initial status*	Function
RTC1S	0	O (L)	1-second signal monitor output pin
			* Indicates the status when the pin is configured for RTCA.

If the port is shared with the RTCA output function and other functions, the RTCA function must be assigned to the port. For more information, refer to the "I/O Ports" chapter.

10.3 Clock Settings

10.3.1 RTCA Operating Clock

RTCA uses CLK_RTCA, which is generated by the clock generator from OSC1 as the clock source, as its operating clock. RTCA is operable when OSC1 is enabled.

To continue the RTCA operation during SLEEP mode with OSC1 being activated, the CLGOSC.OSC1SLPC bit must be set to 0.

10.3.2 Theoretical Regulation Function

The time-of-day clock loses accuracy if the OSC1 frequency fosc1 has a frequency tolerance from 32.768 kHz. To correct this error without changing any external part, RTCA provides a theoretical regulation function. Follow the procedure below to perform theoretical regulation.

- 1. Measure fosc1 and calculate the frequency tolerance correction value "m [ppm] = -{(fosc1 - 32,768 [Hz]) / 32,768 [Hz]} × 10⁶."
- 2. Determine the theoretical regulation execution cycle time "n seconds."
- 3. Determine the value to be written to the RTCACTLH.RTCTRM[6:0] bits from the results in Steps 1 and 2.
- 4. Write the value determined in Step 3 to the RTCACTLH.RTCTRM[6:0] bits periodically in n-second cycles using an RTCA alarm or second interrupt.
- 5. Monitor the RTC1S signal to check that every n-second cycle has no error included.

The correction value for theoretical regulation can be specified within the range from -64 to +63 and it should be written to the RTCACTLH.RTCTRM[6:0] bits as a two's-complement number. Use Eq. 10.1 to calculate the correction value.

 $RTCTRM[6:0] = \frac{m}{10^6} \times 256 \times n \quad (However, RTCTRM[6:0] \text{ is an integer after rounding off to -64 to +63.}) \quad (Eq. 10.1)$

Where

- n: Theoretical regulation execution cycle time [second] (time interval to write the correct value to the RTCACTLH.RTCTRM[6:0] bits periodically via software)
- m: OSC1 frequency tolerance correction value [ppm]

Figure 10.3.2.1 shows the RTC1S signal waveform.

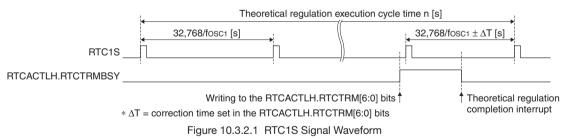


Table 10.3.2.1 lists the frequency tolerance correction rates when the theoretical regulation execution cycle time n is 4,096 seconds as an example.

Table 10.3.2.1	Correction Rates when	n Theoretical Regulation	Execution Cycle Time n	= 4,096 Seconds
----------------	-----------------------	--------------------------	------------------------	-----------------

RTCACTLH.RTCTRM[6:0]	Correction	Correction rate	RTCACTLH.RTCTRM[6:0]	Correction	Correction rate
bits (two's-complement)	value (decimal)	[ppm]	bits (two's-complement)	value (decimal)	[ppm]
0x00	0	0.0	0x40	-64	-61.0
0x01	1	1.0	0x41	-63	-60.1
0x02	2	1.9	0x42	-62	-59.1
0x03	3	2.9	0x43	-61	-58.2
	• • •		• • •		
0x3e	62	59.1	0x7e	-2	-1.9
0x3f	63	60.1	0x7f	-1	-1.0

Minimum resolution: 1 ppm, Correction rate range: -61.0 to 60.1 ppm

- **Notes:** The theoretical regulation affects only the real-time clock counter and 1 Hz counter. It does not affect the stopwatch counter.
 - After a value is written to the RTCACTLH.RTCTRM[6:0] bits, the theoretical regulation correction takes effect on the 1 Hz counter value at the same timing as when the 1 Hz counter changes to 0x7f. Also an interrupt occurs depending on the counter value at this time.

10.4 Operations

10.4.1 RTCA Control

Follow the sequences shown below to set time to RTCA, to read the current time and to set alarm.

Time setting

- 1. Set RTCA to 12H or 24H mode using the RTCACTLL.RTC24H bit.
- 2. Write 1 to the RTCACTLL.RTCRUN bit to enable for the real-time clock counter to start counting up.
- 3. Check to see if the RTCACTLL.RTCBSY bit = 0 that indicates the counter is ready to rewrite. If the RTCACTLL.RTCBSY bit = 1, wait until it is set to 0.
- 4. Write the current date and time in BCD code to the control bits listed below. RTCASEC.RTCSH[2:0]/RTCSL[3:0] bits (second) RTCAHUR.RTCMIH[2:0]/RTCMIL[3:0] bits (minute) RTCAHUR.RTCHH[1:0]/RTCHL[3:0] bits (hour) RTCAHUR.RTCAP bit (AM/PM) (effective when RTCACTLL.RTC24H bit = 0) RTCAMON.RTCDH[1:0]/RTCDL[3:0] bits (day) RTCAMON.RTCMOH/RTCMOL[3:0] bits (day) RTCAMON.RTCYH[3:0]/RTCYL[3:0] bits (month) RTCAYAR.RTCYH[3:0]/RTCYL[3:0] bits (year) RTCAYAR.RTCWK[2:0] bits (day of the week)
- 5 Write 1 to the RTCACTLL.RTCADJ bit (execute 30-second correction) using a time signal to adjust the time. (For more information on the 30-second correction, refer to "Real-Time Clock Counter Operations.")
- 6. Write 1 to the real-time clock counter interrupt flags in the RTCAINTF register to clear them.
- 7. Write 1 to the interrupt enable bits in the RTCAINTE register to enable real-time clock counter interrupts.

Time read

- 1. Check to see if the RTCACTLL.RTCBSY bit = 0. If the RTCACTLL.RTCBSY bit = 1, wait until it is set to 0.
- 2. Write 1 to the RTCACTLL.RTCHLD bit to suspend count-up operation of the real-time clock counter.
- 3. Read the date and time from the control bits listed in "Time setting, Step 4" above.
- 4. Write 0 to the RTCACTLL.RTCHLD bit to resume count-up operation of the real-time clock counter. If a second count-up timing has occurred in the count hold state, the hardware corrects the second counter for +1 second (for more information on the +1 second correction, refer to "Real-Time Clock Counter Operations").

Alarm setting

- 1. Write 0 to the RTCAINTE.ALARMIE bit to disable alarm interrupts.
- Write the alarm time in BCD code to the control bits listed below (a time within 24 hours from the current time can be specified). RTCAALM1.RTCSHA[2:0]/RTCSLA[3:0] bits (second) RTCAALM2.RTCMIHA[2:0]/RTCMILA[3:0] bits (minute)

RTCAALM2.RTCHHA[1:0]/RTCHLA[3:0] bits (hundu

RTCAALM2.RTCAPA bit (AM/PM) (effective when RTCACTLL.RTC24H bit = 0)

- 3. Write 1 to the RTCAINTF.ALARMIF bit to clear the alarm interrupt flag.
- Write 1 to the RTCAINTE.ALARMIE bit to enable alarm interrupts. When the real-time clock counter reaches the alarm time set in Step 2, an alarm interrupt occurs.

10.4.2 Real-Time Clock Counter Operations

The real-time clock counter consists of second, minute, hour, AM/PM, day, month, year, and day of the week counters and it performs counting up using the RTC1S signal. It has the following functions as well.

Recognizing leap years

The leap year recognizing algorithm used in RTCA is effective only for Christian Era years. Years within 0 to 99 that can be divided by four without a remainder are recognized as leap years. If the year counter = 0x00, RTCA assumes it as a common year. If a leap year is recognized, the count range of the day counter changes when the month counter is set to February.

Corrective operation when a value out of the effective range is set

When a value out of the effective range is set to the year, day of the week, or hour (in 24H mode) counter, the counter will be cleared to 0 at the next count-up timing. When a such value is set to the month, day, or hour (in 12H mode) counter, the counter will be set to 1 at the next count-up timing.

Note: Do not set the RTCAMON.RTCMOL[3:0] bits to 0x0 if the RTCAMON.RTCMOH bit = 0.

30-second correction

This function is provided to set the time-of-day clock by the time signal. Writing 1 to the RTCACTLL.RTC-ADJ bit clears the second counter and adds 1 to the minute counter if the second counter represents 30 to 59 seconds, or clears the second counter with the minute counter left unchanged if the second counter represents 0 to 29 seconds.

+1 second correction

If a second count-up timing occurred while the RTCACTLL.RTCHLD bit = 1 (count hold state), the real-time clock counter counts up by +1 second (performs +1 second correction) after the counting has resumed by writing 0 to the RTCACTLL.RTCHLD bit.

Note: If two or more second count-up timings occurred while the RTCACTLL.RTCHLD bit = 1, the counter is always corrected for +1 second only.

10.4.3 Stopwatch Control

Follow the sequences shown below to start counting of the stopwatch and to read the counter.

Count start

- 1. Write 1 to the RTCASWCTL.SWRST bit to reset the stopwatch counter.
- 2. Write 1 to the stopwatch interrupt flags in the RTCAINTF register to clear them.
- 3. Write 1 to the interrupt enable bits in the RTCAINTE register to enable stopwatch interrupts.
- 4. Write 1 to the RTCASWCTL.SWRUN bit to start stopwatch count up operation.

Counter read

- 1. Read the count value from the RTCASWCTL.BCD10[3:0] and BCD100[3:0] bits.
- 2. Read again.
 - i. If the two read values are the same, assume that the count values are read correctly.
 - ii. If different values are read, perform reading once more and compare the read value with the previous one.

10.4.4 Stopwatch Count-up Pattern

The stopwatch consists of 1/100-second and 1/10-second counters and these counters perform counting up in increments of approximate 1/100 and 1/10 seconds with the count-up patterns shown in Figure 10.4.4.1.

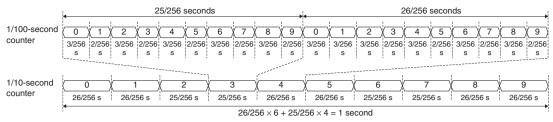
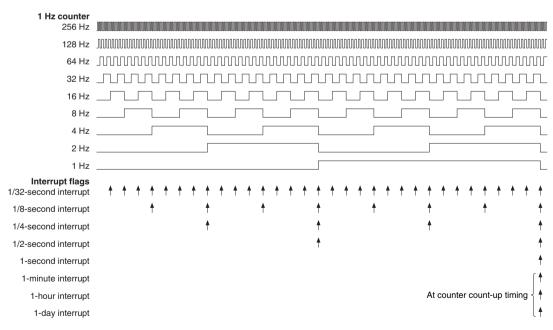



Figure 10.4.4.1 Stopwatch Count-Up Patterns

10.5 Interrupts

RTCA has a function to generate the interrupts shown in Table 10.5.1.

	Table 10	0.5.1 RTCA Interrupt Function	
Interrupt	Interrupt flag	Set condition	Clear condition
Alarm	RTCAINTF.ALARMIF	Matching between the RTCAALM1-2 register contents and the real-time clock counter contents	Writing 1
1-day	RTCAINTF.T1DAYIF	Day counter count up	Writing 1
1-hour	RTCAINTF.T1HURIF	Hour counter count up	Writing 1
1-minute	RTCAINTF.T1MINIF	Minute counter count up	Writing 1
1-second	RTCAINTF.T1SECIF	Second counter count up	Writing 1
1/2-second	RTCAINTF.T1_2SECIF	See Figure 10.5.1.	Writing 1
1/4-second	RTCAINTF.T1_4SECIF	See Figure 10.5.1.	Writing 1
1/8-second	RTCAINTF.T1_8SECIF	See Figure 10.5.1.	Writing 1
1/32-second	RTCAINTF.T1_32SECIF	See Figure 10.5.1.	Writing 1
Stopwatch 1 Hz	RTCAINTF.SW1IF	1/10-second counter overflow	Writing 1
Stopwatch 10 Hz	RTCAINTF.SW10IF	1/10-second counter count up	Writing 1
Stopwatch 100 Hz	RTCAINTF.SW100IF	1/100-second counter count up	Writing 1
Theoretical regulation completion	RTCAINTF.RTCTRMIF	At the end of theoretical regulation operation	Writing 1

- **Notes:** 1-second to 1/32-second interrupts occur after a lapse of 1/256 second from change of the 1 Hz counter value.
 - An alarm interrupt occurs after a lapse of 1/256 second from matching between the AM/PM (in 12H mode), hour, minute, and second counter value and the alarm setting value.

RTCA provides interrupt enable bits corresponding to each interrupt flag. An interrupt request is sent to the CPU only when the interrupt flag, of which interrupt has been enabled by the interrupt enable bit, is set. For more information on interrupt control, refer to the "Interrupt" chapter.

10.6 Control Registers

RTCA Control Register (Low Byte)

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RTCACTLL	7	-	0	-	R	_
	6	RTCBSY	0	H0	R	
	5	RTCHLD	0	H0	R/W	Cleared by setting the
						RTCACTLL.RTCRST bit to 1.
	4	RTC24H	0	H0	R/W	-
	3	-	0	-	R	
	2	RTCADJ	0	H0	R/W	Cleared by setting the
						RTCACTLL.RTCRST bit to 1.
	1	RTCRST	0	H0	R/W	_
	0	RTCRUN	0	H0	R/W	

Bit 7 Reserved

Bit 6 RTCBSY

This bit indicates whether the counter is performing count-up operation or not.

- 1 (R): In count-up operation
- 0 (R): Idle (ready to rewrite real-time clock counter)

This bit goes 1 when performing 1-second count-up, +1 second correction, or 30-second correction. It retains 1 for 1/256 second and then reverts to 0.

Bit 5 RTCHLD

This bit halts the count-up operation of the real-time clock counter.

1 (R/W): Halt real-time clock counter count-up operation

0 (R/W): Normal operation

Writing 1 to this bit halts the count-up operation of the real-time clock counter, this makes it possible to read the counter value correctly without changing the counter. Write 0 to this bit to resume count-up operation immediately after the counter has been read. Depending on these operation timings, the +1 second correction may be executed after the count-up operation resumes. For more information on the +1 second correction, refer to "Real-Time Clock Counter Operations."

Note: When the RTCACTLH.RTCTRMBSY bit = 1, the RTCACTLL.RTCHLD bit cannot be rewritten to 1 (as fixed at 0).

Bit 4 RTC24H

This bit sets the hour counter to 24H mode or 12H mode. 1 (R/W): 24H mode 0 (R/W): 12H mode

This selection changes the count range of the hour counter. Note, however, that the counter value is not updated automatically, therefore, it must be programmed again.

Note: Be sure to avoid writing to this bit when the RTCACTLL.RTCRUN bit = 1.

Bit 3 Reserved

Bit 2 RTCADJ

This bit executes the 30-second correction time adjustment function.

- 1 (W): Execute 30-second correction
- 0 (W): Ineffective
- 1 (R): 30-second correction is executing.
- 0 (R): 30-second correction has finished. (Normal operation)

Writing 1 to this bit executes 30-second correction and an enabled interrupt occurs even if the RT-CACTLL.RTCRUN bit = 0. The correction takes up to 2/256 seconds. The RTCACTLL.RTCADJ bit is automatically cleared to 0 when the correction has finished. For more information on the 30-second correction, refer to "Real-Time Clock Counter Operations."

Notes: • Be sure to avoid writing to this bit when the RTCACTLL.RTCBSY bit = 1.

• Do not write 1 to this bit again while the RTCACTLL.RTCADJ bit = 1.

Bit 1 RTCRST

This bit resets the 1 Hz counter, the RTCACTLL.RTCADJ bit, and the RTCACTLL.RTCHLD bit.

- 1 (W): Reset
- 0 (W): Ineffective
- 1 (R): Reset is being executed.
- 0 (R): Reset has finished. (Normal operation)

This bit is automatically cleared to 0 after reset has finished.

Bit 0 RTCRUN

This bit starts/stops the real-time clock counter.

1 (R/W): Running/start control

0 (R/W): Idle/stop control

When the real-time clock counter stops counting by writing 0 to this bit, the counter retains the value when it stopped. Writing 1 to this bit again resumes counting from the value retained.

RTCA Control Register (High Byte)

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RTCACTLH	7	RTCTRMBSY	0	H0	R	_
	6–0	RTCTRM[6:0]	0x00	H0	W	Read as 0x00.

Bit 7 RTCTRMBSY

This bit indicates whether the theoretical regulation is currently executed or not.

1 (R): Theoretical regulation is executing.

0 (R): Theoretical regulation has finished (or not executed).

This bit goes 1 when a value is written to the RTCACTLH.RTCTRM[6:0] bits. The theoretical regulation takes up to 1 second for execution. This bit reverts to 0 automatically after the theoretical regulation has finished execution.

Bits 6–0 RTCTRM[6:0]

Write the correction value for adjusting the 1 Hz frequency to these bits to execute theoretical regulation. For a calculation method of correction value, refer to "Theoretical Regulation Function."

- **Notes:** When the RTCACTLH.RTCTRMBSY bit = 1, the RTCACTLH.RTCTRM[6:0] bits cannot be rewritten.
 - Writing 0x00 to the RTCACTLH.RTCTRM[6:0] bits sets the RTCACTLH.RTCTRMBSY bit to 1 as well. However, no correcting operation is performed.

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RTCAALM1	15	-	0	_	R	-
	14-12	RTCSHA[2:0]	0x0	H0	R/W	
	11-8	RTCSLA[3:0]	0x0	H0	R/W	
	7–0	-	0x00	-	R	

RTCA Second Alarm Register

Bit 15 Reserved

Bits 14-12 RTCSHA[2:0]

Bits 11-8 RTCSLA[3:0]

The RTCAALM1.RTCSHA[2:0] bits and the RTCAALM1.RTCSLA[3:0] bits set the 10-second digit and 1-second digit of the alarm time, respectively. A value within 0 to 59 seconds can be set in BCD code as shown in Table 10.6.1.

Table 10.6.1	Setting Examples in BCD Code
Table 10.0.1	Setting Examples in DOD Goue

Setting value	Setting value in BCD code						
RTCAALM1.RTCSHA[2:0] bits	RTCAALM1.RTCSLA[3:0] bits	Alarm (second) setting					
0x0	0x0	00 seconds					
0x0	0x1	01 second					
		• • •					
0x0	0x9	09 seconds					
0x1	0x0	10 seconds					
0x5	0x9	59 seconds					

Bits 7–0 Reserved

RTCA Hour/Minute Alarm Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RTCAALM2	15	-	0	-	R	-
	14	RTCAPA	0	H0	R/W	
	13–12	RTCHHA[1:0]	0x0	H0	R/W	
	11–8	RTCHLA[3:0]	0x0	H0	R/W	
	7	-	0	-	R	
	6–4	RTCMIHA[2:0]	0x0	H0	R/W	
	3–0	RTCMILA[3:0]	0x0	H0	R/W	

Bit 15 Reserved

Bit 14 RTCAPA

This bit sets A.M. or P.M. of the alarm time in 12H mode (RTCACTLL.RTC24H bit = 0). 1 (R/W): P.M. 0 (R/W): A.M.

This setting is ineffective in 24H mode (RTCACTLL.RTC24H bit = 1).

Bits 13-12 RTCHHA[1:0]

Bits 11-8 RTCHLA[3:0]

The RTCAALM2.RTCHHA[1:0] bits and the RTCAALM2.RTCHLA[3:0] bits set the 10-hour digit and 1-hour digit of the alarm time, respectively. A value within 1 to 12 o'clock in 12H mode or 0 to 23 in 24H mode can be set in BCD code.

Bit 7 Reserved

Bits 6–4 RTCMIHA[2:0]

Bits 3–0 RTCMILA[3:0]

The RTCAALM2.RTCMIHA[2:0] bits and the RTCAALM2.RTCMILA[3:0] bits set the 10-minute digit and 1-minute digit of the alarm time, respectively. A value within 0 to 59 minutes can be set in BCD code.

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RTCASWCTL	15–12	BCD10[3:0]	0x0	H0	R	_
	11–8	BCD100[3:0]	0x0	H0	R	
	7–5	-	0x0	-	R	
	4	SWRST	0	H0	W	Read as 0.
	3–1	_	0x0	-	R	_
	0	SWRUN	0	H0	R/W	

Bits 15-12 BCD10[3:0]

Bits 11-8 BCD100[3:0]

The 1/10-second and 1/100-second digits of the stopwatch counter can be read as a BCD code from the RTCASWCTL.BCD10[3:0] bits and the RTCASWCTL.BCD100[3:0] bits, respectively.

Note: The counter value may not be read correctly while the stopwatch counter is running. The RTCASWCTL.BCD10[3:0]/BCD100[3:0] bits must be read twice and assume the counter value was read successfully if the two read results are the same.

Bits 7–5 Reserved

Bit 4 SWRST

This bit resets the stopwatch counter to 0x00.

- 1 (W): Reset
- 0 (W): Ineffective
- 0 (R): Always 0 when being read

When the stopwatch counter in running status is reset, it continues counting from count 0x00. The stopwatch counter retains 0x00 if it is reset in idle status.

Bits 3–1 Reserved

Bit 0 SWRUN

This bit starts/stops the stopwatch counter.

- 1 (R/W): Running/start control
- 0 (R/W): Idle/stop control

When the stopwatch counter stops counting by writing 0 to this bit, the counter retains the value when it stopped. Writing 1 to this bit again resumes counting from the value retained.

Note: The stopwatch counter stops in sync with the stopwatch clock after 0 is written to the RTCASWCTL.SWRUN bit. Therefore, the counter value may be incremented (+1) from the value at writing 0.

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RTCASEC	15	-	0	_	R	-
	14–12	RTCSH[2:0]	0x0	H0	R/W	
	11–8	RTCSL[3:0]	0x0	H0	R/W	
	7	RTC1HZ	0	H0	R	Cleared by setting the
	6	RTC2HZ	0	H0	R	RTCACTLL.RTCRST bit to 1.
	5	RTC4HZ	0	H0	R	
	4	RTC8HZ	0	H0	R	
	3	RTC16HZ	0	H0	R	
	2	RTC32HZ	0	H0	R	
	1	RTC64HZ	0	H0	R	
	0	RTC128HZ	0	HO	R	

RTCA Second/1Hz Register

Bit 15 Reserved

Bits 14-12 RTCSH[2:0]

Bits 11-8 RTCSL[3:0]

The RTCASEC.RTCSH[2:0] bits and the RTCASEC.RTCSL[3:0] bits are used to set and read the 10-second digit and the 1-second digit of the second counter, respectively. The setting/read values are a BCD code within the range from 0 to 59.

Note: Be sure to avoid writing to the RTCASEC.RTCSH[2:0]/RTCSL[3:0] bits while the RTCACTLL. RTCBSY bit = 1.

Bit 7	RTC1HZ
Bit 6	RTC2HZ
Bit 5	RTC4HZ
Bit 4	RTC8HZ
Bit 3	RTC16HZ
Bit 2	RTC32HZ
Bit 1	RTC64HZ
Bit 0	RTC128HZ
	1 Hz counter data can be read from these bits.
	The following shows the correspondence between the bit and frequency:
	RTCASEC.RTC1HZ bit: 1 Hz
	RTCASEC.RTC2HZ bit: 2 Hz
	RTCASEC.RTC4HZ bit: 4 Hz
	RTCASEC.RTC8HZ bit: 8 Hz
	RTCASEC.RTC16HZ bit: 16 Hz
	RTCASEC.RTC32HZ bit: 32 Hz
	RTCASEC.RTC64HZ bit: 64 Hz
	RTCASEC.RTC128HZ bit: 128 Hz

Note: The counter value may not be read correctly while the 1 Hz counter is running. These bits must be read twice and assume the counter value was read successfully if the two read results are the same.

RTCA Hour/Minute Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RTCAHUR	15	-	0	_	R	_
	14	RTCAP	0	HO	R/W	
	13–12	RTCHH[1:0]	0x1	H0	R/W	
	11–8	RTCHL[3:0]	0x2	H0	R/W	
	7	-	0	-	R	
	6–4	RTCMIH[2:0]	0x0	H0	R/W	
	3–0	RTCMIL[3:0]	0x0	HO	R/W	

Bit 15 Reserved

Bit 14 RTCAP

This bit is used to set and read A.M. or P.M. data in 12H mode (RTCACTLL.RTC24H bit = 0). 1 (R/W): P.M. 0 (R/W): A.M.

In 24H mode (RTCACTLL.RTC24H bit = 1), this bit is fixed at 0 and writing 1 is ignored. However, if the RTCAHUR.RTCAP bit = 1 when changed to 24H mode, it goes 0 at the next count-up timing of the hour counter.

Bits 13-12 RTCHH[1:0]

Bits 11-8 RTCHL[3:0]

The RTCAHUR.RTCHH[1:0] bits and the RTCAHUR.RTCHL[3:0] bits are used to set and read the 10-hour digit and the 1-hour digit of the hour counter, respectively. The setting/read values are a BCD code within the range from 1 to 12 in 12H mode or 0 to 23 in 24H mode.

Note: Be sure to avoid writing to the RTCAHUR.RTCHH[1:0]/RTCHL[3:0] bits while the RTCACTLL. RTCBSY bit = 1.

Bit 7 Reserved

Bits 6-4 RTCMIH[2:0]

Bits 3–0 RTCMIL[3:0]

The RTCAHUR.RTCMIH[2:0] bits and the RTCAHUR.RTCMIL[3:0] bits are used to set and read the 10-minute digit and the 1-minute digit of the minute counter, respectively. The setting/read values are a BCD code within the range from 0 to 59.

Note: Be sure to avoid writing to the RTCAHUR.RTCMIH[2:0]/RTCMIL[3:0] bits while the RTCACTLL.RTCBSY bit = 1.

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
		2.1.1.1.1.1				
RTCAMON	15–13	-	0x0	-	R	_
	12	RTCMOH	0	H0	R/W	
	11-8	RTCMOL[3:0]	0x1	H0	R/W	
	7–6	-	0x0	-	R	
	5–4	RTCDH[1:0]	0x0	H0	R/W	
	3–0	RTCDL[3:0]	0x1	H0	R/W	

RTCA Month/Day Register

Bits 15–13 Reserved

Bit 12 RTCMOH

Bits 11–8 RTCMOL[3:0]

The RTCAMON.RTCMOH bit and the RTCAMON.RTCMOL[3:0] bits are used to set and read the 10-month digit and the 1-month digit of the month counter, respectively. The setting/read values are a BCD code within the range from 1 to 12.

- **Notes:** Be sure to avoid writing to the RTCAMON.RTCMOH/RTCMOL[3:0] bits while the RTCACTLL.RTCBSY bit = 1.
 - Be sure to avoid setting the RTCAMON.RTCMOH/RTCMOL[3:0] bits to 0x00.

Bits 7–6 Reserved

Bits 5-4 RTCDH[1:0]

Bits 3-0 RTCDL[3:0]

The RTCAMON.RTCDH[1:0] bits and the RTCAMON.RTCDL[3:0] bits are used to set and read the 10-day digit and the 1-day digit of the day counter, respectively. The setting/read values are a BCD code within the range from 1 to 31 (to 28 for February in a common year, to 29 for February in a leap year, or to 30 for April/June/September/November).

Note: Be sure to avoid writing to the RTCAMON.RTCDH[1:0]/RTCDL[3:0] bits while the RTCACTLL.RTCBSY bit = 1.

RTCA Year/Week Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RTCAYAR	15–11	-	0x00	-	R	-
	10-8	RTCWK[2:0]	0x0	H0	R/W	
	7–4	RTCYH[3:0]	0x0	H0	R/W	
	3–0	RTCYL[3:0]	0x0	H0	R/W	

Bits 15–11 Reserved

Bits 10–8 RTCWK[2:0]

These bits are used to set and read day of the week.

The day of the week counter is a base-7 counter and the setting/read values are 0x0 to 0x6. Table 10.6.2 lists the correspondence between the count value and day of the week.

RTCAYAR.RTCWK[2:0] bits	Day of the week
0x6	Saturday
0x5	Friday
0x4	Thursday
0x3	Wednesday
0x2	Tuesday
0x1	Monday
0x0	Sunday

Table 10.6.2 Correspondence between the count value and day of the week

Note: Be sure to avoid writing to the RTCAYAR.RTCWK[2:0] bits while the RTCACTLL.RTCBSY bit = 1.

Bits 7–4 RTCYH[3:0]

Bits 3–0 RTCYL[3:0]

The RTCAYAR.RTCYH[3:0] bits and the RTCAYAR.RTCYL[3:0] bits are used to set and read the 10-year digit and the 1-year digit of the year counter, respectively. The setting/read values are a BCD code within the range from 0 to 99.

Note: Be sure to avoid writing to the RTCAYAR.RTCYH[3:0]/RTCYL[3:0] bits while the RTCACTLL. RTCBSY bit = 1.

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RTCAINTF	15	RTCTRMIF	0	HO	R/W	Cleared by writing 1.
	14	SW1IF	0	H0	R/W	
	13	SW10IF	0	H0	R/W	
	12	SW100IF	0	H0	R/W	
	11–9	-	0x0	-	R	_
	8	ALARMIF	0	H0	R/W	Cleared by writing 1.
	7	T1DAYIF	0	H0	R/W	
	6	T1HURIF	0	H0	R/W	
	5	T1MINIF	0	H0	R/W	
	4	T1SECIF	0	H0	R/W	
	3	T1_2SECIF	0	H0	R/W	
	2	T1_4SECIF	0	H0	R/W]
	1	T1_8SECIF	0	H0	R/W]
	0	T1_32SECIF	0	HO	R/W	

RTCA Interrupt Flag Register

Bit 15 RTCTRMIF

- Bit 14 SW1IF
- Bit 13 SW10IF

Bit 12 SW100IF

These bits indicate the real-time clock interrupt cause occurrence status.

- 1 (R): Cause of interrupt occurred
- 0 (R): No cause of interrupt occurred
- 1 (W): Clear flag
- 0 (W): Ineffective

The following shows the correspondence between the bit and interrupt:RTCAINTF.RTCTRMIF bit:Theoretical regulation completion interruptRTCAINTF.SW1IF bit:Stopwatch 1 Hz interruptRTCAINTF.SW10IF bit:Stopwatch 10 Hz interruptRTCAINTF.SW100IF bit:Stopwatch 100 Hz interrupt

Bits 11–9 Reserved

- Bit 8ALARMIFBit 7T1DAYIFBit 6T1HURIFBit 5T1MINIF
- Bit 4 T1SECIF
- Bit 3 T1_2SECIF
- Bit 2 T1_4SECIF
- Bit 1 T1_8SECIF

Bit 0 T1_32SECIF

These bits indicate the real-time clock interrupt cause occurrence status.

- 1 (R): Cause of interrupt occurred
- 0 (R): No cause of interrupt occurred
- 1 (W): Clear flag
- 0 (W): Ineffective

The following shows the correspondence between the bit and interrupt:

RTCAINTF. ALARMIF bit:	Alarm interrupt
RTCAINTF.T1DAYIF bit:	1-day interrupt
RTCAINTF.T1HURIF bit:	1-hour interrupt
RTCAINTF.T1MINIF bit:	1-minute interrupt
RTCAINTF.T1SECIF bit:	1-second interrupt
RTCAINTF.T1_2SECIF bit:	1/2-second interrupt
RTCAINTF.T1_4SECIF bit:	1/4-second interrupt
RTCAINTF.T1_8SECIF bit:	1/8-second interrupt
RTCAINTF.T1_32SECIF bit:	1/32-second interrupt

RTCA Interrupt Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RTCAINTE	15	RTCTRMIE	0	HO	R/W	-
	14	SW1IE	0	H0	R/W	
	13	SW10IE	0	H0	R/W	
	12	SW100IE	0	H0	R/W	
	11–9	-	0x0	-	R	
	8	ALARMIE	0	H0	R/W	
	7	T1DAYIE	0	H0	R/W	
	6	T1HURIE	0	H0	R/W	
	5	T1MINIE	0	H0	R/W	
	4	T1SECIE	0	H0	R/W	
	3	T1_2SECIE	0	H0	R/W	
	2	T1_4SECIE	0	H0	R/W	
	1	T1_8SECIE	0	HO	R/W	
	0	T1_32SECIE	0	H0	R/W	

Bit 15 RTCTRMIE

Bit 14 SW1IE

Bit 13 SW10IE

Bit 12 SW100IE

These bits enable real-time clock interrupts.

1 (R/W): Enable interrupts

0 (R/W): Disable interrupts

The following shows the correspondence between the bit and interrupt:RTCAINTE.RTCTRMIE bit:Theoretical regulation completion interruptRTCAINTE.SW1IE bit:Stopwatch 1 Hz interruptRTCAINTE.SW10IE bit:Stopwatch 10 Hz interruptRTCAINTE.SW100IE bit:Stopwatch 100 Hz interrupt

- Bits 11–9ReservedBit 8ALARMIEBit 7T1DAYIEBit 6T1HURIEBit 5T1MINIEBit 4T1SECIEBit 3T1_2SECIEBit 3T1_2SECIE
- Bit 2 T1_4SECIE
- Bit 1 T1_8SECIE

Bit 0 T1_32SECIE

These bits enable real-time clock interrupts.

1 (R/W): Enable interrupts

0 (R/W): Disable interrupts

The following shows the correspondence between the bit and interrupt:

e	1 A A A A A A A A A A A A A A A A A A A
RTCAINTE.ALARMIE bit:	Alarm interrupt
RTCAINTE.T1DAYIE bit:	1-day interrupt
RTCAINTE.T1HURIE bit:	1-hour interrupt
RTCAINTE.T1MINIE bit:	1-minute interrupt
RTCAINTE.T1SECIE bit:	1-second interrupt
RTCAINTE.T1_2SECIE bit:	1/2-second interrupt
RTCAINTE.T1_4SECIE bit:	1/4-second interrupt
RTCAINTE.T1_8SECIE bit:	1/8-second interrupt
RTCAINTE.T1_32SECIE bit:	1/32-second interrupt

11 Supply Voltage Detector (SVD4)

11.1 Overview

SVD4 is a supply voltage detector to monitor the VDD voltage, or an external voltage detection input pin. The main features are listed below.

• Power supply voltage to be detected:	
	and external power sources (EXSVDn0, EXSVDn1) (Note: See the table below.)
• Detectable voltage level:	Selectable from among 32 levels (max.) (Note: See the table below.)
• Detection results:	 Can be read whether the power supply voltage is lower than the detection voltage level or not. Can generate an interrupt or a reset when low power supply voltage is detected.
_	
• Interrupt:	1 system (Low power supply voltage detection interrupt)
• Supports intermittent operations:	- Three detection cycles are selectable.
	- Low power supply voltage detection count function to generate an inter- rupt/reset when low power supply voltage is successively detected the number of times specified.
	- Continuous operation is also possible.

Figure 11.1.1 shows the configuration of SVD4.

Table 11.1.1 SVD4 Configuration of S1C31W6	Table 11.1.1	SVD4 Configuration	of S1C31W65
--	--------------	--------------------	-------------

Item	S1C31W65
Number of channels	1 channel (Ch.0)
Power supply voltage to be detected	VDD and two externally input voltages (EXSVD00, EXSVD01)
Detectable voltage level	VDD: 32 levels (1.7 to 5.0 V)/external voltage: 32 levels (1.7 to 5.0 V)

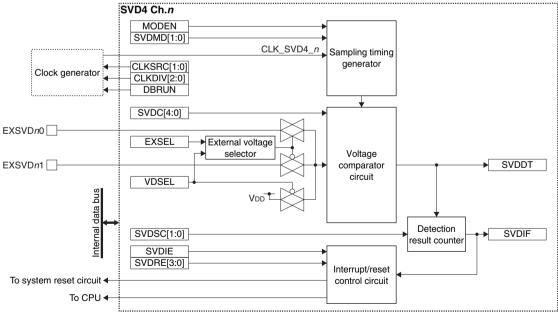


Figure 11.1.1 SVD4 Configuration

11.2 Input Pins and External Connection

11.2.1 Input Pins

Table 11.2.1.1 shows the SVD4 input pins.

Table 11 0 1 1	SVD4 Input Ding
Table 11.2.1.1	SVD4 Input Pins

Pin name	I/O	Initial status	Function
EXSVDnx	A*	A (Hi-Z)*	External power supply voltage detection pin
		*	Indicates the status when the pin is configured for SVD4.

If the port is shared with the EXSVD*nx* pin and other functions, the EXSVD*nx* function must be assigned to the port before SVD4 Ch.*n* can be activated. For more information, refer to the "I/O Ports" chapter.

11.2.2 External Connection

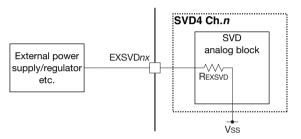


Figure 11.2.2.1 Connection between EXSVDn Pin and External Power Supply

For the EXSVD*nx* pin input voltage range and the EXSVD input impedance, refer to "Supply Voltage Detector Characteristics" in the "Electrical Characteristics" chapter.

11.3 Clock Settings

11.3.1 SVD4 Operating Clock

When using SVD4 Ch.n, the SVD4 operating clock CLK_SVD4_n must be supplied to SVD4 Ch.n from the clock generator.

The CLK_SVD4_n supply should be controlled as in the procedure shown below.

- 1. Write 0x0096 to the SYSPROT.PROT[15:0] bits. (Remove system protection)
- 2. Enable the clock source in the clock generator if it is stopped (refer to "Clock Generator" in the "Power Supply, Reset, and Clocks" chapter).
- 3. Set the following SVD4_*n*CLK register bits:
 - SVD4_nCLK.CLKSRC[1:0] bits
 SVD4_nCLK.CLKDIV[2:0] bits

(Clock source selection)

(Clock division ratio selection = Clock frequency setting)

4. Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits. (Set system protection)

The CLK_SVD4_n frequency should be set to around 32 kHz.

11.3.2 Clock Supply in SLEEP Mode

When using SVD4 Ch.*n* during SLEEP mode, the SVD4 operating clock CLK_SVD4_*n* must be configured so that it will keep supplying by writing 0 to the CLGOSC_*xxxx*SLPC bit for the CLK_SVD4_*n* clock source.

If the CLGOSC_xxxxSLPC bit for the CLK_SVD4_n clock source is 1, the CLK_SVD4_n clock source is deactivated during SLEEP mode and SVD4 Ch.n stops with the register settings maintained at those before entering SLEEP mode. After the CPU returns to normal mode, CLK_SVD4_n is supplied and the SVD4 Ch.n operation resumes.

11.3.3 Clock Supply in DEBUG Mode

The CLK_SVD4_*n* supply during DEBUG mode should be controlled using the SVD4_*n*CLK.DBRUN bit. The CLK_SVD4_*n* supply to SVD4 Ch.*n* is suspended when the CPU enters DEBUG mode if the SVD4_*n*CLK. DBRUN bit = 0. After the CPU returns to normal mode, the CLK_SVD4_*n* supply resumes. Although SVD4 Ch.*n* stops operating when the CLK_SVD4_*n* supply is suspended, the registers retain the status before DEBUG mode was entered. If the SVD4_*n*CLK.DBRUN bit = 1, the CLK_SVD4_*n* supply is not suspended and SVD4 Ch.*n* will keep operating in DEBUG mode.

11.4 Operations

11.4.1 SVD4 Control

Starting detection

SVD4 Ch.*n* should be initialized and activated with the procedure listed below.

- 1. Write 0x0096 to the SYSPROT.PROT[15:0] bits. (Remove system protection)
- 2. Configure the operating clock using the SVD4_nCLK.CLKSRC[1:0] and SVD4_nCLK.CLKDIV[2:0] bits.
- 3. Set the following SVD4_nCTL register bits:
 - SVD4_nCTL.VDSEL and SVD4_nCTL.EXSEL bits (Select detection voltage (VDD, EXSVDnx))
 - SVD4_nCTL.SVDSC[1:0] bits
 - SVD4_nCTL.SVDC[4:0] bits

- SVD4_nCTL.SVDRE[3:0] bits

- SVD4_nCTL.SVDMD[1:0] bits
- 4. Set the following bits when using the interrupt:
 - Write 1 to the SVD4_*n*INTF.SVDIF bit.
 - Set the SVD4_*n*INTE.SVDIE bit to 1.
- 5. Set the SVD4_*n*CTL.MODEN bit to 1.

(Set intermittent operation mode) (Clear interrupt flag)

(Set low power supply voltage detection counter)

(Set SVD detection voltage VsvD/EXSVD

(Enable SVD4 Ch.*n* interrupt)

detection voltage VSVD_EXT)

(Select reset/interrupt mode)

(Enable SVD4 Ch.n detection)

6. Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits. (Set system protection)

Terminating detection

Follow the procedure shown below to stop SVD4 operation.

- 1. Write 0x0096 to the SYSPROT.PROT[15:0] bits. (Remove system protection)
- 2. Write 0 to the SVD4_nCTL.MODEN bit. (Disable SVD4 Ch.n detection)
- 3. Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits. (Set system protection)

Reading detection results

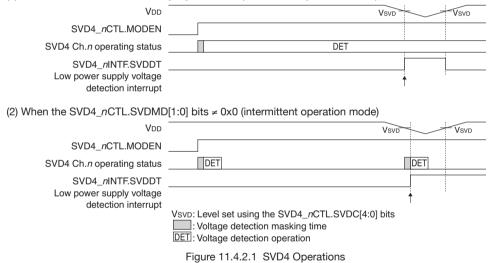
The following two detection results can be obtained by reading the SVD4_nINTF.SVDDT bit:

- When SVD4_nINTF.SVDDT bit = 0 Power supply voltage (VDD, EXSVDnx) ≥ SVD detection voltage VsvD or EXSVD detection voltage VsvD_EXT
- When SVD4_*n*INTF.SVDDT bit = 1 Power supply voltage (VDD, EXSVD*nx*) < SVD detection voltage VsvD or EXSVD detection voltage VsvD_EXT

Before reading the SVD4_*n*INTF.SVDDT bit, wait for at least SVD circuit enable response time after 1 is written to the SVD4_*n*CTL.MODEN bit (refer to "Supply Voltage Detector Characteristics, SVD circuit enable response time tsvDeN" in the "Electrical Characteristics" chapter).

After the SVD4_*n*CTL.SVDC[4:0] bits setting value is altered to change the SVD detection voltage V_{SVD}/ EXSVD detection voltage V_{SVD}_EXT when the SVD4_*n*CTL.MODEN bit = 1, wait for at least SVD circuit response time before reading the SVD4_*n*INTF.SVDDT bit (refer to "Supply Voltage Detector Characteristics, SVD circuit response time tsvD" in the "Electrical Characteristics" chapter).

11.4.2 SVD4 Operations


Continuous operation mode

SVD4 Ch.*n* operates in continuous operation mode by default (SVD4_*n*CTL.SVDMD[1:0] bits = 0x0). In this mode, SVD4 Ch.*n* operates continuously while the SVD4_*n*CTL.MODEN bit is set to 1 and it keeps loading the detection results to the SVD4_*n*INTF.SVDDT bit. During this period, the current detection results can be obtained by reading the SVD4_*n*INTF.SVDDT bit as necessary. Furthermore, an interrupt (if the SVD4_*n*CTL.SVDRE[3:0] bits \neq 0xa) or a reset (if the SVD4_*n*CTL.SVDRE[3:0] bits = 0xa) can be generated when the SVD4_*n*INTF.SVDDT bit is set to 1 (low power supply voltage is detected). This mode can keep detecting power supply voltage drop after the voltage detection masking time has elapsed even if the IC is placed into SLEEP status or accidental clock stoppage has occurred.

Intermittent operation mode

SVD4 Ch.*n* operates in intermittent operation mode when the SVD4_nCTL.SVDMD[1:0] bits are set to 0x1 to 0x3. In this mode, SVD4 Ch.*n* turns on at an interval set using the SVD4_nCTL.SVDMD[1:0] bits to perform detection operation and then it turns off while the SVD4_nCTL.MODEN bit is set to 1. During this period, the latest detection results can be obtained by reading the SVD4_nINTF.SVDDT bit as necessary. Furthermore, an interrupt or a reset can be generated when SVD4 Ch.*n* has successively detected low power supply voltage the number of times specified by the SVD4_nCTL.SVDSC[1:0] bits.

(1) When the SVD4_nCTL.SVDMD[1:0] bits = 0x0 (continuous operation mode)

11.5 SVD4 Interrupt and Reset

11.5.1 SVD4 Interrupt

Setting the SVD4_nCTL.SVDRE[3:0] bits to a value other than 0xa allows use of the low power supply voltage detection interrupt function.

Interrupt	Interrupt flag	Set condition	Clear condition
Low power supply	SVD4_nINTF.SVDIF	In continuous operation mode	Writing 1
voltage detection		When the SVD4_nINTF.SVDDT bit is 1	
		In intermittent operation mode	
		When low power supply voltage is successively	
		detected the specified number of times	

Table 11.5.1.1 Low Power Supply Voltage Detection Interrupt Function

SVD4 provides the interrupt enable bit (SVD4_nINTE.SVDIE bit) corresponding to the interrupt flag (SVD4_ *n*INTF.SVDIF bit). An interrupt request is sent to the CPU only when the SVD4_*n*INTF.SVDIF bit is set while the interrupt is enabled by the SVD4_*n*INTE.SVDIE bit. For more information on interrupt control, refer to the "Interrupt" chapter. Once the SVD4_*n*INTF.SVDIF bit is set, it will not be cleared even if the power supply voltage subsequently returns to a value exceeding the SVD detection voltage VsvD/EXSVD detection voltage VsvD_EXT. An interrupt may occur due to a temporary power supply voltage drop, check the power supply voltage status by reading the SVD4_ *n*INTF.SVDDT bit in the interrupt handler routine.

11.5.2 SVD Reset

Setting the SVD4_nCTL.SVDRE[3:0] bits to 0xa allows use of the SVD reset issuance function.

The reset issuing timing is the same as that of the SVD4_*n*INTF.SVDIF bit being set when a low voltage is detected. After a reset has been issued, SVD4 Ch.*n* enters continuous operation mode even if it was operating in intermittent operation mode, and continues operating. Issuing an SVD reset initializes the port assignment. However, when EXSVD*nx* is being detected, the input of the port for the EXSVD*nx* pin is sent to SVD4 Ch.*n* so that SVD4 Ch.*n* will continue the EXSVD*nx* detection operation. If the power supply voltage reverts to the normal level, the SVD4_*n*INTF.SVDDT bit goes 0 and the reset state is canceled. After that, SVD4 Ch.*n* control bits are set as shown in Table 11.5.2.1.

Control register	Control bit	Setting
SVD4_nCLK	DBRUN	Reset to the initial values.
	CLKDIV[2:0]	
	CLKSRC[1:0]	
SVD4_nCTL	VDSEL	The set value is retained.
	SVDSC[1:0]	Cleared to 0. (The set value becomes invalid as SVD4 Ch.n
		enters continuous operation mode.)
	SVDC[4:0]	The set value is retained.
	SVDRE[3:0]	The set value (0xa) is retained.
	EXSEL	The set value is retained.
	SVDMD[1:0]	Cleared to 0 to set continuous operation mode.
	MODEN	The set value (1) is retained.
SVD4_nINTF	SVDIF	The status (1) before being reset is retained.
SVD4_nINTE	SVDIE	Cleared to 0.

Table 11.5.2.1 SVD4 Control Bits During Reset State

11.6 Control Registers

SVD4 Ch.n Clock Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SVD4_nCLK	15–9	-	0x00	-	R	_
	8	DBRUN	1	H0	R/WP	
	7	-	0	-	R	
	6–4	CLKDIV[2:0]	0x0	H0	R/WP	
	3–2	-	0x0	-	R	
	1–0	CLKSRC[1:0]	0x0	H0	R/WP	

Bits 15–9 Reserved

Bit 8 DBRUN

This bit sets whether the operating clock is supplied to SVD4 Ch.*n* in DEBUG mode or not. 1 (R/WP): Clock supplied in DEBUG mode 0 (R/WP): No clock supplied in DEBUG mode

Bit 7 Reserved

Bits 6-4 CLKDIV[2:0]

These bits select the division ratio of the SVD4 Ch.n operating clock.

Bits 3–2 Reserved

Bits 1–0 CLKSRC[1:0]

These bits select the clock source of SVD4 Ch.n.

SVD4 nCLK.	SVD4_nCLK.CLKSRC[1:0] bits							
CLKDIV[2:0] bits	0x0	0x1	0x2	0x3				
CLKDIV[2:0] Bits	IOSC	OSC1	OSC3	EXOSC				
0x7	Reserved	1/1	Reserved	1/1				
0x6	1/1,024		1/1,024					
0x5	1/512		1/512					
0x4	1/256		1/256					
0x3	1/128		1/128					
0x2	1/64		1/64					
0x1	1/32		1/32					
0x0	1/16]	1/16					

Table 11.6.1 Clock Source and Division Ratio Settings

(Note) The oscillation circuits/external input that are not supported in this IC cannot be selected as the clock source.

Note: The clock frequency should be set to around 32 kHz.

SVD4 Ch.n Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SVD4_nCTL	15	VDSEL	0	H1	R/WP	_
	14–13	SVDSC[1:0]	0x0	H0	R/WP	Writing takes effect when the SVD4_ nCTL.SVDMD[1:0] bits are not 0x0.
	12–8	SVDC[4:0]	0x1e	H1	R/WP	-
	7–4	SVDRE[3:0]	0x0	H1	R/WP	
	3	EXSEL	0	H1	R/WP	
	2–1	SVDMD[1:0]	0x0	H0	R/WP	
	0	MODEN	0	H1	R/WP	

Bit 15 VDSEL

This bit selects the power supply voltage to be detected by SVD4 Ch.*n*. 1 (R/WP): Voltage applied to the EXSVD*nx* pin 0 (R/WP): VDD

Bits 14-13 SVDSC[1:0]

These bits set the condition to generate an interrupt/reset (number of successive low voltage detections) in intermittent operation mode (SVD4_nCTL.SVDMD[1:0] bits = 0x1 to 0x3).

Table 11.6.2 Interrupt/Reset Generating Condition in Intermittent Operation Mode

SVD4_nCTL.SVDSC[1:0] bits	Interrupt/reset generating condition
0x3	Low power supply voltage is successively detected eight times.
0x2	Low power supply voltage is successively detected four times.
0x1	Low power supply voltage is successively detected twice.
0x0	Low power supply voltage is successively detected once.

This setting is ineffective in continuous operation mode (SVD4_nCTL.SVDMD[1:0] bits = 0x0).

Bits 12-8 SVDC[4:0]

These bits select an SVD detection voltage VsvD/EXSVD detection voltage VsvD_EXT for detecting low voltage.

Table 11.6.3 Setting of SVD Detection Voltage VsvD/EXSVD Detection Voltage VsvD_EXT

SVD4_nCTL.SVDC[4:0] bits	SVD detection voltage VsvD/ EXSVD detection voltage VsvD_EXT [V]
0x1f	High
0x1e	1
0x1d	
:	
0x02	
0x01	↓
0x00	Low

For the configurable range and voltage values, refer to "Supply Voltage Detector Characteristics, SVD detection voltage VsvD/EXSVD detection voltage VsvD_EXT" in the "Electrical Characteristics" chapter.

Bits 7–4 SVDRE[3:0]

These bits enable/disable the reset issuance function when a low power supply voltage is detected. 0xa (R/WP): Enable (Issue reset) Other than 0xa (R/WP): Disable (Generate interrupt)

For more information on the SVD reset issuance function, refer to "SVD Reset."

Bit 3 EXSEL

This bit selects the voltage to be detected when the SVD4_*n*CTL.VDSEL bit = 1. 1 (R/WP): EXSVD*n*1 0 (R/WP): EXSVD*n*0

Bits 2–1 SVDMD[1:0]

These bits select intermittent operation mode and its detection cycle.

Table 11.6.4	Intermittent O	peration Mode	Detection C	vcle Selection
10010 11.0.4	Internitient O	peration mode	Deteotion o	yoic ocicotion

SVD4_nCTL.SVDMD[1:0] bits	Operation mode (detection cycle)
0x3	Intermittent operation mode (CLK_SVD4_n/512)
0x2	Intermittent operation mode (CLK_SVD4_n/256)
0x1	Intermittent operation mode (CLK_SVD4_n/128)
0x0	Continuous operation mode

For more information on intermittent and continuous operation modes, refer to "SVD4 Operations."

Bit 0 MODEN

This bit enables/disables for the SVD4 Ch.n circuit to operate.

1 (R/WP): Enable (Start detection operations)

0 (R/WP): Disable (Stop detection operations)

After this bit has been altered, wait until the value written is read out from this bit without subsequent operations being performed.

- **Notes:** Writing 0 to the SVD4_nCTL.MODEN bit resets the SVD4 Ch.n hardware. However, the register values set and the interrupt flag are not cleared. The SVD4_nCTL.MODEN bit is actually set to 0 after this processing has finished. If 1 is written to the SVD4_nCTL.MODEN bit continuously without waiting for the bit being read as 0 at this time, writing 0 may be ignored and a malfunction may occur as the hardware restarts without resetting.
 - The SVD4 Ch.*n* internal circuit is initialized if the SVD4_*n*CTL.SVDSC[1:0] bits, SVD4_*n*CTL. SVDRE[3:0] bits, or SVD4_*n*CTL.SVDMD[1:0] bits are altered while SVD4 Ch.*n* is in operation after 1 is written to the SVD4_*n*CTL.MODEN bit.

SVD4 Ch.n Status and Interrupt Flag Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SVD4_nINTF	15–9	_	0x00	-	R	_
	8	SVDDT	х	-	R	
	7–1	-	0x00	-	R	
	0	SVDIF	0	H1	R/W	Cleared by writing 1.

Bits 15–9 Reserved

1 (R):

Bit 8 SVDDT

The power supply voltage detection results can be read out from this bit.

Power supply voltage (VDD, EXSVD*nx*) < SVD detection voltage VsvD

or EXSVD detection voltage VSVD_EXT

0 (R): Power supply voltage (VDD, EXSVDnx) \geq SVD detection voltage VSVD

or EXSVD detection voltage VSVD_EXT

Bits 7–1 Reserved

Bit 0 SVDIF

This bit indicates the low power supply voltage detection interrupt cause occurrence status.

- 1 (R): Cause of interrupt occurred
- 0 (R): No cause of interrupt occurred
- 1 (W): Clear flag
- 0 (W): Ineffective
- **Note**: The SVD4 Ch.*n* internal circuit is initialized if the interrupt flag is cleared while SVD4 Ch.*n* is in operation after 1 is written to the SVD4_*n*CTL.MODEN bit.

SVD4 Ch.n Interrupt Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SVD4_nINTE	15–8	_	0x00	-	R	-
	7–1	-	0x00	-	R	
	0	SVDIE	0	H0	R/W	

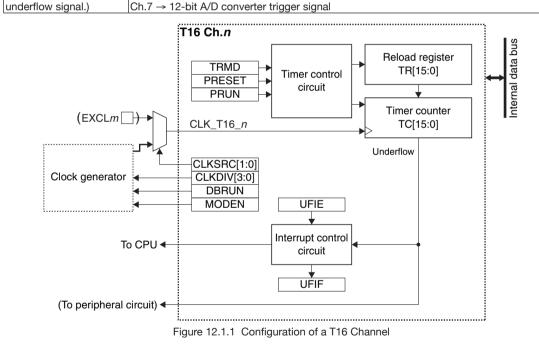
Bits 15–1 Reserved

Bit 0 SVDIE

This bit enables low power supply voltage detection interrupts.

- 1 (R/W): Enable interrupts
- 0 (R/W): Disable interrupts
- **Notes:** If the SVD4_nCTL.SVDRE[3:0] bits are set to 0xa, no low power supply voltage detection interrupt will occur, as a reset is issued at the same timing as an interrupt.
 - To prevent generating unnecessary interrupts, the corresponding interrupt flag should be cleared before enabling interrupts.

12 16-bit Timers (T16)


12.1 Overview

T16 is a 16-bit timer. The features of T16 are listed below.

- 16-bit presettable down counter
- Provides a reload data register for setting the preset value.
- A clock source and clock division ratio for generating the count clock are selectable.
- Repeat mode or one-shot mode is selectable.
- Can generate counter underflow interrupts.

Figure 12.1.1 shows the configuration of a T16 channel.

	Table 12.1.1 T16 Channel Configuration of S1C31W65
Item	S1C31W65
Number of channels	8 channels (Ch.0–Ch.7)
Event counter function	Not supported (No EXCL <i>m</i> pins are provided.)
Peripheral clock output	Ch.1 → Synchronous serial interface Ch.0 master clock
(Outputs the counter	$Ch.6 \rightarrow Synchronous serial interface Ch.1 master clock$
Peripheral clock output	Ch.1 → Synchronous serial interface Ch.0 master clock

12.2 Input Pin

Table 12.2.1 shows the T16 input pin.

Table 12.2.1 T16 Input Pin						
Pin name	I/O*	Initial status*	Function			
EXCLm	I	I (Hi-Z)	External event signal input pin			
			Indicates the status when the size is configured for T1C			

* Indicates the status when the pin is configured for T16.

If the port is shared with the EXCL*m* pin and other functions, the EXCL*m* input function must be assigned to the port before using the event counter function. The EXCL*m* signal can be input through the chattering filter. For more information, refer to the "I/O Ports" chapter.

12.3 Clock Settings

12.3.1 T16 Operating Clock

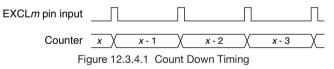
When using T16 Ch.*n*, the T16 Ch.*n* operating clock CLK_T16_*n* must be supplied to T16 Ch.*n* from the clock generator. The CLK_T16_*n* supply should be controlled as in the procedure shown below.

- 1. Enable the clock source in the clock generator if it is stopped (refer to "Clock Generator" in the "Power Supply, Reset, and Clocks" chapter).
- 2. Set the following T16_nCLK register bits:
 - T16_nCLK.CLKSRC[1:0] bits (Clock source selection)
 - T16_nCLK.CLKDIV[3:0] bits (Clock division ratio selection = Clock frequency setting)

12.3.2 Clock Supply in SLEEP Mode

When using T16 during SLEEP mode, the T16 operating clock CLK_T16_*n* must be configured so that it will keep supplying by writing 0 to the CLGOSC_*xxxx*SLPC bit for the CLK_T16_*n* clock source.

If the CLGOSC_xxxxSLPC bit for the CLK_T16_n clock source is 1, the CLK_T16_n clock source is deactivated during SLEEP mode and T16 stops with the register settings and counter value maintained at those before entering SLEEP mode. After the CPU returns to normal mode, CLK_T16_n is supplied and the T16 operation resumes.


12.3.3 Clock Supply During Debugging

The CLK_T16_n supply during debugging should be controlled using the T16_nCLK.DBRUN bit.

The CLK_T16_n supply to T16 Ch.n is suspended when the CPU enters debug state if the T16_nCLK.DBRUN bit = 0. After the CPU returns to normal operation, the CLK_T16_n supply resumes. Although T16 Ch.n stops operating when the CLK_T16_n supply is suspended, the counter and registers retain the status before the debug state was entered. If the T16_nCLK.DBRUN bit = 1, the CLK_T16_n supply is not suspended and T16 Ch.n will keep operating in a debug state.

12.3.4 Event Counter Clock

The channel that supports the event counter function counts down at the rising edge of the EXCL*m* pin input signal when the $T16_nCLK.CLKSRC[1:0]$ bits are set to 0x3.

Note that the EXOSC clock is selected for the channel that does not support the event counter function.

12.4 Operations

12.4.1 Initialization

T16 Ch.n should be initialized and started counting with the procedure shown below.

- 1. Configure the T16 Ch.n operating clock (see "T16 Operating Clock").
- 2. Set the T16_nCTL.MODEN bit to 1. (Enable count operation clock)
- 3. Set the T16_*n*MOD.TRMD bit. (Select operation mode (Repeat mode or One-shot mode))
- 4. Set the T16_*n*TR register. (Set reload data (counter preset data))
- 5. Set the following bits when using the interrupt:
 - Write 1 to the T16_*n*INTF.UFIF bit. (Clear interrupt flag)
 - Set the T16_*n*INTE.UFIE bit to 1. (Enable underflow interrupt)

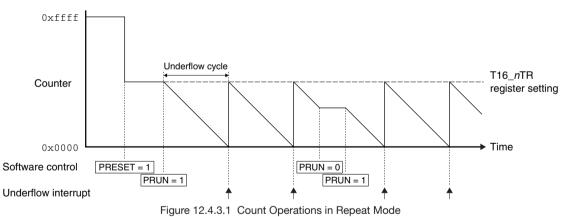
- 6. Set the following T16_*n*CTL register bits:
 - Set the T16_nCTL.PRESET bit to 1. (Preset reload data to counter)
 - Set the T16_*n*CTL.PRUN bit to 1. (Start counting)

12.4.2 Counter Underflow

Normally, the T16 counter starts counting down from the reload data value preset and generates an underflow signal when an underflow occurs. This signal is used to generate an interrupt and may be output to a specific peripheral circuit as a clock (T16 Ch.*n* must be set to repeat mode to generate a clock). The underflow cycle is determined by the T16 Ch.*n* operating clock setting and reload data (counter initial value) set in the T16_*n*TR register. The following shows the equations to calculate the underflow cycle and frequency:

$$T = \frac{TR + 1}{f_{CLK_T16_n}} \qquad f_{T} = \frac{f_{CLK_T16_n}}{TR + 1} \qquad (Eq. 12.1)$$

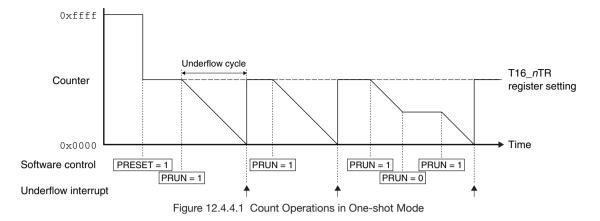
Where


T:Underflow cycle [s]fr:Underflow frequency [Hz]TR:T16_nTR register setting

fclk_T16_n: T16 Ch.n operating clock frequency [Hz]

12.4.3 Operations in Repeat Mode

T16 Ch.n enters repeat mode by setting the T16_nMOD.TRMD bit to 0.


In repeat mode, the count operation starts by writing 1 to the T16_nCTL.PRUN bit and continues until 0 is written. A counter underflow presets the T16_nTR register value to the counter, so underflow occurs periodically. Select this mode to generate periodic underflow interrupts or when using the timer to output a trigger/clock to the peripheral circuit.

12.4.4 Operations in One-shot Mode

T16 Ch.n enters one-shot mode by setting the T16_nMOD.TRMD bit to 1.

In one-shot mode, the count operation starts by writing 1 to the T16_*n*CTL.PRUN bit and stops after the T16_*n*TR register value is preset to the counter when an underflow has occurred. At the same time the counter stops, the T16_*n*CTL.PRUN bit is cleared automatically. Select this mode to stop the counter after an interrupt has occurred once, such as for checking a specific lapse of time.

12.4.5 Counter Value Read

The counter value can be read out from the $T16_nTC.TC[15:0]$ bits. However, since T16 operates on CLK_T16_n, one of the operations shown below is required to read correctly by the CPU.

- Read the counter value twice or more and check to see if the same value is read.
- Stop the timer and then read the counter value.

12.5 Interrupt

Each T16 channel has a function to generate the interrupt shown in Table 12.5.1.

Table 12.5.1 T16 Interrupt Function

Interrupt	Interrupt flag	Set condition	Clear condition
Underflow	T16_nINTF.UFIF	When the counter underflows	Writing 1

T16 provides interrupt enable bits corresponding to each interrupt flag. An interrupt request is sent to the CPU only when the interrupt flag, of which interrupt has been enabled by the interrupt enable bit, is set. For more information on interrupt control, refer to the "Interrupt" chapter.

12.6 Control Registers

T16 Ch.n Clock Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16_nCLK	15–9	-	0x00	-	R	-
	8	DBRUN	0	HO	R/W	
	7–4	CLKDIV[3:0]	0x0	HO	R/W	
	3–2	-	0x0	-	R	
	1–0	CLKSRC[1:0]	0x0	H0	R/W	

Bits 15–9 Reserved

Bit 8 DBRUN

This bit sets whether the T16 Ch.*n* operating clock is supplied during debugging or not. 1 (R/W): Clock supplied during debugging

0 (R/W): No clock supplied during debugging

Bits 7–4 CLKDIV[3:0]

These bits select the division ratio of the T16 Ch.n operating clock (counter clock).

Bits 3–2 Reserved

Bits 1-0 CLKSRC[1:0]

These bits select the clock source of T16 Ch.n.

T16 <i>n</i> CLK.		T16_nCLK.CL	KSRC[1:0] bits	
CLKDIV[3:0] bits	0x0	0x1	0x2	0x3
CLKDIV[3:0] bits	IOSC	OSC1	OSC3	EXOSC/EXCLm
0xf	1/32,768	1/1	1/32,768	1/1
0xe	1/16,384		1/16,384	
0xd	1/8,192		1/8,192	
0xc	1/4,096		1/4,096	
0xb	1/2,048		1/2,048	
0xa	1/1,024		1/1,024	
0x9	1/512		1/512	
0x8	1/256	1/256	1/256	
0x7	1/128	1/128	1/128	
0x6	1/64	1/64	1/64	
0x5	1/32	1/32	1/32	
0x4	1/16	1/16	1/16	
0x3	1/8	1/8	1/8	
0x2	1/4	1/4	1/4	
0x1	1/2	1/2	1/2	
0x0	1/1	1/1	1/1	

Table 12.6.1 Clock Source and Division Ratio Settings

(Note 1) The oscillation circuits/external input that are not supported in this IC cannot be selected as the clock source.

(Note 2) When the T16_nCLK.CLKSRC[1:0] bits are set to 0x3, EXCL*m* is selected for the channel with an event counter function or EXOSC is selected for other channels.

T16 Ch.n Mode Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16_ <i>n</i> MOD	15–8	-	0x00	-	R	-
	7–1	-	0x00	-	R	
	0	TRMD	0	HO	R/W	

Bits 15–1 Reserved

Bit 0 TRMD

This bit selects the T16 operation mode.

1 (R/W): One-shot mode O(R/W): Percent mode

0 (R/W): Repeat mode

For detailed information on the operation mode, refer to "Operations in One-shot Mode" and "Operations in Repeat Mode."

T16 Ch.n Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16_nCTL	15–9	-	0x00	_	R	-
	8	PRUN	0	HO	R/W	
	7–2	-	0x00	-	R	
	1	PRESET	0	H0	R/W	
	0	MODEN	0	H0	R/W	

Bits 15–9 Reserved

Bit 8 PRUN

This bit starts/stops the timer.

- 1 (W): Start timer
- 0 (W): Stop timer
- 1 (R): Timer is running
- 0 (R): Timer is idle

By writing 1 to this bit, the timer starts count operations. However, the T16_*n*CTL.MODEN bit must be set to 1 in conjunction with this bit or it must be set in advance. While the timer is running, writing 0 to this bit stops count operations. When the counter stops due to a counter underflow in one-shot mode, this bit is automatically cleared to 0.

Bits 7–2 Reserved

Bit 1 PRESET

This bit presets the reload data stored in the T16_nTR register to the counter.

- 1 (W): Preset
- 0 (W): Ineffective
- 1 (R): Presetting in progress
- 0 (R): Presetting finished or normal operation

By writing 1 to this bit, the timer presets the T16_*n*TR register value to the counter. However, the T16_*n*CTL.MODEN bit must be set to 1 in conjunction with this bit or it must be set in advance. This bit retains 1 during presetting and is automatically cleared to 0 after presetting has finished.

Bit 0 MODEN

This bit enables the T16 Ch.*n* operations.

1 (R/W): Enable (Start supplying operating clock)

0 (R/W): Disable (Stop supplying operating clock)

T16 Ch.n Reload Data Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16_ <i>n</i> TR	15–0	TR[15:0]	0xffff	H0	R/W	_

Bits 15-0 TR[15:0]

These bits are used to set the initial value to be preset to the counter.

The value set to this register will be preset to the counter when 1 is written to the T16_nCTL.PRESET bit or when the counter underflows.

- **Notes:** The T16_*n*TR register cannot be altered while the timer is running (T16_*n*CTL.PRUN bit = 1), as an incorrect initial value may be preset to the counter.
 - When one-shot mode is set, the T16_*n*TR.TR[15:0] bits should be set to a value equal to or greater than 0x0001.

T16 Ch.n Counter Data Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16_ <i>n</i> TC	15–0	TC[15:0]	0xffff	HO	R	_

Bits 15-0 TC[15:0]

The current counter value can be read out from these bits.

T16 Ch.n Interrupt Flag Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16_nINTF	15–8	-	0x00	-	R	_
	7–1	-	0x00	-	R	
	0	UFIF	0	H0	R/W	Cleared by writing 1.

Bits 15–1 Reserved

Bit 0 UFIF

This bit indicates the T16 Ch.n underflow interrupt cause occurrence status.

1 (R): Cause of interrupt occurred

- 0 (R): No cause of interrupt occurred
- 1 (W): Clear flag
- 0 (W): Ineffective

T16 Ch.n Interrupt Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16_nINTE	15-8	-	0x00	-	R	-
	7–1	-	0x00	-	R	
	0	UFIE	0	H0	R/W	

Bits 15–1 Reserved

Bit 0 UFIE

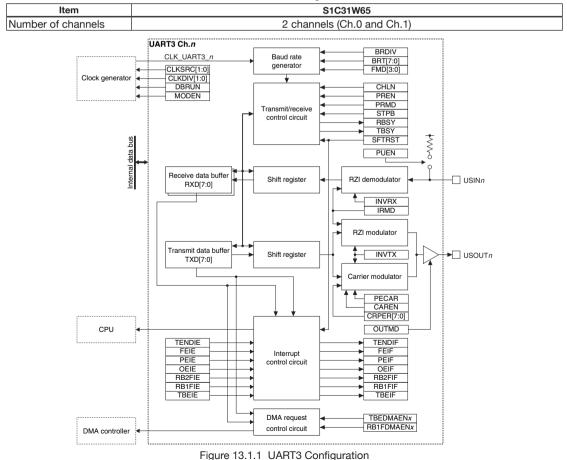
This bit enables T16 Ch.n underflow interrupts.

1 (R/W): Enable interrupts

0 (R/W): Disable interrupts

Note: To prevent generating unnecessary interrupts, the corresponding interrupt flag should be cleared before enabling interrupts.

13 UART (UART3)


13.1 Overview

The UART3 is an asynchronous serial interface. The features of the UART3 are listed below.

- Includes a baud rate generator for generating the transfer clock.
- Supports 7- and 8-bit data length (LSB first).
- Odd parity, even parity, or non-parity mode is selectable.
- The start bit length is fixed at 1 bit.
- The stop bit length is selectable from 1 bit and 2 bits.
- Supports full-duplex communications.
- Includes a 2-byte receive data buffer and a 1-byte transmit data buffer.
- Includes an RZI modulator/demodulator circuit to support IrDA 1.0-compatible infrared communications.
- Can detect parity error, framing error, and overrun error.
- Can generate receive buffer full (1 byte/2 bytes), transmit buffer empty, end of transmission, parity error, framing error, and overrun error interrupts.
- Can issue a DMA transfer request when a receive buffer one byte full or a transmit buffer empty occurs.
- Input pin can be pulled up with an internal resistor.
- The output pin is configurable as an open-drain output.
- · Provides the carrier modulation output function.

Figure 13.1.1 shows the UART3 configuration.

Table 13.1.1 UART3 Channel Configuration of S1C31W65

Seiko Epson Corporation

13.2 Input/Output Pins and External Connections

13.2.1 List of Input/Output Pins

Table 13.2.1.1 lists the UART3 pins.

Table 13.2.1.1 List of UART3 Pins						
Pin name	I/O* Initial status* Function					
USINn	I	I (Hi-Z)	UART3 Ch.n data input pin			
USOUTn	0	O (High)	UART3 Ch. <i>n</i> data output pin			
	·					

* Indicates the status when the pin is configured for the UART3.

If the port is shared with the UART3 pin and other functions, the UART3 input/output function must be assigned to the port before activating the UART3. For more information, refer to the "I/O Ports" chapter.

13.2.2 External Connections

Figure 13.2.2.1 shows a connection diagram between the UART3 in this IC and an external UART device.

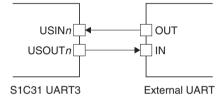


Figure 13.2.2.1 Connections between UART3 and an External UART Device

13.2.3 Input Pin Pull-Up Function

The UART3 includes a pull-up resistor for the USIN*n* pin. Setting the UART3_*n*MOD.PUEN bit to 1 enables the resistor to pull up the USIN*n* pin.

13.2.4 Output Pin Open-Drain Output Function

The USOUT *n* pin supports the open-drain output function. Default configuration is a push-pull output and it is switched to an open-drain output by setting the UART3_nMOD.OUTMD bit to 1.

13.2.5 Input/Output Signal Inverting Function

The UART3 can invert the signal polarities of the USINn pin input and the USOUTn pin output by setting the UART3_nMOD.INVRX bit and the UART3_nMOD.INVTX bit, respectively, to 1.

Note: Unless otherwise specified, this chapter shows input/output signals with non-inverted waveforms (UART3_*n*MOD.INVRX bit = 0, UART3_*n*MOD.INVTX bit =0).

13.3 Clock Settings

13.3.1 UART3 Operating Clock

When using the UART3 Ch.*n*, the UART3 Ch.*n* operating clock CLK_UART3_*n* must be supplied to the UART3 Ch.*n* from the clock generator. The CLK_UART3_*n* supply should be controlled as in the procedure shown below.

- 1. Enable the clock source in the clock generator if it is stopped (refer to "Clock Generator" in the "Power Supply, Reset, and Clocks" chapter).
- 2. Set the following UART3_nCLK register bits:
 - UART3_nCLK.CLKSRC[1:0] bits (Clock source selection)
 - UART3_nCLK.CLKDIV[1:0] bits (Clock division ratio selection = Clock frequency setting)

The UART3 operating clock should be selected so that the baud rate generator will be configured easily.

13.3.2 Clock Supply in SLEEP Mode

When using the UART3 during SLEEP mode, the UART3 operating clock CLK_UART3_*n* must be configured so that it will keep supplying by writing 0 to the CLGOSC_*xxxx*SLPC bit for the CLK_UART3_*n* clock source.

13.3.3 Clock Supply During Debugging

The CLK_UART3_*n* supply during debugging should be controlled using the UART3_*n*CLK.DBRUN bit.

The CLK_UART3_*n* supply to the UART3 Ch.*n* is suspended when the CPU enters debug state if the UART3_*n*CLK.DBRUN bit = 0. After the CPU returns to normal mode, the CLK_UART3_*n* supply resumes. Although the UART3 Ch.*n* stops operating when the CLK_UART3_*n* supply is suspended, the output pin and registers retain the status before the debug state was entered. If the UART3_*n*CLK.DBRUN bit = 1, the CLK_UART3_*n* supply is not suspended and the UART3 Ch.*n* will keep operating in a debug state.

13.3.4 Baud Rate Generator

The UART3 includes a baud rate generator to generate the transfer (sampling) clock. The transfer rate is determined by the UART3_*n*MOD.BRDIV, UART3_*n*BR.BRT[7:0], and UART3_*n*BR.FMD[3:0] bit settings. Use the following equations to calculate the setting values for obtaining the desired transfer rate.

$bps = \frac{CLK_UA}{\frac{BRT + 1}{BRDIV}}$	$BRT = BRDIV \times \left(\frac{CLK_UART3}{bps} - FMD\right) - 1 (Eq. 13.1)$
Where	
bps:	Transfer rate [bit/s]
CLK_UART3	: UART3 operating clock frequency [Hz]
BRDIV:	Baud rate division ratio (1/16 or 1/4) * Selected by the UART3_nMOD.BRDIV bit
BRT:	UART3_nBR.BRT[7:0] setting value (0 to 255)
FMD:	UART3_nBR.FMD[3:0] setting value (0 to 15)

For the transfer rate range configurable in the UART3, refer to "UART Characteristics, Transfer baud rates UBRT1 and UBRT2" in the "Electrical Characteristics" chapter.

13.4 Data Format

The UART3 allows setting of the data length, stop bit length, and parity function. The start bit length is fixed at one bit.

Data length

With the UART3_*n*MOD.CHLN bit, the data length can be set to seven bits (UART3_*n*MOD.CHLN bit = 0) or eight bits (UART3_*n*MOD.CHLN bit = 1).

Stop bit length

With the UART3_nMOD.STPB bit, the stop bit length can be set to one bit (UART3_nMOD.STPB bit = 0) or two bits (UART3_nMOD.STPB bit = 1).

Parity function

The parity function is configured using the UART3_nMOD.PREN and UART3_nMOD.PRMD bits.

Table 13.4.1 Parity Function Setting

	•	-
UART3_nMOD.PREN bit	UART3_nMOD.PRMD bit	Parity function
1	1	Odd parity
1	0	Even parity
0	*	Non parity

UART	Г3_ <i>n</i> MOD re	gister	
CHLN bit	STPB bit	PREN bit	
0	0	0	<u>st / D0 / D1 / D2 / D3 / D4 / D5 / D6 /</u> sp
0	0	1	<u>st</u> (D0 (D1 (D2 (D3) D4) D5 (D6) p sp
0	1	0	<u>st (D0) D1 (D2) D3) D4 (D5) D6) sp sp</u>
0	1	1	<u>st (D0)(D1)(D2)(D3)(D4)(D5)(D6)(p) sp sp </u>
1	0	0	<u>st (D0) D1 (D2) D3) D4) D5 (D6) D7) sp </u>
1	0	1	<u>st (D0) D1 (D2) D3) D4) D5 (D6) D7 (p) sp</u>
1	1	0	<u>st (D0) D1 (D2) D3) D4) D5) D6 (D7) sp sp </u>
1	1	1	<u>st (D0) D1 (D2) D3) D4) D5) D6 (D7) p) sp sp</u>
			st: start bit, sp: stop bit, p: parity bit
			Figure 13.4.1 Data Format

13.5 Operations

13.5.1 Initialization

The UART3 Ch.n should be initialized with the procedure shown below.

- 1. Assign the UART3 Ch.n input/output function to the ports. (Refer to the "I/O Ports" chapter.)
- 2. Set the UART3_nCLK.CLKSRC[1:0] and UART3_nCLK.CLKDIV[1:0] bits. (Configure operating clock)
- 3. Configure the following UART3_*n*MOD register bits:
 - UART3_nMOD.BRDIV bit (Select baud rate division ratio (1/16 or 1/4))
 - UART3_nMOD.INVRX bit (Enable/disable USIN*n* input signal inversion)
 - UART3_nMOD.INVTX bit (Enable/disable USOUT*n* output signal inversion)
 - UART3_*n*MOD.PUEN bit (Enable/disable USIN*n* pin pull-up)
 - UART3_*n*MOD.OUTMD bit (Enable/disable USOUT*n* pin open-drain output)
 - UART3_*n*MOD.IRMD bit (Enable/disable IrDA interface)
 - UART3_*n*MOD.CHLN bit (Set data length (7 or 8 bits))
 - UART3_*n*MOD.PREN bit (Enable/disable parity function)
 - UART3_*n*MOD.PRMD bit (Select parity mode (even or odd))
 - UART3_*n*MOD.STPB bit (Set stop bit length (1 or 2 bits))
 - UART3_*n*MOD.CAREN bit (Enable/disable carrier modulation function)
 - UART3_nMOD.PECAR bit (Select carrier modulation period (H data period/L data period))

4. Set the UART3_nBR.BRT[7:0] and UART3_nBR.FMD[3:0] bits. (Set transfer rate)

5.	Set the UART3	nCAWF.CRPER[7:0]	bits.
<i>.</i> .	bet the orners_	non non big	1.0	0100.

6. Set the following UART3_*n*CTL register bits:

	- Set the UART3_ <i>n</i> CTL.SFTRST bit to 1.	(Execute software reset)
	- Set the UART3_nCTL.MODEN bit to 1.	(Enable UART3 Ch.n operations)
7	Set the following bits when using the interrupt:	

- 7. Set the following bits when using the interrupt:
 - Write 1 to the interrupt flags in the UART3_nINTF register. (Clear interrupt flags)
 - Set the interrupt enable bits in the UART3_nINTE register to 1.* (Enable interrupts)
 - * The initial value of the UART3_nINTF.TBEIF bit is 1, therefore, an interrupt will occur immediately after the UART3_nINTE.TBEIE bit is set to 1.

(Set carrier cycle)

- 8. Configure the DMA controller and set the following UART3 control bits when using DMA transfer:
 - Write 1 to the DMA transfer request enable bits in the UART3_*n*TBEDMAEN and UART3_*n*RB1FDMAEN registers. (Enable DMA transfer requests)

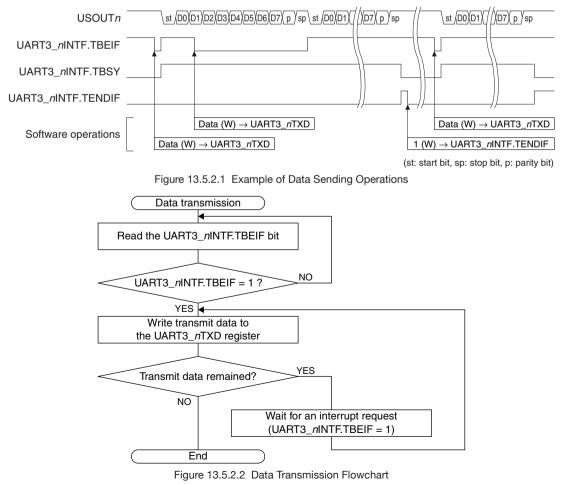
13.5.2 Data Transmission

A data sending procedure and the UART3 Ch.*n* operations are shown below. Figures 13.5.2.1 and 13.5.2.2 show a timing chart and a flowchart, respectively.

Data sending procedure

- 1. Check to see if the UART3_nINTF.TBEIF bit is set to 1 (transmit buffer empty).
- 2. Write transmit data to the UART3_*n*TXD register.
- 3. Wait for a UART3 interrupt when using the interrupt.
- 4. Repeat Steps 1 to 3 (or 1 and 2) until the end of transmit data.

UART3 data sending operations


The UART3 Ch.n starts data sending operations when transmit data is written to the UART3_nTXD register.

The transmit data in the UART3_*n*TXD register is automatically transferred to the shift register and the UART3_*n*INTF.TBEIF bit is set to 1 (transmit buffer empty).

The USOUT*n* pin outputs a start bit and the UART3_*n*INTF.TBSY bit is set to 1 (transmit busy). The shift register data bits are then output successively from the LSB. Following output of MSB, the parity bit (if parity is enabled) and the stop bit are output.

Even if transmit data is being output from the USOUT*n* pin, the next transmit data can be written to the UART3_*n*TXD register after making sure the UART3_*n*INTF.TBEIF bit is set to 1.

If no transmit data remains in the UART3_*n*TXD register after the stop bit has been output from the USOUT*n* pin, the UART3_*n*INTF.TBSY bit is cleared to 0 and the UART3_*n*INTF.TENDIF bit is set to 1 (transmission completed).

13 UART (UART3)

Data transmission using DMA

By setting the UART3_*n*TBEDMAEN.TBEDMAEN*x* bit to 1 (DMA transfer request enabled), a DMA transfer request is sent to the DMA controller and transmit data is transferred from the specified memory to the UART3_*n*TXD register via DMA Ch.*x* when the UART3_*n*INTF.TBEIF bit is set to 1 (transmit buffer empty). This automates the data sending procedure described above.

The transfer source/destination and control data must be set for the DMA controller and the relevant DMA channel must be enabled to start a DMA transfer in advance so that transmit data will be transferred to the UART3_*n*TXD register. For more information on DMA, refer to the "DMA Controller" chapter.

Item		Setting example
End pointer Transfer source		Memory address in which the last transmit data is stored
	Transfer destination	UART3_nTXD register address
Control data	dst_inc	0x3 (no increment)
	dst_size	0x0 (byte)
	src_inc	0x0 (+1)
	src_size	0x0 (byte)
	R_power	0x0 (arbitrated for every transfer)
	n_minus_1	Number of transfer data
	cycle_ctrl	0x1 (basic transfer)

Table 13.5.2.1 DMA Data Structure Configuration Example (for Data Transmission)

13.5.3 Data Reception

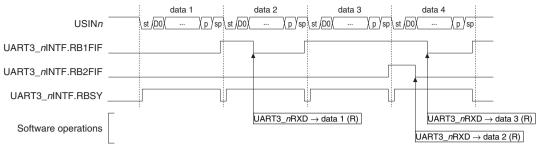
A data receiving procedure and the UART3 Ch.*n* operations are shown below. Figures 13.5.3.1 and 13.5.3.2 show a timing chart and flowcharts, respectively.

Data receiving procedure (read by one byte)

- 1. Wait for a UART3 interrupt when using the interrupt.
- 2. Check to see if the UART3_nINTF.RB1FIF bit is set to 1 (receive buffer one byte full).
- 3. Read the received data from the UART3_nRXD register.
- 4. Repeat Steps 1 to 3 (or 2 and 3) until the end of data reception.

Data receiving procedure (read by two bytes)

- 1. Wait for a UART3 interrupt when using the interrupt.
- 2. Check to see if the UART3_nINTF.RB2FIF bit is set to 1 (receive buffer two bytes full).
- 3. Read the received data from the UART3_nRXD register twice.
- 4. Repeat Steps 1 to 3 (or 2 and 3) until the end of data reception.


UART3 data receiving operations

The UART3 Ch.n starts data receiving operations when a start bit is input to the USINn pin.

After the receive circuit has detected a low level as a start bit, it starts sampling the following data bits and loads the received data into the receive shift register. The UART3_nINTF.RBSY bit is set to 1 when the start bit is detected.

The UART3_*n*INTF.RBSY bit is cleared to 0 and the receive shift register data is transferred to the receive data buffer at the stop bit receive timing.

The receive data buffer consists of a 2-byte FIFO and receives data until it becomes full. When the receive data buffer receives the first data, it sets the UART3_*n*INTF.RB1FIF bit to 1 (receive buffer one byte full). If the second data is received without reading the first data, the UART3_*n*INTF.RB2FIF bit is set to 1 (receive buffer two bytes full).

(st: start bit, sp: stop bit, p: parity bit)

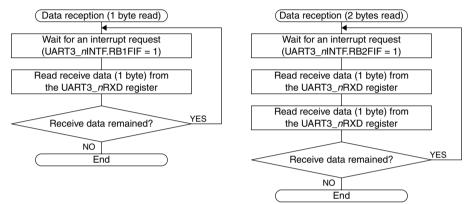


Figure 13.5.3.2 Data Reception Flowcharts

Data reception using DMA

By setting the UART3_nRB1FDMAEN.RB1FDMAENx bit to 1 (DMA transfer request enabled), a DMA transfer request is sent to the DMA controller and the received data is transferred from the UART3_nRXD register to the specified memory via DMA Ch_x when the UART3_nINTF.RB1FIF bit is set to 1 (receive buffer one byte full).

This automates the procedure (read by one byte) described above.

The transfer source/destination and control data must be set for the DMA controller and the relevant DMA channel must be enabled to start a DMA transfer in advance. For more information on DMA, refer to the "DMA Controller" chapter.

	Item	Setting example	
End pointer	Transfer source	UART3_nRXD register address	
	Transfer destination	Memory address to which the last received data is stored	
Control data	dst_inc	0x0 (+1)	
	dst_size	0x0 (byte)	
	src_inc	0x3 (no increment)	
	src_size	0x0 (byte)	
	R_power	0x0 (arbitrated for every transfer)	
	n_minus_1	Number of transfer data	
	cycle_ctrl	0x1 (basic transfer)	

Table 13.5.3.1 DMA Data Structure Configuration Example (for Data Reception)

13.5.4 IrDA Interface

This UART3 includes an RZI modulator/demodulator circuit enabling implementation of IrDA 1.0-compatible infrared communication function simply by adding simple external circuits.

Set the UART3_nMOD.IRMD bit to 1 to use the IrDA interface.

Data transfer control is identical to that for normal interface even if the IrDA interface function is enabled.

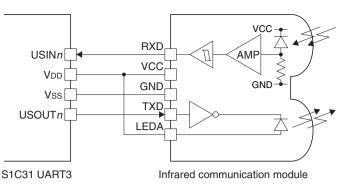
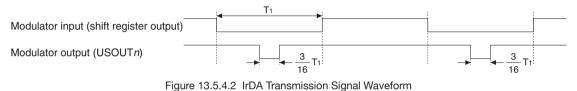
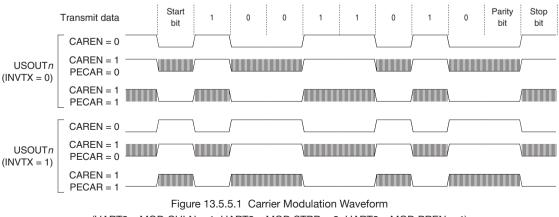



Figure 13.5.4.1 Example of Connections with an Infrared Communication Module

The transmit data output from the UART3 Ch.n transmit shift register is output from the USOUTn pin after the low pulse width is converted into 3/16 by the RZI modulator in SIR method.

The received IrDA signal is input to the RZI demodulator and the low pulse width is converted into the normal width before input to the receive shift register.


Notes: • Set the baud rate division ratio to 1/16 when using the IrDA interface function.

• The low pulse width (T₂) of the IrDA signal input must be CLK_UART3_ $n \times 3$ cycles or longer.

13.5.5 Carrier Modulation

The UART3 has a carrier modulation function.

Writing 1 to the UART3_*n*MOD.CAREN bit enables the carrier modulation function allowing carrier modulation waveforms to be output according to the UART3_*n*MOD.PECAR bit setting. Data transmit control is identical to that for normal interface even in this case.

(UART3_nMOD.CHLN = 1, UART3_nMOD.STPB = 0, UART3_nMOD.PREN = 1)

The carrier modulation output frequency is determined by the UART3_nCAWF.CRPER[7:0] bit settings. Use the following equations to calculate the setting values for obtaining the desired frequency.

Carrier modulation output frequency = $\frac{\text{CLK}_{\text{UART3}}}{(\text{CRPER} + 1) \times 2}$ [Hz] (Eq. 13.2)

Where

CLK_UART3: UART3 operating clock frequency [Hz] CRPER: UART3_nCAWF.CRPER[7:0] setting value (0 to 255)

13.6 Receive Errors

Three different receive errors, framing error, parity error, and overrun error, may be detected while receiving data. Since receive errors are interrupt causes, they can be processed by generating interrupts.

13.6.1 Framing Error

The UART3 determines loss of sync if a stop bit is not detected (when the stop bit is received as 0) and assumes that a framing error has occurred. The received data that encountered an error is still transferred to the receive data buffer and the UART3_*n*INTF.FEIF bit (framing error interrupt flag) is set to 1 when the data becomes ready to read from the UART3_*n*RXD register.

Note: Framing error/parity error interrupt flag set timings

These interrupt flags will be set after the data that encountered an error is transferred to the receive data buffer. Note, however, that the set timing depends on the buffer status at that point.

- When the receive data buffer is empty The interrupt flag will be set when the data that encountered an error is transferred to the receive data buffer.
- When the receive data buffer has a one-byte free space The interrupt flag will be set when the first data byte already loaded is read out after the data that encountered an error is transferred to the second byte entry of the receive data buffer.

13.6.2 Parity Error

If the parity function is enabled, a parity check is performed when data is received. The UART3 checks matching between the data received in the shift register and its parity bit, and issues a parity error if the result is a non-match. The received data that encountered an error is still transferred to the receive data buffer and the UART3_nINTF. PEIF bit (parity error interrupt flag) is set to 1 when the data becomes ready to read from the UART3_nRXD register (see the Note on framing error).

13.6.3 Overrun Error

If the receive data buffer is still full (two bytes of received data have not been read) when a data reception to the shift register has completed, an overrun error occurs as the data cannot be transferred to the receive data buffer. When an overrun error occurs, the UART3_nINTF.OEIF bit (overrun error interrupt flag) is set to 1.

13.7 Interrupts

The UART3 has a function to generate the interrupts shown in Table 13.7.1.

Interrupt	Interrupt flag	Set condition	Clear condition
End of transmission	UART3_nINTF.TENDIF	When the UART3_ n INTF.TBEIF bit = 1	Writing 1 or software reset
		after the stop bit has been sent	
Framing error	UART3_nINTF.FEIF	Refer to the "Receive Errors."	Writing 1, reading received
			data that encountered an
			error, or software reset
Parity error	UART3_nINTF.PEIF	Refer to the "Receive Errors."	Writing 1, reading received
			data that encountered an
			error, or software reset
Overrun error	UART3_nINTF.OEIF	Refer to the "Receive Errors."	Writing 1 or software reset
Receive buffer two	UART3_nINTF.RB2FIF	When the second received data byte is	Reading received data or
bytes full		loaded to the receive data buffer in which	software reset
		the first byte is already received	
Receive buffer	UART3_nINTF.RB1FIF	When the first received data byte is load-	Reading data to empty
one byte full		ed to the emptied receive data buffer	the receive data buffer or
			software reset
Transmit buffer empty	UART3_nINTF.TBEIF	When transmit data written to the trans-	Writing transmit data
		mit data buffer is transferred to the shift	-
		register	

Table 13.7.1	UART3 Interrupt Functio	n

The UART3 provides interrupt enable bits corresponding to each interrupt flag. An interrupt request is sent to the CPU only when the interrupt flag, of which interrupt has been enabled by the interrupt enable bit, is set. For more information on interrupt control, refer to the "Interrupt" chapter.

13.8 DMA Transfer Requests

The UART3 has a function to generate DMA transfer requests from the causes shown in Table 13.8.1.

Cause to request DMA transfer	DMA transfer request flag	Set condition	Clear condition
Receive buffer	Receive buffer one byte full flag	When the first received data	Reading data to empty
one byte full		byte is loaded to the emptied receive data buffer	the receive data buffer or software reset
Transmit buffer empty	(UART3_nINTF.TBEIF)	When transmit data written to the transmit data buffer is	
		transferred to the shift register	

Table 13.8.1	DMA	Transfer	Request	Causes	of UART3
--------------	-----	----------	---------	--------	----------

The UART3 provides DMA transfer request enable bits corresponding to each DMA transfer request flag shown above for the number of DMA channels. A DMA transfer request is sent to the pertinent channel of the DMA controller only when the DMA transfer request flag, of which DMA transfer has been enabled by the DMA transfer request enable bit, is set. The DMA transfer request flag also serves as an interrupt flag, therefore, both the DMA transfer request and the interrupt cannot be enabled at the same time. After a DMA transfer has completed, disable the DMA transfer to prevent unintended DMA transfer requests from being issued. For more information on the DMA control, refer to the "DMA Controller" chapter.

13.9 Control Registers

Register name Bit Bit name Initial R/W Reset Remarks UART3_nCLK 15–9 0x00 R _ 8 DBRUN R/W 0 H0 7–6 0x0 R 5-4 CLKDIV[1:0] 0x0 H0 R/W 3–2 0x0 R _ R/W 1-0 CLKSRC[1:0] 0x0 HO

UART3 Ch.n Clock Control Register

Bits 15–9 Reserved

Bit 8 DBRUN

This bit sets whether the UART3 operating clock is supplied in DEBUG mode or not. 1 (R/W): Clock supplied in DEBUG mode 0 (R/W): No clock supplied in DEBUG mode

0 (R/W): No clock supplied in DEBUG

Bits 7–6 Reserved

Bits 5–4 CLKDIV[1:0]

These bits select the division ratio of the UART3 operating clock.

Bits 3–2 Reserved

Bits 1-0 CLKSRC[1:0]

These bits select the clock source of the UART3.

Table 13.9.1 Clock Source and Division Ratio Settings

UART3 nCLK.	UART3_nCLK.CLKSRC[1:0] bits							
-	0x0	0x1	0x2	0x3				
CLKDIV[1:0] bits	IOSC	OSC1	OSC3	EXOSC				
0x3	1/8	1/1	1/8	1/1				
0x2	1/4]	1/4					
0x1	1/2		1/2					
0x0	1/1		1/1					

(Note) The oscillation circuits/external input that are not supported in this IC cannot be selected as the clock source.

Note: The UART3_*n*CLK register settings can be altered only when the UART3_*n*CTL.MODEN bit = 0.

UART3 Ch.n Mode Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
UART3_nMOD	15-13	-	0x0	-	R	-
	12	PECAR	0	H0	R/W	
	11	CAREN	0	H0	R/W	
	10	BRDIV	0	H0	R/W	
	9	INVRX	0	H0	R/W	
	8	INVTX	0	H0	R/W	
	7	-	0	-	R	
	6	PUEN	0	H0	R/W	
	5	OUTMD	0	HO	R/W	
	4	IRMD	0	HO	R/W	
	3	CHLN	0	HO	R/W	
	2	PREN	0	HO	R/W	
	1	PRMD	0	H0	R/W	
	0	STPB	0	H0	R/W	

Bits 15–13 Reserved

Bit 12	PECAR
	This bit selects the carrier modulation period.
	1 (R/W): Carrier modulation during H data period0 (R/W): Carrier modulation during L data period
Bit 11	
DICTI	This bit enables the carrier modulation function.
	1 (R/W): Enable carrier modulation function
	0 (R/W): Disable carrier modulation function
Bit 10	BRDIV
	This bit sets the UART3 operating clock division ratio for generating the transfer (sampling) clock
	using the baud rate generator.
	1 (R/W): 1/4
	0 (R/W): 1/16
Bit 9	INVRX
	This bit enables the USIN <i>n</i> input inverting function.
	1 (R/W): Enable input inverting function
	0 (R/W): Disable input inverting function
Bit 8	ΙΝΥΤΧ
	This bit enables the USOUT <i>n</i> output inverting function. 1 (D(W)) Fights substituting function
	1 (R/W): Enable output inverting function0 (R/W): Disable output inverting function
D:1 7	
Bit 7	Reserved
Bit 6	PUEN
	This bit enables pull-up of the USIN n pin.
	1 (R/W): Enable pull-up 0 (R/W): Disable pull-up
Bit 5	OUTMD
DIL J	This bit sets the USOUT <i>n</i> pin output mode.
	1 (R/W): Open-drain output
	0 (R/W): Push-pull output
Bit 4	IRMD
	This bit enables the IrDA interface function.
	1 (R/W): Enable IrDA interface function
	0 (R/W): Disable IrDA interface function
Bit 3	CHLN
	This bit sets the data length.
	1 (R/W): 8 bits
	0 (R/W): 7 bits
Bit 2	PREN
	This bit enables the parity function. 1 (R/W): Enable parity function
	0 (R/W): Disable parity function
Bit 1	PRMD
	This bit selects either odd parity or even parity when using the parity function.
	1 (R/W): Odd parity
	0 (R/W): Even parity

Bit 0 STPB

This bit sets the stop bit length. 1 (R/W): 2 bits 0 (R/W): 1 bit

- **Notes:** The UART3_nMOD register settings can be altered only when the UART3_nCTL.MODEN bit = 0.
 - Do not set both the UART3_nMOD.IRMD and UART3_nMOD.CAREN bits simultaneously.

UART3 Ch.n Baud-Rate Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
UART3_nBR	15–12	_	0x0	-	R	-
	11–8	FMD[3:0]	0x0	H0	R/W	
	7–0	BRT[7:0]	0x00	H0	R/W	

Bits 15–12 Reserved

Bits 11-8 FMD[3:0]

Bits 7–0 BRT[7:0]

These bits set the UART3 transfer rate. For more information, refer to "Baud Rate Generator."

- **Notes**: The UART3_*n*BR register settings can be altered only when the UART3_*n*CTL.MODEN bit = 0.
 - Do not set the UART3_nBR.FMD[3:0] bits to a value other than 0 to 3 when the UART3_ nMOD.BRDIV bit = 1.

UART3 Ch.n Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
UART3_nCTL	15–8	-	0x00	-	R	-
	7–2	-	0x00	-	R	
	1	SFTRST	0	H0	R/W	
	0	MODEN	0	H0	R/W	

Bits 15–2 Reserved

Bit 1 SFTRST

This bit issues software reset to the UART3.

- 1 (W): Issue software reset
- 0 (W): Ineffective
- 1 (R): Software reset is executing.
- 0 (R): Software reset has finished. (During normal operation)

Setting this bit resets the UART3 transmit/receive control circuit and interrupt flags. This bit is automatically cleared after the reset processing has finished.

Bit 0 MODEN

This bit enables the UART3 operations.

- 1 (R/W): Enable UART3 operations (The operating clock is supplied.)
- 0 (R/W): Disable UART3 operations (The operating clock is stopped.)
- **Note:** If the UART3_*n*CTL.MODEN bit is altered from 1 to 0 while sending/receiving data, the data being sent/received cannot be guaranteed. When setting the UART3_*n*CTL.MODEN bit to 1 again after that, be sure to write 1 to the UART3_*n*CTL.SFTRST bit as well.

UART3 Ch.n Transmit Data Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
UART3_nTXD	15–8	-	0x00	-	R	-
	7–0	TXD[7:0]	0x00	H0	R/W	

Bits 15–8 Reserved

Bits 7-0 TXD[7:0]

Data can be written to the transmit data buffer through these bits. Make sure the UART3_nINTF. TBEIF bit is set to 1 before writing data.

UART3 Ch.n Receive Data Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
UART3_nRXD	15–8	-	0x00	-	R	_
	7–0	RXD[7:0]	0x00	HO	R	

Bits 15–8 Reserved

Bits 7-0 RXD[7:0]

The receive data buffer can be read through these bits. The receive data buffer consists of a 2-byte FIFO, and older received data is read first.

UART3 Ch.n Status and Interrupt Flag Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
UART3_nINTF	15–10	-	0x00	-	R	-
	9	RBSY	0	H0/S0	R	
	8	TBSY	0	H0/S0	R	
	7	-	0	-	R	
	6	TENDIF	0	H0/S0	R/W	Cleared by writing 1.
	5	FEIF	0	H0/S0	R/W	Cleared by writing 1 or reading the
	4	PEIF	0	H0/S0	R/W	UART3_nRXD register.
	3	OEIF	0	H0/S0	R/W	Cleared by writing 1.
	2	RB2FIF	0	H0/S0	R	Cleared by reading the UART3_nRXD
	1	RB1FIF	0	H0/S0	R	register.
	0	TBEIF	1	H0/S0	R	Cleared by writing to the UART3_
						<i>n</i> TXD register.

Bits 15–10 Reserved

Bit 9 RBSY

This bit indicates the receiving status. (See Figure 13.5.3.1.)

- 1 (R): During receiving
- 0 (R): Idle

Bit 8 TBSY

This bit indicates the sending status. (See Figure 13.5.2.1.)

- 1 (R): During sending
- 0 (R): Idle

Bit 7 Reserved

Bit 6	TENDIF
Bit 5	FEIF
Bit 4	PEIF
Bit 3	OEIF
Bit 2	RB2FIF
Bit 1	RB1FIF
Bit 0	TBEIF

These bits indicate the UART3 interrupt cause occurrence status.

- 1 (R): Cause of interrupt occurred
- 0 (R): No cause of interrupt occurred
- 1 (W): Clear flag
- 0 (W): Ineffective

The following shows the correspondence between the bit and interrupt:

UART3_nINTF.TENDIF bit: End-of-transmission interrupt

UART3_nINTF.FEIF bit: Framing error interrupt

UART3_*n*INTF.PEIF bit: Parity error interrupt

UART3_nINTF.OEIF bit: Overrun error interrupt

UART3_nINTF.RB2FIF bit: Receive buffer two bytes full interrupt

UART3_nINTF.RB1FIF bit: Receive buffer one byte full interrupt

UART3_nINTF.TBEIF bit: Transmit buffer empty interrupt

UART3 Ch.n Interrupt Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
UART3_nINTE	15–8	_	0x00	-	R	-
	7	-	0	-	R	
	6	TENDIE	0	H0	R/W	
	5	FEIE	0	H0	R/W	
	4	PEIE	0	H0	R/W	
	3	OEIE	0	H0	R/W	
	2	RB2FIE	0	H0	R/W	
	1	RB1FIE	0	H0	R/W	
	0	TBEIE	0	H0	R/W	

Bits 15–7 Reserved

- Bit 6 TENDIE
- Bit 5 FEIE
- Bit 4 PEIE
- Bit 3 OEIE
- Bit 2 RB2FIE
- Bit 1 RB1FIE

Bit 0 TBEIE

These bits enable UART3 interrupts.

1 (R/W): Enable interrupts

0 (R/W): Disable interrupts

The following shows the correspondence between the bit and interrupt:UART3_nINTE.TENDIE bit:End-of-transmission interruptUART3_nINTE.FEIE bit:Framing error interruptUART3_nINTE.PEIE bit:Parity error interruptUART3_nINTE.OEIE bit:Overrun error interruptUART3_nINTE.RB2FIE bit:Receive buffer two bytes full interruptUART3_nINTE.RB1FIE bit:Receive buffer one byte full interruptUART3_nINTE.TBEIE bit:Transmit buffer empty interrupt

UART3 Ch.n Transmit Buffer Empty DMA Request Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
UART3_nT	15–0	TBEDMAEN[15:0]	0x0000	H0	R/W	-
BEDMAEN						

Bits 15-0 TBEDMAEN[15:0]

These bits enable the UART3 to issue a DMA transfer request to the corresponding DMA controller channel (Ch.0–Ch.15) when a transmit buffer empty state has occurred.

1 (R/W): Enable DMA transfer request

0 (R/W): Disable DMA transfer request

Each bit corresponds to a DMA controller channel. The high-order bits for the unimplemented channels are ineffective.

UART3 Ch.n Receive Buffer One Byte Full DMA Request Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
UART3_n	15–0	RB1FDMAEN[15:0]	0x0000	H0	R/W	-
RB1FDMAEN						

Bits 15-0 RB1FDMAEN[15:0]

These bits enable the UART3 to issue a DMA transfer request to the corresponding DMA controller channel (Ch.0–Ch.15) when a receive buffer one byte full state has occurred.

1 (R/W): Enable DMA transfer request

0 (R/W): Disable DMA transfer request

Each bit corresponds to a DMA controller channel. The high-order bits for the unimplemented channels are ineffective.

UART3 Ch.n Carrier Waveform Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
UART3_nCAWF	15–8	-	0x00	-	R	-
	7–0	CRPER[7:0]	0x00	H0	R/W	

Bits 15–8 Reserved

Bits 7–0 CRPER[7:0]

These bits set the carrier modulation output frequency. For more information, refer to "Carrier Modulation."

14 Synchronous Serial Interface (SPIA)

14.1 Overview

SPIA is a synchronous serial interface. The features of SPIA are listed below.

- Supports both master and slave modes.
- Data length: 2 to 16 bits programmable
- Either MSB first or LSB first can be selected for the data format.
- Clock phase and polarity are configurable.
- Supports full-duplex communications.
- Includes separated transmit data buffer and receive data buffer registers.
- Can generate receive buffer full, transmit buffer empty, end of transmission, and overrun interrupts.
- Can issue a DMA transfer request when a receive buffer full or a transmit buffer empty occurs.
- Master mode allows use of a 16-bit timer to set baud rate.
- Slave mode is capable of being operated with the external input clock SPICLKn only.
- Slave mode is capable of being operated in SLEEP mode allowing wake-up by an SPIA interrupt.
- Input pins can be pulled up/down with an internal resistor.

Figure 14.1.1 shows the SPIA configuration.

Table 14.1.1 SPIA Channel Configuration of S1C31W65

Item	S1C31W65
Number of channels	2 channels (Ch.0 and Ch.1)
Internal clock input	Ch.0 ← 16-bit timer Ch.1
	Ch.1 ← 16-bit timer Ch.6

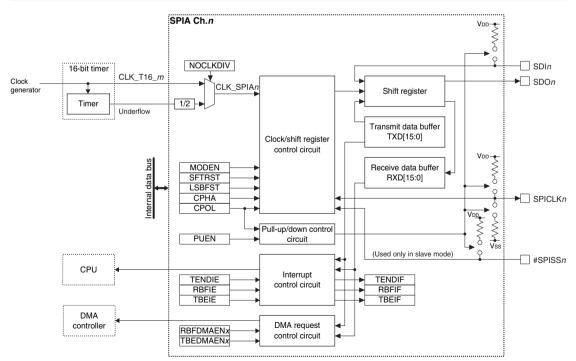


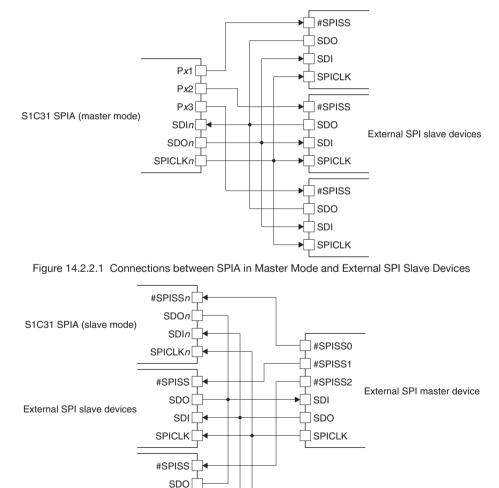
Figure 14.1.1 SPIA Configuration

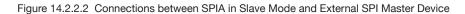
14.2 Input/Output Pins and External Connections

14.2.1 List of Input/Output Pins

Table 14.2.1.1 lists the SPIA pins.

		Table 14.2.1.1 L	
Pin name	I/O*	Initial status*	Function
SDIn	I	I (Hi-Z)	SPIA Ch.n data input pin
SDOn	O or Hi-Z	Hi-Z	SPIA Ch.n data output pin
SPICLKn	l or O	I (Hi-Z)	SPIA Ch.n external clock input/output pin
#SPISSn	I	I (Hi-Z)	SPIA Ch.n slave select signal input pin


able 14 2 1 1	List of SPIA Pins
able 14.2.1.1	LIST OF SELECTION


* Indicates the status when the pin is configured for SPIA.

If the port is shared with the SPIA pin and other functions, the SPIA input/output function must be assigned to the port before activating SPIA. For more information, refer to the "I/O Ports" chapter.

14.2.2 External Connections

SPIA operates in master mode or slave mode. Figures 14.2.2.1 and 14.2.2.2 show connection diagrams between SPIA in each mode and external SPI devices.

SDI SPICLK

14.2.3 Pin Functions in Master Mode and Slave Mode

The pin functions are changed according to the master or slave mode selection. The differences in pin functions between the modes are shown in Table 14.2.3.1.

Pin	Function in master mode	Function in slave mode
SDIn	Always placed	into input state.
SDOn	Always placed into output state.	This pin is placed into output state while a low level is applied to the #SPISS <i>n</i> pin or placed into Hi-Z state while a high level is applied to the #SPISS <i>n</i> pin.
SPICLKn	Outputs the SPI clock to external devices. Output clock polarity and phase can be configured if necessary.	Inputs an external SPI clock. Clock polarity and phase can be designated accord- ing to the input clock.
#SPISSn		Applying a low level to the #SPISS <i>n</i> pin enables SPIA to transmit/receive data. While a high level is applied to this pin, SPIA is not selected as a slave device. Data input to the SDI <i>n</i> pin and the clock input to the SPICLK <i>n</i> pin are ignored. When a high level is applied, the transmit/receive bit count is cleared to 0 and the already received bits are dis- carded.

Table 14 2 3 1	Pin Function Differences between Modes	
10010 14.2.0.1		

14.2.4 Input Pin Pull-Up/Pull-Down Function

The SPIA input pins (SDI*n* in master mode or SDI*n*, SPICLK*n*, and #SPISS*n* pins in slave mode) have a pull-up or pull-down function as shown in Table 14.2.4.1. This function is enabled by setting the SPIA_*n*MOD.PUEN bit to 1.

Master mode	
Table 14.2.4.1 Pull-Up or Pull-Dov	own of Input Pins

Pin	Master mode	Slave mode
SDIn	Pull-up	Pull-up
SPICLKn	_	SPIA_nMOD.CPOL bit = 1: Pull-up
		SPIA_ <i>n</i> MOD.CPOL bit = 0: Pull-down
#SPISSn	_	Pull-up

14.3 Clock Settings

14.3.1 SPIA Operating Clock

Operating clock in master mode

In master mode, the SPIA operating clock is supplied from the 16-bit timer. The following two options are provided for the clock configuration.

Use the 16-bit timer operating clock without dividing

By setting the SPIA_nMOD.NOCLKDIV bit to 1, the operating clock CLK_T16_m, which is configured by selecting a clock source and a division ratio, for the 16-bit timer channel corresponding to the SPIA channel is input to SPIA as CLK_SPIAn. Since this clock is also used as the SPI clock SPICLKn without changing, the CLK_SPIAn frequency becomes the baud rate.

To supply CLK_SPIAn to SPIA, the 16-bit timer clock source must be enabled in the clock generator. It does not matter how the T16_mCTL.MODEN and T16_mCTL.PRUN bits of the corresponding 16-bit timer channel are set (1 or 0).

When setting this mode, the timer function of the corresponding 16-bit timer channel may be used for another purpose.

Use the 16-bit timer as a baud rate generator

By setting the SPIA_nMOD.NOCLKDIV bit to 0, SPIA inputs the underflow signal generated by the corresponding 16-bit timer channel and converts it to the SPICLK*n*. The 16-bit timer must be run with an appropriate reload data set. The SPICLK*n* frequency (baud rate) and the 16-bit timer reload data are calculated by the equations shown below.

14 SYNCHRONOUS SERIAL INTERFACE (SPIA)

 $f_{SPICLK} = \frac{f_{CLK_SPIA}}{2 \times (RLD + 1)} \qquad RLD = \frac{f_{CLK_SPIA}}{f_{SPICLK} \times 2} - 1 \qquad (Eq. 14.1)$ Where $f_{SPICLK:} SPICLKn \text{ frequency [Hz] (= baud rate [bps])}$ $f_{CLK_SPIA:} SPIA \text{ operating clock frequency [Hz]}$ RLD: 16-bit timer reload data value

For controlling the 16-bit timer, refer to the "16-bit Timers" chapter.

Operating clock in slave mode

SPIA set in slave mode operates with the clock supplied from the external SPI master to the SPICLK*n* pin. The 16-bit timer channel (including the clock source selector and the divider) corresponding to the SPIA channel is not used. Furthermore, the SPIA_nMOD.NOCLKDIV bit setting becomes ineffective.

SPIA keeps operating using the clock supplied from the external SPI master even if all the internal clocks halt during SLEEP mode, so SPIA can receive data and can generate receive buffer full interrupts.

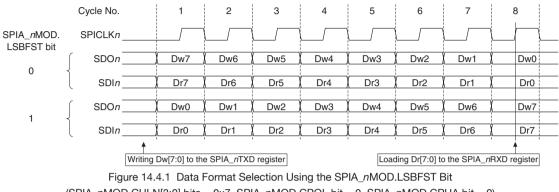
14.3.2 Clock Supply During Debugging

In master mode, the operating clock supply during debugging should be controlled using the T16_mCLK.DBRUN bit.

The CLK_T16_m supply to SPIA Ch.n is suspended when the CPU enters debug state if the T16_mCLK.DBRUN bit = 0. After the CPU returns to normal operation, the CLK_T16_m supply resumes. Although SPIA Ch.n stops operating when the CLK_T16_m supply is suspended, the output pins and registers retain the status before the debug state was entered. If the T16_mCLK.DBRUN bit = 1, the CLK_T16_m supply is not suspended and SPIA Ch.n will keep operating in a debug state.

SPIA in slave mode operates with the external SPI master clock input from the SPICLK*n* pin regardless of whether the CPU is placed into debug state or normal operation state.

14.3.3 SPI Clock (SPICLKn) Phase and Polarity


The SPICLK*n* phase and polarity can be configured separately using the SPIA_*n*MOD.CPHA bit and the SPIA_ *n*MOD.CPOL bit, respectively. Figure 14.3.3.1 shows the clock waveform and data input/output timing in each setting.

SPIA_ <i>n</i> MC CPOL bit 1	D register CPHA bit 1	Cycle No. SPICLK <i>n</i>		2	3	4	5	6	7	8
1	0	SPICLKn		<u> </u>	\frown					
0	1	SPICLKn							<u> </u>	
0	0	SPICLKn_								
x	x	SDIn	MSB			Χ	X		(LSB
x	x	(Master mode) SDOn	MSB			X			(LSB
x	1	(Slave mode) SDOn	MSB							LSB
x	0	(Slave mode) SDOn) MSB			X	X			LSB
			T Writing data to the	SPIA_nTXD	register					

Figure 14.3.3.1 SPI Clock Phase and Polarity (SPIA_nMOD.LSBFST bit = 0, SPIA_nMOD.CHLN[3:0] bits = 0x7)

14.4 Data Format

The SPIA data length can be selected from 2 bits to 16 bits by setting the SPIA_nMOD.CHLN[3:0] bits. The input/ output permutation is configurable to MSB first or LSB first using the SPIA_nMOD.LSBFST bit. Figure 14.4.1 shows a data format example when the SPIA_nMOD.CHLN[3:0] bits = 0x7, the SPIA_nMOD.CPOL bit = 0 and the SPIA_nMOD.CPHA bit = 0.

(SPIA_nMOD.CHLN[3:0] bits = 0x7, SPIA_nMOD.CPOL bit = 0, SPIA_nMOD.CPHA bit = 0)

14.5 Operations

14.5.1 Initialization

SPIA Ch.n should be initialized with the procedure shown below.

- 1. < Master mode only> Generate a clock by controlling the 16-bit timer and supply it to SPIA Ch.n.
- 2. Configure the following SPIA_*n*MOD register bits:
- SPIA nMOD.PUEN bit (Enable input pin pull-up/down) - SPIA nMOD.NOCLKDIV bit (Select master mode operating clock) - SPIA nMOD.LSBFST bit (Select MSB first/LSB first) - SPIA nMOD.CPHA bit (Select clock phase) - SPIA nMOD.CPOL bit (Select clock polarity) - SPIA_nMOD.MST bit (Select master/slave mode) 3. Assign the SPIA Ch.n input/output function to the ports. (Refer to the "I/O Ports" chapter.) 4. Set the following SPIA *n*CTL register bits: - Set the SPIA *n*CTL.SFTRST bit to 1. (Execute software reset) - Set the SPIA_nCTL.MODEN bit to 1. (Enable SPIA Ch.n operations)
- 5. Set the following bits when using the interrupt:
 - Write 1 to the interrupt flags in the SPIA_nINTF register. (Clear interrupt flags)
 Set the interrupt enable bits in the SPIA_nINTE register to 1.* (Enable interrupts)
 - * The initial value of the SPIA_*n*INTF.TBEIF bit is 1, therefore, an interrupt will occur immediately after the SPIA_*n*INTE.TBEIE bit is set to 1.
- 6. Configure the DMA controller and set the following SPIA control bits when using DMA transfer:
 - Write 1 to the DMA transfer request enable bits in the SPIA_*n*TBEDMAEN and SPIA_*n*RBFDMAEN registers. (Enable DMA transfer requests)

14.5.2 Data Transmission in Master Mode

A data sending procedure and operations in master mode are shown below. Figures 14.5.2.1 and 14.5.2.2 show a timing chart and a flowchart, respectively.

Data sending procedure

- 1. Assert the slave select signal by controlling the general-purpose output port (if necessary).
- 2. Check to see if the SPIA_nINTF.TBEIF bit is set to 1 (transmit buffer empty).
- 3. Write transmit data to the SPIA_*n*TXD register.
- 4. Wait for an SPIA interrupt when using the interrupt.
- 5. Repeat Steps 2 to 4 (or 2 and 3) until the end of transmit data.
- 6. Negate the slave select signal by controlling the general-purpose output port (if necessary).

Data sending operations

SPIA Ch.n starts data sending operations when transmit data is written to the SPIA_nTXD register.

The transmit data in the SPIA_*n*TXD register is automatically transferred to the shift register and the SPIA_ *n*INTF.TBEIF bit is set to 1. If the SPIA_*n*INTE.TBEIE bit = 1 (transmit buffer empty interrupt enabled), a transmit buffer empty interrupt occurs at the same time.

The SPICLK*n* pin outputs clocks of the number of the bits specified by the SPIA_*n*MOD.CHLN[3:0] bits and the transmit data bits are output in sequence from the SDO*n* pin in sync with these clocks.

Even if the clock is being output from the SPICLK*n* pin, the next transmit data can be written to the SPIA_nTXD register after making sure the SPIA_nINTF.TBEIF bit is set to 1.

If transmit data has not been written to the SPIA_*n*TXD register after the last clock is output from the SPI-CLK*n* pin, the clock output halts and the SPIA_*n*INTF.TENDIF bit is set to 1. At the same time SPIA issues an end-of-transmission interrupt request if the SPIA_*n*INTE.TENDIE bit = 1.

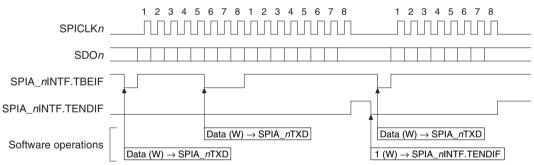


Figure 14.5.2.1 Example of Data Sending Operations in Master Mode (SPIA_nMOD.CHLN[3:0] bits = 0x7)

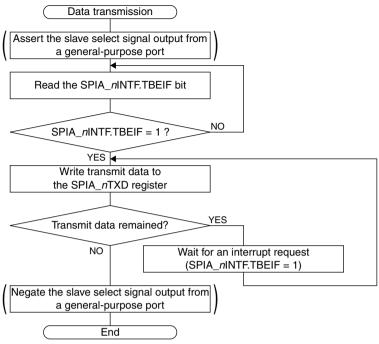


Figure 14.5.2.2 Data Transmission Flowchart in Master Mode

Data transmission using DMA

By setting the SPIA_*n*TBEDMAEN.TBEDMAEN*x* bit to 1 (DMA transfer request enabled), a DMA transfer request is sent to the DMA controller and transmit data is transferred from the specified memory to the SPIA_*n*TXD register via DMA Ch.*x* when the SPIA_*n*INTF.TBEIF bit is set to 1 (transmit buffer empty).

This automates the procedure from Step 2 to Step 5 described above.

The transfer source/destination and control data must be set for the DMA controller and the relevant DMA channel must be enabled to start a DMA transfer in advance so that transmit data will be transferred to the SPIA_*n*TXD register. For more information on DMA, refer to the "DMA Controller" chapter.

	Item	Setting example
End pointer	Transfer source	Memory address in which the last transmit data is stored
	Transfer destination	SPIA_nTXD register address
Control data	dst_inc	0x3 (no increment)
	dst_size	0x1 (haflword)
	src_inc	0x1 (+2)
	src_size	0x1 (halfword)
	R_power	0x0 (arbitrated for every transfer)
	n_minus_1	Number of transfer data
	cycle_ctrl	0x1 (basic transfer)

Table 14.5.2.1 DMA Data Structure Configuration Example (for 16-bit Data Transmission)

14.5.3 Data Reception in Master Mode

A data receiving procedure and operations in master mode are shown below. Figures 14.5.3.1 and 14.5.3.2 show a timing chart and flowcharts, respectively.

Data receiving procedure

- 1. Assert the slave select signal by controlling the general-purpose output port (if necessary).
- 2. Check to see if the SPIA_nINTF.TBEIF bit is set to 1 (transmit buffer empty).
- 3. Write dummy data (or transmit data) to the SPIA_nTXD register.
- 4. Wait for a transmit buffer empty interrupt (SPIA_*n*INTF.TBEIF bit = 1).
- 5. Write dummy data (or transmit data) to the SPIA_nTXD register.
- 6. Wait for a receive buffer full interrupt (SPIA_*n*INTF.RBFIF bit = 1).
- 7. Read the received data from the SPIA_nRXD register.
- 8. Repeat Steps 5 to 7 until the end of data reception.
- 9. Negate the slave select signal by controlling the general-purpose output port (if necessary).
- **Note**: To perform continuous data reception without stopping SPICLK*n*, Steps 7 and 5 operations must be completed within the SPICLK*n* cycles equivalent to "Data bit length 1" after Step 6.

Data receiving operations

SPIA Ch.*n* starts data receiving operations simultaneously with data sending operations when transmit data (may be dummy data if data transmission is not required) is written to the SPIA_*n*TXD register.

The SPICLK*n* pin outputs clocks of the number of the bits specified by the SPIA_*n*MOD.CHLN[3:0] bits. The transmit data bits are output in sequence from the SDO*n* pin in sync with these clocks and the receive data bits input from the SDI*n* pin are shifted into the shift register.

When the last clock is output from the SPICLK*n* pin and receive data bits are all shifted into the shift register, the received data is transferred to the receive data buffer and the SPIA_*n*INTF.RBFIF bit is set to 1. At the same time SPIA issues a receive buffer full interrupt request if the SPIA_*n*INTE.RBFIE bit = 1. After that, the received data in the receive data buffer can be read through the SPIA_*n*RXD register.

Note: If data of the number of the bits specified by the SPIA_nMOD.CHLN[3:0] bits is received when the SPIA_nINTF.RBFIF bit is set to 1, the SPIA_nRXD register is overwritten with the newly received data and the previously received data is lost. In this case, the SPIA_nINTF.OEIF bit is set.

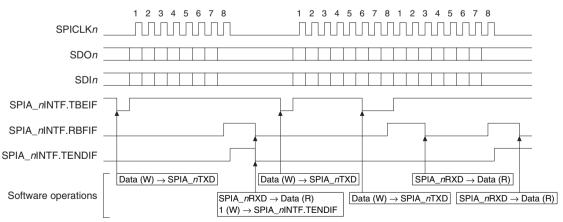


Figure 14.5.3.1 Example of Data Receiving Operations in Master Mode (SPIA_nMOD.CHLN[3:0] bits = 0x7)

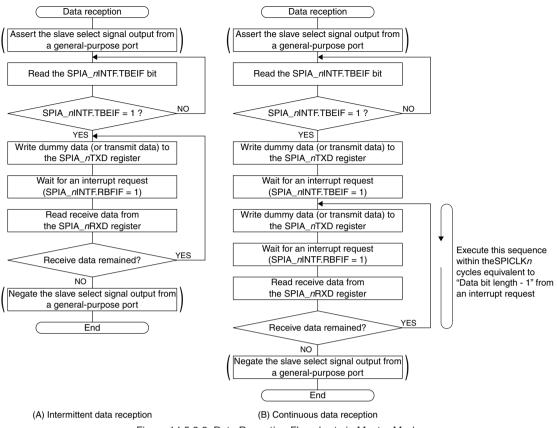


Figure 14.5.3.2 Data Reception Flowcharts in Master Mode

Data reception using DMA

For data reception, two DMA controller channels should be used to write dummy data to the SPIA_*n*TXD register as a reception start trigger and to read the received data from the SPIA_*n*RXD register.

By setting the SPIA_*n*TBEDMAEN.TBEDMAEN*x1* bit to 1 (DMA transfer request enabled), a DMA transfer request is sent to the DMA controller and dummy data is transferred from the specified memory to the SPIA_*n*TXD register via DMA Ch*x1* when the SPIA_*n*INTF.TBEIF bit is set to 1 (transmit buffer empty).

By setting the SPIA_*n*RBFDMAEN.RBFDMAEN*x*² bit to 1 (DMA transfer request enabled), a DMA transfer request is sent to the DMA controller and the received data is transferred from the SPIA_*n*RXD register to the specified memory via DMA Ch.*x*² when the SPIA_*n*INTF.RBFIF bit is set to 1 (receive buffer full).

This automates the procedure from Step 2 to Step 8 described above.

The transfer source/destination and control data must be set for the DMA controller and the relevant DMA channel must be enabled to start a DMA transfer in advance. For more information on DMA, refer to the "DMA Controller" chapter.

	Item	Setting example
End pointer	Transfer source	Memory address in which dummy data is stored
	Transfer destination	SPIA_nTXD register address
Control data	dst_inc	0x3 (no increment)
	dst_size	0x1 (haflword)
	src_inc	0x3 (no increment)
	src_size	0x1 (halfword)
	R_power	0x0 (arbitrated for every transfer)
	n_minus_1	Number of transfer data
	cycle_ctrl	0x1 (basic transfer)

Table 14.5.3.1 DMA Data Structure Configuration Example (for Writing 16-bit Dummy Transmit Data)

	Item	Setting example
End pointer	Transfer source	SPIA_nRXD register address
	Transfer destination	Memory address to which the last received data is stored
Control data	dst_inc	0x1 (+2)
	dst_size	0x1 (haflword)
	src_inc	0x3 (no increment)
	src_size	0x1 (halfword)
	R_power	0x0 (arbitrated for every transfer)
	n_minus_1	Number of transfer data
	cycle_ctrl	0x1 (basic transfer)

 Table 14.5.3.2
 DMA Data Structure Configuration Example (for 16-bit Data Reception)

14.5.4 Terminating Data Transfer in Master Mode

A procedure to terminate data transfer in master mode is shown below.

- 1. Wait for an end-of-transmission interrupt (SPIA_*n*INTF.TENDIF bit = 1).
- 2. Set the SPIA_nCTL.MODEN bit to 0 to disable the SPIA Ch.n operations.
- 3. Stop the 16-bit timer to disable the clock supply to SPIA Ch.n.

14.5.5 Data Transfer in Slave Mode

A data sending/receiving procedure and operations in slave mode are shown below. Figures 14.5.5.1 and 14.5.5.2 show a timing chart and flowcharts, respectively.

Data sending procedure

- 1. Check to see if the SPIA_*n*INTF.TBEIF bit is set to 1 (transmit buffer empty).
- 2. Write transmit data to the SPIA_*n*TXD register.
- 3. Wait for a transmit buffer empty interrupt (SPIA_*n*INTF.TBEIF bit = 1).
- 4. Repeat Steps 2 and 3 until the end of transmit data.
- **Note**: Transmit data must be written to the SPIA_nTXD register after the SPIA_nINTF.TBEIF bit is set to 1 by the time the sending SPIA_nTXD register data written is completed. If no transmit data is written during this period, the data bits input from the SDIn pin are shifted and output from the SDOn pin without being modified.

Data receiving procedure

- 1. Wait for a receive buffer full interrupt (SPIA_*n*INTF.RBFIF bit = 1).
- 2. Read the received data from the SPIA_*n*RXD register.
- 3. Repeat Steps 1 and 2 until the end of data reception.

Data transfer operations

The following shows the slave mode operations different from master mode:

- Slave mode operates with the SPI clock supplied from the external SPI master to the SPICLK*n* pin. The data transfer rate is determined by the SPICLK*n* frequency. It is not necessary to control the 16-bit timer.
- SPIA can operate as a slave device only when the slave select signal input from the external SPI master to the #SPISSn pin is set to the active (low) level.

If #SPISSn = high, the software transfer control, the SPICLKn pin input, and the SDIn pin input are all ineffective. If the #SPISSn signal goes high during data transfer, the transfer bit counter is cleared and data in the shift register is discarded.

- Slave mode starts data transfer when SPICLK*n* is input from the external SPI master after the #SPISS*n* signal is asserted. Writing transmit data is not a trigger to start data transfer. Therefore, it is not necessary to write dummy data to the transmit data buffer when performing data reception only.
- Data transmission/reception can be performed even in SLEEP mode, it makes it possible to wake the CPU up using an SPIA interrupt.

Other operations are the same as master mode.

- **Notes:** If data of the number of bits specified by the SPIA_nMOD.CHLN[3:0] bits is received when the SPIA_nINTF.RBFIF bit is set to 1, the SPIA_nRXD register is overwritten with the newly received data and the previously received data is lost. In this case, the SPIA_nINTF.OEIF bit is set.
 - When the clock for the first bit is input from the SPICLK*n* pin, SPIA starts sending the data currently stored in the shift register even if the SPIA_*n*INTF.TBEIF bit is set to 1.

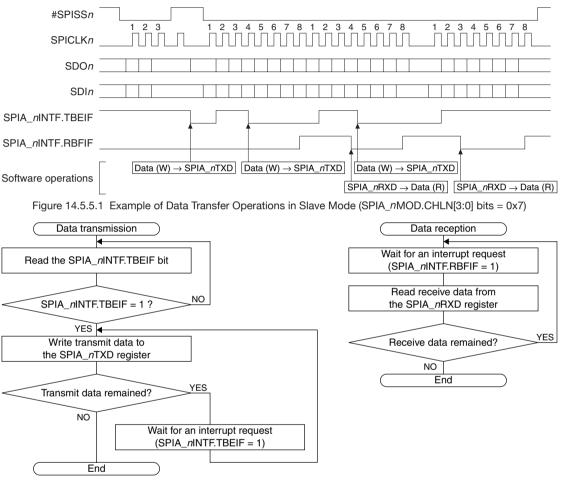


Figure 14.5.5.2 Data Transfer Flowcharts in Slave Mode

14.5.6 Terminating Data Transfer in Slave Mode

A procedure to terminate data transfer in slave mode is shown below.

- 1. Wait for an end-of-transmission interrupt (SPIA_*n*INTF.TENDIF bit = 1). Or determine end of transfer via the received data.
- 2. Set the SPIA_nCTL.MODEN bit to 0 to disable the SPIA Ch.n operations.

14.6 Interrupts

SPIA has a function to generate the interrupts shown in Table 14.6.1.

Interrupt	Interrupt flag	Set condition	Clear condition					
End of transmission	SPIA_nINTF.TENDIF	When the SPIA_nINTF.TBEIF bit = 1 after data	Writing 1					
		of the specified bit length (defined by the SPIA_						
		nMOD.CHLN[3:0] bits) has been sent						
Receive buffer full	SPIA_nINTF.RBFIF	When data of the specified bit length is received	Reading the SPIA_					
		and the received data is transferred from the shift	nRXD register					
		register to the received data buffer						
Transmit buffer empty	SPIA_nINTF.TBEIF	When transmit data written to the transmit data	Writing to the SPIA_					
		buffer is transferred to the shift register	nTXD register					
Overrun error	SPIA_nINTF.OEIF	When the receive data buffer is full (when the re-	Writing 1					
		ceived data has not been read) at the point that	-					
		receiving data to the shift register has completed						

Table 14.6.1 SPIA Interrupt Function

SPIA provides interrupt enable bits corresponding to each interrupt flag. An interrupt request is sent to the CPU only when the interrupt flag, of which interrupt has been enabled by the interrupt enable bit, is set. For more information on interrupt control, refer to the "Interrupt" chapter.

The SPIA_nINTF register also contains the BSY bit that indicates the SPIA operating status.

Figure 14.6.1 shows the SPIA_nINTF.BSY and SPIA_nINTF.TENDIF bit set timings.

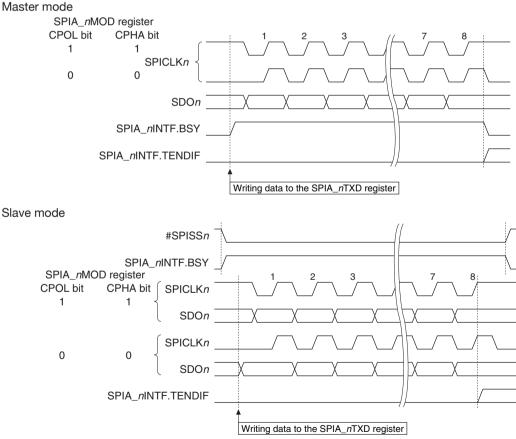


Figure 14.6.1 SPIA_nINTF.BSY and SPIA_nINTF.TENDIF Bit Set Timings (when SPIA_nMOD.CHLN[3:0] bits = 0x7)

14.7 DMA Transfer Requests

The SPIA has a function to generate DMA transfer requests from the causes shown in Table 14.7.1.

Cause to request DMA transfer	DMA transfer request flag	Set condition	Clear condition
	Receive buffer full flag (SPIA_nINTF.RBFIF)	When data of the specified bit length is received and the received data is transferred from the shift register to the received data buffer	
Transmit buffer empty	1, 0	5	Writing to the SPIA_ <i>n</i> TXD register

Table 14.7.1 DMA Transfer Request Causes of SPIA

The SPIA provides DMA transfer request enable bits corresponding to each DMA transfer request flag shown above for the number of DMA channels. A DMA transfer request is sent to the pertinent channel of the DMA controller only when the DMA transfer request flag, of which DMA transfer has been enabled by the DMA transfer request enable bit, is set. The DMA transfer request flag also serves as an interrupt flag, therefore, both the DMA transfer request and the interrupt cannot be enabled at the same time. After a DMA transfer has completed, disable the DMA transfer to prevent unintended DMA transfer requests from being issued. For more information on the DMA control, refer to the "DMA Controller" chapter.

14.8 Control Registers

SPIA Ch.n Mode Register

Register name	Bit	Bit name	Initial	Reset	R/W	
SPIA_nMOD	15–12	-	0x0	_	R	-
	11–8	CHLN[3:0]	0x7	H0	R/W	
	7–6	-	0x0	-	R	
	5	PUEN	0	H0	R/W	
	4	NOCLKDIV	0	H0	R/W	
	3	LSBFST	0	HO	R/W	
	2	CPHA	0	HO	R/W	
	1	CPOL	0	H0	R/W	
	0	MST	0	H0	R/W	

Bits 15–12 Reserved

Bits 11-8 CHLN[3:0]

These bits set the bit length of transfer data.

Table 14.8.1 Data Bit Length Settings						
SPIA_nMOD.CHLN[3:0] bits	Data bit length					
0xf	16 bits					
0xe	15 bits					
0xd	14 bits					
0xc	13 bits					
0xb	12 bits					
0xa	11 bits					
0x9	10 bits					
0x8	9 bits					
0x7	8 bits					
0x6	7 bits					
0x5	6 bits					
0x4	5 bits					
0x3	4 bits					
0x2	3 bits					
0x1	2 bits					
0x0	Setting prohibited					

Table 14.8.1 Data Bit Length Settings

Bits 7–6 Reserved

Bit 5 PUEN

This bit enables pull-up/down of the input pins.

1 (R/W): Enable pull-up/down

0 (R/W): Disable pull-up/down

For more information, refer to "Input Pin Pull-Up/Pull-Down Function."

Bit 4 NOCLKDIV

This bit selects SPICLK*n* in master mode. This setting is ineffective in slave mode. 1 (R/W): SPICLK*n* frequency = CLK_SPIA*n* frequency (= 16-bit timer operating clock frequency) 0 (R/W): SPICLK*n* frequency = 16-bit timer output frequency / 2

For more information, refer to "SPIA Operating Clock."

Bit 3 LSBFST

This bit configures the data format (input/output permutation). 1 (R/W): LSB first 0 (R/W): MSB first

Bit 2 CPHA

Bit 1 CPOL

These bits set the SPI clock phase and polarity. For more information, refer to "SPI Clock (SPICLK*n*) Phase and Polarity."

Bit 0 MST

This bit sets the SPIA operating mode (master mode or slave mode).

1 (R/W): Master mode

0 (R/W): Slave mode

Note: The SPIA_nMOD register settings can be altered only when the SPIA_nCTL.MODEN bit = 0.

SPIA Ch.n Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SPIA_nCTL	15–8	-	0x00	-	R	-
	7–2	-	0x00	-	R	
	1	SFTRST	0	HO	R/W	
	0	MODEN	0	H0	R/W	

Bits 15–2 Reserved

Bit 1 SFTRST

This bit issues software reset to SPIA.

- 1 (W): Issue software reset
- 0 (W): Ineffective
- 1 (R): Software reset is executing.
- 0 (R): Software reset has finished. (During normal operation)

Setting this bit resets the SPIA shift register and transfer bit counter. This bit is automatically cleared after the reset processing has finished.

Bit 0 MODEN

This bit enables the SPIA operations.

- 1 (R/W): Enable SPIA operations (In master mode, the operating clock is supplied.)
- 0 (R/W): Disable SPIA operations (In master mode, the operating clock is stopped.)
- **Note:** If the SPIA_*n*CTL.MODEN bit is altered from 1 to 0 while sending/receiving data, the data being sent/received cannot be guaranteed. When setting the SPIA_*n*CTL.MODEN bit to 1 again after that, be sure to write 1 to the SPIA_*n*CTL.SFTRST bit as well.

SPIA Ch.n Transmit Data Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SPIA_nTXD	15–0	TXD[15:0]	0x0000	H0	R/W	-

Bits 15-0 TXD[15:0]

Data can be written to the transmit data buffer through these bits.

In master mode, writing to these bits starts data transfer.

Transmit data can be written when the SPIA_*n*INTF.TBEIF bit = 1 regardless of whether data is being output from the SDO*n* pin or not.

Note that the upper data bits that exceed the data bit length configured by the SPIA_nMOD. CHLN[3:0] bits will not be output from the SDOn pin.

Note: Be sure to avoid writing to the SPIA_*n*TXD register when the SPIA_*n*INTF.TBEIF bit = 0. Otherwise, transfer data cannot be guaranteed.

SPIA Ch.n Receive Data Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SPIA_nRXD	15–0	RXD[15:0]	0x0000	HO	R	-

Bits 15-0 RXD[15:0]

The receive data buffer can be read through these bits. Received data can be read when the SPIA_nINTF.RBFIF bit = 1 regardless of whether data is being input from the SDIn pin or not. Note that the upper bits that exceed the data bit length configured by the SPIA_nMOD.CHLN[3:0] bits become 0.

SPIA Ch.n Interrupt Flag Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SPIA_nINTF	15–8	-	0x00	-	R	-
	7	BSY	0	H0	R	
	6–4	-	0x0	-	R	
	3	OEIF	0	H0/S0	R/W	Cleared by writing 1.
	2	TENDIF	0	H0/S0	R/W	
	1	RBFIF	0	H0/S0	R	Cleared by reading the
						SPIA_nRXD register.
	0	TBEIF	1	H0/S0	R	Cleared by writing to the
						SPIA_nTXD register.

Bits 15–8 Reserved

Bit 7 BSY

This bit indicates the SPIA operating status.

1 (R): Transmit/receive busy (master mode), #SPISS*n* = Low level (slave mode) 0 (R): Idle

Bits 6–4 Reserved

- Bit 3 OEIF
- Bit 2 TENDIF
- Bit 1 RBFIF

Bit 0 TBEIF

These bits indicate the SPIA interrupt cause occurrence status.

- 1 (R): Cause of interrupt occurred
- 0 (R): No cause of interrupt occurred
- 1 (W): Clear flag (OEIF, TENDIF)
- 0 (W): Ineffective

The following shows the correspondence between the bit and interrupt: SPIA_nINTF.OEIF bit: Overrun error interrupt SPIA_nINTF.TENDIF bit: End-of-transmission interrupt SPIA_nINTF.RBFIF bit: Receive buffer full interrupt SPIA_nINTF.TBEIF bit: Transmit buffer empty interrupt

SPIA Ch.n Interrupt Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SPIA_nINTE	15–8	-	0x00	-	R	-
	7–4	-	0x0	-	R	
	3	OEIE	0	H0	R/W	
	2	TENDIE	0	H0	R/W	
	1	RBFIE	0	H0	R/W	
	0	TBEIE	0	H0	R/W	

Bits 15-4 Reserved

- Bit 3 OEIE
- Bit 2 TENDIE
- Bit 1 RBFIE

Bit 0 TBEIE

These bits enable SPIA interrupts.

1 (R/W): Enable interrupts

0 (R/W): Disable interrupts

The following shows the correspondence between the bit and interrupt:

SPIA_*n*INTE.OEIE bit: Overrun error interrupt

SPIA_nINTE.TENDIE bit: End-of-transmission interrupt

SPIA_nINTE.RBFIE bit: Receive buffer full interrupt

SPIA_nINTE.TBEIE bit: Transmit buffer empty interrupt

SPIA Ch.n Transmit Buffer Empty DMA Request Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SPIA_nTBEDMAEN	15–0	TBEDMAEN[15:0]	0x0000	HO	R/W	-

Bits 15–0 TBEDMAEN[15:0]

These bits enable the SPIA to issue a DMA transfer request to the corresponding DMA channel (Ch.0–Ch.15) when a transmit buffer empty state has occurred.

1 (R/W): Enable DMA transfer request

0 (R/W): Disable DMA transfer request

Each bit corresponds to a DMA controller channel. The high-order bits for the unimplemented channels are ineffective.

SPIA Ch.n Receive Buffer Full DMA Request Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SPIA_nRBFDMAEN	15–0	RBFDMAEN[15:0]	0x0000	H0	R/W	_

Bits 15–0 RBFDMAEN[15:0]

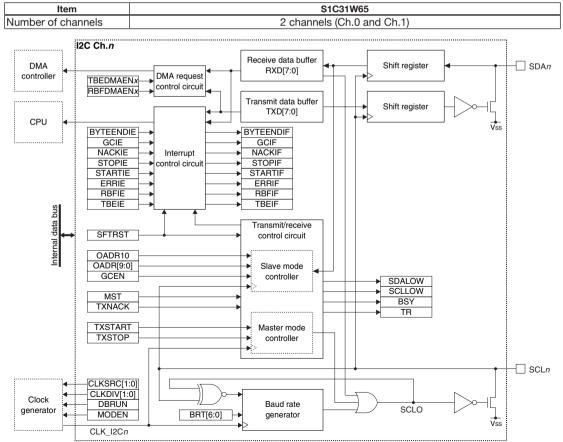
These bits enable the SPIA to issue a DMA transfer request to the corresponding DMA channel (Ch.0–Ch.15) when a receive buffer full state has occurred.

1 (R/W): Enable DMA transfer request

0 (R/W): Disable DMA transfer request

Each bit corresponds to a DMA controller channel. The high-order bits for the unimplemented channels are ineffective.

15 I²C (I2C)


15.1 Overview

The I2C is a subset of the I2C bus interface. The features of the I2C are listed below.

- Functions as an I²C bus master (single master) or a slave device.
- Supports standard mode (up to 100 kbit/s) and fast mode (up to 400 kbit/s).
- Supports 7-bit and 10-bit address modes.
- Supports clock stretching.
- Includes a baud rate generator for generating the clock in master mode.
- No clock source is required to run the I2C in slave mode, as it can run with the I2C bus signals only.
- Slave mode is capable of being operated in SLEEP mode allowing wake-up by an interrupt when an address match is detected.
- Master mode supports automatic bus clear sending function.
- Can generate receive buffer full, transmit buffer empty, and other interrupts.
- Can issue a DMA transfer request when a receive buffer full or a transmit buffer empty occurs.
- The input filter for the SDA and SCL inputs does not comply with the standard for removing noise spikes less than 50 ns.

Figure 15.1.1 shows the I2C configuration.

Table 15.1.1 I2C Channel Configuration of S1C31W65

15.2 Input/Output Pins and External Connections

15.2.1 List of Input/Output Pins

Table 15.2.1.1 lists the I2C pins.

Table 15.2.1.1 List of I2C Pins					
Pin name	I/O*	Initial status*	Function		
SDAn	I/O	I	I ² C bus serial data input/output pin		
SCLn	I/O	1	I ² C bus clock input/output pin		

* Indicates the status when the pin is configured for the I2C.

If the port is shared with the I2C pin and other functions, the I2C input/output function must be assigned to the port before activating the I2C. For more information, refer to the "I/O Ports" chapter.

15.2.2 External Connections

Figure 15.2.2.1 shows a connection diagram between the I2C in this IC and external I²C devices.

The serial data (SDA) and serial clock (SCL) lines must be pulled up with an external resistor.

When the I2C is set into master mode, one or more slave devices that have a unique address may be connected to the I²C bus. When the I2C is set into slave mode, one or more master and slave devices that have a unique address may be connected to the I²C bus.



Figure 15.2.2.1 Connections between I2C and External I²C Devices

- **Notes:** The SDA and SCL lines must be pulled up to a VDD of this IC or lower voltage. However, if the I2C input/output ports are configured with the over voltage tolerant fail-safe type I/O, these lines can be pulled up to a voltage exceeding the VDD of this IC but within the recommended operating voltage range of this IC.
 - The internal pull-up resistors for the I/O ports cannot be used for pulling up SDA and SCL.
 - When the I2C is set into master mode, no other master device can be connected to the I²C bus.

15.3 Clock Settings

15.3.1 I2C Operating Clock

Master mode operating clock

When using the I2C Ch.*n* in master mode, the I2C Ch.*n* operating clock CLK_I2C*n* must be supplied to the I2C Ch.*n* from the clock generator. The CLK_I2C*n* supply should be controlled as in the procedure shown below.

- 1. Enable the clock source in the clock generator if it is stopped (refer to "Clock Generator" in the "Power Supply, Reset, and Clocks" chapter).
- 2. Set the following I2C_nCLK register bits:
 - I2C_nCLK.CLKSRC[1:0] bits (Clock source selection)
 - I2C_nCLK.CLKDIV[1:0] bits (Clock division ratio selection = Clock frequency setting)

When using the I2C in master mode during SLEEP mode, the I2C Ch.n operating clock CLK_I2Cn must be configured so that it will keep supplying by writing 0 to the CLGOSC_xxxSLPC bit for the CLK_I2Cn clock source.

The I2C operating clock should be selected so that the baud rate generator will be configured easily.

Slave mode operating clock

The I2C set to slave mode uses the SCL supplied from the I²C master as its operating clock. The clock setting by the I2C_nCLK register is ineffective.

The I2C keeps operating using the clock supplied from the external I²C master even if all the internal clocks halt during SLEEP mode, so the I2C can receive data and can generate receive buffer full interrupts.

15.3.2 Clock Supply During Debugging

In master mode, the CLK_I2Cn supply during debugging should be controlled using the I2C_nCLK.DBRUN bit. The CLK_I2Cn supply to the I2C Ch.n is suspended when the CPU enters debug state if the I2C_nCLK.DBRUN bit = 0. After the CPU returns to normal operation, the CLK_I2Cn supply resumes. Although the I2C Ch.n stops operating when the CLK_I2Cn supply is suspended, the output pin and registers retain the status before debug state was entered. If the I2C_nCLK.DBRUN bit = 1, the CLK_I2Cn supply is not suspended and the I2C Ch.n will keep operating in debug state.

In slave mode, the I2C Ch.n operates with the external I²C master clock input from the SCLn pin regardless of whether the CPU is placed into debug state or normal operation state.

15.3.3 Baud Rate Generator

The I2C includes a baud rate generator to generate the serial clock SCL used in master mode. The I2C set to slave mode does not use the baud rate generator, as it operates with the serial clock input from the SCLn pin.

Setting data transfer rate (for master mode)

The transfer rate is determined by the I2C_*n*BR.BRT[6:0] bit settings. Use the following equations to calculate the setting values for obtaining the desired transfer rate.

$$bps = \frac{f_{CLK_I2Cn}}{(BRT+3) \times 2} \qquad BRT = \frac{f_{CLK_I2Cn}}{bps \times 2} - 3 \qquad (Eq. 15.1)$$

Where

bps: Data transfer rate [bit/s]

 $\label{eq:clk_l2Cn} \mbox{fclk_l2Cn} : I2C \mbox{ operating clock frequency [Hz]}$

- BRT: I2C_nBR.BRT[6:0] bits setting value (1 to 127)
- * The equations above do not include SCL rising/falling time and delay time by clock stretching (see Figure 15.3.3.1).
- **Note**: The I²C bus transfer rate is limited to 100 kbit/s in standard mode or 400 kbit/s in fast mode. Do not set a transfer rate exceeding the limit.

Baud rate generator clock output and operations for supporting clock stretching

Figure 15.3.3.1 shows the clock generated by the baud rate generator and the clock waveform on the $I^{2}C$ bus.

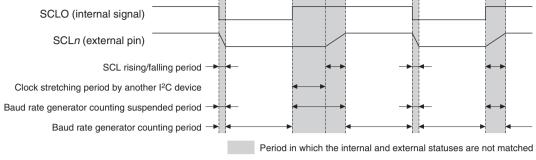


Figure 15.3.3.1 Baud Rate Generator Output Clock and SCLn Output Waveform

The baud rate generator output clock SCLO is compared with the SCL*n* pin status and the results are returned to the baud rate generator. If a mismatch has occurred between SCLO and SCL*n* pin levels, the baud rate generator suspends counting. This extends the clock to control data transfer during the SCL signal rising/falling period and clock stretching period in which SCL is fixed at low by a slave device.

15.4 Operations

15.4.1 Initialization

The I2C Ch.n should be initialized with the procedure shown below.

When using the I2C in master mode

- 1. Configure the operating clock and the baud rate generator using the I2C_nCLK and I2C_nBR registers.
- 2. Assign the I2C Ch.n input/output function to the ports. (Refer to the "I/O Ports" chapter.)
- 3. Set the following bits when using the interrupt:

 Write 1 to the interrupt flags in the I2C_nINTF register.
 Set the interrupt enable bits in the I2C_nINTE register to 1.

 4. Set the following I2C_nCTL register bits:

 Set the I2C_nCTL.MST bit to 1.
 Set the I2C_nCTL.SFTRST bit to 1.
 Set the I2C_nCTL.MODEN bit to 1.

When using the I2C in slave mode

- Set the following I2C_nMOD register bits:
 I2C_nMOD.OADR10 bit
 I2C_nMOD.GCEN bit
 (Set 10/7-bit address mode)
 (Enable response to general call address)
- 2. Set its own address to the I2C_nOADR.OADR[9:0] (or OADR[6:0]) bits.
- 3. Assign the I2C Ch.n input/output function to the ports. (Refer to the "I/O Ports" chapter.)
- 4. Set the following bits when using the interrupt:

-	Write 1 to the interrupt flags in the I2C_nINTF register.	(Clear interrupt flags)
-	Set the interrupt enable bits in the I2C_ <i>n</i> INTE register to 1.	(Enable interrupts)

- 5. Set the following I2C_nCTL register bits:
 - Set the I2C_nCTL.MST bit to 0.(Set slave mode)- Set the I2C_nCTL.SFTRST bit to 1.(Execute software reset)
 - Set the I2C_*n*CTL.MODEN bit to 1. (Enable I2C Ch.*n* operations)

15.4.2 Data Transmission in Master Mode

A data sending procedure in master mode and the I2C Ch.*n* operations are shown below. Figures 15.4.2.1 and 15.4.2.2 show an operation example and a flowchart, respectively.

Data sending procedure

- 1. Issue a START condition by setting the I2C_nCTL.TXSTART bit to 1.
- Wait for a transmit buffer empty interrupt (I2C_nINTF.TBEIF bit = 1) or a START condition interrupt (I2C_ nINTF.STARTIF bit = 1).

Clear the I2C_nINTF.STARTIF bit by writing 1 after the interrupt has occurred.

- 3. Write the 7-bit slave address to the I2C_nTXD.TXD[7:1] bits and 0 that represents WRITE as the data transfer direction to the I2C_nTXD.TXD0 bit.
- 4. (When DMA is used) Configure the DMA controller and set a DMA transfer request enable bit in the I2C_ *n*TBEDMAEN register to 1 (DMA transfer request enabled). (This automates the data sending procedure Steps 5, 6, and 8.)
- 5. (When DMA is not used) Wait for a transmit buffer empty interrupt (I2C_nINTF.TBEIF bit = 1) generated when an ACK is received.
- 6. (When DMA is not used) Write transmit data to the I2C_nTXD register.
- 7. If a NACK reception interrupt (I2C_*n*INTF.NACKIF bit = 1) has occurred, go to Step 9 or 1 after clearing the I2C_*n*INTF.NACKIF bit.
- 8. (When DMA is not used) Repeat Steps 5 and 6 until the end of transmit data.
- 9. Issue a STOP condition by setting the I2C_*n*CTL.TXSTOP bit to 1.
- Wait for a STOP condition interrupt (I2C_nINTF.STOPIF bit = 1).
 Clear the I2C_nINTF.STOPIF bit by writing 1 after the interrupt has occurred.

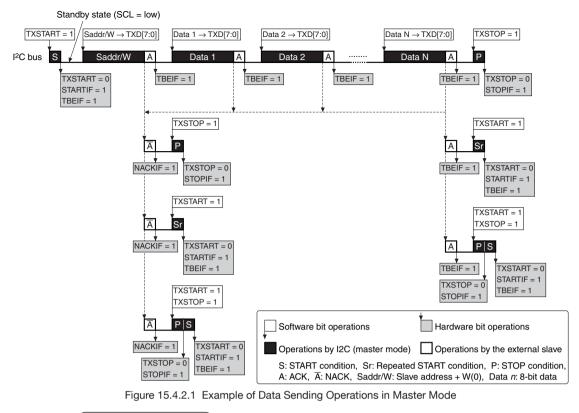
Data sending operations

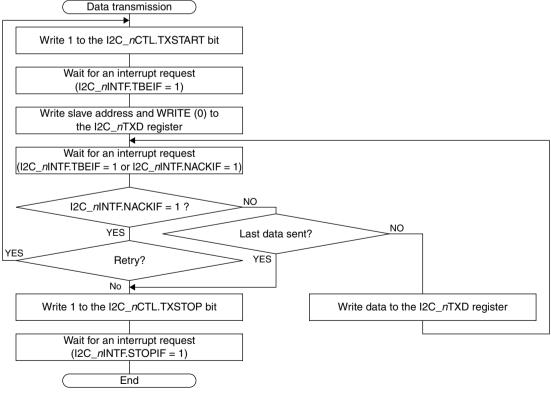
Generating a START condition

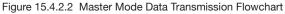
The I2C Ch.*n* starts generating a START condition when the I2C_*n*CTL.TXSTART bit is set to 1. When the generating operation has completed, the I2C Ch.*n* clears the I2C_*n*CTL.TXSTART bit to 0 and sets both the I2C_*n*INTF.STARTIF and I2C_*n*INTF.TBEIF bits to 1.

Sending slave address and data

If the I2C_*n*INTF.TBEIF bit = 1, a slave address or data can be written to the I2C_*n*TXD register. The I2C Ch.*n* pulls down SCL to low and enters standby state until data is written to the I2C_*n*TXD register. The writing operation triggers the I2C Ch.*n* to send the data to the shift register automatically and to output eight clock pulses and data bits to the I²C bus.


When the slave device returns an ACK as the response, the I2C_nINTF.TBEIF bit is set to 1. After this interrupt occurs, the subsequent data may be sent or a STOP/repeated START condition may be issued to terminate transmission. If the slave device returns NACK, the I2C_nINTF.NACKIF bit is set to 1 without setting the I2C_nINTF.TBEIF bit.


Generating a STOP/repeated START condition


After the I2C_nINTF.TBEIF bit is set to 1 (transmit buffer empty) or the I2C_nINTF.NACKIF bit is set to 1 (NACK received), setting the I2C_nCTL.TXSTOP bit to 1 generates a STOP condition. When the bus free time (tBUF defined in the I²C Specifications) has elapsed after the STOP condition has been generated, the I2C_nCTL.TXSTOP bit is cleared to 0 and the I2C_nINTF.STOPIF bit is set to 1.

When setting the I2C_*n*CTL.TXSTART bit to 1 while the I2C_*n*INTF.TBEIF bit = 1 (transmit buffer empty) or the I2C_*n*INTF.NACKIF bit = 1 (NACK received), the I2C Ch.*n* generates a repeated START condition. When the repeated START condition has been generated, the I2C_*n*INTF.STARTIF and I2C_*n*INTF. TBEIF bits are both set to 1 same as when a START condition has been generated.

15 I²C (I2C)

Data transmission using DMA

By setting the I2C_*n*TBEDMAEN.TBEDMAEN*x* bit to 1 (DMA transfer request enabled), a DMA transfer request is sent to the DMA controller and transmit data is transferred from the specified memory to the I2C_*n*TXD register via DMA Ch.*x* when the I2C_*n*INTF.TBEIF bit is set to 1 (transmit buffer empty).

This automates the data sending procedure Steps 5, 6, and 8 described above.

The transfer source/destination and control data must be set for the DMA controller and the relevant DMA channel must be enabled to start a DMA transfer in advance so that transmit data will be transferred to the I2C_*n*TXD register. For more information on DMA, refer to the "DMA Controller" chapter.

	Item	Setting example				
End pointer	Transfer source	Memory address in which the last transmit data is stored				
	Transfer destination	I2C_nTXD register address				
Control data	dst_inc	0x3 (no increment)				
	dst_size	0x0 (byte)				
	src_inc	0x0 (+1)				
	src_size	0x0 (byte)				
	R_power	0x0 (arbitrated for every transfer)				
	n_minus_1	Number of transfer data				
	cycle_ctrl	0x1 (basic transfer)				

Table 15.4.2.1 DMA Data Structure Configuration Example (for Data Transmission)

15.4.3 Data Reception in Master Mode

A data receiving procedure in master mode and the I2C Ch.*n* operations are shown below. Figures 15.4.3.1 and 15.4.3.2 show an operation example and a flowchart, respectively.

Data receiving procedure

- 1. When receiving one-byte data, write 1 to the I2C_nCTL.TXNACK bit.
- 2. Issue a START condition by setting the I2C_*n*CTL.TXSTART bit to 1.
- Wait for a transmit buffer empty interrupt (I2C_nINTF.TBEIF bit = 1) or a START condition interrupt (I2C_ nINTF.STARTIF bit = 1).

Clear the I2C_nINTF.STARTIF bit by writing 1 after the interrupt has occurred.

- 4. Write the 7-bit slave address to the I2C_*n*TXD.TXD[7:1] bits and 1 that represents READ as the data transfer direction to the I2C_*n*TXD.TXD0 bit.
- 5. (When DMA is used) Configure the DMA controller and set a DMA transfer request enable bit in the I2C_ *n*RBFDMAEN register to 1 (DMA transfer request enabled). (This automates the data receiving procedure Steps 6, 8, and 10.)
- 6. (When DMA is not used) Wait for a receive buffer full interrupt (I2C_nINTF.RBFIF bit = 1) generated when a one-byte reception has completed.
- 7. Perform one of the operations below when the last or next-to-last data is received.
 - i. When the next-to-last data is received, write 1 to the I2C_nCTL.TXNACK bit to send a NACK after the last data is received, and then go to Step 8.
 - ii. When the last data is received, read the received data from the I2C_*n*RXD register and set the I2C_*n*CTL.TXSTOP to 1 to generate a STOP condition. Then go to Step 11.
- 8. (When DMA is not used) Read the received data from the I2C_nRXD register.
- If a NACK reception interrupt (I2C_nINTF.NACKIF bit = 1) has occurred, clear the I2C_nINTF.NACKIF bit and issue a STOP condition by setting the I2C_nCTL.TXSTOP bit to 1. Then go to Step 11 or Step 2 if making a retry.
- 10. (When DMA is not used) Repeat Steps 6 to 8 until the end of data reception.
- Wait for a STOP condition interrupt (I2C_nINTF.STOPIF bit = 1). Clear the I2C_nINTF.STOPIF bit by writing 1 after the interrupt has occurred.

Data receiving operations

Generating a START condition

It is the same as the data transmission in master mode.

Sending slave address

It is the same as the data transmission in master mode. Note, however, that the I2C_nTXD.TXD0 bit must be set to 1 that represents READ as the data transfer direction to issue a request to the slave to send data.

Receiving data

After the slave address has been sent, the slave device sends an ACK and the first data. The I2C Ch.n sets the I2C_nINTF.RBFIF bit to 1 after the data reception has completed. Furthermore, the I2C Ch.n returns an ACK. To return a NACK, such as for a response after the last data has been received, write 1 to the I2C_nCTL.TXNACK bit before the I2C_nINTF.RBFIF bit is set to 1.

The received data can be read out from the I2C_nRXD register after a receive buffer full interrupt has occurred. The I2C Ch.n pulls down SCL to low and enters standby state until data is read out from the I2C_nRXD register.

This reading triggers the I2C Ch.n to start subsequent data reception.

Generating a STOP or repeated START condition

It is the same as the data transmission in master mode.

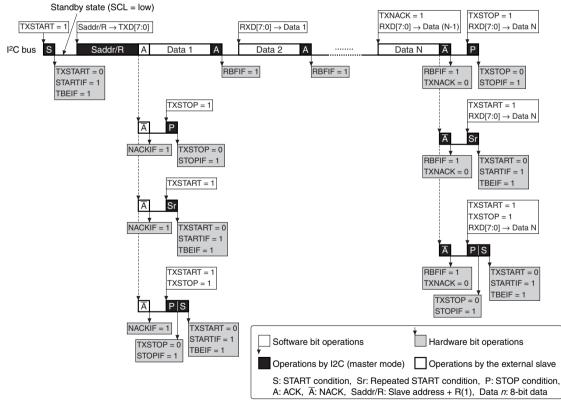


Figure 15.4.3.1 Example of Data Receiving Operations in Master Mode

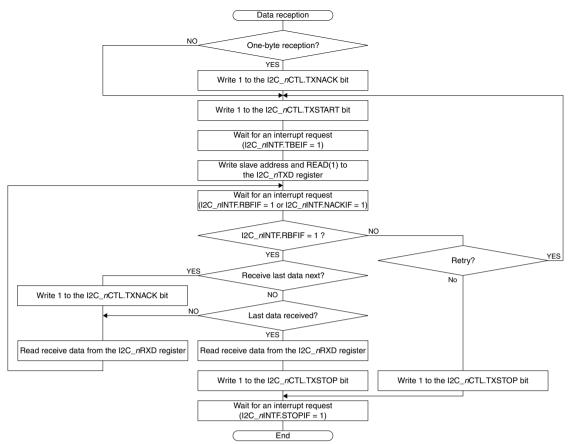
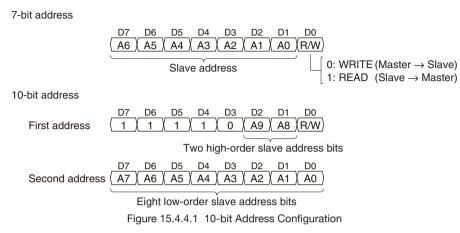


Figure 15.4.3.2 Master Mode Data Reception Flowchart

Data reception using DMA

By setting the I2C_*n*RBFDMAEN.RBFDMAEN*x* bit to 1 (DMA transfer request enabled), a DMA transfer request is sent to the DMA controller and the received data is transferred from the I2C_*n*RXD register to the specified memory via DMA Ch_x when the I2C_*n*INTF.RBFIF bit is set to 1 (receive buffer full).

This automates the data receiving procedure Steps 6, 8, and 10 described above.


The transfer source/destination and control data must be set for the DMA controller and the relevant DMA channel must be enabled to start a DMA transfer in advance. For more information on DMA, refer to the "DMA Controller" chapter.

Item End pointer Transfer source I		Setting example		
		I2C_nRXD register address		
	Transfer destination	Memory address to which the last received data is stored		
Control data	dst_inc	0x0 (+1)		
	dst_size	0x0 (byte)		
	src_inc	0x3 (no increment)		
	src_size	0x0 (byte)		
	R_power	0x0 (arbitrated for every transfer)		
	n_minus_1	Number of receive data		
	cycle_ctrl	0x1 (basic transfer)		

Table 15.4.3.1 DMA Data Structure Configuration Example (for Data Reception)

15.4.4 10-bit Addressing in Master Mode

A 10-bit address consists of the first address that contains two high-order bits and the second address that contains eight low-order bits.

The following shows a procedure to start data transfer in 10-bit address mode when the I2C Ch.*n* is placed into master mode (see the 7-bit mode descriptions above for control procedures when a NACK is received or sending/ receiving data). Figure 15.4.4.2 shows an operation example.

Starting data transmission in 10-bit address mode

- 1. Issue a START condition by setting the I2C_nCTL.TXSTART bit to 1.
- Wait for a transmit buffer empty interrupt (I2C_nINTF.TBEIF bit = 1) or a START condition interrupt (I2C_ nINTF.STARTIF bit = 1).
 Clear the I2C_nINTF.STARTIF bit by writing 1 after the interrupt has occurred.
- 3. Write the first address to the I2C_*n*TXD.TXD[7:1] bits and 0 that represents WRITE as the data transfer direction to the I2C_*n*TXD.TXD0 bit.
- 4. Wait for a transmit buffer empty interrupt (I2C_nINTF.TBEIF bit = 1).
- 5. Write the second address to the I2C_nTXD.TXD[7:0] bits.
- 6. Wait for a transmit buffer empty interrupt (I2C_nINTF.TBEIF bit = 1).
- 7. Perform data transmission.

Starting data reception in 10-bit address mode

1 to 6. These steps are the same as the data transmission starting procedure described above.

- 7. Issue a repeated START condition by setting the I2C_nCTL.TXSTART bit to 1.
- Wait for a transmit buffer empty interrupt (I2C_nINTF.TBEIF bit = 1) or a START condition interrupt (I2C_ nINTF.STARTIF bit = 1).

Clear the I2C_nINTF.STARTIF bit by writing 1 after the interrupt has occurred.

- 9. Write the first address to the I2C_nTXD.TXD[7:1] bits and 1 that represents READ as the data transfer direction to the I2C_nTXD.TXD0 bit.
- 10. Perform data reception.

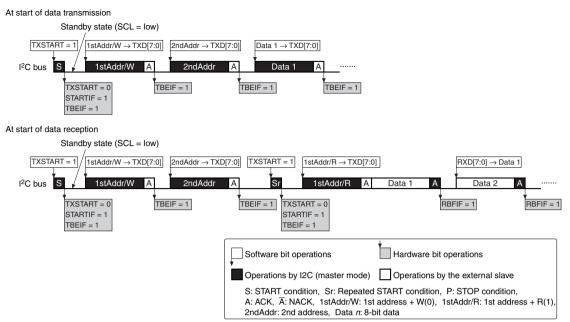


Figure 15.4.4.2 Example of Data Transfer Starting Operations in 10-bit Address Mode (Master Mode)

15.4.5 Data Transmission in Slave Mode

A data sending procedure in slave mode and the I2C Ch.*n* operations are shown below. Figures 15.4.5.1 and 15.4.5.2 show an operation example and a flowchart, respectively.

Data sending procedure

- Wait for a START condition interrupt (I2C_nINTF.STARTIF bit = 1). Clear the I2C_nINTF.STARTIF bit by writing 1 after the interrupt has occurred.
- Check to see if the I2C_nINTF.TR bit = 1 (transmission mode).
 (Start a data receiving procedure if the I2C_nINTF.TR bit = 0.)
- 3. Write transmit data to the I2C_nTXD register.
- 4. Wait for a transmit buffer empty interrupt (I2C_*n*INTF.TBEIF bit = 1), a NACK reception interrupt (I2C_ *n*INTF.NACKIF bit = 1), or a STOP condition interrupt (I2C_*n*INTF.STOPIF bit = 1).
 - i. Go to Step 3 when a transmit buffer empty interrupt has occurred.
 - ii. Go to Step 5 after clearing the I2C_nINTF.NACKIF bit when a NACK reception interrupt has occurred.
 - iii. Go to Step 6 when a STOP condition interrupt has occurred.
- 5. Wait for a STOP condition interrupt (I2C_*n*INTF.STOPIF bit = 1) or a START condition interrupt (I2C_*n*INTF.STARTIF bit = 1).
 - i. Go to Step 6 when a STOP condition interrupt has occurred.
 - ii. Go to Step 2 when a START condition interrupt has occurred.
- 6. Clear the I2C_nINTF.STOPIF bit and then terminate data sending operations.

Data sending operations

START condition detection and slave address check

While the I2C_nCTL.MODEN bit = 1 and the I2C_nCTL.MST bit = 0 (slave mode), the I2C Ch.n monitors the I²C bus. When the I2C Ch.n detects a START condition, it starts receiving of the slave address sent from the master. If the received address is matched with the own address set to the I2C_nOADR.OADR[6:0] bits (when the I2C_nMOD.OADR10 bit = 0 (7-bit address mode)) or the I2C_nOADR.OADR[9:0] bits (when the I2C_nMOD.OADR10 bit = 1 (10-bit address mode)), the I2C_nINTF.STARTIF bit and the I2C_nINTF.BSY bit are both set to 1. The I2C Ch.n sets the I2C_nINTF.TR bit to the R/W bit value in the received address. If this value is 1, the I2C Ch.n sets the I2C_nINTF.TBEIF bit to 1 and starts data sending operations.

Sending the first data byte

After the valid slave address has been received, the I2C Ch.*n* pulls down SCL to low and enters standby state until data is written to the I2C_*n*TXD register. This puts the I²C bus into clock stretching state and the external master into standby state. When transmit data is written to the I2C_*n*TXD register, the I2C Ch.*n* clears the I2C_*n*INTF.TBEIF bit and sends an ACK to the master. The transmit data written in the I2C_*n*TXD register is automatically transferred to the shift register and the I2C_*n*INTF.TBEIF bit is set to 1. The data bits in the shift register are output in sequence to the I²C bus.

Sending subsequent data

If the I2C_*n*INTF.TBEIF bit = 1, subsequent transmit data can be written during data transmission. If the I2C_*n*INTF.TBEIF bit is still set to 1 when the data transmission from the shift register has completed, the I2C Ch.*n* pulls down SCL to low (sets the I²C bus into clock stretching state) until transmit data is written to the I2C_*n*TXD register.

If the next transmit data already exists in the I2C_*n*TXD register or data has been written after the above, the I2C Ch.*n* sends the subsequent eight-bit data when an ACK from the external master is received. At the same time, the I2C_*n*INTF.BYTEENDIF bit is set to 1. If a NACK is received, the I2C_*n*INTF.NACKIF bit is set to 1 without sending data.

STOP/repeated START condition detection

While the I2C_nCTL.MST bit = 0 (slave mode) and the I2C_nINTF.BSY = 1, the I2C Ch.n monitors the I²C bus. When the I2C Ch.n detects a STOP condition, it terminates data sending operations. At this time, the I2C_nINTF.BSY bit is cleared to 0 and the I2C_nINTF.STOPIF bit is set to 1. Also when the I2C Ch.n detects a repeated START condition, it terminates data sending operations. In this case, the I2C_nINTF.STARTIF bit is set to 1.

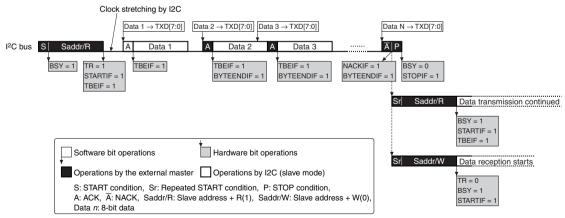


Figure 15.4.5.1 Example of Data Sending Operations in Slave Mode

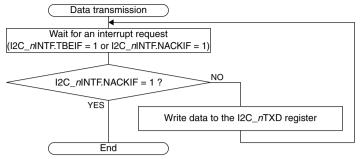


Figure 15.4.5.2 Slave Mode Data Transmission Flowchart

15.4.6 Data Reception in Slave Mode

A data receiving procedure in slave mode and the I2C Ch.*n* operations are shown below. Figures 15.4.6.1 and 15.4.6.2 show an operation example and a flowchart, respectively.

Data receiving procedure

- 1. When receiving one-byte data, write 1 to the I2C_nCTL.TXNACK bit.
- 2. Wait for a START condition interrupt (I2C_*n*INTF.STARTIF bit = 1).
- Check to see if the I2C_nINTF.TR bit = 0 (reception mode).
 (Start a data sending procedure if I2C_nINTF.TR bit = 1.)
- 4. Clear the I2C_*n*INTF.STARTIF bit by writing 1.
- 5. Wait for a receive buffer full interrupt (I2C_nINTF.RBFIF bit = 1) generated when a one-byte reception has completed or an end of transfer interrupt (I2C_nINTF.BYTEENDIF bit = 1). Clear the I2C_nINTF.BYTEENDIF bit by writing 1 after the interrupt has occurred.
- 6. If the next receive data is the last one, write 1 to the I2C_nCTL.TXNACK bit to send a NACK after it is received.
- 7. Read the received data from the $I2C_nRXD$ register.
- 8. Repeat Steps 5 to 7 until the end of data reception.
- 9. Wait for a STOP condition interrupt (I2C_*n*INTF.STOPIF bit = 1) or a START condition interrupt (I2C_*n*INTF.STARTIF bit = 1).
 - i. Go to Step 10 when a STOP condition interrupt has occurred.
 - ii. Go to Step 3 when a START condition interrupt has occurred.
- 10. Clear the I2C_nINTF.STOPIF bit and then terminate data receiving operations.

Data receiving operations

START condition detection and slave address check

It is the same as the data transmission in slave mode.

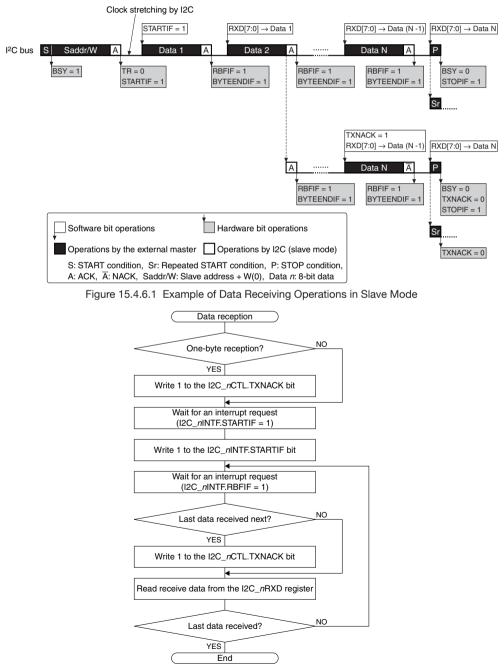
However, the I2C_nINTF.TR bit is cleared to 0 and the I2C_nINTF.TBEIF bit is not set.

If the I2C_*n*MOD.GCEN bit is set to 1 (general call address response enabled), the I2C Ch.*n* starts data receiving operations when the general call address is received.

Slave mode can be operated even in SLEEP mode, it makes it possible to wake the CPU up using an interrupt when an address match is detected.

Receiving the first data byte

After the valid slave address has been received, the I2C Ch.n sends an ACK and pulls down SCL to low until 1 is written to the I2C_nINTF.STARTIF bit. This puts the I²C bus into clock stretching state and the external master into standby state. When 1 is written to the I2C_nINTF.STARTIF bit, the I2C Ch.n releases SCL and receives data sent from the external master into the shift register. After eight-bit data has been received, the I2C Ch.n sends an ACK and pulls down SCL to low. The received data in the shift register is transferred to the receive data buffer and the I2C_nINTF.RBFIF and I2C_nINTF.BYTEENDIF bits are both set to 1. After that, the received data can be read out from the I2C_nRXD register.


Receiving subsequent data

When the received data is read out from the I2C_nRXD register after the I2C_nINTF.RBFIF bit has been set to 1, the I2C Ch.n clears the I2C_nINTF.RBFIF bit to 0, releases SCL, and receives subsequent data sent from the external master. After eight-bit data has been received, the I2C Ch.n sends an ACK and pulls down SCL to low. The received data in the shift register is transferred to the receive data buffer and the I2C_nINTF.RBFIF and I2C_nINTF.BYTEENDIF bits are both set to 1.

To return a NACK after eight-bit data is received, such as when terminating data reception, write 1 to the I2C_nCTL.TXNACK bit before the data reception is completed. The I2C_nCTL.TXNACK bit is automatically cleared to 0 after a NACK has been sent.

STOP/repeated START condition detection

It is the same as the data transmission in slave mode.

15-14

Seiko Epson Corporation

15.4.7 Slave Operations in 10-bit Address Mode

The I2C Ch.*n* functions as a slave device in 10-bit address mode when the I2C_*n*CTL.MST bit = 0 and the I2C_*n*MOD.OADR10 bit = 1.

The following shows the address receiving operations in 10-bit address mode. Figure 15.4.7.1 shows an operation example. See Figure 15.4.4.1 for the 10-bit address configuration.

10-bit address receiving operations

After a START condition is issued, the master sends the first address that includes the two high-order slave address bits and the R/W bit (= 0). If the received two high-order slave address bits are matched with the I2C_nOADR.OADR[9:8] bits, the I2C Ch.*n* returns an ACK. At this time, other slaves may returns an ACK as the two high-order bits may be matched.

Then the master sends the eight low-order slave address bits as the second address. If this address is matched with the I2C_nOADR.OADR[7:0] bits, the I2C Ch.n returns an ACK and starts data receiving operations.

If the master issues a request to the slave to send data (data reception in the master), the master generates a repeated START condition and sends the first address with the R/W bit set to 1. This reception switches the I2C Ch.*n* to data sending mode.

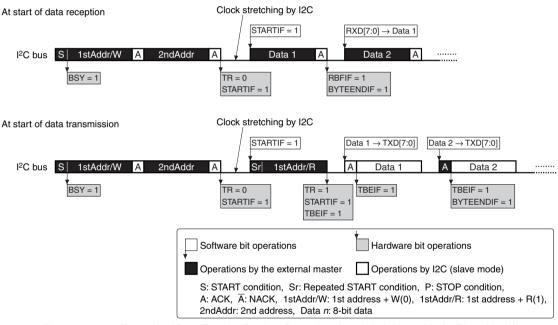


Figure 15.4.7.1 Example of Data Transfer Starting Operations in 10-bit Address Mode (Slave Mode)

15.4.8 Automatic Bus Clearing Operation

The I2C Ch.*n* set into master mode checks the SDA state immediately before generating a START condition. If SDA is set to a low level at this time, the I2C Ch.*n* automatically executes bus clearing operations that output up to ten clocks from the SCL*n* pin with SDA left free state.

When SDA goes high from low within nine clocks, the I2C Ch.*n* issues a START condition and starts normal operations. If SDA does not change from low when the I2C Ch.*n* outputs the ninth clock, it is regarded as an automatic bus clearing failure. In this case, the I2C Ch.*n* clears the I2C_*n*CTL.TXSTART bit to 0 and sets both the I2C_*n*INTF. ERRIF and I2C_*n*INTF.STARTIF bits to 1.

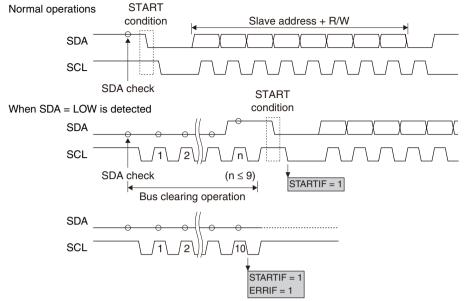


Figure 15.4.8.1 Automatic Bus Clearing Operation

15.4.9 Error Detection

The I2C includes a hardware error detection function.

Furthermore, the I2C_nINTF.SDALOW and I2C_nINTF.SCLLOW bits are provided to allow software to check whether the SDA and SCL lines are fixed at low. If unintended low level is detected on SDA or SCL, a software recovery processing, such as I2C Ch.n software reset, can be performed.

The table below lists the hardware error detection conditions and the notification method.

Table 15.4.9.1 Hardware Error Detection Function
--

No.	Error detecting period/timing	I ² C bus line monitored and error condition	Notification method							
	While the I2C Ch. <i>n</i> controls SDA to high for sending address, data, or a NACK	SDA = low	$I2C_nINTF.ERRIF = 1$							
	<master mode="" only=""> When 1 is written to the I2C_nCTL.TX- START bit while the I2C_nINTF.BSY bit = 0</master>	SCL = low	I2C_ <i>n</i> INTF.ERRIF = 1 I2C_ <i>n</i> CTL.TXSTART = 0 I2C_ <i>n</i> INTF.STARTIF = 1							
	<master mode="" only=""> When 1 is written to the I2C_nCTL.TX- STOP bit while the I2C_nINTF.BSY bit = 0</master>	SCL = low	$I2C_nINTF.ERRIF = 1$ $I2C_nCTL.TXSTOP = 0$ $I2C_nINTF.STOPIF = 1$							
	<master mode="" only=""> When 1 is written to the I2C_nCTL. TXSTART bit while the I2C_nINTF.BSY bit = 0 (Refer to "Au- tomatic Bus Clearing Operation.")</master>		I2C_nINTF.ERRIF = 1 I2C_nCTL.TXSTART = 0 I2C_nINTF.STARTIF = 1							

15.5 Interrupts

The I2C has a function to generate the interrupts shown in Table 15.5.1.

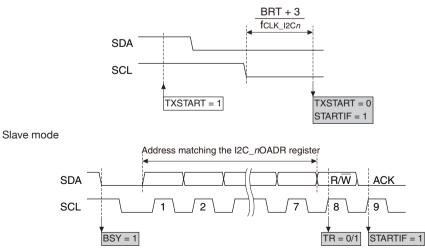
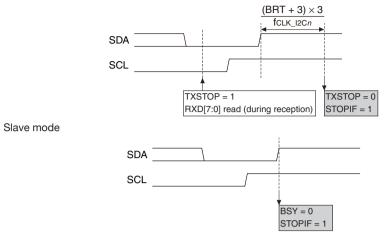

Interrupt	Interrupt flag	Set condition	Clear condition
End of data	I2C_nINTF.BYTEENDIF	When eight-bit data transfer and the following ACK/	Writing 1,
transfer		NACK transfer are completed	software reset
General call	I2C_nINTF.GCIF	Slave mode only: When the general call address is	Writing 1,
address reception		received	software reset
NACK reception	I2C_nINTF.NACKIF	When a NACK is received	Writing 1,
			software reset
STOP condition	I2C_nINTF. STOPIF	Master mode: When a STOP condition is generated	Writing 1,
		and the bus free time (tBUF) between STOP and	software reset
		START conditions has elapsed	
		Slave mode: When a STOP condition is detected	
		while the I2C Ch.n is selected as the slave currently	
		accessed	
START condition	I2C_nINTF. STARTIF	Master mode: When a START condition is issued	Writing 1,
			software reset
		Slave mode: When an address match is detected	
		(including general call)	
Error detection	I2C_nINTF. ERRIF	Refer to "Error Detection."	Writing 1,
			software reset
Receive buffer full	I2C_nINTF. RBFIF	When received data is loaded to the receive data	-
		buffer	data (to empty the
			receive data buffer),
			software reset
Transmit buffer	I2C_nINTF. TBEIF	Master mode: When a START condition is issued or	Writing transmit data
empty		when an ACK is received from the slave	
		Slave mode: When transmit data written to the	
		transmit data buffer is transferred to the shift regis-	
		ter or when an address match is detected with R/W	
		bit set to 1	

Table 15.5.1	I2C Interrupt	Function

The I2C provides interrupt enable bits corresponding to each interrupt flag. An interrupt request is sent to the CPU only when the interrupt flag, of which interrupt has been enabled by the interrupt enable bit, is set. For more information on interrupt control, refer to the "Interrupt" chapter.


(1) START condition interrupt

Master mode

(2) STOP condition interrupt

Master mode

(fcLK_J2Cn: I2C operating clock frequency [Hz], BRT: I2C_nBR.BRT[6:0] bits setting value (1 to 127)) Figure 15.5.1 START/STOP Condition Interrupt Timings

15.6 DMA Transfer Requests

The I2C has a function to generate DMA transfer requests from the causes shown in Table 15.6.1.

Table 15.6.1	DMA Transfer Request Causes of I2	2C
--------------	-----------------------------------	----

Cause to request DMA transfer	DMA transfer request flag	Set condition	Clear condition
Receive buffer full	Receive buffer full flag (I2C_nINTF.RBFIF)	When received data is loaded to the re- ceive data buffer	Reading received data (to empty the receive data buffer), software reset
Transmit buffer empty	flag (I2C_nINTF.TBEIF)	Master mode: When a START condition is issued or when an ACK is received from the slave Slave mode: When transmit data written to the transmit data buffer is transferred to the	
		shift register or when an address match is detected with R/W bit set to 1	

The I2C provides DMA transfer request enable bits corresponding to each DMA transfer request flag shown above for the number of DMA channels. A DMA transfer request is sent to the pertinent channel of the DMA controller only when the DMA transfer request flag, of which DMA transfer has been enabled by the DMA transfer request enable bit, is set. The DMA transfer request flag also serves as an interrupt flag, therefore, both the DMA transfer request flag also serves as an interrupt flag, therefore, both the DMA transfer request and the interrupt cannot be enabled at the same time. After a DMA transfer has completed, disable the DMA transfer to prevent unintended DMA transfer requests from being issued. For more information on the DMA control, refer to the "DMA Controller" chapter.

15.7 Control Registers

I2C Ch.n Clock Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
I2C_nCLK	15–9	-	0x00	-	R	_
	8	DBRUN	0	H0	R/W	
	7–6	-	0x0	-	R	
	5–4	CLKDIV[1:0]	0x0	H0	R/W	
	3–2	-	0	-	R	
	1–0	CLKSRC[1:0]	0x0	H0	R/W	

Bits 15–9 Reserved

Bit 8 DBRUN

This bit sets whether the I2C operating clock is supplied during debugging or not.

1 (R/W): Clock supplied during debugging

0 (R/W): No clock supplied during debugging

Bits 7–6 Reserved

Bits 5-4 CLKDIV[1:0]

These bits select the division ratio of the I2C operating clock.

Bits 3–2 Reserved

Bits 1–0 CLKSRC[1:0]

These bits select the clock source of the I2C.

Tabla 15 7 1	Clock Source	and Division	Patio Sattings
Table 15.7.1	CIOCK Source	and Division	Ratio Settings

I2C nCLK.	I2C_nCLK.CLKSRC[1:0] bits							
CLKDIV[1:0] bits	0x0	0x1	0x2	0x3				
CERDIV[1:0] bits	IOSC	OSC1	OSC3	EXOSC				
0x3	1/8	1/1	1/8	1/1				
0x2	1/4		1/4					
0x1	1/2		1/2					
0x0	1/1		1/1					

(Note) The oscillation circuits/external input that are not supported in this IC cannot be selected as the clock source.

Note: The I2C_*n*CLK register settings can be altered only when the I2C_*n*CTL.MODEN bit = 0.

I2C Ch.n Mode Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
I2C_nMOD	15–8	-	0x00	-	R	-
	7–3	-	0x00	-	R	
	2	OADR10	0	H0	R/W	
	1	GCEN	0	H0	R/W	
	0	-	0	-	R	

Bits 15–3 Reserved

Bit 2 OADR10

This bit sets the number of own address bits for slave mode. 1 (R/W): 10-bit address 0 (R/W): 7-bit address

Bit 1 GCEN

This bit sets whether to respond to master general calls in slave mode or not.

1 (R/W): Respond to general calls.

0 (R/W): Do not respond to general calls.

Bit 0 Reserved

Note: The I2C_nMOD register settings can be altered only when the I2C_nCTL.MODEN bit = 0.

I2C Ch.n Baud-Rate Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
I2C_nBR	15–8	-	0x00	-	R	-
	7	-	0	-	R	
	6–0	BRT[6:0]	0x7f	H0	R/W	

Bits 15–7 Reserved

15 I²C (I2C)

Bits 6-0 BRT[6:0]

These bits set the I2C Ch.*n* transfer rate for master mode. For more information, refer to "Baud Rate Generator."

- **Notes:** The I2C_*n*BR register settings can be altered only when the I2C_*n*CTL.MODEN bit = 0.
 - Be sure to avoid setting the I2C_nBR register to 0.

I2C Ch.n Own Address Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
I2C_nOADR	15–10	-	0x00	-	R	-
	9–0	OADR[9:0]	0x000	H0	R/W	

Bits 15–10 Reserved

Bits 9-0 OADR[9:0]

These bits set the own address for slave mode.

The I2C_nOADR.OADR[9:0] bits are effective in 10-bit address mode (I2C_nMOD.OADR10 bit = 1), or the I2C_nOADR.OADR[6:0] bits are effective in 7-bit address mode (I2C_nMOD.OADR10 bit = 0).

Note: The I2C_nOADR register settings can be altered only when the I2C_nCTL.MODEN bit = 0.

I2C Ch.n Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
I2C_nCTL	15–8	-	0x00	-	R	-
	7–6	-	0x0	-	R	
	5	MST	0	HO	R/W	
	4	TXNACK	0	H0/S0	R/W	
	3	TXSTOP	0	H0/S0	R/W	
	2	TXSTART	0	H0/S0	R/W	
	1	SFTRST	0	H0	R/W	
	0	MODEN	0	H0	R/W	

Bits 15–6 Reserved

Bit 5 MST

This bit selects the I2C Ch.n operating mode.

- 1 (R/W): Master mode
- 0 (R/W): Slave mode

Bit 4 TXNACK

This bit issues a request for sending a NACK at the next responding.

- 1 (W): Issue a NACK.
- 0 (W): Ineffective
- 1 (R): On standby or during sending a NACK
- 0 (R): NACK has been sent.

This bit is automatically cleared after a NACK has been sent.

Bit 3 TXSTOP

This bit issues a STOP condition in master mode. This bit is ineffective in slave mode.

- 1 (W): Issue a STOP condition.
- 0 (W): Ineffective
- 1 (R): On standby or during generating a STOP condition
- 0 (R): STOP condition has been generated.

This bit is automatically cleared when the bus free time (tBUF defined in the I²C Specifications) has elapsed after the STOP condition has been generated.

Bit 2 TXSTART

This bit issues a START condition in master mode. This bit is ineffective in slave mode.

- 1 (W): Issue a START condition.
- 0 (W): Ineffective
- 1 (R): On standby or during generating a START condition
- 0 (R): START condition has been generated.

This bit is automatically cleared when a START condition has been generated.

Bit 1 SFTRST

This bit issues software reset to the I2C.

- 1 (W): Issue software reset
- 0 (W): Ineffective
- 1 (R): Software reset is executing.
- 0 (R): Software reset has finished. (During normal operation)

Setting this bit resets the I2C transmit/receive control circuit and interrupt flags. This bit is automatically cleared after the reset processing has finished.

Bit 0 MODEN

This bit enables the I2C operations.

1 (R/W): Enable I2C operations (The operating clock is supplied.)

0 (R/W): Disable I2C operations (The operating clock is stopped.)

Note: If the I2C_*n*CTL.MODEN bit is altered from 1 to 0 while sending/receiving data, the data being sent/received cannot be guaranteed. When setting the I2C_*n*CTL.MODEN bit to 1 again after that, be sure to write 1 to the I2C_*n*CTL.SFTRST bit as well.

I2C Ch.n Transmit Data Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
I2C_nTXD	15–8	-	0x00	-	R	-
	7–0	TXD[7:0]	0x00	H0	R/W	

Bits 15–8 Reserved

Bits 7–0 TXD[7:0]

Data can be written to the transmit data buffer through these bits. Make sure the I2C_nINTF.TBEIF bit is set to 1 before writing data.

Note: Be sure to avoid writing to the I2C_nTXD register when the I2C_nINTF.TBEIF bit = 0, otherwise transmit data cannot be guaranteed.

I2C Ch.n Receive Data Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
I2C_nRXD	15–8	-	0x00	-	R	_
	7–0	RXD[7:0]	0x00	H0	R	

Bits 15–8 Reserved

Bits 7–0 RXD[7:0]

The receive data buffer can be read through these bits.

I2C Ch.n Status and Interrupt Flag Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
I2C_nINTF	15–13	-	0x0	-	R	_
	12	SDALOW	0	HO	R	
	11	SCLLOW	0	H0	R	
	10	BSY	0	H0/S0	R	
	9	TR	0	H0	R	
	8	-	0	-	R	
	7	BYTEENDIF	0	H0/S0	R/W	Cleared by writing 1.
	6	GCIF	0	H0/S0	R/W	
	5	NACKIF	0	H0/S0	R/W	
	4	STOPIF	0	H0/S0	R/W	
	3	STARTIF	0	H0/S0	R/W	
	2	ERRIF	0	H0/S0	R/W	
	1	RBFIF	0	H0/S0	R	Cleared by reading the I2C_nRXD register.
	0	TBEIF	0	H0/S0	R	Cleared by writing to the I2C_nTXD register.

Bits 15–13 Reserved

Bit 12 SDALOW

This bit indicates that SDA is set to low level.

- 1 (R): SDA = Low level
- 0 (R): SDA = High level

Bit 11 SCLLOW

This bit indicates that SCL is set to low level.

1 (R): SCL = Low level

0 (R): SCL = High level

Bit 10 BSY

This bit indicates that the I²C bus is placed into busy status.

- 1 (R): I²C bus busy
- 0 (R): I^2C bus free

Bit 9 TR

- This bit indicates whether the I2C is set in transmission mode or not.
- 1 (R): Transmission mode
- 0 (R): Reception mode

Bit 8 Reserved

Bit 7 BYTEENDIF

- Bit 6 GCIF
- Bit 5 NACKIF
- Bit 4 STOPIF
- Bit 3 STARTIF
- Bit 2 ERRIF
- Bit 1 RBFIF
- Bit 0 TBEIF

These bits indicate the I2C interrupt cause occurrence status.

- 1 (R): Cause of interrupt occurred
- 0 (R): No cause of interrupt occurred
- 1 (W): Clear flag
- 0 (W): Ineffective

The following shows the correspondence between the bit and interrupt:

I2C_*n*INTF.BYTEENDIF bit: End of transfer interrupt I2C_*n*INTF.GCIF bit: General call address reception interrupt

I2C_nINTF.GCIF bit:	General call address reception inter
I2C_nINTF.NACKIF bit:	NACK reception interrupt
I2C_nINTF.STOPIF bit:	STOP condition interrupt
I2C_nINTF.STARTIF bit:	START condition interrupt
I2C_nINTF.ERRIF bit:	Error detection interrupt
I2C_nINTF.RBFIF bit:	Receive buffer full interrupt
I2C_nINTF.TBEIF bit:	Transmit buffer empty interrupt

I2C Ch.n Interrupt Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
I2C_nINTE	15–8	-	0x00	-	R	-
	7	BYTEENDIE	0	H0	R/W	
	6	GCIE	0	H0	R/W	
	5	NACKIE	0	H0	R/W	
	4	STOPIE	0	H0	R/W	
	3	STARTIE	0	H0	R/W	
	2	ERRIE	0	H0	R/W	
	1	RBFIE	0	H0	R/W	
	0	TBEIE	0	H0	R/W	

Bits 15–8 Reserved

- Bit 7 BYTEENDIE
- Bit 6 GCIE
- Bit 5 NACKIE
- Bit 4 STOPIE
- Bit 3 STARTIE
- Bit 2 ERRIE
- Bit 1 RBFIE

Bit 0 TBEIE

These bits enable I2C interrupts.

1 (R/W): Enable interrupts

0 (R/W): Disable interrupts

The following shows the correspondence between the bit and interrupt:

I2C_nINTE.BYTEENDIE bit: End of transfer interrupt

I2C_nINTE.GCIE bit:	General call address reception interrupt
I2C_nINTE.NACKIE bit:	NACK reception interrupt
I2C_nINTE.STOPIE bit:	STOP condition interrupt
I2C_nINTE.STARTIE bit:	START condition interrupt
I2C_nINTE.ERRIE bit:	Error detection interrupt
I2C_nINTE.RBFIE bit:	Receive buffer full interrupt
I2C_nINTE.TBEIE bit:	Transmit buffer empty interrupt

I2C Ch.n Transmit Buffer Empty DMA Request Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
I2C_nTBEDMAEN	15–0	TBEDMAEN[15:0]	0x0000	H0	R/W	_

Bits 15-0 TBEDMAEN[15:0]

These bits enable the I2C to issue a DMA transfer request to the corresponding DMA controller channel (Ch.0–Ch.15) when a transmit buffer empty state has occurred.

1 (R/W): Enable DMA transfer request

0 (R/W): Disable DMA transfer request

Each bit corresponds to a DMA controller channel. The high-order bits for the unimplemented channels are ineffective.

I2C Ch.n Receive Buffer Full DMA Request Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
I2C_nRBFDMAEN	15–0	RBFDMAEN[15:0]	0x0000	H0	R/W	-

Bits 15-0 RBFDMAEN[15:0]

These bits enable the I2C to issue a DMA transfer request to the corresponding DMA controller channel (Ch.0–Ch.15) when a receive buffer full state has occurred.

1 (R/W): Enable DMA transfer request

0 (R/W): Disable DMA transfer request

Each bit corresponds to a DMA controller channel. The high-order bits for the unimplemented channels are ineffective.

16 16-bit PWM Timers (T16B)

16.1 Overview

T16B is a 16-bit PWM timer with comparator/capture functions. The features of T16B are listed below.

- Counter block
 - 16-bit up/down counter
 - A clock source and a clock division ratio for generating the count clock are selectable in each channel.
 - The count mode is configurable from combinations of up, down, or up/down count operations, and one-shot operations (counting for one cycle configured) or repeat operations (counting continuously until stopped via software).
 - Supports an event counter function using an external clock.
- Comparator/capture block
 - Supports up to six comparator/capture circuits to be included per one channel.
 - The comparator compares the counter value with the values specified via software to generate interrupt or DMA request signals, and a PWM waveform. (Can be used as an interval timer, PWM waveform generator, and external event counter.)
 - The capture circuit captures counter values using external/software trigger signals and generates interrupts or DMA requests. (Can be used to measure external event periods/cycles.)

Figure 16.1.1 shows the T16B configuration.

Item	S1C31W65
Number of channels	3 channels (Ch.0–Ch.2)
Event counter function	Ch.0: EXCL00 or EXCL01 pin input
	Ch.1: EXCL10 or EXCL11 pin input
	Ch.2: EXCL20 or EXCL21 pin input
Number of comparator/ capture circuits per channel	4 systems (0 to 3)
Timer generating signal output	Ch.0: TOUT00 to TOUT03 pin outputs (4 systems)
	Ch.1: TOUT10 to TOUT13 pin outputs (4 systems)
	Ch.2: TOUT20 to TOUT23 pin outputs (4 systems)
Capture signal input	Ch.0: CAP00 tp CAP03 pin inputs (4 systems)
	Ch.1: CAP10 to CAP13 pin inputs (4 systems)
	Ch.2: CAP20 to CAP23 pin inputs (4 systems)

Table 16.1.1 T16B Channel Configuration of S1C31W65

Note: In this chapter, '*n*' refers to a channel number, and '*m*' refers to an input/output pin number or a comparator/capture circuit number in a channel.

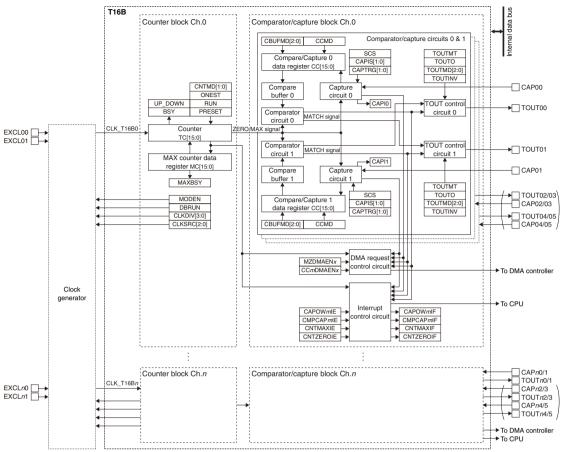


Figure 16.1.1 T16B Configuration

16.2 Input/Output Pins

Table 16.2.1 lists the T16B pins.

Table 16.2.1 List of T16B Pins

I/O*	Initial status*	Function
I	I (Hi-Z)	External clock input
O or I		TOUT signal output (in comparator mode) or
		capture trigger signal input (in capture mode)
	I	I I (Hi-Z) O or I O (L)

* Indicates the status when the pin is configured for T16B.

If the port is shared with the T16B pin and other functions, the T16B input/output function must be assigned to the port before activating T16B. For more information, refer to the "I/O Ports" chapter.

16.3 Clock Settings

16.3.1 T16B Operating Clock

When using T16B Ch.*n*, the T16B Ch.*n* operating clock CLK_T16B*n* must be supplied to T16B Ch.*n* from the clock generator. The CLK_T16B*n* supply should be controlled as in the procedure shown below.

1. Enable the clock source in the clock generator if it is stopped (refer to "Clock Generator" in the "Power Supply, Reset, and Clocks" chapter).

When an external clock is used, select the EXCLnm pin function (refer to the "I/O Ports" chapter).

- 2. Set the following T16B_nCLK register bits:
 - T16B_nCLK.CLKSRC[2:0] bits (Clock source selection)
 - T16B_nCLK.CLKDIV[3:0] bits (Clock division ratio selection = Clock frequency setting)

16.3.2 Clock Supply in SLEEP Mode

When using T16B during SLEEP mode, the T16B operating clock CLK_T16B*n* must be configured so that it will keep supplying by writing 0 to the CLGOSC_xxxxSLPC bit for the CLK_T16B*n* clock source.

If the CLGOSC.xxxxSLPC bit for the CLK_T16Bn clock source is 1, the CLK_T16Bn clock source is deactivated during SLEEP mode and T16B stops with the register settings and counter value maintained at those before entering SLEEP mode. After the CPU returns to normal mode, CLK_T16Bn is supplied and the T16B operation resumes.

16.3.3 Clock Supply During Debugging

The CLK_T16Bn supply during debugging should be controlled using the T16B_nCLK.DBRUN bit.

The CLK_T16B*n* supply to T16B Ch.*n* is suspended when the CPU enters debug state if the T16B_*n*CLK.DBRUN bit = 0. After the CPU returns to normal operation, the CLK_T16B*n* supply resumes. Although T16B Ch.*n* stops operating when the CLK_T16B*n* supply is suspended, the counter and registers retain the status before debug state was entered. If the T16B_*n*CLK.DBRUN bit = 1, the CLK_T16B*n* supply is not suspended and T16B Ch.*n* will keep operating in debug state.

16.3.4 Event Counter Clock

When EXCL*nm* is selected as the clock source using the T16B_nCLK.CLKSRC[2:0] bits, the channel functions as a timer or event counter that counts the EXCL*nm* pin input clocks.

The counter counts rising edges of the input signal. This can be changed so that the counter will count falling edges of the original signal by selecting EXCL*nm* inverted input as the clock source.

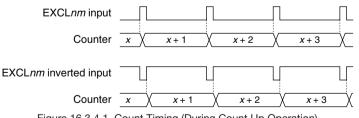


Figure 16.3.4.1 Count Timing (During Count Up Operation)

Note: When running the counter using the event counter clock, two dummy clocks must be input before the first counting up/down can be performed.

16.4 Operations

16.4.1 Initialization

T16B Ch.n should be initialized and started counting with the procedure shown below. Perform initial settings for comparator mode when using T16B as an interval timer, PWM waveform generator, or external event counter. Perform initial settings for capture mode when using T16B to measure external event periods/cycles.

Initial settings for comparator mode

- 1. Configure the T16B Ch.n operating clock.
- 2 Set the T16B_*n*CTL.MODEN bit to 1. (Enable T16B operations)
- 3. Set the following T16B *n*CCCTL0 and T16B *n*CCCTL1 register bits:
 - Set the T16B nCCCTLm.CCMD bit to 0.* (Set comparator mode) (Configure compare buffer)
 - T16B_nCCCTLm.CBUFMD[2:0] bits
 - * Another circuit in the comparator/capture circuit pair (circuits 0 and 1, 2 and 3, 4 and 5) can be set to capture mode.

Set the following bits when the TOUT*nm* output is used.

- T16B_nCCCTLm.TOUTMT bit
- (Select waveform generation signal) - T16B_nCCCTLm.TOUTMD[2:0] bits (Select TOUT signal generation mode) - T16B_nCCCTLm.TOUTINV bit (Select TOUT signal polarity) 4. Set the T16B_nMC register. (Set MAX counter data) 5. Set the T16B_nCCR0 and T16B_nCCR1 registers. (Set the counter comparison value) 6. Set the following bits when using the interrupt: - Write 1 to the interrupt flags in the T16B_*n*INTF register. (Clear interrupt flags) - Set the interrupt enable bits in the T16B_nINTE register to 1. (Enable interrupts) 7. Configure the DMA controller and set the following T16B control bits when using DMA transfer: - Write 1 to the DMA transfer request enable bits in the T16B_nMZDMAEN and T16B_nCCmDMAEN registers. (Enable DMA transfer requests) 8. Set the following T16B_nCTL register bits:
 - T16B nCTL.CNTMD[1:0] bits
 - T16B nCTL.ONEST bit
 - Set the T16B_nCTL.PRESET bit to 1.
 - Set the T16B *n*CTL.RUN bit to 1.

Initial settings for capture mode

1. Configure the T16B Ch.n operating clock. 2 Set the T16B *n*CTL.MODEN bit to 1. (Enable T16B operations) 3. Set the following T16B_nCCCTL0 and T16B_nCCCTL1 register bits: - Set the T16B_nCCCTLm.CCMD bit to 1.* (Set capture mode) - T16B_nCCCTLm.SCS bit (Set synchronous/asynchronous mode) - T16B_nCCCTLm.CAPIS[1:0] bits (Set trigger signal) - T16B_nCCCTLm.CAPTRG[1:0] bits (Select trigger edge) * Another circuit in the comparator/capture circuit pair (circuits 0 and 1, 2 and 3, 4 and 5) can be set to comparator mode. 4. Set the T16B_*n*MC register. (Set MAX counter data) 5. Set the following bits when using the interrupt: - Write 1 to the interrupt flags in the T16B_nINTF register. (Clear interrupt flags) - Set the interrupt enable bits in the T16B *n*INTE register to 1. (Enable interrupts)

(Select count up/down operation)

(Select one-shot/repeat operation)

(Reset counter)

(Start counting)

- 6. Configure the DMA controller and set the following T16B control bits when using DMA transfer:
 - Write 1 to the DMA transfer request enable bits in the T16B_*n*MZDMAEN and T16B_*n*CC*m*DMAEN registers. (Enable DMA transfer requests)
- 7. Set the following T16B_*n*CTL register bits:
 - T16B_nCTL.CNTMD[1:0] bits
 - T16B_nCTL.ONEST bit
 - Set the T16B_nCTL.PRESET bit to 1.
 - Set the T16B_*n*CTL.RUN bit to 1.

16.4.2 Counter Block Operations

(Select count up/down operation)

(Select one-shot/repeat operation) (Reset counter) (Start counting)

The counter in each counter block channel is a 16-bit up/down counter that counts the selected operating clock (count clock).

Count mode

The T16B_nCTL.CNTMD[1:0] bits allow selection of up, down, and up/down mode. The T16B_nCTL.ON-EST bit allows selection of repeat and one-shot mode. The counter operates in six counter modes specified with a combination of these modes.

Repeat mode enables the counter to continue counting until stopped via software. Select this mode to generate periodic interrupts at desired intervals or to generate timer output waveforms.

One-shot mode enables the counter to stop automatically. Select this mode to stop the counter after an interrupt has occurred once, such as for measuring pulse width or external event intervals and checking a specific lapse of time.

Up, down, and up/down mode configures the counter as an up counter, down counter and up/down counter, respectively.

MAX counter data register

The MAX counter data register (T16B_nMC.MC[15:0] bits) is used to set the maximum value of the counter (hereafter referred to as MAX value). This setting limits the count range to 0x0000–MAX value and determines the count and interrupt cycles. When the counter is set to repeat mode, the MAX value can be rewritten in the procedure shown below even if the counter is running.

- 1. Check to see if the T16B_nCTL.MAXBSY bit is set to 0.
- 2. Write the MAX value to the T16B_*n*MC.MC[15:0] bits.
- **Note**: When rewriting the MAX value, the new MAX value should be written after the counter has been reset to the previously set MAX value.

Counter reset

Setting the T16B_nCTL.PRESET bit to 1 resets the counter. This clears the counter to 0x0000 in up or up/down mode, or presets the MAX value to the counter in down mode.

The counter is also cleared to 0x0000 when the counter value exceeds the MAX value during count up operation.

Counting start

To start counting, set the T16B_nCTL.RUN bit to 1. The counting stop control depends on the count mode set.

Counter value read

The counter value can be read out from the T16B_*n*TC.TC[15:0] bits. However, since T16B operates on CLK_T16B*n*, one of the operations shown below is required to read correctly by the CPU.

- Read the counter value twice or more and check to see if the same value is read.
- Stop the timer and then read the counter value.

Counter status check

The counter operating status can be checked using the T16B_nCS.BSY bit. The T16B_nCS.BSY bit is set to 1 while the counter is running or 0 while the counter is idle.

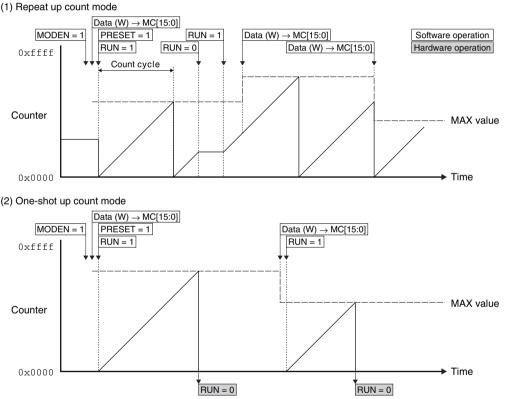
The current count direction can also be checked using the T16B_nCS.UP_DOWN bit. The T16B_nCS.UP_ DOWN bit is set to 1 during count up operation or 0 during count down operation.

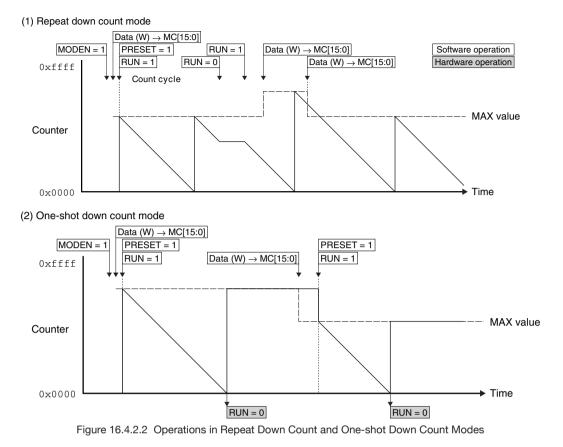
Operations in repeat up count and one-shot up count modes

In these modes, the counter operates as an up counter and counts from 0x0000 (or current value) to the MAX value.

In repeat up count mode, the counter returns to 0x0000 if it exceeds the MAX value and continues counting until the T16B_nCTL.RUN bit is set to 0. If the MAX value is altered to a value larger than the current counter value during counting, the counter keeps counting up to the new MAX value. If the MAX value is altered to a value smaller than the current counter value, the counter is cleared to 0x0000 and continues counting up to the new MAX value.

In one-shot up count mode, the counter returns to 0x0000 if it exceeds the MAX value and stops automatically at that point.




Figure 16.4.2.1 Operations in Repeat Up Count and One-shot Up Count Modes

Operations in repeat down count and one-shot down count modes

In these modes, the counter operates as a down counter and counts from the MAX value (or current value) to 0x0000.

In repeat down count mode, the counter returns to the MAX value if a counter underflow occurs and continues counting until the T16B_nCTL.RUN bit is set to 0. If the MAX value is altered during counting, the counter keeps counting down to 0x0000 and continues counting down from the new MAX value after a counter underflow occurs.

In one-shot down count mode, the counter returns to the MAX value if a counter underflow occurs and stops automatically at that point.

Operations in repeat up/down count and one-shot up/down count modes

In these modes, the counter operates as an up/down counter and counts as 0x0000 (or current value) \rightarrow the MAX value $\rightarrow 0x0000$.

In repeat up/down count mode, the counter repeats counting up from 0x0000 to the MAX value and counting down from the MAX value to 0x0000 until the T16B_nCTL.RUN bit is set to 0. If the MAX value is altered to a value larger than the current counter value during count up operation, the counter keeps counting up to the new MAX value. If the MAX value is altered to a value smaller than the current counter value, the counter is cleared to 0x0000 and continues counting up to the new MAX value. If the MAX value is altered to a value smaller than the current counter value, the counter is cleared to 0x0000 and continues counting up to the new MAX value. If the MAX value is altered during count down operation, the counter keeps counting down to 0x0000 and then starts counting up to the new MAX value. In one-shot up/down count mode, the counter stops automatically when it reaches 0x0000 during count down operation.

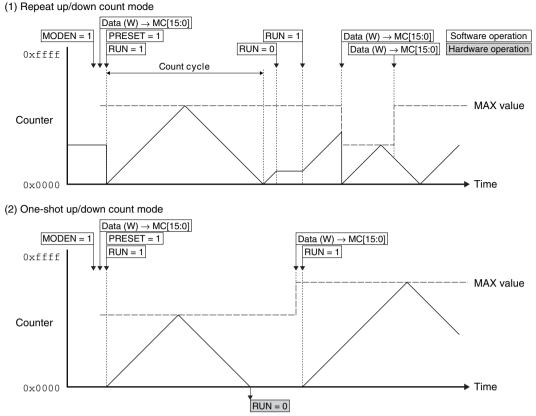


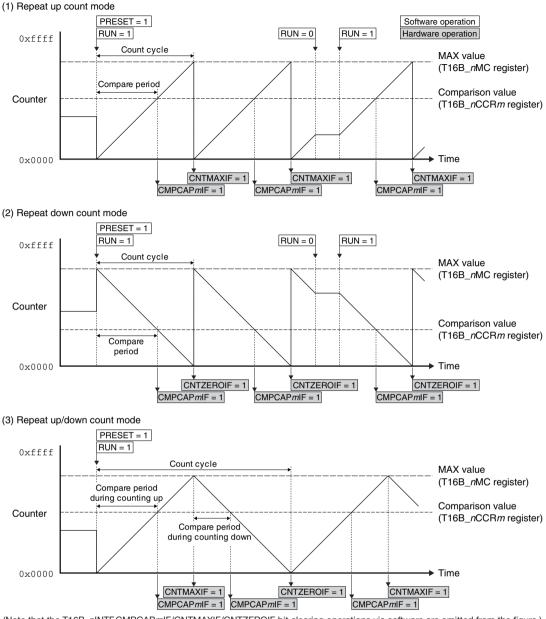
Figure 16.4.2.3 Operations in Repeat Up/Down Count and One-shot Up/Down Count Modes

16.4.3 Comparator/Capture Block Operations

The comparator/capture block functions as a comparator to compare the counter value with the register value set or a capture circuit to capture counter values using the external/software trigger signals.

Comparator/capture block operating mode

The comparator/capture block includes two systems (four or six systems) of comparator/capture circuits and each system can be set to comparator mode or capture mode, individually.


Set the T16B_nCCCTLm.CCMD bit to 0 to set the comparator/capture circuit *m* to comparator mode or 1 to set it to capture mode.

Operations in comparator mode

The comparator mode compares the counter value and the value set via software. It generates an interrupt and toggles the timer output signal level when the values are matched. The T16B_nCCRm register functions as the compare data register used for setting a comparison value in this mode. The TOUTnm/CAPnm pin is configured to the TOUTnm pin.

When the counter reaches the value set in the T16B_*n*CCR*m* register during counting, the comparator asserts the MATCH signal and sets the T16B_*n*INTF.COMPCAP*m*IF bit (compare interrupt flag) to 1.

When the counter reaches the MAX value in comparator mode, the T16B_nINTF.CNTMAXIF bit (counter MAX interrupt flag) is set to 1. When the counter reaches 0x0000, the T16B_nINTF.CNTZEROIF bit (counter zero interrupt flag) is set to 1.

(Note that the T16B_nINTF.CMPCAPmIF/CNTMAXIF/CNTZEROIF bit clearing operations via software are omitted from the figure.) Figure 16.4.3.1 Operation Examples in Comparator Mode

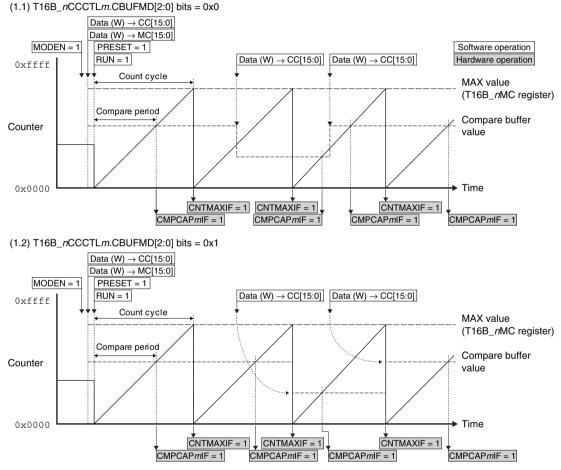
The time from counter = 0x0000 or MAX value to occurrence of a compare interrupt (compare period) and the time to occurrence of a counter MAX or counter zero interrupt (count cycle) can be calculated as follows:

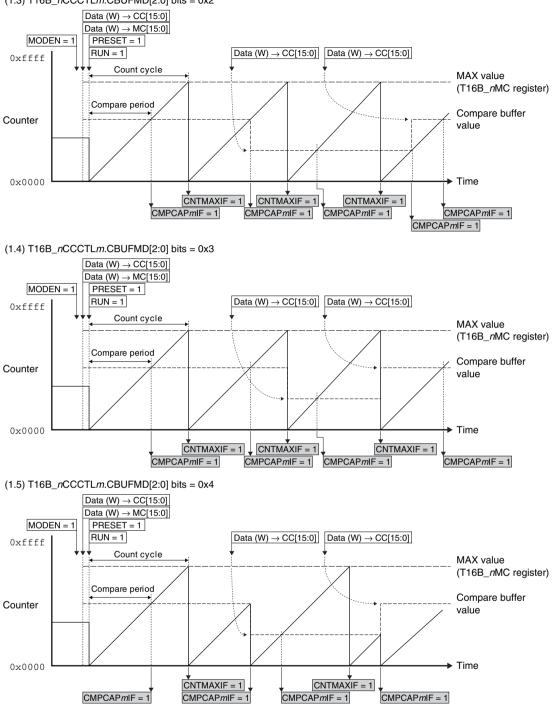
During counting up

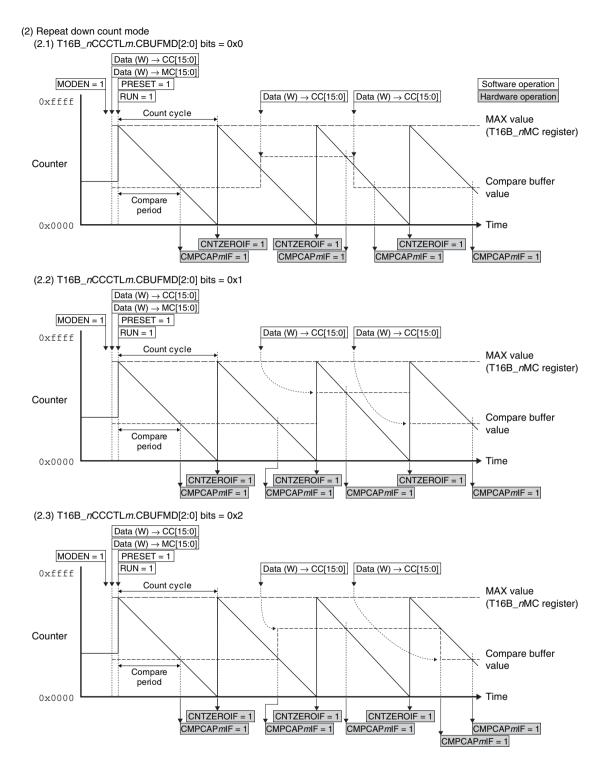
Compare period =
$$\frac{(CC + 1)}{f_{CLK_T16B}}$$
 [s] Count cycle = $\frac{(MAX + 1)}{f_{CLK_T16B}}$ [s] (Eq. 16.1)

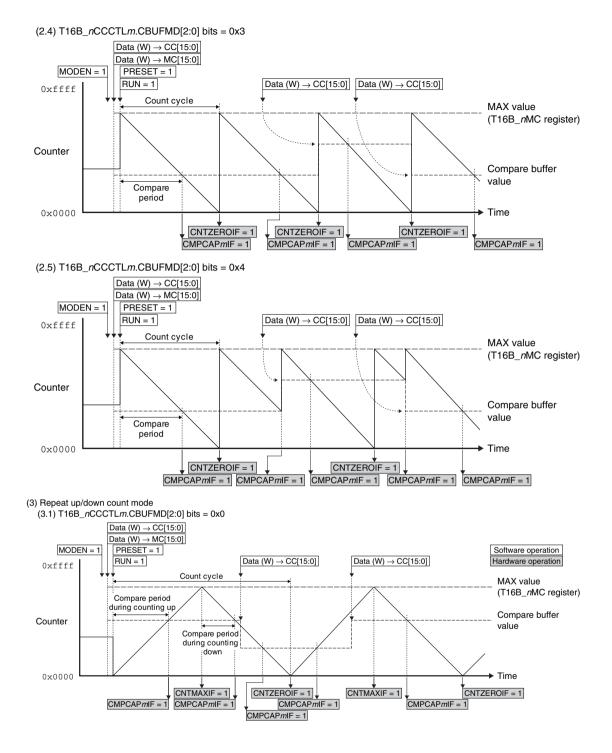
During counting down

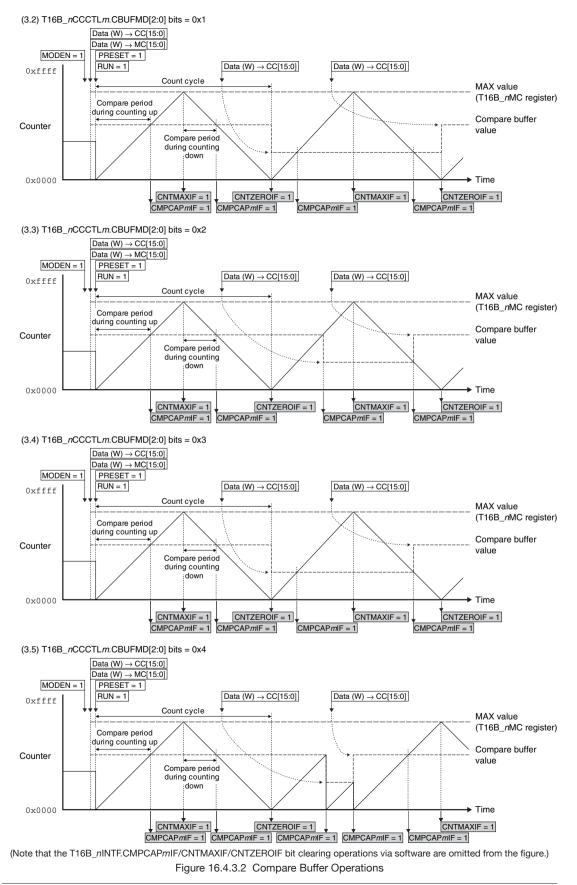
Compare period =
$$\frac{(MAX - CC + 1)}{f_{CLK_T16B}}$$
 [s] Count cycle = $\frac{(MAX + 1)}{f_{CLK_T16B}}$ [s] (Eq. 16.2)


Where


CC: T16B_nCCRm register setting value (0 to 65,535) MAX: T16B_nMC register setting value (0 to 65,535) fcLk_T16B: Count clock frequency [Hz] The comparator MATCH signal and counter MAX/ZERO signals are also used to generate a timer output waveform (TOUT). Refer to "TOUT Output Control" for more information.


Compare buffer


The comparator loads the comparison value, which has been written to the T16B_nCCRm register, to the compare buffer before comparing it with the counter value. For example, when generating a PWM waveform, the waveform with the desired duty ratio may not be generated if the comparison value is altered asynchronous to the count operation. To avoid this problem, the timing to load the comparison value to the compare buffer can be configured using the T16B_nCCCTLm.CBUFMD[2:0] bits for synchronization with the count operation.


(1) Repeat up count mode

Seiko Epson Corporation

Compare period and count cycle settings using DMA

By setting the T16B_nCCmDMAEN.CCmDMAENx bit to 1 (DMA transfer request enabled) in comparator mode, a DMA transfer request is sent to the DMA controller and compare data is transferred from the specified memory to the T16B_nCCRm register via DMA Ch.x when the T16B_nINTF.CMPCAPmIF bit is set to 1 (when the counter reaches the compare buffer value).

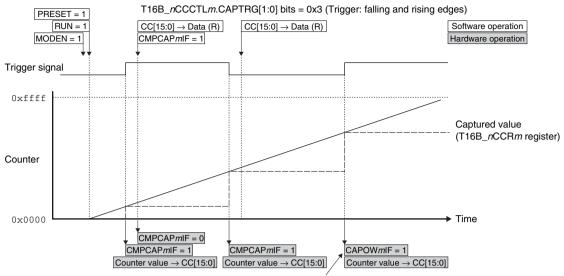
Similarly, by setting the T16B_nCCmDMAEN.MZDMAENx bit to 1 (DMA transfer request enabled), a DMA transfer request is sent to the DMA controller and a counter MAX value is transferred from the specified memory to the T16B_nMC register via DMA Ch_x when the T16B_nINTF.CNTMAXIF bit is set to 1 (when the counter reaches the MAX value) in up or up/down count mode, or when the T16B_nINTF. CNTZEROIF bit is set to 1 (when the counter reaches zero) in down count mode.

This automates the compare period and count cycle settings of the timer counter.

The transfer source/destination and control data must be set for the DMA controller and the relevant DMA channel must be enabled to start a DMA transfer in advance so that the setting data will be transferred to the T16B_nCCRm or T16B_nMC register. For more information on DMA, refer to the "DMA Controller" chapter.

	Item	Setting example
End pointer	Transfer source	Memory address in which the last setting data is stored
	Transfer destination	T16B_nCCRm or T16B_nMC register address
Control data	dst_inc	0x3 (no increment)
	dst_size	0x1 (haflword)
	src_inc	0x1 (+2)
	src_size	0x1 (halfword)
	R_power	0x0 (arbitrated for every transfer)
	n_minus_1	Number of transfer data
	cycle_ctrl	0x1 (basic transfer)

Table 16.4.3.1 DMA Data Structure Configuration Example (T16B Compare Period and Count Cycle Settings)

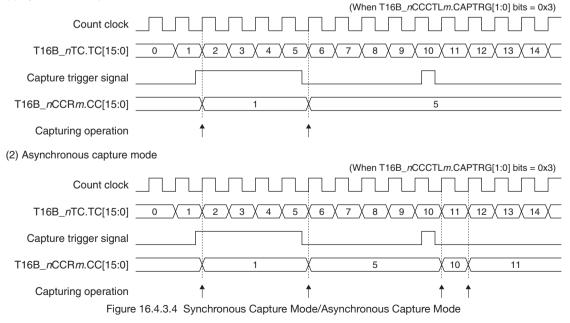

Operations in capture mode

The capture mode captures the counter value when an external event, such as a key entry, occurs (at the specified edge of the external input/software trigger signal). In this mode, the T16B_nCCRm register functions as the capture register from which the captured data is read. Furthermore, the TOUTnm/CAPnm pin is configured to the CAPnm pin.

The trigger signal and the trigger edge to capture the counter value are selected using the T16B_nCCCTLm. CAPIS[1:0] bits and the T16B_nCCCTLm.CAPTRG[1:0] bits, respectively.

When a specified trigger edge is input during counting, the current counter value is loaded to the T16B_nC-CRm register. At the same time the T16B_nINTF.CMPCAPmIF bit is set. The interrupt occurred by this bit can be used to read the captured data from the T16B_nCCRm register. For example, external event cycles and pulse widths can be measured from the difference between two captured counter values read.

If the captured data stored in the T16B_nCCR*m* register is overwritten by the next trigger when the T16B_ *n*INTF.CMPCAP*m*IF bit is still set, an overwrite error occurs (the T16B_nINTF.CAPOW*m*IF bit is set).


An overwrite error occurs as the T16B_*n*INTF.CMPCAP*m*IF bit has not been cleared. Figure 16.4.3.3 Operations in Capture Mode (Example in One-shot Up Count Mode)

Synchronous capture mode/asynchronous capture mode

The capture circuit can operate in two operating modes: synchronous capture mode and asynchronous capture mode.

Synchronous capture mode is provided to avoid the possibility of invalid data reading by capturing counter data simultaneously with the counter being counted up/down. Set the T16B_nCCCTLm.SCS bit to 1 to set the capture circuit to synchronous capture mode. This mode captures counter data by synchronizing the capture signal with the counter clock.

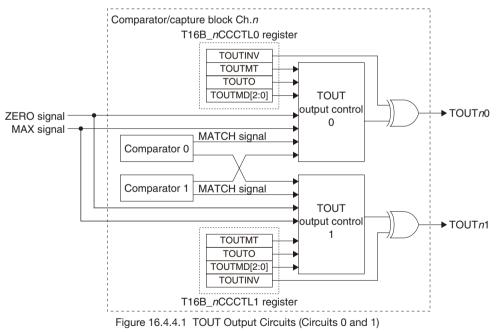
On the other hand, asynchronous capture mode can capture counter data by detecting a trigger pulse even if the pulse is shorter than the counter clock cycle that becomes invalid in synchronous capture mode. Set the T16B_nCCCTLm.SCS bit to 0 to set the capture circuit to asynchronous capture mode.

(1) Synchronous capture mode

Capture data transfer using DMA

By setting the T16B_nCCmDMAEN.CCmDMAENx bit to 1 (DMA transfer request enabled) in capture mode, a DMA transfer request is sent to the DMA controller and the T16B_nCCRm register value is transferred to the specified memory via DMA Ch_x when the T16B_nINTF.CMPCAPmIF bit is set to 1 (when data has been captured).

This automates reading and saving of capture data.


The transfer source/destination and control data must be set for the DMA controller and the relevant DMA channel must be enabled to start a DMA transfer in advance. For more information on DMA, refer to the "DMA Controller" chapter.

	Item	Setting example
End pointer	Transfer source	T16B_nCCRm register address
	Transfer destination	Memory address to which the last capture data is stored
Control data	dst_inc	0x1 (+2)
	dst_size	0x1 (haflword)
	src_inc	0x3 (no increment)
	src_size	0x1 (halfword)
	R_power	0x0 (arbitrated for every transfer)
	n_minus_1	Number of transfer data
	cycle_ctrl	0x1 (basic transfer)

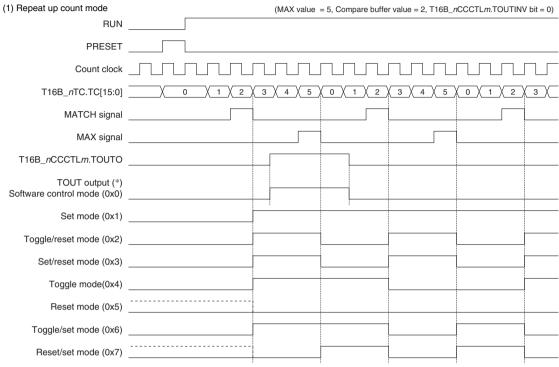
Table 16 / 3 2	DMA Data Structure Configuration Example (Capture Data Transfer)
Table 10.4.0.2	Divid Data Structure Configuration Example (Capture Data Transfer)

16.4.4 TOUT Output Control

Comparator mode can generate TOUT signals using the comparator MATCH and counter MAX/ZERO signals. The generated signals can be output to outside the IC. Figure 16.4.4.1 shows the TOUT output circuits (circuits 0 and 1).

Each timer channel includes two (four, or six) TOUT output circuits and their signal generation and output can be controlled individually.

TOUT generation mode


The T16B_nCCCTLm.TOUTMD[2:0] bits are used to set how the TOUT signal waveform is changed by the MATCH and MAX/ZERO signals.

Furthermore, when the T16B_nCCCTLm.TOUTMT bit is set to 1, the TOUT circuit uses the MATCH signal output from another system in the circuit pair (0 and 1, 2 and 3, 4 and 5). This makes it possible to change the signal twice within a counter cycle.

TOUT signal polarity

The TOUT signal polarity (active level) can be set using the $T16B_nCCCTLm.TOUTINV$ bit. It is set to active high by setting the $T16B_nCCCTLm.TOUTINV$ bit to 0 and active low by setting to 1.

Figures 16.4.4.2 and 16.4.4.3 show the TOUT output waveforms.

 \ast () indicates the T16B_nCCCTLm.TOUTMD[2:0] bit-setting value.

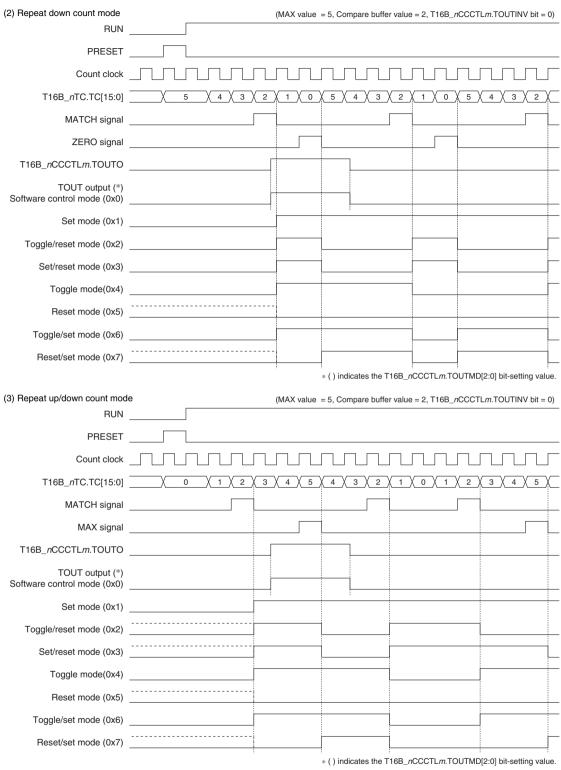


Figure 16.4.4.2 TOUT Output Waveform (T16B_nCCCTLm.TOUTMT bit = 0)

(1) Repeat up count mode	(MAX value = 5, Compare buffer	(0) value = 2, Compare buffer (1) value	ue = 3, T16B_nCCCTLm.TOUTINV bit = 0)
RUN			
PRESET			
Count clock			
T16B_nTC.TC[15:0]		4 X 5 X 0 X 1 X 2 X 3	<u>4 5 0 1 2 3 </u>
MATCH(0) signal			
MATCH(1) signal			
T16B_nCCCTLm.TOUTO			
TOUT output (*) Software control mode (0x0) TOUT <i>n</i> 0			
TOUT <i>n</i> 1			
Set mode (0x1) TOUT <i>n</i> 0			
TOUT <i>n</i> 1			
Toggle/reset mode (0x2) TOUT <i>n</i> 0			
TOUT <i>n</i> 1			
Set/reset mode (0x3) TOUT <i>n</i> 0			
TOUTn1			
Toggle mode(0x4) TOUT <i>n</i> 0			
TOUT <i>n</i> 1			
Reset mode (0x5) TOUT <i>n</i> 0			
TOUTn1			
Toggle/set mode (0x6) TOUT <i>n</i> 0			
TOUT <i>n</i> 1			
Reset/set mode (0x7) TOUT <i>n</i> 0			
TOUT <i>n</i> 1			

* () indicates the T16B_nCCCTLm.TOUTMD[2:0] bit-setting value.

(2) Repeat down count mode	(MAX value = 5, Compare buffer (0) value = 2, Compare buffer (1) value = 3, T16B_nCCCTLm.TOUTINV bit	= 0)
RUN		
PRESET		
Count clock		
T16B_nTC.TC[15:0]	<u>5 </u>	X
MATCH(0) signal		
MATCH(1) signal		
T16B_nCCCTLm.TOUTO		
TOUT output (*) Software control mode (0x0) TOUT <i>n</i> 0		
TOUT <i>n</i> 1		
Set mode (0x1) TOUT <i>n</i> 0		
TOUT <i>n</i> 1		-
Toggle/reset mode (0x2) TOUT <i>n</i> 0		_
TOUT <i>n</i> 1		
Set/reset mode (0x3) TOUT <i>n</i> 0		
TOUT <i>n</i> 1		=
Toggle mode(0x4)		_
TOUT <i>n</i> 1		-
Reset mode (0x5) TOUT <i>n</i> 0		
TOUT <i>n</i> 1		
Toggle/set mode (0x6) TOUT <i>n</i> 0		_
TOUT <i>n</i> 1		F
Reset/set mode (0x7) TOUT <i>n</i> 0		_
TOUT <i>n</i> 1		F

* () indicates the T16B_nCCCTLm.TOUTMD[2:0] bit-setting value.

(3) Repeat up/down count mode	(MAX value = 5, Compare buffer (0) value = 2, Compare buffer (1) value = 3, T16B_nCCCTLm.TOUTINV bit = 0)
RUN	
PRESET	
Count clock	
T16B_nTC.TC[15:0]	<u> </u>
MATCH(0) signal	
MATCH(1) signal	
T16B_nCCCTLm.TOUTO	
TOUT output (*) Software control mode (0x0) TOUT <i>n</i> 0	
TOUT <i>n</i> 1	
Set mode (0x1) TOUT <i>n</i> 0	
TOUT <i>n</i> 1	
Toggle/reset mode (0x2) TOUT <i>n</i> 0	
TOUT <i>n</i> 1	
Set/reset mode (0x3) TOUT <i>n</i> 0	
TOUT <i>n</i> 1	
Toggle mode(0x4) TOUT <i>n</i> 0	
TOUT <i>n</i> 1	
Reset mode (0x5) TOUT <i>n</i> 0	
TOUT <i>n</i> 1	
Toggle/set mode (0x6) TOUT <i>n</i> 0	
TOUT <i>n</i> 1	
	* () indicates the T16B_nCCCTLm.TOUTMD[2:0] bit-setting value.

Figure 16.4.4.3 TOUT Output Waveform (T16B_nCCCTL0.TOUTMT bit = 1, T16B_nCCCTL1.TOUTMT bit = 0)

16.5 Interrupt

Each T16B channel has a function to generate the interrupt shown in Table 16.5.1.

Interrupt	Interrupt flag	Set condition	Clear condition				
Capture	T16B_nINTF.CAPOWmIF	When the T16B_nINTF.CMPCAPmIF bit =1 and the T16B_	Writing 1				
overwrite		n CCRm register is overwritten with new captured data in	_				
		capture mode					
Compare/	T16B_nINTF.CMPCAPmIF	When the counter value becomes equal to the compare	Writing 1				
capture		buffer value in comparator mode					
		When the counter value is loaded to the T16B_nCCRm reg-					
		ister by a capture trigger input in capture mode					
Counter MAX	T16B_nINTF.CNTMAXIF	When the counter reaches the MAX value	Writing 1				
Counter zero	T16B_nINTF.CNTZEROIF	When the counter reaches 0x0000	Writing 1				

Table 16.5.1 T16B Interrupt Function

T16B provides interrupt enable bits corresponding to each interrupt flag. An interrupt request is sent to the CPU only when the interrupt flag, of which interrupt has been enabled by the interrupt enable bit, is set. For more information on interrupt control, refer to the "Interrupt" chapter.

16.6 DMA Transfer Requests

The T16B has a function to generate DMA transfer requests from the causes shown in Table 16.6.1.

Cause to request DMA transfer	DMA transfer request flag	Set condition	Clear condition
Compare/	Compare/capture flag	When the counter value becomes equal to the com-	When the
capture	(T16B_nINTF.CMPCAPmIF)	pare buffer value in comparator mode	DMA transfer
		When the counter value is loaded to the T16B_nCCRm	request is ac-
		register by a capture trigger input in capture mode	cepted
Counter MAX/	Counter MAX flag	When the counter reaches the MAX value in up or up/	When the
zero	(T16B_nINTF.CNTMAXIF)	down count mode	DMA transfer
	Counter zero flag	When the counter reaches 0x0000 in down count	request is ac-
	(T16B_nINTF.CNTZEROIF)	mode	cepted

Table 16.6.1 DMA Transfer Request Causes of T16B

The T16B provides DMA transfer request enable bits corresponding to each DMA transfer request flag shown above for the number of DMA channels. A DMA transfer request is sent to the pertinent channel of the DMA controller only when the DMA transfer request flag, of which DMA transfer has been enabled by the DMA transfer request enable bit, is set. The DMA transfer request flag also serves as an interrupt flag, therefore, both the DMA transfer request and the interrupt cannot be enabled at the same time. After a DMA transfer has completed, disable the DMA transfer to prevent unintended DMA transfer requests from being issued. For more information on the DMA control, refer to the "DMA Controller" chapter.

16.7 Control Registers

T16B Ch.n Clock Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16B_nCLK	15–9	_	0x00	-	R	-
	8	DBRUN	0	H0	R/W	
	7–4	CLKDIV[3:0]	0x0	H0	R/W	
	3	-	0	-	R	
	2–0	CLKSRC[2:0]	0x0	H0	R/W	

Bits 15–9 Reserved

Bit 8 DBRUN

This bit sets whether the T16B Ch.*n* operating clock is supplied during debugging or not. 1 (R/W): Clock supplied during debugging

0 (R/W): No clock supplied during debugging

Bits 7-4 CLKDIV[3:0]

These bits select the division ratio of the T16B Ch.n operating clock (counter clock).

Bit 3 Reserved

Bits 2-0 CLKSRC[2:0]

These bits select the clock source of T16B Ch.n.

			T1	6B nCLK.CL	KSRC[2:0] b	its		
T16B nCLK.	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7
CLKDIV[3:0] bits	IOSC	OSC1	OSC3	EXOSC	EXCLn0	EXCLn1	EXCLn0 inverted input	EXCLn1 inverted input
0xf	1/32,768	1/1	1/32,768	1/1	1/1	1/1	1/1	1/1
0xe	1/16,384		1/16,384					
0xd	1/8,192		1/8,192					
0xc	1/4,096		1/4,096					
0xb	1/2,048		1/2,048					
0xa	1/1,024		1/1,024					
0x9	1/512		1/512					
0x8	1/256	1/256	1/256					
0x7	1/128	1/128	1/128					
0x6	1/64	1/64	1/64					
0x5	1/32	1/32	1/32					
0x4	1/16	1/16	1/16					
0x3	1/8	1/8	1/8					
0x2	1/4	1/4	1/4					
0x1	1/2	1/2	1/2					
0x0	1/1	1/1	1/1					

Table 16.7.1 Clock Source and Division Ratio Settings

(Note) The oscillator circuits/external inputs that are not supported in this IC cannot be selected as the clock source.

T16B Ch.n Counter Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16B_nCTL	15–9	-	0x00	-	R	-
	8	MAXBSY	0	H0	R	
	7–6	-	0x0	-	R	
	5–4	CNTMD[1:0]	0x0	H0	R/W	
	3	ONEST	0	H0	R/W	
	2	RUN	0	H0	R/W	
	1	PRESET	0	H0	R/W	
	0	MODEN	0	H0	R/W	

Bits 15–9 Reserved

Bit 8 MAXBSY

This bit indicates whether data can be written to the T16B_nMC register or not.

1 (R): Busy status (cannot be written)

0 (R): Idle (can be written)

While this bit is 1, the T16B_*n*MC register is loading the MAX value. Data writing is prohibited during this period.

Bits 7–6 Reserved

Bits 5–4 CNTMD[1:0]

These bits select the counter up/down mode. The count mode is configured with this selection and the $T16B_nCTL.ONEST$ bit setting (see Table 16.7.2).

Bit 3 ONEST

This bit selects the counter repeat/one-shot mode. The count mode is configured with this selection and the T16B_nCTL.CNTMD[1:0] bit settings (see Table 16.7.2).

T16B nCTL.CNTMD[1:0] bits	Count mode					
TIOB_//CTL.CNTWD[1:0] bits	T16B_nCTL.ONEST bit = 1	T16B_nCTL.ONEST bit = 0				
0x3	Reserved					
0x2	One-shot up/down count mode	Repeat up/down count mode				
0x1	One-shot down count mode	Repeat down count mode				
0x0	One-shot up count mode Repeat up count mode					

Table 16.7.2 Count Mode

Bit 2 RUN

This bit starts/stops counting.

1 (W): Start counting

0 (W): Stop counting

1 (R): Counting

0 (R): Idle

By writing 1 to this bit, the counter block starts count operations. However, the T16B_nCTL.MODEN bit must be set to 1 in conjunction with this bit or it must be set in advance. While the timer is running, writing 0 to the T16B_nCTL.RUN bit stops count operations. When the counter stops by the counter MAX/ZERO signal in one-shot mode, this bit is automatically cleared to 0.

Bit 1 PRESET

This bit resets the counter.

- 1 (W): Reset
- 0 (W): Ineffective
- 1 (R): Resetting in progress
- 0 (R): Resetting finished or normal operation

In up mode or up/down mode, the counter is cleared to 0x0000 by writing 1 to this bit. In down mode, the MAX value, which has been set to the T16B_*n*MC register, is preset to the counter. However, the T16B_*n*CTL.MODEN bit must be set to 1 in conjunction with this bit or it must be set in advance.

Bit 0 MODEN

This bit enables the T16B Ch.n operations.

1 (R/W): Enable (Start supplying operating clock)

- 0 (R/W): Disable (Stop supplying operating clock)
- **Note**: The counter reset operation using the T16B_*n*CTL.PRESET bit and the counting start operation using the T16B_*n*CTL.RUN bit take effect only when the T16B_*n*CTL.MODEN bit = 1.

T16B Ch.n Max Counter Data Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16B_nMC	15–0	MC[15:0]	0xffff	HO	R/W	-

Bits 15-0 MC[15:0]

These bits are used to set the MAX value to preset to the counter. For more information, refer to "Counter Block Operations - MAX counter data register."

- **Notes:** When one-shot mode is selected, do not alter the T16B_nMC.MC[15:0] bits (MAX value) during counting.
 - Make sure the T16B_nCTL.MODEN bit is set to 1 before writing data to the T16B_nMC. MC[15:0] bits. If the T16B_nCTL.MODEN bit = 0 when writing to the T16B_nMC.MC[15:0] bits, set the T16B_nCTL.MODEN bit to 1 until the T16B_nCS.BSY bit is set to 0 from 1.
 - Do not set the T16B_nMC.MC[15:0] bits to 0x0000.

T16B Ch.n Timer Counter Data Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16B_nTC	15–0	TC[15:0]	0x0000	H0	R	-

Bits 15-0 TC[15:0]

The current counter value can be read out through these bits.

T16B Ch.n Counter Status Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16B_nCS	15–8	-	0x00	-	R	-
	7	CAPI5	0	H0	R	
	6	CAPI4	0	H0	R	
	5	CAPI3	0	H0	R	
	4	CAPI2	0	H0	R	
	3	CAPI1	0	H0	R	
	2	CAPI0	0	H0	R	
	1	UP_DOWN	1	H0	R	
	0	BSY	0	H0	R	

Bits 15–8 Reserved

- Bit 7 CAPI5
- Bit 6 CAPI4
- Bit 5 CAPI3
- Bit 4 CAPI2
- Bit 3 CAPI1

Bit 2 CAPI0

These bits indicate the signal level currently input to the CAPnm pin.

- 1 (R): Input signal = High level
- 0 (R): Input signal = Low level

The following shows the correspondence between the bit and the CAPnm pin:

T16B_nCS.CAPI5 bit: CAPn5 pin T16B_nCS.CAPI4 bit: CAPn4 pin T16B_nCS.CAPI3 bit: CAPn3 pin T16B_nCS.CAPI2 bit: CAPn2 pin T16B_nCS.CAPI1 bit: CAPn1 pin T16B_nCS.CAPI0 bit: CAPn0 pin

Note: The configuration of the T16B_*n*CS.CAPI*m* bits depends on the model. The bits corresponding to the CAP*nm* pins that do not exist are read-only bits and are always fixed at 0.

Bit 1 UP_DOWN

This bit indicates the currently set count direction.

- 1 (R): Count up
- 0 (R): Count down

Bit 0 BSY

This bit indicates the counter operating status.

- 1 (R): Running
- 0 (R): Idle

T16B Ch.n Interrupt Flag Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16B_nINTF	15–14	-	0x0	-	R	-
	13	CAPOW5IF	0	H0	R/W	Cleared by writing 1.
	12	CMPCAP5IF	0	H0	R/W	
	11	CAPOW4IF	0	H0	R/W	
	10	CMPCAP4IF	0	H0	R/W	
	9	CAPOW3IF	0	H0	R/W	
	8	CMPCAP3IF	0	H0	R/W	
	7	CAPOW2IF	0	H0	R/W	
	6	CMPCAP2IF	0	H0	R/W	
	5	CAPOW1IF	0	H0	R/W	
	4	CMPCAP1IF	0	H0	R/W	
	3	CAPOW0IF	0	H0	R/W	
	2	CMPCAP0IF	0	H0	R/W	
	1	CNTMAXIF	0	H0	R/W	
	0	CNTZEROIF	0	H0	R/W	

Bits 15–14 Reserved

- Bit 13 CAPOW5IF
- Bit 12 CMPCAP5IF
- Bit 11 CAPOW4IF
- Bit 10 CMPCAP4IF
- Bit 9 CAPOW3IF
- Bit 8 CMPCAP3IF
- Bit 7 CAPOW2IF
- Bit 6 CMPCAP2IF
- Bit 5 CAPOW1IF
- Bit 4 CMPCAP1IF
- Bit 3 CAPOW0IF
- Bit 2 CMPCAP0IF
- Bit 1 CNTMAXIF

Bit 0 CNTZEROIF

These bits indicate the T16B Ch.n interrupt cause occurrence status.

- 1 (R): Cause of interrupt occurred
- 0 (R): No cause of interrupt occurred
- 1 (W): Clear flag
- 0 (W): Ineffective

The following shows the correspondence between the bit and interrupt: T16B_nINTF.CAPOW5IF bit: Capture 5 overwrite interrupt T16B_nINTF.CMPCAP5IF bit: Compare/capture 5 interrupt T16B_nINTF.CAPOW4IF bit: Capture 4 overwrite interrupt T16B_nINTF.CAPOW3IF bit: Capture 3 overwrite interrupt T16B_nINTF.CAPOW3IF bit: Capture 3 overwrite interrupt T16B_nINTF.CAPOW3IF bit: Capture 3 interrupt T16B_nINTF.CAPOW2IF bit: Capture 2 overwrite interrupt T16B_nINTF.CAPOW2IF bit: Capture 2 overwrite interrupt T16B_nINTF.CAPOW2IF bit: Capture 1 overwrite interrupt T16B_nINTF.CAPOW1IF bit: Capture 1 overwrite interrupt T16B_nINTF.CAPOW0IF bit: Capture 0 overwrite interrupt T16B_nINTF.CAPOW0IF bit: Capture 0 overwrite interrupt T16B_nINTF.CAPOW0IF bit: Compare/capture 0 interrupt T16B_nINTF.CMPCAP0IF bit: Counter MAX interrupt

Note: The configuration of the T16B_nINTF.CAPOWmIF and T16B_nINTF.CMPCAPmIF bits depends on the model. The bits corresponding to the comparator/capture circuits that do not exist are read-only bits and are always fixed at 0.

T16B Ch.n Interrupt Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16B_nINTE	15–14	-	0x0	-	R	-
	13	CAPOW5IE	0	H0	R/W	
	12	CMPCAP5IE	0	H0	R/W	
	11	CAPOW4IE	0	H0	R/W	
	10	CMPCAP4IE	0	H0	R/W	
	9	CAPOW3IE	0	H0	R/W	
	8	CMPCAP3IE	0	H0	R/W	
	7	CAPOW2IE	0	H0	R/W	
	6	CMPCAP2IE	0	H0	R/W	
	5	CAPOW1IE	0	H0	R/W	
	4	CMPCAP1IE	0	H0	R/W	
	3	CAPOW0IE	0	H0	R/W	
	2	CMPCAP0IE	0	H0	R/W	
	1	CNTMAXIE	0	H0	R/W	
	0	CNTZEROIE	0	H0	R/W	

Bits 15–14 Reserved

- Bit 13 **CAPOW5IE** Bit 12 **CMPCAP5IE** Bit 11 CAPOW4IF Bit 10 **CMPCAP4IE** Bit 9 **CAPOW3IE** Bit 8 **CMPCAP3IE** CAPOW2IE Bit 7 Bit 6 **CMPCAP2IE** Bit 5 CAPOW1IE Bit 4 **CMPCAP1IE**
- BIT 4 CMPCAPTIE
- Bit 3 CAPOWOIE
- Bit 2 CMPCAP0IE
- Bit 1 CNTMAXIE

Bit 0 CNTZEROIE

These bits enable T16B Ch.n interrupts.

1 (R/W): Enable interrupts

0 (R/W): Disable interrupts

The following shows the correspondence between the bit and interrupt: T16B_nINTE.CAPOW5IE bit: Capture 5 overwrite interrupt T16B_nINTE.CMPCAP5IE bit: Compare/capture 5 interrupt T16B_nINTE.CAPOW4IE bit: Capture 4 overwrite interrupt T16B_nINTE.CMPCAP4IE bit: Compare/capture 4 interrupt T16B_nINTE.CAPOW3IE bit: Capture 3 overwrite interrupt T16B_nINTE.CMPCAP3IE bit: Compare/capture 3 interrupt T16B_nINTE.CAPOW2IE bit: Capture 2 overwrite interrupt T16B_nINTE.CAPOW2IE bit: Capture 2 overwrite interrupt T16B_nINTE.CAPOW2IE bit: Capture 1 overwrite interrupt T16B_nINTE.CAPOW1IE bit: Capture 1 overwrite interrupt T16B_nINTE.CAPOW0IE bit: Capture 0 overwrite interrupt T16B_nINTE.CAPOW0IE bit: Capture 0 interrupt T16B_nINTE.CAPOW0IE bit: Compare/capture 0 interrupt T16B_nINTE.CMPCAP0IE bit: Compare/capture 0 interrupt

- **Notes:** The configuration of the T16B_nINTE.CAPOWmIE and T16B_nINTE.CMPCAPmIE bits depends on the model. The bits corresponding to the comparator/capture circuits that do not exist are read-only bits and are always fixed at 0.
 - To prevent generating unnecessary interrupts, the corresponding interrupt flag should be cleared before enabling interrupts.

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16B_nCCCTLm	15	SCS	0	HO	R/W	-
	14–12	CBUFMD[2:0]	0x0	H0	R/W	
	11–10	CAPIS[1:0]	0x0	H0	R/W	
	9–8	CAPTRG[1:0]	0x0	H0	R/W	
	7	-	0	-	R	
	6	TOUTMT	0	H0	R/W	
	5	TOUTO	0	H0	R/W	
	4–2	TOUTMD[2:0]	0x0	H0	R/W	
	1	TOUTINV	0	H0	R/W	
	0	CCMD	0	H0	R/W	

T16B Ch.n Comparator/Capture m Control Register

Bit 15 SCS

This bit selects either synchronous capture mode or asynchronous capture mode.

- 1 (R/W): Synchronous capture mode
- 0 (R/W): Asynchronous capture mode

For more information, refer to "Comparator/Capture Block Operations - Synchronous capture mode/ asynchronous capture mode." The T16B_nCCCTLm.SCS bit is control bit for capture mode and is ineffective in comparator mode.

Bits 14–12 CBUFMD[2:0]

These bits select the timing to load the comparison value written in the T16B_nCCRm register to the compare buffer. The T16B_nCCCTLm.CBUFMD[2:0] bits are control bits for comparator mode and are ineffective in capture mode.

T16B_nCCCTLm. CBUFMD[2:0] bits	Count mode	Comparison Value load timing					
0x7–0x5		Reserved					
0x4	Up mode	When the counter becomes equal to the comparison value set previously Also the counter is reset to 0x0000 simultaneously.					
	Down mode	When the counter becomes equal to the comparison value set previously Also the counter is reset to the MAX value simultaneously.					
	Up/down mode	When the counter becomes equal to the comparison value set previously Also the counter is reset to 0x0000 simultaneously.					
0x3	Up mode	When the counter reverts to 0x0000					
	Down mode	When the counter reverts to the MAX value					
	Up/down mode	When the counter becomes equal to the comparison value set previously or when the counter reverts to 0x0000					
0x2	Up mode	When the counter becomes equal to the comparison value set previously					
	Down mode						
	Up/down mode						
0x1	Up mode	When the counter reaches the MAX value					
	Down mode	When the counter reaches 0x0000					
	Up/down mode	When the counter reaches 0x0000 or the MAX value					
0x0	Up mode	At the CLK_T16Bn rising edge after writing to the T16B_nCCRm register					
	Down mode						
	Up/down mode						

Table 16.7.3 Timings to Load Comparison Value to Compare Buffer

Bits 11-10 CAPIS[1:0]

These bits select the trigger signal for capturing (see Table 16.7.4). The T16B_nCCCTLm.CAPIS[1:0] bits are control bits for capture mode and are ineffective in comparator mode.

Bits 9–8 CAPTRG[1:0]

These bits select the trigger edge(s) of the trigger signal at which the counter value is captured in the T16B_nCCRm register in capture mode (see Table 16.7.4). The T16B_nCCCTLm.CAPTRG[1:0] bits are control bits for capture mode and are ineffective in comparator mode.

T16B_nCCCTLm.		Trigger condition				
CAPTRG[1:0] bits	T16B_nCCCTL	m.CAPIS[1:0] bits (Trigger signal)				
(Trigger edge)	0x0 (External trigger signal) 0x2 (Software trigger signal = L) 0x3 (Software trigger signal					
0x3 (↑ & ↓)	Rising or falling edge of the CAPnm pin input	Altering the T16B_nCCCTLm.CAPIS[1:0] bits from 0x2 to 0x3, or				
	signal	from 0x3 to 0x2				
0x2 (↓)	Falling edge of the CAPnm pin input signal	Altering the T16B_nCCCTLm.CAPIS[1:0] bits from 0x3 to 0x2				
0x1 (↑)	Rising edge of the CAPnm pin input signal	Altering the T16B_nCCCTLm.CAPIS[1:0] bits from 0x2 to 0x3				
0x0	Not triggered (disable capture function)					

Table 16.7.4 Trigger Signal/Edge for Capturing Counter Value

Bit 7 Reserved

Bit 6 TOUTMT

This bit selects whether the comparator MATCH signal of another system is used for generating the TOUT*nm* signal or not.

- 1 (R/W): Generate TOUT using two comparator MATCH signals of the comparator circuit pair (0 and 1, 2 and 3, 4 and 5)
- 0 (R/W): Generate TOUT using one comparator MATCH signal of comparator m and the counter MAX or ZERO signals

The T16B_nCCCTLm.TOUTMT bit is control bit for comparator mode and is ineffective in capture mode.

Bit 5 TOUTO

This bit sets the TOUT*nm* signal output level when software control mode (T16B_*n*CCCTL*m*.TOUT-MD[2:0] = 0x0) is selected for the TOUT*nm* output.

1 (R/W): High level output

0 (R/W): Low level output

The T16B_nCCCTLm.TOUTO bit is control bit for comparator mode and is ineffective in capture mode.

Bits 4–2 TOUTMD[2:0]

These bits configure how the TOUT*nm* signal waveform is changed by the comparator MATCH and counter MAX/ZERO signals.

The T16B_nCCCTLm.TOUTMD[2:0] bits are control bits for comparator mode and are ineffective in capture mode.

T16B_nCCCTLm.	TOUT generation mode and operations								
TOUTMD[2:0] bits	T16B_nCCCTLm. TOUTMT bit	Count mode	Output signal	Change in the signal					
0x7	Reset/set mode								
	0	Up count mode Up/down count mode	TOUTnm	The signal becomes inactive by the MATCH signal and it becomes active by the MAX signal.					
		Down count mode	TOUTnm	The signal becomes inactive by the MATCH signal and it becomes active by the ZERO signal.					
	1	All count modes	TOUTnm	The signal becomes inactive by the MATCH <i>m</i> signal and it becomes active by the MATCH <i>m</i> +1 signal.					
			TOUTnm+1	The signal becomes inactive by the MATCHm+1 signal and it becomes active by the MATCHm signal.					
0x6	Toggle/set mode								
	0	Up count mode Up/down count mode	TOUTnm	The signal is inverted by the MATCH signal and it be- comes active by the MAX signal.					
		Down count mode	TOUTnm	The signal is inverted by the MATCH signal and it be- comes active by the ZERO signal.					
	1	All count modes	TOUTnm	The signal is inverted by the MATCH <i>m</i> signal and it be- comes active by the MATCH <i>m</i> +1 signal.					
			TOUTnm+1	The signal is inverted by the MATCH <i>m</i> +1 signal and it be- comes active by the MATCH <i>m</i> signal.					
0x5	Reset mode								
	0	All count modes	TOUTnm	The signal becomes inactive by the MATCH signal.					
	1	All count modes	TOUTnm	The signal becomes inactive by the MATCH <i>m</i> or MATCH <i>m</i> +1 signal.					
			TOUTnm+1	The signal becomes inactive by the MATCHm+1 or MATCHm signal.					
16-30		Soiko Er	son Corn	oration S1C31W65 TECHNICAL MANUAL					

Table 16.7.5 TOUT Generation Mode

Seiko Epson Corporation

S1C31W65 TECHNICAL MANUAL (Rev. 1.2)

T16B nCCCTLm.		TOUT	generation	mode and operations			
TOUTMD[2:0] bits	T16B_nCCCTLm. TOUTMT bit	Count mode	Output signal	Change in the signal			
0x4	Toggle mode						
	0	All count modes	TOUTnm	The signal is inverted by the MATCH signal.			
	1	All count modes	TOUTnm	The signal is inverted by the MATCH <i>m</i> or MATCH <i>m</i> +1 signal.			
			TOUTnm+1	The signal is inverted by the MATCH <i>m</i> +1 or MATCH <i>m</i> signal.			
0x3	Set/reset mode						
	0	Up count mode Up/down count mode	TOUTnm	The signal becomes active by the MATCH signal and it becomes inactive by the MAX signal.			
		Down count mode	TOUTnm	The signal becomes active by the MATCH signal and it becomes inactive by the ZERO signal.			
	1	All count modes	TOUTnm	The signal becomes active by the MATCH <i>m</i> signal and it becomes inactive by the MATCH <i>m</i> +1 signal.			
			TOUTnm+1	The signal becomes active by the MATCH <i>m</i> +1 signal and it becomes inactive by the MATCH <i>m</i> signal.			
0x2	Toggle/reset mod	e		· · · · · · · · · · · · · · · · · · ·			
	0	Up count mode Up/down count mode	TOUTnm	The signal is inverted by the MATCH signal and it be- comes inactive by the MAX signal.			
		Down count mode	TOUTnm	The signal is inverted by the MATCH signal and it be- comes inactive by the ZERO signal.			
	1	All count modes	TOUTnm	The signal is inverted by the MATCH <i>m</i> signal and it be- comes inactive by the MATCH <i>m</i> +1 signal.			
			TOUTnm+1	The signal is inverted by the MATCH <i>m</i> +1 signal and it be- comes inactive by the MATCH <i>m</i> signal.			
0x1	Set mode						
	0	All count modes	TOUTnm	The signal becomes active by the MATCH signal.			
	1	All count modes	TOUTnm	The signal becomes active by the MATCH <i>m</i> or MATCH <i>m</i> +1 signal.			
			TOUTnm+1	The signal becomes active by the MATCHm+1 or MATCHm signal.			
0x0	Software control	mode	•	·			
	*	All count modes	TOUTnm	The signal becomes active by setting the T16B_ nCCCTLm.TOUTO bit to 1 and it becomes inactive by setting to 0.			

Bit 1 TOUTINV

This bit selects the TOUT*nm* signal polarity.

1 (R/W): Inverted (active low)

0 (R/W): Normal (active high)

The T16B_nCCCTLm.TOUTINV bit is control bit for comparator mode and is ineffective in capture mode.

Bit 0 CCMD

This bit selects the operating mode of the comparator/capture circuit m.

1 (R/W): Capture mode (T16B_nCCR*m* register = capture register)

0 (R/W): Comparator mode (T16B_nCCRm register = compare data register)

T16B Ch.n Compare/Capture m Data Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16B_nCCRm	15–0	CC[15:0]	0x0000	H0	R/W	_

Bits 15-0 CC[15:0]

In comparator mode, this register is configured as the compare data register and used to set the comparison value to be compared with the counter value.

In capture mode, this register is configured as the capture register and the counter value captured by the capture trigger signal is loaded.

T16B Ch.n Counter Max/Zero DMA Request Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16B_nMZDMAEN	15–0	MZDMAEN[15:0]	0x0000	H0	R/W	_

Bits 15-0 MZDMAEN[15:0]

These bits enable T16B to issue a DMA transfer request to the corresponding DMA controller channel (Ch.0–Ch.15) when the counter value reaches the MAX value or 0x0000.

1 (R/W): Enable DMA transfer request

0 (R/W): Disable DMA transfer request

Each bit corresponds to a DMA controller channel. The high-order bits for the unimplemented channels are ineffective.

T16B Ch.n Compare/Capture m DMA Request Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16B_nCCmDMAEN	15–0	CCmDMAEN[15:0]	0x0000	H0	R/W	-

Bits 15-0 CCmDMAEN[15:0]

These bits enable T16B to issue a DMA transfer request to the corresponding DMA controller channel (Ch.0–Ch.15) when the counter value reaches the compare data or is captured.

1 (R/W): Enable DMA transfer request

0 (R/W): Disable DMA transfer request

Each bit corresponds to a DMA controller channel. The high-order bits for the unimplemented channels are ineffective.

17 Sound Generator (SNDA)

17.1 Overview

- Pitch:

SNDA is a sound generator that generates melodies and buzzer signals. The features of the SNDA are listed below.

- Sound output mode is selectable from three types.
 - 1. Normal buzzer mode (for normal buzzer output of which the output duration is controlled via software)
 - Output frequency: Can be set within the range of 512 Hz to 16,384 Hz.
 - Duty ratio: Can be set within the range of 0 % to 100 %.
 - 2. One-shot buzzer mode (for short buzzer output such as a clicking sound)
 - Output frequency: Can be set within the range of 512 Hz to 16,384 Hz.
 - Duty ratio: Can be set within the range of 0 % to 100 %.
 - One-shot output duration: Can be set within the range of 15.6 ms to 250 ms. (16 types)
 - 3. Melody mode (for playing single note melody)
 - Can be set within the range of 128 Hz to 16,384 Hz.
 - (Scale: 3 octave from C3 to C6 with reference to A4 = 443 Hz)
 - Duration: Can be set within the range of half note/rest to thirty-second note/rest. (7 types)
 - Tempo: Can be set within the range of 30 to 480. (16 types)
 - Other: Tie and slur can be specified.
- A piezoelectric buzzer can be driven with the inverted and non-inverted output pins.
- Can control the non-inverted output pin status while sound stops.

Figure 17.1.1 shows the SNDA configuration.

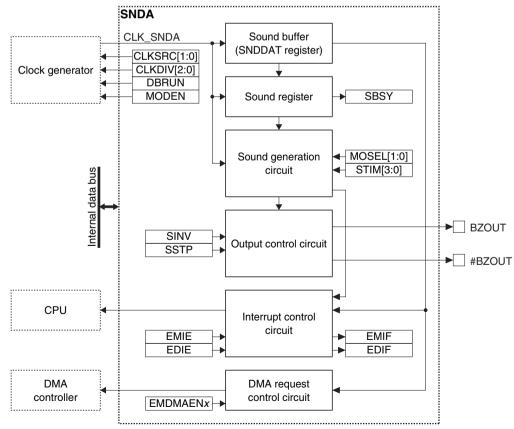


Figure 17.1.1 SNDA Configuration

17.2 Output Pins and External Connections

17.2.1 List of Output Pins

Table 17.2.1.1 lists the SNDA pins.

Table 17.2.1.1 List of SNDA Pins								
Pin name	I/O*	Initial status*	Function					
BZOUT	0	O (Low)	Non-inverted buzzer output pin					
#BZOUT	0	O (Low)	Inverted buzzer output pin					

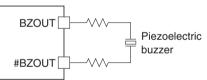
* Indicates the status when the pin is configured for SNDA

If the port is shared with the SNDA pin and other functions, the SNDA output function must be assigned to the port before activating the SNDA. For more information, refer to the "I/O Ports" chapter.

17.2.2 Output Pin Drive Mode

The drive mode of the BZOUT and #BZOUT pins can be set to one of the two types shown below using the SN-DASEL.SINV bit.

Direct drive mode (SNDASEL.SINV bit = 0)


This mode drives both the BZOUT and #BZOUT pins to low while the buzzer signal output is off to prevent the piezoelectric buzzer from applying unnecessary bias.

Normal drive mode (SNDASEL.SINV bit = 1)

In this mode, the #BZOUT pin always outputs the inverted signal of the BZOUT pin even when the buzzer output is off.

17.2.3 External Connections

Figures 17.2.2.1 and 17.2.2.2 show connection diagrams between SNDA and a piezoelectric buzzer.

S1C31 SNDA

Figure 17.2.2.1 Connection between SNDA and Piezoelectric Buzzer (Direct Drive)

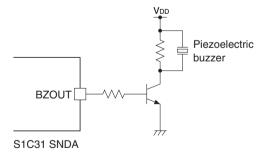


Figure 17.2.2.2 Connection between SNDA and Piezoelectric Buzzer (Single Pin Drive)

17.3 Clock Settings

17.3.1 SNDA Operating Clock

When using SNDA, the SNDA operating clock CLK_SNDA must be supplied to SNDA from the clock generator. The CLK_SNDA supply should be controlled as in the procedure shown below.

- 1. Enable the clock source in the clock generator if it is stopped (refer to "Clock Generator" in the "Power Supply, Reset, and Clocks" chapter).
- 2. Set the following SNDACLK register bits:
 - SNDACLK.CLKSRC[1:0] bits (Clock source selection)
 - SNDACLK.CLKDIV[2:0] bits (Clock division ratio selection = Clock frequency setting)

The CLK_SNDA frequency should be set to around 32,768 Hz.

17.3.2 Clock Supply in SLEEP Mode

When using SNDA during SLEEP mode, the SNDA operating clock CLK_SNDA must be configured so that it will keep supplying by writing 0 to the CLGOSC_xxxxSLPC bit for the CLK_SNDA clock source.

If the CLGOSC*xxxx*SLPC bit for the CLK_SNDA clock source is 1, the CLK_SNDA clock source is deactivated during SLEEP mode and SNDA stops with the register settings maintained at those before entering SLEEP mode. After the CPU returns to normal mode, CLK_SNDA is supplied and the SNDA operation resumes.

17.3.3 Clock Supply in DEBUG Mode

The CLK_SNDA supply during DEBUG mode should be controlled using the SNDACLK.DBRUN bit.

The CLK_SNDA supply to SNDA is suspended when the CPU enters DEBUG mode if the SNDACLK.DBRUN bit = 0. After the CPU returns to normal mode, the CLK_SNDA supply resumes. Although SNDA stops operating when the CLK_SNDA supply is suspended, the output pin and registers retain the status before DEBUG mode was entered. If the SNDACLK.DBRUN bit = 1, the CLK_SNDA supply is not suspended and SNDA will keep operating in DEBUG mode.

17.4 Operations

17.4.1 Initialization

SNDA should be initialized with the procedure shown below.

- 1. Assign the SNDA output function to the ports. (Refer to the "I/O Ports" chapter.)
- 2. Configure the SNDA operating clock.
- 6. Configure the DMA controller and set the following SNDA control bits when using DMA transfer:
 - Write 1 to the DMA transfer request enable bits in the SNDAEMDMAEN register.
 (Enable DMA transfer requests)

17.4.2 Buzzer Output in Normal Buzzer Mode

Normal buzzer mode generates a buzzer signal with the software specified frequency and duty ratio, and outputs the generated signal to outside the IC. The buzzer output duration can also be controlled via software. An output start/stop procedure and the SNDA operations are shown below.

Normal buzzer output start/stop procedure

- 1. Set the SNDASEL.MOSEL[1:0] bits to 0x0.
- 2. Write data to the following sound buffer (SNDADAT register) bits.

(Set normal buzzer mode)

(Start buzzer output)

(Set buzzer output signal duty ratio) (Set buzzer output signal frequency)

- SNDADAT.SLEN[5:0] bitsSNDADAT.SFRQ[7:0] bits
- 3. Write 1 to the SNDACTL.SSTP bit after the output period has elapsed. (Stop buzzer output)

Normal buzzer output operations

When data is written to the sound buffer (SNDADAT register), SNDA clears the SNDAINTF.EMIF bit (sound buffer empty interrupt flag) to 0 and starts buzzer output operations.

The data written to the sound buffer is loaded into the sound register in sync with the CLK_SNDA clock. At the same time, the SNDAINTF.EMIF bit and SNDAINTF.SBSY bit are both set to 1. The output pin outputs the buzzer signal with the frequency/duty ratio specified.

Writing 1 to the SNDACTL.SSTP bit stops buzzer output and sets the SNDAINTF.EDIF bit (sound output completion interrupt flag) to 1. The SNDAINTF.SBSY bit is cleared to 0.

Figure 17.4.2.1 shows a buzzer output timing chart in normal buzzer mode.

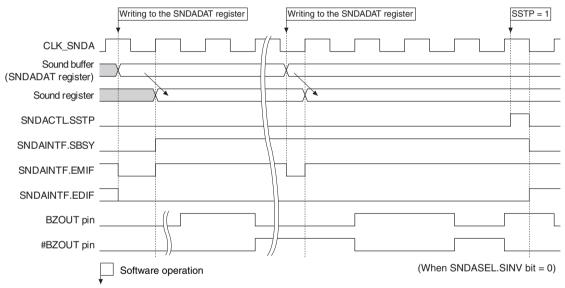


Figure 17.4.2.1 Buzzer Output Timing Chart in Normal Buzzer Mode

Buzzer output waveform configuration (normal buzzer mode/one-shot buzzer mode)

Set the buzzer signal frequency and duty ratio (high period/cycle) using the SNDADAT.SFRQ[7:0] and SNDA-DAT.SLEN[5:0] bits, respectively. Use the following equations to calculate these setting values.

$$SNDADAT.SFRQ[7:0] \text{ bits} = \frac{f_{CLK_SNDA}}{f_{BZOUT}} -1$$
(Eq. 17.1)
$$SNDADAT.SLEN[5:0] \text{ bits} = \left(\frac{f_{CLK_SNDA}}{f_{BZOUT}} \times \frac{DUTY}{100}\right) -1$$
(Eq. 17.2)

Where

fCLK_SNDA:CLK_SNDA frequency [Hz]fBZOUT:Buzzer signal frequency [Hz]DUTY:Buzzer signal duty ratio [%]

However, the following settings are prohibited:

- Settings as SNDADAT.SFRQ[7:0] bits ≤ SNDADAT.SLEN[5:0] bits
- Settings as SNDADAT.SFRQ[7:0] bits = 0x00

SNDADAT.	Frequency	SNDADAT.	Frequency	SNDADAT.	Frequency	SNDADAT.	Frequency
SFRQ[7:0] bits	[Hz]						
0x3f	512.0	0x2f	682.7	0x1f	1,024.0	0x0f	2,048.0
0x3e	520.1	0x2e	697.2	0x1e	1,057.0	0x0e	2,184.5
0x3d	528.5	0x2d	712.3	0x1d	1,092.3	0x0d	2,340.6
0x3c	537.2	0x2c	728.2	0x1c	1,129.9	0x0c	2,520.6
0x3b	546.1	0x2b	744.7	0x1b	1,170.3	0x0b	2,730.7
0x3a	555.4	0x2a	762.0	0x1a	1,213.6	0x0a	2,978.9
0x39	565.0	0x29	780.2	0x19	1,260.3	0x09	3,276.8
0x38	574.9	0x28	799.2	0x18	1,310.7	0x08	3,640.9
0x37	585.1	0x27	819.2	0x17	1,365.3	0x07	4,096.0
0x36	595.8	0x26	840.2	0x16	1,424.7	0x06	4,681.1
0x35	606.8	0x25	862.3	0x15	1,489.5	0x05	5,461.3
0x34	618.3	0x24	885.6	0x14	1,560.4	0x04	6,553.6
0x33	630.2	0x23	910.2	0x13	1,638.4	0x03	8,192.0
0x32	642.5	0x22	936.2	0x12	1,724.6	0x02	10,922.7
0x31	655.4	0x21	963.8	0x11	1,820.4	0x01	16,384.0
0x30	668.7	0x20	993.0	0x10	1,927.5	0x00	Cannot be set

Table 17.4.2.1 Buzzer Frequency Settings (when fcLK_SNDA = 32,768 Hz)

Table 17.4.2.2 Buzzer Duty Ratio Setting Examples (when fcLK_SNDA = 32,768 Hz)

SNDADAT.			Duty ratio by bu	uzzer frequency		2,700 112)				
SLEN[5:0] bits	16,384 Hz	8,192 Hz	4,096 Hz	2,048 Hz	1,024 Hz	512 Hz				
0x3f	-	-	-	-	-	-				
0x3e	-	_	-	-	-	98.4				
0x3d	_	_	_	_	_	96.9				
0x3c	-	_	-	-	-	95.3				
0x3b	_	_	_	_	_	93.8				
0x3a	_	_	_	_	_	92.2				
0x39	_	_	_	_	_	90.6				
0x38	_	_	_	_	-	89.1				
0x37	_	_	_	_	_	87.5				
0x36	-	-	_	_	-	85.9				
0x35						84.4				
0x33	_			_	_	82.8				
0x34 0x33	_			_	_	81.3				
0x33	_				_	79.7				
	_									
0x31					-	78.1				
0x30						76.6				
0x2f	-	-	_	-	-	75.0				
0x2e	-	_	-	-	-	73.4				
0x2d	-	-	-	-	-	71.9				
0x2c	-	-	-	-	-	70.3				
0x2b	-	-	-	-	-	68.8				
0x2a	-	-	-	-	-	67.2				
0x29	-	-	-	-	-	65.6				
0x28	-	_	_	-	-	64.1				
0x27	-	-	-	-	-	62.5				
0x26	-	-	_	-	-	60.9				
0x25	-	-	-	-	-	59.4				
0x24	-	-	-	-	-	57.8				
0x23	-	-	-	-	-	56.3				
0x22	-	-	-	-	-	54.7				
0x21	-	-	-	-	-	53.1				
0x20	-	_	-	-	_	51.6				
0x1f	-	_	-	-	-	50.0				
0x1e	-	_	_	-	96.9	48.4				
0x1d	_	_	_	_	93.8	46.9				
0x1c	_	_	_	-	90.6	45.3				
0x1b	_	_	_	_	87.5	43.8				
0x1a	_	_	_	_	84.4	42.2				
0x19	_	_	_	_	81.3	40.6				
0x19 0x18	_		_		78.1	39.1				
0x18 0x17	_			_	75.0	37.5				
0x17 0x16	_				71.9	37.5				
0x15	_			-		35.9				
				-	68.8					
0x14 0x13	-	_	_	-	65.6	32.8				
11713	-	-	-	-	62.5	31.3				

SNDADAT.	Duty ratio by buzzer frequency					
SLEN[5:0] bits	16,384 Hz	8,192 Hz	4,096 Hz	2,048 Hz	1,024 Hz	512 Hz
0x11	-	-	-	-	56.3	28.1
0x10	-	-	-	-	53.1	26.6
0x0f	-	-	-	-	50.0	25.0
0x0e	-	-	-	93.8	46.9	23.4
0x0d	-	-	-	87.5	43.8	21.9
0x0c	-	-	-	81.3	40.6	20.3
0x0b	-	-	-	75.0	37.5	18.8
0x0a	-	-	-	68.8	34.4	17.2
0x09	-	-	-	62.5	31.3	15.6
0x08	-	-	-	56.3	28.1	14.1
0x07	-	-	-	50.0	25.0	12.5
0x06	-	-	87.5	43.8	21.9	10.9
0x05	-	-	75.0	37.5	18.8	9.4
0x04	-	-	62.5	31.3	15.6	7.8
0x03	-	-	50.0	25.0	12.5	6.3
0x02	-	75.0	37.5	18.8	9.4	4.7
0x01	-	50.0	25.0	12.5	6.3	3.1
0x00	50.0	25.0	12.5	6.3	3.1	1.6

17.4.3 Buzzer Output in One-shot Buzzer Mode

One-shot buzzer mode is provided for clicking sound and short-duration buzzer output. This mode generates a buzzer signal with the software specified frequency and duty ratio, and outputs the generated signal for the short duration specified.

An output start procedure and the SNDA operations are shown below. For the buzzer output waveform, refer to "Buzzer Output in Normal Buzzer Mode."

One-shot buzzer output start procedure

1.	Set the following SNDASEL register bits:	
	- Set the SNDASEL.MOSEL[1:0] bits to 0x1.	(Set one-shot buzzer mode)
	- SNDASEL.STIM[3:0] bits	(Set output duration)
2.	Write data to the following sound buffer (SNDADAT register) bits.	(Start buzzer output)
	- SNDADAT.SLEN[5:0] bits	(Set buzzer output signal duty ratio)
	- SNDADAT.SFRQ[7:0] bits	(Set buzzer output signal frequency)

One-shot buzzer output operations

When data is written to the sound buffer (SNDADAT register), SNDA clears the SNDAINTF.EMIF bit (sound buffer empty interrupt flag) to 0 and starts buzzer output operations.

The data written to the sound buffer is loaded into the sound register in sync with the CLK_SNDA clock. At the same time, the SNDAINTF.EMIF bit and SNDAINTF.SBSY bit are both set to 1. The output pin outputs the buzzer signal with the frequency/duty ratio specified.

The buzzer output automatically stops when the duration specified by the SNDASEL.STIM[3:0] bits has elapsed. At the same time, the SNDAINTF.EDIF bit (sound output completion interrupt flag) is set to 1 and the SNDAINTF.SBSY bit is cleared to 0.

Figure 17.4.3.1 shows a buzzer output timing chart in one-shot buzzer mode.

17 SOUND GENERATOR (SNDA)

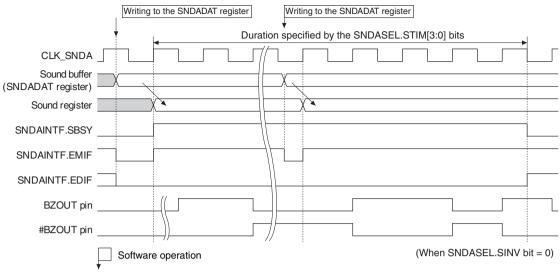


Figure 17.4.3.1 Buzzer Output Timing Chart in One-shot Buzzer Mode

17.4.4 Output in Melody Mode

Melody mode generates the buzzer signal with a melody according to the data written to the sound buffer (SNDADAT register) successively, and outputs the generated signal to outside the IC. An output start procedure and the SNDA operations are shown below.

Melody output start procedure

1.	Set the following SNDASEL register bits:	
	- Set the SNDASEL.MOSEL[1:0] bits to 0x2.	(Set melody mode)
	- SNDASEL.STIM[3:0] bits	(Set tempo)
2.	Write data to the following sound buffer (SNDADAT register) bits.	(Start sound output)
	- SNDADAT.MDTI bit	(Set tie/slur)
	- SNDADAT.MDRS bit	(Set note/rest)
	- SNDADAT.SLEN[5:0] bits	(Set duration)
	- SNDADAT.SFRQ[7:0] bits	(Set scale)

- 3. Check to see if the SNDAINTF.EMIF bit is set to 1 (an interrupt can be used).
- 4. Repeat Steps 2 and 3 until the end of the melody.

Melody output operations

When data is written to the sound buffer (SNDADAT register), SNDA clears the SNDAINTF.EMIF bit (sound buffer empty interrupt flag) to 0 and starts sound output operations.

The data written to the sound buffer is loaded into the sound register by the internal trigger signal. At the same time, the SNDAINTF.EMIF bit and SNDAINTF.SBSY bit are both set to 1. The output pin outputs the sound specified.

The sound output stops if data is not written to the sound buffer (SNDADAT register) until the next trigger is issued. At the same time, the SNDAINTF.EDIF bit (sound output completion interrupt flag) is set to 1 and the SNDAINTF.SBSY bit is cleared to 0.

Figure 17.4.4.1 shows a melody mode operation timing chart.

17 SOUND GENERATOR (SNDA)

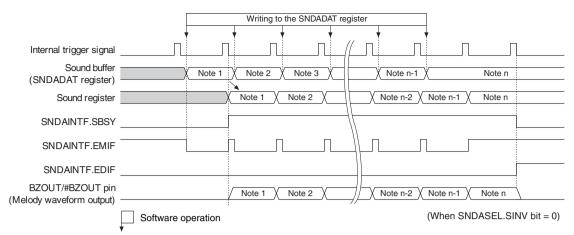


Figure 17.4.4.1 Melody Mode Operation Timing Chart

Melody output using DMA

By setting the SNDAEMDMAEN.EMDMAEN*x* bit to 1 (DMA transfer request enabled), a DMA transfer request is sent to the DMA controller and melody data is transferred from the specified memory to the sound buffer (SNDADAT register) via DMA Ch.*x* when the SNDAINTF.EMIF bit is set to 1 (sound buffer empty). This automates the melody output procedure from Steps 2 to 4 described above.

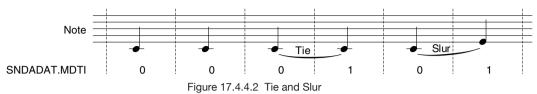
The transfer source/destination and control data must be set for the DMA controller and the relevant DMA channel must be enabled to start a DMA transfer in advance so that transmit data will be transferred to the sound buffer (SNDADAT register). For more information on DMA, refer to the "DMA Controller" chapter.

	Item	Setting example			
End pointer	Transfer source	Memory address in which the last melody data is stored			
	Transfer destination	SNDADAT register address			
Control data	dst_inc	0x3 (no increment)			
	dst_size	0x1 (halfword)			
	src_inc	0x1 (+2)			
	src_size	0x1 (halfword)			
	R_power	0x0 (arbitrated for every transfer)			
	n_minus_1	Number of transfer data			
	cycle_ctrl	0x1 (basic transfer)			

 Table 17.4.4.1
 DMA Data Structure Configuration Example (for Melody Output)

Melody output waveform configuration

Note/rest (duration) specification


Notes and rests can be specified using the SNDADAT.MDRS and SNDADAT.SLEN[5:0] bits.

SNDADAT.SLEN[5:0] bits	SNDADAT.MDRS bit			
SNDADAT.SLEN[5:0] Dits	0: Note	1: Rest		
0x0f	Half note	Half rest		
0x0b	Dotted quarter note	Dotted quarter rest		
0x07	Quarter note	Quarter rest		
0x05	Dotted eighth note	Dotted eighth rest		
0x03	Eighth note	Eighth rest		
0x01	Sixteenth note	Sixteenth rest		
0x00	Thirty-second note	Thirty-second rest		
Other	Setting prohibited			

Table 17.4.4.2 Note/Rest Specification (when fclk_sNDA = 32,768 Hz)

Tie/slur specification

A tie or slur takes effect by setting the SNDADAT.MDTI bit to 1 and the previous note and the current note are played continuously.

Scale specification

Scales can be specified using the SNDADAT.SFRQ[7:0] bits.

SNDADAT.SFRQ[7:0] bits	Scale	Frequency [Hz]
0xf8	C3	131.60
0xea	C#3	139.44
0xdd	D3	147.60
0xd1	D#3	156.04
0xc5	E3	165.49
0xba	F3	175.23
Oxaf	F#3	186.18
0xa5	G3	197.40
0x9c	G#3	208.71
0x93	A3	221.41
0x8b	A#3	234.06
0x83	B3	248.24
0x7c	C4	262.14
0x75	C#4	277.69
0x6e	D4	295.21
0x68	D#4	312.08
0x62	E4	330.99
0x5c	F4	352.34
0x57	F#4	372.36
0x52	G4	394.80
0x4e	G#4	414.78
0x49	A4	442.81
0x45	A#4	468.11
0x41	B4	496.48
0x3d	C5	528.52
0x3a	C#5	555.39
0x37	D5	585.14
0x33	D#5	630.15
0x30	E5	668.73
0x2e	F5	697.19
0x2b	F#5	744.73
0x29	G5	780.19
0x26	G#5	840.21
0x24	A5	885.62
0x22	A#5	936.23
0x20	B5	992.97
0x1e	C6	1057.03

17.5 Interrupts

SNDA has a function to generate the interrupts shown in Table 17.5.1.

Table 17.5.1 SNDA Interrupt Function

		•	
Interrupt	Interrupt flag	Set condition	Clear condition
Sound buffer empty	SNDAINTF.EMIF	When data in the sound buffer (SNDADAT reg-	Writing to the SNDADAT
		ister) is transferred to the sound register or 1 is written to the SNDACTL.SSTP bit	register
Sound output completion	SNDAINTF.EDIF		Writing 1 or writing to the SNDADAT register

17 SOUND GENERATOR (SNDA)

SNDA provides interrupt enable bits corresponding to each interrupt flag. An interrupt request is sent to the CPU only when the interrupt flag, of which interrupt has been enabled by the interrupt enable bit, is set. For more information on interrupt control, refer to the "Interrupt" chapter.

17.6 DMA Transfer Requests

The SNDA has a function to generate DMA transfer requests from the causes shown in Table 17.6.1.

Cause to request DMA transfer	DMA transfer request flag	Set condition	Clear condition
Sound buffer	Sound buffer empty flag	When data in the sound buffer (SNDADAT register) is	Writing to the
empty	(SNDAINTF.EMIF)	transferred to the sound register or 1 is written to the	SNDADAT register
		SNDACTL.SSTP bit	

Table 17.6.1	DMA Transfer	Request Cause	s of SNDA
--------------	--------------	---------------	-----------

The SNDA provides DMA transfer request enable bits corresponding to each DMA transfer request flag shown above for the number of DMA channels. A DMA transfer request is sent to the pertinent channel of the DMA controller only when the DMA transfer request flag, of which DMA transfer has been enabled by the DMA transfer request enable bit, is set. The DMA transfer request flag also serves as an interrupt flag, therefore, both the DMA transfer request and the interrupt cannot be enabled at the same time. After a DMA transfer has completed, disable the DMA transfer to prevent unintended DMA transfer requests from being issued. For more information on the DMA control, refer to the "DMA Controller" chapter.

17.7 Control Registers

SNDA Clock Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SNDACLK	15–9	-	0x00	-	R	_
	8	DBRUN	0	H0	R/W	
	7	-	0	-	R	
	6–4	CLKDIV[2:0]	0x0	H0	R/W	
	3–2	-	0x0	-	R	
	1–0	CLKSRC[1:0]	0x0	H0	R/W	

Bits 15–9 Reserved

Bit 8 DBRUN

This bit sets whether the SNDA operating clock is supplied in DEBUG mode or not. 1 (R/W): Clock supplied in DEBUG mode

0 (R/W): No clock supplied in DEBUG mode

Bit 7 Reserved

Bits 6-4 CLKDIV[2:0]

These bits select the division ratio of the SNDA operating clock.

Bits 3–2 Reserved

Bits 1-0 CLKSRC[1:0]

These bits select the clock source of SNDA.

SNDACLK.	SNDACLK.CLKSRC[1:0] bits								
CLKDIV[2:0] bits	0x0	0x1	0x2	0x3					
CLKDIV[2:0] DIIS	IOSC	OSC1	OSC3	EXOSC					
0x7	Reserved	1/1	Reserved	1/1					
0x6	1/1,024		1/1,024						
0x5	1/512		1/512						
0x4	1/256		1/256						
0x3	1/128		1/128						
0x2	1/64		1/64						
0x1	1/32	-	1/32						
0x0	1/16		1/16						

Table 17.7.1 Clock Source and Division Ratio Settings

(Note) The oscillation circuits/external input that are not supported in this IC cannot be selected as the clock source.

Note: The SNDACLK register settings can be altered only when the SNDACTL.MODEN bit = 0.

SNDA Select Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SNDASEL	15–12	_	0x0	-	R	-
	11–8	STIM[3:0]	0x0	HO	R/W	
	7–3	-	0x00	-	R	
	2	SINV	0	H0	R/W	
	1–0	MOSEL[1:0]	0x0	H0	R/W	

Bits 15–12 Reserved

Bits 11-8 STIM[3:0]

These bits select a tempo (when melody mode is selected) or a one-shot buzzer output duration (when one-shot buzzer mode is selected).

Table 17.7.2 Tempo/One-shot Buzzer Output Duration Selections (when fcLK_SNDA = 32,768 Hz)

SNDASEL. STIM[3:0] bits	Tempo (= Quarter note/minute)	One-shot buzzer output duration [ms]
0xf	30	250.0
0xe	32	234.4
0xd	34.3	218.8
0xc	36.9	203.1
0xb	40	187.5
0xa	43.6	171.9
0x9	48	156.3
0x8	53.3	140.6
0x7	60	125.0
0x6	68.6	109.4
0x5	80	93.8
0x4	96	78.1
0x3	120	62.5
0x2	160	46.9
0x1	240	31.3
0x0	480	15.6

Note: Be sure to avoid altering these bits when SNDAINTF.SBSY bit = 1.

Bits 7–3 Reserved

Bit 2 SINV

This bit selects an output pin drive mode.

1 (R/W): Normal drive mode

0 (R/W): Direct drive mode

For more information, refer to "Output Pin Drive Mode."

Bits 1–0 MOSEL[1:0]

These bits select a sound output mode.

Table 17.7.3 Sound Output Mode Selection						
SNDASEL.MOSEL[1:0] bits	Sound output mode					
0x3	Reserved					
0x2	Melody mode					
0x1	One-shot buzzer mode					
0x0	Normal buzzer mode					

Table 17.7.3 Sound Output Mode Selection

SNDA Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SNDACTL	15–9	-	0x00	-	R	-
	8	SSTP	0	H0	R/W	
	7–1	-	0x00	-	R	
	0	MODEN	0	H0	R/W	

Bits 15–9 Reserved

Bit 8 SSTP

This bit stops sound output.

1 (W): Stop sound output

- 0 (W): Ineffective
- 1 (R): In stop process
- 0 (R): Stop process completed/Idle

The SNDACTL.SSTP bit is used to stop buzzer output in normal buzzer mode. After 1 is written, this bit is cleared to 0 when the sound output has completed. Also in one-shot buzzer mode/melody mode, writing 1 to this bit can forcibly terminate the sound output.

Bits 7–1 Reserved

Bit 0 MODEN

This bit enables the SNDA operations.

- 1 (R/W): Enable SNDA operations (The operating clock is supplied.)
- 0 (R/W): Disable SNDA operations (The operating clock is stopped.)

SNDA Data Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SNDADAT	15	MDTI	0	H0	R/W	-
	14	MDRS	0	H0	R/W	
	13–8	SLEN[5:0]	0x00	H0	R/W	
	7–0	SFRQ[7:0]	0xff	H0	R/W	

This register functions as a sound buffer. Writing data to this register starts sound output. For detailed information on the setting data, refer to "Buzzer output waveform configuration (normal buzzer mode/one-shot buzzer mode)" and "Melody output waveform configuration."

Bit 15 MDTI

This bit specifies a tie or slur (continuous play with the previous note) in melody mode.

- 1 (R/W): Enable tie/slur
- 0 (R/W): Disable tie/slur

This bit is ignored in normal buzzer mode/one-shot buzzer mode.

Bit 14 MDRS

This bit selects the output type in melody mode from a note or a rest .

- 1 (R/W): Rest
- 0 (R/W): Note

When a rest is selected, the BZOUT pin goes low and the #BZOUT pin goes high during the output duration. This bit is ignored in normal buzzer mode/one-shot buzzer mode.

Bits 13-8 SLEN[5:0]

These bits select a duration (when melody mode is selected) or a buzzer signal duty ratio (when normal buzzer mode/one-shot buzzer mode is selected).

Bits 7–0 SFRQ[7:0]

These bits select a scale (when melody mode is selected) or a buzzer signal frequency (when normal buzzer mode/one-shot buzzer mode is selected).

- Notes: In normal buzzer mode/one-shot buzzer mode, only the low-order 6 bits (SNDADAT. SFRQ[5:0] bits) are effective within the SNDADAT.SFRQ[7:0] bits. Always set the SNDADAT. SFRQ[7:6] bits to 0x0.
 - The SNDADAT register allows 16-bit data writing only. Data writings in 8-bit size will be ignored.

SNDA Interrupt Flag Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SNDAINTF	15–9	-	0x00	-	R	_
	8	SBSY	0	H0	R	
	7–2	-	0x00	_	R	
	1	EMIF	1	H0	R	Cleared by writing to the SNDADAT
						register.
	0	EDIF	0	H0	R/W	Cleared by writing 1 or writing to the SNDADAT register.

Bits 15–9 Reserved

Bit 8 SBSY

This bit indicates the sound output status. (See Figures 17.4.2.1, 17.4.3.1, and 17.4.4.1.)

- 1 (R): Outputting
- 0 (R): Idle

Bits 7–2 Reserved

Bit 1 EMIF

Bit 0 EDIF

These bits indicate the SNDA interrupt cause occurrence status.

- 1 (R): Cause of interrupt occurred
- 0 (R): No cause of interrupt occurred
- 1 (W): Clear flag
- 0 (W): Ineffective

The following shows the correspondence between the bit and interrupt: SNDAINTF.EMIF bit: Sound buffer empty interrupt SNDAINTF.EDIF bit: Sound output completion interrupt

SNDA Interrupt Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SNDAINTE	15–8	-	0x00	_	R	-
	7–2	-	0x00	-	R	
	1	EMIE	0	H0	R/W	
	0	EDIE	0	HO	R/W	

Bits 15–2 Reserved

Bit 0 EDIE

These bits enable SNDA interrupts.

1 (R/W): Enable interrupts

0 (R/W): Disable interrupts

The following shows the correspondence between the bit and interrupt: SNDAINTE.EMIE bit: Sound buffer empty interrupt SNDAINTE.EDIE bit: Sound output completion interrupt

SNDA Sound Buffer Empty DMA Request Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SNDAEMDMAEN	15–0	EMDMAEN[15:0]	0x0000	H0	R/W	_

Bits 15-0 EMDMAEN[15:0]

These bits enable the SNDA to issue a DMA transfer request to the corresponding DMA controller channel (Ch.0–Ch.15) when a sound buffer empty state has occurred.

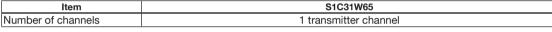
1 (R/W): Enable DMA transfer request

0 (R/W): Disable DMA transfer request

Each bit corresponds to a DMA controller channel. The high-order bits for the unimplemented channels are ineffective.

18 IR Remote Controller (REMC3)

18.1 Overview


The REMC3 circuit generates infrared remote control output signals. This circuit can also be applicable to an EL lamp drive circuit by adding a simple external circuit.

The features of the REMC3 are listed below.

- Outputs an infrared remote control signal.
- Includes a carrier generator.
- Flexible carrier signal generation and data pulse width modulation.
- Automatic data setting function for continuous data transmission.
- Output signal inverting function supporting various formats.
- EL lamp drive waveform can be generated for an application example.

Figure 18.1.1 shows the REMC3 configuration.

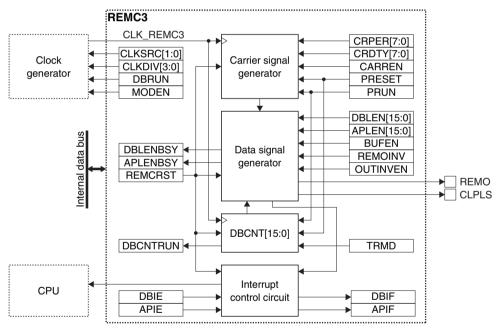


Figure 18.1.1 REMC3 Configuration

18.2 Output Pins and External Connections

18.2.1 List of Output Pins

Table 18.2.1.1 shows the REMC3 pin.

Table 18.2.1.1 REMC3 Pin

Pin name	I/O*	Initial status*	Function						
REMO	0	O (L)	IR remote controller transmit data output						
CLPLS	0	O (L)	IR remote controller clear pulse output						

* Indicates the status when the pin is configured for the REMC3.

18 IR REMOTE CONTROLLER (REMC3)

If the port is shared with the REMC3 pin and other functions, the REMC3 output function must be assigned to the port before activating the REMC3. For more information, refer to the "I/O Ports" chapter.

18.2.2 External Connections

Figure 18.2.2.1 shows a connection example between the REMC3 and an external infrared module.

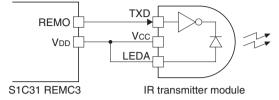


Figure 18.2.2.1 Connection Example Between REMC3 and External Infrared Module

18.3 Clock Settings

18.3.1 REMC3 Operating Clock

When using the REMC3, the REMC3 operating clock CLK_REMC3 must be supplied to the REMC3 from the clock generator. The CLK_REMC3 supply should be controlled as in the procedure shown below.

- 1. Enable the clock source in the clock generator if it is stopped (refer to "Clock Generator" in the "Power Supply, Reset, and Clocks" chapter).
- 2. Set the following REMC3CLK register bits:
 - REMC3CLK.CLKSRC[1:0] bits (Clock source selection)
 - REMC3CLK.CLKDIV[3:0] bits (Clock division ratio selection = Clock frequency setting)

18.3.2 Clock Supply in SLEEP Mode

When using REMC3 during SLEEP mode, the REMC3 operating clock CLK_REMC3 must be configured so that it will keep supplying by writing 0 to the CLGOSC_xxxxSLPC bit for the CLK_REMC3 clock source. If the CLGOSC_xxxxSLPC bit for the CLK_REMC3 clock source is 1, the CLK_REMC3 clock source is deactivated during SLEEP mode and REMC3 stops with the register settings maintained at those before entering SLEEP mode. After the CPU returns to normal mode, CLK_REMC3 is supplied and the REMC3 operation resumes.

18.3.3 Clock Supply During Debugging

The CLK_REMC3 supply during debugging should be controlled using the REMC3CLK.DBRUN bit.

The CLK_REMC3 supply to the REMC3 is suspended when the CPU enters debug state if the REMC3CLK.DB-RUN bit = 0. After the CPU returns to normal operation, the CLK_REMC3 supply resumes. Although the REMC3 stops operating when the CLK_REMC3 supply is suspended, the output pin and registers retain the status before debug state was entered. If the REMC3CLK.DBRUN bit = 1, the CLK_REMC3 supply is not suspended and the REMC3 will keep operating in debug state.

18.4 Operations

18.4.1 Initialization

The REMC3 should be initialized with the procedure shown below.

1. Write 1 to the REMC3DBCTL.REMCRST bit.

(Reset REMC3)

- 2. Configure the REMC3CLK.CLKSRC[1:0] and REMC3CLK.CLKDIV[3:0] bits. (Configure operating clock)
- 3. Assign the REMC3 output function to the port. (Refer to the "I/O Ports" chapter.)

4.	Configure the following REMC3DBCTL register bits:	
	- Set the REMC3DBCTL.MODEN bit to 1.	(Enable count operation clock)
	- REMC3DBCTL.TRMD bit	(Select repeat mode/one-shot mode)
	- Set the REMC3DBCTL.BUFEN bit to 1.	(Enable compare buffer)
	- REMC3DBCTL.REMOINV bit	(Configure inverse logic output signal)
5.	Configure the following REMC3CARR register bits:	
	- REMC3CARR.CRPER[7:0] bit	(Set carrier signal cycle)
	- REMC3CARR.CRDTY[7:0] bit	(Set carrier signal duty)
6.	Configure the following REMC3CCTL register bits:	
	- REMC3CCTL.CARREN bit	(Enable/disable carrier modulation)
	- REMC3CCTL.OUTINVEN bit	(Configure output signal polarity)
7.	Set the following bits when using the interrupt:	
	- Write 1 to the interrupt flags in the REMC3INTF register.	(Clear interrupt flags)
	- Set the interrupt enable bits in the REMC3INTE register to 1.	(Enable interrupts)

18.4.2 Data Transmission Procedures

Starting data transmission

The following shows a procedure to start data transmission.

1. Set the REMC3APLEN.APLEN[15:0] bits.	(Set data signal duty)
2. Set the REMC3DBLEN.DBLEN[15:0] bits.	(Set data signal cycle)
3. Set the following REMC3DBCTL register bits:	
- Set the REMC3DBCTL.PRESET bit to 1.	(Reset internal counters)
- Set the REMC3DBCTL.PRUN bit to 1.	(Start counting)

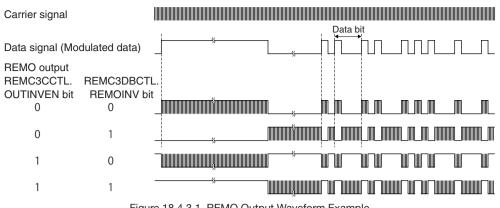
Continuous data transmission control

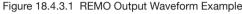
The following shows a procedure to send data continuously after starting data transmission (after Step 3 above).

- Set the duty and cycle for the subsequent data to the REMC3APLEN.APLEN[15:0] and REMC3DBLEN. DBLEN[15:0] bits, respectively, before a compare DB interrupt (REMC3INTF.DBIF bit = 1) occurs. (It is not necessary to rewrite settings when sending the same data with the current settings.)
- 2. Wait for a compare DB interrupt (REMC3INTF.DBIF bit = 1).
- 3. Repeat Steps 1 and 2 until the end of data.

Terminating data transmission

The following shows a procedure to terminate data transmission.


- 1. Wait for a compare DB interrupt (REMC3INTF.DBIF bit = 1).
- 2. Set the REMC3DBCTL.PRUN bit to 0. (Stop counting)
- 3. Set the REMC3DBCTL.MODEN bit to 0. (Disable count operation clock)


18.4.3 REMO Output Waveform

Carrier refers to infrared frequency in infrared remote control communication. Note, however, that carrier in this manual refers to sub-carrier used in infrared remote control communication, as REMC3 does not control infrared rays directly.

The REMC3 outputs the logical AND between the carrier signal output from the carrier generator and the data signal output from the data signal generator. Figure 18.4.3.1 shows an example of the output waveform.

18 IR REMOTE CONTROLLER (REMC3)

Carrier signal

The carrier signal is generated by comparing the values of the 8-bit counter for carrier generation that runs with CLK_REMC3 and the setting values of the REMC3CARR.CRDTY[7:0] and REMC3CARR.CRPER[7:0] bits. Figure 18.4.3.2 shows an example of the carrier signal generated.

Example) REMC3CARR.CRDTY[7:0] bits = 2, REMC3CARR.CRPER[7:0] bits = 8

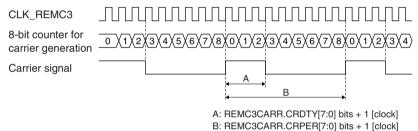


Figure 18.4.3.2 Example of Carrier Signal Generated

The carrier signal frequency and duty ratio can be calculated by the equations shown below.

Carrier frequency = $\frac{f_{CLK_REMC3}}{CRPER + 1}$ Duty ratio = $\frac{CRDTY + 1}{CRPER + 1}$ (Eq. 18.1)

Where

fCLK_REMC3: CLK_REMC3 frequency [Hz]CRPER:REMC3CARR.CRPER[7:0] bit-setting value (1–255)CRDTY:REMC3CARR.CRDTY[7:0] bit-setting value (0–254)* REMC3CARR.CRDTY[7:0] bits < REMC3CARR.CRPER[7:0] bits</td>

The 8-bit counter for carrier generation is reset by the REMC3DBCTL.PRESET bit and is started/stopped by the REMC3DBCTL.PRUN bit in conjunction with the 16-bit counter for data signal generation. When the counter value is matched with the REMC3CARR.CRDTY[7:0] bits, the carrier signal waveform is inverted. When the counter value is matched with the REMC3CARR.CRPER[7:0] bits, the carrier signal waveform is inverted and the counter is reset to 0x00.

Data signal

The data signal is generated by comparing the values of the 16-bit counter for data signal generation (REMC3DBCNT.DBCNT[15:0] bits) that runs with CLK_REMC3 and the setting values of the REMC3A-PLEN.APLEN[15:0] and REMC3DBLEN.DBLEN[15:0] bits. Figure 18.4.3.3 shows an example of the data signal generated.

Example) REMC3APLEN.APLEN[15:0] bits = 0x0bd0, REMC3DBLEN.DBLEN[15:0] bits = 0x11b8, REMC3DBCTL.TRMD bit = 0 (repeat mode), REMC3DBCTL.REMOINV bit = 0 (signal logic non-inverted)

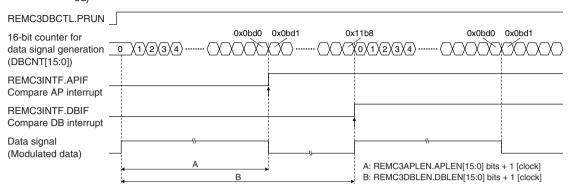


Figure 18.4.3.3 Example of Data Signal Generated

The data length and duty ratio of the pulse-width-modulated data signal can be calculated with the equations shown below.

Data length =
$$\frac{\text{DBLEN} + 1}{\text{f}_{\text{CLK}_{\text{REMC3}}}}$$
 Duty ratio = $\frac{\text{APLEN} + 1}{\text{DBLEN} + 1}$ (Eq. 18.2)

Where

fCLK_REMC3: CLK_REMC3 frequency [Hz] DBLEN: REMC3DBLEN.DBLEN[15:0] bit-setting value (1–65,535) APLEN: REMC3APLEN.APLEN[15:0] bit-setting value (0–65,534) * REMC3APLEN.APLEN[15:0] bits < REMC3DBLEN.DBLEN[15:0] bits

The 16-bit counter for data signal generation is reset by the REMC3DBCTL.PRESET bit and is started/ stopped by the REMC3DBCTL.PRUN bit. When the counter value is matched with the REMC3APLEN. APLEN[15:0] bits (compare AP), the data signal waveform is inverted. When the counter value is matched with the REMC3DBLEN.DBLEN[15:0] bits (compare DB), the data signal waveform is inverted and the counter is reset to 0x0000.

A different interrupt can be generated when the counter value is matched with the REMC3DBLEN. DBLEN[15:0] and REMC3APLEN.APLEN[15:0] bits, respectively.

Repeat mode and one-shot mode

When the 16-bit counter for data signal generation is set to repeat mode (REMC3DBCTL.TRMD bit = 0), the counter keeps operating until it is stopped using the REMC3DBCTL.PRUN bit. When the counter is set to one-shot mode (REMC3DBCTL.TRMD bit = 1), the counter stops automatically when the counter value is matched with the REMC3DBLEN.DBLEN[15:0] bit-setting value.

18.4.4 Continuous Data Transmission and Compare Buffers

Figure 18.4.4.1 shows an operation example of continuous data transmission with the compare buffer enabled.

18 IR REMOTE CONTROLLER (REMC3)

Example) REMC3DBCTL.TRMD bit = 0 (repeat mode), REMC3DBCTL.BUFEN bit = 1 (compare buffer enabled), REMC3DBCTL.REMOINV bit = 0 (signal logic non-inverted)

REMC3DBCTL.PRUN							
16-bit counter for data signal generation (DBCNT[15:0])	<u>) (1/2/3</u>)		0x0bd1 0x11b8	0x00bd 0x0	00be 0x017a 0x00b	d 0x00be	$\cdot \underbrace{\times 002f4}_{0 \times 0 \times 1}$
REMC3APLEN.APLEN[15:0]	0x0bd0			0x00bd			
REMC3DBLEN.DBLEN[15:0]	0x11b8		0x017a		0x02f4		0x017a
REMC3APLEN buffer		0x0bd0		0x00b	d	0x00bd	
REMC3DBLEN buffer		0x11b8		0x017	a	0x02f4	
REMC3INTF.APIF		,	←Cleared		← Cleared	Cle	eared
REMC3INTF.DBIF				← Cleared	d CI	eared	
REMC3INTF.DBCNTRUN							
REMC3INTF.APLENBSY	T						
REMC3INTF.DBLENBSY						ļ	
Data signal (Modulated data) —			<u>"</u> . 8T .	<u>. т</u> .			
	•	•	· · · · ·	"0"	1	"1"	

Figure 18.4.4.1 Continuous Data Transmission Example

When the compare buffer is disabled (REMC3DBCTL.BUFEN bit = 0), the 16-bit counter value is directly compared with the REMC3APLEN.APLEN[15:0] and REMC3DBLEN.DBLEN[15:0] bit values. The comparison value is altered immediately after the REMC3APLEN.APLEN[15:0] or REMC3DBLEN.DBLEN[15:0] bits are rewritten.

When the compare buffer is enabled (REMC3DBCTL.BUFEN bit = 1), the REMC3APLEN.APLEN[15:0] and REMC3DBLEN.DBLEN[15:0] bit values are loaded into the compare buffers provided respectively (REMC3A-PLEN buffer and REMC3DBLEN buffer) and the 16-bit counter value is compared with the compare buffers.

The comparison values are loaded into the compare buffers when the 16-bit counter is matched with the REMC3D-BLEN buffer (when the count for the data length has completed). Therefore, the next transmit data can be set during the current data transmission. When the compare buffers are enabled, the buffer status flags (REMC3INTF. APLENBSY bit and REMC3INTF.DBLENBSY bit) become effective. The flag is set to 1 when the setting value is written to the register and cleared to 0 when the written value is transferred to the buffer.

18.5 Interrupts

The REMC3 has a function to generate the interrupts shown in Table 18.5.1.

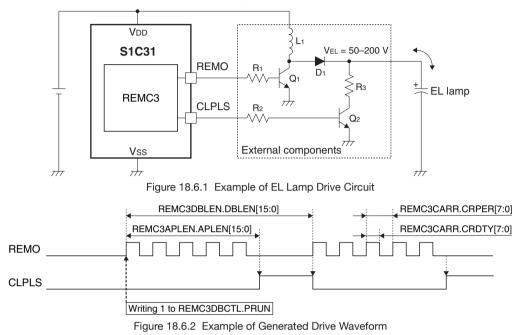

Interrupt	Interrupt flag	Set condition	Clear condition
Compare AP	REMC3INTF.APIF	When the REMC3APLEN register (or	Writing 1 to the interrupt flag or
		REMC3APLEN buffer) value and the 16-bit	the REMC3DBCTL.REMCRST bit
		counter for data signal generation are matched	
Compare DB	REMC3INTF.DBIF	When the REMC3DBLEN register (or	Writing 1 to the interrupt flag or
		REMC3DBLEN buffer) value and the 16-bit	the REMC3DBCTL.REMCRST bit
		counter for data signal generation are matched	

Table 18.5.1 REMC3 Interrupt Function

The REMC3 provides interrupt enable bits corresponding to each interrupt flag. An interrupt request is sent to the CPU only when the interrupt flag, of which interrupt has been enabled by the interrupt enable bit, is set. For more information on interrupt control, refer to the "Interrupt" chapter.

18.6 Application Example: Driving EL Lamp

The REMC3 can be used to simply drive an EL lamp as an application example. Figures 18.6.1 and 18.6.2 show an example of an EL lamp drive circuit and an example of the drive waveform generated, respectively. For details of settings and an example of components, refer to the Application Note provided separately.

The REMO and CLPLS signals are output from the respective pins while the REMC3DBCTL.PRUN bit = 1. The difference between the setting values of the REMC3DBLEN.DBLEN[15:0] bits and REMC3APLEN.APLEN[15:0] bits becomes the CLPLS pulse width (high period).

18.7 Control Registers

REMC3 Clock Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
REMC3CLK	15–9	-	0x00	_	R	-
	8	DBRUN	0	H0	R/W	
	7–4	CLKDIV[3:0]	0x0	H0	R/W	
	3–2	-	0x0	-	R	
	1–0	CLKSRC[1:0]	0x0	HO	R/W	

Bits 15–9 Reserved

Bit 8 DBRUN

This bit sets whether the REMC3 operating clock is supplied during debugging or not.

- 1 (R/W): Clock supplied during debugging
- 0 (R/W): No clock supplied during debugging

Bits 7–4 CLKDIV[3:0]

These bits select the division ratio of the REMC3 operating clock.

Bits 3–2 Reserved

Bits 1-0 CLKSRC[1:0]

These bits select the clock source of the REMC3.

lable 18.7.1 Clock Source and Division Ratio Settings											
REMC3CLK.		REMC3CLK.CLKSRC[1:0] bits									
CLKDIV[3:0] bits	0x0 0x1		0x2	0x3							
CERDIV[3:0] Bits	IOSC	OSC1	OSC3	EXOSC							
Oxf	1/32,768	1/1	1/32,768	1/1							
0xe	1/16,384		1/16,384								
0xd	1/8,192		1/8,192								
0xc	1/4,096		1/4,096								
0xb	1/2,048		1/2,048								
0xa	1/1,024		1/1,024								
0x9	1/512		1/512								
0x8	1/256	1/256	1/256								
0x7	1/128	1/128	1/128								
0x6	1/64	1/64	1/64								
0x5	1/32	1/32	1/32								
0x4	1/16	1/16	1/16								
0x3	1/8	1/8	1/8								
0x2	1/4	1/4	1/4								
0x1	1/2	1/2	1/2								
0x0	1/1	1/1	1/1								

Table 18.7.1 Clock Source and Division Ratio Settings

(Note) The oscillation circuits/external input that are not supported in this IC cannot be selected as the clock source.

Note: The REMC3CLK register settings can be altered only when the REMC3DBCTL.MODEN bit = 0.

REMC3 Data Bit Counter Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks			
REMC3DBCTL	15–10	-	0x00	-	R	_			
	9	PRESET	0	H0/S0	R/W	Cleared by writing 1 to the			
	8	PRUN	0	H0/S0	R/W	REMC3DBCTL.REMCRST bit.			
	7–5	-	0x0	-	R	-			
	4	REMOINV	0	H0	R/W				
	3	BUFEN	0	H0	R/W				
	2	TRMD	0	H0	R/W	-			
	1	REMCRST	0	H0	W				
	0	MODEN	0	HO	R/W				

Bits 15–10 Reserved

Bit 9 PRESET

This bit resets the internal counters (16-bit counter for data signal generation and 8-bit counter for carrier generation).

- 1 (W): Reset
- 0 (W): Ineffective
- 1 (R): Resetting in progress
- 0 (R): Resetting finished or normal operation

Before the counter can be reset using this bit, the REMC3DBCTL.MODEN bit must be set to 1. This bit is cleared to 0 after the counter reset operation has finished or when 1 is written to the REMC3DBCTL.REMCRST bit.

Bit 8 PRUN

This bit starts/stops counting by the internal counters (16-bit counter for data signal generation and 8-bit counter for carrier generation).

- 1 (W): Start counting
- 0 (W): Stop counting
- 1 (R): Counting
- 0 (R): Idle

Before the counter can start counting by this bit, the REMC3DBCTL.MODEN bit must be set to 1. While the counter is running, writing 0 to the REMC3DBCTL.PRUN bit stops count operations. When the counter stops by occurrence of a compare DB in one-shot mode, this bit is automatically cleared to 0.

Bits 7–5 Reserved

Bit 4 REMOINV

This bit inverts the REMO output signal. 1 (R/W): Inverted 0 (R/W): Non-inverted

For more information, see Figure 18.4.3.1.

Bit 3 BUFEN

This bit enables or disables the compare buffers. 1 (R/W): Enable

0 (R/W): Disable

For more information, refer to "Continuous Data Transmission and Compare Buffers."

Note: The REMC3DBCTL.BUFEN bit must be set to 0 when setting the data signal duty and cycle for the first time.

Bit 2 TRMD

This bit selects the operation mode of the 16-bit counter for data signal generation.

- 1 (R/W): One-shot mode
- 0 (R/W): Repeat mode

For more information, refer to "REMO Output Waveform, Data signal."

Bit 1 REMCRST

This bit issues software reset to the REMC3.

- 1 (W): Issue software reset
- 0 (W): Ineffective
- 1 (R): Software reset is executing.
- 0 (R): Software reset has finished. (During normal operation)

Setting this bit resets the REMC3 internal counters and interrupt flags. This bit is automatically cleared after the reset processing has finished.

Note: After the data signal is output in one-shot mode, set the REMC3DBCTL.REMCRST bit to 1.

Bit 0 MODEN

This bit enables the REMC3 operations.

1 (R/W): Enable REMC3 operations (The operating clock is supplied.)

0 (R/W): Disable REMC3 operations (The operating clock is stopped.)

Note: If the REMC3DBCTL.MODEN bit is altered from 1 to 0 while sending data, the data being sent cannot be guaranteed. When setting the REMC3DBCTL.MODEN bit to 1 again after that, be sure to write 1 to the REMC3DBCTL.REMCRST bit as well.

REMC3 Data Bit Counter Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
REMC3DBCNT	15–0	DBCNT[15:0]	0x0000	H0/S0		Cleared by writing 1 to the REMC3DBCTL.REMCRST bit.

Bits 15-0 DBCNT[15:0]

The current value of the 16-bit counter for data signal generation can be read out through these bits.

REMC3 Data Bit Active Pulse Length Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
REMC3APLEN	15–0	APLEN[15:0]	0x0000	H0	R/W	Writing enabled when REMC3DBCTL. MODEN bit = 1.

Bits 15-0 APLEN[15:0]

These bits set the active pulse length of the data signal (high period when the REMC3DBCTL.RE-MOINV bit = 0 or low period when the REMC3DBCTL.REMOINV bit = 1).

The REMO pin output is set to the active level from the 16-bit counter for data signal generation = 0x0000 and it is inverted to the inactive level when the counter exceeds the REMC3APLEN. APLEN[15:0] bit-setting value. The data signal duty ratio is determined by this setting and the REMC3DBLEN.DBLEN[15:0] bit-setting. (See Figure 18.4.3.3.)

Before this register can be rewritten, the REMC3DBCTL.MODEN bit must be set to 1.

REMC3 Data Bit Length Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
REMC3DBLEN	15–0	DBLEN[15:0]	0x0000	H0	R/W	Writing enabled when REMC3DBCTL. MODEN bit = 1.

Bits 15-0 DBLEN[15:0]

These bits set the data length of the data signal (length of one cycle). A data signal cycle begins with the 16-bit counter for data signal generation = 0x0000 and ends when the counter exceeds the REMC3DBLEN.DBLEN[15:0] bit-setting value. (See Figure 18.4.3.3.)

Before this register can be rewritten, the REMC3DBCTL.MODEN bit must be set to 1.

REMC3 Status and Interrupt Flag Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
REMC3INTF	15–11	-	0x00	-	R	-
	10	DBCNTRUN	0	H0/S0	R	Cleared by writing 1 to the REMC3DBCTL.REMCRST bit.
	9	DBLENBSY	0	H0	R	Effective when the REMC3DBCTL.
	8	APLENBSY	0	H0	R	BUFEN bit = 1.
	7–2	-	0x00	-	R	-
	1	DBIF	0	H0/S0	R/W	Cleared by writing 1 to this bit or the REMC3DBCTL.REMCRST bit.
	0	APIF	0	H0/S0	R/W	

Bits 15–11 Reserved

Bit 10 DBCNTRUN

This bit indicates whether the 16-bit counter for data signal generation is running or not. (See Figure 18.4.4.1.)

1 (R): Running (Counting)

0 (R): Idle

Bit 9 DBLENBSY

This bit indicates whether the value written to the REMC3DBLEN.DBLEN[15:0] bits is transferred to the REMC3DBLEN buffer or not. (See Figure 18.4.4.1.)

- 1 (R): Transfer to the REMC3DBLEN buffer has not completed.
- 0 (R): Transfer to the REMC3DBLEN buffer has completed.

While this bit is set to 1, writing to the REMC3DBLEN.DBLEN[15:0] bits is ineffective.

Bit 8 APLENBSY

This bit indicates whether the value written to the REMC3APLEN.APLEN[15:0] bits is transferred to the REMC3APLEN buffer or not. (See Figure 18.4.4.1.)

- 1 (R): Transfer to the REMC3APLEN buffer has not completed.
- 0 (R): Transfer to the REMC3APLEN buffer has completed.

While this bit is set to 1, writing to the REMC3APLEN.APLEN[15:0] bits is ineffective.

Seiko Epson Corporation

Bits 7–2 Reserved

Bit 1 DBIF

Bit 0 APIF

These bits indicate the REMC3 interrupt cause occurrence status.

- 1 (R): Cause of interrupt occurred
- 0 (R): No cause of interrupt occurred
- 1 (W): Clear flag
- 0 (W): Ineffective

The following shows the correspondence between the bit and interrupt:

REMC3INTF.DBIF bit: Compare DB interrupt

REMC3INTF.APIF bit: Compare AP interrupt

These interrupt flags are also cleared to 0 when 1 is written to the REMC3DBCTL.REMCRST bit.

REMC3 Interrupt Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
REMC3INTE	15–8	-	0x00	_	R	-
	7–2	-	0x00	-	R	
	1	DBIE	0	H0	R/W	
	0	APIE	0	H0	R/W	

Bits 15–2 Reserved

Bit 1 DBIE

Bit 0 APIE

These bits enable REMC3 interrupts.

1 (R/W): Enable interrupts

0 (R/W): Disable interrupts

The following shows the correspondence between the bit and interrupt: REMC3INTE.DBIE bit: Compare DB interrupt REMC3INTE.APIE bit: Compare AP interrupt

REMC3 Carrier Waveform Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
REMC3CARR	15–8	CRDTY[7:0]	0x00	H0	R/W	-
	7–0	CRPER[7:0]	0x00	H0	R/W	

Bits 15-8 CRDTY[7:0]

These bits set the high level period of the carrier signal.

The carrier signal is set to high level from the 8-bit counter for carrier generation = 0x00 and it is inverted to low level when the counter exceeds the REMC3CARR.CRDTY[7:0] bit-setting value. The carrier signal duty ratio is determined by this setting and the REMC3CARR.CRPER[7:0] bit-setting. (See Figure 18.4.3.2.)

Bits 7–0 CRPER[7:0]

These bits set the carrier signal cycle.

A carrier signal cycle begins with the 8-bit counter for carrier generation = 0x00 and ends when the counter exceeds the REMC3CARR.CRPER[7:0] bit-setting value. (See Figure 18.4.3.2.)

REMC3 Carrier Modulation Control Register

				<u> </u>		
Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
REMC3CCTL	15–9	-	0x00	-	R	-
	8	OUTINVEN	0	H0	R/W	
	7–1	-	0x00	-	R	
	0	CARREN	0	H0	R/W	

Bits 15–9 Reserved

Bit 8 OUTINVEN

This bit inverts the REMO output polarity. 1 (R/W): Inverted

0 (R/W): Non-inverted

For more information, see Figure 18.4.3.1.

Bits 7–1 Reserved

Bit 0 CARREN

This bit enables carrier modulation.

1 (R/W): Enable carrier modulation

0 (R/W): Disable carrier modulation (output data signal only)

Note: When carrier modulation is disabled, the REMC3DBCTL.REMOINV bit should be set to 0.

19 12-bit A/D Converter (ADC12A)

19.1 Overview

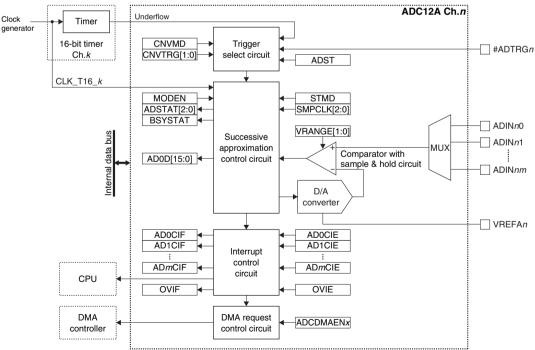
The ADC12A is a successive approximation type 12-bit A/D converter. The features of the ADC12A are listed below.

- Conversion method: Successive approximation type
- Resolution:
- Analog input voltage range: Reference voltage VREFA to Vss

12 bits

- Supports two conversion modes:
- 1. One-time conversion mode
- 2. Continuous conversion mode
- Supports three conversion triggers: 1. Software trigger
 - 2. 16-bit timer underflow trigger
 - 3. External trigger
- Can convert multiple analog input signals sequentially.
- Can generate conversion completion and overwrite error interrupts.
- Can issue a DMA transfer request when a conversion has completed.

Figure 19.1.1 shows the ADC12A configuration.


Table 19 1 1	ADC12A Configuration	of S1C31W65
14016 13.1.1	ADO 12A OUTINGUI ation	0101001000

Item	S1C31W65
Number of channels	1 channel (Ch.0)
Number of analog signal inputs per channel	Ch.0: 8 inputs (ADIN00–ADIN07 *1)
16-bit timer used as conversion clock and trigger sources	Ch.0 ← 16-bit timer Ch.7
VREFA pin (reference voltage input)	Can be input externally or generated internally *2

*1 ADIN07 is connected to the temperature sensor output.

*2 The reference voltage generator output can be input as the reference voltage.

For more information, refer to the "Temperature Sensor/Reference Voltage Generator" chapter.

Figure 19.1.1 ADC12A Configuration

Note: In this chapter, *n*, *m*, and *k* refer to an ADC12A channel number, an analog input pin number, and a 16-bit timer channel number, respectively.

19.2 Input Pins and External Connections

19.2.1 List of Input Pins

Table 19.2.1.1 lists the ADC12A pins.

Pin name	I/O*	Initial status*	Function	
ADIN <i>nm</i>	A	Hi-Z	Analog signal input	
#ADTRGn	I	I	External trigger input	
VREFAn	A	Hi-Z	Reference voltage input	

Table 19.2.1.1 List of ADC12A Pins

* Indicates the status when the pin is configured for the ADC12A.

If the port is shared with the ADC12A pin and other functions, the ADC12A input function must be assigned to the port before activating the ADC12A. For more information, refer to the "I/O Ports" chapter.

19.2.2 External Connections

Figure 19.2.2.1 shows a connection diagram between the ADC12A and external devices.

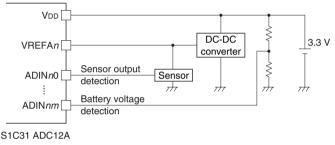


Figure 19.2.2.1 Connections between ADC12A and External Devices

19.3 Clock Settings

19.3.1 ADC12A Operating Clock

The 16-bit timer Ch.k operating clock CLK_T16_k is also used as the ADC12A operating clock. For more information on the CLK_T16_k settings and clock supply in SLEEP and DEBUG modes, refer to "Clock Settings" in the "16-bit Timers" chapter.

Note: When the CLK_T16_*k* supply stops during A/D conversion (e.g., when the CPU enters SLEEP or DEBUG mode), correct conversion results cannot be obtained even if the clock supply is resumed after that. In this case, perform A/D conversion again.

19.3.2 Sampling Time

The ADC12A includes a sample and hold circuit. The sampling time must be set so that it will satisfy the time required for acquiring input voltage (tACQ: acquisition time). Figure 19.3.2.1 shows an equivalent circuit of the analog input portion.

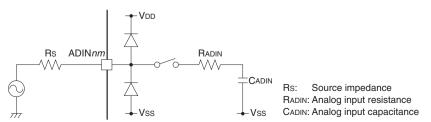


Figure 19.3.2.1 Equivalent Circuit of Analog Input Portion

For the RADIN and CADIN values in the equivalent circuit, refer to "12-bit A/D Converter Characteristics" in the "Electrical Characteristics" chapter. Based on these values, configure the ADC12A operating clock CLK_T16_k and the ADC12A_nTRG.SMPCLK[2:0] bits that set the sampling time so that these settings will satisfy the equations shown below.

$tacq = 8 \times (Rs + Radin) \times Cadin$	(Eq. 19.1)
$\frac{1}{\text{fclk}_ADC} \times \text{SMPCLK} > \text{tacq}$	(Eq. 19.2)

Where

fclk_ADC: CLK_T16_k frequency [Hz]

SMPCLK: Sampling time = ADC12A_nTRG.SMPCLK[2:0] bit-setting (4 to 11 CLK_T16_k cycles)

The following shows the relationship between the sampling time and the maximum sampling rate.

Maximum sampling rate [sps] = $\frac{\text{fclk}_{ADC}}{\text{SMPCLK} + 13}$ (Eq. 19.3)

19.4 Operations

19.4.1 Initialization

The ADC12A should be initialized with the procedure shown below.

- 1. Assign the ADC12A input function to the ports. (Refer to the "I/O Ports" chapter.)
- 2. Configure the 16-bit timer Ch.k operating clock so that it will satisfy the sampling time.
- 3. Set the ADC12A_*n*CTL.MODEN bit to 1. (Enable ADC12A operations)
- 4. Configure the following ADC12A_nTRG register bits:
 - ADC12A_nTRG.SMPCLK[2:0] bits
 - ADC12A_nTRG.CNVTRG[1:0] bits
 - ADC12A_nTRG.CNVMD bit
 - ADC12A_nTRG.STMD bit
 - ADC12A_nTRG.STAAIN[2:0] bits
 - ADC12A_nTRG.ENDAIN[2:0] bits
- 5. Set the ADC12A_nCFG.VRANGE[1:0] bits.
- (Set sampling time)
- (Select conversion start trigger source)
 - (Set conversion mode)
 - (Set data storing mode)
 - (Set analog input pin to be A/D converted first)
 - (Set analog input pin to be A/D converted last)
 - (Set operating voltage range according to VDD)
- 6. Set the following bits when using the interrupt:
 - Write 1 to the interrupt flags in the ADC12A_nINTF register. (Clear interrupt flags)
 - Set the interrupt enable bits in the ADC12A_*n*INTE register to 1. (Enable interrupts)
- 7. Configure the DMA controller and set the following ADC12A control bit when using DMA transfer:
 - Write 1 to the DMA transfer request enable bit in the ADC12A_nDMAEN register. (Enable DMA transfer requests)

19.4.2 Conversion Start Trigger Source

The trigger source, which starts A/D conversion, can be selected from the three types shown below using the AD- $C12A_nTRG.CNVTRG[1:0]$ bits.

External trigger (#ADTRGn pin)

Writing 1 to the ADC12A_nCTL.ADST bit enables the ADC12A to accept trigger inputs. After that, the falling edge of the signal input to the #ADTRGn pin starts A/D conversion.

16-bit timer Ch.k underflow trigger

Writing 1 to the ADC12A_nCTL.ADST bit enables the ADC12A to accept trigger inputs. After that, A/D conversion is started when an underflow occurs in the 16-bit timer Ch.k.

Software trigger

Writing 1 to the ADC12A_nCTL.ADST bit starts A/D conversion.

19 12-BIT A/D CONVERTER (ADC12A)

Trigger inputs can be accepted while the ADC12A_nCTL.BSYSTAT bit is set to 0 and are ignored while set to 1. A/D conversion is actually started in sync with CLK_T16_k after a trigger is accepted.

Writing 0 to the ADC12A_nCTL.ADST bit stops A/D conversion after the one currently being executed has completed.

19.4.3 Conversion Mode and Analog Input Pin Settings

The ADC12A can be put into two conversion modes shown below using the ADC12A_*n*TRG.CNVMD bit. Each mode allows setting of analog input pin range to be A/D converted. The analog input pin range can be set using the ADC12A_*n*TRG.STAAIN[2:0] bits for specifying the first analog input pin and the ADC12A_*n*TRG.ENDAIN[2:0] bits for specifying the last analog input pin. The analog input signals within the specified range are A/D converted successively in ascending order of the pin numbers.

One-time conversion mode

Once the ADC12A executes A/D conversion for all the analog input signals within the specified range, it is automatically stopped.

Continuous conversion mode

The ADC12A repeatedly executes A/D conversion within the specified range until 0 is written to the ADC12A_nCTL.ADST bit.

19.4.4 A/D Conversion Operations and Control Procedures

The following shows A/D conversion control procedures and the ADC12A operations.

Control procedure in one-time conversion mode

- 1. Write 1 to the ADC12A_nCTL.ADST bit.
- 2. Wait for an ADC12A interrupt.
 - i. If the ADC12A_nINTF.ADmCIF bit = 1 (analog input signal *m* A/D conversion completion interrupt), clear the ADC12A_nINTF.ADmCIF bit and then go to Step 3.
 - ii. If the ADC12A_*n*INTF.OVIF bit = 1 (A/D conversion result overwrite error interrupt), clear the ADC12A_ *n*INTF.OVIF bit and terminate as an error or retry A/D conversion.
- 3. Read the A/D conversion result of the analog input *m* (ADC12A_nADD.ADD[15:0] bits).
 - * The 12-bit conversion results are located at the low-order 12 bits or high-order 12-bits within the ADC12A_ nADD.ADD[15:0] bits according to the ADC12A_nTRG.STMD bit setting.
- 4. Repeat Steps 2 and 3 until A/D conversion for all the analog input pins within the specified range is completed.
- 5. To forcefully terminate the A/D conversion being executed, write 0 to the ADC12A_nCTL.ADST bit. The ADC12A stops operating after the A/D conversion currently being executed has completed.

The ADC12A_nCTL.ADST bit must be cleared by writing 0 even if A/D conversion is completed and automatically stopped.

Control procedure in continuous conversion mode

- 1. Write 1 to the ADC12A_*n*CTL.ADST bit.
- 2. Wait for an ADC12A interrupt.
 - i. If the ADC12A_nINTF.ADmCIF bit = 1 (analog input signal *m* A/D conversion completion interrupt), clear the ADC12A_nINTF.ADmCIF bit and then go to Step 3.
 - ii. If the ADC12A_nINTF.OVIF bit = 1 (A/D conversion result overwrite error interrupt), clear the ADC12A_ nINTF.OVIF bit and terminate as an error or retry A/D conversion.
- 3. Read the A/D conversion result of the analog input *m* (ADC12A_nADD.ADD[15:0] bits).
- 4. Repeat Steps 2 and 3 until terminating A/D conversion.
- Write 0 to the ADC12A_nCTL.ADST bit. The ADC12A stops operating after the A/D conversion currently being executed has completed.

	node (ADC12A_nTRG.C INn0 (ADC12A_nTRG.S 2A_nTRG.CNVTRG[1:0] 	TAAIN[2:0] bits	= 0x0, ADC12A_r	1TRG.ENDAIN	[2:0] bits = 0x0)
#ADTRG <i>n</i> pin (trigger)					•
ADC12A_nCTL.BSYSTAT	A/D converting		A/D converting		A/D converting
ADC12A_nCTL.ADSTAT[2:0]		0x1 (ADIN <i>n</i> 1)	0x0 (ADIN <i>n</i> 0)	0x1 (ADINn1)	
A/D conversion operations	ADINn0 ADINn0		Sampling Conversion ADINn0 ADINn0 -		Sampling Conversion ADINn0 ADINn0
ADC12A_nADD.ADD[15:0]	X	ADINn0 convers	ion result (first)	ADINn0 convers	ion result (second)
ADC12A_nINTF.AD0CIF		 Cleared 			
ADC12A_nINTF.OVIF					
	INn2-4 (ADC12A_nTRG 2A_nTRG.CNVTRG[1:0]	.STAAIN[2:0] bi	ts = 0x2, ADC12/	A_nTRG.ENDA	IN[2:0] bits = 0x4)
#ADTRG <i>n</i> pin (trigger)			Involid trigger		
ADC12A_nCTL.BSYSTAT		A/D converting	Invalid trigger		
ADC12A_nCTL.ADSTAT[2:0]	0x2 (ADIN <i>n</i> 2)	0x3 (ADIN <i>n</i> 3)	0x4 (ADIN <i>n</i> 4)	0x5 (ADIN <i>n</i> 5)	
A/D conversion operations	Sampling Conversion S ADINn2 ADINn2	ADIN <i>n</i> 3 ADIN <i>n</i> 3	ADIN <i>n</i> 4 ADIN <i>n</i> 4		
ADC12A_nADD.ADD[15:0]	XA	DIN <i>n</i> 2 conversion result	ADINn3 conversion result	ADINn4 conversion	result
ADC12A_nINTF.AD2CIF		 Cleared 	Overwrite		
ADC12A_nINTF.AD3CIF			Overwine		
ADC12A_nINTF.AD4CIF					
ADC12A_nINTF.OVIF					
	INn3–4 (ADC12A_nTRG 12A_nTRG.CNVTRG[1:0	STAAIN[2:0] bi	,	A_nTRG.ENDA	IN[2:0] bits = 0x4)
		A/D 200		*	
ADC12A_nCTL.BSYSTAT		A/D con		0.4 (400)	
ADC12A_nCTL.ADSTAT[2:0] A/D conversion operations	X 0x3 (ADINn3) X Sampling Conversion S ADINn3 ADINn3 X	0x4 (ADIN <i>n</i> 4) X ampling Conversion ADIN <i>n</i> 4 ADIN <i>n</i> 4 X	Ox3 (ADIN <i>n</i> 3) X Sampling Conversion 3 ADIN <i>n</i> 3 ADIN <i>n</i> 3 X	0x4 (ADIN <i>n</i> 4) Sampling Conversio ADIN <i>n</i> 4 ADIN <i>n</i> 4	X 0x5 (ADIN <i>n</i> 5) n
ADC12A nADD.ADD[15:0]		First ADIN <i>n</i> 3 result			XSecond ADIN <i>n</i> 4 result
	^	Cleared		Cleare	
ADC12A_nINTF.AD3CIF			Cleared		Cleared
ADC12A_nINTF.AD4CIF	Figure 19.4.4	.1 A/D Convers	L		

A/D converted data transfer using DMA

By setting the ADC12A_nDMAEN.ADCDMAENx bit to 1 (DMA transfer request enabled), a DMA transfer request is sent to the DMA controller and the ADC12A_nADD register value is transferred to the specified memory via DMA Ch $_x$ when the ADC12A_nINTF.ADmCIF bit is set to 1 (when A/D conversion for the analog input signal m has completed).

This automates reading and saving of A/D converted data.

The transfer source/destination and control data must be set for the DMA controller and the relevant DMA channel must be enabled to start a DMA transfer in advance. For more information on DMA, refer to the "DMA Controller" chapter.

Item		Setting example					
End pointer	Transfer source	ADC12A_nADD register address					
	Transfer destination	Memory address to which the last A/D converted data is stored					
Control data	dst_inc	0x1 (+2)					
	dst_size	0x1 (haflword)					
	src_inc	0x3 (no increment)					
	src_size	0x1 (halfword)					
	R_power	0x0 (arbitrated for every transfer)					
	n_minus_1	Number of transfer data					
	cycle_ctrl	0x1 (basic transfer)					

 Table 19.4.4.1 DMA Data Structure Configuration Example (Capture Data Transfer)

19.5 Interrupts

The ADC12A has a function to generate the interrupts shown in Table 19.5.1.

Interrupt	Interrupt flag	Set condition	Clear condition
Analog input signal <i>m</i> A/D conversion completion	ADC12A_nINTF.ADmCIF	When an analog input signal <i>m</i> A/D conver- sion result is loaded to the ADC12A_ <i>n</i> ADD register	Writing 1
A/D conversion result over- write error		When a new A/D conversion result is loaded to the ADC12A_nADD register while the ADC12A_nINTF.ADmCIF bit = 1	Writing 1

Table 19.5.1 ADC12A Interrupt Function

Note that the A/D conversion continues even if an A/D conversion result overwrite error has occurred. A/D conversion result overwrite errors are decided regardless of whether the ADC12A_nADD register has been read or not.

The ADC12A provides interrupt enable bits corresponding to each interrupt flag. An interrupt request is sent to the CPU only when the interrupt flag, of which interrupt has been enabled by the interrupt enable bit, is set. For more information on interrupt control, refer to the "Interrupt" chapter.

19.6 DMA Transfer Requests

The ADC12A has a function to generate DMA transfer requests from the causes shown in Table 19.6.1.

Cause to request DMA transfer	DMA transfer request flag	Set condition	Clear condition
Analog input signal <i>m</i> A/D	A/D conversion completion flag	When an analog input signal m A/	When the DMA
conversion completion	(ADC12A_nINTF.ADmCIF)	D conversion result is loaded to the	transfer request
		ADC12A_nADD register	is accepted

Table 19.6.1 DMA Transfer Request Causes of ADC12A

The ADC12A provides DMA transfer request enable bits corresponding to each DMA transfer request flag shown above for the number of DMA channels. A DMA transfer request is sent to the pertinent channel of the DMA controller only when the DMA transfer request flag, of which DMA transfer has been enabled by the DMA transfer request enable bit, is set. The DMA transfer request flag also serves as an interrupt flag, therefore, both the DMA transfer request and the interrupt cannot be enabled at the same time. After a DMA transfer has completed, disable the DMA transfer to prevent unintended DMA transfer requests from being issued. For more information on the DMA control, refer to the "DMA Controller" chapter.

19.7 Control Registers

ADC12A Ch.n Control Register

		V				
Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
ADC12A_nCTL	15	_	0	-	R	-
	14–12	ADSTAT[2:0]	0x0	H0	R	
	11	-	0	-	R	
	10	BSYSTAT	0	H0	R	
	9–8	-	0x0	-	R	
	7–2	_	0x00	-	R	
	1	ADST	0	H0	R/W	
	0	MODEN	0	H0	R/W	

Bit 15 Reserved

Bits 14–12 ADSTAT[2:0]

These bits indicate the analog input pin number m being A/D converted.

Table 19.7.1	Relationship Be	tween Control	Bit Value and	Analog Input Pin
10010 10.7.1	Ticlutionship De		Dit value and	/ maiog mpaci m

ADC12A_nCTL.ADSTAT[2:0] bits ADC12A_nTRG.STAAIN[2:0] bits ADC12A_nTRG.ENDAIN[2:0] bits	Analog input pin
0x7	ADINn7
0x6	ADINn6
0x5	ADINn5
0x4	ADINn4
0x3	ADINn3
0x2	ADINn2
0x1	ADINn1
0x0	ADINn0

These bits indicate the last converted analog input pin number after A/D conversion is forcefully terminated by writing 0 to the ADC12A_nCTL.ADST bit or automatically terminated in one-time conversion mode (ADC12A_nTRG.CNVMD = 0). If A/D conversion is stopped after the maximum analog input pin number (different in each model) has been completed, these bits indicate ADINn0.

Bit 11 Reserved

Bit 10 BSYSTAT

This bit indicates whether the ADC12A is executing A/D conversion or not. 1 (R/W): A/D converting 0 (R/W): Idle

Bits 9–2 Reserved

Bit 1 ADST

This bit starts A/D conversion or enables to accept triggers.

1 (R/W): Start sampling and conversion (software trigger)/

Enable trigger acceptance (external trigger, 16-bit timer underflow trigger)

0 (R/W): Terminate conversion

This bit does not revert to 0 automatically after A/D conversion has completed. Write 0 to this bit once and write 1 again to start another A/D conversion. After 0 is written to this bit to forcefully terminate conversion, the ADC12A stops after the A/D conversion being executed is completed. Therefore, this bit cannot be used to determine whether the ADC12A is executing A/D conversion or not.

Note: The data written to the ADC12A_*n*CTL.ADST bit must be retained for one or more CLK_T16_ *k* clock cycles when 1 is written or two or more CLK_T16_*k* clock cycles when 0 is written.

Bit 0 MODEN

This bit enables the ADC12A operations.

- 1 (R/W): Enable ADC12A operations (The operating clock is supplied.)
- 0 (R/W): Disable ADC12A operations (The operating clock is stopped.)
- **Note**: After 0 is written to the ADC12A_nCTL.MODEN bit, the ADC12A executes a terminate processing. Before the clock source is deactivated, read the ADC12A_nCTL.MODEN bit to make sure that it is set to 0.

ADC12A Ch.n Trigger/Analog Input Select Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
ADC12A_nTRG	15–14	-	0x0	_	R	-
	13–11	ENDAIN[2:0]	0x0	H0	R/W	
	10–8	STAAIN[2:0]	0x0	H0	R/W	
	7	STMD	0	H0	R/W	
	6	CNVMD	0	H0	R/W	
	5–4	CNVTRG[1:0]	0x0	H0	R/W	
	3	-	0	-	R	
	2–0	SMPCLK[2:0]	0x7	H0	R/W	

Note: Make sure that the ADC12A_nCTL.BSYSTAT bit is set to 0 before altering the ADC12A_nTRG register.

Bits 15–14 Reserved

Bits 13-11 ENDAIN[2:0]

These bits set the analog input pin to be A/D converted last. See Table 19.7.1 for the relationship between analog input pins and bit setting values.

Note: The analog input pin range to perform A/D conversion must be set as ADC12A_nTRG. ENDAIN[2:0] bits \geq ADC12A_nTRG.STAAIN[2:0] bits.

Bits 10-8 STAAIN[2:0]

These bits set the analog input pin to be A/D converted first. See Table 19.7.1 for the relationship between analog input pins and bit setting values.

Bit 7 STMD

This bit selects the data alignment when the conversion results are loaded into the A/D conversion result register (ADC12A_nADD.ADD[15:0] bits).

1 (R/W): Left justify

0 (R/W): Right justify

All the A/D conversion result registers change their data alignment immediately after this bit is altered. This does not affect the conversion results.

	ADC12A_nADD.ADD[15:0] bits															
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Left justified (ADC12A_nTRG.STMD bit = 1)	(MSB)		ASB) 12-bit conversion result (LSB) 0					0	0	0	0					
Right justified (ADC12A_nTRG.STMD bit = 0)	0	0	0	0	(MS	SB)		12-	-bit c	conve	ersio	n res	sult		(L	SB)

Figure 19.7.1 Conversion Data Alignment

Bit 6 CNVMD

This bit sets the A/D conversion mode.

1 (R/W): Continuous conversion mode

0 (R/W): One-time conversion mode

Bits 5–4 CNVTRG[1:0]

These bits select a trigger source to start A/D conversion.

Table 1972	Trigger Source	Selection
		Selection

ADC12A_nTRG.CNVTRG[1:0] bits	Trigger source			
0x3	#ADTRGn pin (external trigger)			
0x2	Reserved			
0x1	16-bit timer Ch.k underflow			
0x0	ADC12A_nCTL.ADST bit (software trigger)			

Bit 3 Reserved

Bits 2–0 SMPCLK[2:0]

These bits set the analog input signal sampling time.

Table 19.7.3 Sampling Time Settings						
ADC12A_nTRG.SMPCLK[2:0] bits	Sampling time (Number of CLK_T16_k cycles)					
0x7	11 cycles					
0x6	10 cycles					
0x5	9 cycles					
0x4	8 cycles					
0x3	7 cycles					
0x2	6 cycles					
0x1	5 cycles					
0x0	4 cycles					

Table 19.7.3 Sampling Time Settings

ADC12A Ch.n Configuration Register

		<u> </u>	0			
Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
ADC12A_nCFG	15–8	-	0x00	-	R	-
	7–2	-	0x00	-	R	
	1–0	VRANGE[1:0]	0x0	H0	R/W	

Note: Make sure that the ADC12A_nCTL.BSYSTAT bit is set to 0 before altering the ADC12A_nCFG register.

Bits 15–2 Reserved

Bits 1–0 VRANGE[1:0]

These bits set the A/D converter operating voltage range.

ADC12A_nCFG.VRANGE[1:0] bits	A/D converter operating voltage range
0x3	1.8 to 5.5 V
0x2	3.6 to 5.5 V
0x1	4.8 to 5.5 V
0x0	Conversion disabled

- **Notes:** A/D conversion will not be performed if the ADC12_*n*CFG.VRANGE[1:0] bits = 0x0. Set these bits to the value according to the operating voltage to perform A/D conversion.
 - Be aware that ADC circuit current IADC flows if the ADC12_nCFG.VRANGE[1:0] bits are set to a value other than 0x0 when the ADC12_nCTL.BSYSTAT bit = 1.

ADC12A Ch.n Interrupt Flag Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
ADC12A_nINTF	15–9	-	0x00	-	R	-
	8	OVIF	0	H0	R/W	Cleared by writing 1.
	7	AD7CIF	0	H0	R/W	
	6	AD6CIF	0	H0	R/W	
	5	AD5CIF	0	H0	R/W	
	4	AD4CIF	0	H0	R/W	
	3	AD3CIF	0	H0	R/W	
	2	AD2CIF	0	H0	R/W	
	1	AD1CIF	0	H0	R/W	
	0	AD0CIF	0	H0	R/W	

Bits 15–9 Reserved

Bit 8 OVIF

Bits 7–0 ADmCIF

These bits indicate the ADC12A interrupt cause occurrence status.

- 1 (R): Cause of interrupt occurred
- 0 (R): No cause of interrupt occurred
- 1 (W): Clear flag
- 0 (W): Ineffective

The following shows the correspondence between the bit and interrupt:

ADC12A_nINTF.OVIF bit: A/D conversion result overwrite error interrupt

ADC12A_nINTF.ADmCIF bit: Analog input signal m A/D conversion completion interrupt

ADC12A Ch.n Interrupt Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
ADC12A_nINTE	15–9	-	0x00	-	R	-
	8	OVIE	0	H0	R/W	
	7	AD7CIE	0	H0	R/W	
	6	AD6CIE	0	H0	R/W	
	5	AD5CIE	0	H0	R/W	
	4	AD4CIE	0	H0	R/W	
	3	AD3CIE	0	H0	R/W	
	2	AD2CIE	0	H0	R/W	
	1	AD1CIE	0	H0	R/W	
	0	AD0CIE	0	H0	R/W	

Bits 15–9 Reserved

Bit 8 OVIE

Bits 7–0 ADmCIE

These bits enable ADC12A interrupts.

1 (R/W): Enable interrupts

0 (R/W): Disable interrupts

The following shows the correspondence between the bit and interrupt:

ADC12A_*n*INTE.OVIE bit: A/D conversion result overwrite error interrupt

ADC12A_nINTE.ADmCIE bit: Analog input signal m A/D conversion completion interrupt

ADC12A Ch.n DMA Request Enable Register m

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
ADC12A_nDMAENm	15–0	ADCDMAEN[15:0]	0x0000	H0	R/W	-

Bits 15-0 ADCDMAEN[15:0]

These bits enable ADC12A to issue a DMA transfer request to the corresponding DMA controller channel (Ch.0–Ch.15) when the A/D conversion for each analog input has completed.

1 (R/W): Enable DMA transfer request

0 (R/W): Disable DMA transfer request

Each bit corresponds to a DMA controller channel. The high-order bits for the unimplemented channels are ineffective.

ADC12A Ch.n Result Register

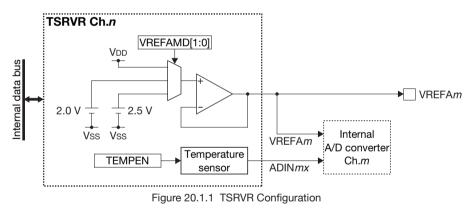
Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
ADC12A_nADD	15–0	ADD[15:0]	0x0000	H0	R	_

Bits 15-0 ADD[15:0]

The A/D conversion results are set to these bits.

20 Temperature Sensor/Reference Voltage Generator (TSRVR)

20.1 Overview


The TSRVR is a peripheral circuit for the internal A/D converter that outputs the internal temperature sensor detection values and generates the reference voltage. The features of the TSRVR are listed below.

- Includes a temperature sensor that has a linear output characteristic and the sensor output can be measured using the internal A/D converter without external components being attached.
- Can supply a reference voltage (2.0 V, 2.5 V, or VDD selectable) to the internal A/D converter.
- Can supply the reference voltage generated in this circuit to external devices if this IC has the VREFA exclusive pin.

Table 20.1.1. TSRVR Configuration of S1C31W65

Figure 20.1.1 shows the TSRVR configuration.

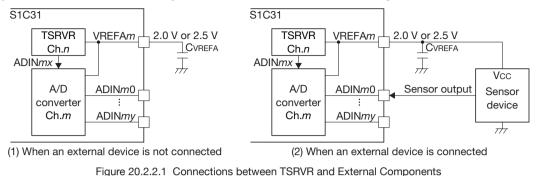
	Configuration of STCSTW05			
Item	S1C31W65			
Number of channels	1 channel (Ch.0)			
Correspondence between TSRVR and internal A/D	TSRVR Ch.0 → ADC12A Ch.0			
converter channels				
A/D converter input connected to temperature sensor	ADIN07			
Reference voltage output to external devices	Unavailable			

Note: In this chapter, n and m refer to a TSRVR channel number and an internal A/D converter channel number, respectively.

20.2 Output Pin and External Connections

20.2.1 Output Pin

Table 20.2.1.1 shows the TSRVR pin.


Table 20.2	2.1.1	TSRVR Pin

Pin name	I/O	Initial status	Function
VREFAm	А	Hi-Z	Reference voltage output

If the port is shared with the TSRVR pin and other functions, the TSRVR output function must be assigned to the port before activating the TSRVR. For more information, refer to the "I/O Ports" chapter.

20.2.2 External Connections

Figure 20.2.2.1 shows connection diagrams between the TSRVR and external components.

20.3 Operations

TSRVR should be configured before starting measurements using the internal A/D converter.

20.3.1 Reference Voltage Setting

The TSRVR output voltage can be supplied to the internal A/D converter as the reference voltage VREFAm when it is not supplied externally. The output voltage can be selected using the TSRVR_nVCTL.VREFAMD[1:0] bits. Connect CVREFA to the VREFAm pin when supplying the reference voltage from TSRVR. A/D conversion by the internal A/D converter should be started after the reference voltage stabilization time tVREFA has elapsed from the time when the output voltage is selected.

20.3.2 Temperature Sensor Setting

The temperature sensor output voltage can be directly measured using the internal A/D converter. The measurement should be started after the temperature sensor output stabilization time t_{TEMP} has elapsed from writing 1 to the $TSRVR_nTCTL.TEMPEN$ bit to activate the temperature sensor.

From the temperature sensor output voltage, the measured temperature can be calculated by the equations shown below.

$$T_{\text{SEN}} = \frac{(V_{\text{TSEN}} - V_{\text{TREF}}) \times 1,000}{\Delta V_{\text{TEMP}}} + T_{\text{REF}}$$
(Eq. 20.1)

Where

TSEN:	Actual temperature [°C]
VTSEN:	Temperature sensor output voltage at temperature TSEN [V]
TREF:	Reference temperature for calibration [°C]
VTREF:	Temperature sensor output voltage at temperature TREF [V]
ΔV temp	: Temperature sensor output voltage temperature coefficient [mV/°C] (Refer to the "Electrical Char-
	acteristics" chapter.)

Convert the digital values corresponding to the respective temperatures, that are obtained by the internal A/D converter, into voltage values and assign them to VTSEN and VTREF.

$$V(\text{TSEN}, \text{TREF}) = \frac{\text{ADD}}{4.096} \times \text{VREFA}$$
(Eq. 20.2)

Where

ADD: A/D conversion result at temperature TSEN or TREF (decimal)

VREFA: A/D converter reference voltage [V]

For details of the internal A/D converter, refer to the "12-bit A/D Converter" chapter.

20.4 Control Registers

ISHAN CH.M TEMPERATURE SENSOR CONTROL REGISTER								
Register name	Bit	Bit name	Initial	Reset	R/W	Remarks		
TSRVR_nTCTL	15–8	-	0x00	-	R	-		
	7–1	-	0x00	H0	R			
	0	TEMPEN	0	HO	R/W			

TSRVR Ch.n Temperature Sensor Control Register

Bits 15–1 Reserved

Bit 0 TEMPEN

This bit enables the temperature sensor operation.

- 1 (R/W): Enable temperature sensor output
- 0 (R/W): Disable temperature sensor output

TSRVR Ch.n Reference Voltage Generator Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
TSRVR <i>n</i> VCTL	15–8	_	0x00	_	R	_
	7–2	_	0x00	HO	R	
	1–0	VREFAMD[1:0]	0x0	HO	R/W	

Bits 15–2 Reserved

Bits 1–0 VREFAMD[1:0]

These bits set the reference voltage generator output voltage.

Table 20.4.1 Output Voltage Settings

TSRVR_nVCTL.VREFAMD[1:0] bits	Output voltage
0x3	2.5 V output
0x2	2.0 V output
0x1	VDD level output
0x0	Hi-Z (An external voltage can be applied.)

- **Notes:** Be aware that VREFA operating current IVREFA flows when the TSRVR_nVCTL.VREFAMD[1:0] bits are set to 0x2 or 0x3.
 - When the TSRVR_*n*VCTL.VREFAMD[1:0] bits are not set to 0x0, do not apply an external voltage to the VREFA*m* pin.

21 LCD Driver (LCD8D)

21.1 Overview

LCD8D is an LCD driver to drive an LCD panel. The features of the LCD8D are listed below.

- The frame frequency is configurable into 16 steps.
- Two types of LCD drive waveforms (Waveform A and Waveform B) can be generated.
- Provides all on, all off, and inverse display functions as well as normal display.
- The segment and common pin assignments can be inverted.
- Provides a partial common output drive function.
- Provides an n-segment-line inverse AC drive function.
- The LCD contrast is adjustable. (Note: See the table below.)
- Includes a power supply for 1/2 or 1/3 bias driving (allows external voltages to be applied).
- Provides the frame signal monitoring output pin.
- Can generate interrupts every frame.

Figure 21.1.1 shows the LCD8D configuration.

Table 21.1.1 LCD8D Configuration of S1C31W65

Item	S1C31W65
Number of segments supported	Max. 224 segments (56SEG × 4COM), Max. 416 segments (52SEG × 8COM)
SEG/COM outputs	56SEG × 1–4COM, 52SEG × 5–8COM
LCD drive voltage mode	Internal generation mode and external voltage application mode 1, 2, 3
Drive bias	1/2 or 1/3 bias
LCD contrast	Adjustable into 32 steps (LCD drive voltage internal generation mode only)
Embedded display data RAM	112 bytes

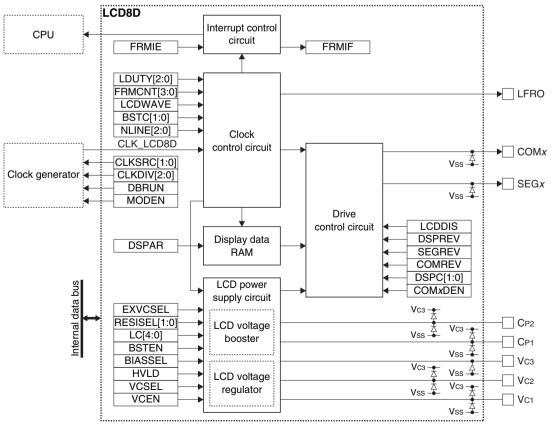


Figure 21.1.1 LCD8D Configuration

21.2 Output Pins and External Connections

21.2.1 List of Output Pins

Table 21.2.1.1 lists the LCD8D pins.

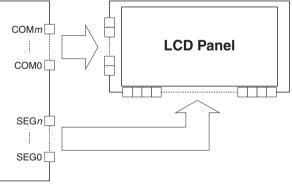
Pin name	I/O*1	Initial status ^{*1}	Function			
COM0-3	A	Hi-Z / O (Vss)*2	Common data output pins			
COM4-7/SEG0-3	A	Hi-Z / O (Vss)*2	Common data output/segment data output combination pins			
SEG4–55	A	Hi-Z / O (Vss)*2	Segment data output pins (See Table 21.2.1.2.)			
LFRO	0	O (L)	Frame signal monitoring output pin			
Vc1	Р	-	LCD panel drive power supply pin			
Vc2	Р	-	LCD panel drive power supply pin			
Vсз	Р	-	LCD panel drive power supply pin			
CP1	A	-	LCD voltage booster capacitor connecting pin			
CP2	A	-	LCD voltage booster capacitor connecting pin			

Table 21.2.1.1	List of LCD8D Pins
----------------	--------------------

*1: Indicates the status when the pin is configured for LCD8D. *2: When LCD8DCTL.LCDDIS bit = 1

If the port is shared with the LCD8D pin and other functions, the LCD8D output function must be assigned to the port before activating the LCD8D. For more information, refer to the "I/O Ports" chapter.

The COM/SEG combination pin function is switched between the COM pin and the SEG pin according to the COM pin assignment and drive duty selected via software. For the pin configuration, refer to "Drive Duty Switching."


Notes: • Be sure to avoid using the Vc1 to Vc3 pin outputs for driving external circuits.

• When an LCD panel is connected, set the LCD8DCTL.LCDDIS bit to 1, as activating the LCD panel when it is set to 0 may cause the LCD panel characteristics to fluctuate.

21.2.2 External Connections

Figure 21.2.2.1 shows a connection diagram between LCD8D and an LCD panel.

Note: When the panel is connected, the LCD8DCTL.LCDDIS bit must be set to 1 to bias the panel even if display is turned off.

S7C17 LCD8D

Figure 21.2.2.1 Connections between LCD8D and an LCD Panel

21.3 Clock Settings

21.3.1 LCD8D Operating Clock

When using LCD8D, the LCD8D operating clock CLK_LCD8D must be supplied to LCD8D from the clock generator. The CLK_LCD8D supply should be controlled as in the procedure shown below.

- 1. Enable the clock source in the clock generator if it is stopped (refer to "Clock Generator" in the "Power Supply, Reset, and Clocks" chapter).
- 2. Set the following LCD8DCLK register bits:
 - LCD8DCLK.CLKSRC[1:0] bits (Clock source selection)
 - LCD8DCLK.CLKDIV[2:0] bits (Clock division ratio selection = Clock frequency setting)

The CLK_LCD8D frequency should be set to around 32 kHz.

21.3.2 Clock Supply in SLEEP Mode

When using LCD8D during SLEEP mode, the LCD8D operating clock CLK_LCD8D must be configured so that it will keep supplying by writing 0 to the CLGOSC_xxxxSLPC bit for the CLK_LCD8D clock source.

21.3.3 Clock Supply in DEBUG Mode

The CLK_LCD8D supply during DEBUG mode should be controlled using the LCD8DCLK.DBRUN bit. The CLK_LCD8D supply to LCD8D is suspended when the CPU enters DEBUG mode if the LCD8DCLK.DB-RUN bit = 0. After the CPU returns to normal mode, the CLK_LCD8D supply resumes. Although LCD8D stops operating and the display is turned off when the CLK_LCD8D supply is suspended, the registers retain the status before DEBUG mode was entered. If the LCD8DCLK.DBRUN bit = 1, the CLK_LCD8D supply is not suspended and LCD8D will keep operating in DEBUG mode.

21.3.4 Frame Frequency

The LCD8D frame signal is generated by dividing CLK_LCD8D. The frame frequency is determined by selecting a division ratio from 16 variations depending on the drive duty using the LCD8DTIM1.FRMCNT[3:0] bits. Use the following equation to calculate the frame frequency.

 $f_{FR} = \frac{f_{CLK_LCD8D}}{16 \times (FRMCNT + 1) \times (LDUTY + 1)}$ (Eq. 21.1)

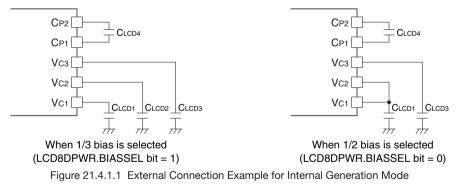
Where

fFR:Frame frequency [Hz]fCLK_LCD8D:LCD8D operating clock frequency [Hz]FRMCNT:LCD8DTIM1.FRMCNT[3:0] setting value (0 to 15)LDUTY:LCD8DTIM1.LDUTY[2:0] setting value (0 to 7)

Table 21.3.4.1 lists frame frequency settings when fCLK_LCD8D = 32,768 Hz as an example.

LCD8DTIM1.	Frame frequency [Hz]											
FRMCNT[3:0] bits	1/8 duty	1/7 duty	1/6 duty	1/5 duty	1/4 duty	1/3 duty	1/2 duty	Static				
0xf	16.0	18.3	21.3	25.6	32.0	42.7	64.0	128.0				
0xe	17.1	19.5	22.8	27.3	34.1	45.5	68.3	136.5				
0xd	18.3	20.9	24.4	29.3	36.6	48.8	73.1	146.3				
0xc	19.7	22.5	26.3	31.5	39.4	52.5	78.8	157.5				
0xb	21.3	24.4	28.4	34.1	42.7	56.9	85.3	170.7				
0xa	23.3	26.6	31.0	37.2	46.5	62.1	93.1	186.2				
0x9	25.6	29.3	34.1	41.0	51.2	68.3	102.4	204.8				
0x8	28.4	32.5	37.9	45.5	56.9	75.9	113.8	227.6				
0x7	32.0	36.6	42.7	51.2	64.0	85.3	128.0	256.0				
0x6	36.6	41.8	48.8	58.5	73.1	97.5	146.3	292.6				
0x5	42.7	48.8	56.9	68.3	85.3	113.8	170.7	341.3				
0x4	51.2	58.5	68.3	81.9	102.4	136.5	204.8	409.6				
0x3	64.0	73.1	85.3	102.4	128.0	170.7	256.0	512.0				
0x2	85.3	97.5	113.8	136.5	170.7	227.6	341.3	682.7				
0x1	128.0	146.3	170.7	204.8	256.0	341.3	512.0	1,024.0				
0x0	256.0	292.6	341.3	409.6	512.0	682.7	1,024.0	2,048.0				

Table 21.3.4.1 Frame Frequency Settings (when fclk_lcD8D = 32,768 Hz)


21.4 LCD Power Supply

The LCD drive voltages VC1 to VC3 can be generated by the internal LCD power supply circuit (LCD voltage regulator and LCD voltage booster). One or all voltages can also be applied from outside the IC.

The drive bias can be selected from 1/3 bias and 1/2 bias using the LCD8DPWR.BIASSEL bit.

21.4.1 Internal Generation Mode

This mode generates all the LCD drive voltages Vc1 to Vc3 on the chip. To put LCD8D into internal generation mode, set the LCD8DPWR.EXVCSEL bit to 0 and set both the LCD8DPWR.VCEN and LCD8DPWR.BSTEN bits to 1 to turn both the LCD voltage regulator and LCD voltage booster on. The LCD8DPWR.RESISEL[1:0] bits should be set to 0x0 to disable the internal LCD voltage dividing resistors. Figure 21.4.1.1 shows an external connection example for internal generation mode.

21.4.2 External Voltage Application Mode 1

In this mode, all the LCD drive voltages Vc1 to Vc3 are applied from outside the IC. To put LCD8D into external voltage application mode 1, set the LCD8DPWR.EXVCSEL bit to 1 and set both the LCD8DPWR.VCEN and LCD8DPWR.BSTEN bits to 0 to turn both the LCD voltage regulator and LCD voltage booster off. The LCD8DPWR.RESISEL[1:0] bits should be set to 0x0 to disable the internal LCD voltage dividing resistors. Figure 21.4.2.1 shows an external connection example for external voltage application mode 1.

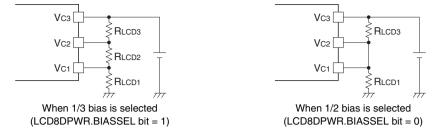


Figure 21.4.2.1 External Connection Example for External Voltage Application Mode 1 (resistor divider)

21.4.3 External Voltage Application Mode 2

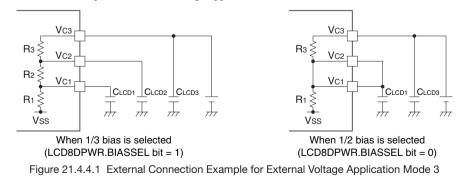

In this mode, the LCD drive voltage Vc1 or Vc2 is applied from outside the IC and other voltages are internally generated. To put LCD8D into external voltage application mode 2, set the LCD8DPWR.EXVCSEL bit to 1, set the LCD8DPWR.VCEN bit to 0 to turn the LCD voltage regulator off and the LCD8DPWR.BSTEN bit to 1 to turn the LCD voltage booster on. The LCD8DPWR.RESISEL[1:0] bits should be set to 0x0 to disable the internal LCD voltage dividing resistors. Figure 21.4.3.1 shows an external connection example for external voltage application mode 2.

Figure 21.4.3.1 External Connection Example for External Voltage Application Mode 2 (when Vc1 is applied)

21.4.4 External Voltage Application Mode 3

In this mode, the LCD drive voltage Vc3 is applied from outside the IC and the Vc1 and Vc2 voltages are generated using the internal LCD voltage dividing resistors. To put LCD8D into external voltage application mode 3, set the LCD8DPWR.EXVCSEL bit to 1 and set both the LCD8DPWR.VCEN and LCD8DPWR.BSTEN bits to 0 to turn both the LCD voltage regulator and LCD voltage booster off. Also set the LCD8DPWR.RESISEL[1:0] bits to 0x1, 0x2, or 0x3 to use the internal LCD voltage dividing resistors according to the LCD panel load. A capacitor should be connected to the Vc1 to Vc3 pins while taking fluctuation of LCD load into consideration. Figure 21.4.4.1 shows an external connection example for external voltage application mode 3.

Note: When "Display off" is selected by setting the LCD8DDSP.DSPC[1:0] bits to 0x0 while the external LCD drive voltages are being supplied in an external voltage application mode, the electric charges of Vc3 can be discharged in the following procedure.

- 1. Turn the external power supply off.
- Set the LCD8DPWR.EXVCSEL bit to 0.
 Set the LCD8DPWR.EXVCSEL bit to 1.
- EL bit to 0.(Select internal generation mode)EL bit to 1.(Select external voltage application mode)

21.4.5 LCD Power Supply Circuit Settings

When using internal generation mode

Select the reference voltage for boosting voltage generated by the LCD voltage regulator according to the power supply voltage VDD. Refer to "LCD Driver (LCD8D) Characteristics" in the "Electrical Characteristics" chapter and set the LCD8DPWR.VCSEL bit. Current consumption can be reduced by selecting reference voltage Vc2 as compared with reference voltage Vc1. By setting the LCD8DPWR.HVLD bit to 1, the LCD voltage regulator enters heavy load protection mode and ensures stable Vc1 to Vc3 outputs. Heavy load protection mode should be set when the display has inconsistencies in density. Current consumption increases in heavy load protection mode if unnecessary.

When using internal generation mode or external voltage application mode 2

Set the booster clock frequency used in the LCD voltage booster using the LCD8DTIM2.BSTC[1:0] bits. Set it to the frequency that provides the best VC1–VC3 output stability after being evaluated using the actual circuit board.

When using external voltage application mode 3

LCD8D includes voltage dividing resistors to generate the LCD drive voltages V_{C1} and V_{C2} from the V_{C3} that is applied externally. The resistance values can be adjusted according to the external LCD panel load by setting the LCD8DPWR.REGISEL[1:0] bits.

LCD contrast adjustment

The LCD panel contrast can only be adjusted in internal generation mode using the LCD8DPWR.LC[4:0] bits. For the adjustment range, refer to "LCD Driver (LCD8D) Characteristics" in the "Electrical Characteristics" chapter.

21.5 Operations

21.5.1 Initialization

The LCD8D should be initialized with the procedure shown below.

- 1. Assign the LCD8D output function to the ports. (Refer to the "I/O Ports" chapter.)
- 2. Configure the LCD8DCLK.CLKSRC[1:0] and LCD8DCLK.CLKDIV[2:0] bits. (Configure operating clock)
- 3. Configure the following LCD8DCTL register bits:
 - Write 1 to the LCD8DCTL.MODEN bit. (Enable LCD8D operating clock)
 - Write 1 to the LCD8DCTL.LCDDIS bit. (Enable LCD driver pin discharge at display off)
- 4. Configure the following LCD8DTIM1 register bits:
 - LCD8DTIM1.LDUTY[2:0] bits (Set drive duty)
 - LCD8DTIM1.FRMCNT[3:0] bits (Set frame frequency)
- 5. Configure the following LCD8DTIM2 register bits:
 - LCD8DTIM2.LCDWAVE bit (Select drive waveform)
 - LCD8DTIM2.NLINE[2:0] bits (Set n-line inverse AC drive)
 - LCD8DTIM2.BSTC[1:0] bits (Set booster clock frequency)
- 6. Configure the LCD8DPWR.EXVCSEL bit. (Select external voltage application mode/internal generation mode)
- 7. Configure the following LCD8DPWR register bits:
 - LCD8DPWR.RESISEL[1:0] bits (Select internal voltage dividing resistors)
 - LCD8DPWR.LC[4:0] bits (Set LCD contrast initial value)
 - LCD8DPWR.BSTEN bit (Enable LCD voltage booster)
 - LCD8DPWR.BIASSEL bit (Select drive bias)
 - LCD8DPWR.VCSEL bit (Set reference voltage for boosting)
 - LCD8DPWR.VCEN bit (Enable LCD voltage regulator)

- 8. Configure the following LCD8DDSP register bits:
 - LCD8DDSP.DSPAR bit
 - LCD8DDSPCOMREV bit
 - (Select COM pin assignment direction) - LCD8DDSP.SEGREV bit (Select SEG pin assignment direction)
- 9. Write display data to the display data RAM.
- 10. Set the following bits when using the interrupt:
 - Write 1 to the LCD8DINTF.FRMIF bit. (Clear interrupt flag)
 - Set the LCD8DINTE.FRMIE bit to 1. (Enable LCD8D interrupt)

21.5.2 Display On/Off

The LCD display state is controlled using the LCD8DDSP.DSPC[1:0] bits.

Table 21.3.2.1 LOD Display Control							
LCD8DDSP.DSPC[1:0] bits	LCD display						
0x3	All off (static drive)						
0x2	All on						
0x1	Normal display						
0x0	Display off						

Table 21.5.2.1. I CD Display Control

(Select display area)

Selecting "Display off" stops the drive voltage supply and the LCD driver pin outputs are all set to Vss level when the LCD8DCTL LCDDIS bit = 1.

Since "All on" and "All off" directly control the driving waveform output by the LCD driver, data in the display data RAM is not altered. The common pins are set to dynamic drive for "All on" and to static drive for "All off." This function can be used to make the display flash on and off without altering the display memory.

21.5.3 Inverted Display

The LCD panel display can be inverted (black/white inversion) using merely control bit manipulation, without rewriting the display data RAM. Setting the LCD8DDSP.DSPREV bit to 0 inverts the display; setting it to 1 returns the display to normal status. Note that the display will not be inverted when the LCD8DDSP.DSPC[1:0] bits = 0x3 (All off).

21.5.4 Drive Duty Switching

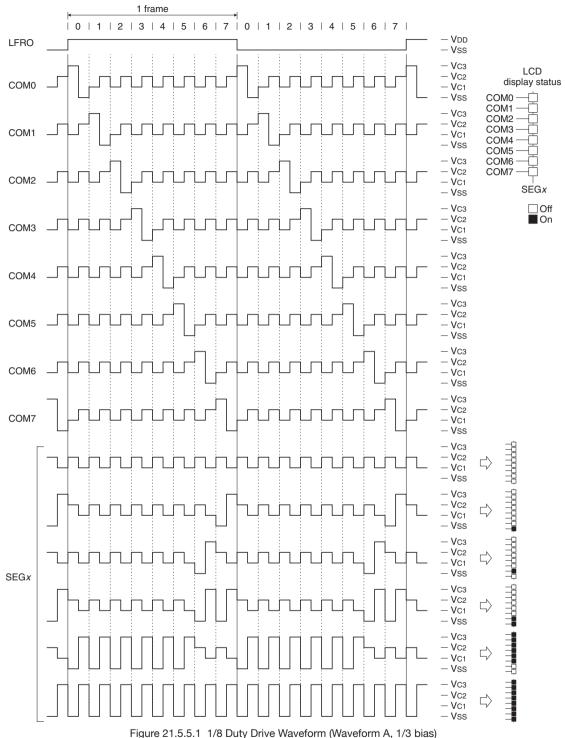
Drive duty can be set to 1/8 to 1/2 or static drive using the LCD8DTIM1.LDUTY[2:0] bits. Table 21.5.4.1 shows the correspondence between the LCD8DTIM1.LDUTY[2:0] bit settings, drive duty, and maximum number of display segments.

LCD8DTIM1. LDUTY[2:0] bits	Duty	Valid COM pins	Valid SEG pins	Max. number of display dots/segments
0x7	1/8	COM0-COM7	SEG4-SEG55	416
0x6	1/7	COM0-COM6		364
0x5	1/6	COM0-COM5		312
0x4	1/5	COM0-COM4		260
0x3	1/4	COM0-COM3	SEG0-SEG55	224
0x2	1/3	COM0-COM2		168
0x1	1/2	COM0-COM1		112
0x0	Static	COM0		56

Table 21.5.4.1	Drive Duty Settings
----------------	---------------------

Unused common pins output an OFF waveform that turns the segments off.

The some pins are shared with a SEG output and a COM output, and they are configured to the SEG or COM pin according to the drive duty selected.


Dim	Duty									
Pin	1/8	1/7	1/6	1/5	1/4	1/3	1/2	Static		
COM0				CO	M0					
COM1		COM1 Unuse								
COM2		COM2 Unused								
COM3			COM3	Unused						
COM4/SEG0/P67		CC	DM4			SEG0 (P67)				
COM5/SEG1/P66		COM5		Unused (66)		SEG1 (P66)				
COM6/SEG2/P65	CO	M6	Unuse	ed (P65) SEG2 (P65)						
COM7/SEG3/P64	COM7		Unused (P64)			SEG	3 (P64)			
SEG4-12, 25-31,				0504 10 0	5 01 40 50					
48–52		SEG4-12, 25-31, 48-52								
SEG13-24, 32-47,					47 50 55 (Du	24				
53–55/P <i>xx</i>				SEG13–24, 32–	41, 00-00 (PX	x)				

21.5.5 Drive Waveforms

LCD8D supports two types (Waveform A, Waveform B) of drive waveform outputs. The waveform type can be selected using the LCD8DTIM2.LCDWAVE bit. The following shows drive waveform examples.

Waveform A

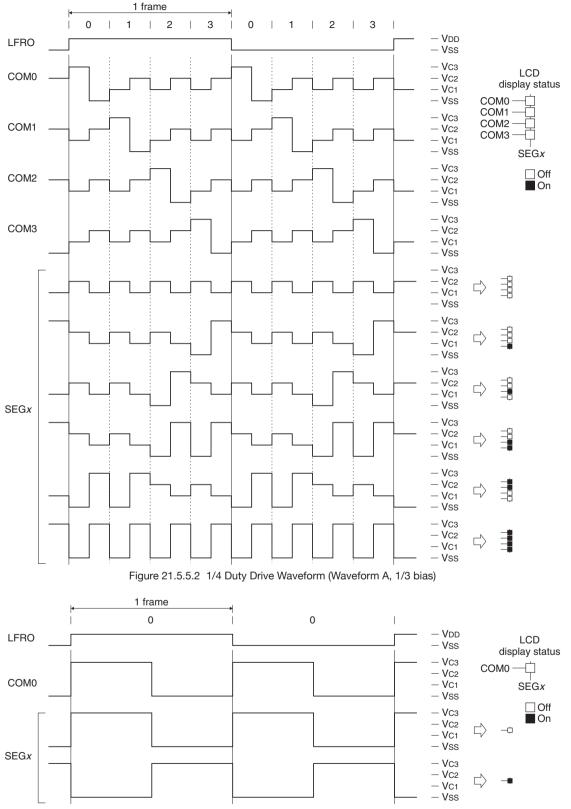
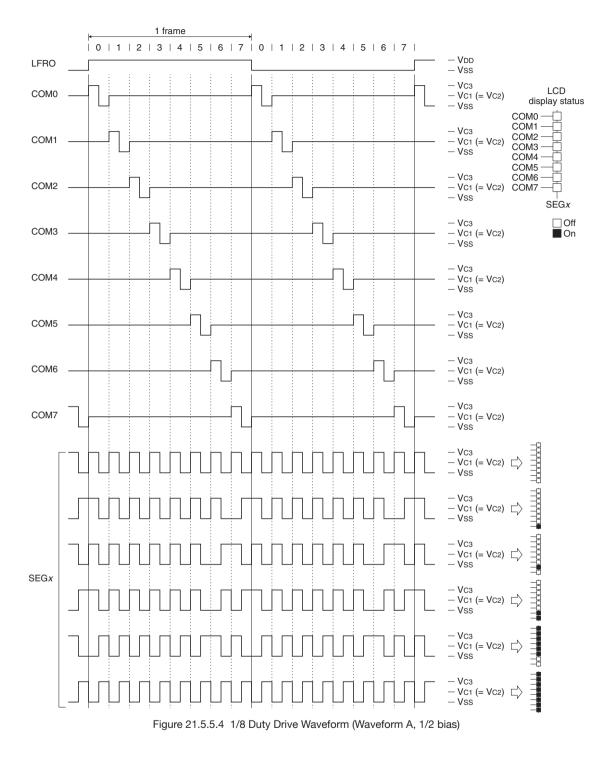



Figure 21.5.5.3 Static Drive Waveform (Waveform A, 1/3 bias)

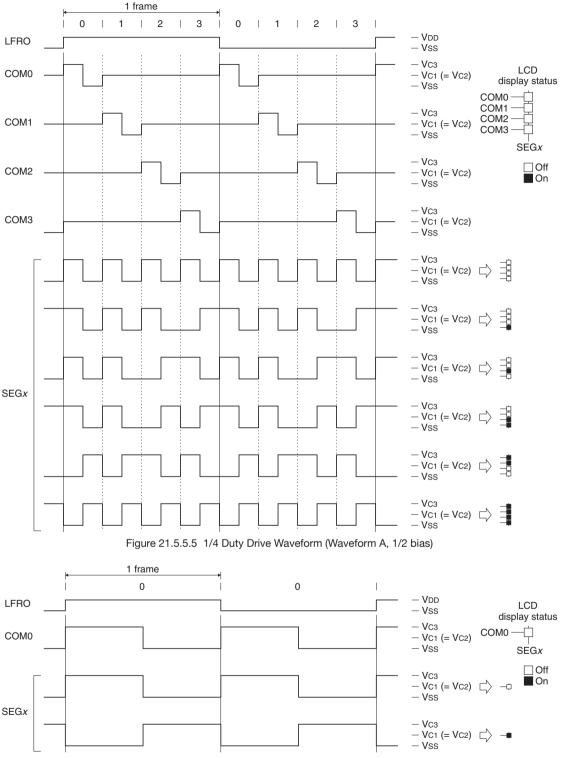
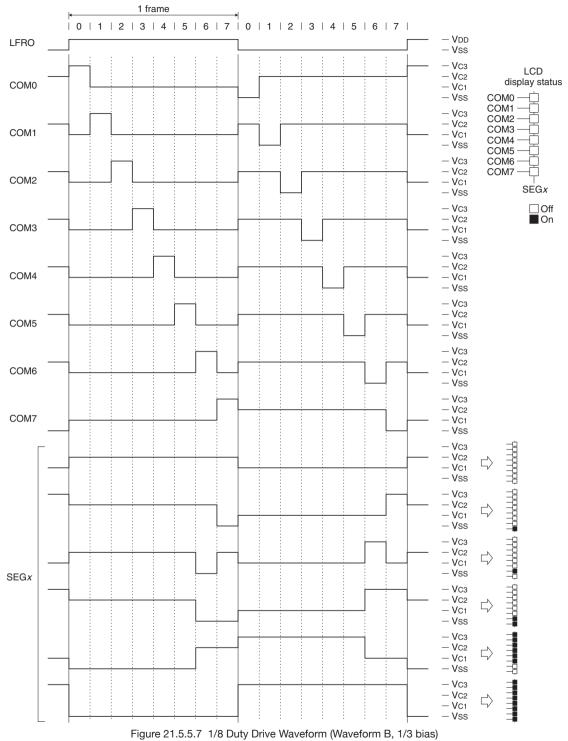



Figure 21.5.5.6 Static Drive Waveform (Waveform A, 1/2 bias)

Waveform **B**

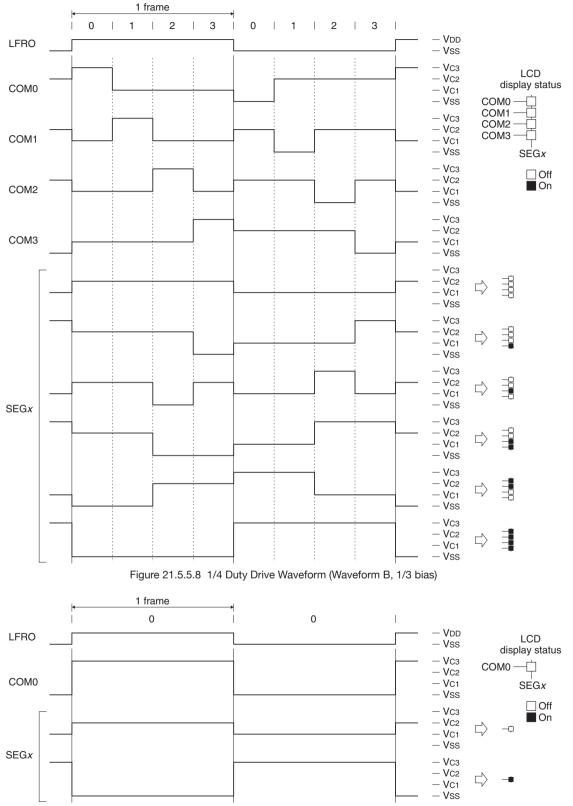
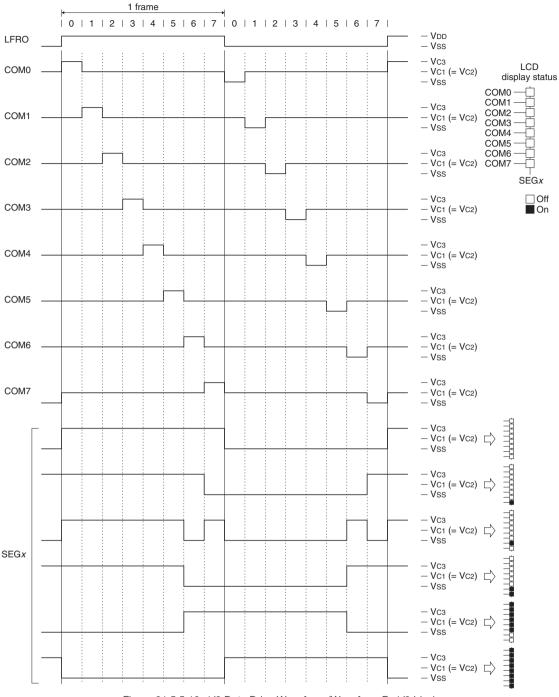
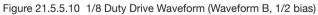




Figure 21.5.5.9 Static Drive Waveform (Waveform B, 1/3 bias)

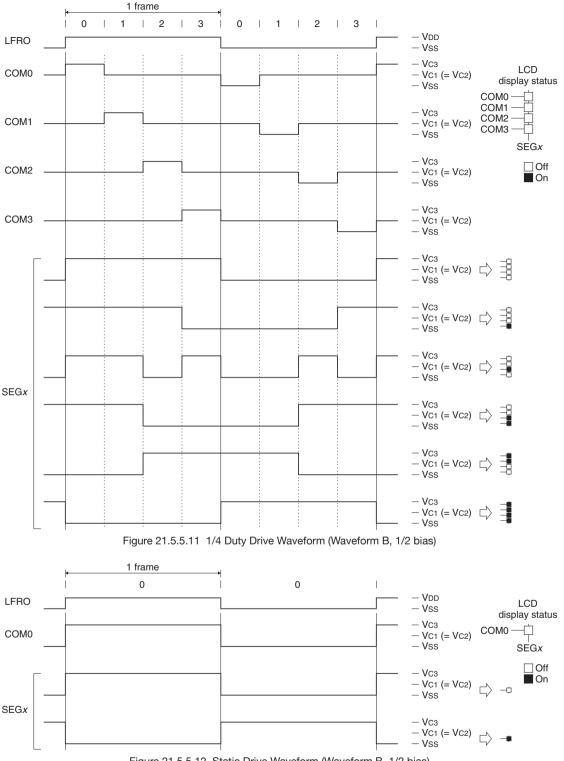


Figure 21.5.5.12 Static Drive Waveform (Waveform B, 1/2 bias)

21.5.6 Partial Common Output Drive

By setting the LCD8DOMC*.COMxDEN bit (x =COM No.) to 0, any common outputs can be set to off waveform regardless of the display data RAM contents. The partial common output drive function limits the display to the required area only to reduce power consumption.

21.5.7 n-Segment-Line Inverse AC Drive

The n-line inverse AC drive function may improve the display quality when being reduced such as when crosstalk occurs. To activate the n-line inverse AC drive function, select the number of lines to be inverted using the LCD8D-TIM2.NLINE[2:0] bits. The setting value should be determined after being evaluated using the actual circuit board. Note that using the n-line inverse AC drive function increases current consumption.

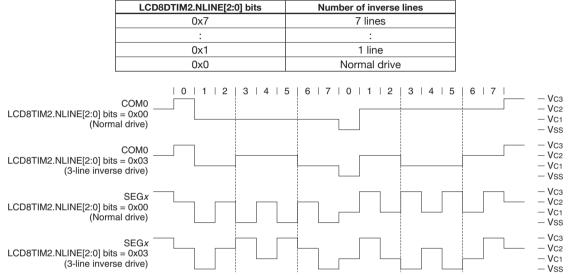


Table 21.5.7.1 Selecting Number of Inverse Lines

Figure 21.5.7.1 1/8 Duty (Waveform B, 1/3 bias) Normal Drive Waveform and 3-line Inverse Drive Waveform

Note: Do not use the n-line inverse AC drive function when Waveform A is selected.

21.6 Display Data RAM

The display data RAM is located beginning with address 0x7000.

The correspondence between the memory bits of the display data RAM and the common/segment pins varies depending on the selected conditions below.

- Drive duty (1/8 to 1/2 or static drive)
- Segment pin assignment (normal or inverse)
- Common pin assignment (normal or inverse)

Figures 21.6.3.1 to 21.6.3.4 show the correspondence between display data RAM and the common/segment pins in some drive duties.

Writing 1 to the display data RAM bit corresponding to a segment on the LCD panel turns the segment on, while writing 0 turns the segment off. Since the display memory is a RAM allowing reading and writing, bits can be controlled individually using logic operation instructions (read-modify-write instructions).

The area unused for display can be used as general-purpose RAM.

21.6.1 Display Area Selection

In the display data RAM, two screen areas can be allocated and the LCD8DDSP.DSPAR bit can be used to switch between the screens. Setting the LCD8DDSP.DSPAR bit to 0 selects display area 0; setting to 1 selects display area 1.

21.6.2 Segment Pin Assignment

The display data RAM address assignment for the segment pins can be inverted using the LCD8DDSP.SEGREV bit. When the LCD8DDSP.SEGREV bit is set to 1, memory addresses are assigned to segment pins in ascending order. When the LCD8DDSP.SEGREV bit is set to 0, memory addresses are assigned to segment pins in descending order.

21.6.3 Common Pin Assignment

The display data RAM bit assignment for the common pins can be inverted using the LCD8DDSP.COMREV bit. When the LCD8DDSP.COMREV bit is set to 1, memory bits are assigned to common pins in ascending order. When the LCD8DDSP.COMREV bit is set to 0, memory bits are assigned to common pins in descending order.

Bit					LCD8DDSP. COMREV	LCD8DDSP. COMREV				
								bit = 1	bit = 0	
D0		ŝ						COM0	COM7	
D1		RA					0	COM1	COM6	
D2	0000	db	0x2020 000c	0x2020 0010	10		00dc	COM2	COM5	
D3	00	ea	00	8	0	Display area 0	ō	COM3	COM4	
D4	0×2020	ar	02	8	6	Display area 0	0x2020	COM4	COM3	
D5	0X2	sed	X2	N	0x2020 0014		X	COM5	COM2	
D6		Unused area (gp RAM)						COM6	COM1	
D7								COM7	COM0	
D0		Î	1					COM0	COM7	
D1		BAI	0		. 4 .		0	COM1	COM6	
D2	0100	Unused area (gp RAM)	0x2020 010c	0×2020 0110			01dc	COM2	COM5	
D3	00	ea	00	8	0x2020 01	Display area 1	00	COM3	COM4	
D4	0×2020	ar	02	62	6	Display area 1	0x2020	COM4	COM3	
D5	0X2	sed	0X2	X	- 27 -		0X2	COM5	COM2	
D6		nu						COM6	COM1	
D7		\supset				i i			COM7	COM0
LCD8DDSP. SEGREV bit = 1		\times	\langle	SEG4	SEG5		SEG55			
LCD8DDSP. SEGREV bit = 0		\times	\geq	SEG55	SEG54		SEG4			

Figure 21.6.3.1 Display Data RAM Map (1/8 duty)

Bit						Address		LCD8DDSP. COMREV bit = 1	LCD8DDSP. COMREV bit = 0													
D0					iii			COMO	COM5													
D1		I I		10	0014		00dc	COM1	COM4													
D2	0000		0x2020 000c	0x2020 001(8		0	COM2	COM3													
D3	1 0		000	020	0x2020 (Display area 0	0x2020	COM3	COM2													
D4	020		02(0X2	X		X2	COM4	COM1													
D5	0×2020 (0X2	Ľ				COM5	COM0													
D6						Unused area (general-purpose RAM)		\searrow	\searrow													
D7						Onused area (general-purpose naw)		\geq	\leq													
D0					4		0	COM0	COM5													
D1			10	U	0110	011		01dc	COM1	COM4												
D2	P P		9	0		Display area 1	00	COM2	COM3													
D3	00								00	202	0×2020	Display area i	50	COM3	COM2							
D4	502		0x2020 010c	×	¦ X		0x2020	COM4	COM1													
D5	0×2020 0100	XO	0X2					i	i				1	2X0	1	OXS	Ľ				COM5	COM0
D6 D7						Unused area (general-purpose RAM)		$>\!$	$>\!$													
LCD8DDSP. SEGREV bit = 1		\times	$\overline{\langle}$	SEG4	SEG5		SEG55		3													
LCD8DDSP. SEGREV bit = 0		\times	\geq	SEG55	SEG54		SEG4															

Figure 21.6.3.2 Display Data RAM Map (1/6 duty)

21 LCD DRIVER (LCD8D)

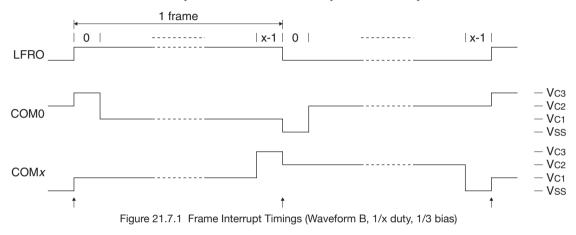
					LCD8DDSP. COMREV	LCD8DDSP. COMREV
Bit			Address	Address		
					bit = 1	bit = 0
D0	l g	04		00dc	COM0	COM3
D1	ŏ	0	Display area 0	ğ	COM1	COM2
D2	60	02	Display area 0	0x2020	COM2	COM1
D3	X	0x2020 0004		X	COM3	COM0
D4					\setminus \square	\land
D5	1					
D6	1		Unused area (general-purpose RAM)		\sim	
D7						
D0	8	04		в	COM0	COM3
D1	15	10	Display and 1	5	COM1	COM2
D2	02	0x2020 0104	Display area 1	0x2020 01dc	COM2	COM1
D3	N N	X		X	COM3	COM0
D4					\smallsetminus	\land
D5		i i	Unused area (general-purpose RAM)		\sim	
D6			Onused area (general-purpose haw)			
D7						\checkmark
LCD8DDSP.	0	77		SEG55		
SEGREV bit = 1	SEGO	SEG1		ß		
				_		
LCD8DDSP.	SEG55	SEG54		SEG0		
SEGREV bit = 0	Ш Ш	ЦЩ Ц		Ш		
L	0	0)				

					LCD8DDSP.	LCD8DDSP.
Bit			Address	COMREV	COMREV	
				bit = 1	bit = 0	
D0			Display area 0		COM0	COM0
D1						\land
D2	8	4		2		
D3	8	8		Ö	$\langle \rangle / \rangle$	
D4	20	20	Unused area (general-purpose RAM)	20	Х	Х
D5	0×2020 0000	0x2020 0004		0x2020 00dc		
D6	ô	ô		Ô		
D7					/	
D0			Display area 1		COM0	COM0
D1						\land
D2	8	4		р		
D3	5	5		0	\backslash	\backslash
D4	20	20	Unused area (general-purpose RAM)	20	Х	Х
D5	0×2020 0100	0×2020 01		0x2020 01dc		
D6	ô	ô		ô		
D7						/
LCD8DDSP.	8	77		SEG55		
SEGREV bit = 1	SEGO	SEG1		B		
				1		
LCD8DDSP.	355	354		SEG0		
SEGREV bit = 0	SEG55	SEG54		SE		
L	1.37					

Figure 21.6.3.3 Display Data RAM Map (1/4 duty)

Figure 21.6.3.4 Display Data RAM Map (static drive)

Note: No physical memory is allocated to D8 through D31 of each address.


21.7 Interrupt

The LCD8D has a function to generate the interrupt shown in Table 21.7.1.

Table 21.7.1	LCD8D Interrupt Function
--------------	--------------------------

Interrupt	Interrupt flag	Set condition	Clear condition
Frame	LCD8DINTF.FRMIF	Frame switching	Writing 1

The LCD8D provides an interrupt enable bit corresponding to the interrupt flag. An interrupt request is sent to the interrupt controller only when the interrupt flag, of which interrupt has been enabled by the interrupt enable bit, is set. For more information on interrupt control, refer to the "Interrupt Controller" chapter.

21.8 Control Registers

LCD8D Clock Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
LCD8DCLK	15–9	-	0x00	-	R	_
	8	DBRUN	1	H0	R/W	
	7	-	0	-	R	
	6–4	CLKDIV[2:0]	0x0	H0	R/W	
	3–2	-	0x0	-	R	
	1–0	CLKSRC[1:0]	0x0	H0	R/W	

Bits 15–9 Reserved

Bit 8 DBRUN This bit sets whether the LCD8D operating clock is supplied in DEBUG mode or not. 1 (R/W): Clock supplied in DEBUG mode

0 (R/W): No clock supplied in DEBUG mode

Bit 7 Reserved

Bits 6-4 CLKDIV[2:0]

These bits select the division ratio of the LCD8D operating clock.

Bits 3–2 Reserved

Bits 1-0 CLKSRC[1:0]

These bits select the clock source of the LCD8D.

LCD8DCLK.	LCD8DCLK.CLKSRC[1:0] bits								
CLKDIV[2:0] bits	0x0	0x1	0x2	0x3					
CERDIV[2:0] Dits	IOSC	OSC1	OSC3	EXOSC					
0x7	Reserved	1/1	Reserved	1/1					
0x6	1/1,024		1/1,024						
0x5	1/512		1/512						
0x4	1/256		1/256						
0x3	1/128		1/128						
0x2	1/64		1/64						
0x1	1/32]	1/32						
0x0	1/16		1/16						

Table 21.8.1 Clock Source and Division Ratio Settings

(Note) The oscillation circuits/external input that are not supported in this IC cannot be selected as the clock source.

Note: The LCD8DCLK register settings can be altered only when the LCD8DCTL.MODEN bit = 0.

LCD8D Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
LCD8DCTL	15–8	-	0x00	-	R	-
	7–2	-	0x00	-	R	
	1	LCDDIS	0	H0	R/W	
	0	MODEN	0	HO	R/W	

Bits 15–2 Reserved

Bit 1 LCDDIS

This bit enables the SEG/COM-pin discharge operations when "Display off" is selected.

1 (R/W): Enable SEG/COM-pin discharge operations

0 (R/W): Disable SEG/COM-pin discharge operations

Setting this bit to 1 configures the SEG/COM pins to output a low level when "Display off" is selected. Setting to 0 configures the SEG/COM pins to enter Hi-Z status when "Display off" is selected.

Bit 0 MODEN

This bit enables the LCD8D operations.

1 (R/W): Enable LCD8D operations

0 (R/W): Disable LCD8D operations

Setting this bit to 1 starts supplying the operating clock to LCD8D.

Note: If the LCD8DCTL.MODEN bit is altered from 1 to 0 while the LCD panel is displaying, the LCD display is automatically turned off and the LCD8DDSP.DSPC[1:0] bits are also set to 0x0. Also the LCD voltage regulator is automatically turned off and the LCD8DPWR.VCEN bit is set to 0.

LCD8D Timing Control Register 1

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
LCD8DTIM1	15–12	_	0x0	-	R	-
	11–8	FRMCNT[3:0]	0x3	HO	R/W	
	7–6	-	0x0	-	R	
	5	(reserved)	0	H0	R/W	
	4–3	-	0x0	-	R	
	2–0	LDUTY[2:0]	0x7	H0	R/W	

Bits 15–12 Reserved

Bits 11-8 FRMCNT[3:0]

These bits set the frame frequency. For more information, refer to "Frame Frequency."

Bits 7–3 Reserved

Bits 2-0 LDUTY[2:0]

These bits set the drive duty. For more information, refer to "Drive Duty Switching."

LCD8D Timing Control Register 2

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
LCD8DTIM2	15	LCDWAVE	0	HO	R/W	-
	14–10	-	0x00	-	R	
	9–8	BSTC[1:0]	0x1	H0	R/W	
	7–3	-	0x00	-	R	
	2–0	NLINE[2:0]	0x0	HO	R/W	

Bit 15 LCDWAVE

This bit selects the drive waveform. 1 (R/W): Waveform A 0 (R/W): Waveform B

Bits 14–10 Reserved

Bits 9-8 BSTC[1:0]

These bits select the booster clock frequency for the LCD voltage booster.

Table 21.8.2 Booster Clock Frequency						
LCD8DTIM2.BSTC[1:0] bits	Booster clock frequency [Hz]					
0x3	fclk_lcd8d/64					
0x2	fclk_lcd8d/32					
0x1	fclk_lcd8d/16					
0x0	fclk_lcd8d/4					

Table 21.8.2	Booster	Clock	Frec	uenc\	/
14010 21.0.2	DOODLOI	010010	1100	adridy	1

fclk_lcD8D: LCD8D operating clock frequency [Hz]

Note: Do not alter the LCD8DTIM2.BSTC[1:0] bits from the initial value when using a model that does not have an LCD power supply.

Bits 7-3 Reserved

Bits 2-0 NLINE[2:0]

These bits enable the n-line inverse AC drive function and set the number of inverse lines. However, these bits should be fixed at 0x0 when the drive waveform is set to Waveform A. For more information, refer to "n-Segment-Line Inverse AC Drive."

LCD8D Power Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
LCD8DPWR	15	EXVCSEL	1	H0	R/W	-
	14–13	RESISEL[1:0]	0x0	H0	R/W	
	12–8	LC[4:0]	0x00	H0	R/W	
	7–5	-	0x0	-	R	
	4	BSTEN	0	H0	R/W	
	3	BIASSEL	1	H0	R/W	
	2	HVLD	0	H0	R/W	
	1	VCSEL	0	H0	R/W	
	0	VCEN	0	H0	R/W	

Bit 15 **EXVCSEL**

This bit selects the LCD drive power supply mode (external voltage application mode or internal generation mode).

- 1 (R/W): External voltage application mode
- 0 (R/W): Internal generation mode
- Note: Be sure to avoid applying voltages to the Vc1 to Vc3 pins when the LCD8DPWR.EXVCSEL bit is set to 0, as the LCD power supply pins are short-circuited to GND.

Bits 14-13 RESISEL[1:0]

These bits select the internal LCD voltage dividing resistor value.

Table 21.8.3	Internal I CD	Voltage Divide	er Resistor V	Value Adjustment	
10010 21.0.0	Internal LOD	voltage Divia		value Aujustinent	

LCD8DPWR.RESI[1:0] bits	Internal resistor value
0x3	Large
0x2	1
0x1	Small
0x0	Internal voltage dividing resistors
	are not used.

Bits 12-8 LC[4:0]

These bits set the LCD panel contrast.

LCD8DPWR.LC[4:0] bits	Contrast
0x1f	High (dark)
0x1e	↑ (
:	:
0x01	↓
0x00	Low (light)

Bits 7–5 Reserved

Bit 4 BSTEN

This bit turns the LCD voltage booster on and off. 1 (R/W): LCD voltage booster on 0 (R/W): LCD voltage booster off

For more information, refer to "LCD Power Supply."

Bit 3 BIASSEL

This bit selects the LCD drive bias. 1 (R/W): 1/3 bias 0 (R/W): 1/2 bias

Bit 2 HVLD

This bit sets the LCD voltage regulator into heavy load protection mode. 1 (R/W): Heavy load protection mode 0 (R/W): Normal mode

For more information, refer to "LCD Voltage Regulator Settings."

Bit 1 VCSEL

This bit sets the LCD voltage regulator output (reference voltage for boosting). 1 (R/W): Vc2 0 (R/W): Vc1

For more information, refer to "LCD Voltage Regulator Settings."

Note: The LCD8DPWR.VCSEL bit must be set to 0 in an external voltage application mode.

Bit 0 VCEN

This bit turns the LCD voltage regulator on and off. 1 (R/W): LCD voltage regulator on 0 (R/W): LCD voltage regulator off

For more information, refer to "LCD Power Supply."

LCD8D Display Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
LCD8DDSP	15–8	-	0x00	-	R	-
	7	-	0	-	R	
	6	SEGREV	1	H0	R/W	
	5	COMREV	1	H0	R/W	
	4	DSPREV	1	H0	R/W	
	3	-	0	-	R	
	2	DSPAR	0	HO	R/W	
	1–0	DSPC[1:0]	0x0	H0	R/W	

Bits 15–7 Reserved

Bit 6 SEGREV

This bit selects the segment pin assignment direction.

- 1 (R/W): Normal assignment
- 0 (R/W): Inverse assignment

For more information, see Figures 21.6.3.1 to 21.6.3.4.

Bit 5 COMREV

This bit selects the common pin assignment direction.

- 1 (R/W): Normal assignment
- 0 (R/W): Inverse assignment

For more information, see Figures 21.6.3.1 to 21.6.3.4.

Note: Do not set the LCD8DDSP.COMREV bit to 0 when the LCD8DTIM1.LDUTY[2:0] bits = 0x4-0x6.

Bit 4 DSPREV

This bit controls black/white inversion on the LCD display. 1 (R/W): Normal display 0 (R/W): Inverted display

Bit 3 Reserved

Bit 2 DSPAR

This bit switches the display area in the display data RAM. 1 (R/W): Display area 1 0 (R/W): Display area 0

Bits 1-0 DSPC[1:0]

These bits control the LCD display on/off and select a display mode. For more information, refer to "Display On/Off."

LCD8D COM Pin Control Register 0

U							
Register name	Bit	Bit name	Initial	Reset	R/W	Remarks	
LCD8DCOMC0	15–8	-	0x00	-	R	-	
	7	COM7DEN	1	H0	R/W		
	6	COM6DEN	1	H0	R/W		
	5	COM5DEN	1	H0	R/W		
	4	COM4DEN	1	HO	R/W		
	3	COM3DEN	1	H0	R/W		
	2	COM2DEN	1	H0	R/W		
	1	COM1DEN	1	H0	R/W		
	0	COMODEN	1	H0	R/W		

Bits 15–8 Reserved

Bits 7–0 COMxDEN

These bits configure the partial drive of the COM*x* pins. 1 (R/W): Normal output 0 (R/W): Off waveform output

LCD8D Interrupt Flag Register

		<u> </u>				
Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
LCD8DINTF	15–8	-	0x00	-	R	_
	7–1	-	0x00	-	R	
	0	FRMIF	0	H0	R/W	Cleared by writing 1.

Bits 15–1 Reserved

Bit 0 FRMIF

This bit indicates the frame interrupt cause occurrence status.

- 1 (R): Cause of interrupt occurred
- 0 (R): No cause of interrupt occurred
- 1 (W): Clear flag
- 0 (W): Ineffective

LCD8D Interrupt Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
LCD8DINTE	15–8	_	0x00	-	R	-
	7–1	-	0x00	-	R	
	0	FRMIE	0	H0	R/W	

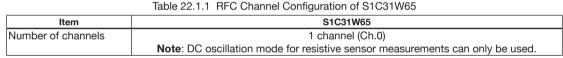
Bits 15–1 Reserved

Bit 0 FRMIE

This bit enables the frame interrupt.

1 (R/W): Enable interrupt

0 (R/W): Disable interrupt


22 R/F Converter (RFC)

22.1 Overview

The RFC is a CR oscillation type A/D converter (R/F converter). The features of the RFC are listed below.

- Converts the sensor resistance into a digital value by performing CR oscillation and counting the oscillation clock.
- Achieves high-precision measurement system with low errors by oscillating the reference resistor and the sensor in the same conditions to obtain the difference between them.
- Includes a 24-bit measurement counter to count the oscillation clocks.
- Includes a 24-bit time base counter to count the internal clock for equalizing the measurement time between the reference resistor and the sensor.
- Supports DC bias resistive sensors and AC bias resistive sensors. (Note: See the table below.) (A thermometer/hygrometer can be easily implemented by connecting a thermistor or a humidity sensor and a few passive elements (resistor and capacitor).)
- Allows measurement (counting) by inputting external clocks.
- Provides an output and continuous oscillation function for monitoring the oscillation frequency.
- Can generate reference oscillation completion, sensor (A and B) oscillation completion, measurement counter overflow error, and time base counter overflow error interrupts.

Figure 22.1.1 shows the RFC configuration.

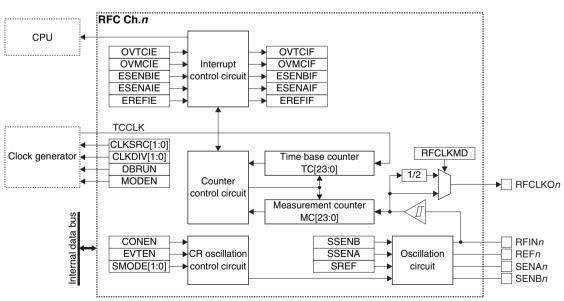


Figure 22.1.1 RFC Configuration

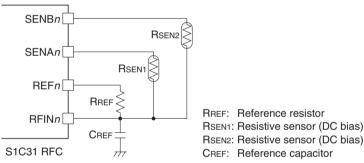
22.2 Input/Output Pins and External Connections

22.2.1 List of Input/Output Pins

Table 22.2.1.1 lists the RFC pins.

Pin name	I/O*	Initial status*	Function					
SENBn	A	Hi-Z	Sensor B oscillation control pin					
SENAn	A	Hi-Z	Sensor A oscillation control pin					
REF <i>n</i>	A	Hi-Z	Reference oscillation control pin					
RFIN <i>n</i>	A	Vss	RFCLK input or oscillation control pin					
RFCLKOn	0	Hi-Z	RFCLK monitoring output pin					
			RFCLK is output to monitor the oscillation frequency.					

Table 22.2.1.1 List of RFC Pins


* Indicates the status when the pin is configured for the RFC.

If the port is shared with the RFC pin and other functions, the RFC input/output function must be assigned to the port before activating the RFC. For more information, refer to the "I/O Ports" chapter.

Note: The RFIN*n* pin goes to Vss level when the port is switched. Be aware that large current may flow if the pin is biased by an external circuit.

22.2.2 External Connections

The figures below show connection examples between the RFC and external sensors. For the oscillation mode and external clock input mode, refer to "Operating Mode."

* Leave the unused pin (SENAn or SENBn) open if one resistive sensor only is used. Figure 22.2.2.1 Connection Example in Resistive Sensor DC Oscillation Mode

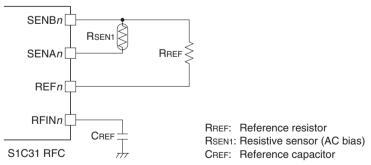


Figure 22.2.2.2 Connection Example in Resistive Sensor AC Oscillation Mode

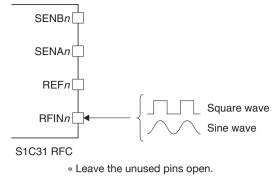


Figure 22.2.2.3 External Clock Input in External Clock Input Mode

22.3 Clock Settings

22.3.1 RFC Operating Clock

When using the RFC, the RFC operating clock TCCLK must be supplied to the RFC from the clock generator. The TCCLK supply should be controlled as in the procedure shown below.

- 1. Enable the clock source in the clock generator if it is stopped (refer to "Clock Generator" in the "Power Supply, Reset, and Clocks" chapter).
- 2. Set the following RFC_nCLK register bits:
 - RFC_nCLK.CLKSRC[1:0] bits (Clock source selection)
 - RFC_nCLK.CLKDIV[1:0] bits (Clock division ratio selection = Clock frequency setting)

The time base counter performs counting with TCCLK set here. Selecting a higher clock results in higher conversion accuracy, note, however, that the frequency should be determined so that the time base counter will not overflow during reference oscillation.

22.3.2 Clock Supply in SLEEP Mode

When using RFC during SLEEP mode, the RFC operating clock TCCLK must be configured so that it will keep supplying by writing 0 to the CLGOSC*xxxx*SLPC bit for the TCCLK clock source.

22.3.3 Clock Supply in DEBUG Mode

The TCCLK supply during DEBUG mode should be controlled using the RFC_nCLK.DBRUN bit.

The TCCLK supply to the RFC is suspended when the CPU enters DEBUG mode if the RFC_nCLK.DBRUN bit = 0. After the CPU returns to normal mode, the TCCLK supply resumes. Although the RFC stops operating when the TCCLK supply is suspended, the output pin and registers retain the status before DEBUG mode was entered. If the RFC_nCLK.DBRUN bit = 1, the TCCLK supply is not suspended and the RFC will keep operating in DEBUG mode.

22.4 Operations

22.4.1 Initialization

The RFC should be initialized with the procedure shown below.

- 1. Configure the RFC_nCLK.CLKSRC[1:0] and RFC_nCLK.CLKDIV[1:0] bits. (Configure operating clock)
- 2. Set the following bits when using the interrupt:
 - Write 1 to the interrupt flags in the RFC_nINTF register. (Clear interrupt flags)
 - Set the interrupt enable bits in the RFC_nINTE register to 1. (Enable interrupts)
- 3. Assign the RFC input/output function to the ports. (Refer to the "I/O Ports" chapter.)

22 R/F CONVERTER (RFC)

- 4. Configure the following RFC_nCTL register bits:
 - RFC_nCTL.EVTEN bit (Enable/disable external clock input mode)
 - RFC_nCTL.SMODE[1:0] bits (Select oscillation mode)
 - Set the RFC_nCTL.MODEN bit to 1. (Enable RFC operations)

22.4.2 Operating Modes

The RFC has two oscillation modes that use the RFC internal oscillation circuit and an external clock input mode for measurements using an external input clock. The channels may be configured to a different mode from others.

Oscillation mode

The oscillation mode is selected using the RFC_nCTL.SMODE[1:0] bits.

DC oscillation mode for resistive sensor measurements

This mode performs measurements by DC driving the reference resistor and the resistive sensor to oscillate. Set the RFC into this mode when a DC bias resistive sensor is connected. This mode allows connection of two resistive sensors to a channel.

AC oscillation mode for resistive sensor measurements

This mode performs measurements by AC driving the reference resistor and the resistive sensor to oscillate. Set the RFC into this mode when an AC bias resistive sensor is connected. One resistive sensor only can be connected to a channel.

External clock input mode (event counter mode)

This mode enables input of external clock/pulses to perform counting similar to the internal oscillation clock. A sine wave may be input as well as a square wave (for the threshold value of the Schmitt input, refer to "R/F Converter Characteristics, High level Schmitt input threshold voltage V_{T+} and Low level Schmitt input threshold voltage V_{T-} " in the "Electrical Characteristics" chapter). This function is enabled by setting the RFC_nCTL. EVTEN bit to 1. The measurement procedure is the same as when the internal oscillation circuit is used.

22.4.3 RFC Counters

The RFC incorporates two counters shown below.

Measurement counter (MC)

The measurement counter is a 24-bit presettable up counter. Counting the reference oscillation clock and the sensor oscillation clock for the same duration of time using this counter minimizes errors caused by voltage, and unevenness of IC quality, as well as external parts and on-board parasitic elements. The counter values should be corrected via software after the reference and sensor oscillations are completed according to the sensor characteristics to determine the value being currently detected by the sensor.

Time base counter (TC)

The time base counter is a 24-bit presettable up/down counter. The time base counter counts up with TCCLK during reference oscillation to measure the reference oscillation time. During sensor oscillation, it counts down from the reference oscillation time and stops the sensor oscillation when it reaches 0x000000. This means that the sensor oscillation time becomes equal to the reference oscillation time. The value counted during reference oscillation should be saved in the memory. It can be reused at subsequent sensor oscillations omitting reference oscillations.

Counter initial value

To obtain the difference between the reference oscillation and sensor oscillation clock count values from the measurement counter simply, appropriate initial values must be set to the measurement counter before starting reference oscillation.

Connecting the reference element and sensor with the same resistance will result in <Initial value: n > =<Counter value at the end of sensor oscillation: m > (if error = 0). Setting a large <Initial value: n > increases the resolution of measurement. However, the measurement counter may overflow during sensor oscillation when the sensor value decreases below the reference element value (the measurement will be canceled). The initial value for the measurement counter should be determined taking the range of sensor value into consideration. The time base counter should be set to 0x000000 before starting reference oscillation.

Counter value read

The measurement and time base counters operate on RFCCLK and TCCLK, respectively. Therefore, to read correctly by the CPU while the counter is running, read the counter value twice or more and check to see if the same value is read.

22.4.4 Converting Operations and Control Procedure

An R/F conversion procedure and the RFC operations are shown below. Although the following descriptions assume that the internal oscillation circuit is used, external clock input mode can be controlled with the same procedure.

R/F control procedure

- 1. Set the initial value (0x000000 n) to the RFC_nMCH and RFC_nMCL registers (measurement counter).
- 2. Clear the RFC_*n*TCH and RFC_*n*TCL registers (time base counter) to 0x000000.
- 3. Clear both the RFC_nINTF.EREFIF and RFC_nINTF.OVTCIF bits by writing 1.
- 4. Set the RFC_nTRG.SREF bit to 1 to start reference oscillation.
- 5. Wait for an RFC interrupt.
 - i. If the RFC_nINTF.EREFIF bit = 1 (reference oscillation completion), clear the RFC_nINTF.EREFIF bit and then go to Step 6.
 - ii. If the RFC_*n*INTF.OVTCIF bit = 1 (time base counter overflow error), clear the RFC_*n*INTF.OVTCIF bit and terminate measurement as an error or retry after altering the measurement counter initial value.
- 6. Clear the RFC_nINTF.ESENAIF, RFC_nINTF.ESENBIF, and RFC_nINTF.OVMCIF bits by writing 1.
- 7. Set the RFC_nTRG.SSENA bit (sensor A) or the RFC_nTRG.SSENB bit (sensor B) corresponding to the sensor to be measured to 1 to start sensor oscillation (use the RFC_nTRG.SSENA bit in AC oscillation mode).
- 8. Wait for an RFC interrupt.
 - i. If the RFC_*n*INTF.ESENAIF bit = 1 (sensor A oscillation completion) or the RFC_*n*INTF.ESENBIF bit = 1 (sensor B oscillation completion), clear the RFC_*n*INTF.ESENAIF or RFC_*n*INTF.ESENBIF bit and then go to Step 9.
 - ii. If the RFC_*n*INTF.OVMCIF bit = 1 (measurement counter overflow error), clear the RFC_*n*INTF.OVMCIF bit and terminate measurement as an error or retry after altering the measurement counter initial value.
- 9. Read the RFC_*n*MCH and RFC_*n*MCL registers (measurement counter) and correct the results depending on the sensor to obtain the detected value.

R/F converting operations

Reference oscillation

When the RFC_*n*TRG.SREF bit is set to 1 in Step 4 of the conversion procedure above, the RFC Ch.n starts CR oscillation using the reference resistor. The measurement counter starts counting up using the CR oscillation clock from the initial value that has been set. The time base counter starts counting up using TC-CLK from 0x000000.

When the measurement counter or the time base counter overflows (0xffffff \rightarrow 0x000000), the RFC_*n*TRG. SREF bit is cleared to 0 and the reference oscillation stops automatically.

The measurement counter overflow sets the RFC_*n*INTF.EREFIF bit to 1 indicating that the reference oscillation has been terminated normally. If the RFC_*n*INTE.EREFIE bit = 1, a reference oscillation completion interrupt request occurs at this point.

The time base counter overflow sets the RFC_nINTF.OVTCIF bit to 1 indicating that the reference oscillation has been terminated abnormally. If the RFC_nINTE.OVTCIE bit = 1, a time base counter overflow error interrupt request occurs at this point.

Sensor oscillation

When the RFC_*n*TRG.SSENA bit (sensor A) or the RFC_*n*TRG.SSENB bit (sensor B) is set to 1 in Step 7 of the conversion procedure above, the RFC Ch.*n* starts CR oscillation using the sensor. The measurement counter starts counting up using the CR oscillation clock from 0x000000. The time base counter starts counting down using TCCLK from the value at the end of reference oscillation.

When the time base counter reaches 0x000000 or the measurement counter overflows (0xffffff \rightarrow 0x000000), the RFC_nTRG.SSENA bit or the RFC_nTRG.SSENB bit that started oscillation is cleared to 0 and the sensor oscillation stops automatically.

The time base counter reaching 0x000000 sets the RFC_*n*INTF.ESENAIF bit (sensor A) or the RFC_*n*INTF.ESENBIF bit (sensor B) to 1 indicating that the sensor oscillation has been terminated normally. If the RFC_*n*INTE.ESENAIE bit = 1 or the RFC_*n*INTE.ESENBIE bit = 1, a sensor A or sensor B oscillation completion interrupt request occurs at this point.

The measurement counter overflow sets the RFC_*n*INTF.OVMCIF to 1 indicating that the sensor oscillation has been terminated abnormally. If the RFC_*n*INTE.OVMCIE bit = 1, a measurement counter overflow error interrupt request occurs at this point.

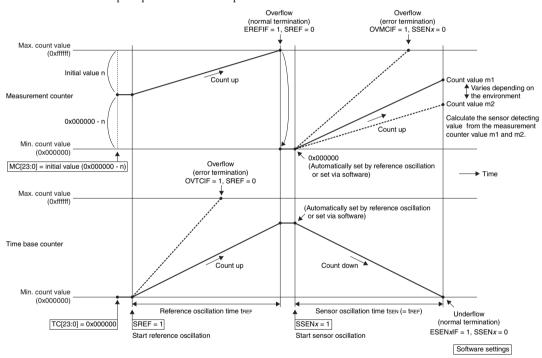
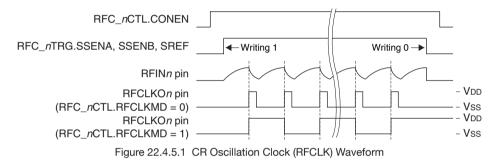


Figure 22.4.4.1 Counter Operations During Reference/Sensor Oscillation

Forced termination

To abort reference oscillation or sensor oscillation, write 0 to the RFC_nTRG.SREF bit (reference oscillation), the RFC_nTRG.SSENA bit (sensor A oscillation), or the RFC_nTRG.SSENB bit (sensor B oscillation) used to start the oscillation. The counters maintain the value at the point they stopped, note, however, that the conversion results cannot be guaranteed if the oscillation is resumed. When resuming oscillation, execute from counter initialization again.

Conversion error


Performing reference oscillation and sensor oscillation with the same resistor and capacitor results $n \approx m$. The difference between n and m is a conversion error. Table 22.4.4.1 lists the error factors. (n: measurement counter initial value, m: measurement counter value at the end of sensor oscillation)

Error factor	Influence					
External part tolerances	Large					
Power supply voltage fluctuations	Large					
Parasitic capacitance and resistance of the board	Middle					
Temperature	Small					
Unevenness of IC quality	Small					

Table 22.4.4.1 Error Factors

22.4.5 CR Oscillation Frequency Monitoring Function

The CR oscillation clock (RFCLK) generated during converting operation can be output from the RFCLKOn pin for monitoring. By setting the RFC_nCTL.CONEN bit to 1, the RFC Ch.n enters continuous oscillation mode that disables oscillation stop conditions to continue oscillating operations. In this case, set the the RFC_nTRG.SREF bit (reference oscillation), the RFC_nTRG.SSENA bit (sensor A oscillation), or the RFC_nTRG.SSENB bit (sensor B oscillation) to 1 to start oscillation. Set the bit to 0 to stop oscillation. Using this function helps easily measure the CR oscillation clock frequency. Furthermore, setting the RFC_nCTL.RFCLKMD bit to 1 changes the output clock to the divided-by-two RFCLK clock.

22.5 Interrupts

The RFC has a function to generate the interrupts shown in Table 22.5.1.

Interrupt	Interrupt flag	Set condition	Clear condition
Reference oscillation completion	RFC_nINTF.EREFIF	When reference oscillation has been completed normally due to a measurement counter overflow	Writing 1
Sensor A oscillation completion	RFC_nINTF.ESENAIF	When sensor A oscillation has been completed normally due to the time base counter reaching 0x000000	Writing 1
Sensor B oscillation completion	RFC_nINTF.ESENBIF	When sensor B oscillation has been completed normally due to the time base counter reaching 0x000000	Writing 1
Measurement counter overflow error	RFC_nINTF.OVMCIF	When sensor oscillation has been terminated abnormally due to a measurement counter overflow	Writing 1
Time base counter overflow error	RFC_nINTF.OVTCIF	When reference oscillation has been terminated abnor- mally due to a time base counter overflow	Writing 1

Table 22.5.1 RFC Interrupt Function

The RFC provides interrupt enable bits corresponding to each interrupt flag. An interrupt request is sent to the CPU only when the interrupt flag, of which interrupt has been enabled by the interrupt enable bit, is set. For more information on interrupt control, refer to the "Interrupt" chapter.

22.6 Control Registers

RFC Ch.n Clock Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RFC_nCLK	15–9	-	0x00	_	R	-
	8	DBRUN	1	HO	R/W	
	7–6	-	0x0	_	R	
	5–4	CLKDIV[1:0]	0x0	H0	R/W	
	3–2	-	0x0	-	R	
	1–0	CLKSRC[1:0]	0x0	H0	R/W	

Bits 15–9 Reserved

Bit 8 DBRUN

This bit sets whether the RFC operating clock is supplied in DEBUG mode or not.

- 1 (R/W): Clock supplied in DEBUG mode
- 0 (R/W): No clock supplied in DEBUG mode

Bits 7–6 Reserved

Bits 5–4 CLKDIV[1:0]

These bits select the division ratio of the RFC operating clock.

Bits 3–2 Reserved

Bits 1-0 CLKSRC[1:0]

These bits select the clock source of the RFC.

Table 22.6.1 Clock Source and D	Division Ratio Settings
---------------------------------	-------------------------

RFC_nCLK.		RFC_nCLK.CLKSRC[1:0] bits								
_	0x0	0x1	0x2	0x3						
CLKDIV[1:0] bits	IOSC	OSC1	OSC3	EXOSC						
0x3	1/8	1/1	1/8	1/1						
0x2	1/4		1/4							
0x1	1/2		1/2							
0x0	1/1		1/1							

(Note) The oscillation circuits/external input that are not supported in this IC cannot be selected as the clock source.

Note: The RFC_*n*CLK register settings can be altered only when the RFC_*n*CTL.MODEN bit = 0.

RFC Ch.n Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RFC_nCTL	15–9	-	0x00	-	R	_
	8	RFCLKMD	0	HO	R/W	
	7	CONEN	0	H0	R/W	
	6	EVTEN	0	H0	R/W	
	5–4	SMODE[1:0]	0x0	H0	R/W	
	3–1	-	0x0	-	R	
	0	MODEN	0	H0	R/W	

Bits 15–9 Reserved

Bit 8 RFCLKMD

This bit sets the RFCLKOn pin to output the divided-by-two oscillation clock.

- 1 (R/W): Divided-by-two clock output
- 0 (R/W): Oscillation clock output

For more information, refer to "CR Oscillation Frequency Monitoring Function."

Bit 7 CONEN

This bit disables the automatic CR oscillation stop function to enable continuous oscillation function. 1 (R/W): Enable continuous oscillation 0 (R/W): Disable continuous oscillation

For more information, refer to "CR Oscillation Frequency Monitoring Function."

Bit 6 EVTEN

This bit enables external clock input mode (event counter mode). 1 (R/W): External clock input mode 0 (R/W): Normal mode

For more information, refer to "Operating Modes."

Note: Do not input an external clock before the RFC_*n*CTL.EVTEN bit is set to 1. The RFIN*n* pin is pulled down to Vss level when the port function is switched for the R/F converter.

Bits 5–4 SMODE[1:0]

These bits configure the oscillation mode. For more information, refer to "Operating Modes."

RFC_nCTL.SMODE[1:0] bits	Oscillation mode
0x3, 0x2	Reserved
0x1	AC oscillation mode for resistive sensor measurements
0x0	DC oscillation mode for resistive sensor measurements

Table 22.6.2 Oscillation Mode Selection

Bits 3–1 Reserved

Bit 0 MODEN

This bit enables the RFC operations.

1 (R/W): Enable RFC operations (The operating clock is supplied.)

0 (R/W): Disable RFC operations (The operating clock is stopped.)

Note: If the RFC_nCTL.MODEN bit is altered from 1 to 0 during R/F conversion, the counter value being converted cannot be guaranteed. R/F conversion cannot be resumed.

Register name	Bit	Bit name	Initial	Reset	R/W		
RFC_nTRG	15–8	-	0x00	_	R		
	7–3	-	0x00	-	R		
	2	SSENB	0	H0	R/W		
	1	SSENA	0	H0	R/W		
	0	SREF	0	H0	R/W		

RFC Ch.n Oscillation Trigger Register

Bits 15–3 Reserved

Bit 2 SSENB

This bit controls CR oscillation for sensor B. This bit also indicates the CR oscillation status.

- 1 (W): Start oscillation
- 0 (W): Stop oscillation
- 1 (R): Being oscillated
- 0 (R): Stopped

Note: Writing 1 to the RFC_*n*TRG.SSENB bit does not start oscillation when the RFC_*n*CTL. SMODE[1:0] bits = 0x1 (AC oscillation mode for resistive sensor measurements).

Bit 1 SSENA

This bit controls CR oscillation for sensor A. This bit also indicates the CR oscillation status.

- 1 (W): Start oscillation
- 0 (W): Stop oscillation
- 1 (R): Being oscillated
- 0 (R): Stopped

Bit 0 SREF

This bit controls CR oscillation for the reference resistor. This bit also indicates the CR oscillation status.

- 1 (W):Start oscillation0 (W):Stop oscillation1 (R):Being oscillated0 (R):Stopped
- **Notes:** Settings in this register are all ineffective when the RFC_nCTL.MODEN bit = 0 (RFC operation disabled).
 - When writing 1 to the RFC_nTRG.SREF bit, the RFC_nTRG.SSENA bit, or the RFC_nTRG. SSENB bit to start oscillation, be sure to avoid having more than one bit set to 1.
 - Be sure to clear the interrupt flags (RFC_nINTF.EREFIF bit, RFC_nINTF.ESENAIF bit, RFC_ nINTF.ESENBIF bit, RFC_nINTF.OVMCIF bit, and RFC_nINTF.OVTCIF bit) before starting oscillation using this register.

RFC Ch.n Measurement Counter Low and High Registers

					<u> </u>	•
Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RFC_nMCL	15–0	MC[15:0]	0x0000	H0	R/W	-
RFC_nMCH	15–8	-	0x00	_	R	-
	7–0	MC[23:16]	0x00	H0	R/W	
Or						

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RFC_nMCL	31–24	-	0x00	-	R	-
RFC_nMCH	23–0	MC[23:0]	0x000000	H0	R/W	

Bits 31–24 Reserved

Bits 23-0 MC[23:0]

Measurement counter data can be read and written through these bits.

Note: The measurement counter must be set from the low-order value (RFC_*n*MCL.MC[15:0] bits) first when data is set using a 16-bit access instruction. The counter may not be set to the correct value if the high-order value (RFC_*n*MCH.MC[23:16] bits) is written first.

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RFC_nTCL	15–0	TC[15:0]	0x0000	H0	R/W	_
RFC_nTCH	15–8	-	0x00	-	R	_
	7–0	TC[23:16]	0x00	H0	R/W	
Or						
Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RFC_nTCL	31-24	-	0x00	_	R	_

H0

R/W

0x000000

RFC Ch.n Time Base Counter Low and High Registers

Bits 31–24 Reserved

23-0 TC[23:0]

RFC nTCH

Bits 23-0 TC[23:0]

Time base counter data can be read and written through these bits.

Note: The time base counter must be set from the low-order value (RFC_*n*TCL.TC[15:0] bits) first when data is set using a 16-bit access instruction. The counter may not be set to the correct value if the high-order value (RFC_*n*TCH.TC[23:16] bits) is written first.

RFC Ch.n Interrupt Flag Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RFC_nINTF	15–8	-	0x00	_	R	-
	7–5	-	0x0	-	R	
	4	OVTCIF	0	H0	R/W	Cleared by writing 1.
	3	OVMCIF	0	H0	R/W	
	2	ESENBIF	0	H0	R/W	
	1	ESENAIF	0	H0	R/W	
	0	EREFIF	0	H0	R/W	

Bits 15–5 Reserved

Bit 4	OVTCIF

Bit 3	OVMCIF
DILU	

Bit 2 ESENBIF

Bit 1 ESENAIF

Bit 0 EREFIF

These bits indicate the RFC interrupt cause occurrence status.

- 1 (R): Cause of interrupt occurred
- 0 (R): No cause of interrupt occurred
- 1 (W): Clear flag
- 0 (W): Ineffective

The following shows the correspondence between the bit and interrupt: RFC_nINTF.OVTCIF bit: Time base counter overflow error interrupt RFC_nINTF.OVMCIF bit: Measurement counter overflow error interrupt RFC_nINTF.ESENBIF bit: Sensor B oscillation completion interrupt RFC_nINTF.ESENAIF bit: Sensor A oscillation completion interrupt RFC_nINTF.EREFIF bit: Reference oscillation completion interrupt

RFC Ch.n Interrupt Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RFC_nINTE	15–8	-	0x00	_	R	-
	7–5	-	0x0	-	R	
	4	OVTCIE	0	H0	R/W	
	3	OVMCIE	0	H0	R/W	
	2	ESENBIE	0	H0	R/W	
	1	ESENAIE	0	H0	R/W	
	0	EREFIE	0	H0	R/W	

Bits 15–5 Reserved

D:4 4	
Bit 4	OVTCIE

- Bit 3 OVMCIE
- Bit 2 ESENBIE
- Bit 1 ESENAIE
- Bit 0 EREFIE

These bits enable RFC interrupts.

- 1 (R/W): Enable interrupts
- 0 (R/W): Disable interrupts

The following shows the correspondence between the bit and interrupt: RFC_nINTE.OVTCIE bit: Time base counter overflow error interrupt RFC_nINTE.OVMCIE bit: Measurement counter overflow error interrupt RFC_nINTE.ESENBIE bit: Sensor B oscillation completion interrupt RFC_nINTE.ESENAIE bit: Sensor A oscillation completion interrupt RFC_nINTE.EREFIE bit: Reference oscillation completion interrupt

23 Electrical Characteristics

23.1 Absolute Maximum Ratings

			(V	'ss = 0 V)
Item	Symbol	Condition	Rated value	Unit
Power supply voltage	Vdd		-0.3 to 7.0	V
LCD power supply voltage	VC1		-0.3 to 7.0	V
	Vc2		-0.3 to 7.0	V
	Vсз		-0.3 to 7.0	V
Input voltage	Vi	#RESET, P07, P10–17, PD2–D3	-0.3 to VDD + 0.5	V
		PD6–D7	-0.3 to Vc3 + 0.5	V
		P00–06, P20–27, P30–37, P40–47, P50–57,	-0.3 to 7.0	V
		P60–67, PD0–D1, PD5		
Output voltage	Vo	P00–07, P10–17, P20–27, P30–37, P40–47,	-0.3 to VDD + 0.5	V
		P50–57, P60–67, PD0–D5		
		PD6–D7	-0.3 to Vc3 + 0.5	V
High level output current	Іон	1 pin	-10	mA
		Total of all pins	-20	mA
Low level output current	lol	1 pin	10	mA
		Total of all pins	20	mA
Operating temperature	Та		-40 to 105	°C
Storage temperature	Tstg		-65 to 125	°C

23.2 Recommended Operating Conditions

					(Vss =	0 V) *1
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Power supply voltage	VDD	For normal operation	1.8	-	5.5	V
		For Flash programming	2.2	-	5.5	V
		For LCD driver operation	1.8	-	5.5	V
	Vсз	When PD6 and PD7 are used as GPIO	1.8	-	5.5	V
LCD power supply voltage (1/3 bias)	VC1	When an external voltage is applied	-	1	1.9	V
	VC2	Vc1 ≤ Vc2 ≤ Vc3	-	2	3.8	V
	Vc3		-	3	5.5	V
LCD power supply voltage (1/2 bias)	VC1	When an external voltage is applied	-	1.5	2.8	V
	Vc3	$V_{C1} (= V_{C2}) \le V_{C3}$	-	3	5.5	V
OSC1 oscillator oscillation frequency	fosc1	Crystal oscillator	-	32.768	-	kHz
OSC3 oscillator oscillation frequency	fosc3	Crystal/ceramic oscillator	0.2	-	33	MHz
EXOSC external clock frequency	fexosc	When supplied from an external oscillator	0.016	-	33	MHz
Bypass capacitor between Vss and VDD	CPW1		-	3.3	-	μF
Capacitor between Vss and VD1	CPW2		-	1	1.2	μF
Capacitor between Vss and Vc1	CLCD1	*2, *3	-	1	-	μF
Capacitors between Vss and Vc2-3	CLCD2-3	*2, *3	-	1	-	μF
Capacitor between CP1 and CP2	CLCD4	*2, *3	-	1	-	μF
Gate capacitor for OSC1 oscillator	C _{G1}	*4	0	-	25	pF
Drain capacitor for OSC1 oscillator	CD1	*4	-	0	-	pF
Gate capacitor for OSC3 oscillator	CG3	When crystal/ceramic oscillator is used *4	0	-	100	pF
Drain capacitor for OSC3 oscillator	Срз	When crystal/ceramic oscillator is used *4	0	-	100	pF
Debug pin pull-up resistors	RDBG1-2	*5	-	100	-	kΩ
Capacitor between Vss and VPP	CVPP		-	0.1	-	μF

*1 The potential variation of the Vss voltage should be suppressed to within ±0.3 V on the basis of the ground potential of the MCU mounting board while the Flash is being programmed, as it affects the Flash memory characteristics (programming count).

*2 The Vc1–Vc3 and CP1–CP2 pins can be left open when the LCD driver is not used.

*3 Connect between the Vc1 and Vc2 pins when the LCD power supply circuit is configured for 1/2 bias.

*4 The component values should be determined after performing matching evaluation of the resonator mounted on the printed circuit board actually used.

*5 RDBG1-2 are not required when using the debug pins as general-purpose I/O ports.

*6 The component values should be determined after evaluating operations using an actual mounting board.

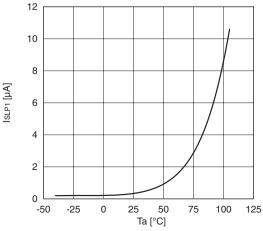
23.3 Current Consumption

Unless otherwise specified: VDD = 1.8 to 5.5 V, VSS = 0 V, Ta = 25°C, EXOSC = OFF, PWGACTL.REGMODE[1:0] bits = 0x0 (automatic mode), PWGACTL.REGSEL bit = 1 (mode0), FLASHCWAIT.RDWAIT[1:0] bits = 0x1 (2 cycles)

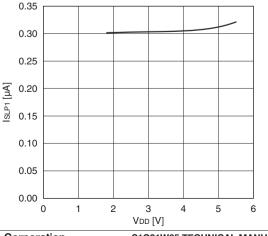
Item	Symbol		Та	Min.	Тур.	Max.	Unit
Current	ISLP1	IOSC = OFF, OSC1 = OFF, OSC3 = OFF	25°C	-	0.3	10.0	μA
consumption in			105°C	-	9.5	190	μA
SLEEP mode	ISLP2	IOSC = OFF, OSC1 = OFF, OSC3 = OFF,	25°C	_	0.25	7.5	μA
		PWGACTL.REGSEL bit = 0 (mode1)	105°C	-	8.2	130	μA
	ISLP3	IOSC = OFF, OSC1 = 32.768 kHz*1, OSC3 = OFF, RTCA = ON	-	_	0.8	13.0	μA
	ISLP4	IOSC = OFF, OSC1 = 32.768 kHz*1, OSC3 = OFF, RTCA = ON,	-	-	0.7	8.5	μA
		PWGACTL.REGSEL bit = 0 (mode1)					1.
Current	HALT1	IOSC = 32 MHz, OSC1 = 32.768 kHz*1, OSC3 = OFF,	-	-	1,450	2,230	μA
consumption in		SYSCLK = IOSC					·
HALT mode	HALT2	IOSC = OFF, OSC1 = 32.768 kHz*1,	-	_	815	1,620	μA
		OSC3 = 20 MHz (ceramic oscillator)*3, SYSCLK = OSC3					·
	HALT3	IOSC = OFF, OSC1 = 32 kHz*2, OSC3 = OFF, SYSCLK = OSC1	-	-	2.0	15.0	μA
	HALT4	IOSC = OFF, OSC1 = 32.768 kHz*1, OSC3 = OFF,	-	-	1.5	14.0	μA
		SYSCLK = OSC1					·
	HALT5	IOSC = OFF, OSC1 = 32.768 kHz*1, OSC3 = OFF,	-	-	1.0	9.5	μA
		SYSCLK = OSC1, PWGACTL.REGSEL bit = 0 (mode1)					
Current	RUN1*4	IOSC = 32 MHz, OSC1 = 32.768 kHz*1, OSC3 = OFF,	-	-	5,360	8,250	μA
consumption in		SYSCLK = IOSC					
RUN mode	IRUN2*4	IOSC = 16 MHz, OSC1 = 32.768 kHz*1, OSC3 = OFF,	-	-	3,100	4,800	μA
		SYSCLK = IOSC					
	RUN3*4	IOSC = 8 MHz, OSC1 = 32.768 kHz*1, OSC3 = OFF,	-	-	1,600	2,500	μA
		SYSCLK = IOSC					
	IRUN4*4	IOSC = 2 MHz, OSC1 = 32.768 kHz*1, OSC3 = OFF,	-	-	260	400	μA
		SYSCLK = IOSC, PWGACTL.REGSEL bit = 0 (mode1)					
	IRUN5*4	IOSC = OFF, OSC1 = 32.768 kHz*1,	-	-	3,720	5,950	μA
		OSC3 = 20 MHz (ceramic oscillator)*3, SYSCLK = OSC3					
	RUN6*4	IOSC = OFF, OSC1 = 32.768 kHz*1, OSC3 = OFF,	-	-	7.5	21.0	μA
		SYSCLK = OSC1, FLASHCWAIT.RDWAIT[1:0] bits = 0x0 (1 cycle)					
	IRUN7*4	$IOSC = OFF$, $OSC1 = 32.768 \text{ kHz}^{*1}$, $OSC3 = OFF$,	-	-	5.5	17.0	μA
		SYSCLK = OSC1, FLASHCWAIT.RDWAIT[1:0] bits = 0x0 (1 cycle),					
		PWGACTL.REGSEL bit = 0 (mode1)					
	IRUN8*4	$IOSC = OFF, OSC1 = 32 \text{ kHz}^{2}, OSC3 = OFF, SYSCLK = OSC1,$	-	-	8.0	22.0	μA
		FLASHCWAIT.RDWAIT[1:0] bits = 0x0 (1 cycle)					
	RUN9*4	$IOSC = OFF, OSC1 = 32 \text{ kHz}^2, OSC3 = OFF, SYSCLK = OSC1,$	-	-	6.0	18.0	μA
		FLASHCWAIT.RDWAIT[1:0] bits = 0x0 (1 cycle),					
		PWGACTL.REGSEL bit = 0 (mode1)					1

*1 OSC1 oscillator: CLGOSC1.OSC1SELCR bit = 0, CLGOSC1.INV1N[1:0] bits = 0x0, CLGOSC1.CGI1[2:0] bits = 0x0, CLGOSC1. OSDEN bit = 0, CG1 = CD1 = 0 pF, Crystal resonator = C-002RX (manufactured by Seiko Epson Corporation, R1 = 50 kΩ (Max.), CL = 7 pF)

*2 OSC1 oscillator: CLGOSC1.OSC1SELCR bit = 1

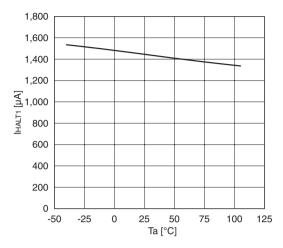

*3 OSC3 oscillator: CLGOSC3.OSC3INV[1:0] bits = 0x2, $C_{G3} = C_{D3} = 10 \text{ pF}$

*4 The current consumption values were measured when a test program consisting of 60.5 % ALU instructions, 17 % branch instructions, 12 % RAM read instructions, and 10.5 % RAM write instructions was executed continuously in the Flash memory.

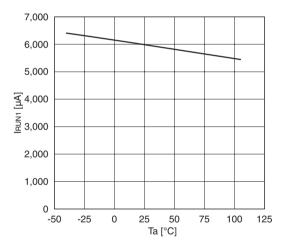

Current consumption-temperature characteristic in SLEEP mode

Current consumption-power supply voltage characteristic in SLEEP mode

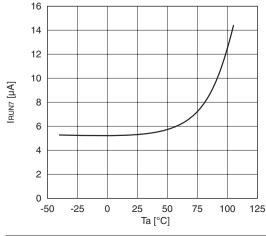
IOSC = OFF, OSC1 = OFF, OSC3 = OFF, VDD = 5.5 V, Typ. value


IOSC = OFF, OSC1 = OFF, OSC3 = OFF, Ta = 25°C, Typ. value

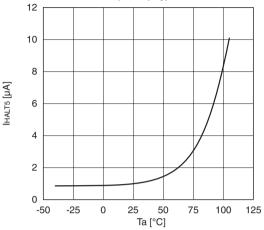
S1C31W65 TECHNICAL MANUAL (Rev. 1.2)


Current consumption-temperature characteristic in HALT mode (IOSC operation)

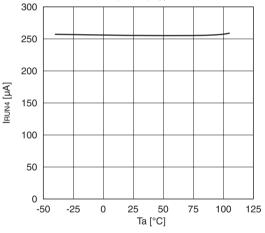
IOSC = 32 MHz, OSC1 = 32.768 kHz, OSC3 = OFF, Typ. value


Current consumption-temperature characteristic in RUN mode (IOSC operation)

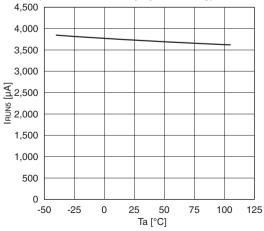
IOSC = 32 MHz, OSC1 = 32.768 kHz, OSC3 = OFF, Typ. value


Current consumption-temperature characteristic in RUN mode (OSC1 operation)

IOSC = OFF, OSC1 = 32.768 kHz, OSC3 = OFF, PWGACTL.REGSEL bit = 0 (mode1), Typ. value


Current consumption-temperature characteristic in HALT mode (OSC1 operation)

IOSC = OFF, OSC1 = 32.768 kHz, OSC3 = OFF, PWGACTL.REGSEL bit = 0 (mode1), Typ. value


Current consumption-temperature characteristic in RUN mode (IOSC operation)

IOSC = 2 MHz, OSC1 = 32.768 kHz, OSC3 = OFF PWGACTL.REGSEL bit = 0 (mode1), Typ. value

Current consumption-temperature characteristic in RUN mode (OSC3 operation)

 $\label{eq:loss} \begin{array}{l} \text{IOSC} = \text{OFF, OSC1} = 32.768 \ \text{kHz, OSC3} = 20 \ \text{MHz} \ \text{(ceramic oscillator), CLGOSC3.OSC3INV[1:0] bits} = 0x2, \ \text{Typ. value} \end{array}$

S1C31W65 TECHNICAL MANUAL (Rev. 1.2)

23.4 System Reset Controller (SRC) Characteristics

#RESET pin characteristics

Unless otherwise specified: $V_{DD} = 1.8$ to 5.5 V, $V_{SS} = 0$ V, Ta = -40 to $105^{\circ}C$


Item	Symbol	Condition	Min.	Тур.	Max.	Unit
High level Schmitt input threshold voltage	VT+		$0.5 \times V_{DD}$	-	$0.8 \times V_{DD}$	V
Low level Schmitt input threshold voltage	VT-		$0.2 \times V_{DD}$	-	$0.5 \times V_{DD}$	V
Schmitt input hysteresis voltage	ΔVτ		230	-	-	mV
Input pull-up resistance	Rin		100	200	500	kΩ
Leakage current	ILEAK	SRCRESETPCTL.PORT_PLUP_EN	-1	-	1	μA
		bit = 0				
Pin capacitance	CIN		-	-	15	pF
Reset Low pulse width	tsr		20	-	-	μs

POR/BOR characteristics

Unless otherwise specified: $V_{DD} = 1.8$ to 5.5 V, $V_{SS} = 0$ V, Ta = -40 to $105^{\circ}C$

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
POR/BOR canceling voltage	VRST+		1.10	-	1.75	V
POR/BOR detection voltage	VRST-		1.00	-	1.70	V
POR/BOR hysteresis voltage	ΔV RST		20	80	-	mV
POR/BOR detection response time	trst		-	-	1,000	μs
POR/BOR operating limit voltage	VRSTOP		-	0.5	0.95	V
POR/BOR reset request hold time	trrq		0.01	-	4	ms

Note: When performing a power-on-reset again after the power is turned off, decrease the VDD voltage to VRSTOP or less.

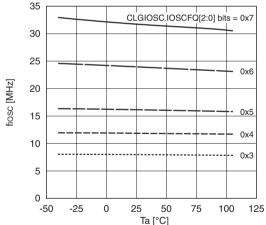
Reset hold circuit characteristics

Unless otherwise specified: $V_{DD} = 1.8$ to 5.5 V	V, Vss = 0	V, Ta = -40 to 105°C				
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Reset hold time ^{*1}	t RSTR		0.9	1	2	ms

*1 Time until the internal reset signal is negated after the reset request is canceled.

23.5 Clock Generator (CLG) Characteristics

Oscillator circuit characteristics including resonators change depending on conditions (board pattern, components used, etc.). Use these characteristic values as a reference and perform matching evaluation using the actual printed circuit board.


IOSC oscillator circuit characteristics

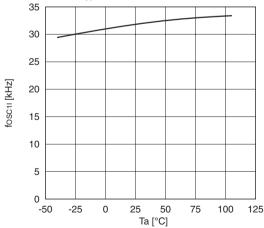
Unless otherwise specified: VDD = 2.0 to 5.5 V, Vss = 0 V, PWGACTL.REGSEL bit = 1, Ta = -40 to 105°C

Item	Symbol	Condition	Та	Min.	Тур.	Max.	Unit
Oscillation start time	tstal		-	-	-	3	μs
Oscillation frequency	fiosc	CLGIOSC.IOSCFQ[2:0] bits = 0x7	25°C	31.0	32	33.0	MHz
			-40 to 105°C	29.1	32	33.3	MHz
		CLGIOSC.IOSCFQ[2:0] bits = 0x6	25°C	23.3	24	24.7	MHz
			-40 to 105°C	21.8	24	26.2	MHz
		CLGIOSC.IOSCFQ[2:0] bits = 0x5	25°C	15.5	16	16.5	MHz
			-40 to 105°C	14.9	16	17.1	MHz
		CLGIOSC.IOSCFQ[2:0] bits = 0x4	25°C	11.6	12	12.4	MHz
			-40 to 105°C	11.3	12	12.7	MHz
		CLGIOSC.IOSCFQ[2:0] bits = 0x3	25°C	7.8	8	8.2	MHz
		-	-40 to 105°C	7.6	8	8.4	MHz
		CLGIOSC.IOSCFQ[2:0] bits = 0x1	25°C	2.11	2.2	2.29	MHz
			-40 to 105°C	2.00	2.2	2.40	MHz
		CLGIOSC.IOSCFQ[2:0] bits = 0x0	25°C	0.97	1.1	1.23	MHz
			-40 to 105°C	0.92	1.1	1.28	MHz
		CLGIOSC.IOSCFQ[2:0] bits = 0x1,	25°C	1.94	2	2.06	MHz
		PWGACTL.REGSEL bit = 0	-40 to 105°C	1.84	2	2.16	MHz
		CLGIOSC.IOSCFQ[2:0] bits = 0x0,	25°C	0.88	1	1.12	MHz
		PWGACTL.REGSEL bit = 0	-40 to 105°C	0.84	1	1.16	MHz

IOSC oscillation frequency-temperature characteristic

VDD = 2.0 to 5.5 V, PWGACTL.REGSEL bit = 1, Typ. value

OSC1 oscillator circuit characteristics

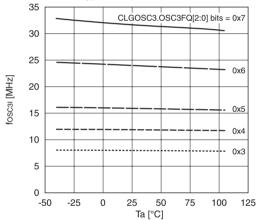

Unless otherwise specified: VDD = 1.8 to 5.5 V, Vss = 0 V, Ta = $25^{\circ}C$

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Crystal oscillator	tsta1C	CLGOSC1.OSC1SELCR bit = 0,	-	-	3	s
oscillation start time*1		CLGOSC1.INV1N[1:0] bits = 0x1,				
		CLGOSC1.INV1B[1:0] bits = 0x2,				
		CLGOSC1.OSC1BUP bit = 1				
Crystal oscillator	CGI1C	CLGOSC1.OSC1SELCR bit = 0,	-	12	-	pF
internal gate capacitance		CLGOSC1.CGI1[2:0] bits = 0x0				
		CLGOSC1.OSC1SELCR bit = 0,	-	14	-	pF
		CLGOSC1.CGI1[2:0] bits = 0x1				
		CLGOSC1.OSC1SELCR bit = 0,	-	16	-	pF
		CLGOSC1.CGI1[2:0] bits = 0x2				
		CLGOSC1.OSC1SELCR bit = 0,	-	18	-	pF
		CLGOSC1.CGI1[2:0] bits = 0x3				
		CLGOSC1.OSC1SELCR bit = 0,	-	19	-	pF
		CLGOSC1.CGI1[2:0] bits = 0x4				
		CLGOSC1.OSC1SELCR bit = 0,	-	21	-	pF
		CLGOSC1.CGI1[2:0] bits = 0x5				
		CLGOSC1.OSC1SELCR bit = 0,	-	23	-	pF
		CLGOSC1.CGI1[2:0] bits = 0x6				
		CLGOSC1.OSC1SELCR bit = 0,	-	24	-	pF
		CLGOSC1.CGI1[2:0] bits = 0x7				
Crystal oscillator	CDI1C	CLGOSC1.OSC1SELCR bit = 0,	-	6	-	pF
internal drain capacitance						
Crystal oscillator	losc1c	CLGOSC1.OSC1SELCR bit = 0,	-	70	-	%
oscillator circuit		CLGOSC1.INV1N/INV1B[1:0] bits = 0x0				
current - oscillation inverter		CLGOSC1.OSC1SELCR bit = 0,	-	100	-	%
drivability ratio *1		CLGOSC1.INV1N/INV1B[1:0] bits = 0x1 (reference)				
		CLGOSC1.OSC1SELCR bit = 0,	-	130	-	%
		CLGOSC1.INV1N/INV1B[1:0] bits = 0x2				
		CLGOSC1.OSC1SELCR bit = 0,	-	300	-	%
		CLGOSC1.INV1N/INV1B[1:0] bits = 0x3				
Crystal oscillator	IOSD1C	CLGOSC1.OSC1SELCR bit = 0,	-	0.025	0.1	μA
oscillation stop detector current		CLGOSC1.OSDEN bit = 1				
Internal oscillator	tsta11	CLGOSC1.OSC1SELCR bit = 1	-	-	700	μs
oscillation start time						
Internal oscillator	fosc11	CLGOSC1.OSC1SELCR bit = 1	31.04	32	32.96	kHz
oscillation frequency		CLGOSC1.OSC1SELCR bit = 1,	27.84	32	36.16	kHz
		Ta = -40 to 105°C		-		

*1 CLGOSC1.CGI1[2:0] bits = 0x0, Crystal resonator = C-002RX (manufactured by Seiko Epson Corporation, R1 = 50 k Ω (Max.), CL = 7 pF)

OSC1 internal oscillation frequency-temperature characteristic

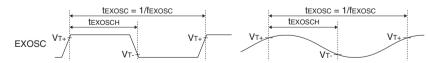
 $V_{DD} = 1.8$ to 5.5 V, Typ. value


OSC3 oscillator circuit characteristics

Unless otherwise specified: VDD = 1.8 to 5.5 V, Vss = 0 V, CLGOSC3.OSC3MD bit = 0, PWGACTL.REGSEL bit = 1, Ta = 25°C

Item	Symbol	Condition	Та	Min.	Тур.	Max.	Unit
Crystal/ceramic oscillation	tsta3C	Crystal resonator,	-	-	_	20	ms
start time		CLGOSC3.OSC3MD bit = 1					
		Ceramic resonator,	-	-	-	1	ms
		CLGOSC3.OSC3MD bit = 1					
Crystal/ceramic oscillator	Сызс	CLGOSC3.OSC3MD bit = 1	-	-	5	-	pF
internal gate capacitance							
Crystal/ceramic oscillator	CDI3C	CLGOSC3.OSC3MD bit = 1	-	-	5	-	pF
internal drain capacitance							
Internal oscillator	tsta3I		-	-	-	3	μs
oscillation start time							
Internal oscillator	foscai	CLGOSC3.OSC3FQ[2:0] bits = 0x7,	25°C	31.0	32	33.0	MHz
oscillation frequency		VDD = 2.0 to 5.5 V	-40 to 105°C	29.1	32	33.3	MHz
		CLGOSC3.OSC3FQ[2:0] bits = 0x6,	25°C	23.3	24	24.7	MHz
		VDD = 2.0 to 5.5 V	-40 to 105°C	21.8	24	26.2	MHz
		CLGOSC3.OSC3FQ[2:0] bits = 0x5,	25°C	15.5	16	16.5	MHz
		VDD = 2.0 to 5.5 V	-40 to 105°C	14.9	16	17.1	MHz
		CLGOSC3.OSC3FQ[2:0] bits = 0x4,	25°C	11.6	12	12.4	MHz
		VDD = 2.0 to 5.5 V	-40 to 105°C	11.3	12	12.7	MHz
		CLGOSC3.OSC3FQ[2:0] bits = 0x3–0x0,	25°C	7.8	8	8.2	MHz
		VDD = 2.0 to 5.5 V	-40 to 105°C	7.6	8	8.4	MHz

OSC3 internal oscillation frequency-temperature characteristic


VDD = 2.0 to 5.5 V, Typ. value

EXOSC external clock input characteristics

Unless otherwise specified: $V_{DD} = 1.8$ to 5.5 V, $V_{SS} = 0$ V, Ta = -40 to $105^{\circ}C$

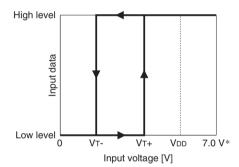
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
EXOSC external clock duty ratio	texosco	texoscd = texosch/texosc	46	-	54	%
High level Schmitt input threshold voltage	VT+		$0.5 \times V_{DD}$	-	$0.8 \times V_{DD}$	V
Low level Schmitt input threshold voltage	VT-		$0.2 \times V_{DD}$	-	$0.5 \times V_{DD}$	V
Schmitt input hysteresis voltage	ΔVτ		165	-	-	mV

23.6 Flash Memory Characteristics

Unless otherwise specified: VDD = 2.2 to 5.5 V, Vss = 0 V*1, Ta = -40 to 85°C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Programming count *2	CFEP	Programmed data is guaranteed to be retained for 10 years.	1,000	-	-	times
Programming current *3	IFLASH		-	16	33	mA

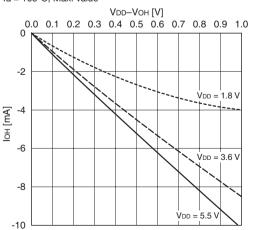
*1 The potential variation of the Vss voltage should be suppressed to within ±0.3 V on the basis of the ground potential of the MCU mounting board while the Flash is being programmed, as it affects the Flash memory characteristics (programming count).

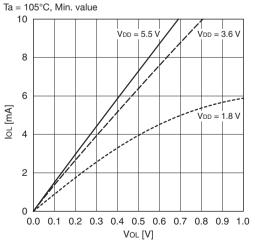

*2 Assumed that Erasing + Programming as count of 1. The count includes programming in the factory for shipment with ROM data programmed.

*3 The value is added to the current consumption in the current operating mode.

23.7 Input/Output Port (PPORT) Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
High level Schmitt input threshold voltage	V _{T+}	P00–07, P10–17, P20–27, P30–37, P40–47, P50–57, P60–67, PD0–D3, PD5	0.5 × Vdd	-	0.8 × VDD	V
		PD6-D7	0.5 × Vc3	-	0.8 × Vc3	V
Low level Schmitt input threshold voltage	VT-	P00–07, P10–17, P20–27, P30–37, P40–47, P50–57, P60–67, PD0–D3, PD5	0.2 × VDD	-	0.5 × VDD	V
		PD6-D7	0.2 × Vc3	-	0.5 × Vc3	V
Schmitt input hysteresis voltage	ΔVτ		165	-	-	mV
High level output current	Іон	Р00–07, Р10–17, Р20–27, Р30–37, Р40–47, Р50–57, Р60–67, РD0–D5, Vон = 0.9 × Vdd	-	-	-0.5	mA
		РD6–D7, Vон = 0.9 × Vсз	-	-	-0.5	mA
Low level output current	Iol	P00–07, P10–17, P20–27, P30–37, P40–47, P50–57, P60–67, PD0–D5, VoL = 0.1 × Vdd	0.5	-	-	mA
		PD6–D7, Vol = 0.1 × Vc3	0.5	-	-	mA
Leakage current	ILEAK	P00–07, P10–17, P20–27, P30–37, P40–47, P50–57, P60–67, PD0–D3, PD5–D7	-1	-	1	μA
Input pull-up resistance	Rinu	P00–07, P10–17, P20–27, P30–37, P40–47, P50–57, P60–67, PD0–D3, PD5–D7	100	200	500	kΩ
Input pull-down resistance	Rind	P00–07, P10–17, P20–27, P30–37, P40–47, P50–57, P60–67, PD0–D3, PD5–D7	100	200	500	kΩ
Pin capacitance	Cin	P00–07, P10–17, P20–27, P30–37, P40–47, P50–57, P60–67, PD0–D3, PD6–D7	-	-	15	pF
		PD5	-	-	20	pF

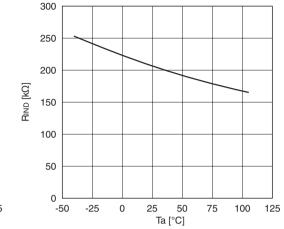

Unless otherwise specified: $V_{DD} = 1.8$ to 5.5 V, $V_{SS} = 0$ V, Ta = -40 to $105^{\circ}C$



High-level output current characteristic

Ta = 105°C, Max. value

Low-level output current characteristic



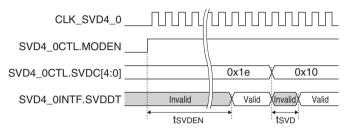
VDD = 1.8 to 5.5 V, Typ. value 300 300 250 250 200 200 Rinu [kΩ] Rind [kΩ] 150 150 100 100 50 50 0 0 -50 -25 0 25 50 75 100 125 -50 -25 0 25 50 75 100 125 Ta [°C] Ta [°C]

Pull-up resistance-temperature characteristic

VDD = 1.8 to 5.5 V, Typ. value

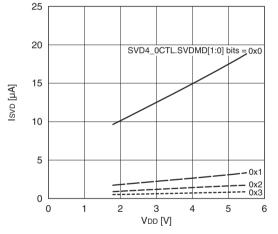
Pull-down resistance-temperature characteristic

23.8 Supply Voltage Detector (SVD4) Characteristics


Item	Symbol	Condition	Min.	Тур.	Max.	Unit
EXSVD0x pin input voltage range	VEXSVD		0	-	5.5	V
EXSVD0x input impedance	REXSVD	SVD4_0CTL.SVDC[4:0] bits = 0x00	366	407	448	kΩ
		SVD4_0CTL.SVDC[4:0] bits = 0x01	388	431	474	kΩ
		SVD4_0CTL.SVDC[4:0] bits = 0x02	409	455	500	kΩ
		SVD4_0CTL.SVDC[4:0] bits = 0x03	431	479	527	kΩ
		SVD4_0CTL.SVDC[4:0] bits = 0x04	452	503	553	kΩ
		SVD4_0CTL.SVDC[4:0] bits = 0x05	474	527	579	kΩ
		SVD4_0CTL.SVDC[4:0] bits = 0x06	495	550	606	kΩ
		SVD4_0CTL.SVDC[4:0] bits = 0x07	517	574	632	kΩ
		SVD4_0CTL.SVDC[4:0] bits = 0x08	539	598	658	kΩ
		SVD4_0CTL.SVDC[4:0] bits = 0x09	560	622	685	kΩ
		SVD4_0CTL.SVDC[4:0] bits = 0x0a	582	646	711	kΩ
		SVD4_0CTL.SVDC[4:0] bits = 0x0b	603	670	737	kΩ
		SVD4_0CTL.SVDC[4:0] bits = 0x0c	625	694	763	kΩ
		SVD4_0CTL.SVDC[4:0] bits = 0x0d	646	718	790	kΩ
		SVD4_0CTL.SVDC[4:0] bits = 0x0e	668	742	816	kΩ
		SVD4_0CTL.SVDC[4:0] bits = 0x0f	689	766	842	kΩ
		SVD4_0CTL.SVDC[4:0] bits = 0x10	711	790	869	kΩ
		SVD4_0CTL.SVDC[4:0] bits = 0x11	754	838	921	kΩ
		SVD4_0CTL.SVDC[4:0] bits = 0x12	775	862	948	kΩ
		SVD4_0CTL.SVDC[4:0] bits = 0x13	797	886	974	kΩ
		SVD4_0CTL.SVDC[4:0] bits = 0x14	819	909	1,000	kΩ
		SVD4_0CTL.SVDC[4:0] bits = 0x15	840	933	1,027	kΩ
		SVD4_0CTL.SVDC[4:0] bits = 0x16	862	957	1,053	kΩ
		SVD4_0CTL.SVDC[4:0] bits = 0x17	883	981	1,079	kΩ
		SVD4_0CTL.SVDC[4:0] bits = 0x18	905	1,005	1,106	kΩ
		SVD4_0CTL.SVDC[4:0] bits = 0x19	926	1,029	1,132	kΩ
		SVD4_0CTL.SVDC[4:0] bits = 0x1a	969	1,077	1,185	kΩ
		SVD4_0CTL.SVDC[4:0] bits = 0x1b	991	1,101	1,211	kΩ
		SVD4_0CTL.SVDC[4:0] bits = 0x1c	1,012	1,125	1,237	kΩ
		SVD4_0CTL.SVDC[4:0] bits = 0x1d	1,034	1,149	1,264	kΩ
		SVD4_0CTL.SVDC[4:0] bits = 0x1e	1,055	1,173	1,290	kΩ
		SVD4_0CTL.SVDC[4:0] bits = 0x1f	1,077	1,197	1,316	kΩ

Unless otherwise specified: VDD = 1.8 to 5.5 V, Vss = 0 V, Ta = -40 to 105°C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
EXSVD0x detection voltage/	Vsvd_ext/	SVD4_0CTL.SVDC[4:0] bits = 0x00	1.65	1.7	1.75	V
SVD detection voltage	Vsvd	SVD4_0CTL.SVDC[4:0] bits = 0x01	1.75	1.8	1.85	V
(Ta = -40 to 85°C)		SVD4_0CTL.SVDC[4:0] bits = 0x02	1.84	1.9	1.96	V
		SVD4_0CTL.SVDC[4:0] bits = 0x03	1.94	2.0	2.06	V
		SVD4_0CTL.SVDC[4:0] bits = 0x04	2.04	2.1	2.16	V
		SVD4_0CTL.SVDC[4:0] bits = 0x05	2.13	2.2	2.27	V
		SVD4_0CTL.SVDC[4:0] bits = 0x06	2.23	2.3	2.37	V
		$SVD4_0CTL.SVDC[4:0]$ bits = 0x07	2.33	2.4	2.47	V
		SVD4_0CTL.SVDC[4:0] bits = 0x08	2.43	2.5	2.58	V
		$SVD4_0CTL.SVDC[4:0]$ bits = 0x09	2.52	2.6	2.68	V
		$SVD4_OCTL.SVDC[4:0]$ bits = 0x0a	2.62	2.7	2.78	V
		SVD4_0CTL.SVDC[4:0] bits = 0x0b	2.72	2.8 2.9	2.88 2.99	V
		SVD4_0CTL.SVDC[4:0] bits = 0x0c SVD4_0CTL.SVDC[4:0] bits = 0x0d	2.81	3.0	3.09	V
		SVD4_0CTL.SVDC[4:0] bits = 0x0d	3.01	3.1	3.19	V
		SVD4_0CTL.SVDC[4:0] bits = 0x06	3.10	3.2	3.30	V
		SVD4_0CTL.SVDC[4:0] bits = 0x01	3.20	3.3	3.40	V
		SVD4_0CTL.SVDC[4:0] bits = 0x10	3.40	3.5	3.61	V
		SVD4_0CTL.SVDC[4:0] bits = 0x12	3.49	3.6	3.71	v
		SVD4_0CTL.SVDC[4:0] bits = 0x12	3.59	3.7	3.81	v
		SVD4_0CTL.SVDC[4:0] bits = 0x14	3.69	3.8	3.91	v
		SVD4_0CTL.SVDC[4:0] bits = 0x15	3.78	3.9	4.02	V
		SVD4_0CTL.SVDC[4:0] bits = 0x16	3.88	4.0	4.12	V
		$SVD4_0CTL.SVDC[4:0]$ bits = 0x17	3.98	4.1	4.22	V
		SVD4_0CTL.SVDC[4:0] bits = 0x18	4.07	4.2	4.33	V
		SVD4_0CTL.SVDC[4:0] bits = 0x19	4.17	4.3	4.43	V
		SVD4_0CTL.SVDC[4:0] bits = 0x1a	4.37	4.5	4.64	V
		SVD4_0CTL.SVDC[4:0] bits = 0x1b	4.46	4.6	4.74	V
		SVD4_0CTL.SVDC[4:0] bits = 0x1c	4.56	4.7	4.84	V
		SVD4_0CTL.SVDC[4:0] bits = 0x1d	4.66	4.8	4.94	V
		SVD4_0CTL.SVDC[4:0] bits = 0x1e	4.75	4.9	5.05	V
		SVD4_0CTL.SVDC[4:0] bits = 0x1f	4.85	5.0	5.15	V
EXSVD0x detection voltage/	VSVD_EXT/	SVD4_0CTL.SVDC[4:0] bits = 0x00	1.63	1.7	1.77	V
SVD detection voltage	Vsvd	SVD4_0CTL.SVDC[4:0] bits = 0x01	1.73	1.8	1.87	V
(Ta = -40 to 105°C)		SVD4_0CTL.SVDC[4:0] bits = 0x02	1.82	1.9	1.98	V
		SVD4_0CTL.SVDC[4:0] bits = 0x03	1.92	2.0	2.08	V
		SVD4_0CTL.SVDC[4:0] bits = 0x04	2.02	2.1	2.18	V
		SVD4_0CTL.SVDC[4:0] bits = 0x05	2.11	2.2	2.29	V
		SVD4_0CTL.SVDC[4:0] bits = 0x06	2.21	2.3	2.39	V
		SVD4_0CTL.SVDC[4:0] bits = 0x07	2.30	2.4	2.50	V
		SVD4_0CTL.SVDC[4:0] bits = 0x08	2.40	2.5	2.60	V
		$SVD4_OCTL.SVDC[4:0]$ bits = 0x09	2.50	2.6	2.70	V
		SVD4_0CTL.SVDC[4:0] bits = 0x0a SVD4_0CTL.SVDC[4:0] bits = 0x0b	2.59	2.7	2.81	V
			2.69	2.8 2.9	2.91 3.02	V
		SVD4_0CTL.SVDC[4:0] bits = 0x0c SVD4_0CTL.SVDC[4:0] bits = 0x0d	2.78	3.0	3.02	V
					3.12	V
		SVD4_0C1L.SVDC[4:0] bits = 0x0e SVD4_0CTL.SVDC[4:0] bits = 0x0f	2.98	3.1 3.2	3.33	V
		SVD4_0CTL.SVDC[4:0] bits = 0x01	3.17	3.3	3.43	V
		SVD4_0CTL.SVDC[4:0] bits = 0x10	3.36	3.5	3.64	V
		SVD4_0CTL.SVDC[4:0] bits = 0x12	3.46	3.6	3.74	V
		SVD4_0CTL.SVDC[4:0] bits = 0x12	3.55	3.7	3.85	v
		$SVD4_0CTL.SVDC[4:0]$ bits = 0x14	3.65	3.8	3.95	V
		SVD4_0CTL.SVDC[4:0] bits = 0x15	3.74	3.9	4.06	V
		$SVD4_0CTL.SVDC[4:0]$ bits = 0x16	3.84	4.0	4.16	V
		$SVD4_0CTL.SVDC[4:0]$ bits = 0x17	3.94	4.1	4.26	V
		SVD4_0CTL.SVDC[4:0] bits = 0x18	4.03	4.2	4.37	V
		SVD4_0CTL.SVDC[4:0] bits = 0x19	4.13	4.3	4.47	V
		SVD4_0CTL.SVDC[4:0] bits = 0x1a	4.32	4.5	4.68	V
		SVD4_0CTL.SVDC[4:0] bits = 0x1b	4.42	4.6	4.78	V
		SVD4_0CTL.SVDC[4:0] bits = 0x1c	4.51	4.7	4.89	V
		SVD4_0CTL.SVDC[4:0] bits = 0x1d	4.61	4.8	4.99	V
		SVD4_0CTL.SVDC[4:0] bits = 0x1e	4.70	4.9	5.10	V
		SVD4_0CTL.SVDC[4:0] bits = 0x1f	4.80	5.0	5.20	V
SVD circuit enable response time	tsvden	*1	-	-	500	μs
SVD circuit response time						


Item	Symbol	Condition	Min.	Тур.	Max.	Unit
SVD circuit current	Isvd	SVD4_0CTL.SVDMD[1:0] bits = 0x0,	-	19	35	μA
		SVD4_0CTL.SVDC[4:0] bits = 0x00,				
		CLK_SVD4_0 = 32 kHz, Ta = 25°C				
		SVDCTL.SVDMD[1:0] bits = 0x1,	-	3.5	7.7	μA
		SVD4_0CTL.SVDC[4:0] bits = 0x00,				
		CLK_SVD4_0 = 32 kHz, Ta = 25°C				
		SVD4_0CTL.SVDMD[1:0] bits = 0x2,	-	1.8	4.1	μA
		SVD4_0CTL.SVDC[4:0] bits = 0x00,				
		CLK_SVD4_0 = 32 kHz, Ta = 25°C				
		SVD4_0CTL.SVDMD[1:0] bits = 0x3,	-	1	2.4	μA
		SVD4_0CTL.SVDC[4:0] bits = 0x00,				
		CLK_SVD4_0 = 32 kHz, Ta = 25°C				

*1 If CLK_SVD4_0 is configured in the neighborhood of 32 kHz, the SVD4_0INTF.SVDDT bit is masked during the tsvDEN period and it retains the previous value.

SVD circuit current - power supply voltage characteristic

Ta = 25°C, SVD4_0CTL.SVDC[4:0] bits = 0x00, CLK_SVD4_0 = 32 kHz, Typ. value

23.9 UART (UART3) Characteristics

Unless otherwise specified: VDD = 1.8 to 5.5 V, Vss = 0 V, Ta = -40 to 105°C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Transfer baud rate	Ubrt1	Normal mode	150	-	460,800	bps
	Ubrt2	IrDA mode	150	-	115,200	bps

23.10 Synchronous Serial Interface (SPIA) Characteristics

SPIA Ch.0 master mode

Unless otherwise specified: VDD = 1.8 to 5.5 V, Vss = 0 V, Ta = -40 to $105^{\circ}C$

Item	Symbol	Condition	VD1 output	Min.	Тур.	Max.	単位
SPICLK0 cycle time	tscyc		mode0	200	-	-	ns
			mode1	480	-	-	ns
SPICLK0 High pulse width	tscкн		mode0	80	-	-	ns
			mode1	190	-	-	ns
SPICLK0 Low pulse width	t SCKL		mode0	80	-	-	ns
			mode1	190	-	-	ns
SDI0 setup time	tsps		mode0	70	-	-	ns
			mode1	180	-	-	ns
SDI0 hold time	tsdh		mode0	10	-	-	ns
			mode1	40	-	-	ns
SDO0 output delay time	tspo	CL = 15 pF *1	mode0	-	-	25	ns
			mode1	-	-	80	ns

*1 CL = Pin load

SPIA Ch.0 slave mode

Unless otherwise specified: VDD = 1.8 to 5.5 V, Vss = 0 V, Ta = -40 to $105^{\circ}C$

Item	Symbol	Condition	VD1 output	Min.	Тур.	Max.	単位
SPICLK0 cycle time	tscyc		mode0	200	-	-	ns
			mode1	480	-	-	ns
SPICLK0 High pulse width	tscкн		mode0	80	-	-	ns
			mode1	190	-	-	ns
SPICLK0 Low pulse width	tscĸ∟		mode0	80	-	-	ns
			mode1	190	-	-	ns
SDI0 setup time	tsps		mode0	10	-	-	ns
			mode1	40	-	-	ns
SDI0 hold time	t SDH		mode0	15	-	-	ns
			mode1	50	-	-	ns
#SPISS0 setup time	tsss		mode0	10	-	-	ns
			mode1	40	-	-	ns
#SPISS0 High pulse width	tssh		mode0	80	-	-	ns
			mode1	190	-	-	ns
SDO0 output delay time	tsdo	CL = 15 pF *1	mode0	-	-	65	ns
			mode1	-	-	210	ns
SDO0 output start time	tsdd	CL = 15 pF *1	mode0	-	-	65	ns
			mode1	-	-	210	ns
SDO0 output stop time	tsdz	C∟ = 15 pF *1	mode0	-	-	65	ns
			mode1	-	-	210	ns

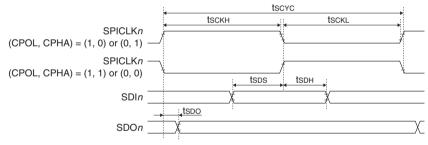
*1 CL = Pin load

SPIA Ch.1 master mode

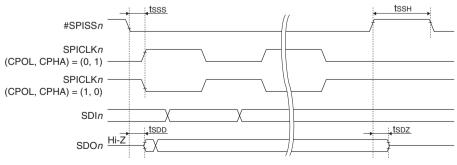
Unless otherwise specified: VDD = 1.8 to 5.5 V, Vss = 0 V, Ta = -40 to 105 $^\circ\text{C}$

Item	Symbol	Condition	VDD	VD1 output	Min.	Тур.	Max.	単位
SPICLK1 cycle time	tscyc		3.0 to 5.5 V	mode0	100	-	-	ns
			1.8 to 3.0 V	mode0	120	-	-	ns
			-	mode1	480	-	-	ns
SPICLK1 High pulse width	tscкн		3.0 to 5.5 V	mode0	40	-	-	ns
			1.8 to 3.0 V	mode0	50	-	-	ns
			-	mode1	190	-	-	ns
SPICLK1 Low pulse width	t SCKL		3.0 to 5.5 V	mode0	40	-	-	ns
			1.8 to 3.0 V	mode0	50	-	-	ns
			-	mode1	190	-	-	ns
SDI1 setup time	tsps		3.0 to 5.5 V	mode0	30	-	-	ns
			1.8 to 3.0 V	mode0	40	-	-	ns
			-	mode1	120	-	-	ns
SDI1 hold time	tspн		-	mode0	10	-	-	ns
			-	mode1	40	-	-	ns
SDO1 output delay time	tspo	CL = 15 pF *1	-	mode0	-	-	20	ns
			-	mode1	-	-	80	ns

*1 $C_L = Pin load$


SPIA Ch.1 slave mode

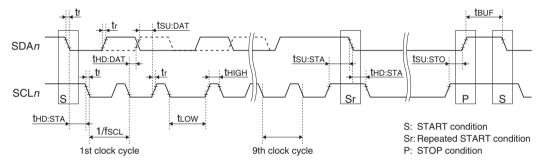
Unless otherwise specified: V_DD = 1.8 to 5.5 V, V_SS = 0 V, Ta = -40 to $105^{\circ}C$


Item	Symbol	Condition	VDD	VD1 output	Min.	Тур.	Max.	単位
SPICLK1 cycle time	tscyc		3.0 to 5.5 V	mode0	120	-	-	ns
			1.8 to 3.0 V	mode0	150	-	-	ns
			-	mode1	480	-	-	ns
SPICLK1 High pulse width	tscкн		3.0 to 5.5 V	mode0	50	-	-	ns
			1.8 to 3.0 V	mode0	60	-	-	ns
			-	mode1	190	-	-	ns
SPICLK1 Low pulse width	tscĸ∟		3.0 to 5.5 V	mode0	50	-	-	ns
			1.8 to 3.0 V	mode0	60	-	-	ns
			-	mode1	190	-	-	ns
SDI1 setup time	tsps		-	mode0	10	-	-	ns
			-	mode1	40	-	-	ns
SDI1 hold time	t SDH		-	mode0	10	-	-	ns
			-	mode1	50	-	-	ns
#SPISS1 setup time	tsss		-	mode0	10	-	-	ns
			-	mode1	40	-	-	ns
#SPISS1 High pulse width	tssн		3.0 to 5.5 V	mode0	50	-	-	ns
			1.8 to 3.0 V	mode0	60	-	-	ns
			-	mode1	190	-	-	ns
SDO1 output delay time	tsdo	C∟ = 15 pF *1	3.0 to 5.5 V	mode0	-	-	42	ns
			1.8 to 3.0 V	mode0	-	-	52	ns
			-	mode1	-	-	180	ns
SDO1 output start time	tsdd	C∟ = 15 pF *1	3.0 to 5.5 V	mode0	-	-	42	ns
			1.8 to 3.0 V	mode0	-	-	52	ns
			-	mode1	-	-	180	ns
SDO1 output stop time	tsdz	C∟ = 15 pF *1	3.0 to 5.5 V	mode0	-	-	42	ns
			1.8 to 3.0 V	mode0	-	-	52	ns
			-	mode1	-	-	180	ns

*1 $C_L = Pin load$

Master and slave modes

Slave mode



23.11 I²C (I2C) Characteristics

ltere	Cumhal	Condition	St	andard mo	de	Fast mode			Unit
Item	Symbol	Condition	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
SCLn frequency	fscl		0	-	100	0	_	400	kHz
Hold time (repeated)	thd:sta		4.0	-	-	0.6	-	-	μs
START condition *									
SCLn Low pulse width	tLOW		4.7	-	-	1.3	-	-	μs
SCLn High pulse width	tнigн		4.0	-	-	0.6	-	-	μs
Repeated START condition	tsu:sta		4.7	_	-	0.6	_	-	μs
setup time									
Data hold time	thd:dat		0	-	-	0	-	-	μs
Data setup time	tsu:dat		250	_	-	100	_	-	ns
SDAn, SCLn rise time	tr		-	-	1,000	-	-	300	ns
SDAn, SCLn fall time	tr		-	-	300	-	-	300	ns
STOP condition setup time	tsu:sto		4.0	-	-	0.6	_	-	μs
Bus free time	t BUF		4.7	-	-	1.3	-	-	μs

Unless otherwise specified: VDD = 1.8 to 5.5 V, Vss = 0 V, Ta = -40 to $105^{\circ}C$

* After this period, the first clock pulse is generated.

23.12 LCD Driver (LCD8D) Characteristics

The LCD driver characteristics varies depending on the panel load (panel size, drive duty, number of display pixels and display contents), so evaluate them by connecting to the actually used LCD panel.

Unless otherwise specified: VDD = 1.8 to 5.5 V, VSS = 0 V, Ta = 25°C, LCD8DTIM2.BSTC[1:0] bits = 0x1 (Voltage booster clock = 2 kHz),	
No panel load	

Item	Symbol		Condition	Min.	Тур.	Max.	Unit
LCD drive voltage	VC1	Connect 1 MΩ	load resistor between Vss and Vc1	0.312 ×	-	0.355 ×	V
(1/3 bias, Vc1 reference voltage)				VC3 (Тур.)		VC3 (Тур.)	
VDD = 1.8 to 5.5 V *3	VC2	Connect 1 MΩ	load resistor between Vss and Vc2	0.623 ×	-	0.710 ×	V
LCD8DPWR.BIASSEL bit = 1				VC3 (Тур.)		VC3 (Тур.)	
LCD8DPWR.VCSEL bit = 0	Vсз	Connect 1 MΩ	LCD8DPWR.LC[4:0] bits = 0x00	2.44	2.57	2.70	V
		load resistor	LCD8DPWR.LC[4:0] bits = 0x01	2.51	2.65	2.79	V
		between Vss	LCD8DPWR.LC[4:0] bits = 0x02	2.58	2.73	2.87	V
		and Vc3	LCD8DPWR.LC[4:0] bits = 0x03	2.66	2.80	2.95	V
			LCD8DPWR.LC[4:0] bits = 0x04	2.73	2.88	3.03	V
			LCD8DPWR.LC[4:0] bits = 0x05	2.82	2.96	3.10	V
			LCD8DPWR.LC[4:0] bits = 0x06	2.90	3.04	3.18	V
			LCD8DPWR.LC[4:0] bits = 0x07	2.97	3.12	3.26	V
			LCD8DPWR.LC[4:0] bits = 0x08	3.05	3.20	3.35	V
			LCD8DPWR.LC[4:0] bits = 0x09	3.14	3.28	3.41	V
			LCD8DPWR.LC[4:0] bits = 0x0a	3.22	3.35	3.49	V
			LCD8DPWR.LC[4:0] bits = 0x0b	3.37	3.51	3.66	V
			LCD8DPWR.LC[4:0] bits = 0x0c	3.52	3.67	3.82	V
			LCD8DPWR.LC[4:0] bits = 0x0d	3.67	3.82	3.98	V
			LCD8DPWR.LC[4:0] bits = 0x0e	3.82	3.98	4.15	V
			LCD8DPWR.LC[4:0] bits = 0x0f	3.97	4.14	4.31	V
			LCD8DPWR.LC[4:0] bits = 0x10	4.12	4.29	4.47	V
			LCD8DPWR.LC[4:0] bits = 0x11	4.27	4.45	4.63	V
			LCD8DPWR.LC[4:0] bits = 0x12	4.42	4.61	4.80	V
			LCD8DPWR.LC[4:0] bits = 0x13	4.57	4.76	4.96	V

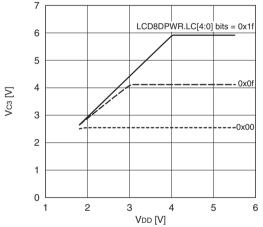
Item	Symbol		Condition	Min.	Тур.	Max.	Unit
LCD drive voltage	Vcз		LCD8DPWR.LC[4:0] bits = 0x14	4.72	4.92	5.12	V
(1/3 bias, Vc1 reference voltage)		load resistor	LCD8DPWR.LC[4:0] bits = 0x15	4.87	5.08	5.29	V
VDD = 1.8 to 5.5 V *3		between Vss	LCD8DPWR.LC[4:0] bits = 0x16	5.02	5.24	5.45	V
LCD8DPWR.BIASSEL bit = 1		and Vc3	LCD8DPWR.LC[4:0] bits = 0x17	5.10	5.31	5.53	V
LCD8DPWR.VCSEL bit = 0			LCD8DPWR.LC[4:0] bits = 0x18	5.17	5.39	5.61	V
			LCD8DPWR.LC[4:0] bits = $0x19$	5.25	5.47	5.69	V
			LCD8DPWR.LC[4:0] bits = 0x1a	5.32	5.55	5.78	V
			LCD8DPWR.LC[4:0] bits = $0x1b$	5.40	5.63	5.86	V
			LCD8DPWR.LC[4:0] bits = 0x1c	5.44	5.71	5.97	V
			$\frac{\text{LCD8DPWR.LC[4:0] bits} = 0x1d}{1 + 0x1}$	5.52	5.78	6.05	V V
			LCD8DPWR.LC[4:0] bits = 0x1e LCD8DPWR.LC[4:0] bits = 0x1f	5.59 5.67	5.86 5.94	6.13 6.21	V
LCD drive voltage	Vc1	Connect 1 MO	load resistor between Vss and Vc1	0.323 ×	- 5.94	0.21 0.344 ×	V
(1/3 bias. Vc2 reference voltage)		Connect 1 Miss	load resistor between vss and ver	VC3 (Typ.)	_	VC3 (Typ.)	ľ
$V_{DD} = 1.8$ to 5.5 V * ³	Vc2	Connect 1 MΩ	oad resistor between Vss and Vc2	0.646 ×	-	0.687 ×	V
LCD8DPWR.BIASSEL bit = 1				VC3 (Typ.)		VC3 (Typ.)	
LCD8DPWR.VCSEL bit = 1	Vcз	Connect 1 MΩ	LCD8DPWR.LC[4:0] bits = 0x00	2.48	2.58	2.67	V
		load resistor	LCD8DPWR.LC[4:0] bits = 0x01	2.56	2.66	2.75	V
		between Vss	LCD8DPWR.LC[4:0] bits = 0x02	2.63	2.73	2.84	V
		and Vc3	LCD8DPWR.LC[4:0] bits = 0x03	2.72	2.81	2.90	V
			LCD8DPWR.LC[4:0] bits = 0x04	2.80	2.89	2.98	V
			LCD8DPWR.LC[4:0] bits = 0x05	2.88	2.97	3.06	V
			LCD8DPWR.LC[4:0] bits = 0x06	2.95	3.05	3.14	V
			LCD8DPWR.LC[4:0] bits = 0x07	3.03	3.13	3.23	V
			LCD8DPWR.LC[4:0] bits = 0x08	3.10	3.20	3.31	V
			LCD8DPWR.LC[4:0] bits = $0x09$	3.18	3.28	3.39	V
			$\frac{\text{LCD8DPWR.LC[4:0] bits} = 0x0a}{1 + 0x0b}$	3.26 3.41	3.36	3.47	V V
			LCD8DPWR.LC[4:0] bits = 0x0b LCD8DPWR.LC[4:0] bits = 0x0c	3.41	3.52 3.67	3.63 3.79	V
			LCD8DPWR.LC[4:0] bits = 0x0c	3.50	3.83	3.95	V
			LCD8DPWR.LC[4:0] bits = 0x0e	3.86	3.99	4.11	V
			LCD8DPWR.LC[4:0] bits = 0x0c	4.01	4.14	4.27	V
			LCD8DPWR.LC[4:0] bits = 0x10	4.17	4.30	4.44	v
			LCD8DPWR.LC[4:0] bits = 0x11	4.32	4.46	4.60	V
			LCD8DPWR.LC[4:0] bits = 0x12	4.47	4.61	4.76	V
			LCD8DPWR.LC[4:0] bits = 0x13	4.62	4.77	4.92	V
			LCD8DPWR.LC[4:0] bits = 0x14	4.78	4.93	5.08	V
			LCD8DPWR.LC[4:0] bits = 0x15	4.93	5.09	5.24	V
			LCD8DPWR.LC[4:0] bits = 0x16	5.08	5.24	5.41	V
			LCD8DPWR.LC[4:0] bits = 0x17	5.16	5.32	5.49	V
			LCD8DPWR.LC[4:0] bits = 0x18	5.23	5.40	5.57	V
			LCD8DPWR.LC[4:0] bits = 0x19	5.31	5.48	5.65	V
			LCD8DPWR.LC[4:0] bits = 0x1a	5.39	5.56	5.73	V
			$\frac{\text{LCD8DPWR.LC[4:0] bits} = 0x1b}{100000000000000000000000000000000000$	5.46	5.64	5.81	V
			$\frac{\text{LCD8DPWR.LC[4:0] bits} = 0x1c}{\text{LCD8DPWR.LC[4:0] bits} = 0x1d}$	5.54 5.62	5.72	5.89 5.97	V V
					5.80		
			LCD8DPWR.LC[4:0] bits = 0x1e LCD8DPWR.LC[4:0] bits = 0x1f	5.69 5.77	5.87 5.95	6.06 6.14	V
LCD drive voltage	Vc1	Connect 1 MO	load resistor between Vss and	0.468 ×	-	0.14 0.533 ×	V
(1/2 bias, Vc1 reference voltage)		Vc1(Vc2)		VC3 (Typ.)		VC3 (Typ.)	
$V_{DD} = 1.8 \text{ to } 5.5 \text{ V}^{*3}$	Vсз		LCD8DPWR.LC[4:0] bits = 0x00	-	-	-	V
LCD8DPWR.BIASSEL bit = 0		load resistor	LCD8DPWR.LC[4:0] bits = 0x01	-	-	-	V
LCD8DPWR.VCSEL bit = 0		between Vss	LCD8DPWR.LC[4:0] bits = 0x02	-	-	-	V
		and Vc ₃	LCD8DPWR.LC[4:0] bits = 0x03	-	-	-	V
			LCD8DPWR.LC[4:0] bits = 0x04	-	-	-	V
			LCD8DPWR.LC[4:0] bits = 0x05	-	-	-	V
			LCD8DPWR.LC[4:0] bits = 0x06	-	-	-	V
			LCD8DPWR.LC[4:0] bits = $0x07$	-	-	-	V
			LCD8DPWR.LC[4:0] bits = $0x08$	-	_	-	V
			LCD8DPWR.LC[4:0] bits = $0x09$	-	-	-	V
			LCD8DPWR.LC[4:0] bits = 0x0a	-	-	-	V
			LCD8DPWR.LC[4:0] bits = 0x0b	2.24	2.34	2.44	V
			$\frac{\text{LCD8DPWR.LC[4:0] bits} = 0x0c}{1 + 0x0c}$	2.34	2.45	2.55	V
			$\frac{\text{LCD8DPWR.LC[4:0] bits} = 0x0d}{1 + 0x0}$	2.44	2.55	2.66	V
			$\frac{\text{LCD8DPWR.LC[4:0] bits} = 0x0e}{1 \text{ CD8DPWR.LC[4:0] bits} = 0x0e}$	2.54	2.65	2.77	V
			$\frac{\text{LCD8DPWR.LC[4:0] bits} = 0x0f}{100000000000000000000000000000000000$	2.64	2.76	2.87	V
			$\frac{\text{LCD8DPWR.LC[4:0] bits} = 0x10}{1000000000000000000000000000000000$	2.74	2.86	2.98	V V
			$\frac{\text{LCD8DPWR.LC[4:0] bits} = 0x11}{\text{LCD8DPWR.LC[4:0] bits} = 0x12}$	2.84 2.94	2.97	3.09	V
	I	1	$\frac{ \text{LCD8DPWR.LC[4:0] bits} = 0x12}{\text{Enson Corporation}}$	2.94	3.07	3.20	V

Item	Symbol		Condition	Min.	Тур.	Max.	Unit
LCD drive voltage	Vсз	Connect 1 MΩ	LCD8DPWR.LC[4:0] bits = 0x13	3.04	3.18	3.31	V
(1/2 bias, Vc1 reference voltage)		load resistor	LCD8DPWR.LC[4:0] bits = 0x14	3.14	3.28	3.42	V
VDD = 1.8 to 5.5 V *3		between Vss	LCD8DPWR.LC[4:0] bits = 0x15	3.25	3.39	3.53	V
LCD8DPWR.BIASSEL bit = 0		and Vc3	LCD8DPWR.LC[4:0] bits = 0x16	3.35	3.49	3.63	V
LCD8DPWR.VCSEL bit = 0			LCD8DPWR.LC[4:0] bits = 0x17	3.40	3.54	3.69	V
			LCD8DPWR.LC[4:0] bits = 0x18	3.45	3.59	3.74	V
			LCD8DPWR.LC[4:0] bits = 0x19	3.50	3.65	3.80	V
			LCD8DPWR.LC[4:0] bits = 0x1a	3.55	3.70	3.85	V
			LCD8DPWR.LC[4:0] bits = 0x1b	3.60	3.75	3.91	V
			LCD8DPWR.LC[4:0] bits = 0x1c	3.63	3.80	3.98	V
			LCD8DPWR.LC[4:0] bits = 0x10	3.68	3.86	4.03	V
			LCD8DPWR.LC[4:0] bits = 0x1e	3.73	3.91	4.09	V
			LCD8DPWR.LC[4:0] bits = 0x1f	3.78	3.96	4.14	V
LCD drive voltage	Vc2	Connect 1 MO	load resistor between Vss and	0.485 ×	-	0.515 ×	V
(1/2 bias, Vc2 reference voltage)	V 02	Vc2(Vc1)		VC3 (Typ.)		VC3 (Typ.)	Ň
$V_{DD} = 1.8 \text{ to } 5.5 \text{ V}^{*3}$	Vсз	Connect 1 MΩ	LCD8DPWR.LC[4:0] bits = 0x00	3.31	3.44	3.56	V
LCD8DPWR.BIASSEL bit = 0	V 03	load resistor	LCD8DPWR.LC[4:0] bits = 0x00	3.41	3.54	3.67	V
LCD8DPWR.VCSEL bit = 1		between Vss	1000000000000000000000000000000000000	3.51	3.65	3.78	V
		and Vc3					V
			$\frac{\text{LCD8DPWR.LC[4:0] bits} = 0x03}{\text{LCD8DPWR} + C[4:0] bits} = 0x04$	3.63	3.75	3.87	V
			LCD8DPWR.LC[4:0] bits = $0x04$	3.73	3.85	3.98	
			$\frac{\text{LCD8DPWR.LC[4:0] bits} = 0x05}{\text{LCD8DPWR.LC[4:0] bits} = 0x06}$	3.84	3.96	4.08	V
			$\frac{\text{LCD8DPWR.LC[4:0] bits} = 0x06}{1 + 0x07}$	3.94	4.06	4.19	V
			LCD8DPWR.LC[4:0] bits = 0x07	4.04	4.17	4.30	V
			LCD8DPWR.LC[4:0] bits = 0x08	4.14	4.27	4.41	V
			LCD8DPWR.LC[4:0] bits = 0x09	4.24	4.38	4.51	V
			LCD8DPWR.LC[4:0] bits = 0x0a	4.34	4.48	4.62	V
			LCD8DPWR.LC[4:0] bits = 0x0b	4.55	4.69	4.84	V
			LCD8DPWR.LC[4:0] bits = 0x0c	4.75	4.90	5.05	V
			LCD8DPWR.LC[4:0] bits = 0x0d	4.95	5.11	5.27	V
			LCD8DPWR.LC[4:0] bits = 0x0e	5.15	5.32	5.48	V
			LCD8DPWR.LC[4:0] bits = 0x0f	5.35	5.53	5.70	V
			LCD8DPWR.LC[4:0] bits = 0x10	5.56	5.73	5.91	V
			LCD8DPWR.LC[4:0] bits = 0x11	5.76	5.94	6.13	V
			LCD8DPWR.LC[4:0] bits = 0x12	5.96	6.15	6.34	V
			LCD8DPWR.LC[4:0] bits = 0x13	6.17	6.36	6.56	V
			LCD8DPWR.LC[4:0] bits = 0x14	6.37	6.57	6.77	V
			LCD8DPWR.LC[4:0] bits = 0x15	-	-	-	V
			LCD8DPWR.LC[4:0] bits = 0x16	-	-	-	V
			LCD8DPWR.LC[4:0] bits = 0x17	-	-	-	V
			LCD8DPWR.LC[4:0] bits = 0x18	-	-	-	V
			LCD8DPWR.LC[4:0] bits = 0x19	-	-	-	V
			LCD8DPWR.LC[4:0] bits = 0x1a	-	-	-	V
			LCD8DPWR.LC[4:0] bits = 0x1b	-	-	-	V
			LCD8DPWR.LC[4:0] bits = 0x1c	-	-	-	V
			LCD8DPWR.LC[4:0] bits = 0x1d	-	-	-	V
			LCD8DPWR.LC[4:0] bits = 0x1e	-	-	_	V
			LCD8DPWR.LC[4:0] bits = 0x1f	-	-	-	V
Segment/Common output	ISEGH	SEG0-55, COM		-	_	-10	μA
current			/Vc1 - 0.1 V, Ta = -40 to 105°C				
	ISEGL	SEG0-55. COM		10	-	_	μA
		VSEGL = VC3/VC2	/Vc1 + 0.1 V, Ta = -40 to 105°C				
LCD circuit current	ILCD1		PC[1:0] bits = 0x1 (checker pattern),	-	2.5	5.3	μA
(1/3 bias, Vc2 reference voltage,		LCD8DPWR.BI					P
Waveform B)		LCD8DPWR.VC					
,			DWAVE bit = 0 *1 *2				
			PC[1:0] bits = 0x2 (all on),	_	1.1	2.4	μA
		LCD8DPWR.BI					p., .
		LCD8DPWR.VC					
			SDWAVE bit = $0 * 1 * 2$				
LCD circuit current	ILCD1		PC[1:0] bits = 0x1 (checker pattern),	_	4.8	10.2	μA
(1/3 bias, Vc1 reference voltage,		LCD8DPWR.BI					
Waveform B)		LCD8DPWR.VC	,				
			SDUAVE bit = $0 *^{1} *^{2}$				
			PC[1:0] bits = 0x2 (all on),		1.9	4.4	μA
		LCD8DPWR.BI			1.5		
			SEL bit = 0,				

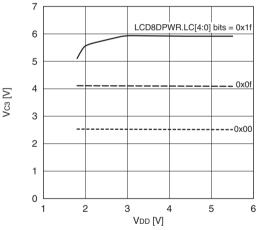
Item	Symbol		Min.	Тур.	Max.	Unit
LCD circuit current	ILCD2	LCD8DDSP.DSPC[1:0] bits = 0x1 (checker pattern),	-	5.2	10.4	μA
(1/2 bias, Vc2 reference voltage,		LCD8DPWR.BIASSEL bit = 0,				
Waveform B)		LCD8DPWR.VCSEL bit = 1, LCD8DFWR.VCSEL bit = $1, r^2$				
		LCD8DTIM2.LCDWAVE bit = $0 *^{1} *^{2}$ LCD8DDSP.DSPC[1:0] bits = $0x^{2}$ (all on),		1.2	2.5	
		LCD8DDSPDSPC[1:0] bits = 0x2 (all of), LCD8DPWR.BIASSEL bit = 0,	-	1.2	2.5	μA
		LCD8DPWR.VCSEL bit = 1,				
		LCD8DTIM2.LCDWAVE bit = 0 *1 *2				
LCD circuit current	ILCD2	LCD8DDSP.DSPC[1:0] bits = 0x1 (checker pattern),	-	3.9	8.1	μA
(1/2 bias, Vc1 reference voltage,		LCD8DPWR.BIASSEL bit = $0,$				P
Waveform B)		LCD8DPWR.VCSEL bit = 0,				
		LCD8DTIM2.LCDWAVE bit = 0 *1 *2				
		LCD8DDSP.DSPC[1:0] bits = 0x2 (all on),	-	1.1	2.3	μA
		LCD8DPWR.BIASSEL bit = 0,				
		LCD8DPWR.VCSEL bit = 0,				
		LCD8DTIM2.LCDWAVE bit = 0 *1 *2				
LCD circuit current	ILCD3	LCD8DDSP.DSPC[1:0] bits = 0x1 (checker pattern),	-	4.7	9.6	μA
(1/3 bias, Vc2 reference voltage,		LCD8DPWR.BIASSEL bit = 1,				
Waveform A)		LCD8DPWR.VCSEL bit = 1,				
		LCD8DTIM2.LCDWAVE bit = 1 *1 *2			44.0	
		LCD8DDSP.DSPC[1:0] bits = 0x2 (all on),	-	5.7	11.9	μA
		LCD8DPWR.BIASSEL bit = 1, LCD8DPWR.VCSEL bit = 1,				
		LCD8DTIM2.LCDWAVE bit = 1 *1 *2				
LCD circuit current	ILCD3	LCD8DDSP.DSPC[1:0] bits = 0x1 (checker pattern),	_	9.0	18.8	μA
(1/3 bias, Vc1 reference voltage,	ILOD5	LCD8DPWR.BIASSEL bit = 1,		0.0	10.0	μ,
Waveform A)		LCD8DPWR.VCSEL bit = 0,				
····· ,		LCD8DTIM2.LCDWAVE bit = 1 *1 *2				
		LCD8DDSP.DSPC[1:0] bits = 0x2 (all on),	_	11.2	23.8	μA
		LCD8DPWR.BIASSEL bit = 1,				1.
		LCD8DPWR.VCSEL bit = 0,				
		LCD8DTIM2.LCDWAVE bit = 1 *1 *2				
LCD circuit current	ILCD4	LCD8DDSP.DSPC[1:0] bits = 0x1 (checker pattern),	-	8.3	16.6	μA
(1/2 bias, Vc2 reference voltage,		LCD8DPWR.BIASSEL bit = 0,				
Waveform A)		LCD8DPWR.VCSEL bit = 1,				
		LCD8DTIM2.LCDWAVE bit = 1 *1 *2				<u> </u>
		LCD8DDSP.DSPC[1:0] bits = 0x2 (all on),	-	7.0	14.1	μA
		LCD8DPWR.BIASSEL bit = 0,				
		LCD8DPWR.VCSEL bit = 1, LCD8DTIM2.LCDWAVE bit = 1 *1 *2				
LCD circuit current	ILCD4	LCD8DDSP.DSPC[1:0] bits = 0x1 (checker pattern),	_	6.1	12.3	μA
(1/2 bias, Vc1 reference voltage,		LCD8DPWR.BIASSEL bit = 0,		0.1	12.0	μ-
Waveform A)		LCD8DPWR.VCSEL bit = 0,				
inar or on in a sign of the si		LCD8DTIM2.LCDWAVE bit = 1 *1 *2				
		LCD8DDSP.DSPC[1:0] bits = 0x2 (all on),	-	5.2	10.7	μA
		LCD8DPWR.BIASSEL bit = 0,				^r
		LCD8DPWR.VCSEL bit = 0,				
		LCD8DTIM2.LCDWAVE bit = 1 *1 *2				
LCD circuit current	ILCDH1	LCD8DDSP.DSPC[1:0] bits = 0x1 (checker pattern),	-	20.4	49.2	μA
in heavy load protection mode		LCD8DPWR.BIASSEL bit = 1,				
(1/3 bias, Vc2 reference voltage,		LCD8DPWR.VCSEL bit = 1,				
Waveform B)		LCD8DTIM2.LCDWAVE bit = 0,				
		LCD8DPWR.HVLD bit = 1 *1 *2				<u> </u>
LCD circuit current	ILCDH2	LCD8DDSP.DSPC[1:0] bits = 0x1 (checker pattern),	-	16.8	38.1	μA
in heavy load protection mode		LCD8DPWR.BIASSEL bit = 0,				
(1/2 bias, Vc2 reference voltage,		LCD8DPWR.VCSEL bit = 1, LCD8DTIM2 LCDWAVE bit = 0				
Waveform B)		LCD8DTIM2.LCDWAVE bit = 0, LCD8DPWR.HVLD bit = 1 *1 *2				
LCD circuit current	ILCDH3	LCD8DDSP.DSPC[1:0] bits = 0x1 (checker pattern).	_	22.5	52.4	μA
in heavy load protection mode	.20010	LCD8DPWR.BIASSEL bit = 1,		22.0	02.7	^µ
(1/3 bias, Vc2 reference voltage,		LCD8DPWR.VCSEL bit = 1,				
Waveform A)		LCD8DTIM2.LCDWAVE bit = 1,				
- /		LCD8DPWR.HVLD bit = 1 *1 *2				
LCD circuit current	ILCDH4	LCD8DDSP.DSPC[1:0] bits = 0x1 (checker pattern),	-	19.9	42.6	μA
in heavy load protection mode		LCD8DPWR.BIASSEL bit = 0,			_	<u> </u>
(1/2 bias, Vc2 reference voltage,		LCD8DPWR.VCSEL bit = 1,				
Waveform A)		LCD8DTIM2.LCDWAVE bit = 1,				
	1	LCD8DPWR.HVLD bit = 1 *1 *2		1	1	1

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
LCD circuit current	ILCDR1	LCD8DDSP.DSPC[1:0] bits = 0x1 (checker pattern),	-	35.5	72.7	μA
(1/3 bias, Waveform B,		LCD8DPWR.BIASSEL bit = 1,				
when internal voltage dividing		LCD8DTIM2.LCDWAVE bit = 0,				
resistors are used)		LCD8DPWR.RESISEL[1:0] bits = 0x1 *1 *2				
LCD circuit current	ILCDR2	LCD8DDSP.DSPC[1:0] bits = 0x1 (checker pattern),	-	54.0	111.3	μA
(1/2 bias, Waveform B,		LCD8DPWR.BIASSEL bit = 0,				
when internal voltage dividing		LCD8DTIM2.LCDWAVE bit = 0,				
resistors are used)		LCD8DPWR.RESISEL[1:0] bits = 0x1 *1 *2				
LCD circuit current	ILCDR3	LCD8DDSP.DSPC[1:0] bits = 0x1 (checker pattern),	-	36.8	75.4	μA
(1/3 bias, Waveform A,		LCD8DPWR.BIASSEL bit = 1,				
when internal voltage dividing		LCD8DTIM2.LCDWAVE bit = 1,				
resistors are used)		LCD8DPWR.RESISEL[1:0] bits = 0x1 *1 *2				
LCD circuit current	ILCDR4	LCD8DDSP.DSPC[1:0] bits = 0x1 (checker pattern),	-	55.6	114.5	μA
(1/2 bias, Waveform A,		LCD8DPWR.BIASSEL bit = 0,				
when internal voltage dividing		LCD8DTIM2.LCDWAVE bit = 1,				
resistors are used)		LCD8DPWR.RESISEL[1:0] bits = 0x1 *1 *2				

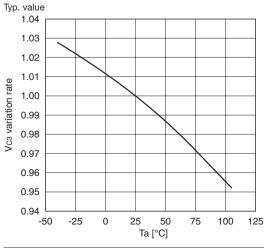
*1 Other LCD driver settings: LCD8DPWR.LC[4:0] bits = 0x1f, CLK_LCD8D = 32 kHz, LCD8DTIM1.FRMCNT[4:0] bits = 0x01 (frame frequency = 64 Hz)


The value is added to the current consumption in HALT/RUN mode. Current consumption increases according to the display *2 contents and panel load.

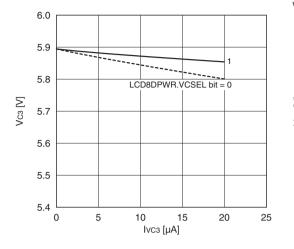
*3 If the power supply voltage VDD is within the range between 1.8 to 4.0 V (when Vc2 reference voltage is selected) or 1.8 to 3.0 V (when Vc1 reference voltage is selected), the LCD drive voltage is decreased more than the value set using the LCD8WR.LC[4:0] bits. For details, refer to the LCD drive voltage-supply voltage characteristic graphs.


(Vc2 reference voltage)

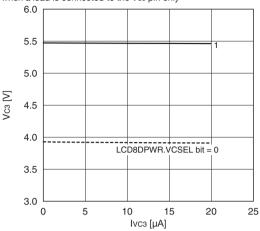
LCD drive voltage-supply voltage characteristic LCD drive voltage-supply voltage characteristic (Vc1 reference voltage)


Ta = 25°C, Typ. value, when a 1 M Ω load resistor is connected between Vss and Vc3 (no panel load)

Ta = 25°C, Typ. value, when a 1 M Ω load resistor is connected between Vss and Vc3 (no panel load)

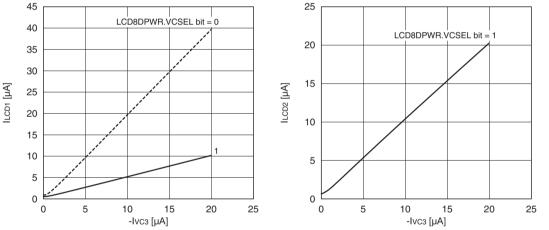


LCD drive voltage-temperature characteristic (Vc1/Vc2 reference voltage)



LCD drive voltage-load characteristic (1/3 bias) LCD drive voltage-load characteristic (1/2 bias)

VDD = 5.5 V, Ta = 25°C, Typ. value, LCD8DPWR.LC[4:0] bits = 0x1f, VDD = 5.5 V, Ta = 25°C, Typ. value, LCD8DPWR.LC[4:0] bits = 0x0f when a load is connected to the Vc3 pin only

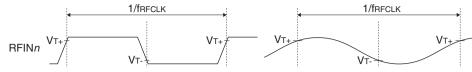


(Vc2 reference voltage)/0x1f (Vc1 reference voltge), when a load is connected to the Vc3 pin only

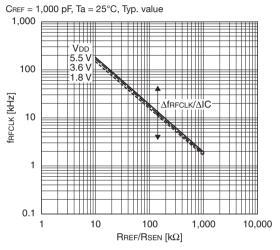
LCD circuit current-load characteristic (1/3 bias) LCD circuit current-load characteristic (1/2 bias) VDD = 5.5 V, Ta = 25°C, Typ. value, LCD8DPWR.LC[4:0] bits = 0x1f, VDD = 5.5 V, Ta = 25°C, Typ. value, LCD8DPWR.LC[4:0] bits = 0x0f,

when a load is connected to the Vc3 pin only when a load is connected to the Vc3 pin only

23.13 R/F Converter (RFC) Characteristics

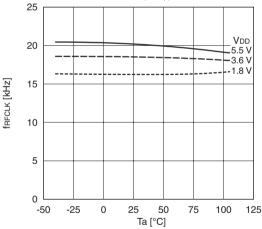

R/F converter characteristics change depending on conditions (board pattern, components used, etc.). Use these characteristic values as a reference and perform evaluation using the actual printed circuit board.

Item	Symbol	Condition	VDD	Min.	Тур.	Max.	Unit
Reference/sensor oscillation frequency	f RFCLK			1	-	1,000	kHz
Reference/sensor oscillation frequency IC deviation	$\Delta freclk/\Delta IC$	Ta = 25°C *1		-40	-	40	%
Reference resistor/resistive sensor resistance	RREF, RSEN			10	-	-	kΩ
Reference capacitance	CREF			100	-	-	pF
Time base counter clock frequency	f tcclk			-	-	33	MHz
High level Schmitt input threshold voltage	VT+			$0.5 \times V_{DD}$	-	$0.8 \times V_{DD}$	V
Low level Schmitt input threshold voltage	VT-			0.2 × VDD	-	$0.5 \times V_{DD}$	V
Schmitt input hysteresis voltage	ΔVτ			165	-	-	mV
R/F converter operating current	IRFC	$R_{REF}/R_{SEN} = 100 \ k\Omega$,	5.5 V	-	165	230	μA
		CREF = 1,000 pF, Ta = 25°C	3.6 V	-	75	110	μA

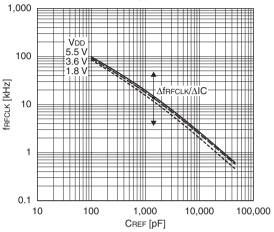

Unless otherwise specified: Vpp = 1.8 to 5.5 V. Vss = 0 V. Ta = -40 to 105°C

*1 In this characteristic, unevenness between production lots, and variations in measurement board, resistances and capacitances are taken into account.

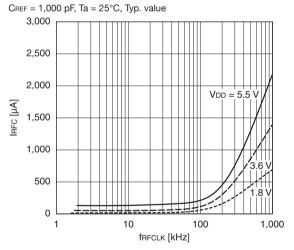
Waveforms for external clock input mode



RFC reference/sensor oscillation frequencyresistance characteristic


RFC reference/sensor oscillation frequencytemperature characteristic

 $R_{REF}/R_{SEN} = 100 \text{ k}\Omega$, $C_{REF} = 1,000 \text{ pF}$, Typ. value



RFC reference/sensor oscillation frequencycapacitance characteristic

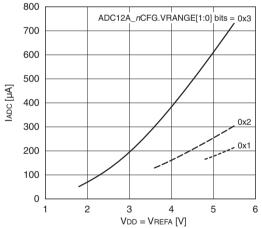
 $R_{REF}/R_{SEN} = 100 \text{ k}\Omega$, $Ta = 25^{\circ}C$, Typ. value

RFC reference/sensor oscillation current consumption-frequency characteristic

23.14 12-bit A/D Converter (ADC12A) Characteristics

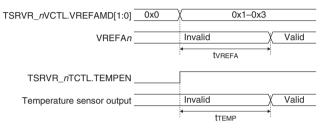
Unless otherwise specified: $V_{DD} = 1.8$ to 5.5 V, VREFAn = 1.8 to 5.5 V, Vss = 0 V, Ta = -40 to 105°C, ADC12A_nTRG.SMPCLK[2:0] bits = 0x3 (7cycles)

Item	Symbol	Condition	VDD	Та	Min.	Тур.	Max.	Unit
VREFAn voltage range	VREFA		-	-	1.8	-	Vdd	V
A/D conversion clock	fclk_adc12A		-	-	16	-	2,200	kHz
frequency								
Sampling rate *1	f SMP		-	-	-	-	100	ksps
Integral nonlinearity *2	INL	VDD = VREFAn *3	-	-40 to 85°C	-	-	±3	LSB
			-	-40 to 105°C	-	-	±4	LSB
Differential nonlinearity	DNL	VDD = VREFAn *3	-	-40 to 85°C	-	-	±3	LSB
			-	-40 to 105°C	-	-	±4	LSB
Zero-scale error	ZSE	VDD = VREFAn *3	-	-	-	-	±5	LSB
Full-scale error	FSE	VDD = VREFAn *3	-	-	-	-	±5	LSB
Analog input resistance	RADIN		-	-	-	-	4	kΩ
Analog input capacitance	Cadin		-	-	-	-	30	pF
A/D converter circuit current	IADC	ADC12A_nCFG.VRANGE[1:0] bits = 0x3, VDD = VREFA, ADIN = VREFA/2, fSMP = 100 kSps, Ta = 25°C	3.6 V	-	-	400	700	μA
		$\begin{array}{l} ADC12A_nCFG.VRANGE[1:0] \ bits = 0x2, \\ V_{DD} = V_{REFA}, \ ADIN = V_{REFA}/2, \ f_{SMP} = 100 \ ksps, \\ Ta = 25^{\circ}C \end{array}$	4.8 V	-	-	230	470	μA
		$\begin{array}{l} ADC12A_nCFG.VRANGE[1:0] \ bits = 0x1, \\ V_{DD} = V_{REFA}, \ ADIN = V_{REFA}/2, \ f_{SMP} = 100 \ ksps, \\ Ta = 25^{\circ}C \end{array}$	5.5 V	-	-	210	390	μA

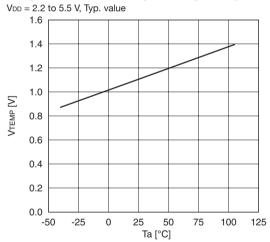

*1 The Max. value is the value when the A/D conversion clock frequency fcLK_ADC12A = 2,000 kHz.

*2 Integral nonlinearity is measured at the end point line.

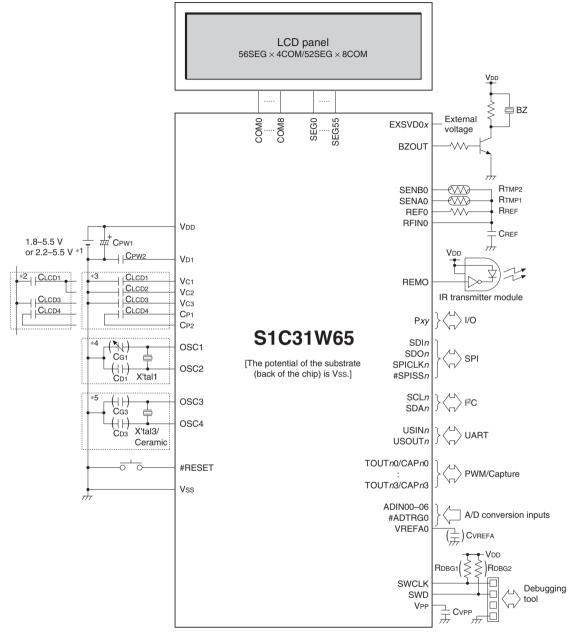
*3 The error will be increased according to the potential difference between VDD and VREFAn.


A/D converter current consumption-power supply voltage characteristic

 $V_{DD} = V_{REFA}$, $ADIN = V_{REFA}/2$, $f_{SMP} = 100$ ksps, $Ta = 25^{\circ}C$, Typ. value



23.15 Temperature Sensor/Reference Voltage Generator (TSRVR) Characteristics


Item	Symbol	Condition	Min.	Тур.	Max.	Unit
VREFA (2.5 V) output voltage	Vvo25	VDD = 2.7 to 5.5 V	2.4	2.5	2.6	V
VREFA (2.0 V) output voltage	Vvo20	VDD = 2.2 to 5.5 V	1.9	2.0	2.1	V
VREFA (VDD) output voltage	Vvodd	VDD = 1.8 to 5.5 V	VDD - 0.1	Vdd	VDD + 0.1	V
VREFA (2.5/2.0 V) operating current	Ivo1	VDD = 5.5 V, Ta = 25°C	25	40	60	μA
VREFA (VDD) operating current	Ivo2	VDD = 5.5 V, Ta = 25°C	-	0	0.1	μA
VREFA output voltage stabilization time	t VREFA	CVREFA = 0.1 µF	-	1.5	5	ms
Temperature sensor output voltage	VTEMP	VDD = 2.2 to 5.5 V, Ta = 25°C	1.06	1.09	1.12	V
Temperature sensor output voltage	ΔV_{TEMP}	VDD = 2.2 to 5.5 V	-	3.6 ± 3%	3.6 ± 7%	mV/°C
temperature coefficient						
Temperature sensor operating current	IVTEMP	VDD = 5.5 V, Ta = 25°C	10	16	22	μA
Temperature sensor output stabilization time	t TEMP		-	-	200	μs

Temperature sensor output voltage-temperature characteristic

24 Basic External Connection Diagram

*1: For Flash programming

- *3: When 1/2 bias is selected
- *3: When 1/3 bias is selected
- *4: When OSC1 crystal oscillator is selected

*5: When OSC3 crystal/ceramic oscillator is selected

(): Do not mount components if unnecessary.

24 BASIC EXTERNAL CONNECTION DIAGRAM

Sample external components

Symbol	Name	Recommended components
X'tal1	32 kHz crystal resonator	C-002RX (R1 = 50 kΩ (Max.), CL = 7 pF) manufactured by Seiko Epson Corporation
C _{G1}	OSC1 gate capacitor	Trimmer capacitor or ceramic capacitor
CD1	OSC1 drain capacitor	Ceramic capacitor
X'tal3	Crystal resonator	Seiko Epson product
Ceramic	Ceramic resonator	Murata Manufacturing product
CG3	OSC3 gate capacitor	Ceramic capacitor
Срз	OSC3 drain capacitor	Ceramic capacitor
RCR3	OSC3 oscillating resistor	Thick film chip resistor
CPW1	Bypass capacitor between Vss and VDD	Ceramic capacitor or electrolytic capacitor
CPW2	Capacitors between Vss and VD1	Ceramic capacitor
CLCD1-3	Capacitors between Vss and Vc1-3	Ceramic capacitor
CLCD4	Capacitor between CP1 and CP2	Ceramic capacitor
BZ	Piezoelectric buzzer	PS1240P02 manufactured by TDK Corporation
RDBG1-2	Debug pin pull-up resistor	Thick film chip resistor
Rref	RFC reference resistor	Thick film chip resistor
RTMP1, 2	Resistive sensors	Temperature sensor 103AP-2 manufactured by SEMITEC Corporation
		Humidity sensor C15-M53R manufactured by SHINYEI Technology Co.,Ltd.
		(* In AC oscillation mode for resistive sensor measurements)
CREF	RFC reference capacitor	Ceramic capacitor
CVPP	Capacitor between Vss and VPP	Ceramic capacitor

* For recommended component values, refer to "Recommended Operating Conditions" in the "Electrical Characteristics" chapter.

25 Package

TQFP15-100PIN (P-TQFP100-1414-0.50)

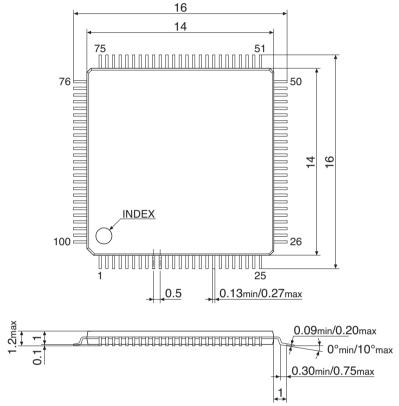


Figure 25.1 TQFP15-100PIN Package Dimensions

Appendix A List of Peripheral Circuit Control Registers

0x400	0 0000					S	ystem Register (SYS)
Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	SYSPROT	15–0	PROT[15:0]	0x0000	H0	R/W	_
0000	(System						
	Protect Register)						

0x400	0 0020				Pow	er Generator (PWGA)	
Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	PWGACTL	15–8	-	0x00	_	R	_
0020	(PWGA Control	7–6	-	0x0	-	R	
	Register)	5	REGDIS	0	H0	R/WP	
		4	REGSEL	1	H0	R/WP	
		3–2	-	0x0	-	R	
		1–0	REGMODE[1:0]	0x0	H0	R/WP	

0x4000 0040-0x4000 0050

Clock Generator (CLG)

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	CLGSCLK	15	WUPMD	0	H0	R/WP	-
0040	(CLG System Clock	14	-	0	-	R	
	Control Register)	13–12	WUPDIV[1:0]	0x0	H0	R/WP	
		11–10	-	0x0	-	R	
		9–8	WUPSRC[1:0]	0x0	H0	R/WP	
		7–6	-	0x0	-	R	
		5–4	CLKDIV[1:0]	0x0	H0	R/WP	
		3–2	-	0x0	-	R	
		1–0	CLKSRC[1:0]	0x0	HO	R/WP	
0x4000	CLGOSC	15–12	-	0x0	-	R	-
0042	(CLG Oscillation	11	EXOSCSLPC	1	H0	R/W	
	Control Register)	10	OSC3SLPC	1	H0	R/W	
		9	OSC1SLPC	1	H0	R/W	
		8	IOSCSLPC	1	H0	R/W	
		7–4	-	0x0	-	R	
		3	EXOSCEN	0	H0	R/W	
		2	OSC3EN	0	H0	R/W	
		1	OSC1EN	0	H0	R/W	
		0	IOSCEN	1	H0	R/W	
0x4000	CLGIOSC	15–8	-	0x00	-	R	-
0044	(CLG IOSC Control	7	-	0	-	R	
	Register)	6–5	IOSCWT[1:0]	0x3	HO	R/WP	
		4	IOSCSTM	0	HO	R/WP	
		3	-	0	-	R	
		2–0	IOSCFQ[2:0]	0x3	HO	R/WP	
0x4000	CLGOSC1	15	-	0	-	R	-
0046	(CLG OSC1 Control	14	OSDRB	1	HO	R/WP	
	Register)	13	OSDEN	0	HO	R/WP	
		12	OSC1BUP	1	HO	R/WP	
		11	OSC1SELCR	0	HO	R/WP	
		10–8	CGI1[2:0]	0x0	HO	R/WP	
		7–6	INV1B[1:0]	0x2	HO	R/WP	
		5–4	INV1N[1:0]	0x1	HO	R/WP	
		3–2	-	0x0	-	R	
		1–0	OSC1WT[1:0]	0x2	H0	R/WP	
			Colleg Frager	0	_		

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	CLGOSC3	15–13		0x0	-	R	-
0048	(CLG OSC3 Control	12–10	OSC3FQ[2:0]	0x5	HO	R/WP	
	Register)	9	OSC3MD	0	H0	R/WP	
		8	-	0	-	R	
		7–6	-	0x0	-	R	
		5–4	OSC3INV[1:0]	0x3	H0	R/WP	
		3	-	0	-	R	
		2–0	OSC3WT[2:0]	0x6	H0	R/WP	
0x4000	CLGINTF	15–9	-	0x00	-	R	-
004c	(CLG Interrupt Flag	8	IOSCTERIF	0	H0	R/W	Cleared by writing 1.
	Register)	7	-	0	-	R	-
		6	(reserved)	0	H0	R	
		5	OSC1STPIF	0	HO	R/W	Cleared by writing 1.
		4	IOSCTEDIF	0	HO	R/W	
		3	-	0	-	R	-
		2	OSC3STAIF	0	HO	R/W	Cleared by writing 1.
		1	OSC1STAIF	0	HO	R/W	
		0	IOSCSTAIF	0	HO	R/W	
0x4000	CLGINTE	15–9	-	0x00	-	R	-
004e	(CLG Interrupt Enable	8	IOSCTERIE	0	HO	R/W	1
	Register)	7	_	0	-	R	1
		6	(reserved)	0	HO	R	
		5	OSC1STPIE	0	HO	R/W	
		4	IOSCTEDIE	0	H0	R/W	
		3	_	0	_	R	
		2	OSC3STAIE	0	HO	R/W	1
		1	OSC1STAIE	0	H0	R/W	1
		0	IOSCSTAIE	0	HO	R/W	-
0x4000	CLGFOUT	15–8	_	0x00	-	R	-
0050	(CLG FOUT Control	7	_	0	-	R	1
	Register)	6–4	FOUTDIV[2:0]	0x0	HO	R/W	
		3–2	FOUTSRC[1:0]	0x0	HO	R/W	
		1	-	0	-	R	
		0	FOUTEN	0	HO	R/W	
0x4000	CLGTRIM1	15–14	_	0x0	-	R	-
0052	(CLG Oscillation Frequency Trimming	13–8	IOSCLSAJ[5:0]	*	H0	R/WP	* Determined by factory adjustment.
	Register 1)	7	_	0	-	R	-
		6–0	IOSCHSAJ[6:0]	*	H0	R/WP	* Determined by factory adjustment.
0x4000	CLGTRIM2	15	_	0	-	R	-
0054	(CLG Oscillation Frequency Trimming	14–8	OSC3SAJ[6:0]	*	H0	R/WP	* Determined by factory adjustment.
	Register 2)	7–6	-	0x0	-	R	-
		5–0	OSC1SAJ[5:0]	*	H0	R/WP	* Determined by factory adjustment.

0x4000 0060-0x4000 0062

System Reset Controller (SRC)

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	SRCRESETREQ	15–8	-	0x00	-	R	_
0060	(SRC Reset Request	7–5	-	0x0	-	R	
	Flag Register)	4	PORBORREQ	1	H2	R/W	Cleared by writing 1.
		3	XRESETREQ	1	H2	R/W	
		2	WDTRSTREQ	0	H1	R/W	
		1	SVDRSTREQ	0	H1	R/W	
		0	KEYRSTREQ	0	H1	R/W	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	SRCRESETPCTL	15–8	-	0x00	-	R	-
0062	(SRC #RESET Port	7	-	0	-	R	
	Control Register)	6–4	(reserved)	0x0	H2	R/WP	Do not write 1.
		3	-	0	-	R	-
		2	(reserved)	0	H2	R/WP	Do not write 1.
		1	PORT_PLUP_EN	1	H2	R/WP	-
		0	PORT_RESET_EN	1	H2	R/WP	

0x4000 00a0-0x4000 00a4

Watchdog Timer (WDT2)

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	WDT2CLK	15–9	-	0x00	-	R	_
00a0	(WDT2 Clock Control	8	DBRUN	0	HO	R/WP	
	Register)	7–6	-	0x0	-	R	
		5–4	CLKDIV[1:0]	0x0	H0	R/WP	
		3–2	-	0x0	-	R	
		1–0	CLKSRC[1:0]	0x0	H0	R/WP	
0x4000	WDT2CTL	15–11	-	0x00	-	R	-
00a2	(WDT2 Control	10–9	MOD[1:0]	0x0	H0	R/WP	
	Register)	8	STATNMI	0	H0	R	
		7–5	-	0x0	-	R	
		4	WDTCNTRST	0	H0	WP	Always read as 0.
		3–0	WDTRUN[3:0]	0xa	H0	R/WP	_
0x4000	WDT2CMP (WDT2 Counter Com-	15–10	-	0x00	-	R	-
00a4	pare Match Register)	9–0	CMP[9:0]	0x3ff	H0	R/WP	

0x4000 00c0-0x4000 00d2

Real-time Clock (RTCA)

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	RTCACTLL	7	-	0	-	R	-
00c0	(RTCA Control	6	RTCBSY	0	H0	R	
	Register (Low Byte))	5	RTCHLD	0	H0	R/W	Cleared by setting the RTCACTLL.RTCRST bit to 1.
		4	RTC24H	0	H0	R/W	-
		3	-	0	-	R	
		2	RTCADJ	0	H0	R/W	Cleared by setting the RTCACTLL.RTCRST bit to 1.
		1	RTCRST	0	H0	R/W	-
		0	RTCRUN	0	H0	R/W	
0x4000	RTCACTLH	7	RTCTRMBSY	0	HO	R	-
00c1	(RTCA Control Register (High Byte))	6–0	RTCTRM[6:0]	0x00	H0	W	Read as 0x00.
0x4000	RTCAALM1	15	-	0	-	R	-
00c2	(RTCA Second Alarm	14–12	RTCSHA[2:0]	0x0	H0	R/W	
	Register)	11–8	RTCSLA[3:0]	0x0	H0	R/W	
		7–0	-	0x00	-	R	
0x4000	RTCAALM2	15	-	0	-	R	_
00c4	(RTCA Hour/Minute	14	RTCAPA	0	HO	R/W	
	Alarm Register)	13–12	RTCHHA[1:0]	0x0	HO	R/W	
		11–8	RTCHLA[3:0]	0x0	HO	R/W	
		7	-	0	-	R	
		6–4	RTCMIHA[2:0]	0x0	HO	R/W	
		3–0	RTCMILA[3:0]	0x0	HO	R/W	
0x4000	RTCASWCTL	15–12	BCD10[3:0]	0x0	HO	R	-
00c6	(RTCA Stopwatch	11–8	BCD100[3:0]	0x0	HO	R	
	Control Register)	7–5	-	0x0	-	R	
		4	SWRST	0	HO	W	Read as 0.
		3–1	-	0x0	-	R	
		0	SWRUN	0	H0	R/W	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	RTCASEC	15	-	0	-	R	_
00c8	(RTCA Second/1Hz	14–12	RTCSH[2:0]	0x0	H0	R/W]
	Register)	11–8	RTCSL[3:0]	0x0	H0	R/W	
		7	RTC1HZ	0	HO	R	Cleared by setting the
		6	RTC2HZ	0	H0	R	RTCACTLL.RTCRST bit to 1.
		5	RTC4HZ	0	HO	R	
		4	RTC8HZ	0	H0	R	_
		3	RTC16HZ	0	H0	R	
		2	RTC32HZ	0	H0	R	_
		1	RTC64HZ	0	HO	R	_
		0	RTC128HZ	0	HO	R	
0x4000	RTCAHUR	15	-	0	-	R	_ -
00ca	(RTCA Hour/Minute Register)	14	RTCAP	0	HO	R/W	-
	negister)		RTCHH[1:0]	0x1	HO	R/W	-
		11-8	RTCHL[3:0]	0x2	HO	R/W	-
		7		0	-	R	-
		6-4	RTCMIH[2:0]	0x0	HO	R/W	-
0.4000	RTCAMON	3–0 15–13	RTCMIL[3:0]	0x0	H0 _	R/W	_
0x4000 00cc	(RTCA Month/Day	15-13	- RTCMOH	0x0		R/W	1
0000	Register)		RTCMOL[3:0]	0 0x1	H0 H0	B/W	-
		7-6		0x1		R R	-
		5-4	RTCDH[1:0]	0x0	HO	R/W	-
		3-4	RTCDL[3:0]	0x0	HO	R/W	-
0x4000	RTCAYAR	15-11		0x00	_	R	_
00ce	(RTCA Year/Week		RTCWK[2:0]	0x0	HO	R/W	-
	Register)	7-4	RTCYH[3:0]	0x0	HO	R/W	-
		3-0	RTCYL[3:0]	0x0	HO	R/W	-
0x4000	RTCAINTF	15	RTCTRMIF	0	HO	R/W	Cleared by writing 1.
00d0	(RTCA Interrupt Flag	14	SW1IF	0	HO	R/W	
	Register)	13	SW10IF	0	HO	R/W	1
		12	SW100IF	0	HO	R/W	1
		11–9	-	0x0	_	R	_
		8	ALARMIF	0	HO	R/W	Cleared by writing 1.
		7	T1DAYIF	0	HO	R/W	1
		6	T1HURIF	0	HO	R/W	
		5	T1MINIF	0	H0	R/W]
		4	T1SECIF	0	HO	R/W]
		3	T1_2SECIF	0	HO	R/W]
		2	T1_4SECIF	0	HO	R/W	
		1	T1_8SECIF	0	HO	R/W	_
		0	T1_32SECIF	0	H0	R/W	
0x4000	RTCAINTE	15	RTCTRMIE	0	H0	R/W	
00d2	(RTCA Interrupt En-	14	SW1IE	0	H0	R/W	_
	able Register)	13	SW10IE	0	HO	R/W	_
		12	SW100IE	0	HO	R/W	_
		11–9	-	0x0	-	R	-
		8	ALARMIE	0	HO	R/W	4
		7	T1DAYIE	0	HO	R/W	
		6	T1HURIE	0	HO	R/W	-
		5	T1MINIE	0	HO	R/W	-
		4	T1SECIE	0	HO	R/W	-
		3	T1_2SECIE	0	HO	R/W	-
		2	T1_4SECIE	0	HO	R/W	-
		1	T1_8SECIE	0	HO	R/W	-
		0	T1_32SECIE	0	H0	R/W	

0x400	0 0100–0x4000	0106		S	Supply Voltage Detector (SVD4) Ch.0				
Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks		
0x4000	SVD4_0CLK	15–9	-	0x00	-	R	-		
0100	(SVD4 Ch.0 Clock	8	DBRUN	1	H0	R/WP			
	Control Register)	7	-	0	-	R			
		6–4	CLKDIV[2:0]	0x0	H0	R/WP			
		3–2	-	0x0	-	R			
		1–0	CLKSRC[1:0]	0x0	H0	R/WP			
0x4000	SVD4_0CTL	15	VDSEL	0	H1	R/WP	-		
0102	(SVD4 Ch.0 Control Register)	14–13	SVDSC[1:0]	0x0	H0	R/WP	Writing takes effect when the SVD4_0CTL.SVDMD[1:0] bits are not 0x0.		
		12–8	SVDC[4:0]	0x1e	H1	R/WP	-		
		7–4	SVDRE[3:0]	0x0	H1	R/WP			
		3	EXSEL	0	H1	R/W			
		2–1	SVDMD[1:0]	0x0	H0	R/W			
		0	MODEN	0	H1	R/W			
0x4000	SVD4_0INTF	15–9	-	0x00	-	R	-		
0104	(SVD4 Ch.0 Status	8	SVDDT	х	-	R			
	and Interrupt Flag	7–1	-	0x00	-	R			
	Register)	0	SVDIF	0	H1	R/W	Cleared by writing 1.		
0x4000	SVD4_0INTE	15–8	-	0x00	_	R	_		
0106	(SVD4 Ch.0 Interrupt	7–1	-	0x00	_	R]		
	Enable Register)	0	SVDIE	0	H0	R/W			

0x4000 0140-0x4000 014c

16-bit Timer (T16) Ch.0

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	T16_0CLK	15–9	-	0x00	-	R	-
0140	(T16 Ch.0 Clock	8	DBRUN	0	H0	R/W]
	Control Register)	7–4	CLKDIV[3:0]	0x0	H0	R/W]
		3–2	-	0x0	-	R	
		1–0	CLKSRC[1:0]	0x0	H0	R/W	
0x4000	T16_0MOD	15–8	-	0x00	_	R	-
0142	(T16 Ch.0 Mode	7–1	-	0x00	_	R]
	Register)	0	TRMD	0	HO	R/W]
0x4000	T16_0CTL	15–9	-	0x00	-	R	-
0144	(T16 Ch.0 Control	8	PRUN	0	HO	R/W]
	Register)	7–2	-	0x00	-	R]
		1	PRESET	0	HO	R/W]
		0	MODEN	0	HO	R/W]
0x4000	T16_0TR	15–0	TR[15:0]	0xffff	H0	R/W	-
0146	(T16 Ch.0 Reload Data Register)						
0x4000	T16_0TC	15–0	TC[15:0]	0xffff	HO	R	-
0148	(T16 Ch.0 Counter Data Register)						
0x4000	T16_0INTF	15–8	_	0x00	_	R	_
014a	(T16 Ch.0 Interrupt	7–1	-	0x00	-	R	1
	Flag Register)	0	UFIF	0	HO	R/W	Cleared by writing 1.
0x4000	T16_0INTE	15–8	_	0x00	-	R	-
014c	(T16 Ch.0 Interrupt	7–1	-	0x00	-	R	1
	Enable Register)	0	UFIE	0	HO	R/W	1

0x4000 01b0

Flash Controller (FLASHC)

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	FLASHCWAIT	15–8	-	0x00	-	R	_
	(FLASHC Flash Read	7–2	-	0x00	-	R	
	Cycle Register)	1–0	RDWAIT[1:0]	0x1	HO	R/WP	

0x4000 0200-0x4000 02e2

021c

021e

0x4000

0x4000

PPORTP1MODSEL 15-8 -

7–0

7–6

5–4

3–2

1–0

P1SEL[7:0]

15-14 P17MUX[1:0]

13-12 P16MUX[1:0]

11-10 P15MUX[1:0]

9-8 P14MUX[1:0]

P13MUX[1:0]

P12MUX[1:0]

P11MUX[1:0]

P10MUX[1:0]

(P1 Port Mode Select

PPORTP1FNCSEL

(P1 Port Function

Select Register)

Register)

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	PPORTP0DAT	15–8	P0OUT[7:0]	0x00	H0	R/W	-
0200	(P0 Port Data Register)	7–0	P0IN[7:0]	0x00	H0	R	-
0x4000	PPORTPOIOEN	15–8	P0IEN[7:0]	0x00	H0	R/W	-
0202	(P0 Port Enable Register)	7–0	P00EN[7:0]	0x00	H0	R/W	-
0x4000	PPORTPORCTL	15–8	P0PDPU[7:0]	0x00	H0	R/W	-
0204	(P0 Port Pull-up/down Control Register)	7–0	P0REN[7:0]	0x00	HO	R/W	
0x4000	PPORTPOINTF	15–8	P0FIF[7:0]	0x00	H0	R/W	Cleared by writing 1.
0206	(P0 Port Interrupt Flag Register)	7–0	P0RIF[7:0]	0x00	H0	R/W	
0x4000	PPORTPOINTCTL	15–8	P0FIE[7:0]	0x00	HO	R/W	-
0208	(P0 Port Interrupt Control Register)	7–0	P0RIE[7:0]	0x00	HO	R/W	
0x4000	PPORTPOCHATEN	15–8	-	0x00	-	R	-
020a	(P0 Port Chattering Filter Enable Register)	7–0	P0CHATEN[7:0]	0x00	HO	R/W	
0x4000	PPORTPOMODSEL	15–8	-	0x00	_	R	-
020c	(P0 Port Mode Select Register)	7–0	P0SEL[7:0]	0x00	HO	R/W	
0x4000	PPORTPOFNCSEL	15–14	P07MUX[1:0]	0x0	HO	R/W	-
020e	(P0 Port Function	13–12	P06MUX[1:0]	0x0	HO	R/W	
	Select Register)	11–10	P05MUX[1:0]	0x0	HO	R/W	
		9–8	P04MUX[1:0]	0x0	HO	R/W	
		7–6	P03MUX[1:0]	0x0	H0	R/W	
		5–4	P02MUX[1:0]	0x0	HO	R/W	
		3–2	P01MUX[1:0]	0x0	HO	R/W	
		1–0	P00MUX[1:0]	0x0	HO	R/W	1
0x4000	PPORTP1DAT	15–8	P1OUT[7:0]	0x00	H0	R/W	-
0210	(P1 Port Data Register)	7–0	P1IN[7:0]	0x00	H0	R	
0x4000	PPORTP1IOEN (P1 Port Enable	15–8	P1IEN[7:0]	0x00	H0	R/W	_
0212	Register)	7–0	P10EN[7:0]	0x00	H0	R/W	
0x4000	PPORTP1RCTL (P1 Port Pull-up/down	15–8	P1PDPU[7:0]	0x00	H0	R/W	
0214	Control Register)	7–0	P1REN[7:0]	0x00	H0	R/W	
0x4000	PPORTP1INTF (P1 Port Interrupt	15–8	P1FIF[7:0]	0x00	H0	R/W	Cleared by writing 1.
0216	Flag Register)	7–0	P1RIF[7:0]	0x00	H0	R/W	
0x4000 0218	PPORTP1INTCTL (P1 Port Interrupt		P1FIE[7:0]	0x00	H0	R/W	
0210	Control Register)	7–0	P1RIE[7:0]	0x00	H0	R/W	
0x4000 021a	PPORTP1CHATEN (P1 Port Chattering	15–8	_	0x00	-	R	
UZIA	Filter Enable Register)		P1CHATEN[7:0]	0x00	H0	R/W	
0.4000		15 0		000		п	

0x00

0x00

0x0

0x0

0x0

0x0

0x0

0x0

0x0

0x0

_

H0

HO

H0

HO

HO

H0

H0

H0

H0

R

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W R/W I/O Ports (PPORT)

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	PPORTP2DAT	15–8	P2OUT[7:0]	0x00	HO	R/W	-
0220	(P2 Port Data Register)	7–0	P2IN[7:0]	0x00	H0	R	-
0x4000	PPORTP2IOEN	15–8	P2IEN[7:0]	0x00	H0	R/W	-
0222	(P2 Port Enable Register)	7–0	P2OEN[7:0]	0x00	H0	R/W	-
0x4000	PPORTP2RCTL	15–8	P2PDPU[7:0]	0x00	H0	R/W	-
0224	(P2 Port Pull-up/down Control Register)	7–0	P2REN[7:0]	0x00	H0	R/W	
0x4000	PPORTP2INTF	15–8	P2FIF[7:0]	0x00	H0	R/W	Cleared by writing 1.
0226	(P2 Port Interrupt Flag Register)	7–0	P2RIF[7:0]	0x00	H0	R/W	
0x4000	PPORTP2INTCTL	15–8	P2FIE[7:0]	0x00	H0	R/W	-
0228	(P2 Port Interrupt Control Register)	7–0	P2RIE[7:0]	0x00	H0	R/W	-
0x4000	PPORTP2CHATEN	15–8	-	0x00	-	R	-
022a	(P2 Port Chattering Filter Enable Register)	7–0	P2CHATEN[7:0]	0x00	H0	R/W	
0x4000	PPORTP2MODSEL	15–8	-	0x00	-	R	-
022c	(P2 Port Mode Select Register)	7–0	P2SEL[7:0]	0x00	H0	R/W	1
0x4000	PPORTP2FNCSEL		P27MUX[1:0]	0x0	H0	R/W	-
022e	(P2 Port Function		P26MUX[1:0]	0x0	HO	R/W	_
	Select Register)		P25MUX[1:0]	0x0	HO	R/W	_
		9-8	P24MUX[1:0]	0x0	HO	R/W	4
		7–6	P23MUX[1:0]	0x0	HO	R/W	-
		5-4	P22MUX[1:0]	0x0	HO	R/W	-
		3-2	P21MUX[1:0]	0x0	HO	R/W	-
0 4000		1-0	P20MUX[1:0]	0x0	HO	R/W	
0x4000	PPORTP3DAT (P3 Port Data	15–8	P3OUT[7:0]	0x00	HO	R/W	
0230	Register)	7–0	P3IN[7:0]	0x00	H0	R	
0x4000 0232	PPORTP3IOEN (P3 Port Enable	15–8	P3IEN[7:0]	0x00	HO	R/W	_
0232	Register)	7–0	P3OEN[7:0]	0x00	H0	R/W	
0x4000 0234	PPORTP3RCTL (P3 Port Pull-up/down	15–8	P3PDPU[7:0]	0x00	H0	R/W	_
0234	Control Register)	7–0	P3REN[7:0]	0x00	H0	R/W	
0x4000 0236	PPORTP3INTF (P3 Port Interrupt	15–8	P3FIF[7:0]	0x00	H0	R/W	Cleared by writing 1.
0230	Flag Register)	7–0	P3RIF[7:0]	0x00	H0	R/W	
0x4000	PPORTP3INTCTL (P3 Port Interrupt	15–8	P3FIE[7:0]	0x00	H0	R/W	_
0238	Control Register)	7–0	P3RIE[7:0]	0x00	H0	R/W	
0x4000 023a	PPORTP3CHATEN (P3 Port Chattering	15–8	-	0x00	-	R	
	Filter Enable Register)	7–0	P3CHATEN[7:0]	0x00	H0	R/W	
0x4000 023c	PPORTP3MODSEL (P3 Port Mode Select	15–8	-	0x00	-	R	
	Register)	7–0	P3SEL[7:0]	0x00	H0	R/W	
0x4000	PPORTP3FNCSEL		P37MUX[1:0]	0x0	H0	R/W	
023e	(P3 Port Function		P36MUX[1:0]	0x0	HO	R/W	
	Select Register)		P35MUX[1:0]	0x0	HO	R/W	-
		9–8	P34MUX[1:0]	0x0	HO	R/W	_
		7–6	P33MUX[1:0]	0x0	HO	R/W	4
		5-4	P32MUX[1:0]	0x0	HO	R/W	-
		3-2	P31MUX[1:0]	0x0	HO	R/W	
0 4655		1-0	P30MUX[1:0]	0x0	HO	R/W	
0x4000 0240	PPORTP4DAT (P4 Port Data	15–8	P4OUT[7:0]	0x00	HO	R/W	- -
-	Register)	7–0	P4IN[7:0]	0x00	HO	R	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
)x4000	PPORTP4IOEN	15–8	P4IEN[7:0]	0x00	HO	R/W	-
0242	(P4 Port Enable Register)	7–0	P40EN[7:0]	0x00	H0	R/W	
0x4000	PPORTP4RCTL (P4 Port Pull-up/down	15–8	P4PDPU[7:0]	0x00	H0	R/W	_
)244	Control Register)	7–0	P4REN[7:0]	0x00	H0	R/W	
0x4000	PPORTP4INTF (P4 Port Interrupt	15–8	P4FIF[7:0]	0x00	H0	R/W	Cleared by writing 1.
0246	Flag Register)	7–0	P4RIF[7:0]	0x00	H0	R/W	
0x4000	PPORTP4INTCTL	15–8	P4FIE[7:0]	0x00	HO	R/W	-
)248	(P4 Port Interrupt Control Register)	7–0	P4RIE[7:0]	0x00	HO	R/W	
0x4000	PPORTP4CHATEN	15–8	-	0x00	-	R	-
024a	(P4 Port Chattering Filter Enable Register)	7–0	P4CHATEN[7:0]	0x00	H0	R/W	
0x4000	PPORTP4MODSEL	15–8	-	0x00	-	R	-
)24c	(P4 Port Mode Select Register)	7–0	P4SEL[7:0]	0x00	HO	R/W	
0x4000	PPORTP4FNCSEL	15–14	P47MUX[1:0]	0x3	HO	R/W	_
024e	(P4 Port Function	13–12	P46MUX[1:0]	0x3	HO	R/W	
	Select Register)	11–10	P45MUX[1:0]	0x3	HO	R/W	
			P44MUX[1:0]	0x3	HO	R/W	
			P43MUX[1:0]	0x3	HO	R/W	_
			P42MUX[1:0]	0x3	HO	R/W	_
			P41MUX[1:0]	0x3	HO	R/W	_
			P40MUX[1:0]	0x3	HO	R/W	
)x4000)250	PPORTP5DAT (P5 Port Data		P5OUT[7:0]	0x00	H0	R/W	-
	Register)		P5IN[7:0]	0x00	H0	R	
0x4000 0252	PPORTP5IOEN (P5 Port Enable	15–8	P5IEN[7:0]	0x00	HO	R/W	_
JZJZ	Register)	7–0	P50EN[7:0]	0x00	HO	R/W	
0x4000 0254	PPORTP5RCTL (P5 Port Pull-up/down	15–8	P5PDPU[7:0]	0x00	HO	R/W	_
JZJ4	Control Register)	7–0	P5REN[7:0]	0x00	H0	R/W	
0x4000 0256	PPORTP5INTF (P5 Port Interrupt	15–8	P5FIF[7:0]	0x00	HO	R/W	Cleared by writing 1.
J2J0	Flag Register)	7–0	P5RIF[7:0]	0x00	HO	R/W	
0x4000 0258	PPORTP5INTCTL (P5 Port Interrupt	15–8	P5FIE[7:0]	0x00	HO	R/W	_
J230	Control Register)	7–0	P5RIE[7:0]	0x00	HO	R/W	
0x4000	PPORTP5CHATEN	15–8	_	0x00	_	R	_
025a	(P5 Port Chattering Filter Enable Register)	7–0	P5CHATEN[7:0]	0x00	H0	R/W	
0x4000	PPORTP5MODSEL (P5 Port Mode Select	15–8	-	0x00	-	R	-
025c	Register)	7–0	P5SEL[7:0]	0x00	HO	R/W	
0x4000	PPORTP5FNCSEL	15–14	P57MUX[1:0]	0x3	HO	R/W	
025e	(P5 Port Function		P56MUX[1:0]	0x3	HO	R/W	
	Select Register)		P55MUX[1:0]	0x3	HO	R/W	_
			P54MUX[1:0]	0x3	HO	R/W	_
			P53MUX[1:0]	0x3	HO	R/W	_
			P52MUX[1:0]	0x3	HO	R/W	4
			P51MUX[1:0]	0x3	HO	R/W	4
			P50MUX[1:0]	0x3	HO	R/W	
0x4000 0260	PPORTP6DAT (P6 Port Data	15–8	P6OUT[7:0]	0x00	HO	R/W	
0200	Register)	7–0	P6IN[7:0]	0x00	H0	R	
0x4000 0262	PPORTP6IOEN	15–8	P6IEN[7:0]	0x00	H0	R/W	
シャン	(P6 Port Enable	7–0	P6OEN[7:0]	0x00	HO	R/W	7

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	PPORTP6RCTL	15–8	P6PDPU[7:0]	0x00	HO	R/W	-
0264	(P6 Port Pull-up/down Control Register)	7–0	P6REN[7:0]	0x00	H0	R/W	-
0x4000	PPORTP6INTF	15–8	P6FIF[7:0]	0x00	HO	R/W	Cleared by writing 1.
0266	(P6 Port Interrupt						-
	Flag Register)	7–0	P6RIF[7:0]	0x00	HO	R/W	
0x4000	PPORTP6INTCTL	15–8	P6FIE[7:0]	0x00	HO	R/W	-
0268	(P6 Port Interrupt Control Register)	7–0	P6RIE[7:0]	0x00	H0	R/W	-
0x4000	PPORTP6CHATEN	15–8	-	0x00	-	R	-
026a	(P6 Port Chattering Filter Enable Register)	7–0	P6CHATEN[7:0]	0x00	HO	R/W	
0x4000	PPORTP6MODSEL	15–8	-	0x00	-	R	-
026c	(P6 Port Mode Select Register)	7–0	P6SEL[7:0]	0x00	H0	R/W	-
0x4000	PPORTP6FNCSEL	15–14	P67MUX[1:0]	0x3	HO	R/W	-
026e	(P6 Port Function	13–12	P66MUX[1:0]	0x3	HO	R/W	1
	Select Register)		P65MUX[1:0]	0x3	HO	R/W	1
			P64MUX[1:0]	0x3	HO	R/W	1
		7-6	P63MUX[1:0]	0x3	HO	R/W	-
		5-4	P62MUX[1:0]	0x3	HO	R/W	-
			P61MUX[1:0]	0x3	HO	R/W	-
		1-0	P60MUX[1:0]	0x3	HO	R/W	-
0x4000	PPORTPDDAT		PDOUT[7:0]	0x00	HO	R/W	
02d0	(Pd Port Data						-
0200	Register)	7–5	PDIN[7:5]	0x0	HO	R	-
	(logiotor)	4	(reserved)	0	-	R	-
			PDIN[3:0]	0x00	HO	R	
0x4000	PPORTPDIOEN		PDIEN[7:5]	0x0	HO	R/W	-
02d2	(Pd Port Enable	12	(reserved)	0	HO	R/W	-
	Register)		PDIEN[3:0]	0x0	HO	R/W	-
			PDOEN[7:0]	0x10	HO	R/W	
0x4000	PPORTPDRCTL		PDPDPU[7:5]	0x0	HO	R/W	
02d4	(Pd Port Pull-up/down	12	(reserved)	0	HO	R/W	_
	Control Register)	11–8	PDPDPU[3:0]	0x0	H0	R/W	_
		7–5	PDREN[7:5]	0x0	H0	R/W	
		4	(reserved)	0	HO	R/W	
		3–0	PDREN[3:0]	0x0	HO	R/W	
0x4000 02dc	PPORTPDMODSEL (Pd Port Mode Select	15–8	-	0x00	-	R	
0200	Register)	7–0	PDSEL[7:0]	0x23	H0	R/W	
0x4000	PPORTPDFNCSEL	15–14	PD7MUX[1:0]	0x0	HO	R/W	
02de	(Pd Port Function	13–12	PD6MUX[1:0]	0x0	H0	R/W	
	Select Register)	11–10	PD5MUX[1:0]	0x2	HO	R/W	
		9–8	(reserved)	0x0	HO	R/W	
		7–6	PD3MUX[1:0]	0x0	HO	R/W	
			PD2MUX[1:0]	0x0	HO	R/W]
			PD1MUX[1:0]	0x0	HO	R/W	1
		1–0	PD0MUX[1:0]	0x0	H0	R/W	1
0x4000	PPORTCLK	15–9	-	0x00	_	R	-
02e0	(P Port Clock Control	8	DBRUN	0	HO	R/WP	1
	Register)		CLKDIV[3:0]	0x0	HO	R/WP	1
1		3–2	KRSTCFG[1:0]	0x0	HO	R/WP	-
		1 3-2					

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	PPORTINTFGRP	15–8	-	0x00	-	R	_
02e2	(P Port Interrupt Flag	7	-	0	-	R	
	Group Register)	6	P6INT	0	H0	R	
		5	P5INT	0	H0	R	-
		4	P4INT	0	H0	R	-
		3	P3INT	0	HO	R	
		2	P2INT	0	H0	R	
		1	P1INT	0	H0	R	
		0	POINT	0	H0	R	

0x4000 0300-0x4000 031e

Universal Port Multiplexer (UPMUX)

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	UPMUXP0MUX0		P01PPFNC[2:0]	0x0	HO	R/W	_
0300	(P00–01 Universal		P01PERICH[1:0]	0x0	HO	R/W	1
	Port Multiplexer		P01PERISEL[2:0]	0x0	HO	R/W	1
	Setting Register)	7–5	P00PPFNC[2:0]	0x0	HO	R/W	1
		4–3	P00PERICH[1:0]	0x0	HO	R/W	1
		2–0	P00PERISEL[2:0]	0x0	HO	R/W	1
0x4000	UPMUXP0MUX1		P03PPFNC[2:0]	0x0	HO	R/W	_
0302	(P02–03 Universal		P03PERICH[1:0]	0x0	HO	R/W	1
	Port Multiplexer	10-8	P03PERISEL[2:0]	0x0	HO	R/W	1
	Setting Register)	7–5	P02PPFNC[2:0]	0x0	HO	R/W	1
		4–3	P02PERICH[1:0]	0x0	HO	R/W	1
		2-0	P02PERISEL[2:0]	0x0	HO	R/W	1
0x4000	UPMUXP0MUX2	15–13	P05PPFNC[2:0]	0x0	HO	R/W	-
0304	(P04–05 Universal	12-11	P05PERICH[1:0]	0x0	HO	R/W	1
	Port Multiplexer	10-8	P05PERISEL[2:0]	0x0	H0	R/W	
	Setting Register)	7–5	P04PPFNC[2:0]	0x0	H0	R/W	
		4–3	P04PERICH[1:0]	0x0	H0	R/W	
		2–0	P04PERISEL[2:0]	0x0	H0	R/W	
0x4000	UPMUXP0MUX3	15–13	P07PPFNC[2:0]	0x0	H0	R/W	-
0306	(P06–07 Universal	12-11	P07PERICH[1:0]	0x0	H0	R/W	
	Port Multiplexer	10-8	P07PERISEL[2:0]	0x0	H0	R/W]
	Setting Register)	7–5	P06PPFNC[2:0]	0x0	H0	R/W]
		4–3	P06PERICH[1:0]	0x0	H0	R/W]
		2–0	P06PERISEL[2:0]	0x0	H0	R/W	
0x4000	UPMUXP1MUX0	15–13	P11PPFNC[2:0]	0x0	H0	R/W	_
0308	(P10–11 Universal	12–11	P11PERICH[1:0]	0x0	HO	R/W	
	Port Multiplexer	10–8	P11PERISEL[2:0]	0x0	HO	R/W	
	Setting Register)	7–5	P10PPFNC[2:0]	0x0	HO	R/W	
		4–3	P10PERICH[1:0]	0x0	HO	R/W	
		2–0	P10PERISEL[2:0]	0x0	HO	R/W	
0x4000	UPMUXP1MUX1	15–13	P13PPFNC[2:0]	0x0	HO	R/W	
030a	(P12–13 Universal	12–11	P13PERICH[1:0]	0x0	HO	R/W	
	Port Multiplexer	10–8	P13PERISEL[2:0]	0x0	HO	R/W	
	Setting Register)	7–5	P12PPFNC[2:0]	0x0	HO	R/W	
		4–3	P12PERICH[1:0]	0x0	HO	R/W	
		2–0	P12PERISEL[2:0]	0x0	HO	R/W	
0x4000	UPMUXP1MUX2		P15PPFNC[2:0]	0x0	HO	R/W	
030c	(P14–15 Universal		P15PERICH[1:0]	0x0	HO	R/W	
	Port Multiplexer	10–8	P15PERISEL[2:0]	0x0	HO	R/W	
	Setting Register)	7–5	P14PPFNC[2:0]	0x0	HO	R/W	
		4–3	P14PERICH[1:0]	0x0	HO	R/W	
		2–0	P14PERISEL[2:0]	0x0	HO	R/W	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	UPMUXP1MUX3		P17PPFNC[2:0]	0x0	HO	R/W	
030e	(P16-17 Universal	12–11	P17PERICH[1:0]	0x0	HO	R/W	
	Port Multiplexer	10-8	P17PERISEL[2:0]	0x0	H0	R/W	_
	Setting Register)	7–5	P16PPFNC[2:0]	0x0	H0	R/W	_
		4–3	P16PERICH[1:0]	0x0	H0	R/W	_
		2–0	P16PERISEL[2:0]	0x0	H0	R/W	
0x4000	UPMUXP2MUX0		P21PPFNC[2:0]	0x0	HO	R/W	
0310	(P20–21 Universal	12-11	P21PERICH[1:0]	0x0	HO	R/W	_
	Port Multiplexer	10-8	P21PERISEL[2:0]	0x0	HO	R/W	_
	Setting Register)	7–5	P20PPFNC[2:0]	0x0	H0	R/W	
		4–3	P20PERICH[1:0]	0x0	H0	R/W	
		2–0	P20PERISEL[2:0]	0x0	H0	R/W	
0x4000	UPMUXP2MUX1	15–13	P23PPFNC[2:0]	0x0	HO	R/W	_
0312	(P22–23 Universal	12–11	P23PERICH[1:0]	0x0	HO	R/W	_
	Port Multiplexer	10-8	P23PERISEL[2:0]	0x0	HO	R/W	-
	Setting Register)	7–5	P22PPFNC[2:0]	0x0	HO	R/W	-
		4–3	P22PERICH[1:0]	0x0	HO	R/W	
		2–0	P22PERISEL[2:0]	0x0	H0	R/W	
0x4000	UPMUXP2MUX2	15–13	P25PPFNC[2:0]	0x0	HO	R/W]–
0314	(P24–25 Universal	12–11	P25PERICH[1:0]	0x0	HO	R/W	
	Port Multiplexer	10–8	P25PERISEL[2:0]	0x0	HO	R/W	
	Setting Register)	7–5	P24PPFNC[2:0]	0x0	HO	R/W	
		4–3	P24PERICH[1:0]	0x0	H0	R/W	
		2–0	P24PERISEL[2:0]	0x0	H0	R/W	
0x4000	UPMUXP2MUX3	15–13	P27PPFNC[2:0]	0x0	H0	R/W	-
0316	(P26–27 Universal	12-11	P27PERICH[1:0]	0x0	H0	R/W	
	Port Multiplexer	10-8	P27PERISEL[2:0]	0x0	HO	R/W	
	Setting Register)	7–5	P26PPFNC[2:0]	0x0	H0	R/W	
		4–3	P26PERICH[1:0]	0x0	H0	R/W	
		2–0	P26PERISEL[2:0]	0x0	H0	R/W	
0x4000	UPMUXP3MUX0	15–13	P31PPFNC[2:0]	0x0	H0	R/W	-
0318	(P30-31 Universal	12-11	P31PERICH[1:0]	0x0	H0	R/W	
	Port Multiplexer	10-8	P31PERISEL[2:0]	0x0	H0	R/W	
	Setting Register)	7–5	P30PPFNC[2:0]	0x0	H0	R/W	
		4–3	P30PERICH[1:0]	0x0	HO	R/W	
		2–0	P30PERISEL[2:0]	0x0	HO	R/W	
0x4000	UPMUXP3MUX1	15–13	P33PPFNC[2:0]	0x0	H0	R/W	-
031a	(P32–33 Universal	12-11	P33PERICH[1:0]	0x0	HO	R/W	
	Port Multiplexer	10-8	P33PERISEL[2:0]	0x0	HO	R/W	
	Setting Register)	7–5	P32PPFNC[2:0]	0x0	H0	R/W	
		4–3	P32PERICH[1:0]	0x0	HO	R/W	
		2-0	P32PERISEL[2:0]	0x0	HO	R/W	
0x4000	UPMUXP3MUX2	15–13	P35PPFNC[2:0]	0x0	HO	R/W	-
031c	(P34–35 Universal	12-11	P35PERICH[1:0]	0x0	HO	R/W	
	Port Multiplexer	10-8	P35PERISEL[2:0]	0x0	HO	R/W	1
	Setting Register)	7–5	P34PPFNC[2:0]	0x0	HO	R/W	1
		4–3	P34PERICH[1:0]	0x0	HO	R/W	1
		2–0	P34PERISEL[2:0]	0x0	HO	R/W	1
0x4000	UPMUXP3MUX3	-	P37PPFNC[2:0]	0x0	HO	R/W	-
031e	(P36–37 Universal		P37PERICH[1:0]	0x0	HO	R/W	
	Port Multiplexer		P37PERISEL[2:0]	0x0	HO	R/W	
	Setting Register)	7–5	P36PPFNC[2:0]	0x0	HO	R/W	
					HO	R/W	1
		4–3	P36PERICH[1:0]	0x0	1 10		

		0394					UART (UART3) Ch.0
Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
	UART3_0CLK	15–9	-	0x00	-	R	
	(UART3 Ch.0 Clock	8	DBRUN	0	H0	R/W	_
	Control Register)	7–6	-	0x0	-	R	_
		5–4	CLKDIV[1:0]	0x0	HO	R/W	
		3–2	-	0x0	-	R	_
		1–0	CLKSRC[1:0]	0x0	HO	R/W	
	UART3_0MOD	15–13		0x00	-	R	-
0002	(UART3 Ch.0 Mode	12	PECAR	0	H0	R/W	_
	Register)	11	CAREN	0	H0	R/W	_
		10	BRDIV	0	H0	R/W	_
		9	INVRX	0	H0	R/W	_
		8	INVTX	0	H0	R/W	_
		7	-	0	-	R	
		6	PUEN	0	H0	R/W	-
		5	OUTMD	0	H0	R/W	_
		4	IRMD	0	HO	R/W	_
		3	CHLN	0	H0	R/W	_
		2	PREN	0	H0	R/W	_
		1	PRMD	0	H0	R/W	
		0	STPB	0	H0	R/W	
	UART3_0BR	15–12	-	0x0	-	R	_
	(UART3 Ch.0 Baud-	11–8	FMD[3:0]	0x0	H0	R/W	-
	Rate Register)	7–0	BRT[7:0]	0x00	H0	R/W	
	UART3_0CTL	15–8	-	0x00	-	R	_
	(UART3 Ch.0 Control	7–2	-	0x00	-	R	_
	Register)	1	SFTRST	0	H0	R/W	_
		0	MODEN	0	H0	R/W	
	UART3_0TXD (UART3 Ch.0 Trans-	15–8	_	0x00	-	R	_
	mit Data Register)	7–0	TXD[7:0]	0x00	HO	R/W	
	UART3_0RXD	15–8	-	0x00	-	R	-
	(UART3 Ch.0 Receive Data Register)	7–0	RXD[7:0]	0x00	HO	R	-
	UART3 0INTF	15–10	_	0x00	_	R	_
038c	(UART3 Ch.0 Status	9	RBSY	0	H0/S0	R	
	and Interrupt Flag	8	TBSY	0	H0/S0	R	
	Register)	7	_	0	-	R	
		6	TENDIF	0	H0/S0	R/W	Cleared by writing 1.
		5	FEIF	0	H0/S0	R/W	Cleared by writing 1 or read-
		4	PEIF	0	H0/S0	R/W	ing the UART3_0RXD register.
		3	OEIF	0	H0/S0	R/W	Cleared by writing 1.
		2	RB2FIF	0	H0/S0	R	Cleared by reading the
		1	RB1FIF	0	H0/S0	R	UART3_0RXD register.
		0	TBEIF	1	H0/S0	R	Cleared by writing to the
0x4000	UART3_0INTE	15–8		0x00	_	R	UART3_0TXD register.
	(UART3 Ch.0	7	-	0	_	R	
	Interrupt Enable	6	TENDIE	0	НО	R/W	1
	Register)	5	FEIE	0	HO	R/W	
		4	PEIE	0	HO	R/W	
		3	OEIE	0	HO	R/W	
		-					1
		2	RB2FIE	0	H0	R/W	
		2 1	RB2FIE RB1FIE	0	H0 H0	R/W R/W	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	UART3_0	15–8	-	0x00	-	R	-
0390	TBEDMAEN						
	(UART3 Ch.0	7–4	-	0x0	-	R	
	Transmit Buffer						
	Empty DMA Request	3–0	TBEDMAEN[3:0]	0x0	H0	R/W	
	Enable Register)						
0x4000	UART3_0	15–8	-	0x00	-	R	-
0392	RB1FDMAEN						
	(UART3 Ch.0 Receive	7–4	-	0x0	-	R	
	Buffer One Byte Full						_
	DMA Request Enable	3–0	RB1FDMAEN[3:0]	0x0	H0	R/W	
	Register)						
0x4000	UART3_0CAWF	15–8	-	0x00	-	R	-
0394	(UART3 Ch.0 Carrier	7–0	CRPER[7:0]	0x00	HO	R/W	-
	Waveform Register)	7-0		0,00	110	17.00	

0x4000 03a0-0x4000 03ac

16-bit Timer (T16) Ch.1

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
		-		-		_
(T16 Ch.1 Clock		DBRUN	0	НО		
Control Register)	7-4	-	0x0	HO	R/W	
	3–2	-	0x0	_	R	
	1–0	CLKSRC[1:0]	0x0	HO	R/W	
T16_1MOD	15–8	-	0x00	-	R	_
(T16 Ch.1 Mode	7–1	-	0x00	-	R	
Register)	0	TRMD	0	HO	R/W	
T16_1CTL	15–9	_	0x00	_	R	_
(T16 Ch.1 Control	8	PRUN	0	HO	R/W	
Register)	7–2	-	0x00	-	R	
	1	PRESET	0	HO	R/W	
	0	MODEN	0	H0	R/W	
T16_1TR	15–0	TR[15:0]	0xffff	HO	R/W	_
<u> </u>		70// 5 01	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			
-	15–0	TC[15:0]	0xffff	HO	R	-
<u>`</u>						
- · ·	15_8	_	0×00		R	_
-	<u> </u>	_		_		
Flag Register)		LIFIE		НО		Cleared by writing 1.
	-	_	-			
-		_				
Enable Register)						
	T16_1CLK (T16 Ch.1 Clock Control Register) T16_1MOD (T16 Ch.1 Mode Register) T16_1CTL (T16 Ch.1 Control Register) T16_1TR (T16 Ch.1 Reload Data Register) T16_1TC (T16 Ch.1 Counter Data Register) T16_1INTF (T16 Ch.1 Interrupt Flag Register) T16_1INTE (T16 Ch.1 Interrupt	T16_1CLK 15-9 (T16 Ch.1 Clock 8 Control Register) 7-4 3-2 1-0 T16_1MOD 15-8 (T16 Ch.1 Mode 7-1 Register) 0 T16_1CTL 15-9 (T16 Ch.1 Mode 7-2 1 0 T16_1CTL 15-9 (T16 Ch.1 Control 8 Register) 7-2 1 0 T16_1TR 15-0 (T16 Ch.1 Reload 15-0 Data Register) 15-0 T16_1TC 15-0 (T16 Ch.1 Counter 15-0 Data Register) 15-0 T16_1INTF 15-8 (T16 Ch.1 Interrupt 7-1 Flag Register) 0 T16_1INTE 15-8 (T16 Ch.1 Interrupt 7-1 Flag Register) 0 T16_1INTE 15-8 (T16 Ch.1 Interrupt 7-1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

0x4000 03b0-0x4000 03be

Synchronous Serial Interface (SPIA) Ch.0

		00.00		Oynor	nonouc	oonan	
Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	SPIA_0MOD	15–12	-	0x0	-	R	_
03b0	(SPIA Ch.0 Mode	11–8	CHLN[3:0]	0x7	HO	R/W	
	Register)	7–6	-	0x0	-	R	
		5	PUEN	0	H0	R/W	
		4	NOCLKDIV	0	H0	R/W	
		3	LSBFST	0	H0	R/W	
		2	CPHA	0	H0	R/W	
		1	CPOL	0	H0	R/W	
		0	MST	0	H0	R/W	
0x4000	SPIA_0CTL	15–8	-	0x00	-	R	_
03b2	(SPIA Ch.0 Control	7–2	-	0x00	-	R	
	Register)	1	SFTRST	0	HO	R/W	
		0	MODEN	0	H0	R/W	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000 03b4	SPIA_0TXD (SPIA Ch.0 Transmit Data Register)	15–0	TXD[15:0]	0x0000	H0	R/W	-
0x4000 03b6	SPIA_0RXD (SPIA Ch.0 Receive Data Register)	15–0	RXD[15:0]	0x0000	HO	R	-
0x4000	SPIA_0INTF	15–8	-	0x00	-	R	-
03b8	(SPIA Ch.0 Interrupt	7	BSY	0	H0	R	
	Flag Register)	6–4	-	0x0	-	R	
		3	OEIF	0	H0/S0	R/W	Cleared by writing 1.
		2	TENDIF	0	H0/S0	R/W	
		1	RBFIF	0	H0/S0	R	Cleared by reading the SPIA_0RXD register.
		0	TBEIF	1	H0/S0	R	Cleared by writing to the SPIA_0TXD register.
0x4000	SPIA_0INTE	15–8	-	0x00	-	R	-
03ba	(SPIA Ch.0 Interrupt	7–4	-	0x0	-	R	_
	Enable Register)	3	OEIE	0	H0	R/W	
		2	TENDIE	0	H0	R/W	
		1	RBFIE	0	H0	R/W	
		0	TBEIE	0	H0	R/W	
0x4000 03bc	SPIA_0TBEDMAEN (SPIA Ch.0 Transmit	15–8	-	0x00	-	R	_
	Buffer Empty DMA	7–4	_	0x0	-	R	
	Request Enable Register)	3–0	TBEDMAEN[3:0]	0x0	H0	R/W	
0x4000 03be	SPIA_0RBFDMAEN (SPIA Ch.0 Receive	15–8	_	0x00	-	R	
0000	Buffer Full DMA	7–4	_	0x0	-	R	
	Request Enable Register)	3–0	RBFDMAEN[3:0]	0x0	H0	R/W	

0x4000 03c0-0x4000 03d6

I²C (I2C) Ch.0

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	I2C_0CLK	15–9	-	0x00	-	R	-
03c0	(I2C Ch.0 Clock	8	DBRUN	0	HO	R/W	
	Control Register)	7–6	-	0x0	-	R	
		5–4	CLKDIV[1:0]	0x0	HO	R/W	
		3–2	-	0x0	-	R	
		1–0	CLKSRC[1:0]	0x0	H0	R/W	
0x4000	I2C_0MOD	15–8	-	0x00	-	R	-
03c2	(I2C Ch.0 Mode	7–3	-	0x00	-	R]
	Register)	2	OADR10	0	H0	R/W	
		1	GCEN	0	H0	R/W	
		0	-	0	-	R	
0x4000	I2C_0BR	15–8	-	0x00	-	R	-
03c4	(I2C Ch.0 Baud-Rate	7	-	0	-	R	
	Register)	6–0	BRT[6:0]	0x7f	H0	R/W	
0x4000	I2C_0OADR (I2C Ch.0 Own	15–10	-	0x00	-	R	-
03c8	Address Register)	9–0	OADR[9:0]	0x000	H0	R/W	
0x4000	I2C_0CTL	15–8	-	0x00	-	R	-
03ca	(I2C Ch.0 Control	7–6	-	0x0	-	R	
	Register)	5	MST	0	HO	R/W	
		4	TXNACK	0	H0/S0	R/W]
		3	TXSTOP	0	H0/S0	R/W]
		2	TXSTART	0	H0/S0	R/W]
		1	SFTRST	0	HO	R/W]
		0	MODEN	0	HO	R/W]

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	I2C_0TXD	15–8	-	0x00	-	R	-
03cc	(I2C Ch.0 Transmit Data Register)	7–0	TXD[7:0]	0x00	H0	R/W	-
0x4000	I2C_0RXD	15–8	-	0x00	-	R	-
03ce	(I2C Ch.0 Receive Data Register)	7–0	RXD[7:0]	0x00	H0	R	-
0x4000	I2C_0INTF	15–13	-	0x0	-	R	
03d0	(I2C Ch.0 Status	12	SDALOW	0	H0	R]
	and Interrupt Flag	11	SCLLOW	0	H0	R	
	Register)	10	BSY	0	H0/S0	R]
		9	TR	0	H0	R]
		8	-	0	-	R	
		7	BYTEENDIF	0	H0/S0	R/W	Cleared by writing 1.
		6	GCIF	0	H0/S0	R/W	
		5	NACKIF	0	H0/S0	R/W	1
		4	STOPIF	0	H0/S0	R/W	1
		3	STARTIF	0	H0/S0	R/W	1
		2	ERRIF	0	H0/S0	R/W	1
		1	RBFIF	0	H0/S0	R	Cleared by reading the I2C_0RXD register.
		0	TBEIF	0	H0/S0	R	Cleared by writing to the I2C_0TXD register.
0x4000	I2C_0INTE	15–8	-	0x00	-	R	-
03d2	(I2C Ch.0 Interrupt	7	BYTEENDIE	0	HO	R/W]
	Enable Register)	6	GCIE	0	HO	R/W	
		5	NACKIE	0	HO	R/W	
		4	STOPIE	0	H0	R/W	1
		3	STARTIE	0	HO	R/W]
		2	ERRIE	0	HO	R/W	
		1	RBFIE	0	HO	R/W	
		0	TBEIE	0	HO	R/W	1
0x4000 03d4	I2C_0TBEDMAEN (I2C Ch.0 Transmit	15–8	-	0x00	-	R	-
0504	Buffer Empty DMA	7–4	_	0x0	-	R	
	Request Enable Register)	3–0	TBEDMAEN[3:0]	0x0	H0	R/W	
0x4000 03d6	I2C_0RBFDMAEN (I2C Ch.0 Receive	15–8	_	0x00	-	R	
	Buffer Full DMA	7–4	_	0x0	-	R	
	Request Enable Register)	3–0	RBFDMAEN[3:0]	0x0	H0	R/W	

0x4000 0400-0x4000 042c

16-bit PWM Timer (T16B) Ch.0

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	T16B_0CLK	15–9	-	0x00	-	R	-
0400	(T16B Ch.0 Clock	8	DBRUN	0	H0	R/W	
	Control Register)	7–4	CLKDIV[3:0]	0x0	H0	R/W	
		3	-	0	-	R	
		2–0	CLKSRC[2:0]	0x0	H0	R/W	
0x4000	T16B_0CTL	15–9	-	0x00	-	R	-
0402	(T16B Ch.0 Counter	8	MAXBSY	0	H0	R	
	Control Register)	7–6	-	0x0	-	R	
		5–4	CNTMD[1:0]	0x0	H0	R/W	
		3	ONEST	0	H0	R/W	
		2	RUN	0	H0	R/W	
		1	PRESET	0	H0	R/W	
		0	MODEN	0	H0	R/W	
0x4000 0404	T16B_0MC (T16B Ch.0 Max	15–0	MC[15:0]	0xffff	H0	R/W	-
	Counter Data Register)						

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	T16B_0TC	15–0	TC[15:0]	0x0000	H0	R	-
0406	(T16B Ch.0 Timer						
	Counter Data Register)						
0x4000	T16B_0CS	15–8	-	0x00	-	R	-
0408	(T16B Ch.0 Counter	7–6	-	0x0	-	R	_
	Status Register)	5	CAPI3	0	H0	R	-
		4	CAPI2	0	H0	R	
		3	CAPI1	0	H0	R	
		2	CAPIO	0	H0	R	
		1	UP_DOWN	1	H0	R	
		0	BSY	0	H0	R	
0x4000	T16B_0INTF	15–10	-	0x00	-	R	-
040a	(T16B Ch.0 Interrupt	9	CAPOW3IF	0	H0	R/W	Cleared by writing 1.
	Flag Register)	8	CMPCAP3IF	0	H0	R/W	
		7	CAPOW2IF	0	HO	R/W	-
		6	CMPCAP2IF	0	HO	R/W	
		5	CAPOW1IF	0	HO	R/W	1
		4	CMPCAP1IF	0	HO	R/W	1
		3	CAPOW0IF	0	HO	R/W	-
		2	CMPCAP0IF	0	HO	R/W	-
		1	CNTMAXIF	0	HO	R/W	-
		0	CNTZEROIF	0	HO	R/W	-
0x4000	T16B 0INTE	15–10		0x00	110	R	
0x4000 040c	(T16B Ch.0 Interrupt				-		-
0400	Enable Register)	9		0	HO	R/W	-
		8	CMPCAP3IE	0	HO	R/W	-
		7	CAPOW2IE	0	HO	R/W	-
		6	CMPCAP2IE	0	HO	R/W	-
		5	CAPOW1IE	0	HO	R/W	-
		4	CMPCAP1IE	0	HO	R/W	-
		3	CAPOW0IE	0	HO	R/W	-
		2	CMPCAP0IE	0	HO	R/W	_
		1	CNTMAXIE	0	HO	R/W	_
		0	CNTZEROIE	0	HO	R/W	
0x4000 040e	T16B_0MZDMAEN (T16B Ch.0 Counter	15–8	-	0x00	-	R	_
	Max/Zero DMA	7–4	_	0x0	-	R	
	Request Enable Register)	3–0	MZDMAEN[3:0]	0x0	H0	R/W	
0x4000	T16B_0CCCTL0	15	SCS	0	H0	R/W	-
0410	(T16B Ch.0 Compare/	14–12	CBUFMD[2:0]	0x0	H0	R/W	1
	Capture 0 Control		CAPIS[1:0]	0x0	HO	R/W	-
	Register)	9–8	CAPTRG[1:0]	0x0	HO	R/W	-
		7	-	0	-	R	1
		6	ТОИТМТ	0	HO	R/W	-
		5	тоито	0	HO	R/W	-
		4–2	TOUTMD[2:0]	0x0	HO	R/W	-
		1	TOUTINV	0,0	HO	R/W	-
		0	CCMD	0	HO	R/W	-
0x4000 0412	T16B_0CCR0 (T16B Ch.0 Compare/	-	CC[15:0]	0×0000	HO	R/W	_
	Capture 0 Data Register)						
0x4000	T16B_0CC0DMAEN (T16B Ch.0 Compare/	15–8	-	0x00	-	R	-
0414	Capture 0 DMA	7–4	-	0x0	-	R	1
	Request Enable Register)	3–0	CC0DMAEN[3:0]	0x0	H0	R/W]

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	T16B_0CCCTL1	15	SCS	0	HO	R/W	_
0418	(T16B Ch.0 Compare/	14–12	CBUFMD[2:0]	0x0	HO	R/W	
	Capture 1 Control		CAPIS[1:0]	0x0	HO	R/W	
	Register)	9–8	CAPTRG[1:0]	0x0	H0	R/W	
		7	-	0	_	R	
		6	TOUTMT	0	H0	R/W	
		5	ΤΟυτο	0	HO	R/W	
		4–2	TOUTMD[2:0]	0x0	H0	R/W	
		1	TOUTINV	0	HO	R/W	
		0	CCMD	0	HO	R/W	
0x4000 041a	T16B_0CCR1 (T16B Ch.0 Compare/ Capture 1 Data Register)	15–0	CC[15:0]	0x0000	H0	R/W	_
0x4000 041c	T16B_0CC1DMAEN (T16B Ch.0 Compare/	15–8	_	0x00	-	R	_
0410	Capture 1 DMA	7–4	_	0x0	-	R	
	Request Enable Register)	3–0	CC1DMAEN[3:0]	0x0	H0	R/W	
0x4000	T16B_0CCCTL2	15	SCS	0	H0	R/W	-
0420	(T16B Ch.0 Compare/	14–12	CBUFMD[2:0]	0x0	H0	R/W	
	Capture 2 Control	11–10	CAPIS[1:0]	0x0	H0	R/W	
	Register)	9–8	CAPTRG[1:0]	0x0	H0	R/W	
		7	-	0	-	R	
		6	TOUTMT	0	H0	R/W	
		5	ΤΟυτο	0	H0	R/W	
		4–2	TOUTMD[2:0]	0x0	H0	R/W	
		1	TOUTINV	0	H0	R/W	
		0	CCMD	0	H0	R/W	
0x4000 0422	T16B_0CCR2 (T16B Ch.0 Compare/ Capture 2 Data Register)	15–0	CC[15:0]	0x0000	HO	R/W	-
0x4000	T16B_0CC2DMAEN	15–8	-	0x00	-	R	-
0424	(T16B Ch.0 Compare/ Capture 2 DMA	7–4	-	0x0	-	R	
	Request Enable Register)	3–0	CC2DMAEN[3:0]	0x0	H0	R/W	
0x4000	T16B_0CCCTL3	15	SCS	0	H0	R/W	_
0428	(T16B Ch.0 Compare/	14–12	CBUFMD[2:0]	0x0	H0	R/W	
	Capture 3 Control		CAPIS[1:0]	0x0	H0	R/W	
	Register)		CAPTRG[1:0]	0x0	H0	R/W	
		7	-	0	_	R	
		6	TOUTMT	0	HO	R/W	
		5	ΤΟυτο	0	HO	R/W	
		4–2	TOUTMD[2:0]	0x0	HO	R/W	
		1	TOUTINV	0	H0	R/W	
		0	CCMD	0	H0	R/W	
0x4000 042a	T16B_0CCR3 (T16B Ch.0 Compare/ Capture 3 Data Register)	15–0	CC[15:0]	0x0000	H0	R/W	_
0x4000	T16B_0CC3DMAEN (T16B Ch.0 Compare/	15–8	_	0x00	_	R	-
042c	Capture 3 DMA	7–4	_	0x0	_	R	
	Request Enable Register)	3–0	CC3DMAEN[3:0]	0x0	H0	R/W	

0x400	0 0440–0x4000	046c			16	bit PW	/M Timer (T16B) Ch.1
Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	T16B_1CLK	15–9	-	0x00	-	R	_
0440	(T16B Ch.1 Clock	8	DBRUN	0	HO	R/W	
	Control Register)	7–4	CLKDIV[3:0]	0x0	H0	R/W	
		3	-	0	-	R	
		2–0	CLKSRC[2:0]	0x0	H0	R/W	
0x4000	T16B_1CTL	15–9	-	0x00	-	R	_
0442	(T16B Ch.1 Counter	8	MAXBSY	0	H0	R	
	Control Register)	7–6	-	0x0	-	R	
		5–4	CNTMD[1:0]	0x0	H0	R/W	
		3	ONEST	0	H0	R/W	
		2	RUN	0	H0	R/W	
		1	PRESET	0	H0	R/W	
		0	MODEN	0	H0	R/W	
0x4000	T16B_1MC	15–0	MC[15:0]	0xffff	H0	R/W	_
0444	(T16B Ch.1 Max Counter Data Register)						
0x4000 0446	T16B_1TC (T16B Ch.1 Timer	15–0	TC[15:0]	0x0000	HO	R	-

	Counter Data Register)						
0x4000 0446	T16B_1TC (T16B Ch.1 Timer Counter Data Register)	15–0	TC[15:0]	0x0000	HO	R	-
0x4000	T16B_1CS	15–8	-	0x00	-	R	_
0448	(T16B Ch.1 Counter	7–6	_	0x0	-	R	
	Status Register)	5	CAPI3	0	HO	R	
		4	CAPI2	0	HO	R	-
		3	CAPI1	0	H0	R	
		2	CAPI0	0	H0	R	
		1	UP_DOWN	1	H0	R	
		0	BSY	0	H0	R	
0x4000	T16B_1INTF	15–10	-	0x00	-	R	-
044a	(T16B Ch.1 Interrupt	9	CAPOW3IF	0	H0	R/W	Cleared by writing 1.
	Flag Register)	8	CMPCAP3IF	0	H0	R/W	
		7	CAPOW2IF	0	HO	R/W	
		6	CMPCAP2IF	0	HO	R/W	
		5	CAPOW1IF	0	H0	R/W	_
		4	CMPCAP1IF	0	HO	R/W	
		3	CAPOW0IF	0	HO	R/W	_
		2	CMPCAP0IF	0	H0	R/W	_
		1	CNTMAXIF	0	H0	R/W	
		0	CNTZEROIF	0	H0	R/W	
0x4000	T16B_1INTE	15–10	-	0x00	-	R	
044c	(T16B Ch.1 Interrupt	9	CAPOW3IE	0	H0	R/W	_
	Enable Register)	8	CMPCAP3IE	0	H0	R/W	_
		7	CAPOW2IE	0	H0	R/W	_
		6	CMPCAP2IE	0	H0	R/W	
		5	CAPOW1IE	0	H0	R/W	
		4	CMPCAP1IE	0	H0	R/W	_
		3	CAPOW0IE	0	H0	R/W	_
		2	CMPCAP0IE	0	H0	R/W	_
		1	CNTMAXIE	0	H0	R/W	_
		0	CNTZEROIE	0	H0	R/W	
0x4000	T16B_1MZDMAEN	15–8	-	0x00	-	R	-
044e	(T16B Ch.1 Counter Max/Zero DMA	7–4	_	0x0	-	R	
	Request Enable Register)	3–0	MZDMAEN[3:0]	0x0	H0	R/W	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	T16B_1CCCTL0	15	SCS	0	HO	R/W	-
0450	(T16B Ch.1 Compare/	14–12	CBUFMD[2:0]	0x0	HO	R/W	
	Capture 0 Control		CAPIS[1:0]	0x0	HO	R/W	-
	Register)	9–8	CAPTRG[1:0]	0x0	HO	R/W	-
		7	-	0	_	R	
		6	TOUTMT	0	HO	R/W	
		5	ΤΟυτο	0	HO	R/W	
		4–2	TOUTMD[2:0]	0x0	HO	R/W	
		1	TOUTINV	0	HO	R/W	-
		0	CCMD	0	HO	R/W	-
0x4000	T16B 1CCR0		CC[15:0]	0x0000	HO	R/W	_
0452	(T16B Ch.1 Compare/ Capture 0 Data Register)						
0x4000 0454	T16B_1CC0DMAEN (T16B Ch.1 Compare/	15–8	_	0x00	-	R	_
	Capture 0 DMA	7–4	-	0x0	_	R	
	Request Enable Register)	3–0	CC0DMAEN[3:0]	0x0	H0	R/W	
0x4000	T16B_1CCCTL1	15	SCS	0	H0	R/W	-
0458	(T16B Ch.1 Compare/		CBUFMD[2:0]	0x0	HO	R/W	
	Capture 1 Control		CAPIS[1:0]	0x0	HO	R/W	
	Register)	9–8	CAPTRG[1:0]	0x0	H0	R/W	
		7	-	0	-	R	
		6	TOUTMT	0	HO	R/W	
		5	TOUTO	0	HO	R/W	
		4–2	TOUTMD[2:0]	0x0	HO	R/W	
		1	TOUTINV	0	HO	R/W	
		0	CCMD	0	H0	R/W	
0x4000 045a	T16B_1CCR1 (T16B Ch.1 Compare/ Capture 1 Data Register)	15–0	CC[15:0]	0x0000	HO	R/W	-
0x4000 045c	T16B_1CC1DMAEN (T16B Ch.1 Compare/	15–8	_	0x00	-	R	_
	Capture 1 DMA	7–4	-	0x0	-	R	
	Request Enable Register)	3–0	CC1DMAEN[3:0]	0x0	H0	R/W	
0x4000	T16B_1CCCTL2	15	SCS	0	HO	R/W	_
0460	(T16B Ch.1 Compare/		CBUFMD[2:0]	0x0	HO	R/W	
	Capture 2 Control		CAPIS[1:0]	0x0	HO	R/W	
	Register)		CAPTRG[1:0]	0x0	HO	R/W	
		7	-	0	-	R	
		6	TOUTMT	0	HO	R/W	
		5	TOUTO	0	HO	R/W	
		4–2	TOUTMD[2:0]	0x0	HO	R/W	
		1	TOUTINV	0	HO	R/W	
		0	CCMD	0	HO	R/W	
0x4000 0462	T16B_1CCR2 (T16B Ch.1 Compare/ Capture 2 Data Register)	15–0	CC[15:0]	0x0000	HO	R/W	-
0x4000	T16B_1CC2DMAEN	15–8	-	0x00	_	R	_
0464	(T16B Ch.1 Compare/ Capture 2 DMA	7–4		0x0		R	
	Request Enable	3–0	CC2DMAEN[3:0]	0x0	H0	R/W	
	Register)	5.5		5,10			

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	T16B_1CCCTL3	15	SCS	0	H0	R/W	_
0468	(T16B Ch.1 Compare/	14–12	CBUFMD[2:0]	0x0	H0	R/W	
	Capture 3 Control	11–10	CAPIS[1:0]	0x0	H0	R/W	
	Register)	9–8	CAPTRG[1:0]	0x0	H0	R/W	-
		7	-	0	-	R	-
		6	TOUTMT	0	H0	R/W	
		5	ΤΟυτο	0	H0	R/W	
		4–2	TOUTMD[2:0]	0x0	H0	R/W	
		1	TOUTINV	0	H0	R/W	
		0	CCMD	0	H0	R/W	
0x4000	T16B_1CCR3	15–0	CC[15:0]	0x0000	H0	R/W	_
046a	(T16B Ch.1 Compare/						
	Capture 3 Data						
	Register)						
0x4000	T16B_1CC3DMAEN	15–8	-	0x00	-	R	-
046c	(T16B Ch.1 Compare/	7–4	_	0x0		R	
	Capture 3 DMA	1-4		0,0	_		
	Request Enable	3–0	CC3DMAEN[3:0]	0x0	HO	R/W	
L	Register)						

0x4000 0480-0x4000 048c

16-bit Timer (T16) Ch.3

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	T16_3CLK	15–9	-	0x00	-	R	_
0480	(T16 Ch.3 Clock	8	DBRUN	0	H0	R/W	
	Control Register)	7–4	CLKDIV[3:0]	0x0	H0	R/W	
		3–2	-	0x0	-	R	
		1–0	CLKSRC[1:0]	0x0	H0	R/W	
0x4000	T16_3MOD	15–8	-	0x00	-	R	_
0482	(T16 Ch.3 Mode	7–1	-	0x00	-	R	
	Register)	0	TRMD	0	H0	R/W	
0x4000	T16_3CTL	15–9	-	0x00	-	R	_
0484	(T16 Ch.3 Control	8	PRUN	0	H0	R/W	-
	Register)	7–2	-	0x00	-	R	-
		1	PRESET	0	H0	R/W	
		0	MODEN	0	H0	R/W	
0x4000 0486	T16_3TR (T16 Ch.3 Reload Data Register)	15–0	TR[15:0]	0xffff	H0	R/W	-
0x4000 0488	T16_3TC (T16 Ch.3 Counter Data Register)	15–0	TC[15:0]	0xffff	H0	R	-
0x4000	T16_3INTF	15–8	-	0x00	-	R	_
048a	(T16 Ch.3 Interrupt	7–1	-	0x00	_	R	1
	Flag Register)	0	UFIF	0	HO	R/W	Cleared by writing 1.
0x4000	T16_3INTE	15–8	-	0x00	-	R	_
048c	(T16 Ch.3 Interrupt	7–1	-	0x00	-	R	1
	Enable Register)	0	UFIE	0	HO	R/W	1

0x4000 04a0-0x4000 04ac

16-bit Timer (T16) Ch.4

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	T16_4CLK	15–9	-	0x00	-	R	_
04a0	(T16 Ch.4 Clock	8	DBRUN	0	H0	R/W	
	Control Register)	7–4	CLKDIV[3:0]	0x0	H0	R/W	
		3–2	-	0x0	-	R	
		1–0	CLKSRC[1:0]	0x0	H0	R/W	
0x4000	T16_4MOD	15–8	-	0x00	-	R	_
04a2	(T16 Ch.4 Mode	7–1	-	0x00	-	R	
	Register)	0	TRMD	0	H0	R/W	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	T16_4CTL	15–9	-	0x00	-	R	-
04a4	(T16 Ch.4 Control	8	PRUN	0	H0	R/W	
	Register)	7–2	-	0x00	-	R	
		1	PRESET	0	H0	R/W	
		0	MODEN	0	HO	R/W	
0x4000 04a6	T16_4TR (T16 Ch.4 Reload Data Register)	15–0	TR[15:0]	0xffff	H0	R/W	-
0x4000 04a8	T16_4TC (T16 Ch.4 Counter Data Register)	15–0	TC[15:0]	0xffff	H0	R	-
0x4000	T16_4INTF	15–8	-	0x00	-	R	_
04aa	(T16 Ch.4 Interrupt	7–1	-	0x00	-	R	
	Flag Register)	0	UFIF	0	H0	R/W	Cleared by writing 1.
0x4000	T16_4INTE	15–8	-	0x00	-	R	_
04ac	(T16 Ch.4 Interrupt	7–1	-	0x00	-	R	
	Enable Register)	0	UFIE	0	H0	R/W	

0x4000 04c0-0x4000 04cc

16-bit Timer (T16) Ch.5

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	T16_5CLK	15–9	-	0x00	-	R	-
04c0	(T16 Ch.5 Clock	8	DBRUN	0	H0	R/W	
	Control Register)	7–4	CLKDIV[3:0]	0x0	H0	R/W	
		3–2	-	0x0	-	R	
		1–0	CLKSRC[1:0]	0x0	H0	R/W	
0x4000	T16_5MOD	15–8	-	0x00	-	R	-
04c2	(T16 Ch.5 Mode	7–1	-	0x00	-	R	
	Register)	0	TRMD	0	HO	R/W	
0x4000	T16_5CTL	15–9	-	0x00	-	R	-
04c4	(T16 Ch.5 Control	8	PRUN	0	HO	R/W]
	Register)	7–2	-	0x00	-	R]
		1	PRESET	0	H0	R/W	
		0	MODEN	0	H0	R/W	
0x4000	T16_5TR	15–0	TR[15:0]	0xffff	H0	R/W	-
04c6	(T16 Ch.5 Reload						
	Data Register)						
0x4000	T16_5TC	15–0	TC[15:0]	0xffff	HO	R	-
04c8	(T16 Ch.5 Counter						
0.4000	Data Register)	45.0		0.00			
0x4000	T16_5INTF	15-8	-	0x00	-	R	-
04ca	(T16 Ch.5 Interrupt	7–1	-	0x00	-	R	
	Flag Register)	0	UFIF	0	HO	R/W	Cleared by writing 1.
0x4000	T16_5INTE	15–8	-	0x00	-	R	
04cc	(T16 Ch.5 Interrupt	7–1	-	0x00	-	R	
	Enable Register)	0	UFIE	0	H0	R/W	

0x4000 0600-0x4000 0614

UART (UART3) Ch.1

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	UART3_1CLK	15–9	-	0x00	-	R	_
0600	(UART3 Ch.1 Clock	8	DBRUN	0	H0	R/W	
	Control Register)	7–6	-	0x0	-	R	
		5–4	CLKDIV[1:0]	0x0	H0	R/W	
		3–2	-	0x0	-	R	
		1–0	CLKSRC[1:0]	0x0	HO	R/W	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	UART3_1MOD	15–13		0x00	-	R	-
0602	(UART3 Ch.1 Mode	12	PECAR	0	HO	R/W	_
	Register)	11	CAREN	0	HO	R/W	_
		10	BRDIV	0	HO	R/W	_
		9	INVRX	0	HO	R/W	_
		8	INVTX	0	HO	R/W	_
		7	-	0	-	R	_
		6	PUEN	0	HO	R/W	_
		5	OUTMD	0	HO	R/W	_
		4	IRMD	0	HO	R/W	_
		3	CHLN	0	HO	R/W	_
		2	PREN	0	HO	R/W	-
		1	PRMD	0	HO	R/W	-
		0	STPB	0	HO	R/W	
0x4000	UART3_1BR	15–12		0x0	-	R	
0604	(UART3 Ch.1 Baud-		FMD[3:0]	0x0	HO	R/W	_
	Rate Register)	7–0	BRT[7:0]	0x00	HO	R/W	
0x4000	UART3_1CTL	15-8	-	0x00	-	R	-
0606	(UART3 Ch.1 Control	7–2	-	0x00	-	R	4
	Register)	1	SFTRST	0	HO	R/W	-
		0	MODEN	0	HO	R/W	
0x4000	UART3_1TXD (UART3 Ch.1 Trans-	15–8	-	0x00	-	R	_
0608	mit Data Register)	7–0	TXD[7:0]	0x00	H0	R/W	
0x4000 060a	UART3_1RXD (UART3 Ch.1 Receive	15–8	_	0x00	-	R	
	Data Register)	7–0	RXD[7:0]	0x00	H0	R	
0x4000	UART3_1INTF	15–10		0x00	-	R	
060c	(UART3 Ch.1 Status	9	RBSY	0	H0/S0	R	_
	and Interrupt Flag	8	TBSY	0	H0/S0	R	
	Register)	7	-	0	-	R	
		6	TENDIF	0	H0/S0	R/W	Cleared by writing 1.
		5	FEIF	0	H0/S0	R/W	Cleared by writing 1 or read-
		4	PEIF	0	H0/S0	R/W	ing the UART3_1RXD registe
		3	OEIF	0	H0/S0	R/W	Cleared by writing 1.
		2	RB2FIF	0	H0/S0	R	Cleared by reading the
		1	RB1FIF	0	H0/S0	R	UART3_1RXD register.
		0	TBEIF	1	H0/S0	R	Cleared by writing to the UART3_1TXD register.
0x4000	UART3_1INTE	15–8	-	0x00	_	R	-
060e	(UART3 Ch.1	7	_	0	_	R	1
	Interrupt Enable	6	TENDIE	0	HO	R/W	1
	Register)	5	FEIE	0	HO	R/W	1
		4	PEIE	0	HO	R/W	1
		3	OEIE	0	HO	R/W	1
		2	RB2FIE	0	HO	R/W	1
		1	RB1FIE	0	HO	R/W	1
		0	TBEIE	0	HO	R/W	1
0x4000 0610	UART3_1	15–8	-	0x00	-	R	-
0100	TBEDMAEN (UART3 Ch.1 Transmit Buffer	7–4	-	0x0	-	R	
	Empty DMA Request Enable Register)	3–0	TBEDMAEN[3:0]	0x0	H0	R/W	
0x4000 0612	UART3_1 RB1FDMAEN	15–8	-	0x00	-	R	-
0012	(UART3 Ch.1 Receive Buffer One Byte Full	7–4	-	0x0	-	R	
	DMA Request Enable	3–0	RB1FDMAEN[3:0]	0x0	HO	R/W	1

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
	UART3_1CAWF	15–8	-	0x00	-	R	-
	(UART3 Ch.1 Carrier Waveform Register)	7–0	CRPER[7:0]	0x00	H0	R/W	

0x4000 0660-0x4000 066c

16-bit Timer (T16) Ch.6

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	T16_6CLK	15–9	-	0x00	-	R	-
0660	(T16 Ch.6 Clock	8	DBRUN	0	H0	R/W]
	Control Register)	7–4	CLKDIV[3:0]	0x0	H0	R/W	
		3–2	-	0x0	-	R	
		1–0	CLKSRC[1:0]	0x0	HO	R/W]
0x4000	T16_6MOD	15–8	-	0x00	-	R	-
0662	(T16 Ch.6 Mode	7–1	-	0x00	-	R]
	Register)	0	TRMD	0	H0	R/W]
0x4000	T16_6CTL	15–9	-	0x00	-	R	-
0664	(T16 Ch.6 Control	8	PRUN	0	H0	R/W]
	Register)	7–2	-	0x00	-	R]
		1	PRESET	0	H0	R/W	
		0	MODEN	0	H0	R/W	
0x4000	T16_6TR	15–0	TR[15:0]	0xffff	H0	R/W	-
0666	(T16 Ch.6 Reload Data Register)						
0x4000	T16_6TC	15–0	TC[15:0]	0xffff	HO	R	-
0668	(T16 Ch.6 Counter						
	Data Register)						
0x4000	T16_6INTF	15–8	-	0x00	-	R	
066a	(T16 Ch.6 Interrupt	7–1	-	0x00	-	R	
	Flag Register)	0	UFIF	0	HO	R/W	Cleared by writing 1.
0x4000	T16_6INTE	15–8	-	0x00	-	R	
066c	(T16 Ch.6 Interrupt	7–1	-	0x00	-	R]
	Enable Register)	0	UFIE	0	H0	R/W]

0x4000 0670-0x4000 067e

Synchronous Serial Interface (SPIA) Ch.1

	0 0010 001000			• • • • • • •			
Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	SPIA_1MOD	15–12	-	0x0	-	R	-
0670	(SPIA Ch.1 Mode	11–8	CHLN[3:0]	0x7	HO	R/W	
	Register)	7–6	-	0x0	-	R	
		5	PUEN	0	HO	R/W	
		4	NOCLKDIV	0	HO	R/W	
		3	LSBFST	0	HO	R/W	
		2	CPHA	0	HO	R/W	
		1	CPOL	0	HO	R/W	
		0	MST	0	HO	R/W	
0x4000	SPIA_1CTL	15–8	-	0x00	-	R	_
0672	(SPIA Ch.1 Control	7–2	-	0x00	-	R	
	Register)	1	SFTRST	0	HO	R/W	
		0	MODEN	0	HO	R/W	
0x4000	SPIA_1TXD	15–0	TXD[15:0]	0x0000	H0	R/W	-
0674	(SPIA Ch.1 Transmit						
	Data Register)						
0x4000	SPIA_1RXD	15–0	RXD[15:0]	0x0000	HO	R	_
0676	(SPIA Ch.1 Receive						
	Data Register)						

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	SPIA_1INTF	15–8	-	0x00	-	R	-
0678	(SPIA Ch.1 Interrupt	7	BSY	0	H0	R	
	Flag Register)	6–4	-	0x0	-	R	
		3	OEIF	0	H0/S0	R/W	Cleared by writing 1.
		2	TENDIF	0	H0/S0	R/W	_
		1	RBFIF	0	H0/S0	R	Cleared by reading the SPIA_1RXD register.
		0	TBEIF	1	H0/S0	R	Cleared by writing to the SPIA_1TXD register.
0x4000	SPIA_1INTE	15–8	-	0x00	-	R	-
067a	(SPIA Ch.1 Interrupt	7–4	-	0x0	-	R	_
	Enable Register)	3	OEIE	0	H0	R/W	_
		2	TENDIE	0	H0	R/W	
		1	RBFIE	0	H0	R/W	
		0	TBEIE	0	H0	R/W	
0x4000 067c	SPIA_1TBEDMAEN (SPIA Ch.1 Transmit	15–8	_	0x00	-	R	_
0010	Buffer Empty DMA	7–4	_	0x0	-	R	
	Request Enable Register)	3–0	TBEDMAEN[3:0]	0x0	H0	R/W	
0x4000 067e	SPIA_1RBFDMAEN (SPIA Ch.1 Receive	15–8	-	0x00	-	R	
0070	Buffer Full DMA	7–4	_	0x0	-	R	
	Request Enable Register)	3–0	RBFDMAEN[3:0]	0x0	H0	R/W	

0x4000 0680-0x4000 068c

16-bit Timer (T16) Ch.2

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	T16_2CLK	15–9	-	0x00	-	R	-
0680	(T16 Ch.2 Clock	8	DBRUN	0	HO	R/W	-
	Control Register)	7–4	CLKDIV[3:0]	0x0	H0	R/W	
		3–2	-	0x0	-	R	
		1–0	CLKSRC[1:0]	0x0	H0	R/W	
0x4000	T16_2MOD	15–8	-	0x00	-	R	-
0682	(T16 Ch.2 Mode	7–1	-	0x00	-	R	
	Register)	0	TRMD	0	H0	R/W	
0x4000	T16_2CTL	15–9	-	0x00	-	R	-
0684	(T16 Ch.2 Control	8	PRUN	0	H0	R/W	
	Register)	7–2	-	0x00	-	R	
		1	PRESET	0	H0	R/W	
		0	MODEN	0	H0	R/W	
0x4000 0686	T16_2TR (T16 Ch.2 Reload Data Register)	15–0	TR[15:0]	Oxffff	H0	R/W	-
0x4000 0688	T16_2TC (T16 Ch.2 Counter Data Register)	15–0	TC[15:0]	0xffff	HO	R	-
0x4000	T16_2INTF	15–8	-	0x00	-	R	-
068a	(T16 Ch.2 Interrupt	7–1	-	0x00	-	R]
	Flag Register)	0	UFIF	0	H0	R/W	Cleared by writing 1.
0x4000	T16_2INTE	15–8	-	0x00	-	R	
068c	(T16 Ch.2 Interrupt	7–1	-	0x00	-	R	
	Enable Register)	0	UFIE	0	H0	R/W]

0x400	0 06c0-0x4000	06d6					I ² C (I2C) Ch.
Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	I2C_1CLK	15–9		0x00	-	R	-
06c0	(I2C Ch.1 Clock	8	DBRUN	0	HO	R/W	-
	Control Register)	7–6	-	0x0	-	R	
		5–4	CLKDIV[1:0]	0x0	HO	R/W	
		3–2	-	0x0	-	R	
		1–0	CLKSRC[1:0]	0x0	H0	R/W	
0x4000	I2C_1MOD	15–8	-	0x00	-	R	-
06c2	(I2C Ch.1 Mode	7–3	-	0x00	-	R	
	Register)	2	OADR10	0	HO	R/W	
		1	GCEN	0	HO	R/W	
		0	-	0	-	R	
0x4000	I2C_1BR	15–8	-	0x00	-	R	_
06c4	(I2C Ch.1 Baud-Rate	7	-	0	-	R	
	Register)	6–0	BRT[6:0]	0x7f	HO	R/W	
0x4000	I2C_10ADR	15–10	-	0x00	-	R	-
06c8	(I2C Ch.1 Own Address Register)	9–0	OADR[9:0]	0x000	H0	R/W	-
0x4000	I2C_1CTL	15–8	-	0x00	-	R	-
06ca	(I2C Ch.1 Control	7–6	-	0x0	-	R	
	Register)	5	MST	0	HO	R/W	
		4	TXNACK	0	H0/S0	R/W	1
		3	TXSTOP	0	H0/S0	R/W	-
		2	TXSTART	0	H0/S0	R/W	-
		1	SFTRST	0	HO	R/W	-
		0	MODEN	0	HO	R/W	-
0x4000	I2C 1TXD	15–8	-	0x00	_	R	-
06cc	(I2C Ch.1 Transmit	7–0	TXD[7:0]	0x00	НО	R/W	-
0x4000	Data Register) I2C 1RXD	15-8	_	0x00	_	R	_
06ce	(I2C Ch.1 Receive	7-0	RXD[7:0]	0x00	H0	R	-
0x4000	Data Register) I2C 1INTF	15–13		0.0	_	R	_
0x4000 06d0	(I2C Ch.1 Status	12	- SDALOW	0x0 0	H0	R	-
0000	and Interrupt Flag	12	SCLLOW	0	HO	R	-
	Register)		BSY	-	H0/S0	R	-
		10 9	TR	0		R	-
				0	H0 _	R	-
		8	- BYTEENDIF	0		R/W	Cleared by writing 1.
		6	GCIF	0	H0/S0	R/W	
			NACKIF	-	H0/S0	R/W	-
		5	STOPIF	0	H0/S0	R/W	-
		3	STARTIF	0	H0/S0	R/W	-
		2	ERRIF	0	H0/S0	R/W	-
		1	RBFIF	0	H0/S0	R/W	Cleared by reading the
							I2C_1RXD register.
		0	TBEIF	0	H0/S0	R	Cleared by writing to the I2C_1TXD register.
0x4000	I2C_1INTE	15–8	-	0x00	-	R	
06d2	(I2C Ch.1 Interrupt	7	BYTEENDIE	0	HO	R/W	
	Enable Register)	6	GCIE	0	HO	R/W	
		5	NACKIE	0	HO	R/W	
		4	STOPIE	0	HO	R/W	
		3	STARTIE	0	HO	R/W	
		2	ERRIE	0	H0	R/W	
		1	RBFIE	0	HO	R/W	
		0	TBEIE	0	HO	R/W]

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	I2C_1TBEDMAEN	15–8	-	0x00	-	R	-
06d4	(I2C Ch.1 Transmit Buffer Empty DMA	7–4	-	0x0	-	R	
	Request Enable Register)	3–0	TBEDMAEN[3:0]	0x0	H0	R/W	
	I2C_1RBFDMAEN (I2C Ch.1 Receive	15–8	_	0x00	-	R	_
0000	Buffer Full DMA	7–4	_	0x0	-	R	
	Request Enable Register)	3–0	RBFDMAEN[3:0]	0x0	H0	R/W	

0x4000 0700-0x4000 070c

Sound Generator (SNDA)

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	SNDACLK	15–9	-	0x00	-	R	-
0700	(SNDA Clock Control	8	DBRUN	0	HO	R/W	
	Register)	7	-	0	-	R]
		6–4	CLKDIV[2:0]	0x0	H0	R/W]
		3–2	_	0x0	-	R]
		1–0	CLKSRC[1:0]	0x0	HO	R/W	
0x4000	SNDASEL	15–12	-	0x0	-	R	
0702	(SNDA Select	11–8	STIM[3:0]	0x0	HO	R/W	
	Register)	7–3	-	0x00	-	R	
		2	SINV	0	HO	R/W	
		1–0	MOSEL[1:0]	0x0	HO	R/W	
0x4000	SNDACTL	15–9	-	0x00	-	R	_
0704	(SNDA Control	8	SSTP	0	HO	R/W	_
	Register)	7–1	-	0x00	-	R	_
		0	MODEN	0	H0	R/W	
0x4000	SNDADAT	15	MDTI	0	H0	R/W	_
0706	(SNDA Data	14	MDRS	0	H0	R/W	
	Register)	13–8	SLEN[5:0]	0x00	H0	R/W	_
		7–0	SFRQ[7:0]	0xff	H0	R/W	
0x4000	SNDAINTF	15–9	-	0x00	_	R	_
0708	(SNDA Interrupt Flag	8	SBSY	0	HO	R	_
	Register)	7–2	-	0x00	-	R	
		1	EMIF	1	H0	R	Cleared by writing to the SNDADAT register.
		0	EDIF	0	H0	R/W	Cleared by writing 1 or writ- ing to the SNDADAT register.
0x4000	SNDAINTE	15–8	_	0x00	-	R	-
070a	(SNDA Interrupt	7–2	_	0x00	-	R	
	Enable Register)	1	EMIE	0	HO	R/W]
		0	EDIE	0	HO	R/W	
0x4000	SNDAEMDMAEN	15–8	-	0x00	-	R	_
070c	(SNDA Sound Buffer Empty DMA Request	7–4	-	0x0	-	R	
	Enable Register)	3–0	EMDMAEN[3:0]	0x0	HO	R/W	

0x4000 0720-0x4000 0732

IR Remote Controller (REMC3)

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	REMC3CLK	15–9	-	0x00	-	R	-
0720	(REMC3 Clock Con-	8	DBRUN	0	H0	R/W	
	trol Register)	7–4	CLKDIV[3:0]	0x0	H0	R/W	
		3–2	-	0x0	-	R	
		1–0	CLKSRC[1:0]	0x0	H0	R/W	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	REMC3DBCTL	15–10	-	0x00	_	R	-
0722	(REMC3 Data Bit	9	PRESET	0	H0/S0	R/W	Cleared by writing 1 to the
	Counter Control Register)	8	PRUN	0	H0/S0	R/W	REMC3DBCTL.REMCRST bit.
		7–5	-	0x0	-	R	_
		4	REMOINV	0	H0	R/W]
		3	BUFEN	0	H0	R/W]
		2	TRMD	0	H0	R/W	
		1	REMCRST	0	H0	W	
		0	MODEN	0	H0	R/W	
0x4000 0724	REMC3DBCNT (REMC3 Data Bit Counter Register)	15–0	DBCNT[15:0]	0x0000	H0/S0	R	Cleared by writing 1 to the REMC3DBCTL.REMCRST bit.
0x4000 0726	REMC3APLEN (REMC3 Data Bit Active Pulse Length Register)	15–0	APLEN[15:0]	0x0000	HO	R/W	Writing enabled when REMC3DBCTL.MODEN bit = 1.
0x4000 0728	REMC3DBLEN (REMC3 Data Bit Length Register)	15–0	DBLEN[15:0]	0x0000	HO	R/W	Writing enabled when REMC3DBCTL.MODEN bit = 1.
0x4000	REMC3INTF	15–11	-	0x00	-	R	-
072a	(REMC3 Status and Interrupt Flag Register)	10	DBCNTRUN	0	H0/S0	R	Cleared by writing 1 to the REMC3DBCTL.REMCRST bit.
		9	DBLENBSY	0	HO	R	Effective when the
		8	APLENBSY	0	H0	R	REMC3DBCTL.BUFEN bit =
		7–2	-	0x00	-	R	-
		1	DBIF	0	H0/S0	R/W	Cleared by writing 1 to this bit or the REMC3DBCTL.
		0	APIF	0	H0/S0	R/W	REMCRST bit.
0x4000	REMC3INTE	15–8	-	0x00	-	R	
072c	(REMC3 Interrupt	7–2	-	0x00	-	R	
	Enable Register)	1	DBIE	0	HO	R/W	_
		0	APIE	0	H0	R/W	
0x4000 0730	REMC3CARR (REMC3 Carrier	15–8	CRDTY[7:0]	0x00	H0	R/W	-
0.00	Waveform Register)	7–0	CRPER[7:0]	0x00	HO	R/W	
0x4000	REMC3CCTL	15–9	-	0x00	-	R	-
0732	(REMC3 Carrier	8	OUTINVEN	0	HO	R/W	1
	Modulation Control	7–1	-	0x00	-	R	1
	Register)	0	CARREN	0	HO	R/W	1

0x4000 0740-0x4000 076c

16-bit PWM Timer (T16B) Ch.2

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	T16B_2CLK	15–9	-	0x00	-	R	-
0740	(T16B Ch.2 Clock	8	DBRUN	0	H0	R/W	
	Control Register)	7–4	CLKDIV[3:0]	0x0	H0	R/W	
		3	-	0	-	R	
		2–0	CLKSRC[2:0]	0x0	HO	R/W	
0x4000	T16B_2CTL	15–9	-	0x00	-	R	-
0742	(T16B Ch.2 Counter	8	MAXBSY	0	H0	R	
	Control Register)	7–6	-	0x0	-	R	-
		5–4	CNTMD[1:0]	0x0	HO	R/W	
		3	ONEST	0	HO	R/W	
		2	RUN	0	H0	R/W	
		1	PRESET	0	HO	R/W	1
		0	MODEN	0	HO	R/W	1

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000 0744	T16B_2MC (T16B Ch.2 Max Counter Data Register)	15–0	MC[15:0]	Oxffff	HO	R/W	-
0x4000 0746	T16B_2TC (T16B Ch.2 Timer Counter Data Register)	15–0	TC[15:0]	0x0000	H0	R	-
0x4000	T16B_2CS	15–8	-	0x00	-	R	-
0748	(T16B Ch.2 Counter	7–6	-	0x0	-	R	
	Status Register)	5	CAPI3	0	H0	R	
		4	CAPI2	0	H0	R	
		3	CAPI1	0	H0	R	
		2	CAPIO	0	H0	R	
		1	UP_DOWN	1	HO	R	
		0	BSY	0	HO	R	
0x4000	T16B_2INTF	15–10	-	0x00	-	R	-
074a	(T16B Ch.2 Interrupt	9	CAPOW3IF	0	H0	R/W	Cleared by writing 1.
	Flag Register)	8	CMPCAP3IF	0	HO	R/W	_
		7	CAPOW2IF	0	H0	R/W	_
		6	CMPCAP2IF	0	H0	R/W	_
		5	CAPOW1IF	0	H0	R/W	_
		4	CMPCAP1IF	0	H0	R/W	_
		3	CAPOW0IF	0	H0	R/W	
		2	CMPCAP0IF	0	H0	R/W	
		1	CNTMAXIF	0	H0	R/W	
		0	CNTZEROIF	0	H0	R/W	
0x4000	T16B_2INTE	15–10		0x00	-	R	
074c	(T16B Ch.2 Interrupt	9	CAPOW3IE	0	HO	R/W	_
	Enable Register)	8	CMPCAP3IE	0	HO	R/W	_
		7	CAPOW2IE	0	HO	R/W	_
		6	CMPCAP2IE	0	HO	R/W	_
		5	CAPOW1IE	0	HO	R/W	_
		4	CMPCAP1IE	0	HO	R/W	_
		3	CAPOWOIE	0	HO	R/W	_
		2	CMPCAPOIE	0	HO	R/W	_
		1	CNTMAXIE	0	HO	R/W	_
		0	CNTZEROIE	0	H0	R/W	
0x4000 074e	T16B_2MZDMAEN (T16B Ch.2 Counter	15–8 7–4	_	0x00 0x0	_	R R	-
	Max/Zero DMA Request Enable Register)	3–0	MZDMAEN[3:0]	0x0	H0	R/W	-
0x4000	T16B_2CCCTL0	15	SCS	0	HO	R/W	_
0750	(T16B Ch.2 Compare/		CBUFMD[2:0]	0x0	H0	R/W	-
	Capture 0 Control		CAPIS[1:0]	0x0	H0	R/W	-
	Register)	9–8	CAPTRG[1:0]	0x0	HO	R/W	-
		7	-	0	-	R	-
		6	ТОИТМТ	0	H0	R/W	-
		5	TOUTO	0	HO	R/W	1
		4–2	TOUTMD[2:0]	0x0	HO	R/W	1
		1	TOUTINV	0	HO	R/W	1
		0	CCMD	0	HO	R/W	1
0x4000 0752	T16B_2CCR0 (T16B Ch.2 Compare/ Capture 0 Data Register)	15–0	CC[15:0]	0x0000	H0	R/W	-
0x4000 0754	T16B_2CC0DMAEN (T16B Ch.2 Compare/	15–8	-	0x00	-	R	
	Capture 0 DMA	7–4	-	0x0	-	R	
	Request Enable Register)	3–0	CC0DMAEN[3:0]	0x0	H0	R/W	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	T16B_2CCCTL1	15	SCS	0	H0	R/W	_
0758	(T16B Ch.2 Compare/	14–12	CBUFMD[2:0]	0x0	H0	R/W	
	Capture 1 Control		CAPIS[1:0]	0x0	H0	R/W	
	Register)	9–8	CAPTRG[1:0]	0x0	H0	R/W	
		7	-	0	_	R	
		6	TOUTMT	0	H0	R/W	
		5	ΤΟυτο	0	H0	R/W	
		4–2	TOUTMD[2:0]	0x0	H0	R/W	
		1	TOUTINV	0	HO	R/W	
		0	CCMD	0	HO	R/W	
0x4000 075a	T16B_2CCR1 (T16B Ch.2 Compare/ Capture 1 Data Register)	15–0	CC[15:0]	0x0000	H0	R/W	_
0x4000 075c	T16B_2CC1DMAEN (T16B Ch.2 Compare/	15–8	_	0x00	-	R	_
0700	Capture 1 DMA	7–4	-	0x0	-	R	
	Request Enable Register)	3–0	CC1DMAEN[3:0]	0x0	H0	R/W	
0x4000	T16B_2CCCTL2	15	SCS	0	H0	R/W	-
0760	(T16B Ch.2 Compare/	14–12	CBUFMD[2:0]	0x0	H0	R/W	
	Capture 2 Control	11–10	CAPIS[1:0]	0x0	H0	R/W	
	Register)	9–8	CAPTRG[1:0]	0x0	H0	R/W	
		7	-	0	-	R	
		6	TOUTMT	0	H0	R/W	
		5	ΤΟυτο	0	H0	R/W	
		4–2	TOUTMD[2:0]	0x0	H0	R/W	
		1	TOUTINV	0	H0	R/W	
		0	CCMD	0	H0	R/W	
0x4000 0762	T16B_2CCR2 (T16B Ch.2 Compare/ Capture 2 Data Register)	15–0	CC[15:0]	0x0000	HO	R/W	-
0x4000 0764	T16B_2CC2DMAEN (T16B Ch.2 Compare/	15–8	_	0x00	-	R	_
0104	Capture 2 DMA	7–4	_	0x0	-	R	
	Request Enable Register)	3–0	CC2DMAEN[3:0]	0x0	H0	R/W	
0x4000	T16B_2CCCTL3	15	SCS	0	HO	R/W	_
0768	(T16B Ch.2 Compare/		CBUFMD[2:0]	0x0	HO	R/W	
	Capture 3 Control	11–10	CAPIS[1:0]	0x0	HO	R/W	
	Register)	9–8	CAPTRG[1:0]	0x0	HO	R/W	
		7	-	0	-	R	
		6	TOUTMT	0	H0	R/W	
		5	ΤΟυτο	0	H0	R/W	
		4–2	TOUTMD[2:0]	0x0	H0	R/W	
		1	TOUTINV	0	H0	R/W	
		0	CCMD	0	HO	R/W	
0x4000 076a	T16B_2CCR3 (T16B Ch.2 Compare/ Capture 3 Data Register)	15–0	CC[15:0]	0x0000	HO	R/W	-
0x4000	T16B_2CC3DMAEN	15–8	-	0x00	-	R	-
076c	(T16B Ch.2 Compare/ Capture 3 DMA	7–4	_	0x0	-	R	

0x400	0 0780–0x4000	078c				1	6-bit Timer (T16) Ch.7
Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	T16_7CLK	15–9	-	0x00	-	R	-
0780	(T16 Ch.7 Clock	8	DBRUN	0	H0	R/W	
	Control Register)	7–4	CLKDIV[3:0]	0x0	H0	R/W	
		3–2	-	0x0	-	R	
		1–0	CLKSRC[1:0]	0x0	H0	R/W	
0x4000	T16_7MOD	15–8	-	0x00	-	R	-
0782	(T16 Ch.7 Mode	7–1	-	0x00	-	R	
	Register)	0	TRMD	0	H0	R/W	
0x4000	T16_7CTL	15–9	-	0x00	-	R	-
0784	(T16 Ch.7 Control	8	PRUN	0	H0	R/W	
	Register)	7–2	-	0x00	-	R	-
		1	PRESET	0	H0	R/W	
		0	MODEN	0	H0	R/W	
0x4000 0786	T16_7TR (T16 Ch.7 Reload	15–0	TR[15:0]	Oxffff	H0	R/W	-
0.00	Data Register)						
0x4000 0788	T16_7TC (T16 Ch.7 Counter Data Register)	15–0	TC[15:0]	0xffff	H0	R	-
0x4000	T16 7INTF	15-8	_	0x00	_	R	_
078a	(T16 Ch.7 Interrupt	7–1	-	0x00	_	R	1
	Flag Register)	0	UFIF	0	HO	R/W	Cleared by writing 1.
0x4000	T16_7INTE	15–8	-	0x00	-	R	-
078c	(T16 Ch.7 Interrupt	7–1	-	0x00	-	R	1
	Enable Register)	0	UFIE	0	H0	R/W	1

0x4000 07a0-0x4000 07bc

12-bit A/D Converter (ADC12A) Ch.0

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	ADC12A_0CTL	15	-	0	-	R	-
07a2	(ADC12A Ch.0	14–12	ADSTAT[2:0]	0x0	H0	R	
	Control Register)	11	-	0	-	R	
		10	BSYSTAT	0	H0	R	
		9–8	-	0x0	-	R	
		7–2	-	0x00	-	R	
		1	ADST	0	H0	R/W	
		0	MODEN	0	H0	R/W	
0x4000	ADC12A_0TRG	15–14	-	0x0	-	R	-
07a4	(ADC12A Ch.0	13–11	ENDAIN[2:0]	0x0	H0	R/W	
	Trigger/Analog Input	10–8	STAAIN[2:0]	0x0	H0	R/W	
	Select Register)	7	STMD	0	H0	R/W	
		6	CNVMD	0	H0	R/W	
		5–4	CNVTRG[1:0]	0x0	H0	R/W	
		3	-	0	-	R	
		2–0	SMPCLK[2:0]	0x7	H0	R/W	
0x4000	ADC12A_0CFG	15–8	-	0x00	-	R	-
07a6	(ADC12A Ch.0 Con-	7–2	-	0x00	-	R	
	figuration Register)	1–0	VRANGE[1:0]	0x0	HO	R/W	
0x4000	ADC12A_0INTF	15–9	-	0x00	-	R	-
07a8	(ADC12A Ch.0	8	OVIF	0	H0	R/W	Cleared by writing 1.
	Interrupt Flag	7	AD7CIF	0	H0	R/W	
	Register)	6	AD6CIF	0	H0	R/W	
		5	AD5CIF	0	H0	R/W	
		4	AD4CIF	0	H0	R/W	
		3	AD3CIF	0	H0	R/W	
		2	AD2CIF	0	HO	R/W]
		1	AD1CIF	0	H0	R/W]
		0	AD0CIF	0	H0	R/W	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	ADC12A_0INTE	15–9	-	0x00	-	R	
07aa	(ADC12A Ch.0	8	OVIE	0	HO	R/W	
	Interrupt Enable	7	AD7CIE	0	H0	R/W	_
	Register)	6	AD6CIE	0	H0	R/W	_
		5	AD5CIE	0	H0	R/W	_
		4	AD4CIE	0	HO	R/W	_
		3	AD3CIE	0	H0	R/W	_
		2	AD2CIE	0	HO	R/W	_
		1	AD1CIE	0	HO	R/W	_
		0	AD0CIE	0	HO	R/W	
0x4000	ADC12A_0DMAEN0	15–8	-	0x00	-	R	_
07ac	(ADC12A Ch.0 DMA Request Enable	7–4	-	0x0	-	R	
	Register 0)	3–0	ADCDMAEN[3:0]	0x0	H0	R/W	
0x4000	ADC12A_0DMAEN1	15–8	-	0x00	-	R	-
07ae	(ADC12A Ch.0 DMA	7–4	-	0x0	-	R	-
	Request Enable Register 1)	3–0	ADCDMAEN[3:0]	0x0	HO	R/W	-
0x4000	ADC12A_0DMAEN2	15–8	-	0x00	-	R	-
07b0	(ADC12A Ch.0 DMA	7–4	-	0x0	-	R	-
	Request Enable Register 2)	3–0	ADCDMAEN[3:0]	0x0	HO	R/W	-
0x4000	ADC12A_0DMAEN3	15–8	-	0x00	_	R	-
07b2	(ADC12A Ch.0 DMA	7–4	-	0x0	_	R	-
	Request Enable Register 3)	3–0	ADCDMAEN[3:0]	0x0	HO	R/W	-
0x4000	ADC12A_0DMAEN4	15–8	-	0x00	-	R	-
07b4	(ADC12A Ch.0 DMA	7–4	-	0x0	-	R	-
	Request Enable Register 4)	3–0	ADCDMAEN[3:0]	0x0	HO	R/W	-
0x4000	ADC12A_0DMAEN5	15–8	-	0x00	_	R	-
07b6	(ADC12A Ch.0 DMA	7–4	-	0x0	-	R	-
	Request Enable Register 5)	3–0	ADCDMAEN[3:0]	0x0	HO	R/W	-
0x4000	ADC12A_0DMAEN6	15–8	-	0x00	-	R	-
07b8	(ADC12A Ch.0 DMA	7–4	-	0x0	-	R	-
	Request Enable Register 6)	3–0	ADCDMAEN[3:0]	0x0	HO	R/W	-
0x4000	ADC12A_0DMAEN7	15–8	-	0x00	_	R	-
07ba	(ADC12A Ch.0 DMA	7–4	-	0x0	_	R	-
	Request Enable Register 7)	3–0	ADCDMAEN[3:0]	0x0	HO	R/W	-
0x4000 07bc	ADC12A_0ADD (ADC12A Ch.0 Result Register)	15–0	ADD[15:0]	0x0000	H0	R	-

0x4000 07c0-0x4000 07c2 Temperature Sensor/Reference Voltage Generator (TSRVR) Ch.0

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	TSRVR_0TCTL	15–8	-	0x00	-	R	-
07c0	(TSRVR Ch.0 Temperature Sensor	7–1	-	0x00	H0	R	
	Control Register)	0	TEMPEN	0	H0	R/W	
0x4000	TSRVR_0VCTL (TSRVR Ch.0	15–8	-	0x00	-	R	-
07c2	Reference Voltage	7–2	-	0x00	HO	R	
	Generator Control Register)	1–0	VREFAMD[1:0]	0x0	H0	R/W	

0x4000 0800-0x4000 0812

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	LCD8DCLK	15–9	_	0x00	_	R	-
0800	(LCD8D Clock	8	DBRUN	1	HO	R/W	1
	Control Register)	7	_	0	_	R	-
		6–4	CLKDIV[2:0]	0x0	HO	R/W	1
		3–2	-	0x0	_	R	1
		1–0	CLKSRC[1:0]	0x0	HO	R/W	1
0x4000	LCD8DCTL	15-8	_	0x00	_	R	_
0802	(LCD8D Control	7–2	_	0x00	_	R	
	Register)	1	LCDDIS	0	HO	R/W	
		0	MODEN	0	HO	R/W	
0x4000	LCD8DTIM1	15–13		0x0	_	R	_
0804	(LCD8D Timing		FRMCNT[4:0]	0x01	НО	R/W	1
	Control Register 1)	7-6	_	0x0	_	R	
		5	(reserved)	0	НО	R/W	-
		4–3	_	0x0	_	R	-
		2-0	LDUTY[2:0]	0x1f	НО	R/W	-
0x4000	LCD8DTIM2	15	LCDWAVE	0	HO	R/W	_
0806	(LCD8D Timing	14–10	-	0x00		R	-
	Control Register 2)	9-8	BSTC[1:0]	0x1	HO	R/W	-
		7–3	_	0x00	_	R	-
		2-0	NLINE[2:0]	0x0	HO	R/W	-
0x4000	LCD8DPWR	15	EXVCSEL	1	HO	R/W	
0808	(LCD8D Power		RESISEL[1:0]	0x0	HO	R/W	-
	Control Register)		LC[4:0]	0x00	HO	R/W	-
		7-5	_	0x0	_	R	-
		4	BSTEN	0	HO	R/W	-
		3	BIASSEL	1	HO	R/W	-
		2	HVLD	0	HO	R/W	-
		1	VCSEL	0	HO	R/W	-
		0	VCEN	0	HO	R/W	-
0x4000	LCD8DDSP	15-8		0x00	-	R	
080a	(LCD8D Display	7	_	0	_	R	-
	Control Register)	6	SEGREV	1	HO	R/W	-
		5	COMREV	1	HO	R/W	-
		4	DSPREV	1	HO	R/W	-
		3		0	-	R	-
		2	DSPAR	0	HO	R/W	-
		1-0	DSPC[1:0]	0x0	HO	R/W	-
0x4000	LCD8DCOMC0	15-8	_	0x00	_	R	
080c	(LCD8D COM Pin	7	COM7DEN	1	HO	R/W	-
0000	Control Register 0)	6	COM6DEN	1	HO	R/W	-
		5	COM5DEN	1	HO	R/W	-
		4	COM4DEN	1	HO	R/W	-
		3	COM3DEN	1	HO	R/W	-
		2	COM2DEN	1	HO	R/W	-
		1	COM1DEN	1	HO	R/W	-
		0	COMODEN	1	HO	R/W	-
0x4000	LCD8DINTF	15–8		0x00		R	
0810	(LCD8D Interrupt Flag	7–1	_	0x00		R	-
0010	Register)	0	FRMIF	0,000	H0	R/W	Cleared by writing 1.
0x4000	LCD8DINTE	0 15–8		0x00			
0x4000 0812	(LCD8DINTE (LCD8D Interrupt	7–1	- 		_	R	-
0012	Enable Register)			0x00	-	R	-
		0	FRMIE	0	HO	R/W	

LCD Driver (LCD8D)

0x400	0 0840–0x4000	0850				R/F	Converter (RFC) Ch.0
Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	RFC_0CLK	15–9	_	0x00	_	R	-
0840	(RFC Ch.0 Clock	8	DBRUN	1	H0	R/W	1
	Control Register)	7–6	_	0x0	_	R	1
		5–4	CLKDIV[1:0]	0x0	HO	R/W	1
		3–2	-	0x0	_	R]
		1–0	CLKSRC[1:0]	0x0	H0	R/W]
0x4000	RFC_0CTL	15–9	-	0x00	-	R	-
0842	(RFC Ch.0 Control	8	RFCLKMD	0	H0	R/W]
	Register)	7	CONEN	0	H0	R/W	
		6	EVTEN	0	H0	R/W	
		5–4	(reserved)	0x0	-	R/W	
		3–1	-	0x0	-	R]
		0	MODEN	0	HO	R/W]
0x4000	RFC_0TRG	15–8	-	0x00	-	R	-
0844	(RFC Ch.0 Oscillation	7–3	-	0x00	_	R]
	Trigger Register)	2	SSENB	0	HO	R/W]
		1	SSENA	0	HO	R/W]
		0	SREF	0	HO	R/W	1
0x4000 0846	RFC_0MCL (RFC Ch.0 Measure- ment Counter Low	15–0	MC[15:0]	0x0000	H0	R/W	-
	Register)						
0x4000 0848	RFC_0MCH (RFC Ch.0 Measure-	15–8	-	0x00	-	R	_
	ment Counter High Register)	7–0	MC[23:16]	0x00	H0	R/W	
0x4000 084a	RFC_0TCL (RFC Ch.0 Time Base Counter Low Register)	15–0	TC[15:0]	0x0000	H0	R/W	-
0x4000	RFC_0TCH	15–8	-	0x00	-	R	-
084c	(RFC Ch.0 Time Base Counter High Register)	7–0	TC[23:16]	0x00	H0	R/W	-
0x4000	RFC_0INTF	15–8	-	0x00	-	R	-
084e	(RFC Ch.0 Interrupt	7–5	-	0x0	-	R	
	Flag Register)	4	OVTCIF	0	H0	R/W	Cleared by writing 1.
		3	OVMCIF	0	H0	R/W]
		2	ESENBIF	0	H0	R/W]
		1	ESENAIF	0	HO	R/W	
		0	EREFIF	0	HO	R/W	
0x4000	RFC_0INTE	15–8	-	0x00	_	R	
0850	(RFC Ch.0 Interrupt	7–5	-	0x0	_	R]
	Enable Register)	4	OVTCIE	0	HO	R/W]
		3	OVMCIE	0	HO	R/W	
		2	ESENBIE	0	HO	R/W]
		1	ESENAIE	0	HO	R/W]
		0	EREFIE	0	H0	R/W]

0x4000 1000-0x4000 2014

DMA Controller (DMAC)

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	DMACSTAT	31–24	-	0x00	-	R	-
1000	(DMAC Status	23–21	-	0x0	-	R	
	Register)	20–16	CHNLS[4:0]	*	H0	R	 Number of channels implemented - 1
		15–8	-	0x00	-	R	-
		7–4	STATE[3:0]	0x0	H0	R	
		3–1	-	0x0	-	R	
		0	MSTENSTAT	0	H0	R	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	DMACCFG	31–24		0x00	-	R	
1004	(DMAC Configuration	23–16	-	0x00	-	R	_
	Register)	15–8	-	0x00	-	R	_
		7–1	-	0x00	-	R	-
		0	MSTEN	-	-	W	
0x4000 1008	DMACCPTR (DMAC Control Data	31–7	CPTR[31:7]	0x000 0000	HO	R/W	_
	Base Pointer Register)	6–0	CPTR[6:0]	0x00	HO	R	
0x4000 100c	DMACACPTR (DMAC Alternate Control Data Base Pointer Register)	31–0	ACPTR[31:0]	-	H0	R	-
0x4000	DMACSWREQ	31–24	-	-	-	R	-
1014	(DMAC Software	23–16	-	-	-	R	
	Request Register)	15–8	-	-	-	R	
		7–4	-	-	-	R	
		3–0	SWREQ[3:0]	-	-	W	
0x4000	DMACRMSET	31–24		0x00	-	R	-
1020	(DMAC Request	23–16	-	0x00	-	R	-
	Mask Set Register)	15–8	-	0x00	-	R	
		7–4	-	0x0	-	R	-
		3–0	RMSET[3:0]	0x0	HO	R/W	
0x4000	DMACRMCLR	31-24		-	-	R	-
1024	(DMAC Request Mask Clear Register)	23-16	-	-	-	R	-
	Mask Olear Register)	15-8	-	-	-	R	-
		7-4		-	-	R	-
0	DNAAOENIOET	3-0	RMCLR[3:0]	-	-	W	_
0x4000 1028	DMACENSET (DMAC Enable Set	31-24		0x00	-	R R	-
1020	Register)	23–16 15–8	-	0x00 0x00	_	R R	-
		7-4	<u> </u>	0x00	_	R	-
		3-0	ENSET[3:0]	0x0	H0	R/W	-
0x4000	DMACENCLR	31–24		-	_	R	_
102c	(DMAC Enable Clear	23-16		_	_	R	-
	Register)	15–8	-	-	_	R	
		7–4	-	-	-	R	-
		3–0	ENCLR[3:0]	-	_	W	
0x4000	DMACPASET	31–24	-	0x00	-	R	-
1030	(DMAC Primary-Alter-	23–16	-	0x00	-	R	
	nate Set Register)	15–8	-	0x00	-	R	
		7–4	-	0x0	-	R	_
		3–0	PASET[3:0]	0x0	H0	R/W	
0x4000	DMACPACLR	31–24		-	-	R	
1034	(DMAC Primary-Alter-	23–16		-	-	R	-
	nate Clear Register)	15–8	-	-	-	R	-
		7-4	-	-	-	R	-
0.4655	DIMODECT		PACLR[3:0]	-	-	W	
0x4000	DMACPRSET	31-24		0x00	-	R	-
1038	(DMAC Priority Set Register)	23-16		0x00	-	R	1
		15-8	-	0x00	-	R	1
	1	7–4	- PRSET[3:0]	0x0	-	R	-
				0x0	HO	R/W	1
0×4000		3-0				P	
0x4000	DMACPRCLR	31–24	-	-	_	R	_
0x4000 103c	(DMAC Priority Clear	31–24 23–16	-	-	-	R	-
		31–24	-				-

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	DMACERRIF	31–24	-	0x00	-	R	-
104c	(DMAC Error Interrupt	23–16	-	0x00	-	R]
	Flag Register)	15–8	-	0x00	-	R	
		7–1	-	0x00	-	R	
		0	ERRIF	0	H0	R/W	Cleared by writing 1.
0x4000	DMACENDIF	31–24	-	0x00	-	R	
2000	(DMAC Transfer Completion Interrupt Flag Register)	23–16	-	0x00	-	R]
		15–8	-	0x00	-	R]
		7–4	-	0x0	-	R]
		3–0	ENDIF[3:0]	0x0	H0	R/W	Cleared by writing 1.
0x4000 2008	DMACENDIESET (DMAC Transfer Completion Interrupt Enable Set Register)	31–24	-	0x00	-	R	-
		23–16	-	0x00	-	R]
		15–8	-	0x00	-	R]
		7–4	-	0x0	-	R	
		3–0	ENDIESET[3:0]	0x0	H0	R/W	
0x4000 200c	DMACENDIECLR (DMAC Transfer Completion Interrupt Enable Clear Register)	31–24	-	-	-	R	_
		23–16	-	-	-	R]
		15–8	-	-	-	R]
		7–4	-	-	-	R]
		3–0	ENDIECLR[3:0]	-	-	W	
0x4000 2010	DMACERRIESET (DMAC Error Interrupt Enable Set Register)	31–24		0x00	-	R	_
		23–16	-	0x00	-	R	
		15–8	-	0x00	-	R	
		7–1	-	0x00	-	R	
		0	ERRIESET	0	HO	R/W	
0x4000	DMACERRIECLR (DMAC Error Interrupt Enable Clear Register)	31–24		0x00	-	R	
2014			-	0x00	-	R]
		15–8	-	0x00	-	R]
		7–1	-	0x00	-	R]
		0	ERRIECLR	-	_	W	

Appendix B Power Saving

Current consumption will vary dramatically, depending on CPU operating mode, operation clock frequency, peripheral circuits being operated, and VDI regulator operating mode. Listed below are the control methods for saving power.

B.1 Operating Status Configuration Examples for Power Saving

Table B.1.1 lists typical examples of operating status configuration with consideration given to power saving.

Operating status configuration	Current consumption	V D1	OSC1	IOSC/ OSC3/ EXOSC	RTCA	CPU	Current consumption listed in electrical characteristics
Standby	ŕ		OFF		OFF	SLEEP	ISLP1-2
Clock counting	Low	Economy		OFF		SLEEP with OSC1SLPC	ISLP3-4
Low-speed processing						OSC1 RUN	IRUN6-9
Peripheral circuit operations			ON		ON	SLEEP or HALT	HALT1-2
Lligh an and processing	High	Normal		ON		IOSC/OSC3/EXOSC	
High-speed processing	↓					RUN	IRUN1–5

 Table B.1.1 Typical Operating Status Configuration Examples

If the current consumption order by the operating status configuration shown in Table B.1.1 is different from one that is listed in "Electrical Characteristics," check the settings shown below.

PWGACTL.REGMODE[1:0] bits of the power generator

If the PWGACTL.REGMODE[1:0] bits of the power generator is 0x2 (normal mode) when the CPU enters SLEEP mode, current consumption in SLEEP mode will be larger than IsLP that is listed in "Electrical Characteristics." Set the PWGACTL.REGMODE[1:0] bits to 0x3 (economy mode) or 0x0 (automatic mode) before placing the CPU into SLEEP mode.

CLGOSC.IOSCSLPC/OSC1SLPC/OSC3SLPC/EXOSCSLPC bits of the clock generator

Setting the CLGOSC.IOSCSLPC, OSC1SLPC, OSC3SLPC, or EXOSCSLPC bit of the clock generator to 0 disables the oscillator circuit stop control when the CPU enters SLEEP mode. To stop the oscillator circuits during SLEEP mode, set these bits to 1.

MODEN bits of the peripheral circuits

Setting the MODEN bit of each peripheral circuit to 1 starts supplying the operating clock enabling the peripheral circuit to operate. To reduce current consumption, set the MODEN bits of unnecessary peripheral circuits to 0. Note that the real-time clock has no MODEN bit, therefore, current consumption does not vary if it is counting or idle.

OSC1 (crystal) oscillator circuit configurations

The OSC1 (crystal) oscillator circuit provides some configuration items to support various crystal resonators with ranges from cylinder type through surface-mount type. These configurations trade off current consumption for performance as shown below.

- The lower oscillation inverter gain setting (CLGOSC1.INV1B[1:0]/INV1N[1:0] bits) decreases current consumption.
- The lower OSC1 internal gate capacitance setting (CLGOSC1.CGI1[2:0] bits) decreases current consumption.
- Using lower OSC1 external gate and drain capacitances decreases current consumption.
- Using a crystal resonator with lower CL value decreases current consumption.

However, these configurations may reduce the oscillation margin and increase the frequency error, therefore, be sure to perform matching evaluation using the actual printed circuit board.

OSC3 (crystal/ceramic) oscillator circuit configurations

The OSC3 (crystal/ceramic) oscillator circuit provides some configuration items to support various crystal and ceramic resonators. These configurations trade off current consumption for performance as shown below.

- The lower oscillation inverter gain setting (CLGOSC3.OSC3INV[1:0] bits) decreases current consumption.
- Using lower OSC3 external gate and drain capacitances decreases current consumption.
- Using a resonator with lower CL value decreases current consumption.

However, these configurations may reduce the oscillation margin and increase the frequency error, therefore, be sure to perform matching evaluation using the actual printed circuit board.

B.2 Other Power Saving Methods

Supply voltage detector configuration

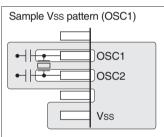
Continuous operation mode (SVD4_nCTL.SVDMD[1:0] bits = 0x0) always detects the power supply voltage, therefore, it increases current consumption. Set the supply voltage detector to intermittent operation mode or turn it on only when required.

LCD driver configurations

- Setting the LCD voltage regulator to operate with the Vc1 reference voltage (LCD8DPWR.VCSEL bit = 0) increases current consumption. If a desired LCD drive voltage can be obtained, operating with Vc2 reference voltage (LCD8DPWR.VCSEL bit = 1) is recommended.
- The lower booster clock frequency setting (LCD8DTIM2.BSTC[1:0] bits) for the LCD voltage booster decreases current consumption. Note, however, that the load characteristic becomes worse.
- Setting the LCD voltage regulator into heavy load protection mode (LCD8DPWR.HVLD bit = 1) increases current consumption. Heavy load protection mode should be set only when the display becomes unstable.

Appendix C Mounting Precautions

This section describes various precautions for circuit board design and IC mounting.


OSC1/OSC3 oscillator circuit

- Oscillation characteristics depend on factors such as components used (resonator, CG, CD) and circuit board patterns. In particular, with crystal resonators, select the appropriate capacitors (CG, CD) only after fully evaluating components actually mounted on the circuit board.
- Oscillator clock disturbances caused by noise may cause malfunctions. To prevent such disturbances, consider the following points.
- (1) Components such as a resonator, resistors, and capacitors connected to the OSC1 (OSC3) and OSC2 (OSC4) pins should have the shortest connections possible.
- (2) Wherever possible, avoid locating digital signal lines within 3 mm of the OSC1 (OSC3) and OSC2 (OSC4) pins or related circuit components and wiring. Rapidly-switching signals, in particular, should be kept at a distance from these components. Since the spacing between layers of multi-layer printed circuit boards is a mere 0.1 mm to 0.2 mm, the above precautions also apply when positioning digital signal lines on other layers.

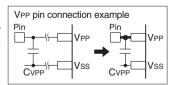
Never place digital signal lines alongside such components or wiring, even if more than 3 mm distance or located on other layers. Avoid crossing wires.

(3) Use Vss to shield the OSC1 (OSC3) and OSC2 (OSC4) pins and related wiring (including wiring for adjacent circuit board layers). Layers wired should be adequately shielded as shown to the right. Fully ground adjacent layers, where possible. At minimum, shield the area at least 5 mm around the above pins and wiring.

Even after implementing these precautions, avoid configuring digital signal lines in parallel, as described in (2) above. Avoid crossing even on discrete layers, except for lines carrying signals with low switching frequencies.

(4) After implementing these precautions, check the FOUT pin output clock waveform by running the actual application program within the product.

For the OSC1 waveform, enlarge the areas before and after the clock rising and falling edges and take special care to confirm that the regions approximately 100 ns to either side are free of clock or spiking noise. For the OSC3 waveform, confirm that the frequency is as designed, is free of noise, and has minimal jitter.


Failure to observe precautions (1) to (3) adequately may lead to noise in OSC1CLK and jitter in OSC3CLK. Noise in the OSC1CLK will destabilize timers that use OSC1CLK as well as CPU operations. Jitter in the OSC3 output will reduce operating frequencies.

#RESET pin

Components such as a switch and resistor connected to the #RESET pin should have the shortest connections possible to prevent noise-induced resets.

VPP **pin**

Connect a capacitor CVPP between the Vss and VPP pins to suppress fluctuations within VPP ± 1 V. The CVPP should be placed as close to the VPP pin as possible and use a sufficiently thick wiring pattern that allows current of several tens of mA to flow.

Power supply circuit

Sudden power supply fluctuations due to noise will cause malfunctions. Consider the following issues.

(1) Connections from the power supply to the VDD and Vss pins should be implemented via the shortest, thickest patterns possible. (2) If a bypass capacitor is connected between VDD and Vss, connections between the VDD and Vss pins should be as short as possible.

Signal line location

- To prevent electromagnetically-induced noise arising from mutual induction, large-current signal lines should not be positioned close to pins susceptible to noise, such as oscillator and analog measurement pins.
- Locating signal lines in parallel over significant distances or crossing signal lines operating at high speed will cause malfunctions due to noise generated by mutual interference.
- The SEG/COM lines and voltage boost capacitor drive lines are more likely to generate noise, therefore keep a distance between the lines and pins susceptible to noise.

Unused pins

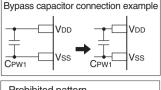
(1) I/O port (P) pins

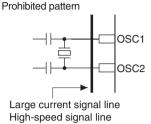
Unused pins should be left open. The control registers should be fixed at the initial status.

(2) OSC1, OSC2, OSC3, OSC4, and EXOSC pins

If the OSC1 crystal oscillator circuit is not used, the OSC1 and OSC2 pins should be left open. If the OSC3 crystal/ceramic oscillator circuit or EXOSC input circuit is not used, the pin should be configured as a general-purpose I/O port. The control registers should be fixed at the initial status (disabled).

(3) VC1-3, CP1-2, SEGx, and COMx pins


If the LCD driver is not used, these pins should be left open. The control registers should be fixed at the initial status (display off). The unused SEGx and COMx pins that are not required to connect should be left open even if the LCD driver is used.


Miscellaneous

Minor variations over time may result in electrical damage arising from disturbances in the form of voltages exceeding the absolute maximum rating when mounting the product in addition to physical damage. The following factors can give rise to these variations:

- (1) Electromagnetically-induced noise from industrial power supplies used in mounting reflow, reworking after mounting, and individual characteristic evaluation (testing) processes
- (2) Electromagnetically-induced noise from a solder iron when soldering

In particular, during soldering, take care to ensure that the soldering iron GND (tip potential) has the same potential as the IC GND.

Appendix D Measures Against Noise

To improve noise immunity, take measures against noise as follows:

Noise Measures for VDD and VSS Power Supply Pins

When noise falling below the rated voltage is input, an IC malfunction may occur. If desired operations cannot be achieved, take measures against noise on the circuit board, such as designing close patterns for circuit board power supply circuits, adding noise-filtering decoupling capacitors, and adding surge/noise prevention components on the power supply line.

For the recommended patterns on the circuit board, see "Mounting Precautions" in Appendix.

Noise Measures for #RESET Pin

If noise is input to the #RESET pin, the IC may be reset. Therefore, the circuit board must be designed properly taking noise measures into consideration.

For the recommended patterns on the circuit board, see "Mounting Precautions" in Appendix.

Noise Measures for Oscillator Pins

The oscillator input pins must pass a signal of small amplitude, so they are hypersensitive to noise. Therefore, the circuit board must be designed properly taking noise measures into consideration.

For the recommended patterns on the circuit board, see "Mounting Precautions" in Appendix.

Noise Measures for Interrupt Input Pins

This product is able to generate a port input interrupt when the input signal changes. The interrupt is generated when an input signal edge is detected, therefore, an interrupt may occur if the signal changes due to extraneous noise. To prevent occurrence of unexpected interrupts due to extraneous noise, enable the chattering filter circuit when using the port input interrupt.

For details of the port input interrupt and chattering filter circuit, see the "I/O Ports" chapter.

Noise Measures for UART Pins

This product includes a UART for asynchronous communications. The UART starts receive operation when it detects a low level input from the SIN*n* pin. Therefore, a receive operation may be started if the SIN*n* pin is set to low due to extraneous noise. In this case, a receive error will occur or invalid data will be received. To prevent the UART from malfunction caused by extraneous noise, take the following measures:

- Stop the UART operations while asynchronous communication is not performed.
- Execute the resending process via software after executing the receive error handler with a parity check.

For details of the pin functions and the function switch control, see the "I/O Ports" chapter. For the UART control and details of receive errors, see the "UART" chapter.

Noise Measures for Input Pins Connected to Signal with High Driving Capability Such As Power Supply

There is a possibility of a large current flow into the pins that are directly connected to a power supply or an output of a device with high driving capability if noise is input to those pins. To prevent this, connect a 30 Ω or more pin protection resistor to the pins in series. The resistance value should be determined by evaluating it on the mounting board.

When connecting a power supply directly to the VREFA pin, insert a 100 Ω resistor in series. This resistance does not affect the A/D converter characteristics.

Revision History

Code No.	Page	Contents
414063300	All	New establishment
414063301	Whole	Corrected the Cortex®-M0+ register names.
	manual	System control register → Cortex®-M0+ System Control Register
		or
		Cortex®-M0+ Application Interrupt and Reset Control Register
		Vector table offset register \rightarrow Cortex [®] -M0+ Vector Table Offset Register (VTOR)
		System handler priority registers \rightarrow Cortex [®] -M0+ System Handler Priority Registers
		Interrupt priority registers \rightarrow Cortex [®] -M0+ Interrupt Priority Registers
		Correcred the Cortex®-M0+ manual names.
		Cortex [®] -M0+ Technical Reference Manual \rightarrow ARM [®] v6-M Architecture Reference Manual
		Cortex [®] -M0+Technical Reference Manual
		Or the decuments introduced in Section 2.4 such as
		the documents introduced in Section 3.4, such as "Cortex®-M0+ Devices Generic User Guide"
		Contex=-ivio+ Devices denend Oser duide
		$COU \text{ core} \rightarrow CPU$
	1-1 to 3	1.1 Features
		Added the following annotations to Table 1.1.1.
		I ² C (I2C) <u>∗1</u>
		*1 The input filter in I2C (SDA and SCL inputs) does not comply with the standard for removing noise
		spikes less than 50 ns.
		*2 SLEEP mode refers to deep sleep mode in the Cortex®-M0+ processor. The RAM retains data even in
		SLEEP mode.
		Modified Table 1.1.1.
		Instruction cache: Deleted
		Package: The JEITA package name was corrected, LQFP \rightarrow TQFP.
	1-3	1.2 Block Diagram
		Deleted Cache controller and Cache RAM from Figure 1.2.1.
	2-16	2.4.2 Transition between Operating Modes
		SLEEP mode
		Added the following description:
		The RAM retains data even in SLEEP mode.
	3-2	Added a new section.
		3.4 Reference Documents
	4-2	4.3.1 Flash Memory Pin
		Deleted the following description and note:
		For the VPP voltage, refer to "Recommended Operating Conditions, Flash programming voltage VPP" in
		the "Electrical Characteristics" chapter.
	4.0	Note: Always leave the VPP pin open except when programming the Flash memory.
	4-3	4.6 Peripheral Circuit Control Registers Deleted the Cache controller register from Table 4.6.1.
	4-9	4.7 Instruction Cache
	4-9	Deleted the section.
	4-10	4.8 Control Registers
	IU	FLASHC Flash Read Cycle Register
		Added a not to the RDWAIT[1:0] bit.
		Notes:
		• When the FLASHCWAIT.RDWAIT[1:0] bit setting is altered from 0x2 to 0x1, add two NOP
		instructions immediately after that.
		Program example: FLASHC->WAIT b.RDWAIT = 1;
		asm("NOP");
		asm("NOP");
		<u>CLG->OSC_b.IOSCEN = 0;</u>
	9-4	9.4 Control Registers
		WDT2 Control Register
		Corrected the description of the WDTRUN[3:0] bit.
		Bits 3–0 WDTRUN[3:0]
		These bits control WDT2 to run and stop.
		Oxa (WP): Stop
		Values other than 0xa (WP): Run
		<u>0xa (R): Idle</u>
		0x0 (R): Running

REVISION HISTORY

Code No.	Page	Contents							
414063301	10-4	10.4.2 Real-Time Clock Counter Operations							
		Corrective operation when a value out of the effective range is set							
		Added a note.							
		Note: Do not set the RTCMON.RTCMOL[3:0] bits to 0x0 if the RTCMON.RTCMOH bit = 0.							
	10-11	10.6 Control Registers							
		RTCA Month/Day Register							
		Bit 12 RTCMOH							
		Bits 11–8 RTCMOL[3:0]							
		Added a note. Notes:							
		Be sure to avoid setting the RTCAMON.RTCMOH/RTCMOL[3:0] bits to 0x00.							
	15-1	15.1 Overview							
	10-1	Added the following description:							
		 The input filter for the SDA and SCL inputs does not comply with the standard for removing noise 							
		spikes less than 50 ns.							
	15-7, 9	15.4.3 Data Reception in Master Mode							
	,.	Data receiving procedure							
		Added Step 1. (The old step numbers were carried down in order.)							
		1. When receiving one-byte data, write 1 to the I2C_nCTL.TXNACK bit.							
		Modified Figure 15.4.3.2.							
		A flow for Step 1 was added.							
	15-9	15.4.3 Data Reception in Master Mode							
		Data reception using DMA							
		Corrected the description.							
		This automates the data receiving procedure Steps <u>6, 8, and 10</u> described above.							
	15-13 to 14	15.4.6 Data Reception in Slave Mode							
		Data receiving procedure							
		Added Step 1. (The old step numbers were carried down in order.)							
		1. When receiving one-byte data, write 1 to the I2C_nCTL.TXNACK bit.							
		Modified Figure 15.4.6.2.							
		A flow for Step 1 was added.							
	16-5	16.4.2 Counter Block Operations							
	10 0	MAX counter data register							
		Added a note.							
		Note: When rewriting the MAX value, the new MAX value should be written after the counter has been							
		reset to the previously set MAX value.							
	23-1	23.2 Recommended Operating Conditions							
		Added "(Vss = 0 V) *1" and the following annotations:							
		<u>*1</u> The potential variation of the Vss voltage should be suppressed to within ±0.3 V on the basis of the							
		ground potential of the MCU mounting board while the Flash is being programmed, as it affects the							
		Flash memory characteristics (programming count).							
		*6 The component values should be determined after evaluating operations using an actual mounting							
	00.7	board.							
	23-7	23.6 Flash Memory Characteristics							
		Added an annotation. *1 The potential variation of the Vss voltage should be suppressed to within ±0.3 V on the basis of the							
414063302		ground potential of the MCU mounting board while the Flash is being programmed, as it affects the							
		Flash memory characteristics (programming count).							
	25-1	25 Package							
		The JEITA package name was corrected, LQFP \rightarrow TQFP.							
	AP-A-3	Appendix A List of Peripheral Circuit Control Registers							
		Deleted the CACHE Control Register.							
	AP-D-1	Appendix D Measures Against Noise							
		Added a description.							
		Noise Measures for Input Pins Connected to Signal with High Driving Capability Such As Power Supply							
	Cover	Replaced the EPSON logo.							
	Back of	Replaced the NOTICE.							
	cover								
	1-3, 1-4	Changed the packge name. TQFP14 was deleted and TQFP15 was added.							
	25-1	Changed the package name and replaced the figure. TQFP14 was deleted and TQFP15 was added.							
		· · · · · ·							

EPSON

International Sales Operations

America

Epson America, Inc.

Headquarter: 3131 Katella Ave., Los Alamitos, CA 90720, USA Phone: +1-800-463-7766

San Jose Office: 2860 Zanker Road Suite 204, San Jose, CA 95134, USA Phone: +1-800-463-7766

Europe

Epson Europe Electronics GmbH

Riesstrasse 15, 80992 Munich, Germany Phone: +49-89-14005-0 Fax: +49-89-14005-110

Asia

Epson (China) Co., Ltd.

4th Floor, Tower 1 of China Central Place, 81 Jianguo Road, Chaoyang District, Beijing 100025, China Phone: +86-10-8522-1199 Fax: +86-10-8522-1120

Shanghai Branch

Room 601-603, Building A One East, No. 325 East Longhua Road, Shanghai 200023, China Phone: +86-21-5330-4888 Fax: +86-21-5423-4677

Shenzhen Branch

Room 804-805, 8 Floor, Tower 2, Ali Center, No. 3331 Keyuan South RD (Shenzhen bay), Nanshan District, Shenzhen 518054, China Phone: +86-755-3299-0588 Fax: +86-755-3299-0560

Epson Taiwan Technology & Trading Ltd.

15F, No. 100, Songren Rd, Sinyi Dist, Taipei City 110, Taiwan Phone: +886-2-8786-6688

Epson Singapore Pte., Ltd.

438B Alexandra Road, Block B Alexandra TechnoPark, #04-01/04, Singapore 119968 Phone: +65-6586-5500 Fax: +65-6271-7066

Epson Korea Co., Ltd

10F Posco Tower Yeoksam, Teheranro 134 Gangnam-gu, Seoul, 06235, Korea Phone: +82-2-3420-6695

Seiko Epson Corp. Sales & Marketing Division

MD Sales & Marketing Department

JR Shinjuku Miraina Tower, 4-1-6 Shinjuku, Shinjuku-ku, Tokyo 160-8801, Japan