EPSON

CMOS 32-BIT SINGLE CHIP MICROCONTROLLER S1C31D01 Technical Manual

NOTICE: PLEASE READ THE FOLLOWING NOTICE CAREFULLY BEFORE USING THIS DOCUMENT

The contents of this document are subject to change without notice.

- 1. This document may not be copied, reproduced, or used for any other purpose, in whole or in part, without the consent of the Seiko Epson Corporation ("Epson").
- 2. Before purchasing or using Epson products, please contact our sales representative for the latest information and always be sure to check the latest information published on Epson's official web sites and other sources.
- 3. Information provided in this document such as application circuits, programs, usage, etc., are for reference purposes only. Using the application circuits, programs, usage, etc. in the design of your equipment or systems is your own responsibility. Epson makes no guarantees against any infringements or damages to any third parties' intellectual property rights or any other rights resulting from the information. This document does not grant you any licenses, intellectual property rights or any other rights with respect to Epson products owned by Epson or any third parties.
- 4. Epson is committed to constantly improving quality and reliability, but semiconductor products in general are subject to malfunction and failure. By using Epson products, you shall be responsible for your hardware. Software and systems must be designed well enough to prevent death or injury as well as any property damage even if any of the malfunctions or failures might be caused by Epson products. When designing your products using Epson products, please be sure to check and comply with the latest information regarding Epson products (this document, specifications, data sheets, manuals, Epson's web site, etc.). When using the information included above materials such as product data, charts, technical contents, programs, algorithms and application circuit examples, you shall evaluate your products both on a stand-alone basis as well as within your overall systems. You shall be solely responsible for deciding whether or not to adopt and use Epson products.
- 5. Epson has prepared this document and programs provided in this document carefully to be accurate and dependable, but Epson does not guarantee that the information and the programs are always accurate and complete. Epson assumes no responsibility for any damages which you incur due to misinformation in this document and the programs.
- 6. No dismantling, analysis, reverse engineering, modification, alteration, adaptation, reproduction, etc., of Epson products is allowed.
- 7. Epson products have been designed, developed and manufactured to be used in general electronic applications (office equipment, communications equipment, measuring instruments, home electronics, etc.) ("General Purpose") and applications which is individually listed in this document or designated by Epson ("Designated Purpose"). Epson products are NOT intended for any use beyond the General Purpose and Designated Purpose uses that requires particular/higher quality or reliability in order to refrain from causing any malfunction or failure leading to death, injury, serious property damage or severe impact on society, including, but not limited to those listed below ("Particular Purpose"). Therefore, you are advised to use Epson products only for General Purpose and Designated Purpose uses. Should you desire to buy and use Epson products for a Particular Purpose, Epson makes no warranty and disclaims with respect to Epson products, whether express or implied, including without limitation any implied warranty of merchantability or fitness for any Particular Purpose. Please be sure to contact our sales representative and obtain approval in advance.

[Examples of Particular Purpose]

- Space equipment (artificial satellites, rockets, etc.) /
- Transportation vehicles and their control equipment (automobiles, aircraft, trains, ships, etc.) /
- Medical equipment / Relay equipment to be placed on ocean floor /
- Power station control equipment / Disaster or crime prevention equipment / Traffic control equipment / Financial equipment

Other applications requiring similar levels of reliability as those listed above. Please be sure to contact our sales representative for details of the other applications.

- 8. Epson products listed in this document and our associated technologies shall not be used in any equipment or systems that laws and regulations in Japan or any other countries prohibit to manufacture, use or sell. Furthermore, Epson products and our associated technologies shall not be used for developing weapons of mass destruction, or any other military purposes or applications. If exporting Epson products or our associated technologies, you shall comply with the Foreign Exchange and Foreign Trade Control Act in Japan, Export Administration Regulations in the U.S.A. (EAR) and other export-related laws and regulations in Japan and any other countries and follow the required procedures as provided by the relevant laws and regulations.
- Epson assumes no responsibility for any damages (whether direct or indirect) caused by or in relation with your non-compliance with the terms and conditions in this document.
- 10. Epson assumes no responsibility for any damages (whether direct or indirect) incurred by any third party that you assign, transfer, loan, etc., Epson products to.
- 11. For more details or other concerns about this document, please contact our sales representative.
- 12. Company names and product names listed in this document are trademarks or registered trademarks of their respective companies.

Evaluation board/kit and Development tool important notice

- 1. Epson evaluation board/kit or development tool is designed for use for engineering evaluation, demonstration, or development purposes only. Do not use it for other purposes. It is not intended to meet the requirements of design for finished products.
- 2. Epson evaluation board/kit or development tool is intended for use by an electronic engineer and is not a consumer product. The user should use it properly and in a safe manner. Epson dose not assume any responsibility or liability of any kind of damage and/or fire coursed by the use of it. The user should cease to use it when any abnormal issue occurs even during proper and safe use.
- 3. The part used for Epson evaluation board/kit or development tool may be changed without any notice.

Preface

This is a technical manual for designers and programmers who develop a product using the S1C31D01. This document describes the functions of the IC, embedded peripheral circuit operations, and their control methods.

Notational conventions and symbols in this manual

Register address

Peripheral circuit chapters do not provide control register addresses. Refer to "Peripheral Circuit Area" in the "Memory and Bus" chapter or "List of Peripheral Circuit Control Registers" in the Appendix.

Register and control bit names

In this manual, the register and control bit names are described as shown below to distinguish from signal and pin names.

XXX register: Represents a register including its all bits.

XXX.YYY bit: Represents the one control bit YYY in the XXX register.

XXX.ZZZ[1:0] bits: Represents the two control bits ZZZ1 and ZZZ0 in the XXX register.

Register table contents and symbols

Initial: Value set at initialization

Reset: Initialization condition. The initialization condition depends on the reset group (H0, H1, or S0). For more information on the reset groups, refer to "Initialization Conditions (Reset Groups)" in the "Power Supply, Reset, and Clocks" chapter.

R/W:	R =	Read only bit
	W =	Write only bit
	WP =	Write only bit with a write protection using the SYSPROT.PROT[15:0] bits
	R/W =	Read/write bit
	R/WP =	Read/write bit with a write protection using the SYSPROT.PROT[15:0] bits

(reserved):Reserved bit. Do not alter from the initial value.

Control bit read/write values

This manual describes control bit values in a hexadecimal notation except for one-bit values (and except when decimal or binary notation is required in terms of explanation). The values are described as shown below according to the control bit width.

 1 bit:
 0 or 1

 2 to 4 bits:
 0x0 to 0xf

 5 to 8 bits:
 0x00 to 0xff

 9 to 12 bits:
 0x000 to 0xfff

 13 to 16 bits:
 0x0000 to 0xffff

Decimal: 0 to 9999... Binary: 0b0000... to 0b1111...

Channel number

Multiple channels may be implemented in some peripheral circuits (e.g., 16-bit timer, etc.). The peripheral circuit chapters use 'n' as the value that represents the channel number in the register and pin names regardless of the number of channel actually implemented. Normally, the descriptions are applied to all channels. If there is a channel that has different functions from others, the channel number is specified clearly.

Example) T16_nCTL register of the 16-bit timer

If one channel is implemented (Ch.0 only): $T16_nCTL = T16_0CTL$ only

If two channels are implemented (Ch.0 and Ch.1): $T16_nCTL = T16_0CTL$ and $T16_1CTL$

For the number of channels implemented in the peripheral circuits of this IC, refer to "Features" in the "Overview" chapter.

Low power mode

This manual describes the low power modes as HALT mode and SLEEP mode. These terms refer to sleep mode and deep sleep mode in the Cortex[®]-M0+ processor, respectively.

- Contents -

	Pre	ace		i
	Not	ational conventio	ons and symbols in this manual	i
	•			
1	Overvi	• ·		
	1.1	Features		
	1.2	Block Diagram		
	1.3	Pins		1-4
		1.3.1 Pin Co	nfiguration Diagram	1-4
		1.3.2 Pad Co	onfiguration Diagram	1-7
		1.3.3 Pin De	scriptions	1-9
2	Power	Supply, Reset	and Clocks	2-1
	2.1	Power Generato	, pr (PWGA)	
		2.1.1 Overvie	2W	
		2.1.2 Pins		
		2.1.3 VD1 Re	gulator Operation Mode	
		2.1.4 VD1 Re	gulator Voltage Mode	
	22	System Reset (Controller (SBC)	2-4
	2.2	2 2 1 Overvie	אים w	2-4
		222 Input F	2in	2-4
		2.2.3 Reset 9	Sources	2-5
		2.2.4 Initializ	ation Conditions (Reset Groups)	2-5
	23	Clock Generato	r (CLG)	2-6
	2.0	2 3 1 Overvia		2-6
		2.3.2 Input/(Swithut Pins	
		2.3.3 Clock 9	Sources	2-7
		2.3.4 Operat	ions	2-9
	24	Operating Mode		2_1/
	2.4	2 / 1 Initial F	Root Sequence	
		2.4.1 Initial L	ion between Operating Modes	
	25	Intorrupto		0 16
	2.5	Operative L De existence		
	2.6	Control Register	rs	
		CLC System	Ol Register	
		CLG Oystern	on Control Register	
		CLG IOSC C	ontrol Register	
		CLG OSC1 C	Control Register	
		CLG OSC3 C	Control Register	2-21
		CLG Interrup	t Flag Register	
		CLG Interrup	t Enable Register	
		CLG FOUT C	Control Register	
		CLG Oscillati	on Frequency Trimming Register 1	
		CLG Oscillati	on Frequency Trimming Register 2	
3	CPU a	nd Debugger .		3-1
	3.1	Overview		3-1
	3.2	CPU		
	33	Debugger		3-1
	0.0	3.3.1 List of	Debugger Input/Output Pins	3-1
		3.3.2 Extern	al Connection	
	3 /	Reference Doci	iments	3-0
_				
4	Memo	y and Bus		4-1

	4.1	Overview	/	. 4-1
	4.2	Bus Acce	ess Cycle	4-2
	4.3	Flash Me	emory	4-2
		4.3.1	Flash Memory Pin	4-2
		4.3.2	Flash Bus Access Cycle Setting	4-2
		4.3.3	Flash Programming	4-3
	11	RAM		1_3
	т. т 4 Б	Derinher	al Circuit Control Decistore	4.0
	4.3	Peripriera	al Circuit Control Registers	. 4-3 1 1 1
		4.5.1		4-11
	4.6	Instructio	on Gache	4-11
	4.7	Memory	Mapped Access Area For External Flash Memory	4-11
	4.8	Control F	Registers	4-11
		Syste	em Protect Register	4-11
		CACH	HE Control Register	4-11
		FLAS	HC Flash Read Cycle Register	4-12
5	Interru	ıpt		.5-1
	5.1	Overview		5-1
	5.2	Vector Ta	ahla	5_1
	5.2	501	Vector Table Offect Address (VTOP)	52
		5.2.1	Dright of Interrupto	50
	5.0	5.2.2		. 0-0
	5.3	Periphera	al Circuit Interrupt Control	5-3
	5.4	NMI		. 5-4
6	DMA (Controlle	r (DMAC)	.6-1
-	61	Overview		6-1
	6.2	Operatio	ne	6_2
	0.2	6 2 1	Initialization	6.2
		0.2.1		0-2
	6.3	Priority		6-2
	6.4	Data Stru	ucture	6-2
		6.4.1	Transfer Source End Pointer	6-3
		6.4.2	Transfer Destination End Pointer	6-3
		6.4.3	Control Data	6-4
	6.5	DMA Tra	nsfer Mode	6-5
		6.5.1	Basic Transfer	6-5
		6.5.2	Auto-Request Transfer	6-5
		6.5.3	Ping-Pong Transfer	6-6
		6.5.4	Memory Scatter-Gather Transfer	6-7
		6.5.5	Peripheral Scatter-Gather Transfer	6-8
	6.6	DMA Tra	nsfer Cycle	6-9
	6.7		e	6-9
	6.0	Control	Doniatoro	6 10
	0.0		C Status Degister	6 10
			C Configuration Register	6-10
		DMA	C Control Data Base Pointer Begister	6-11
		DMA	C Alternate Control Data Base Pointer Register	6-11
		DMA	C Software Request Register	6-11
		DMA	C Request Mask Set Register	6-11
		DMA	C Request Mask Clear Register	6-12
		DMA	C Enable Set Register	6-12
		DMA	C Enable Clear Register	6-12
		DMA	C Primary-Alternate Set Register	6-12
		DMA	C Primary-Alternate Clear Register	6-13
		DMA	C Priority Set Register	6-13

CONTENTS

			DMAC Priority Clear Register	6-13
			DMAC Error Interrupt Flag Register	6-13
			DMAC Transfer Completion Interrupt Flag Register	6-14
			DMAC Transfer Completion Interrupt Enable Set Register	6-14
			DMAC Transfer Completion Interrupt Enable Clear Register	6-14
			DMAC Error Interrupt Enable Set Register	6-14
			DMAC Error Interrupt Enable Clear Register	6-15
7	1/0	Por	rts (PPOBT)	7-1
•	., 0	7 1		7 1
		7.1		7-1
		7.2	I/O Cell Structure and Functions	7-2
			7.2.1 Schmitt Input	7-2
			7.2.2 Over Voltage Tolerant Fail-Safe Type I/O Cell	7-2
			7.2.3 Pull-Up/Pull-Down	7-2
			7.2.4 CMOS Output and High Impedance State	7-3
		7.3	Clock Settings	7-3
			7.3.1 PPORT Operating Clock	7-3
			7.3.2 Clock Supply in SLEEP Mode	7-3
			7.3.3 Clock Supply During Debugging	7-3
		74	Operations	7-3
		1.4	7 / 1 Initialization	7_3
			7.4.2 Port Input/Output Control	7 5
				7-5
		7.5	Interrupts	7-6
		7.6	Control Registers	7-6
			Px Port Data Register	7-6
			Px Port Enable Register	7-7
			Px Port Pull-up/down Control Register	. / - /
			PX Port Interrupt Flag Register	7-8
			Px Port Interrupt Control Register	7-8
			PX Port Onaltering Filter Enable Register	7 0
			PX Port Function Select Register	7_0
			P Port Clock Control Begister	7_9
			P Port Interrupt Flag Group Register	7-10
		77	Control Pagietor and Port Eurotion Configuration of this IC	7 1 1
		1.1	7.7.1. PO Port Croup	7 1 1
				7 10
			7.7.2 PT Port Group	7-12
			7.7.3 P2 Port Group	7-13
			7.7.4 P3 Port Group	7-14
			7.7.5 P4 Port Group	7-15
			7.7.6 P5 Port Group	/-16
			7.7.7 P6 Port Group	7-17
			7.7.8 Pd Port Group	7-18
			7.7.9 Common Registers between Port Groups	7-19
8	Uni	vor	sal Port Multiplever (LIPMLIX)	8-1
0		0 4		0 1
		8.1	Uverview	8-1
		8.2	Peripheral Circuit I/O Function Assignment	8-1
		8.3	Control Registers	8-2
			Pxy-xz Universal Port Multiplexer Setting Register	8-2
9	Wa	tch	dog Timer (WDT2)	9-1
Ĵ		0.1		0 1
		9.1		9-1
		9.2	Clock Settings	9-1
			9.2.1 WDT2 Operating Clock	9-1

		9.2.2 Clock Supply in DEBUG Mode	9-1
	9.3 (Operations	9-2
		9.3.1 WDT2 Control	9-2
		9.3.2 Operations in HALT and SLEEP Modes	9-3
	940	Control Begisters	9-3
	0.1	WDT2 Clock Control Beaister	9-3
		WDT2 Control Register	9-4
		WDT2 Counter Compare Match Begister	
10	Real-T	ime Clock (RTCA)	.10-1
	10.1	Overview	. 10-1
	10.2	Output Pin and External Connection	. 10-1
		10.2.1 Output Pin	. 10-1
	10.3	Clock Settings	10-2
	10.0	10.3.1 BTCA Operating Clock	10-2
		10.3.2 Theoretical Regulation Function	10_2
	10.4		10-2
	10.4		. 10-3
			. 10-3
		10.4.2 Real-Time Clock Counter Operations	. 10-4
		10.4.3 Stopwatch Control	. 10-4
		10.4.4 Stopwatch Count-up Pattern	. 10-4
	10.5	Interrupts	. 10-5
	10.6	Control Registers	. 10-6
		RTCA Control Register (Low Byte)	10-6
		RTCA Control Register (High Byte)	10-7
		RTCA Second Alarm Register	10-7
		RTCA Hour/Minute Alarm Register	10-8
		RTCA Stopwatch Control Register	10-8
		RTCA Second/1Hz Register	10-9
		RTCA Hour/Minute Register	. 10-10
		RICA Month/Day Register	10-11
		RTCA Interrupt Elag Register	10-11
		BTCA Interrupt Enable Begister	10-12
			. 10 10
11	Supply	v Voltage Detector (SVD3)	.11-1
	11.1	Overview	. 11-1
	11.2	Input Pins and External Connection	. 11-2
		11.2.1 Input Pins	. 11-2
		11.2.2 External Connection	. 11-2
	11.3	Clock Settings	11-2
	11.0	11.3.1 SV/D3 Operating Clock	11-2
		11.3.2 Clock Supply in SI FEP Mode	11_2
		11.3.3 Clock Supply in DEBLIG Mode	11_2
			. 11-0
	11.4		. 11-3
		11.4.1 SVD3 Control	. 11-3
		11.4.2 SVD3 Operations	. 11-4
	11.5	SVD3 Interrupt and Reset	. 11-4
		11.5.1 SVD3 Interrupt	. 11-4
		11.5.2 SVD3 Reset	. 11-5
	11.6	Control Registers	. 11-5
		SVD3 Clock Control Register	11-5
		SVD3 Control Register	11-6
		SVD3 Status and Interrupt Flag Register	11-7
		SVD3 Interrupt Enable Register	11-8

12	16-bit	Timers (T16)	12-1
	12.1	Overview	12-1
	12.2	Input Pin	12-1
	12.3	Clock Settings	12-2
		12.3.1 T16 Operating Clock	12-2
		12.3.2 Clock Supply in SLEEP Mode	12-2
		12.3.3 Clock Supply During Debugging	12-2
		12.3.4 Event Counter Clock	12-2
	12.4	Operations	12-2
		12.4.1 Initialization	12-2
		12.4.2 Counter Underflow	12-3
		12.4.3 Operations in Repeat Mode	12-3
		12.4.4 Operations in One-shot Mode	12-3
		12.4.5 Counter Value Read	12-4
	12.5	Interrupt	12-4
	12.6	Control Begisters	12-4
	12.0	T16 Ch.n Clock Control Register	. 12-4
		T16 Ch.n Mode Register	. 12-5
		T16 Ch.n Control Register	. 12-5
		T16 Ch. <i>n</i> Reload Data Register	. 12-6
		T16 Ch. <i>n</i> Counter Data Register	. 12-6
		T16 Ch.n Interrupt Flag Register	. 12-6
		116 Ch.n Interrupt Enable Register	. 12-7
13	UART	(UART3)	13-1
	13.1	Overview	13-1
	13.2	Input/Output Pins and External Connections	13-2
		13.2.1 List of Input/Output Pins	13-2
		13.2.2 External Connections	13-2
		13.2.3 Input Pin Pull-Up Function	13-2
		13.2.4 Output Pin Open-Drain Output Function	13-2
		13.2.5 Input/Output Signal Inverting Function	13-2
	13.3	Clock Settings	13-2
		13.3.1 UART3 Operating Clock	13-2
		13.3.2 Clock Supply in SLEEP Mode	13-3
		13.3.3 Clock Supply During Debugging	13-3
		13.3.4 Baud Rate Generator	13-3
	13.4	Data Format	13-3
	13.5	Operations	13-4
		13.5.1 Initialization	13-4
		13.5.2 Data Transmission	13-5
		13.5.3 Data Reception	13-6
		13.5.4 IrDA Interface	13-7
		13.5.5 Carrier Modulation	13-8
	13.6	Receive Errors	13-9
		13.6.1 Framing Error	13-9
		13.6.2 Parity Error	13-9
		13.6.3 Overrun Error	13-9
	13.7	Interrupts	13-10
	13.8	DMA Transfer Requests	13-10
	13.9	Control Registers	13-11
		UART3 Ch.n Clock Control Register	13-11
		UART3 Ch.n Mode Register	13-11

UARTS Ch./ Tarsmit Data Register 13-14 UARTS Ch./ Trasmit Data Register 13-14 UARTS Ch./ Trasmit Ball Register 13-14 UARTS Ch./ Interrupt Flag Register 13-16 UARTS Ch./ Interrupt Flag Register 13-16 UARTS Ch./ Interrupt Flag Register 13-16 UARTS Ch./ Receive Buffer One Byte Full DMA Request Enable Register 13-16 UARTS Ch./ Receive Buffer One Byte Full DMA Request Enable Register 13-16 UARTS Ch./ Receive Buffer One Byte Full DMA Request Enable Register 13-16 UARTS Ch./ Receive Buffer One Byte Full DMA Request Enable Register 13-16 UARTS Ch./ Receive Buffer One Byte Full DMA Request Enable Register 13-16 UARTS Ch./ Receive Buffer One Byte Full DMA Request Enable Register 13-16 UARTS Ch./ Receive Buffer One Byte Full DMA Request Enable Register 14-12 14.2 Interrunt Enable Register 14-12 14.2 Interrunt Enable Register 14-2 14.2.1 Interrunt Enable Register 14-2 14.2.2 External Connections 14-2 14.2.3 Interrunt Connections 14-2 14.2.4 Input Poull-Up/Pull-Down			UART3 Ch.n Baud-Rate Register	. 13-13
UART3 Ch./ Transmit Data Register 13-14 UART3 Ch./ Status and Interrupt Flag Register 13-14 UART3 Ch./ Interrupt Teals Register 13-15 UART3 Ch./ Interrupt Teals Register 13-16 UART3 Ch./ Interrupt Teals Register 13-16 UART3 Ch./ Transmit Buffer Empty DMA Request Enable Register 13-16 UART3 Ch./ Carlier Waveform Register 13-16 14 Synchronous Serial Interface (SPIA) 14-1 14.1 Overview 14-1 14.2 Input/Output Pins and External Connections 14-2 14.2.1 List of Input/Output Pins 14-2 14.2.2 External Connections 14-3 14.3.3 Clock Settings 14-3 14.3.4 Clock Settings 14-3 14.3.5 DPI Cock (SPICLK/N) Phase and Polarity 14-4 14.3.3 SPI Cock (SPICLK/N) Phase and Polarity 14-4 14.3.3 SPI Cock (SPICLK/N) Phase and Polarity 14-4 14.4.4 Data Format 14-5 14.5.1 Initialization 14-5 14.5.2 Deta Transmission in Master Mode 14-6 14.5.3 Data Reception in Master Mode 14-10 14.5.4 Terminating Data Transfer in Slave Mode <th></th> <th></th> <th>UART3 Ch.n Control Register</th> <th>. 13-13</th>			UART3 Ch.n Control Register	. 13-13
UAR13 Ch.7 Heceve Data Hegater 13-14 UAR13 Ch.7 Interrupt Enable Register 13-16 UAR13 Ch.7 Interrupt Enable Register 13-16 UAR13 Ch.7 Interrupt Enable Register 13-16 UAR13 Ch.7 Receive Buffer One Byte Full DMA Request Enable Register 13-16 UAR13 Ch.7 Receive Buffer One Byte Full DMA Request Enable Register 13-16 14 Synchronous Serial Interface (SPIA) 14-11 14.1 Overview 14-11 14.2 Overview 14-11 14.2.1 List of Input/Output Pins. 14-22 14.2.2 External Connections 14-22 14.2.3 Pin Functions in Master Mode and Slave Mode. 14-33 14.3 Clock Settings 14-33 14.3.2 Clock Supply During Debugging 14-44 14.3.3 SPI Clock (SPICLKn) Phase and Polarity 14-44 14.4 Data Format. 14-55 14.5.2 Data Transmission in Master Mode. 14-56 14.5.4 Input Size Mode 14-51 14.5.5 Deta Transfer in Slave Mode. 14-11 14.6 Interrupts. 14-51 14.5.0 Detaiting Data Transfer in Slave Mode. 14-11 14.6 Interrupts. 14-12 </th <th></th> <th></th> <th>UART3 Ch.n Transmit Data Register</th> <th>. 13-14</th>			UART3 Ch.n Transmit Data Register	. 13-14
UART3 Ch.n Interrupt Enable Register 13-15 UART3 Ch.n Interrupt Enable Register 13-16 UART3 Ch.n Receive Buffer One Byte Full DMA Request Enable Register 13-16 UART3 Ch.n Carrier Waveform Register 13-16 14. Synchronous Serial Interface (SPIA) 14-1 14.1 Overview 14-1 14.2 Deverview 14-1 14.2 List of Input/Output Pins 14-2 14.2.2 External Connections 14-2 14.2.3 Pin Functions in Master Mode and Slave Mode 14-3 14.2.4 Input Pin Pull-Up/Pull-Down Function 14-3 14.3. SPIA Operating Clock 14-3 14.3. SPIA Operating Clock 14-3 14.3. SPIA Operating Clock 14-5 14.3. SPIA Operating Clock 14-5 14.4.4 Data Format 14-5 14.5.1 Initialization 14-5 14.5.2 Data Transmission in Master Mode 14-6 14.5.3 Data Reception in Master Mode 14-6 14.5.4 Terminating Data Transfer in Slave Mode 14-11 14.5.6 Terminating Data Transfer in Slave Mode 14-11 14.6 Terminating Datat Pansfer Mode 14-11			UAR13 Ch.n Receive Data Register	13-14
UART3 Ch.n Transmit Buffer Empty DMA Request Enable Register 13-16 UART3 Ch.n Receive Buffer One Byte Full DMA Request Enable Register 13-16 UART3 Ch.n Receive Buffer One Byte Full DMA Request Enable Register 13-16 UART3 Ch.n Carrier Waveform Register 14-1 14.1 14.1 14.2 Input/Output Pins and External Connections 14-2 14.2.1 List of Input/Output Pins. 14-2 14.2.2 External Connections 14-2 14.2.2 External Connections 14-3 14.2.4 Input Pinul/UpPull-Down Function 14-3 14.3 SPIA Operating Clock 14-3 14.3.1 SPIA Operating Clock 14-3 14.3.2 Clock Supply During Debugging 14-4 14.3.3 SPIA Operating Clock 14-5 14.5.2 Operations 14-5 14.5.2 Data Transmission in Master Mode 14-6 14.5.2 Data Reception in Master Mode 14-10 14.5.5 Data Transfer in Slave Mode 14-11 14.6 Transfer Nequests 14-12			UARTS Ch.// Status and Interrupt Flag Register	12 15
UART3 Ch.n Receive Buffer One Byte Full DMA Request Enable Register. 13-16 14 Synchronous Serial Interface (SPIA). 14-1 14.1 Overview 14-1 14.2 Input/Output Pins and External Connections 14-2 14.2.1 List of Input/Output Pins 14-2 14.2.2 External Connections 14-2 14.2.3 Pin Functions in Master Mode and Slave Mode. 14-3 14.2.4 Input Pin Pull-Up/Pull-Down Function 14-3 14.3.3 Clock Suppit During Debugging 14-4 14.3.3 SPIA Clock (SPICLKn) Phase and Polarity 14-4 14.3.3 SPIA Clock (SPICLKn) Phase and Polarity 14-4 14.4.5 Departing Clock 14-5 14.5.1 Initialization 14-5 14.5.2 Data Transmission in Master Mode 14-6 14.5.3 Data Reception in Master Mode 14-10 14.5.6 Terminating Data Transfer in Slave Mode 14-10 14.5.6 Terminating Data Transfer in Slave Mode 14-11 14.6 Control Register 14-13 SPIA Ch.n Mode Register 14-13 14.8 Control Register 14-13 14.9 Control Register 14-14 SPIA Ch.n Mode Register			LIART3 Ch n Transmit Buffer Empty DMA Bequest Enable Begister	13-16
UART3 Ch.n Carrier Waveform Register 13-16 14 Synchronous Serial Interface (SPIA) 14-1 14.1 Overview 14-1 14.2 Input/Output Pins and External Connections 14-2 14.2.1 List of Input/Output Pins 14-2 14.2.2 External Connections 14-2 14.2.3 Pin Functions in Master Mode and Slave Mode 14-3 14.3.1 SPIA Operating Clock 14-3 14.3.1 SPIA Operating Clock 14-3 14.3.2 Clock Supply During Debugging 14-4 14.3.3 SPI Clock (SPICLKn) Phase and Polarity 14-4 14.4.5 Deparations 14-5 14.5.0 Deparations 14-5 14.5.1 Initialization 14-5 14.5.2 Data Transmission in Master Mode 14-10 14.5.5 Data Transfer in Slave Mode 14-10 14.5.6 Terminating Data Transfer in Slave Mode 14-10 14.5.6 Terminating Data Transfer in Slave Mode 14-11 14.6 Interrupt Flag Register 14-13 14.8 Control Registers 14-13 14.8 Control Register 14-14 14.5.5 Data Transfer In Slave Mode 14-14 14.6 Interr			UART3 Ch.n Receive Buffer One Byte Full DMA Request Enable Register	. 13-16
14 Synchronous Serial Interface (SPIA) 14-1 14.1 Overview 14-1 14.2 Overview 14-1 14.2 Input/Output Pins and External Connections 14-2 14.2.1 List of Input/Output Pins 14-2 14.2.2 External Connections 14-2 14.2.3 Pin Functions in Master Mode and Slave Mode 14-3 14.3.4 Input Pin Pull-Up/Pull-Down Function 14-3 14.3.5 Clock Supply During Debugging 14-4 14.3.1 SPIA Operating Clock 14-3 14.3.3 SPI Clock (SPICLKn) Phase and Polarity 14-4 14.4.5.3 Deta Transmission in Master Mode 14-5 14.5.1 Initialization 14-5 14.5.2 Data Transfer in Slave Mode 14-6 14.5.3 Data Transfer in Slave Mode 14-10 14.5.6 Terminating Data Transfer in Slave Mode 14-11 14.6 Interrupts 14-13 14.8 Control Register 14-13 14.8 Onthrouge Start Transfer in Slave Mode 14-14 14.4 14.5 I Transfer Bequests 14-14 14.5.4 Terminating Data Transfer in Slave Mode 14-14 14.5.6 Interrupt Enable Register 14-14 14.6 Interrupts 14-14 <th></th> <th></th> <th>UART3 Ch.n Carrier Waveform Register</th> <th>13-16</th>			UART3 Ch.n Carrier Waveform Register	13-16
14.1 Overview 14-1 14.1 Overview 14-1 14.2 Input/Output Pins and External Connections 14-2 14.2.1 List of Input/Output Pins 14-2 14.2.2 External Connections 14-2 14.2.3 Pin Functions in Master Mode and Slave Mode 14-3 14.2.4 Input Pin Pull-Up/Pull-Down Function 14-3 14.3.1 SPIA Operating Clock 14-3 14.3.2 Clock Supply During Debugging 14-4 14.3.3 SPI Clock (SPICLKn) Phase and Polarity 14-4 14.3.3 SPI Clock (SPICLKn) Phase and Polarity 14-4 14.4.2 Data Framstemission in Master Mode 14-5 14.5.1 Initialization 14-5 14.5.4 Taransferis Insave Mode 14-10 14.5.5 Data Transfer in Slave Mode 14-11 14.6 Interrupts 14-12 14.7 DMA Transfer Requests 14-13 14.8 Control Register 14-13 14.8 Contror Register 14-13 <tr< th=""><th>1/ 0</th><th>Synahi</th><th>ranous Sorial Interface (SPIA)</th><th>1/ 1</th></tr<>	1/ 0	Synahi	ranous Sorial Interface (SPIA)	1/ 1
14.2 Input/Output Pins and External Connections 14-2 14.2.1 List of Input/Output Pins 14-2 14.2.2 External Connections 14-2 14.2.3 Pin Functions in Master Mode and Slave Mode 14-3 14.2.4 Input Pin Pull-Up/Pull-Down Function 14-3 14.3 Clock Settings 14-3 14.3.1 SPIA Operating Clock 14-3 14.3.3 SPI Clock (SPICLKn) Phase and Polarity 14-4 14.3.3 SPI Clock (SPICLKn) Phase and Polarity 14-4 14.4 14.5.0 Deparations 14-5 14.5.1 Initialization 14-5 14-5 14.5.2 Data Transfission in Master Mode 14-6 14-5.3 14-5.0 14.5.4 Terminating Data Transfer in Slave Mode 14-10 14-5.6 14-5.0 14-10 14-5.6 14-5.0 14-12 14-10 14-5.6 14-5.0 14-12 14-10 14-5.6 14-5.0 14-12 14-10 14-5.6 14-5.0 14-12 14-10 14-5.6 14-5.0 14-12 14-10 14-5.6 14-13 14-13 14-14	14 0	1/1 1		1/_1
14.2 Input/Output Pins and External Connections 14-2 14.2.1 List of Input/Output Pins 14-2 14.2.2 External Connections 14-3 14.2.2 External Connections 14-3 14.2.2 External Connections 14-3 14.2.4 Input Pin Pull-Up/Pull-Down Function 14-3 14.3 Clock Supply During Debugging 14-4 14.3.3 SPI Clock (Supply During Debugging 14-4 14.3.3 SPI Clock Supply During Debugging 14-4 14.4 Data Format 14-5 14.5.1 Initialization 14-5 14.5.1 Dirations 14-5 14.5.2 Data Transmission in Master Mode 14-6 14.5.3 Data Reception in Master Mode 14-10 14.5.5 Data Transfer in Slave Mode 14-10 14.5.5 Data Transfer in Master Mode 14-10 14.5.6 Terminating Data Transfer in Master Mode 14-11 14.6 Interrupts 14-12 14.7 DMA Transfer Requests 14-12 14.6 Interrupts 14-14		14.1		. 14-1
14.2.1 List of input/Output Pins. 14-2 14.2.2 Fixternal Connections 14-2 14.2.3 Pin Functions in Master Mode and Slave Mode. 14-3 14.2.4 Input Pin Pull-Up/Pull-Down Function 14-3 14.3 Clock Settings. 14-3 14.3.1 SPIA Operating Clock. 14-3 14.3.3 SPI Clock (SPICLKn) Phase and Polarity 14-4 14.3.3 SPI Clock (SPICLKn) Phase and Polarity 14-4 14.4 Data Fransmission in Master Mode 14-5 14.5.0 Deprations 14-5 14.5.1 Initialization 14-5 14.5.2 Data Transfer in Master Mode 14-10 14.5.5 Data Transfer in Master Mode 14-10 14.5.6 Terminating Data Transfer in Slave Mode 14-10 14.5.6 Terminating Data Transfer in Slave Mode 14-11 14.6 Interrupt Endregister 14-13 14.7 DMA Transfer Requests 14-13 14.8 Control Register 14-13 14.8 Control Register 14-14 SPIA Ch.n Mode Register 14-15		14.2	Input/Output Pins and External Connections	. 14-2
142.2 External connections 14-2 142.3 Pin Functions in Master Mode and Slave Mode. 14-3 142.4 Input Pin Pull-Up/Pull-Down Function 14-3 14.3 Clock Settings 14-3 14.3 Clock Settings 14-3 14.3 ISPIA Operating Clock. 14-3 14.3.1 SPIA Operating Clock 14-4 14.3.3 SPI Clock (SPICLKn) Phase and Polarity 14-4 14.4 Data Format 14-5 14.5 Operations 14-5 14.5.1 Initialization 14-5 14.5.2 Data Transmission in Master Mode 14-6 14.5.3 Data Reception in Master Mode 14-10 14.5.5 Data Transfer in Slave Mode 14-10 14.5.6 Terminating Data Transfer in Master Mode 14-11 14.6 Interrupts 14-12 14.7 DMA Transfer Requests 14-13 14.8 Control Register 14-13 14.8 Control Register 14-14 SPIA Ch.n Meete Data Register 14-15 SPIA Ch.n Transmit Buta Register 14-16 SPIA Ch.n Interrupt Flag Register 14-16 SPIA Ch.n Interrupt Flag Register 14-16 SPIA Ch.n Interrupt Flag Register 14-16 </th <th></th> <th></th> <th>14.2.1 List of input/Output Pins</th> <th>. 14-2</th>			14.2.1 List of input/Output Pins	. 14-2
14.2.4 Input Pin Pull-Up/Pull-Down Function 14-3 14.3 Clock Settings 14-3 14.3 Clock Supply During Debugging 14-4 14.3.1 SPIA Operating Clock 14-3 14.3.2 Clock Supply During Debugging 14-4 14.3.3 SPI Clock (SPICLKn) Phase and Polarity 14-4 14.4 Data Format 14-5 14.5.1 Initialization 14-5 14.5.2 Data Transmission in Master Mode 14-6 14.5.3 Data Transfer in Master Mode 14-6 14.5.5 Data Transfer in Slave Mode 14-6 14.5.5 Data Transfer in Slave Mode 14-10 14.5.6 Terminating Data Transfer in Slave Mode 14-11 14.6 Interrupts 14-12 14.7 DMA Transfer Requests 14-13 14.8 Control Registers 14-13 14.8 Control Register 14-14 14.4 SPIA Ch.n Transmit Data Register 14-14 SPIA Ch.n Interrupt Flag Register 14-15 SPIA Ch.n Interrupt Flag Register 14-16 SPIA Ch.n Interrupt			14.2.2 External Connections	. 14-2
14.3 Clock Settings. 14-3 14.3 Clock Settings. 14-3 14.3.1 SPIA Operating Clock. 14-3 14.3.2 Clock Upply During Debugging 14-4 14.3.3 SPI Clock (SPICLKn) Phase and Polarity 14-4 14.4 Data Format 14-5 14.5 Operations 14-5 14.5 Operations 14-5 14.5.1 Initialization 14-5 14.5.2 Data Fraception in Master Mode 14-6 14.5.3 Data Reception in Master Mode 14-6 14.5.4 Terminating Data Transfer in Master Mode 14-10 14.5.5 Data Transfer in Slave Mode 14-11 14.6 Interrupts 14-12 14.7 DMA Transfer Requests 14-13 14.8 Control Register 14-13 SPIA Ch.n Toth Register 14-14 SPIA Ch.n Transmit Data Register 14-15 SPIA Ch.n Interrupt Flag Register 14-15 SPIA Ch.n Interrupt Flag Register 14-16 SPIA Ch.n Interrupt Bab Register 14-16 SPIA Ch.n Interrupt Flag Register 14-16 SPIA Ch.n Interrupt Flag Register 14-16 SPIA Ch.n Interrupt Flag Register 14-16 <td< th=""><th></th><th></th><th>14.2.3 PIN FUNCTIONS IN MASTER Mode and Slave Mode</th><th>14-3</th></td<>			14.2.3 PIN FUNCTIONS IN MASTER Mode and Slave Mode	14-3
14.3 Clock Settings 14-3 14.3.1 SPIA Operating Clock. 14-3 14.3.2 Clock Supply During Debugging 14-4 14.3.3 SPI Clock (SPICLKn) Phase and Polarity 14-4 14.4 Data Format 14-5 14.5 Operations 14-5 14.5.1 Initialization 14-5 14.5.2 Data Transmission in Master Mode 14-6 14.5.3 Data Reception in Master Mode 14-6 14.5.5 Data Transfer in Slave Mode 14-10 14.5.6 Terminating Data Transfer in Slave Mode 14-11 14.6 Interrupts 14-12 14.7 DMA Transfer Requests 14-13 14.8 Control Register 14-13 SPIA Ch.n Mode Register 14-13 SPIA Ch.n Mode Register 14-15 SPIA Ch.n Interrupt Flag Register 14-16 SPIA Ch.n Interrupt Enable Register 14-16 SPIA Ch.n Interrupt Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Interrupt Enable Register 14-16 SPIA Ch.n Interrupt Flag Register 14-16 SPIA Ch.n Interrupt Flag Register 14-16 SPIA Ch.n Interrupt Flag Registe				. 14-3
14.3.1 SPIA Operating Clock 14-3 14.3.2 Clock Supply During Debugging 14-4 14.3.3 SPI Clock (SPICLKn) Phase and Polarity 14-4 14.4 Data Format 14-5 14.5.1 Initialization 14-5 14.5.2 Data Transmission in Master Mode 14-6 14.5.2 Data Transferi Master Mode 14-6 14.5.3 Data Transfer in Master Mode 14-6 14.5.4 Terminating Data Transfer in Master Mode 14-10 14.5.5 Data Transfer in Slave Mode 14-10 14.5.6 Terminating Data Transfer in Slave Mode 14-11 14.6 Interrupts 14-12 14.7 DMA Transfer Requests 14-13 14.8 Control Register 14-13 14.8 Control Register 14-13 SPIA Ch.n Mode Register 14-15 SPIA Ch.n Receive Data Register 14-15 SPIA Ch.n Interrupt Enable Register 14-16 SPIA Ch.n Interrupt Enable Register 14-16 SPIA Ch.n Interrupt Enable Register 14-16 SPIA Ch.n Interrupt Enable Register 14-16<		14.3		. 14-3
14.3.2 Clock (SPICLKn) Phase and Polarity 14-4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.5 Initialization 14-5 14.5.0 Operations 14-5 14.5.1 Initialization 14-5 14.5.2 Data Transmission in Master Mode 14-6 14.5.3 Data Reception in Master Mode 14-6 14.5.4 Terminating Data Transfer in Master Mode 14-10 14.5.5 Data Reception in Master Mode 14-10 14.5.6 Terminating Data Transfer in Slave Mode 14-11 14.6 Interrupt Starpsfer in Slave Mode 14-11 14.6 Interrupt Register 14-13 14.8 Control Registers 14-13 14.8 Control Register 14-14 14.8 Ch.n Mode Register 14-14 SPIA Ch.n Receive Data Register 14-15 SPIA Ch.n Interrupt Flag Register 14-15 SPIA Ch.n Interrupt Flag Register 14-16 SPIA Ch.n Interrupt Flabele Register 14-16 SPIA			14.3.1 SPIA Operating Clock	. 14-3
14.4 Data Format 14-5 14.4 Data Format 14-5 14.5 Operations 14-5 14.5.1 Initialization 14-5 14.5.2 Data Transmission in Master Mode 14-6 14.5.3 Data Reception in Master Mode 14-6 14.5.5 Data Transfer in Master Mode 14-6 14.5.5 Data Transfer in Slave Mode 14-10 14.5.6 Terminating Data Transfer in Slave Mode 14-11 14.6 Interrupts 14-12 14.7 DMA Transfer Requests 14-13 14.8 Control Registers 14-13 14.8 Control Register 14-14 SPIA Ch.n Mode Register 14-15 SPIA Ch.n Receive Data Register 14-15 SPIA Ch.n Interrupt Flag Register 14-15 SPIA Ch.n Interrupt Flag Register 14-16			14.3.2 Clock Supply During Debugging	. 14-4
14.4 Data Format 14-5 14.5 Operations 14-5 14.5.1 Initialization 14-5 14.5.2 Data Transmission in Master Mode 14-6 14.5.3 Data Reception in Master Mode 14-6 14.5.4 Terminating Data Transfer in Master Mode 14-10 14.5.5 Data Transfer in Slave Mode 14-10 14.5.6 Terminating Data Transfer in Slave Mode 14-11 14.6 Interrupts 14-12 14.7 DMA Transfer Requests 14-13 14.8 Control Registers 14-13 14.8 Control Register 14-13 14.8 Control Register 14-14 SPIA Ch.n Control Register 14-14 SPIA Ch.n Control Register 14-15 SPIA Ch.n Interrupt Flag Register 14-15 SPIA Ch.n Interrupt Flag Register 14-16 SPIA Ch.n Interrupt Flag Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 15 Quad Synchronous Serial Interface (QSPI) 15-1 15.1 Overview 15-2 15.2 Input/Output Pins and External Connections 15-2 15.2.2 External Connections 15-2 15.3 Clock Settings 15-6			14.3.3 SPI Clock (SPICENI) Phase and Polarity	. 14-4
14.5 Operations 14-5 14.5.1 Initialization 14-5 14.5.2 Data Transmission in Master Mode 14-6 14.5.3 Data Reception in Master Mode 14-6 14.5.3 Data Reception in Master Mode 14-10 14.5.5 Data Transfer in Slave Mode 14-10 14.5.6 Terminating Data Transfer in Slave Mode 14-11 14.6 Interrupts 14-11 14.6 Interrupts 14-12 14.7 DMA Transfer Requests 14-13 14.8 Control Registers 14-13 14.8 Control Register 14-13 SPIA Ch.n Tootrol Register 14-14 SPIA Ch.n Tonsmit Data Register 14-15 SPIA Ch.n Interrupt Flag Register 14-15 SPIA Ch.n Interrupt Flag Register 14-16 SPIA Ch.n Interrupt Enable Register 14-16 SPIA Ch.n Interrupt Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Interrupt Enable Register 14-16 SPIA Ch.n Interrupt Enable Register 15-1 15.1 <t< th=""><th></th><th>14.4</th><th>Data Format</th><th>. 14-5</th></t<>		14.4	Data Format	. 14-5
14.5.1 Initialization 14-5 14.5.2 Data Transmission in Master Mode 14-6 14.5.3 Data Reception in Master Mode 14-8 14.5.4 Terninating Data Transfer in Master Mode 14-10 14.5.5 Data Transfer in Slave Mode 14-10 14.5.6 Terminating Data Transfer in Slave Mode 14-11 14.6 Interrupts 14-12 14.7 DMA Transfer Requests 14-13 14.8 Control Registers 14-13 SPIA Ch.n Mode Register 14-14 SPIA Ch.n Transmit Data Register 14-15 SPIA Ch.n Transmit Data Register 14-15 SPIA Ch.n Interrupt Flag Register 14-15 SPIA Ch.n Interrupt Flag Register 14-16 SPIA Ch.n Transmit Duffer Empty DMA Request Enable Register 14-16 SPIA Ch.n Transmit Buffer Empty DMA Request Enable Register 14-16 SPIA Ch.n Transmit Buffer Empty DMA Request Enable Register 14-16 SPIA Ch.n Transmit Buffer Empty DMA Request Enable Register 14-16 SPIA Ch.n Transmit Buffer Empty DMA Request Enable Register 14-16 SPIA Ch.n Interrupt Enable Register 14-16		14.5	Operations	. 14-5
14.5.2 Data Reception in Master Mode 14-8 14.5.3 Data Reception in Master Mode 14-10 14.5.4 Terminating Data Transfer in Master Mode 14-10 14.5.5 Data Transfer in Slave Mode 14-10 14.5.6 Terminating Data Transfer in Slave Mode 14-11 14.6 Interrupts. 14-12 14.7 DMA Transfer Requests 14-13 14.8 Control Registers 14-13 14.8 Control Register 14-14 SPIA Ch.n Mode Register 14-13 SPIA Ch.n Control Register 14-14 SPIA Ch.n Transmit Data Register 14-14 SPIA Ch.n Interrupt Flag Register 14-15 SPIA Ch.n Interrupt Flag Register 14-15 SPIA Ch.n Interrupt Flag Register 14-16 SPIA Ch.n Interrupt Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Interrupt Comput Output Pins 15-2 15.2.1 List of Input/Output Pins			14.5.1 Initialization	. 14-5
14.5.5 Data Transfer in Master Mode 14-10 14.5.5 Data Transfer in Slave Mode 14-10 14.5.5 Data Transfer in Slave Mode 14-10 14.5.6 Terminating Data Transfer in Slave Mode 14-11 14.6 Interrupts 14-12 14.7 DMA Transfer Requests 14-13 14.8 Control Register 14-13 14.8 Control Register 14-14 SPIA Ch.n Mode Register 14-14 SPIA Ch.n Control Register 14-13 SPIA Ch.n Transmit Data Register 14-14 SPIA Ch.n Interrupt Flag Register 14-15 SPIA Ch.n Interrupt Flag Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Interrupt Coupt Pins and External Connections 15-2 15.1 Overview 15-2			14.5.2 Data Transmission in Master Mode	. 14-0 1/ 0
14.5.4 terminating Data Transfer in Node 14-10 14.5.5 Data Transfer in Slave Mode 14-10 14.5.6 Terminating Data Transfer in Slave Mode 14-11 14.6 Interrupts 14-12 14.7 DMA Transfer Requests 14-13 14.8 Control Registers 14-13 14.8 Control Registers 14-13 SPIA Ch.n Mode Register 14-13 SPIA Ch.n Mode Register 14-14 SPIA Ch.n Control Register 14-15 SPIA Ch.n Interrupt Enable Register 14-15 SPIA Ch.n Interrupt Flag Register 14-16 SPIA Ch.n Interrupt Enable Register 14-16 SPIA Ch.n Interrupt Enable Register 14-16 SPIA Ch.n Interrupt Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 15-2 15.1 Overview 15-1			14.5.3 Data neception in Master Mode	. 14-0 1/ 10
14.5.5 Data Italistic in Older Mode. 14-11 14.5.6 Terminating Data Transfer in Slave Mode. 14-11 14.6 Interrupts. 14-12 14.7 DMA Transfer Requests 14-13 14.8 Control Registers 14-13 SPIA Ch.n Mode Register 14-13 SPIA Ch.n Control Register 14-14 SPIA Ch.n Transmit Data Register 14-15 SPIA Ch.n Interrupt Flag Register 14-16 SPIA Ch.n Interrupt Enable Register 14-16 SPIA Ch.n Interrupt Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 15-1 15.1 Overview 15-1 15.2 <th></th> <th></th> <th>14.5.5 Data Transfer in Slave Mode</th> <th>1/_10</th>			14.5.5 Data Transfer in Slave Mode	1/_10
14.6 Interrupts. 14-12 14.7 DMA Transfer Requests 14-13 14.8 Control Registers 14-13 SPIA Ch.n Mode Register 14-13 SPIA Ch.n Control Register 14-14 SPIA Ch.n Transmit Data Register 14-14 SPIA Ch.n Receive Data Register 14-15 SPIA Ch.n Interrupt Enable Register 14-16 SPIA Ch.n Interrupt Enable Register 14-16 SPIA Ch.n Interrupt Enable Register 14-16 SPIA Ch.n Transmit Buffer Empty DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 15-1 15.1 Overview 15-1 15.2 Input/Output Pins and External Connections 15-2 15.2.1 List of Input/Output Pins 15-2 15.2.2 External Connections 15-2 15.2.3 Pin Functions in Master Mode and Slave Mode 15-6 15.3.1 QSPI Operating Clock 15-6 15.3.2 Clock Supply During Debugging			14.5.5 Data mainster in Slave Mode	14-11
14.7 DMA Transfer Requests 14-13 14.8 Control Registers 14-13 14.8 Control Registers 14-13 SPIA Ch.n Mode Register 14-13 SPIA Ch.n Control Register 14-14 SPIA Ch.n Control Register 14-15 SPIA Ch.n Transmit Data Register 14-15 SPIA Ch.n Interrupt Flag Register 14-15 SPIA Ch.n Interrupt Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Interrupt Enable Register 15-1 15.1 Noter Name Connections 15-2		14.6	Interrunts	14-12
14.8 Control Register induced and the second state of t		14.7	DMA Transfer Requests	14-13
14.5 SPIA Ch.n Mode Register 14-13 SPIA Ch.n Control Register 14-14 SPIA Ch.n Transmit Data Register 14-15 SPIA Ch.n Receive Data Register 14-15 SPIA Ch.n Interrupt Flag Register 14-16 SPIA Ch.n Interrupt Enable Register 14-16 SPIA Ch.n Interrupt Enable Register 14-16 SPIA Ch.n Transmit Buffer Empty DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 15-1 15.1 Overview 15-1 15-1 15.2 Input/Output Pins and External Connections 15-2 15.2.1 List of Input/Output Pins 15-2 15.2.2 External Connections 15-2 15.2.3 Pin		1/ 8	Control Begisters	1/_13
SPIA Ch.n Control Register 14-14 SPIA Ch.n Control Register 14-14 SPIA Ch.n Control Register 14-15 SPIA Ch.n Receive Data Register 14-15 SPIA Ch.n Receive Data Register 14-15 SPIA Ch.n Interrupt Flag Register 14-15 SPIA Ch.n Interrupt Enable Register 14-16 SPIA Ch.n Interrupt Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 15-1 15.1 Overview 15-1 15.2 Input/Output Pins and External Connections 15-2 15.2.1 List of Input/Outp		14.0	SPIA Ch <i>n</i> Mode Register	14-13
SPIA Ch.n Transmit Data Register 14-15 SPIA Ch.n Receive Data Register 14-15 SPIA Ch.n Receive Data Register 14-15 SPIA Ch.n Interrupt Flag Register 14-15 SPIA Ch.n Interrupt Enable Register 14-16 SPIA Ch.n Interrupt Enable Register 14-16 SPIA Ch.n Interrupt Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 15-11 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 15-11 SPIA Chunt Putput Pins and External			SPIA Ch.n Control Register	14-14
SPIA Ch.n Receive Data Register 14-15 SPIA Ch.n Interrupt Flag Register 14-15 SPIA Ch.n Interrupt Enable Register 14-16 SPIA Ch.n Interrupt Enable Register 14-16 SPIA Ch.n Transmit Buffer Empty DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 Spia Ch.n Sterring Connections 15-2 15.2 Input/Output Pins and External Connections 15-2 15.2.2 External Connections 15-2 15.2.3 Pin Functions in Master Mode and Slave Mode 15-6 15.3.1 GSPI Operating Clock 15-6 15.3.2 <th></th> <th></th> <th>SPIA Ch.<i>n</i> Transmit Data Register</th> <th>14-15</th>			SPIA Ch. <i>n</i> Transmit Data Register	14-15
SPIA Ch.n Interrupt Flag Register 14-15 SPIA Ch.n Interrupt Enable Register 14-16 SPIA Ch.n Transmit Buffer Empty DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 15 Quad Synchronous Serial Interface (QSPI) 15-1 15.1 Overview 15-1 15.2 Input/Output Pins and External Connections 15-2 15.2.1 List of Input/Output Pins 15-2 15.2.2 External Connections 15-2 15.2.3 Pin Functions in Master Mode and Slave Mode 15-6 15.3 Clock Settings 15-6 15.3.1 QSPI Operating Clock 15-6 15.3.2 Clock Supply During Debugging 15-7 15.3.3 QSPI Clock (QSPICLKn) Phase and Polarity 15-7 15.4 Data Format 15-8 15.5 Operations 15-9			SPIA Ch.n Receive Data Register	. 14-15
SPIA Ch.n Interrupt Enable Register 14-16 SPIA Ch.n Transmit Buffer Empty DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 15 Quad Synchronous Serial Interface (QSPI) 15-1 15.1 Overview 15-1 15.2 Input/Output Pins and External Connections 15-2 15.2.1 List of Input/Output Pins 15-2 15.2.2 External Connections 15-2 15.2.3 Pin Functions in Master Mode and Slave Mode 15-6 15.3 Clock Settings 15-6 15.3.1 QSPI Operating Clock 15-6 15.3.2 Clock Supply During Debugging 15-7 15.3.3 QSPI Clock (QSPICLKn) Phase and Polarity 15-7 15.4 Data Format 15-8 15.5 Operations 15-9			SPIA Ch.n Interrupt Flag Register	. 14-15
SPIA Ch.n Transmit Buffer Empty DMA Request Enable Register 14-16 SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 15 Quad Synchronous Serial Interface (QSPI) 15-1 15.1 Overview 15-1 15.2 Input/Output Pins and External Connections 15-2 15.2.1 List of Input/Output Pins 15-2 15.2.2 External Connections 15-2 15.2.3 Pin Functions in Master Mode and Slave Mode 15-6 15.2.4 Input Pin Pull-Up/Pull-Down Function 15-6 15.3 Clock Settings 15-6 15.3.1 QSPI Operating Clock 15-6 15.3.2 Clock Supply During Debugging 15-7 15.3.3 QSPI Clock (QSPICLKn) Phase and Polarity 15-7 15.4 Data Format 15-8 15.5 Operations 15-9 15.5.1 Register Access Mode 15-9			SPIA Ch.n Interrupt Enable Register	. 14-16
SPIA Ch.n Receive Buffer Full DMA Request Enable Register 14-16 15 Quad Synchronous Serial Interface (QSPI) 15.1 Overview 15-1 15.2 Input/Output Pins and External Connections 15-2 15.2.1 List of Input/Output Pins 15-2 15.2.2 External Connections 15-2 15.2.3 Pin Functions in Master Mode and Slave Mode 15-6 15.2.4 Input Pin Pull-Up/Pull-Down Function 15-6 15.3 Clock Settings 15-6 15.3.1 QSPI Operating Clock 15-6 15.3.2 Clock Supply During Debugging 15-7 15.3.3 QSPI Clock (QSPICLK <i>n</i>) Phase and Polarity 15-7 15.4 Data Format 15-8 15.5 Operations 15-9 15.5.1 Register Access Mode 15-9			SPIA Ch.n Transmit Buffer Empty DMA Request Enable Register	. 14-16
15 Quad Synchronous Serial Interface (QSPI) 15-1 15.1 Overview 15-1 15.2 Input/Output Pins and External Connections 15-2 15.2.1 List of Input/Output Pins 15-2 15.2.2 External Connections 15-2 15.2.3 Pin Functions in Master Mode and Slave Mode 15-6 15.2.4 Input Pin Pull-Up/Pull-Down Function 15-6 15.3 Clock Settings 15-6 15.3.1 QSPI Operating Clock 15-6 15.3.2 Clock Supply During Debugging 15-7 15.3.3 QSPI Clock (QSPICLKn) Phase and Polarity 15-7 15.4 Data Format 15-8 15.5 Operations 15-9 15.5.1 Register Access Mode 15-9			SPIA Ch.n Receive Buffer Full DMA Request Enable Register	. 14-16
15.1 Overview15-115.2 Input/Output Pins and External Connections15-215.2.1 List of Input/Output Pins.15-215.2.2 External Connections15-215.2.3 Pin Functions in Master Mode and Slave Mode15-615.2.4 Input Pin Pull-Up/Pull-Down Function15-615.3 Clock Settings15-615.3.1 QSPI Operating Clock15-615.3.2 Clock Supply During Debugging15-715.3.3 QSPI Clock (QSPICLKn) Phase and Polarity15-715.4 Data Format15-815.5 Operations15-915.5.1 Register Access Mode15-9	15 C	Quad S	Synchronous Serial Interface (QSPI)	.15-1
15.2Input/Output Pins and External Connections15-215.2.1List of Input/Output Pins15-215.2.2External Connections15-215.2.3Pin Functions in Master Mode and Slave Mode15-615.2.4Input Pin Pull-Up/Pull-Down Function15-615.3Clock Settings15-615.3.1QSPI Operating Clock15-615.3.2Clock Supply During Debugging15-715.3.3QSPI Clock (QSPICLKn) Phase and Polarity15-715.4Data Format15-815.5Operations15-915.5.1Register Access Mode15-9		15.1	Overview	. 15-1
15.2.1 List of Input/Output Pins. 15-2 15.2.2 External Connections 15-2 15.2.3 Pin Functions in Master Mode and Slave Mode. 15-6 15.2.4 Input Pin Pull-Up/Pull-Down Function 15-6 15.3 Clock Settings. 15-6 15.3.1 QSPI Operating Clock 15-6 15.3.2 Clock Supply During Debugging 15-7 15.3.3 QSPI Clock (QSPICLKn) Phase and Polarity 15-7 15.4 Data Format 15-8 15.5 Operations 15-9 15.5.1 Register Access Mode 15-9		15.2	Input/Output Pins and External Connections	. 15-2
15.2.2 External Connections 15-2 15.2.3 Pin Functions in Master Mode and Slave Mode 15-6 15.2.4 Input Pin Pull-Up/Pull-Down Function 15-6 15.3 Clock Settings 15-6 15.3.1 QSPI Operating Clock 15-6 15.3.2 Clock Supply During Debugging 15-7 15.3.3 QSPI Clock (QSPICLKn) Phase and Polarity 15-7 15.4 Data Format 15-8 15.5 Operations 15-9 15.5.1 Register Access Mode 15-9			15.2.1 List of Input/Output Pins	. 15-2
15.2.3 Pin Functions in Master Mode and Slave Mode. 15-6 15.2.4 Input Pin Pull-Up/Pull-Down Function 15-6 15.3 Clock Settings 15-6 15.3.1 QSPI Operating Clock 15-6 15.3.2 Clock Supply During Debugging 15-7 15.3.3 QSPI Clock (QSPICLKn) Phase and Polarity 15-7 15.4 Data Format 15-8 15.5 Operations 15-9 15.5.1 Register Access Mode 15-9			15.2.2 External Connections	. 15-2
15.2.4 Input Pin Pull-Up/Pull-Down Function 15-6 15.3 Clock Settings 15-6 15.3.1 QSPI Operating Clock 15-6 15.3.2 Clock Supply During Debugging 15-7 15.3.3 QSPI Clock (QSPICLKn) Phase and Polarity 15-7 15.4 Data Format 15-8 15.5 Operations 15-9 15.5.1 Register Access Mode 15-9			15.2.3 Pin Functions in Master Mode and Slave Mode	. 15-6
15.3 Clock Settings			15.2.4 Input Pin Pull-Up/Pull-Down Function	. 15-6
15.3.1 QSPI Operating Clock 15-6 15.3.2 Clock Supply During Debugging 15-7 15.3.3 QSPI Clock (QSPICLKn) Phase and Polarity 15-7 15.4 Data Format 15-8 15.5 Operations 15-9 15.5.1 Register Access Mode 15-9		15.3	Clock Settings	. 15-6
15.3.2 Clock Supply During Debugging 15-7 15.3.3 QSPI Clock (QSPICLKn) Phase and Polarity 15-7 15.4 Data Format 15-8 15.5 Operations 15-9 15.5.1 Register Access Mode 15-9			15.3.1 QSPI Operating Clock	. 15-6
15.3.3 QSPI Clock (QSPICLKn) Phase and Polarity 15-7 15.4 Data Format 15-8 15.5 Operations 15-9 15.5.1 Register Access Mode 15-9			15.3.2 Clock Supply During Debugging	. 15-7
15.4 Data Format 15-8 15.5 Operations 15-9 15.5.1 Register Access Mode 15-9			15.3.3 QSPI Clock (QSPICLKn) Phase and Polarity	. 15-7
15.5 Operations		15.4	Data Format	. 15-8
15.5.1 Register Access Mode 15-9		15.5	Operations	. 15-9
			15.5.1 Register Access Mode	. 15-9

	15.5.2 Memory Mapped Access Mode	15-10
	15.5.3 Initialization	15-11
	15.5.4 Data Transmission in Master Mode	15-12
	15.5.5 Data Reception in Register Access Master Mode	15-14
	15.5.6 Data Reception in Memory Mapped Access Mode	15-17
	15.5.7 Terminating Memory Mapped Access Operations	15-25
	15.5.8 Terminating Data Transfer in Master Mode	15-25
	15.5.9 Data Transfer in Slave Mode	15-26
	15.5.10 Terminating Data Transfer in Slave Mode	15-27
15.6	Interrupts	15-27
15.7	DMA Transfer Bequests	15-28
15.7	Control Degisters	15-20
10.6	OCDI China Mada Dagistar	15-29
	QSPI Ch.// Mode Register	15-29
	OSPI Ch.// Collifol Register	15-31
	OSPI Ch n Receive Data Register	15-32
	QSPI Ch.n Interrupt Flag Begister	15-32
	QSPI Ch.n Interrupt Enable Register	15-33
	QSPI Ch.n Transmit Buffer Empty DMA Request Enable Register	15-33
	QSPI Ch.n Receive Buffer Full DMA Request Enable Register	15-34
	QSPI Ch.n FIFO Data Ready DMA Request Enable Register	15-34
	QSPI Ch.n Memory Mapped Access Configuration Register 1	15-34
	QSPI Ch.n Remapping Start Address High Register	15-35
	QSPI Ch.n Memory Mapped Access Configuration Register 2	15-35
	QSPI Ch.n Mode Byte Register	15-37
16 I ² C (I2)	C)	.16-1
16.1	Overview	16-1
10.1		10-1
10.2	10.0.1 List of legislation Directions	10-2
	16.2.1 List of input/Output Pins	10-2
	16.2.2 External Connections	16-2
16.3	Clock Settings	16-3
	16.3.1 I2C Operating Clock	16-3
	16.3.2 Clock Supply During Debugging	16-3
	16.3.3 Baud Rate Generator	16-3
16.4	Operations	16-4
	16.4.1 Initialization	16-4
	16.4.2 Data Transmission in Master Mode	16-5
	16.4.3 Data Reception in Master Mode	16-7
	16.4.4 10-bit Addressing in Master Mode	16-10
	16.4.5 Data Transmission in Slave Mode	16-11
	16.4.6 Data Reception in Slave Mode	16-13
	16.4.7 Slave Operations in 10-bit Address Mode	16-15
	16.4.8 Automatic Bus Clearing Operation	16-15
	16.4.9 Error Detection	16-16
16.5	Interrupts	16-17
16.6	DMA Transfer Bequests	16-18
16.7	Control Begisters	16_10
10.7	12C Ch n Clock Control Begister	16-19
	I2C Ch n Mode Register	16-10
	I2C Ch.n Baud-Bate Register	16-19
	I2C Ch.n Own Address Register	16-20
	I2C Ch.n Control Register	16-20
	I2C Ch.n Transmit Data Register	16-21
	I2C Ch.n Receive Data Register	16-21

CONTENTS

		I2C Ch.n Status and Interrupt Flag Register	16-22
		I2C Ch.n Interrupt Enable Register	16-23
		I2C Ch.n Transmit Buffer Empty DMA Request Enable Register	16-24
		I2C Ch.n Receive Buffer Full DMA Request Enable Register	16-24
17	16-bit	PWM Timers (T16B)	17-1
	17.1	Overview	17-1
	17.2	Input/Output Pins	17-2
	17.3	Clock Settings	17-3
		17.3.1 T16B Operating Clock	17-3
		17.3.2 Clock Supply in SLEEP Mode	17-3
		17.3.3 Clock Supply During Debugging	17-3
		17.3.4 Event Counter Clock	17-3
	17.4	Operations	17-4
		17.4.1 Initialization	17-4
		17.4.2 Counter Block Operations	17-5
		17.4.3 Comparator/Capture Block Operations	17-8
		17.4.4 TOUT Output Control	17-17
	17.5	Interrupt	17-23
	17.6	DMA Transfer Requests	17_23
	17.0	Control Pagiatora	17 00
	17.7	T16B Ch & Clock Control Begister	17-23
		T16B Ch.n Counter Control Register	17-24
		T16B Ch.n Max Counter Data Register	17-25
		T16B Ch.n Timer Counter Data Register	17-25
		T16B Ch.n Counter Status Register	17-26
		T16B Ch.n Interrupt Flag Register	17-27
		T16B Ch.n Interrupt Enable Register	17-28
		T16B Ch.n Comparator/Capture m Control Register	17-29
		T16B Ch.n Compare/Capture m Data Register	17-31
		TI6B Ch.// Counter Max/Zero DMA Request Enable Register	17-32
	_		17-02
18	Sound	Generator (SNDA)	18-1
	18.1	Overview	18-1
	18.2	Output Pins and External Connections	18-2
		18.2.1 List of Output Pins	18-2
		18.2.2 Output Pin Drive Mode	18-2
		18.2.3 External Connections	18-2
	18.3	Clock Settings	18-3
		18.3.1 SNDA Operating Clock	18-3
		18.3.2 Clock Supply in SLEEP Mode	18-3
		18.3.3 Clock Supply in DEBUG Mode	18-3
	18.4	Operations	18-3
		18.4.1 Initialization	18-3
		18.4.2 Buzzer Output in Normal Buzzer Mode	18-3
		18.4.3 Buzzer Output in One-shot Buzzer Mode	18-6
		18.4.4 Output in Melody Mode	18-7
	18.5	Interrupts	18-9
	18.6	DMA Transfer Bequests	18-10
	18.7	Control Begisters	18-10
	10.7	SNDA Clock Control Register	18-10
		SNDA Select Register	18-11
		SNDA Control Register	18-12
		SNDA Data Register	18-12

		SNDA Interrupt Flag Register	18-13
		SNDA Interrupt Enable Register	18-13
		SNDA Sound Buffer Empty DMA Request Enable Register	18-14
19	IR Ren	note Controller (REMC3)	19-1
	19.1	Overview	19-1
	19.2	Output Pins and External Connections.	
		19.2.1 List of Output Pins	19-1
		19.2.2 External Connections	19-2
	19.3	Clock Settings	19-2
	10.0	19.3.1 BEMC3 Operating Clock	19-2
		19.3.2 Clock Supply in SLEEP Mode	19-2
		19.3.3 Clock Supply During Debugging	19-2
	194	Operations	19-2
	10.1	19.4.1 Initialization	19-2
		19.4.2 Data Transmission Procedures	19-3
		19.4.3 BEMO Output Waveform	19-3
		19.4.4 Continuous Data Transmission and Compare Buffers	19-5
	19.5	Interrunts	19-6
	10.0	Application Example: Driving EL Lamp	10_7
	10.7		10 7
	19.7	CONTROL Registers	10.7
		REMC3 Data Bit Counter Control Begister	
		REMC3 Data Bit Counter Register	
		REMC3 Data Bit Active Pulse Length Register	19-10
		REMC3 Data Bit Length Register	19-10
		REMC3 Status and Interrupt Flag Register	19-10
		REMC3 Interrupt Enable Register	19-11
		REMC3 Carrier Waveform Register	19-11
		REMIC3 Carrier Modulation Control Register	19-11
20	12-bit	A/D Converter (ADC12A)	20-1
	20.1	Overview	20-1
	20.2	Input Pins and External Connections	20-2
		20.2.1 List of Input Pins	20-2
		20.2.2 External Connections	20-2
	20.3	Clock Settings	20-2
		20.3.1 ADC12A Operating Clock	20-2
		20.3.2 Sampling Time	20-2
	20.4	Operations	20-3
		20.4.1 Initialization	20-3
		20.4.2 Conversion Start Trigger Source	20-3
		20.4.3 Conversion Mode and Analog Input Pin Settings	20-4
		20.4.4 A/D Conversion Operations and Control Procedures	20-4
	20.5	Interrupts	20-6
	20.6	DMA Transfer Requests	20-6
	20.7	Control Registers	20-7
		ADC12A Ch.n Control Register	20-7
		ADC12A Ch.n Trigger/Analog Input Select Register	20-8
		ADC12A Ch.n Configuration Register	20-9
		ADC12A Ch.n Interrupt Flag Register	20-10
		ADC12A Ch.n Interrupt Enable Register	
		ADO 12A OILII DIVIA NEQUESI EHADIE NEVISIEI III	
		ADC12A Ch.n Besult Begister	20-11

21	Tempe	rature Sensor/Reference Voltage Generator (TSRVR)	.21-1
	21.1	Overview	21-1
	21.2	Output Pin and External Connections	21-1
		21.2.1 Output Pin	21-1
		21.2.2 External Connections	21-2
	21.3		21_2
	21.0	21.2.1 Potoronoo Voltago Sotting	21-2
		21.2.2 Tomporeture Sensor Setting	21-2
			21-2
	21.4	Control Registers	21-3
		TSRVR Ch.n Temperature Sensor Control Register	.21-3
		ISRVR Ch.n Reference voltage Generator Control Register	.21-3
22	USB 2.	0 FS Device Controller (USB, USBMISC)	.22-1
	22.1	Overview	22-1
	22.2	Input/Output Pins and External Connections	22-2
		22 2 1 List of Input/Output Pins	22-2
		22.2.2.7 Elector input output info	22-2
	00.0		00.0
	22.3		22-3
	22.4	USB Power Supply	22-3
	22.5	Operations	22-4
		22.5.1 Initialization	22-4
		22.5.2 Settings when VBUS is Disconnected	22-5
		22.5.3 Transaction Control	22-6
		22.5.4 Control Transfer	22-8
		22.5.5 Bulk Transfer/Interrupt Transfer	22-10
		22.5.6 Data Flow Control	22-11
		22.5.7 Auto-Negotiation Function	22-12
		22.5.8 Description by Negotiation Function	22-14
		22.5.9 FIFO Management	22-17
		22.5.10 Snooze	22-19
	22.6	Interrupts	22-20
	22.7	DMA Transfer Requests	· 00_01
	22.1		22-21
	22.8	Control Registers	22-21
		USB Control Register	22-21
		USB Status Degister	22-23
		USB Endnoint Control Register	22-23
		USB General-Purpose Endpoint EIEO Clear Begister	22-24
		USB FIFO Read Cycle Setup Register	22-25
		USB Revision Number Register	22-25
		USB EP0 Setup Data Registers 0–7	22-25
		USB Address Register	22-26
		USB EP0 Configuration Register	22-26
		USB EP0 Maximum Packet Size Register	22-26
		USB EP0 IN Transaction Control Register	22-27
		USB EP0 OUT Transaction Control Register	22-28
		USB EPm Control Registers	22-29
		USB EPm Configuration Registers	22-30
		USB EPm Maximum Packet Size Registers	22-31
		USB Read FIFO Select Register	22-31
		USB WITE FIFU Select Kegister	22-32
		USD FIFU Read/Write Erlable Register	22-32
		USD methalilling FIFO Data Count Register	22-33 22-33
		USB Dehug RAM Address Register	22-00
			00

		USB Main Interrupt Flag Register	. 22-33
		USB SIE Interrupt Flag Register	. 22-34
		USB General-Purpose Endpoint Interrupt Flag Register	. 22-35
		USB EP0 Interrupt Flag Register	. 22-35
		USB EP <i>m</i> Interrupt Flag Registers	. 22-36
		USB Main Interrupt Enable Register	. 22-37
		USB SIE Interrupt Enable Register	. 22-37
		USB General-Purpose Endpoint Interrupt Enable Register	. 22-38
		USB EPO Interrupt Enable Register	. 22-38
		USB EPm Interrupt Enable Registers.	. 22-39
		USB FIFU Data Register	. 22-40
		USB Debug RAM Data Register	. 22-40
		USB FIFO Write DMA Request Enable Register	22-40
		USB FIFO Read DMA Request Enable Register	22-42
			+_
23	Memo	ry Display Controller (MDC)	.23-1
	23.1	Overview	. 23-1
	23.2	Input/Output Pins and External Connections	. 23-3
		23.2.1 List of Input/Output Pins	. 23-3
		23.2.2 Display Panel External Connections	23-4
		23 2 3 External Host Interface Connections	23-5
	03.3	Clock Sottings	226
	20.0	22.2.1. Voltage Beester Clock	. 23-0
		23.3.1 Voltage Booster Clock	. 23-0
		23.3.2 Low Frequency Clock (CLK32K)	. 23-0
		23.3.3 High Frequency Clock (SYSCLK)	. 23-6
		23.3.4 Clock Supply in SLEEP Mode	. 23-7
		23.3.5 Clock Supply During Debugging	. 23-7
	23.4	VMD Power Supply Circuit	. 23-7
		23.4.1 Configuration of VMD Power Supply Circuit	. 23-7
		23.4.2 Controlling VMD Power Supply Circuit	. 23-8
	23.5	Image Data Format	. 23-8
		23.5.1 Pixel Data Formats	. 23-8
		23.5.2 Bitmap Formats	23-13
	23.6	Operations	23-17
		23.6.1 Initialization	23-17
		23.6.2 Display Updater	23-17
		23.6.3 Drawing Engine	23-24
		23.6.4 Copy Engine	23-28
	23.7	Host Interface	23-36
	20.7	23.7.1 Initialization	23-36
		23.7.2 Indiract 9 bit Darallal Interface	23-30
		22.7.2 INDIFECTO-DIT Fatallet Interface	20-00
	~~~~		23-30
	23.8	Interrupt	23-41
	23.9	Control Registers	23-42
		MDC Display Control Register	. 23-42
		MDC Display Width Register	. 23-44
		MDC Display Height Register	. 23-44
		MDO Display VCOM Clock Divider Register	. 23-44
		IVIDU DISplay Glock Divider Register	.23-44
		NDC Display Parameters 3 and 4 Pagister	23-45
		וא טיטטואר אואר אוואניט אווא אוואניט א אווע אוואניע או	23.16
		MDC Display Parameters 7 and 8 Register	23-40
		MDC Display Undate Start Line Begister	23-46
			0 40

MDC Display Update End Line Register	
MDC Display Frame Buffer Stride Register	
MDC Display Frame Buffer Base Address Register 0	
MDC Display Frame Buffer Base Address Register 1	
MDC Trigger Control Register	
MDC Interrupt Control Register	
MDC Graphics Control Register	
MDC Input X Coordinate Register	
MDC Input Y Coordinate Register	
MDC Input Wiath Register	
MDC Input Height Register	
MDC Output X Coordinate Register	
MDC Output 1 Cooldinate Register	
MDC Output Height Begister	23-53
MDC X Left Scale Begister	23-53
MDC X Bight Scale Register	
MDC Y Top Scale Register	
MDC Y Bottom Scale Register	
MDC X/Y Shear Register	
MDC Rotation Register	
MDC Color Register	23-55
MDC Source Window Base Address Register 0	23-55
MDC Source Window Base Address Register 1	23-55
MDC Destination Window Base Address Register 0	23-55
MDC Destination Window Base Address Register 1	
MDC Source Image Stride Register	
MDC Destination Image Stride Register	
MDC Output Window Left Edge Register	
MDC Output Window Right Edge Register	23-30
MDC Output Window Rottom Edge Register	23-57
MDC Scratchpad A Begister 0	23-57
MDC Scratchpad A Register 1	
MDC Clock Control Register	
MDC Voltage Booster Clock Control Register	
MDC Voltage Booster Power Control Register	
MDC Voltage Booster VMD Output Control Register	23-59
MDC Host Control Register	
24 Electrical Characteristics	24-1
24.1 Absolute Maximum Patinga	04.1
24.2 Recommended Operating Conditions	24-1
24.3 Current Consumption	
24.4 System Reset Controller (SRC) Characteristics	
24.5 Clock Generator (CLG) Characteristics	
24.6 Flash Memory Characteristics	
24.7 Input/Output Port (PPORT) Characteristics	24-7
24.9. Supply Voltage Detector (SVD2) Characteristics	04.0
24.9 UART (UART3) Characteristics	
24.10 Synchronous Serial Interface (SPIA) Characteristics	
24.11 Quad Synchronous Serial Interface (QSPI) Characteristics	24-13
24.12 I ² C (I2C) Characteristics	
24.13 12-bit A/D Converter (ADC12A) Characteristics	
24.14 Temperature Sensor/Reference Voltage Generator (TSRVR) Characteristic	s
24.15 LISB 2.0 ES Device Controller (LISB) Characteristics	01 1C

24.16 Memory Display	Controller (N	ADC) Characteristics	24-17
25 Basic External Connec	ction Diagr	am	25-1
26 Package			26-1
Appendix A List of Periph	eral Circui	it Control Registers	AP-A-1
0x4000 0000		System Register (SYS)	AP-A-1
0x4000 0020		Power Generator (PWGA)	AP-A-1
0x4000 0040–0x	4000 0054	Clock Generator (CLG)	AP-A-1
0x4000 0080		Cache Controller (CACHE)	AP-A-2
0x4000 00a0-0x	4000 00a4	Watchdog Timer (WDT2)	AP-A-2
0x4000 00c0-0x	4000 00d2	Real-time Clock (RTCA)	AP-A-3
0x4000 0100–0x	4000 0106	Supply Voltage Detector (SVD3)	AP-A-4
0x4000 0160–0x	4000 016c	16-bit Timer (T16) Ch.0	AP-A-5
0x4000 01b0		Flash Controller (FLASHC)	AP-A-5
0x4000 0200–0x	4000 02e2	I/O Ports (PPORT)	AP-A-5
0x4000 0300–0x	4000 031e	Universal Port Multiplexer (UPMUX)	AP-A-10
0x4000 0380–0x	4000 0394	UART (UART3) Ch.0	AP-A-12
0x4000 03a0-0x	4000 03ac	16-bit Timer (T16) Ch.1	AP-A-13
0x4000 03b0–0x	4000 03be	Synchronous Serial Interface (SPIA) Ch.0	AP-A-13
0x4000 03c0-0x	4000 03d6	I ² C (I2C) Ch.0	AP-A-14
0x4000 0400–0x	4000 043c	16-bit PWM Timer (T16B) Ch.0	AP-A-15
0x4000 0440–0x	4000 047c	16-bit PWM Timer (T16B) Ch.1	AP-A-18
0x4000 0480–0x	4000 048c	16-bit Timer (T16) Ch.3	AP-A-22
0x4000 04a0-0x	4000 04ac	16-bit Timer (T16) Ch.4	AP-A-22
0x4000 04c0–0x	4000 04cc	16-bit Timer (T16) Ch.5	AP-A-23
0x4000 0600–0x	4000 0614	UART (UART3) Ch.1	AP-A-23
0x4000 0620–0x	4000 0634	UART (UART3) Ch.2	AP-A-24
0x4000 0660–0x	4000 066c	16-bit Timer (T16) Ch.6	AP-A-26
0x4000 0670–0x	4000 067e	Synchronous Serial Interface (SPIA) Ch.1	AP-A-26
0x4000 0680–0x	4000 068c	16-bit Timer (T16) Ch.2	AP-A-27
0x4000 0690–0x	4000 06a8	Quad Synchronous Serial Interface (QSPI) Ch.0	AP-A-28
0x4000 06c0–0x	4000 06d6	I ² C (I2C) Ch.1	AP-A-29
0x4000 0700–0x	4000 070c	Sound Generator (SNDA)	AP-A-30
0x4000 0720–0x	4000 0732	IR Remote Controller (REMC3)	AP-A-31
0x4000 0780–0x	4000 078c	16-bit Limer (116) Ch.7	AP-A-32
0x4000 0/a0-0x	4000 07bc	12-bit A/D Converter (ADC12A) Ch.0	AP-A-32
0x4000 07c0–0x	4000 07c2	Iemperature Sensor/	
0.0040.0000.0		Reference Voltage Generator (ISRVR) Ch.U	AP-A-34
0x2040 0000–0x	2040 0104,		
0x4000 0970–0x	4000 0976	USB 2.0 FS Device Controller (USB, USBINISC).	AP-A-34
0x4000 1000–0x	4000 2014	DIVIA Controller (DIVIAC)	AP-A-39
0x4000 3000–0x	4000 30e0	Memory Display Controller (MDC)	AP-A-4 I
Appendix B Power Saving	<b>j</b>		AP-B-1
B.1 Operating Status C	ontiguration	Examples for Power Saving	AP-B-1
B.2 Other Power Savin	g Methods .		AP-B-2
Appendix C Mounting Pre	ecautions.		AP-C-1
Appendix D Measures Ag	ainst Nois	е	AP-D-1
<b>.</b>			

#### **Revision History**

# 1 Overview

## 1.1 Features

The S1C31D01 is a 32-bit MCU with an Arm[®] Cortex[®]-M0+ processor included that features low-power operation. It incorporates a lot of serial interface circuits, a memory display controller, and a voltage booster. This MCU is suitable for various kinds of battery-driven controller applications.

Table	1.1.1	Features
Table	1.1.1	Feature

Model	S1C31D01
CPU	
CPU	Arm® 32-bit RISC processor Cortex®-M0+
Other	Serial-wire debug ports (SW-DP) and a micro trace buffer (MTB) included
Embedded Flash memory	
Capacity	256K bytes (for both instructions and data)
Erase/program count	1,000 times (min.) * When being programmed by the dedicated flash loader
Other	On-board programming function
	Flash programming voltage can be generated internally.
Embedded RAMs	
General-purpose RAM	96K bytes (shared with MDC and MTB)
Instruction cache	512 bytes
DMA Controller (DMAC)	
Number of channels	4 channels
Data transfer path	Memory to memory, memory to peripheral, and peripheral to memory
Transfer mode	Basic, ping-pong, scatter-gather
DMA trigger source	UART3, SPIA, QSPI, I2C, USB, T16B, SNDA, ADC12A, and software
Clock generator (CLG)	
System clock source	4 sources (IOSC/OSC1/OSC3/EXOSC)
System clock frequency (operating frequency)	Vb1 voltage mode = mode0: 21 MHz (max.)
	Vb1 voltage mode = mode1: 2.1 MHz (max.)
IOSC oscillator circuit (boot clock source)	$V_{D1}$ voltage mode = mode0: 20/16/12/8/2/1 MHz (typ.) software selectable
, , , , , , , , , , , , , , , , , , ,	Vp1 voltage mode = mode1: 2/1 MHz (tvp.) software selectable
	10 us (max.) starting time (time from cancelation of SLEEP state to vector table read
	by the CPU)
OSC1 oscillator circuit	32.768 kHz (tvp.) crystal oscillator
	32kHz (typ.) embedded oscillator
	Oscillation stop detection circuit included
OSC3 oscillator circuit	20.5 MHz (max.) crystal/ceramic oscillator
EXOSC clock input	21 MHz (max.) square or sine wave input
Other	Configurable system clock division ratio
	Configurable system clock used at wake up from SLEEP state
	Operating clock frequency for the CPU and all peripheral circuits is selectable.
I/O port (PPORT)	
Number of general-purpose I/O ports	57 bits (max.)
	Pins are shared with the peripheral I/O.
Number of input interrupt ports	53 bits (max.)
Number of ports that support universal port	30 bits
multiplexer (UPMUX)	A peripheral circuit I/O function selected via software can be assigned to each port.
Timers	
Watchdog timer (WDT2)	Generates NMI or watchdog timer reset.
	Programmable NMI/reset generation cycle
Real-time clock (RTCA)	128-1 Hz counter, second/minute/hour/day/day of the week/month/year counters
	Theoretical regulation function for 1-second correction
	Alarm and stopwatch functions
16-bit timer (T16)	8 channels
	Generates the SPIA and QSPI master clocks, and the ADC12A operating clock/
	trigger signal.
16-bit PWM timer (T16B)	2 channels
	Event counter/capture function
	PWM waveform generation function
	Number of PWM output or capture input ports: 6 ports/channel
Supply voltage detector (SVD3)	
Number of channels	1 channel
Detection voltage	VDD or an external voltage (2 external detection ports are available.)
Detection level	VDD: 28 levels (1.8 to 5.0 V)/external voltage: 32 levels (1.2 to 5.0 V)
Other	Intermittent operation mode
	Generates an interrupt or reset according to the detection level evaluation

Serial interfaces	
UART (UART3)	3 channels
	Baud-rate generator included, IrDA1.0 supported
	Open drain output, signal polarity, and baud rate division ratio are configurable.
	Infrared communication carrier modulation output function
Synchronous serial interface (SPIA)	
	2 to 16 bit variable data length
	Z to To-bit variable data length
	The To-bit timer (TT6) can be used for the baud-rate generator in master mode.
Quad synchronous serial interface (QSPI)	1 channel
	Supports single, dual, and quad transfer modes.
	Low CPU overhead memory mapped access mode that can directly read data from
	the external flash memory with XIP (eXecute-In-Place) mode.
I ² C (I2C) *1	2 channels
	Baud-rate generator included
USB 2.0 FS device controller (USB)	
Number of transceiver/receiver channels	1 channel
Transfer rate	
	OSC3 (12 MHz) + PLL
Number of endpoints	4 endpoints (3 general-purpose endpoints and endpoint 0)
Power supply	Voltage regulators for USB included
Sound generator (SNDA)	
Buzzer output function	512 Hz to 16 kHz output frequencies
	One-shot output function
Melody generation function	Pitch: 128 Hz to 16 kHz ≈ C3 to C6
	Duration: 7 notes/rests (Half note/rest to thirty-second note/rest)
	Tempo: 16 tempos (30 to 480)
	Tic/olur may be aposified
	The/siul may be specified.
IR remote controller (REMC3)	
Number of transmitter channels	1 channel
Other	EL lamp drive waveform can be generated (by the hardware) for an application ex-
	ample.
	Output inversion function
12-bit A/D converter (ADC12A)	
Conversion method	Successive approximation type
Besolution	12 hits
Number of conversion channels	1 channel
Number of cooleg signal inputs	9 ports/ohannel (The temperature concer output is connected to a port.)
Temperature sensor/reference voltage gene	erator (ISRVR)
Iemperature sensor circuit	Sensor output can be measured using ADC12A.
Reference voltage generator	Reference voltage for ADC12A is selectable from 2.0 V, 2.5 V, VDD, and external input.
Memory display controller (MDC)	
Memory display interfaces	Parallel 6-bit color, SPI 1-bit black and white, SPI 3-bit color, 8-bit parallel/3-/4-wire
	serial 1/2/4/8 bpp grayscale
Orientations	0.90 180 270 degrees rotation between display buffer and device
Host interface	Indirect 8-bit parallel SPL and OSPL
Graphics acceleration	Image/bitmap.copy.with scaling/rotation and chearing
	Drawing functions (line, rectangle, ellipse, arc)
	Copy and drawing functions can alpha-blend the source pixels with destination pixels.
Power generator	VMDL: 2.7 to 3.4 V output software selectable
	VMDH: 4.4 to 5.05 V output software selectable
Reset	
#RESET pin	Reset when the reset pin is set to low.
Power-on reset	Reset at power on.
Brown-out reset	Beset when the power supply voltage drops (when $V_{DD} < 1.45$ V (typ.) is detected)
Key entry reset	Reset when the P00 to P01/P02/P03 keys are pressed simultaneously (can be en-
	abled/disabled using a register)
Watabalaa timar xaaat	aureu/ursaureu usii iy a registerij.
watchdog timer reset	Ineset when the watchdog timer overflows (can be enabled/disabled using a register).
Supply voltage detector reset	Reset when the supply voltage detector detects the set voltage level (can be enabled/
	disabled using a register).
Interrupt	
Non-maskable interrupt	6 systems (Reset, NMI, HardFault, SVCall, PendSV, SysTic)
Programmable interrupt	External interrupt: 1 system (4 levels)
- '	Internal interrupt: 28 systems
Power supply voltage	
Vpp operating voltage	1.8 to 5.5 V $*$ If Vpp > 3.6 V the Vpt voltage mode must be set to mode
Vep operating voltage for Fleeb programs	2.4 to 5.5 V * II VDI > 5.6 V, the VDI VOILage Mode Musi be set to Model.
vod operating voltage for Flash programming	2.4 to 5.5 v (when VPP is supplied externally)
	2.4 to 5.5 V (when VPP is generated internally)
VDD operating voltage when generating MDC	2.0 to 5.5 V
drive voltage	
HIFVDD operating voltage	1.8 to 5.5 V (power supply voltage for host interface. P2 and P3 port groups)
VMpL voltage when supplying externally	1.8 to 5.5 V (required when MDC is not used)

Operating temperature	
Operating temperature range	-40 to 85 °C
Current consumption (Typ. value)	
SLEEP mode *2	0.46 µA
	IOSC = OFF, OSC1 = OFF, OSC3 = OFF
	0.95 μΑ
	IOSC = OFF, OSC1 = 32.768 kHz (crystal oscillator), OSC3 = OFF, RTCA = ON
HALT mode *3	1.7 μΑ
	IOSC = OFF, OSC1 = 32.768 kHz (crystal oscillator), OSC3 = OFF
RUN mode	250 μA/MHz
	VD1 voltage mode = mode0, CPU = IOSC
	155 μA/MHz
	VD1 voltage mode = mode1, CPU = IOSC
Shipping form	
1 *4	VFBGA5H-81 (P-VFBGA-081-0505-0.50, 5 × 5 mm, t = 1.0 mm, 0.5 mm pitch)
2	WCSP96 (4.45 × 4.45 mm, t = 0.7 mm, 0.4 mm pitch)
3 *4	QFP14-80PIN (P-LQFP080-1212-0.50, 12 × 12 mm, t = 1.7 mm, 0.5 mm pitch)
4	Die form (pad pitch: 80 µm (min.))

*1 The input filter in I2C (SDA and SCL inputs) does not comply with the standard for removing noise spikes less than 50 ns.

*1 SLEEP mode refers to deep sleep mode in the Cortex®-M0+ processor. The RAM retains data even in SLEEP mode.

*2 HALT mode refers to sleep mode in the Cortex®-M0+ processor.

*4 Shown in parentheses are JEITA package names.

## 1.2 Block Diagram



Figure 1.2.1 S1C31D01 Block Diagram

* Supply when MDC is not used.

# 1.3 Pins

## 1.3.1 Pin Configuration Diagram

## VFBGA5H-81







	1	2	3	4	5	6	7	8	9
	P47	P45	P42	P36	P33	P31	P27	P24	P23
	BLU0	GRN0	HST	INTMDC	HIFD5	HIFD3	HIFD1	#HIFDE	#HIFWR
A	Í	1		UPMUX	UPMUX	UPMUX	UPMUX	UPMUX	UPMUX
	P50	P46	P43	P35	P32	P30	P26	P22	P21
	BLU1	GRN1	RED0	HIFD7	HIFD4	HIFD2	HIFD0	#HIFRD	#HIFCS
В	Í	1		UPMUX	UPMUX	UPMUX	UPMUX	UPMUX	UPMUX
	P52	P51	P44	P40	P34	HIFVDD	P25	P20	P67
	ENB	нск	RED1	vсом	HIFD6	[	UPMUX	HIFCNF	EXCL01
С		[	· · -		UPMUX			UPMUX	
	VMDL	P54	P53	P41	P66	P62	P63	P65	P64
		VST		XFRP	FOUT	QSDIO01	QSDIO02	#QSPISS0	QSDIO03
D									
	Vмpз	VMDH	USB33VOUT	P56	P55	P16	VPP	P60	P61
	I MILS		00200102	VCK	XRST	(ENVPP)		OSPICLKO	OSDIO00
Е		1				EXCL11			
		1				UPMUX			
	Смрз	V _{MD2}	USB18VOUT	P13	N.C.	SWCLK	TEST	P14	P15
	Cim20		002.0002	SPICLK1	1.0.	PD0		BZOUT	#ADTRG
F		1		UPMUX				UPMUX	UPMUX
		1		-				EXSVD0	EXSVD1
		CHID2	D11	D12	POO	D05	Vot	Ven	0902
	VINVDT	CMD2	SDI1	SD01		RTC1S	<b>V</b> D1	VD5	0302
G		1			VREEAO				
					VILLING	ADIN04			
	Veue	CMD1	P10	P01	D04	POG	SMD	#PESET	0501
	VBUS	CMD1	#SPISS1	EXCL00	CLPLS	FXOSC	PD1	#NLOLI	0301
Н		1	UPMUX	UPMUX	UPMUX	UPMUX			
				ADIN00	ADIN03	ADIN05			
	Vee			D02	D02	<b>P</b> 07	202	202	Vee
	¥55	OSB_DIVI	USB_DF	FVCL 10	REMO	#BZOLIT	0503	0504	¥55
J							0000	0004	
				ADIN01	ADIN02	ADIN06			
	1		1						

Figure 1.3.1.1 S1C31D01 Pin Configuration Diagram (VFBGA5H-81)

## WCSP96

		A1 Corner	r To	op View		В	ottom Vie	w At	Corner	
		A E C C E F G G F F		dex				000 A 000 B 000 D 000 E 0000 F 0000 G 0000 G 0000 J 0000 K		
			1234	5678	9 10 Top V	1098	37654	321		
	1	2	3	4	5	6	7	8	9	10
	N.C.	N.C.	P53	VMDL	VMDH	VMD2	CMD1	VMVD1	N.C.	N.C.
A										
в	N.C.	N.C.	<b>P50</b> BLU1	<b>P52</b> ENB	VMD3	Смдз	CMD2	USB33VOUT	N.C.	N.C.
С	<b>P43</b> RED0	<b>P44</b> RED1		<b>P47</b> BLU0	<b>P51</b> HCK	<b>P55</b> XRST	<b>P56</b> VCK	USB18VOUT	USB_DM	USB_DP
D	<b>P40</b> VCOM	<b>P41</b> XFRP	<b>P42</b> HST	<b>P45</b> GRN0	<b>P46</b> GRN1	<b>P54</b> VST	<b>P10</b> #SPISS1 UPMUX	VBUS	Vss	P11 SDI1 UPMUX
E	<b>P34</b> HIFD6 UPMUX	<b>P33</b> HIFD5 UPMUX	<b>P35</b> HIFD7 UPMUX	P36 INTMDC UPMUX			P12 SDO1 UPMUX	P13 SPICLK1 UPMUX	P01 EXCL00 UPMUX ADIN00	<b>P00</b> UPMUX VREFA0
F	<b>P32</b> HIFD4 UPMUX	<b>P31</b> HIFD3 UPMUX	P30 HIFD2 UPMUX	<b>P27</b> HIFD1 UPMUX	<b>P63</b> QSDIO02		P05 RTC1S UPMUX ADIN04	<b>P04</b> CLPLS UPMUX ADIN03	P02 EXCL10 UPMUX ADIN01	P03 REMO UPMUX ADIN02
G	HIFVDD	P26 HIFD0 UPMUX	<b>P24</b> #HIFDE UPMUX	<b>P67</b> EXCL01	<b>P62</b> QSDIO01	TEST	SWD PD1	SWCLK PD0	<b>P07</b> #BZOUT UPMUX ADIN06	P06 EXOSC UPMUX ADIN05
н	<b>P25</b> UPMUX	<b>P23</b> #HIFWR UPMUX	<b>P22</b> #HIFRD UPMUX	<b>P66</b> FOUT	Vpp	P14 BZOUT UPMUX EXSVD0	Vss	VD1	PD3 OSC4	PD2 OSC3
J	N.C.	N.C.	<b>P21</b> #HIFCS UPMUX	<b>P65</b> #QSPISS0	<b>P60</b> QSPICLK0	<b>P15</b> #ADTRG UPMUX EXSVD1	Vdd	#RESET	N.C.	N.C.
K	N.C.	N.C.	<b>P20</b> HIFCNF UPMUX	<b>P64</b> QSDIO03	<b>P61</b> QSDIO00	<b>P16</b> (ENVPP) EXCL11 UPMUX	OSC2	OSC1	N.C.	N.C.

Figure 1.3.1.2 S1C31D01 Pin Configuration Diagram (WCSP96)

## QFP14-80PIN



Figure 1.3.1.3 S1C31D01 Pin Configuration Diagram (QFP14-80PIN)



## 1.3.2 Pad Configuration Diagram

Pad opening: Pad No. 1–23, 45–64  $X = 68 \ \mu m, Y = 70 \ \mu m$ Pad No. 24–44, 65–84  $X = 70 \ \mu m, Y = 68 \ \mu m$ Chip thickness: 400  $\mu m$ 

No.	Xμm	Yμm	No.	X μm	Yμm	No.	X µm	Yμm	No.	X μm	Y µm
1	-1710.0	-2134.5	24	2134.5	-1726.5	45	1757.2	2134.5	65	-2134.5	1710.0
2	-1530.0	-2134.5	25	2134.5	-1596.5	46	1657.2	2134.5	66	-2134.5	1530.0
3	-1350.0	-2134.5	26	2134.5	-1466.5	47	1510.0	2134.5	67	-2134.5	1350.0
4	-1170.0	-2134.5	27	2134.5	-1190.0	48	1370.0	2134.5	68	-2134.5	1170.0
5	-990.0	-2134.5	28	2134.5	-1010.0	49	1270.0	2134.5	69	-2134.5	990.0
6	-810.0	-2134.5	29	2134.5	-830.0	50	1130.0	2134.5	70	-2134.5	810.0
7	-630.0	-2134.5	30	2134.5	-650.0	51	950.0	2134.5	71	-2134.5	630.0
8	-450.0	-2134.5	31	2134.5	-470.0	52	450.0	2134.5	72	-2134.5	450.0
9	171.0	-2134.5	32	2134.5	-290.0	53	270.0	2134.5	73	-2134.5	270.0
10	251.0	-2134.5	33	2134.5	-110.0	54	90.0	2134.5	74	-2134.5	90.0
11	331.0	-2134.5	34	2134.5	70.0	55	-90.0	2134.5	75	-2134.5	-90.0
12	411.0	-2134.5	35	2134.5	250.0	56	-270.0	2134.5	76	-2134.5	-270.0
13	491.0	-2134.5	36	2134.5	430.0	57	-450.0	2134.5	77	-2134.5	-450.0
14	571.0	-2134.5	37	2134.5	610.0	58	-630.0	2134.5	78	-2134.5	-630.0
15	651.0	-2134.5	38	2134.5	790.0	59	-810.0	2134.5	79	-2134.5	-810.0
16	731.0	-2134.5	39	2134.5	970.0	60	-990.0	2134.5	80	-2134.5	-990.0
17	922.0	-2134.5	40	2134.5	1150.0	61	-1170.0	2134.5	81	-2134.5	-1170.0
18	1202.0	-2134.5	41	2134.5	1330.0	62	-1350.0	2134.5	82	-2134.5	-1350.0
19	1342.0	-2134.5	42	2134.5	1510.0	63	-1530.0	2134.5	83	-2134.5	-1530.0
20	1489.0	-2134.5	43	2134.5	1657.2	64	-1710.0	2134.5	84	-2134.5	-1710.0
21	1629.0	-2134.5	44	2134.5	1757.2	_	-	-	-	-	-
22	1769.0	-2134.5	_	-	-	-	-	-	-	-	-
23	2049.0	-2134.5	_	-	-	-	-	-	-	-	-

Table 1.3.2.1 S1C31D01 Pad Coordinates

## 1.3.3 Pin Descriptions

#### Symbol meanings

Assigned signal: The signal listed at the top of each pin is assigned in the initial state. The pin function must be switched via software to assign another signal (see the "I/O Ports" chapter).

I/O:	I O I/O P A Hi-Z	<ul> <li>Input</li> <li>Output</li> <li>Input/output</li> <li>Power supply</li> <li>Analog signal</li> <li>High impedance state</li> </ul>
Initial state:	I (Pull-up) I (Pull-down) Hi-Z O (H) O (L)	<ul> <li>Input with pulled up</li> <li>Input with pulled down</li> <li>High impedance state</li> <li>High level output</li> <li>Low level output</li> </ul>

Tolerant fail-safe structure:

1

= Over voltage tolerant fail-safe type I/O cell included (see the "I/O Ports" chapter)

Table 1.3.3.1	Pin Description
---------------	-----------------

Pin name	Assigned signal	I/O	Initial state	Tolerant fail-safe	Function	
Voo	Vee			structure		
Voo	Voo		_			
VSS	Voo	P P	_		Bower supply for Elash programming	
VPP Vp1	VPP Vp1		_	_		
VDI	Vulue		_		MDC power supply booster consolitor connect pin	
		A	-		MDC power supply booster capacitor connect pin	
CMD1-3	CMD1-3	A	-	_	MDC power supply booster capacitor connect pins	
VMD2-3	VMD2-3	A	_		Memory diaplay drive veltare extract (0.7 to 2.4.)	
VMDL	VMDL	P	_	_	* I/O power supply (for P4 and P5 port groups) when MDC is not used	
VMDH	VMDH	Р	-	-	Memory display drive voltage output (4.4 to 5.05 V)	
HIFVDD	HIFVDD	Р	-	-	Host interface and I/O power supply (for P2 and P3 port groups)	
OSC1	OSC1	Α	-	-	OSC1 oscillator circuit input	
OSC2	OSC2	Α	-	-	OSC1 oscillator circuit output	
TEST	TEST	I	I (Pull-down)	-	Test mode enable input	
#RESET	#RESET	1	I (Pull-up)	-	Reset input	
P00	P00	I/O	Hi-Z	-	I/O port	
l	UPMUX	1/0			User-selected I/O (universal port multiplexer)	
	VREFA0	Α			12-bit A/D converter Ch.0 reference voltage input	
P01	P01	1/0	Hi-Z	_	I/O port	
	EXCL00	1			16-bit PWM timer Ch.0 event counter input 0	
	UPMUX	I/O			User-selected I/O (universal port multiplexer)	
	ADIN00	Α			12-bit A/D converter Ch.0 analog signal input 0	
P02	P02	I/O	Hi-Z	-	I/O port	
	EXCL10	1			16-bit PWM timer Ch.1 event counter input 0	
	UPMUX	1/0			User-selected I/O (universal port multiplexer)	
	ADIN01	Α	1		12-bit A/D converter Ch.0 analog signal input 1	
P03	P03	1/0	Hi-Z	_	I/O port	
	REMO	0			IR remote controller transmit data output	
	UPMUX	I/O			User-selected I/O (universal port multiplexer)	
	ADIN02	Α			12-bit A/D converter Ch.0 analog signal input 2	
P04	P04	1/0	Hi-Z	_	I/O port	
	CLPLS	0			IR remote controller clear pulse output	
	UPMUX	I/O			User-selected I/O (universal port multiplexer)	
	ADIN03	Α			12-bit A/D converter Ch.0 analog signal input 3	
P05	P05	I/O	Hi-Z	_	I/O port	
	RTC1S	0			Real-time clock 1-second cycle pulse output	
	UPMUX	I/O			User-selected I/O (universal port multiplexer)	
	ADIN04	A			12-bit A/D converter Ch.0 analog signal input 4	

Pin name	Assigned signal	I/O	Initial state	Tolerant fail-safe structure	Function
P06	P06	I/O	Hi-Z	_	I/O port
	EXOSC	1			Clock generator external clock input
	UPMUX	1/0			User-selected I/O (universal port multiplexer)
	ADIN05	A			12-bit A/D converter Ch.0 analog signal input 5
P07	P07	1/0	Hi-7	_	I/O port
	#BZOUT	0	1		Sound generator inverted output
		1/0			
		Δ			12-bit A/D converter Ch 0 analog signal input 6
P10	P10	1/0	Hi-7		
FIU	F 10 #001001	1/0	111-2	-	Purphropour parial interface Ch 1 alove palaet input
	#361331	1			
D11		1/0			
PII		1/0	HI-Z	-	I/O port
	SDIT	1			Synchronous serial interface Ch.1 data input
<b>D</b> ( 0		1/0			User-selected I/O (universal port multiplexer)
P12	P12	1/0	HI-Z	-	I/O port
	SDO1	0			Synchronous serial interface Ch.1 data output
	UPMUX	1/0			User-selected I/O (universal port multiplexer)
P13	P13	1/0	Hi-Z	-	I/O port
	SPICLK1	I/O			Synchronous serial interface Ch.1 clock input/output
	UPMUX	I/O			User-selected I/O (universal port multiplexer)
P14	P14	I/O	Hi-Z	1	I/O port
	BZOUT	0			Sound generator output
	UPMUX	I/O			User-selected I/O (universal port multiplexer)
	EXSVD0	Α			Supply voltage detector external voltage detection input 0
P15	P15	I/O	Hi-Z	1	I/O port
	#ADTRG	1			12-bit A/D converter Ch.0 triager input
	UPMUX	1/0			User-selected I/O (universal port multiplexer)
	EXSVD1	Α			Supply voltage detector external voltage detection input 1
P16		1/0	Hi-7		I/O port (Elash programming control signal output)
		1/0	111-2		16 bit PWM timer Ch 1 event counter input 1
		1/0			User selected I/O (universal port multiplexer)
DOO		1/0			
F20		1/0	ni-z	-	l/O port
	HIFCINF				Host interface configuration input
Dat		1/0			User-selected I/O (universal port multiplexer)
P21	P21	1/0	HI-Z	-	
	#HIFCS	1			Indirect 8-bit nost interface chip-select input
	UPMUX	1/0			User-selected I/O (universal port multiplexer)
P22	P22	1/0	Hi-Z	-	I/O port
	#HIFRD				Indirect 8-bit host interface read input
	UPMUX	1/0			User-selected I/O (universal port multiplexer)
P23	P23	I/O	Hi-Z	-	I/O port
	#HIFWR	1			Indirect 8-bit host interface write input
	(HSPICLK)				(SPI/QSPI host interface clock input)
	UPMUX	I/O			User-selected I/O (universal port multiplexer)
P24	P24	I/O	Hi-Z	-	I/O port
	#HIFDE	1			Indirect 8-bit host interface device enable input
	(#HSPISS)				(SPI/QSPI host interface slave-select input)
	UPMUX	I/O			User-selected I/O (universal port multiplexer)
P25	P25	I/O	Hi-Z	-	I/O port
	UPMUX	I/O			User-selected I/O (universal port multiplexer)
P26	P26	I/O	Hi-Z	_	I/O port
	HIFD0	I/O			Indirect 8-bit host interface D0 input/output
	(HSPID0)				(SPI/QSPI host interface data input/output)
	UPMUX	I/O			User-selected I/O (universal port multiplexer)
P27	P27	1/0	Hi-Z	_	I/O port
	HIFD1	1/0			Indirect 8-bit host interface D1 input/output
	(HSPID1)				(SPI/QSPI host interface data input/output)
	UPMUX	1/0			User-selected I/O (universal port multiplexer)
P30	P30	1/0	Hi₋7		
	HIED2	1/0	111-2	_	Indirect 8-bit host interface D2 input/output
	(HSPID2)				(SPI/QSPI host interface data input/output)
		1/0			User-selected I/Q (universal port multiplexer)
1			1		

P31         1/0         H-2         -         I/0 port           P34         1/0         -         I/0 port         -           P32         P32         1/0         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <t< th=""><th>Pin name</th><th>Assigned signal</th><th>I/O</th><th>Initial state</th><th>Tolerant fail-safe structure</th><th>Function</th></t<>	Pin name	Assigned signal	I/O	Initial state	Tolerant fail-safe structure	Function
HIFD3 (HFD3)         I/O (UPMUX         I/O (UPMUX)	P31	P31	1/0	Hi-Z	_	I/O port
IUMUX         IO         User         User         User         User           P32         P32         I/O         Hi-Z         I/O prof         I/O prof         Indirect 8-bit host interface 9L input/output           P33         P33         I/O         Hi-Z         I/O prof         I/O prof           P34         P33         I/O         Hi-Z         I/O prof         I/O prof           P34         P33         I/O         Hi-Z         I/O prof         I/O prof           P34         P34         I/O         Hi-Z         I/O prof         I/O prof           P34         P34         I/O         Hi-Z         I/O prof         I/O prof           P35         I/O         Hi-Z         I/O prof         I/O prof         I/O prof           P36         I/O         Hi-Z         I/O prof         I/O prof         I/O prof           IVMUX         I/O         User-selected I/O (universal port multiplexer)         I/O prof           IVMUX         I/O         User-selected I/O (universal port multiplexer)         I/O prof           IVMUX         I/O         I/O prof         I/O prof         I/O prof           IVMUX         I/O         I/O prof         I/O prof         I/O prof<		HIFD3	I/O			Indirect 8-bit host interface D3 input/output
UPMUX         I/O         Hi-Z         -         Up ord           P32         I/O         Hi-Z         -         I/C port           HIFD4         I/O         Hi-Z         -         I/C port           HIFD4         I/O         Hi-Z         -         I/O port           P33         I/O         Hi-Z         -         I/O port           HIFD5         I/O         Hi-Z         -         I/O port           HIFD6         I/O         Hi-Z         -         I/O port           HIFD7         I/O         Hi-Z         -		(HSPID3)				(SPI/QSPI host interface data input/output)
P32         P32         P32         P32         P32         P32         P32         P32         P33         P34         P34 <td></td> <td>UPMUX</td> <td>1/0</td> <td></td> <td></td> <td>User-selected I/O (universal port multiplexer)</td>		UPMUX	1/0			User-selected I/O (universal port multiplexer)
HIPUA (HSPSEL0)         I/O         Hi/Z         I/O         HI/Z         I/O         I/O           P33         I/O         HI/Z         -         I/O port         Indirect 8-bit host interface DS input/output (SPP/OSPI host interface SPI mode-select input)         I/O port           P34         I/O         HI/Z         -         I/O port         Indirect 8-bit host interface DS input/output (SPP/OSPI host interface SPI mode-select input)           P34         I/O         HI/Z         -         I/O port         Indirect 8-bit host interface DS input/output           P35         I/O         HI-Z         -         I/O port         Indirect 8-bit host interface DT input/output           P36         I/O         HI-Z         -         I/O port         Indirect 8-bit host interface DT input/output           P36         I/O         HI-Z         -         I/O port         Indirect 8-bit host interface DT input/output           P37         P36         I/O         HI-Z         -         I/O port         Indirect 8-bit host interface DT input/output           P38         P36         I/O         HI-Z         -         I/O port         Indirect 8-bit host interface NCOM/FRP output           P34         P41         I/O         HI-Z         -         I/O port         6-bit color panel int	P32	P32	1/0	Hi-Z	-	I/O port
IDFN SELU         IDFN SELU <thidfn selu<="" th="">         IDFN SELU         <thidfn selu<="" th="">         IDFN SELU         <thidfn selu<="" th=""> <thidfn selu<="" th=""> <thidf< td=""><td></td><td>HIFD4</td><td>  1/0</td><td></td><td></td><td>Indirect 8-bit host interface D4 input/output</td></thidf<></thidfn></thidfn></thidfn></thidfn>		HIFD4	1/0			Indirect 8-bit host interface D4 input/output
P33         P33         1/0         Hi-Z         -         UP port         Initialization of Linkersaup Dr. Indulptem)           P34         H/D5         1/0         Hi-Z         -         Indirect 8-bit host interface DS input/output (SP/CSPI host interface DS input/output)           P34         1/0         Hi-Z         -         I/O port         Indirect 8-bit host interface DS input/output           P35         1/0         Hi-Z         -         I/O port         Indirect 8-bit host interface DS input/output           P36         P35         1/0         Hi-Z         -         I/O port         Indirect 8-bit host interface DS input/output           P36         P36         1/0         Hi-Z         -         I/O port         Indirect 8-bit host interface DF input/output           P40         P40         I/O         Hi-Z         -         I/O port         I/O port           P41         I/O         Hi-Z         -         I/O port         I/O port         I/O port           P41         P41         I/O         Hi-Z         -         I/O port         I/O port           P42         P42         I/O         Hi-Z         -         I/O port         I/O port           P43         P43         I/O         Hi-Z		(HSPISELU)	1/0			(SPI/QSPI nost interface SPI mode-select input)
P33         P33         P34         P42         P44         P44 <td>D22</td> <td></td> <td>1/0</td> <td></td> <td></td> <td>User-selected i/O (universal port multiplexer)</td>	D22		1/0			User-selected i/O (universal port multiplexer)
International and the second	1733		1/0	HI-Z	-	I/O port
UPMUX         I/O         HitZB         User-selected I/O (universal port multiplexer)           P34         P34         I/O         HitZB         -         I/O port           P35         I/O         HitZB         -         I/O port         Indirect 8-bit host interface D6 input/output           P35         I/O         HitZ         -         I/O port         Indirect 8-bit host interface D7 input/output           P36         I/O         HitZ         -         I/O port         Indirect 8-bit host interface D7 input/output           P36         I/O         HitZ         -         I/O port         User-selected I/O (universal port multiplexer)           P36         I/O         HitZ         -         I/O port         User-selected I/O (universal port multiplexer)           P36         I/O         HitZ         -         I/O port         User-selected I/O (universal port multiplexer)           P40         P40         I/O         HitZ         -         I/O port         Selector panel interface VCOM/FRP output           P41         P41         I/O         HitZ         -         I/O port         Selector panel interface SCS output, Seleptanel interface PAP output           P42         P42         I/O         HitZ         -         I/O port         S		(HSPISEL1)	//O			(SPI/QSPI host interface SPI mode-select input)
P34         P34         I/O         Harz         Pair Pice		UPMUX	I/O			User-selected I/O (universal port multiplexer)
HIFD6         I/O         Indirect 8-bit host interface D6 input/output           P95         P35         I/O         HI-Z         -         Uo port         -         Indirect 8-bit host interface D7 input/output           P36         HIFD7         I/O         -         UO port         -         Indirect 8-bit host interface D7 input/output           P36         P36         I/O         HI-Z         -         UO port         -         -         Uo port           P36         I/O         HI-Z         -         UO port         -         -         UO port         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -	P34	P34	I/O	Hi-Z	-	I/O port
UPMUX         I/O         HEZ         User-selected I/O (universal port multiplexer)           P35         P35         I/O         HIEZ         -         I/O port         Indirect 8-bit host interface D7 input/output           P36         P36         I/O         HI-Z         -         I/O port         Indirect 8-bit host interface 10 (universal port multiplexer)           P40         P40         I/O         HI-Z         -         I/O port         Host interface 10 (universal port multiplexer)           P40         P40         I/O         HI-Z         -         I/O port         Host interface 10 (universal port multiplexer)           P41         P41         I/O         HI-Z         -         I/O port         -           P41         P41         I/O         HI-Z         -         I/O port         -           P42         P42         I/O         HI-Z         -         I/O port         -           P43         P43         I/O         HI-Z         -         -         I/O port         -           P44         I/O         HI-Z         -         -         I/O port         -         -           P44         I/O         HI-Z         -         -         I/O port         - <td></td> <td>HIFD6</td> <td>I/O</td> <td></td> <td></td> <td>Indirect 8-bit host interface D6 input/output</td>		HIFD6	I/O			Indirect 8-bit host interface D6 input/output
P35         I/O         HaZ		UPMUX	I/O			User-selected I/O (universal port multiplexer)
HIED7         I/O         Indirect 8-bit host interface D7 input/output           P36         P36         I/O         Hi-Z         User-selected I/O (universal port multiplexer)           P40         P40         I/O         Hi-Z         I/O port           P40         P40         I/O         Hi-Z         I/O port           P41         I/O         Hi-Z         I/O port         I/O port           P40         P41         I/O         Hi-Z         I/O port           P41         I/O         Hi-Z         I/O port         I/O port           P41         I/O         Hi-Z         I/O port         I/O port           P42         P42         I/O         Hi-Z         I/O port         I/O port           P43         P43         I/O         Hi-Z         I/O port         I/O port           P43         P43         I/O         Hi-Z         I/O port         I/O port           P44         P44         I/O         Hi-Z         I/O port         I/O port           RED0         O         I/O port         I/O port         I/O port           P44         I/O         Hi-Z         I/O port         I/O port           RED1         O	P35	P35	I/O	Hi-Z	-	I/O port
UPMUX         I/O         User-selected I/O (universal port multiplexer)           P36         P36         I/O         Pd           P40         P40         I/O         Hi-Z         Pd           VCOWFR         O         I/O         Feb color panel interface Interrupt output         User-selected I/O (universal port multiplexer)           P41         P41         I/O         Hi-Z         -         I/O port           P42         P42         I/O         Hi-Z         -         I/O port           P42         P42         I/O         Hi-Z         -         I/O port           FB7         O         -         I/O port         6-bit color panel interface XFRP output           P42         P42         I/O         Hi-Z         -         I/O port           FB7         O         -         I/O port         6-bit color panel interface SCS output         8-bit color panel interface ACD output           (SS, XCS)         -         I/O         -         I/O port         6-bit color panel interface RED output         6-bit color panel interface RED output           (DOUT2)         -         I/O port         6-bit color panel interface COUT3 output)         -           P44         I/O         Hi-Z         -         <		HIFD7	I/O			Indirect 8-bit host interface D7 input/output
P36         P36         I/O         HI-Z         I/O port           P40         I/O         Hi-Z         -         I/O port           P40         I/O         Hi-Z         -         I/O port           P40         I/O         Hi-Z         -         I/O port           P41         P41         I/O         Hi-Z         -         I/O port           P41         P41         I/O         Hi-Z         -         I/O port           P42         P42         I/O         Hi-Z         -         I/O port           P41         VO         Hi-Z         -         I/O port         6-bit color panel interface COM output           P43         R5T         O         -         I/O port         6-bit color panel interface R5T output           P43         P43         I/O         Hi-Z         -         I/O port         6-bit color panel interface B2O output           P44         I/O         Hi-Z         -         I/O port         6-bit color panel interface DUT2 output           P44         I/O         Hi-Z         -         I/O port         6-bit color panel interface DUT3 output           (DOUT3)         O         -         I/O port         6-bit color panel interface B2D1 o		UPMUX	I/O			User-selected I/O (universal port multiplexer)
INTIMOC         O         Host interface interrupt output           UPMUX         VO         User-selected VO (universal port multiplexer)           P40         I/O         Hi-Z         -         I/O port           GRM         O         Hi-Z         -         I/O port           P41         P1         I/O         Hi-Z         -         I/O port           P41         P41         I/O         Hi-Z         -         I/O port           P41         P41         I/O         Hi-Z         -         I/O port           P42         P42         I/O         Hi-Z         -         I/O port           Fist         O         KSS, XCS         -         I/O port         -           P43         I/O         Hi-Z         -         I/O port         -           RED0         O         -         I/O port         -         -           RED1         O         -         I/O port         -         -           P44         I/O         Hi-Z         -         I/O port         -           OUT3         O         -         I/O port         -         -           OUT4         OO         -         I/O	P36	P36	1/0	Hi-Z	-	I/O port
UPMUX         I/O         Hi-Z         -         User-selected I/O (universal port multiplexer)           P40         VO         Hi-Z         -         VO port           VCOM/FR         0         -         VD port           P41         I/O         Hi-Z         -         VD port           P41         VD         Hi-Z         -         VD port           P42         VO         Hi-Z         -         VD port           P42         VO         Hi-Z         -         VD port           P43         F43         I/O         Hi-Z         -         VD port           P43         P43         I/O         Hi-Z         -         VD port         -           P44         P43         I/O         Hi-Z         -         VD port         -           P44         P43         I/O         Hi-Z         -         VD port         -           P44         P44         I/O         Hi-Z         -         VD port         -           P44         I/O         Hi-Z         -         VD port         -         -           P44         I/O         Hi-Z         -         -         -         -		INTMDC	0			Host interface interrupt output
P40         P40         I/O         Hi-Z         -         I/O port           6-bit color panel interface VCOM/FRP output (SPI panel interface COM output)         File         -         I/O port           P41         P41         I/O         Hi-Z         -         I/O port           P42         P42         I/O         Hi-Z         -         I/O port           P43         P43         I/O         Hi-Z         -         I/O port           FBD         O         Hi-Z         -         I/O port         -		UPMUX	1/0			User-selected I/O (universal port multiplexer)
VCOM/FR (COM)O	P40	P40	1/0	Hi-Z	-	I/O port
ICOM         P41         P41         I/O         Hi-Z         I/O port           P41         P41         I/O         Hi-Z         -         I/O port           P42         P42         I/O         Hi-Z         -         I/O port           P42         P42         I/O         Hi-Z         -         I/O port           Fibre         O         Fibre         -         I/O port           Fibre		VCOM/FR	0			6-bit color panel interface VCOM/FRP output
P41         P41         I/O         P42         I/O         P43         I/O         P44         I/O         P44         I/O         P44         I/O         P44         I/O         P45         P44         I/O         P47         P45         P45         I/O         P45         I/O         P47         P47         I/O         P47         P47         I/O         P47         P47         I/O         P47         I/O <td></td> <td>(COM)</td> <td></td> <td> =</td> <td></td> <td>(SPI panel interface COM output)</td>		(COM)		=		(SPI panel interface COM output)
AFRP         O         6-bit Color panel interface AFRP output           P42         I/O         Hi-Z         -         I/O port         6-bit color panel interface AFRP output           P43         HST         O         6-bit color panel interface SCS output, 8-bit parallel/3-/4-wire serial gray-scale panel interface SCSCS output, 8-bit parallel/3-/4-wire serial gray-scale panel/3-bit p	P41	P41	1/0	HI-Z	-	
P42     P42     I/O     Hi-Z     -     I/O port       HST     O     (SCS, XCS)     -     I/O port     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -	<b>D</b> 40		0			6-bit color panel interface XFRP output
HS1     0     Hi     0     Hi     0     Hi     100     100     100     100     Hi     100     Hi     100     Hi     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100	P42	P42	1/0	HI-Z	-	
(SF) patiel interface SCS output, 3-on patielize (SF) patiel interface SCS output, 3-on patielize (SF) patiel		HSI (SCS VCS)	0			6-bit color panel interface HST output
P43       P43       I/O       Hi-Z       -       I/O port         RED0       O       (DUT2)       Hi-Z       -       I/O port         P44       P44       I/O       Hi-Z       -       I/O port         RED1       O       O       (B-bit parallel grayscale panel interface DUT2 output)         P44       P44       I/O       Hi-Z       -       I/O port         GD173       P45       I/O       Hi-Z       -       I/O port         GRN0       O       (DOUT3)       Hi-Z       -       I/O port         P45       P45       I/O       Hi-Z       -       I/O port         GRN1       O       (DOUT4)       Hi-Z       -       I/O port         P46       I/O       Hi-Z       -       I/O port       -         GRN1       O       (DOUT5)       Hi-Z       -       I/O port         P47       P47       I/O       Hi-Z       -       I/O port       -         P50       I/O       Hi-Z       -       I/O port       -       -         P50       I/O       Hi-Z       -       I/O port       -       -         P51       P51		(303, 703)				(SFI parlet interface SCS output, 6-bit parallel/S-/4-wile serial gray-
No.       I. D.       N. L.       Population         RED0 (DOUT2)       0       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -	P43	P43	1/0	Hi-7	_	
IDDUT2         IDDUT2 <thiddut2< th=""> <thiddut2< th=""> <thiddut2< td="" th<=""><td></td><td>RED0</td><td>0</td><td></td><td></td><td>6-bit color panel interface BED0 output</td></thiddut2<></thiddut2<></thiddut2<>		RED0	0			6-bit color panel interface BED0 output
P44         P44         I/O         Hi-Z         -         I/O port           RED1         O         O         Hi-Z         -         6-bit color panel interface RED1 output           (DOUT3)         P45         I/O         Hi-Z         -         I/O port           GRN0         O         Hi-Z         -         I/O port           GRN1         O         Hi-Z         -         I/O port           BLU0         O         Hi-Z         -         I/O port           BLU1         O         BLU1         O         -           I/O DOT7/         Hi-Z         -         I/O port         -           BLU1         O         O         Hi-Z         -         I/O port           6-bit color panel interface BLU1 output         (8-bit parallel grayscale panel interface DOUT7 output)		(DOUT2)				(8-bit parallel grayscale panel interface DOUT2 output)
RED1 (DOUT3)         O (DOUT3)         Hi-Z         -         I/O port (b) parallel grayscale panel interface BRD0 output (8-bit parallel grayscale panel interface GRN0 output (8-bit parallel grayscale panel interface DOUT4 output)           P45         P45         I/O (DOUT4)         Hi-Z         -         I/O port (b) t color panel interface GRN0 output (8-bit parallel grayscale panel interface DOUT4 output)           P46         I/O (DOUT5)         Hi-Z         -         I/O port (b) t color panel interface GRN1 output (8-bit parallel grayscale panel interface DOUT5 output)           P47         P47         I/O (DOUT6)         Hi-Z         -         I/O port (b) t color panel interface BLU0 output (8-bit parallel grayscale panel interface DOUT6 output)           P50         P50         I/O (DOUT7)         Hi-Z         -         I/O port 6-bit color panel interface BLU1 output (8-bit parallel grayscale panel interface DOUT6 output)           P51         P51         I/O (DOUT1)         Hi-Z         -         I/O port 6-bit color panel interface HCK output (8-bit parallel grayscale panel interface DOUT1 output)           P52         P52         I/O (SDO, XWR)         Hi-Z         -         I/O port 6-bit color panel interface ENB output (SPI panel interface SDO output, 8-bit parallel grayscale panel interface SDO output)           P53         P54         I/O (SCLK, XRD, SCL)         Hi-Z         -         I/O port 6-bit color panel interface VST output (SPI panel interface S	P44	P44	1/0	Hi-Z	-	I/O port
(DOUT3)         (Be bit parallel grayscale panel interface DOUT3 output)           P45         P45         I/O         Hi-Z         -         (Be bit parallel grayscale panel interface DOUT3 output)           P46         P46         I/O         Hi-Z         -         I/O port           P46         P46         I/O         Hi-Z         -         I/O port           P47         P47         I/O         Hi-Z         -         I/O port           P47         P47         I/O         Hi-Z         -         I/O port           BLU0         O         Hi-Z         -         I/O port           BLU1         O         Hi-Z         -         I/O port           P50         P50         I/O         Hi-Z         -         I/O port           P51         P51         I/O         Hi-Z         -         I/O port           P52         P52         I/O         Hi-Z         -         I/O port           P51         P52         I/O         Hi-Z         -         I/O port           BLU1         O         Go D         I/O         I/O         I/O port           P51         P52         I/O         Hi-Z         -         I/O port		RED1	0			6-bit color panel interface RED1 output
P45     I/O     Hi-Z     -     I/O port       GRN0     O     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -<		(DOUT3)				(8-bit parallel grayscale panel interface DOUT3 output)
GRN0 (DOUT4)O (DOUT4)Hi-Z A-6-bit color panel interface GRN0 output (8-bit parallel grayscale panel interface DOUT4 output)P46P461/O GRN1 (DOUT5)Hi-Z A-I/O port 6-bit color panel interface GRN1 output (8-bit parallel grayscale panel interface DOUT5 output)P47P47I/O (DOUT5)Hi-Z A-I/O port 6-bit color panel interface BLU0 output (8-bit parallel grayscale panel interface DOUT6 output)P50P50I/O BLU1 (DOUT7)Hi-Z A-I/O port 6-bit color panel interface BLU1 output (8-bit parallel grayscale panel interface DOUT7 output)P51P51I/O (DOUT1)Hi-Z A-I/O port 6-bit color panel interface BLU1 output (8-bit parallel grayscale panel interface DOUT7 output)P52P52I/O (DOUT1)Hi-Z A-I/O port 6-bit color panel interface DOUT1 output)P53P53I/O AHi-Z A-I/O port 6-bit color panel interface SDO output, 3-/4-wire serial grayscale panel interface SDD output)P54P54I/O AHi-Z A-I/O port 6-bit color panel interface SCLK output, 8-bit parallel grayscale panel interface SCL output)	P45	P45	I/O	Hi-Z	-	I/O port
(DOUT4)         (B-bit parallel grayscale panel interface DOUT4 output)           P46         I/O         Hi-Z         //O port           (BN1         O         Hi-Z         //O port           (DOUT5)         Hi-Z         //O port           P47         P47         I/O         Hi-Z         //O port           BLU0         O         Hi-Z         -         I/O port           6-bit color panel interface BLU0 output         Output         Output           (BU1         O         Hi-Z         -         I/O port           BLU1         O         Hi-Z         -         I/O port           6-bit color panel interface BLU1 output         Output         Output           IDOUT7)         O         Hi-Z         -         I/O port           P51         I/O         Hi-Z         -         I/O port           6-bit color panel interface BLU1 output         Output         Output           (DOUT1)         P52         I/O         Hi-Z         -         I/O port           6-bit color panel interface BLU1 output         Output         Output         Output         Output           P52         P52         I/O         Hi-Z         -         I/O port         O		GRN0	0			6-bit color panel interface GRN0 output
P46     I/O     Hi-Z     -     I/O port       GRN1     0     -     -     I/O port       6-bit color panel interface GRN1 output (B-bit parallel grayscale panel interface DOUT5 output)     -     -       P47     P47     I/O     Hi-Z     -     -       BLU0     0     -     -     -     -       (DOUT6)     0     -     -     -     -       P50     P50     I/O     Hi-Z     -     -       BLU1     0     -     -     -     -       (DOUT7)     0     Hi-Z     -     -     -       P51     I/O     Hi-Z     -     -     -       P52     P51     I/O     Hi-Z     -     -       P52     P52     I/O     Hi-Z     -     -       P52     P52     I/O     Hi-Z     -     -       P52     P52     I/O     Hi-Z     -     -       P53     P53     I/O     Hi-Z     -     -       P54     I/O     Hi-Z     -     I/O port       P54     I/O     Hi-Z     -     I/O port       P54     I/O     Hi-Z     -     I/O port       P54		(DOUT4)				(8-bit parallel grayscale panel interface DOUT4 output)
GRN1 (DOUT5)O-6-bit color panel interface GRN1 output (8-bit parallel grayscale panel interface DOUT5 output)P47P47I/OHi-Z-I/O portBLU0 (DOUT6)OHi-Z-I/O portP50P50I/OHi-Z-I/O portBLU1 (DOUT7)OHi-Z-I/O portP51P51I/OHi-Z-I/O portP52P52I/OHi-Z-I/O portP52P52I/OHi-Z-I/O portP53P53I/OHi-Z-I/O portP54P54I/OHi-Z-I/O portP54I/OHi-Z-I/O portP54I/OHi-Z-I/O portP54I/OHi-Z-I/O portP54I/OHi-Z <td< td=""><td>P46</td><td>P46</td><td>1/0</td><td>Hi-Z</td><td>-</td><td>I/O port</td></td<>	P46	P46	1/0	Hi-Z	-	I/O port
Image: bit interface inte		GRN1	0			6-bit color panel interface GRN1 output
P47       I/O       Hi-Z       -       I/O port         BLU0       0       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -		(DOU15)				(8-bit parallel grayscale panel interface DOU15 output)
BLU0       O       Hi-Z       -       I/O port         P50       P51       I/O       Hi-Z       -       I/O port         BLU1       O       Hi-Z       -       I/O port         6-bit color panel interface BLU1 output (B-bit color panel interface BLU1 output (B-bit color panel interface DOUT7 output)       -         P51       P51       I/O       Hi-Z       -       I/O port         HCK       O       -       I/O port       -       -         P52       P52       I/O       Hi-Z       -       I/O port         Fbit color panel interface BLU1 output       -       -       -       -         P52       P52       I/O       Hi-Z       -       -       -         IODUT1)       -       -       -       -       -       -         P52       P52       I/O       Hi-Z       -       -       -       -       -         (SDO, XWR)       O       -       Hi-Z       -       I/O port       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -	P47	P47	1/0	Hi-Z	-	I/O port
P50       P50       I/O       Hi-Z       -       I/O port         BLU1       O       Hi-Z       -       I/O port         P51       P51       I/O       Hi-Z       -       I/O port         BLU1       O       Hi-Z       -       I/O port         P51       P51       I/O       Hi-Z       -       I/O port         BLU1       O       Hi-Z       -       I/O port         BLU1       SDO, XWR)       Hi-Z       -       I/O port         P53       P53       I/O       Hi-Z <t< td=""><td></td><td>BLU0</td><td>0</td><td></td><td></td><td>6-bit color panel interface BLU0 output</td></t<>		BLU0	0			6-bit color panel interface BLU0 output
P30       P30       I/O       Hi-Z       -       I/O point         BLU1       O       O       6-bit color panel interface BLU1 output (8-bit parallel grayscale panel interface DOUT7 output)         P51       P51       I/O       Hi-Z       -       I/O port         HCK       O       O       6-bit color panel interface HCK output (8-bit parallel grayscale panel interface DOUT1 output)         P52       P52       I/O       Hi-Z       -       I/O port         ENB       O       Hi-Z       -       I/O port         6-bit color panel interface BNB utput       O       (SPI panel interface SDO output, 8-bit parallel grayscale panel interface SDO output)         P53       P53       I/O       Hi-Z       -       I/O port         P54       I/O       Hi-Z       -       I/O port         VST       O       Hi-Z       -       I/O port         SCL)       SCL       A       Hi-Z       -       I/O port         6-bit color panel interface SCLK output, 8-bit parallel grayscale panel interface SCLK output, 3-/4-wire serial grayscale panel interface SCLK output, 3-/4-wire serial grayscale panel interface SCLK output)	DEO	(DOUT6)				
Image: BLC1 (DOUT7)       O       Image: BLC1 (Counce of the second output (B-bit color panel interface DOUT7 output)         P51       P51       I/O       Hi-Z       -       I/O port         HCK       O       O       -       I/O port         (DOUT1)       P52       I/O       Hi-Z       -       I/O port         P52       P52       I/O       Hi-Z       -       I/O port         G-bit color panel interface BNB (SDO, XWR)       O       Hi-Z       -       I/O port         P53       P53       I/O       Hi-Z       -       I/O port         P54       P54       I/O       Hi-Z       -       I/O port         VST       O       SCL)       Hi-Z       -       I/O port         6-bit color panel interface SCLK output, 3-/4-wire serial grayscale panel interface SCLK output, 8-bit parallel grayscale panel interface SCLK output)	F30	PILI1	0	. ⊓i-∠	-	6 bit color papel interface RLL1 output
P51       I/O       Hi-Z       I/O port         RCK       O       0       Hi-Z       -         I/O port       6-bit color panel interface HCK output (8-bit parallel grayscale panel interface DOUT1 output)         P52       P52       I/O       Hi-Z       -         I/O port       6-bit color panel interface BNB output (SPI panel interface SDO output, 8-bit parallel grayscale panel interface SDO output)       -         P53       P53       I/O       Hi-Z       -         P54       P54       I/O       Hi-Z       -         VST (SCLK, XRD, SCL)       O       Hi-Z       -       I/O port         6-bit color panel interface SCLK output, 3-/4-wire serial grayscale panel interface SCLK output, 8-bit parallel grayscale panel interface XRD output, 3-/4-wire serial grayscale panel interface SRD output, 3-/4-wire serial grayscale panel						(8-bit parallel gravscale panel interface DOLIT7 output)
Hor       Hor       Hor       Hor       Hor       Hor       Hor         HOK       O       (DOUT1)       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -<	P51	P51	1/0	Hi-7	_	I/O port
(DOUT1)     (8-bit parallel grayscale panel interface DOUT1 output)       P52     I/O     Hi-Z     -     I/O port       ENB     O     (SDO, XWR)     A     -     6-bit color panel interface ENB output (SPI panel interface SDO output, 8-bit parallel grayscale panel interface SDO output)       P53     P53     I/O     Hi-Z     -     I/O port       P54     I/O     Hi-Z     -     I/O port       VST     O     KSL)     Hi-Z     -     I/O port       6-bit color panel interface VST output (SPI panel interface SCLK output, 8-bit parallel grayscale panel interface SRD output, 3-/4-wire serial grayscale panel interface SRD output, 3-/4-wire serial grayscale panel		нск	0			6-bit color panel interface HCK output
P52       I/O       Hi-Z       -       I/O port         ENB       O       (SDO, XWR)       O       Hi-Z       -       6-bit color panel interface ENB output (SPI panel interface SDO output, 8-bit parallel grayscale panel in- terface XWR output, 3-/4-wire serial grayscale panel interface SDO output)         P53       P53       I/O       Hi-Z       -       I/O port         P54       P54       I/O       Hi-Z       -       I/O port         VST       O       (SCLK, XRD, SCL)       O       Hi-Z       -       I/O port         6-bit color panel interface SCLK output, 3-/4-wire serial grayscale panel interface XRD output, 3-/4-wire serial grayscale panel interface SRD output, 3-/4-wire serial grayscale panel interface SRD output, 3-/4-wire serial grayscale panel interface SCLK		(DOUT1)				(8-bit parallel grayscale panel interface DOUT1 output)
ENB (SDO, XWR)       O (SDO, XWR)       6-bit color panel interface ENB output (SPI panel interface SDO output, 8-bit parallel grayscale panel in- terface XWR output, 3-/4-wire serial grayscale panel interface SDO output)         P53       P53       I/O       Hi-Z       –       I/O port         P54       P54       I/O       Hi-Z       –       I/O port         VST (SCLK, XRD, SCL)       O (SCLK, XRD, SCL)       O (SCLK, XRD, SCL)       Hi-Z       –       I/O port	P52	P52	1/0	Hi-Z	-	I/O port
(SDO, XWR)       (SPI panel interface SDO output, 8-bit parallel grayscale panel interface SDO output, 3-/4-wire serial grayscale panel interface SDO output)         P53       P53       I/O       Hi-Z       –       I/O port         P54       P54       I/O       Hi-Z       –       I/O port         VST       O       (SCLK, XRD, SCL)       O       Hi-Z       –         VST       O       (SPI panel interface SCLK output, 3-/4-wire serial grayscale panel interface SCLK output, 8-bit parallel grayscale panel interface SCL output, 3-/4-wire serial grayscale panel interface SCL		ENB	0			6-bit color panel interface ENB output
P53     P53     I/O     Hi-Z     –     I/O port       P54     I/O     Hi-Z     –     I/O port       VST     O     KSCL     O     GSCLX, XRD, SCL		(SDO, XWR)				(SPI panel interface SDO output, 8-bit parallel grayscale panel in-
P53     P53     I/O     Hi-Z     –     I/O port       P54     I/O     Hi-Z     –     I/O port       VST     O     Hi-Z     –     I/O port       SCL)     SCL     O     Hi-Z     –						terface XWR output, 3-/4-wire serial grayscale panel interface SDO
IP53     IP53     I/O     Hi-Z     -     I/O port       P54     P54     I/O     Hi-Z     -     I/O port       VST     O     GSCLK, XRD, SCL)     O     -     I/O port						output)
IP54     I/O     Hi-Z     -     I/O port       VST     O     (SCLK, XRD, SCL)     O     6-bit color panel interface VST output (SPI panel interface SCLK output, 8-bit parallel grayscale panel interface SCL output, 3-/4-wire serial grayscale panel interface SCL output)	P53	P53	1/0	Hi-Z	-	I/O port
VSI       O       6-bit color panel interface VST output         (SCLK, XRD,       (SPI panel interface SCLK output, 8-bit parallel grayscale panel interface XRD output, 3-/4-wire serial grayscale panel interface SCL         SCL)       (ultruit)	P54	P54	1/0	Hi-Z	-	I/O port
ISCL, XRD, ISCL, I		VST	0			6-bit color panel interface VST output
Interface And output, 3-/4-wire serial grayscale panel interface SCL		ISULK, XRD,				ISPI panel Interface SULK output, 8-bit parallel grayscale panel
		130L)				output)

	Assigned			Tolerant	
Pin name	signal	1/0	Initial state	fail-safe	Function
D55	DEE	1/0		structure	1/O port
1955	P00	1/0	HI-Z	_	I/O port
	(40)	0			6-bit color pariel interface XRS1 output
DEC	(AU)	1/0	11: 7		
F30	F30	0	ni-Z	-	6 hit color panel interface VCK output
		0			(8 bit parallel gravscale pagel interface DOLITO output)
Peo	(DOOTO)	1/0	Hi-7		1/O port
FOU		1/0	111-2	-	Ouad synchronous sorial interface Ch 0 clock input/output
De1	Det	1/0			
FOI		1/0		-	0 und averabraneus aerial interface Ch 0 data input/output
Dea		1/0			
F 02		1/0	111-2	-	Oued synabraneus serial interface Ch 0 data input/output
Dea		1/0			
F03		1/0		-	0 und averabraneus aerial interface Ch 0 data input/output
DC4		1/0			
F04		1/0	ni-z	-	0 und averabraneus aerial interface Ch 0 data input/output
Des		1/0			
F05	F00	1/0	ni-z	-	Duad aurobranaus serial interface Ch 0 alous select input/subrut
Dee	#0321330	1/0	11: 7		
Poo	FOUT	1/0	HI-Z	_	Clock external eutruit
Dez	POUT De7	1/0			
F07		1/0	ni-z	-	16 bit DWM timer Ch 0 quest equator input 1
DDO	EXCLUT		L (Dull um)		Carial wire debugger clack input
PDU	SWOLK		T (Pull-up)	-	
	PDU SWD	1/0			Porial wire debugger data input/output
PDI	5WD	1/0	T (Pull-up)	_	
DDA	PDI	1/0	11: 7		
PD2	PD2	1/0	HI-Z	-	0000
	0503	A	11: 7		
PD3	PD3	1/0	HI-Z	-	I/O port
		A			
USB_DP	USB_DP	1/0	I	_	
			I	_	USB D- signal input/output
			-	_	
058180001	028180001		-	_	
USB33VOUT	058337001		-	-	USB 3.3 V regulator output

Note: In the peripheral circuit descriptions, the assigned signal name is used as the pin name.

## Universal port multiplexer (UPMUX)

The universal port multiplexer (UPMUX) allows software to select the peripheral circuit input/output function to be assigned to each pin from those listed below.

Peripheral circuit	Signal to be assigned	I/O	Channel number n	Function
I ² C	SCLn	I/O	<i>n</i> = 0, 1	I2C Ch.n clock input/output
(I2C)	SDAn	I/O		I2C Ch.n data input/output
UART	USINn	I	n = 0–2	UART3 Ch.n data input
(UART3)	USOUTn	0		UART3 Ch.n data output
Synchronous serial	SDIn	I	<i>n</i> = 0	SPIA Ch.n data input
interface	SDOn	0		SPIA Ch.n data output
(SPIA)	SPICLKn	I/O		SPIA Ch.n clock input/output
	#SPISSn	I		SPIA Ch.n slave-select input
16-bit PWM timer	TOUTn0/CAPn0	I/O	<i>n</i> = 0–5	T16B Ch.n PWM output/capture input 0
(T16B)	TOUTn1/CAPn1	I/O		T16B Ch.n PWM output/capture input 1

Table 1.3.3.2 Peripheral Circuit Input/output Function Selectable by UPMUX

Note: Do not assign a function to two or more pins simultaneously.

# 2 Power Supply, Reset, and Clocks

The power supply, reset, and clocks in this IC are managed by the embedded power generator, system reset controller, and clock generator, respectively.

# 2.1 Power Generator (PWGA)

## 2.1.1 Overview

PWGA is the power generator that controls the internal power supply system to drive this IC with stability and low power. The main features of PWGA are outlined below.

- Embedded VDI regulator
  - The VD1 regulator generates the VD1 voltage to drive internal circuits, this makes it possible to keep current consumption constant independent of the VDD voltage level.
  - The VDI regulator supports two operation modes, normal mode and economy mode, and setting the VDI regulator into economy mode at light loads helps achieve low-power operations.
  - The VD1 regulator supports two voltage modes, mode0 and mode1, and setting the VD1 regulator into mode1 during low-speed operation helps achieve low-power operations.

Figure 2.1.1.1 shows the PWGA configuration.



* When the memory display controller is not used, this voltage must be supplied externally.

Figure 2.1.1.1 PWGA Configuration

## 2.1.2 Pins

Table 2.1.2.1 lists the PWGA pins.

Table 2.1.2.1	List of PWGA Pins

Pin name	I/O	Initial status	Function
Vdd	Р	-	Power supply (+)
Vss	Р	-	GND
VD1	A	-	VD1 regulator output pin
HIFVDD	Р	-	Host interface and I/O power supply (for P2 and P3 port groups)
VMDL	Р	-	Memory display drive voltage output (2.7 to 3.4 V)
			* I/O power supply (for P4 and P5 port groups) when MDC is not used

For the VDD/HIFVDD/VMDL operating voltage ranges and recommended external parts, refer to "Recommended Operating Conditions, Power supply voltage VDD/HIFVDD/VMDL" in the "Electrical Characteristics" chapter and the "Basic External Connection Diagram" chapter, respectively.

#### HIFVDD and VMDL

HIFVDD is the power supply for the host interface. It is also used as the power supply for the I/O ports P20 to P27 and P30 to P36. If the host interface is not used, apply the same voltage as VDD.

The VMDL voltage is generated internally and is used to drive the external display panel when the memory display controller is used. It is also used for the I/O ports P40 to P47 and P50 to P56. If the memory display controller is not used, the VMDL voltage must be supplied externally, as it cannot be generated internally.

## 2.1.3 VD1 Regulator Operation Mode

The VD1 regulator supports two operation modes, normal mode and economy mode. Setting the VD1 regulator into economy mode at light loads helps achieve low-power operations. Table 2.1.3.1 lists examples of light load conditions in which economy mode can be set.

Light load condition	Exceptions
SLEEP mode (when all oscillators are stopped, or OSC1 only is active)	When a clock source except for
HALT mode (when OSC1 only is active)	OSC1 is active
RUN mode (when OSC1 only is active)	

The VD1 regulator also supports automatic mode in which the hardware detects a light load condition and automatically switches between normal mode and economy mode. Use the VD1 regulator in automatic mode when no special control is required.

## 2.1.4 VD1 Regulator Voltage Mode

The VD1 regulator supports two voltage modes, mode0 and mode1.

When the IC runs with a low-speed clock, setting the VDI regulator into model reduces power consumption.

When the voltage mode is switched, the system clock source automatically stops operating and it resumes operating after the voltage has stabilized. Table 2.1.4.1 shows the stop period of the system clock.

Table 2.1.4.1 System Clock Stop Period After Switching Voltage Mode

System clock	Stop period
IOSC	4,096 cycles
OSC1	Number of cycles set using the CLGOSC1.OSC1WT[1:0] bits

#### Procedure to switch from mode0 to mode1

- 1. Set the MODEN bits of the peripheral circuits to 0. (Stop using peripheral circuits)
- 2. Write 0x0096 to the SYSPROT.PROT[15:0] bits.
- 3. Switch the system clock to a low-speed clock (OSC1, IOSC 2 MHz or 1 MHz).
- 4. Stop OSC3 and EXOSC.
- 5. Configure the following PWGACTL register bits.
  - Set the PWGACTL.REGSEL bit to 0.
  - Set the PWGACTL.REGDIS bit to 1.
  - Set the PWGACTL.REGMODE[1:0] bits to 0x2.
- 6. Configure the following PWGACTL register bits after the system clock supply has resumed.
  - Set the PWGACTL.REGDIS bit to 0.
  - Set the PWGACTL.REGMODE[1:0] bits to 0x0. (Set to automatic mode)
- 7. Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits. (Set system protection)

(Remove system protection)

(Switch to mode1)

(Set to normal mode)

(Stop discharging)

(Discharge)

(Stop using peripheral circuits)

(Remove system protection)

(Switch to mode0)

(Set to normal mode)

(Set to automatic mode)

## Procedure to switch from mode1 to mode0

- 1. Set the MODEN bits of the peripheral circuits to 0.
- 2. Write 0x0096 to the SYSPROT.PROT[15:0] bits.
- 3. Configure the following PWGACTL register bits.Set the PWGACTL.REGSEL bit to 1.
  - Set the PWGACTL.REGMODE [1:0] bits to 0x2.
- 4. Set the PWGACTL.REGMODE[1:0] bits to 0x0 after the system clock supply has resumed.
- 5. Switch the system clock to a high-speed clock.
- 6. Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits. (Set system protection)
- **Notes:** After the voltage mode has been switched, correct the RTC, as the RTC operating clock is also stopped for the period set using the CLGOSC1.OSC1WT[1:0] bits.
  - · Always use the IC in mode0 when VDD is 3.6 V or higher.

# 2.2 System Reset Controller (SRC)

## 2.2.1 Overview

SRC is the system reset controller that resets the internal circuits according to the requests from the reset sources to archive steady IC operations. The main features of SRC are outlined below.

- Embedded reset hold circuit maintains reset state to boot the system safely while the internal power supply is unstable after power on or the oscillation frequency is unstable after the clock source is initiated.
- · Supports reset requests from multiple reset sources.
  - #RESET pin
  - POR and BOR
  - Reset request from the CPU
  - Key-entry reset
  - Watchdog timer reset
  - Supply voltage detector reset
  - Peripheral circuit software reset (supports some peripheral circuits only)
- The CPU registers and peripheral circuit control bits will be reset with an appropriate initialization condition according to changes in status.

Figure 2.2.1.1 shows the SRC configuration.



Figure 2.2.1.1 SRC Configuration

## 2.2.2 Input Pin

Table 2.2.2.1 shows the SRC pin.

	Table 2.2.2.1 SRC Pin		
Pin name	I/O	Initial status	Function
#RESET	I	l (Pull-up)	Reset input

The #RESET pin is connected to the noise filter that removes pulses not conforming to the requirements. An internal pull-up resistor is connected to the #RESET pin, so the pin can be left open. For the #RESET pin characteristics, refer to "#RESET pin characteristics" in the "Electrical Characteristics" chapter.

## 2.2.3 Reset Sources

The reset source refers to causes that request system initialization. The following shows the reset sources.

## **#RESET** pin

Inputting a reset signal with a certain low level period to the #RESET pin issues a reset request.

## POR and BOR

POR (Power On Reset) issues a reset request when the rise of VDD is detected. BOR (Brown-out Reset) issues a reset request when a certain VDD voltage level is detected. Reset requests from these circuits ensure that the system will be reset properly when the power is turned on and the supply voltage is out of the operating voltage range. Figure 2.2.3.1 shows an example of POR and BOR internal reset operation according to variations in VDD.



For the POR and BOR electrical specifications, refer to "POR/BOR characteristics" in the "Electrical Characteristics" chapter.

## **Reset request from the CPU**

The CPU issues a reset request by writing 1 to the AIRCR.SYSRESETREQ bit in the Cortex®-M0+ Application Interrupt and Reset Control Register. For more information, refer to the "ARM®v6-M Architecture Reference Manual."

## **Key-entry reset**

Inputting a low level signal of a certain period to the I/O port pins configured to a reset input issues a reset request. This function must be enabled using an I/O port register. For more information, refer to the "I/O Ports" chapter.

## Watchdog timer reset

Setting the watchdog timer into reset mode will issue a reset request when the counter overflows. This helps return the runaway CPU to a normal operating state. For more information, refer to the "Watchdog timer" chapter.

## Supply voltage detector reset

By enabling the low power supply voltage detection reset function, the supply voltage detector will issue a reset request when a drop in the power supply voltage is detected. This makes it possible to put the system into reset state if the IC must be stopped under a low voltage condition. For more information, refer to the "Supply Voltage Detector" chapter.

## Peripheral circuit software reset

Some peripheral circuits provide a control bit for software reset (MODEN or SFTRST). Setting this bit initializes the peripheral circuit control bits. Note, however, that the software reset operations depend on the peripheral circuit. For more information, refer to "Control Registers" in each peripheral circuit chapter.

Note: The MODEN bit of some peripheral circuits does not issue software reset.

## 2.2.4 Initialization Conditions (Reset Groups)

A different initialization condition is set for the CPU registers and peripheral circuit control bits, individually. The reset group refers to an initialization condition. Initialization is performed when a reset source included in a reset group issues a reset request. Table 2.2.4.1 lists the reset groups. For the reset group to initialize the registers and control bits, refer to the "CPU and Debugger" chapter or "Control Registers" in each peripheral circuit chapter.

Reset group	Reset source	Reset cancelation timing
H0	#RESET pin	Reset state is maintained for the reset
	POR and BOR	hold time tRSTR after the reset request is
	Reset request from the CPU	canceled.
	Key-entry reset	
	Supply voltage detector reset	
	Watchdog timer reset	
H1	#RESET pin	
	POR and BOR	
	Reset request from the CPU	
S0	Peripheral circuit software reset	Reset state is canceled immediately
	(MODEN and SFTRST bits. The	after the reset request is canceled.
	software reset operations de-	
	pend on the peripheral circuit.	

Table 2.2.4.1 List of Reset Groups

# 2.3 Clock Generator (CLG)

## 2.3.1 Overview

CLG is the clock generator that controls the clock sources and manages clock supply to the CPU and the peripheral circuits. The main features of CLG are outlined below.

- Supports multiple clock sources.
  - IOSC oscillator circuit that oscillates with a fast startup and no external parts required
  - Low-power OSC1 oscillator circuit in which the oscillator type can be specified from high-precision 32.768 kHz crystal oscillator (an external resonator is required) and internal oscillator
  - OSC3 oscillator circuit that supports up to 20.5 MHz crystal/ceramic resonators
  - EXOSC clock input circuit that allows input of square wave and sine wave clock signals up to 21 MHz
- The system clock (SYSCLK), which is used as the operating clock for the CPU and bus, and the peripheral circuit operating clocks can be configured individually by selecting the suitable clock source and division ratio.
- The 8 MHz clock output from the IOSC oscillator circuit is used as the boot clock for fast booting.
- Controls the oscillator and clock input circuits to enable/disable according to the operating mode, RUN or SLEEP mode.
- Provides a flexible system clock switching function at SLEEP mode cancelation.
  - The clock sources to be stopped in SLEEP mode can be selected.
  - SYSCLK to be used at SLEEP mode cancelation can be selected from all clock sources.
  - The oscillator and clock input circuit on/off state can be maintained or changed at SLEEP mode cancelation.
- Provides the FOUT function to output an internal clock for driving external ICs or for monitoring the internal state.

Figure 2.3.1.1 shows the CLG configuration.



Figure 2.3.1.1 CLG Configuration

## 2.3.2 Input/Output Pins

Table 2.3.2.1 lists the CLG pins.

Table 2.3.2.1 List of CLG Pins

Pin name	I/O*	Initial status*	Function
OSC1	А	-	OSC1 oscillator circuit input
OSC2	А	-	OSC1 oscillator circuit output
OSC3	А	-	OSC3 oscillator circuit input
OSC4	А	-	OSC3 oscillator circuit output
EXOSC	I	I	EXOSC clock input
FOUT	0	O (L)	FOUT clock output

* Indicates the status when the pin is configured for CLG.

If the port is shared with the CLG input/output function and other functions, the CLG function must be assigned to the port. For more information, refer to the "I/O Ports" chapter.

## 2.3.3 Clock Sources

## **IOSC** oscillator circuit

The IOSC oscillator circuit features a fast startup and no external parts are required for oscillating. Figure 2.3.3.1 shows the configuration of the IOSC oscillator circuit.



Figure 2.3.3.1 IOSC Oscillator Circuit Configuration

The IOSC oscillator circuit output clock IOSCCLK is used as SYSCLK at booting. The IOSCCLK frequency can be selected using the CLGIOSC.IOSCFQ[2:0] bits. The IOSC oscillator circuit is equipped with an autotrimming function that automatically adjusts the frequency. This helps reduce frequency deviation due to unevenness in manufacturing quality, temperature, and changes in voltage. For more information on the autotrimming function and the oscillation characteristics, refer to "IOSC oscillation auto-trimming function" in this chapter and "IOSC oscillator circuit characteristics" in the "Electrical Characteristics" chapter, respectively.

#### **OSC1** oscillator circuit

The OSC1 oscillator circuit is a low-power oscillator circuit that allows software to select the oscillator type from two different types shown below. Figure 2.3.3.2 shows the configuration of the OSC1 oscillator circuit.



Figure 2.3.3.2 OSC1 Oscillator Circuit Configuration

## **Crystal oscillator**

This oscillator circuit includes a gain-controlled oscillation inverter and a variable gate capacitor allowing use of various crystal resonators (32.768 kHz typ.) with ranges from cylinder type through surface-mount type.

The oscillator circuit also includes a feedback resistor and a drain resistor, so no external parts are required except for a crystal resonator. The embedded oscillation stop detector, which detects oscillation stop and restarts the oscillator, allows the system to operate in safety under adverse environments that may stop the oscillation. The oscillation startup control circuit operates for a set period of time after the oscillation is enabled to assist the oscillator in initiating, this makes it possible to use a low-power resonator that is difficult to start up.

**Note**: Depending on the circuit board or the crystal resonator type used, an external gate capacitor C_{G1} and a drain capacitor C_{D1} may be required.
#### Internal oscillator

This 32 kHz oscillator circuit operates without any external parts.

When the internal oscillator circuit is used, set the OSC1 pin level to Vss and leave the OSC3 pin open.

For the recommended parts and the oscillation characteristics, refer to the "Basic External Connection Diagram" chapter and "OSC1 oscillator circuit characteristics" in the "Electrical Characteristics" chapter, respectively.

#### **OSC3** oscillator circuit

The OSC3 oscillator circuit is a crystal/ceramic oscillator that generates a high-speed clock. Figure 2.3.3.3 shows the configuration of the OSC3 oscillator circuit.



Figure 2.3.3.3 OSC3 Oscillator Circuit Configuration

This oscillator circuit includes a feedback resistor and a drain resistor, so no external part is required except for a crystal/ceramic resonator. The embedded gain-controlled inverter allows selection of the resonator from a wide frequency range. For the recommended parts and the oscillation characteristics, refer to the "Basic External Connection Diagram" chapter and the "Electrical Characteristics" chapter, respectively.

#### **EXOSC** clock input

EXOSC is an external clock input circuit that supports square wave and sine wave clocks. Figure 2.3.3.4 shows the configuration of the EXOSC clock input circuit.



Figure 2.3.3.4 EXOSC Clock Input Circuit

EXOSC has no oscillation stabilization waiting circuit included, therefore, it must be enabled when a stabilized clock is being supplied. For the input clock characteristics, refer to "EXOSC external clock input characteristics" in the "Electrical Characteristics" chapter.

## 2.3.4 Operations

#### Oscillation start time and oscillation stabilization waiting time

The oscillation start time refers to the time after the oscillator circuit is enabled until the oscillation signal is actually sent to the internal circuits. The oscillation stabilization waiting time refers to the time it takes the clock to stabilize after the oscillation starts. To avoid malfunctions of the internal circuits due to an unstable clock during this period, the oscillator circuit includes an oscillation stabilization waiting circuit that can disable supplying the clock to the system until the designated time has elapsed. Figure 2.3.4.1 shows the relationship between the oscillation start time and the oscillation stabilization waiting time.



Figure 2.3.4.1 Oscillation Start Time and Oscillation Stabilization Waiting Time

The oscillation stabilization waiting times for the OSC1 and OSC3 oscillator circuits can be set using the CLGOSC1.OSC1WT[1:0] bits and CLGOSC3.OSC3WT[2:0] bits, respectively. To check whether the oscillation stabilization waiting time is set properly and the clock is stabilized immediately after the oscillation starts or not, monitor the oscillation clock using the FOUT output function.

The oscillation stabilization waiting time for the IOSC oscillator circuit is fixed at 16 IOSCCLK clocks.

The oscillation stabilization waiting time for the OSC1 oscillator circuit should be set to 16,384 OSC1CLK clocks or more when crystal oscillator is selected, or 4,096 OSC1CLK clocks or more when internal oscillator is selected.

The oscillation stabilization waiting time for the OSC3 oscillator circuit should be set to 1,024 OSC3CLK clocks or more.

When the oscillation stabilization waiting operation has completed, the oscillator circuit sets the oscillation stabilization waiting completion flag and starts clock supply to the internal circuits.

**Note**: The oscillation stabilization waiting time is always expended at start of oscillation even if the oscillation stabilization waiting completion flag has not be cleared to 0.

When the oscillation startup control circuit in the OSC1 oscillator circuit is enabled by setting the CLGOSC1.OS-C1BUP bit to 1, it uses the high-gain oscillation inverter for a set period of time (startup boosting operation) after the oscillator circuit is enabled (by setting the CLGOSC.OSC1EN bit to 1) to reduce oscillation start time. Note, however, that the oscillation operation may become unstable if there is a large gain differential between normal operation and startup boosting operation. Furthermore, the oscillation start time being actually reduced depends on the characteristics of the resonator used. Figure 2.3.4.2 shows an operation example when the oscillation startup control circuit is used.

(1) CLGOSC1.OSC1BUP bit = 0 (startup boosting operation disabled)



Figure 2.3.4.2 Operation Example when the Oscillation Startup Control Circuit is Used

#### Oscillation start procedure for the IOSC oscillator circuit

Follow the procedure shown below to start oscillation of the IOSC oscillator circuit.

- 1. Write 1 to the CLGINTF.IOSCSTAIF bit. (Clear interrupt flag)
- 2. Write 1 to the CLGINTE.IOSCSTAIE bit. (Enable interrupt)
- 3. Write 0x0096 to the SYSPROT.PROT[15:0] bits. (Remove system protection)
- 4. Configure the CLGIOSC.IOSCFQ[2:0] bits. (Select frequency)
- 5. Set the CLGTRIM1.IOSCLSAJ[5:0] bits (fiosc = 2/1 MHz) or CLGTRIM1.IOSCHSAJ[5:0] bits (fiosc = 20/16/12/8 MHz) as necessary. (Finely adjust oscillation frequency)
- 6. Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits. (Set system protection)
- 7. Write 1 to the CLGOSC.IOSCEN bit. (Start oscillation)
- 8. IOSCCLK can be used if the CLGINTF.IOSCSTAIF bit = 1 after an interrupt occurs.

The setting values of the CLGTRIM1.IOSCLSAJ[5:0] and CLGTRIM1.IOSCHSAJ[5:0] bits should be determined after performing evaluation using the populated circuit board.

**Note:** Make sure the CLGOSC.IOSCEN bit is set to 0 (while the IOSC oscillation is halted) when setting the CLGTRIM1.IOSCLSAJ[5:0] or CLGTRIM1.IOSCHSAJ[5:0] bits.

#### Oscillation start procedure for the OSC1 oscillator circuit

Follow the procedure shown below to start oscillation of the OSC1 oscillator circuit.

- 1. Write 1 to the CLGINTF.OSC1STAIF bit. (Clear interrupt flag)
- 2. Write 1 to the CLGINTE.OSC1STAIE bit. (Enable interrupt)
- 3. Write 0x0096 to the SYSPROT.PROT[15:0] bits. (Remove system protection)
- 4. Configure the following CLGOSC1 register bits:
  - CLGOSC1.OSC1SELCR bit
  - CLGOSC1.OSC1WT[1:0] bits

In addition to the above, configure the following bits when using the crystal oscillator:

- CLGOSC1.INV1N[1:0] bits (Set oscillation inverter gain)
- CLGOSC1.CGI1[2:0] bits
- CLGOSC1.INV1B[1:0] bits
- CLGOSC1.OSC1BUP bit
- (Set oscillation inverter gain for startup boosting period) (Enable/disable oscillation startup control circuit)

(Set internal gate capacitor)

(Select oscillator type)

- CLOOSCIE.OSCIEOF Dit (Enable/disable oscination startup control ch
- 5. When using the internal oscillator, set the CLGTRIM2.OSC1SAJ[5:0] bits as necessary.

(Finely adjust oscillation frequency)

(Set oscillation stabilization waiting time)

- 6. Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits. (Set system protection)
- 7. Write 1 to the CLGOSC.OSC1EN bit. (Start oscillation)
- 8. OSC1CLK can be used if the CLGINTF.OSC1STAIF bit = 1 after an interrupt occurs.

The setting values of the CLGOSC1.INV1N[1:0], CLGOSC1.CGI1[2:0], CLGOSC1.OSC1WT[1:0], CLGOSC1.INV1B[1:0], and CLGTRIM2.OSC1SAJ[5:0] bits should be determined after performing evaluation using the populated circuit board.

**Note:** Make sure the CLGOSC.OSC1EN bit is set to 0 (while the OSC1 oscillation is halted) when setting the CLGTRIM2.OSC1SAJ[5:0] bits.

#### Oscillation start procedure for the OSC3 oscillator circuit

Follow the procedure shown below to start oscillation of the OSC3 oscillator circuit.

- 1. Write 1 to the CLGINTF.OSC3STAIF bit. (Clear interrupt flag)
- 2. Write 1 to the CLGINTE.OSC3STAIE bit. (Enable interrupt)
- 3. Write 0x0096 to the SYSPROT.PROT[15:0] bits. (Remove system protection)
- 4. Configure the following CLGOSC3 register bits.
  - CLGOSC3.OSC3WT[2:0] bitsCLGOSC3.OSC3INV[1:0] bits
- (Set oscillation stabilization waiting time) (Set oscillation inverter gain)
- 5. Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits. (Set system protection)
- 6. Assign the OSC3 oscillator input/output functions to the ports. (Refer to the "I/O Ports" chapter.)

#### 2 POWER SUPPLY, RESET, AND CLOCKS

7. Write 1 to the CLGOSC.OSC3EN bit. (Start oscillation)

8. OSC3CLK can be used if the CLGINTF.OSC3STAIF bit = 1 after an interrupt occurs.

The setting values of the CLGOSC3.OSC3INV[1:0] and CLGOSC3.OSC3WT[2:0] bits should be determined after performing evaluation using the populated circuit board.

#### System clock switching

The CPU boots using IOSCCLK as SYSCLK. After booting, the clock source of SYSCLK can be switched according to the processing speed required. The SYSCLK frequency can also be set by selecting the clock source division ratio, this makes it possible to run the CPU at the most suitable performance for the process to be executed. The CLGSCLK.CLKSRC[1:0] and CLGSCLK.CLKDIV[1:0] bits are used for this control.

The CLGSCLK register bits are protected against writings by the system protect function, therefore, the system protection must be removed by writing 0x0096 to the SYSPROT.PROT[15:0] bits before the register setting can be altered. For the transition between the operating modes including the system clock switching, refer to "Operating Mode."

#### **Clock control in SLEEP mode**

Whether the clock sources being operated are stopped or not when the CPU enters SLEEP mode (deep sleep mode) can be selected in each source individually. This allows the CPU to fast switch between SLEEP mode and RUN mode, and the peripheral circuits to continue operating without disabling the clock in SLEEP mode. The CLGOSC.IOSCSLPC, CLGOSC.OSC1SLPC, CLGOSC.OSC3SLPC, and CLGOSC.EXOSCSLPC bits are used for this control. Figure 2.3.4.3 shows a control example.



Figure 2.3.4.3 Clock Control Example in SLEEP Mode

The SYSCLK condition (clock source and division ratio) at wake-up from SLEEP mode to RUN mode can also be configured. This allows flexible clock control according to the wake-up process. Configure the clock using the CLGSCLK.WUPSRC[1:0] and CLGSCLK.WUPDIV[1:0] bits, and write 1 to the CLGSCLK.WUPMD bit to enable this function.

#### 2 POWER SUPPLY, RESET, AND CLOCKS





#### Clock external output (FOUT)

The FOUT pin can output the clock generated by a clock source or its divided clock to outside the IC. This allows monitoring the oscillation frequency of the oscillator circuit or supplying an operating clock to external ICs. Follow the procedure shown below to start clock external output.

- 1. Assign the FOUT function to the port. (Refer to the "I/O Ports" chapter.)
- 2. Configure the following CLGFOUT register bits:
  - CLGFOUT.FOUTSRC[1:0] bits
  - CLGFOUT.FOUTDIV[2:0] bits

- Set the CLGFOUT.FOUTEN bit to 1.

#### **IOSC** oscillation auto-trimming function

The auto-trimming function adjusts the IOSCCLK clock frequency selected using the CLGIOSC.IOSCFQ[2:0] bits by trimming the clock with reference to the high precision OSC1CLK clock generated by the OSC1 oscillator circuit (crystal oscillator). Follow the procedure shown below to enable the auto-trimming function.

- 1. After enabling the OSC1 oscillation, check if the stabilized clock is supplied (CLGINTF.OSC1STAIF bit = 1).
- 2. After enabling the IOSC oscillation, check if the stabilized clock is supplied (CLGINTF.IOSCSTAIF bit = 1).
- 3. Write 0x0096 to the SYSPROT.PROT[15:0] bits. (Remove system protection)
- 4. If the SYSCLK clock source is IOSC, set the CLGSCLK.CLKSRC[1:0] bits to a value other than 0x0 (IOSC).

#### 5. Configure the following CLGINTF register bits: (Clear interrupt flag)

- Write 1 to the CLGINTF.IOSCTEDIF bit.
- Write 1 to the CLGINTF.IOSCTERIF bit.
- 6. Configure the following CLGINTF register bits: - Set the CLGINTE.IOSCTEDIE bit to 1.
  - Set the CLGINTE.IOSCTERIE bit to 1.

7. Write 1 to the CLGIOSCJOSCSTM bit.

(Clear interrupt flag)

(Select clock source)

(Set clock division ratio)

(Enable clock external output)

- (Enable interrupt) (Enable interrupt)
- (Enable IOSC oscillation auto-trimming)
- 8. Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits. (Set system protection)
- 9. The trimmed IOSCCLK can be used if the CLGINTF.IOSCTEDIF bit = 1 after an interrupt occurs. If the CLGINTF.IOSCTERIF bit = 1, an error has occurred during the auto-trimming operation (the clock has not been adjusted).

After the trimming operation has completed, the CLGIOSC.IOSCSTM bit automatically reverts to 0. Although the trimming time depends on the temperature, an average of several 10 ms is required. When IOSCCLK is being used as the system clock or a peripheral circuit clock, do not use the auto-trimming function.

### OSC1 oscillation stop detection function

The oscillation stop detection function restarts the OSC1 oscillator circuit when it detects oscillation stop under adverse environments that may stop the oscillation. Follow the procedure shown below to enable the oscillation stop detection function.

- 1. After enabling the OSC1 oscillation, check if the stabilized clock is supplied (CLGINTF.OSC1STAIF bit = 1).
- 2. Write 1 to the CLGINTF.OSC1STPIF bit.
- 3. Write 1 to the CLGINTE.OSC1STPIE bit.

(Clear interrupt flag) (Enable interrupt)

- 4. Write 0x0096 to the SYSPROT.PROT[15:0] bits. (Remove system protection)
- Set the following CLGOSC1 register bits:
   Set the CLGOSC1.OSDRB bit to 1.

(Enable OSC1 restart function)

- Set the CLGOSC1.OSDEN bit to 1. (Enable oscillation stop detection function)
- 6. Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits. (Set system protection)
- The OSC1 oscillation stops if the CLGINTF.OSC1STPIF bit = 1 after an interrupt occurs. If the CLGOSC1.OSDRB bit = 1, the hardware restarts the OSC1 oscillator circuit.

Note: Enabling the oscillation stop detection function increase the oscillation stop detector current (losp1).

# 2.4 Operating Mode

# 2.4.1 Initial Boot Sequence

Figure 2.4.1.1 shows the initial boot sequence after power is turned on.



Figure 2.4.1.1 Initial Boot Sequence

**Note**: The reset cancelation time at power-on varies according to the power rise time and reset request cancelation time.

For the reset hold time tRSTR, refer to "Reset hold circuit characteristics" in the "Electrical Characteristics" chapter.

# 2.4.2 Transition between Operating Modes

State transitions between operating modes shown in Figure 2.4.2.1 take place in this IC.

### **RUN mode**

RUN mode refers to the state in which the CPU is executing the program. A transition to this mode takes place when the system reset request from the system reset controller is canceled. RUN mode is classified into "IOSC RUN," "OSC1 RUN," "OSC3 RUN," and "EXOSC RUN" by the SYSCLK clock source.

### HALT mode

When the Cortex®-M0+ core executes the WFI or WFE instruction with the SLEEPDEEP bit of the Cortex®-M0+ System Control Register set to 0, it suspends program execution and stops operating. This state is referred to HALT mode in this IC. In this mode, the clock sources and peripheral circuits keep operating. This mode can be set while no software processing is required and it reduces power consumption as compared with RUN mode. HALT mode is classified into "IOSC HALT," "OSC1 HALT," "OSC3 HALT," and "EXOSC HALT" by the SYSCLK clock source.

#### SLEEP mode

When the Cortex[®]-M0+ core executes the WFI or WFE instruction with the SLEEPDEEP bit of the Cortex[®]-M0+ System Control Register set to 1, it suspends program execution and stops operating. This state is referred to SLEEP mode in this IC. In this mode, the clock sources stop operating as well.

However, the clock source in which the CLGOSC.IOSCSLPC/OSC3SLPC/EXOSCSLPC bit is set to 0 keeps operating, so the peripheral circuits with the clock being supplied can also operate. By setting this mode when no software processing and peripheral circuit operations are required, power consumption can be less than HALT mode.

The RAM retains data even in SLEEP mode.



Figure 2.4.2.1 Operating Mode-to-Mode State Transition Diagram

#### Canceling HALT or SLEEP mode

The conditions listed below generate the HALT/SLEEP cancelation signal to cancel HALT or SLEEP mode and put the CPU into RUN mode.

- · Interrupt request from a peripheral circuit
- NMI from the watchdog timer
- · Reset request

# 2.5 Interrupts

CLG has a function to generate the interrupts shown in Table 2.5.1.

Interrupt	Interrupt flag	Set condition	Clear condition
IOSC oscillation stabiliza-	CLGINTF.IOSCSTAIF	When the IOSC oscillation stabilization waiting	Writing 1
tion waiting completion		operation has completed after the oscillation starts	
OSC1 oscillation stabili-	CLGINTF.OSC1STAIF	When the OSC1 oscillation stabilization waiting	Writing 1
zation waiting completion		operation has completed after the oscillation starts	
OSC3 oscillation stabili-	CLGINTF.OSC3STAIF	When the OSC3 oscillation stabilization waiting	Writing 1
zation waiting completion		operation has completed after the oscillation starts	
OSC1 oscillation stop	CLGINTF.OSC1STPIF	When OSC1CLK is stopped, or when the CLGOSC.	Writing 1
		OSC1EN or CLGOSC1.OSDEN bit setting is al-	
		tered from 1 to 0.	
IOSC oscillation auto-	CLGINTF.IOSCTEDIF	When the IOSC oscillation auto-trimming opera-	Writing 1
trimming completion		tion has completed	
IOSC oscillation auto-	CLGINTF.IOSCTERIF	When the IOSC oscillation auto-trimming opera-	Writing 1
trimming error		tion has terminated due to an error	

Table 2.5.1	CLG Interrupt	Functions
	0 - 0	

CLG provides interrupt enable bits corresponding to each interrupt flag. An interrupt request is sent to the CPU only when the interrupt flag, of which interrupt has been enabled by the interrupt enable bit, is set. For more information on interrupt control, refer to the "Interrupt" chapter.

# 2.6 Control Registers

### **PWGA Control Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
PWGACTL	15–8	-	0x00	-	R	-
	7–6	-	0x0	-	R	
	5	REGDIS	0	H0	R/WP	
	4	REGSEL	1	H0	R/WP	
	3–2	-	0x0	-	R	
	1–0	REGMODE[1:0]	0x0	H0	R/WP	

#### Bits 15-6 Reserved

#### Bit 5 REGDIS

This bit enables the VD1 regulator discharge function. 1 (R/WP): Enable 0 (R/WP): Disable

#### Bit 4 REGSEL

This bit controls the VD1 regulator voltage mode. 1 (R/WP): mode0 0 (R/WP): mode1

#### Bits 3–2 Reserved

#### Bits 1-0 REGMODE[1:0]

These bits control the VDI regulator operating mode.

Table 2.6.1	Internal	Regulator	Operating	Mode
-------------	----------	-----------	-----------	------

	J
PWGACTL.REGMODE[1:0] bits	Operating mode
0x3	Economy mode
0x2	Normal mode
0x1	Reserved
0x0	Automatic mode

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
CLGSCLK	15	WUPMD	0	H0	R/WP	-
	14	-	0	-	R	
	13–12	WUPDIV[1:0]	0x0	H0	R/WP	
	11–10	-	0x0	-	R	
	9–8	WUPSRC[1:0]	0x0	HO	R/WP	
	7–6	-	0x0	-	R	
	5–4	CLKDIV[1:0]	0x0	H0	R/WP	
	3–2	-	0x0	-	R	
	1–0	CLKSRC[1:0]	0x0	HO	R/WP	

### **CLG System Clock Control Register**

#### Bit 15 WUPMD

This bit enables the SYSCLK switching function at wake-up. 1 (R/WP): Enable

0 (R/WP): Disable

When the CLGSCLK.WUPMD bit = 1, setting values of the CLGSCLK.WUPSRC[1:0] bits and the CLGSCLK.WUPDIV[1:0] bits are loaded to the CLGSCLK.CLKSRC[1:0] bits and the CLGSCLK. CLKDIV[1:0] bits, respectively, at wake-up from SLEEP mode to switch SYSCLK. When the CLG-SCLK.WUPMD bit = 0, the CLGSCLK.CLKSRC[1:0] and CLGSCLK.CLKDIV[1:0] bits are not altered at wake-up.

#### Bit 14 Reserved

#### Bits 13-12 WUPDIV[1:0]

These bits select the SYSCLK division ratio for resetting the CLGSCLK.CLKDIV[1:0] bits at wake-up. This setting is ineffective when the CLGSCLK.WUPMD bit = 0.

#### Bits 11–10 Reserved

#### Bits 9–8 WUPSRC[1:0]

These bits select the SYSCLK clock source for resetting the CLGSCLK.CLKSRC[1:0] bits at wake-up. When a currently stopped clock source is selected, it will automatically start oscillating or clock input at wake-up. However, this setting is ineffective when the CLGSCLK.WUPMD bit = 0.

	CLGSCLK.WUPSRC[1:0] bits							
	0x0	0x1	0x2	0x3				
WOPDIV[1:0] bits	IOSCCLK	OSC1CLK	OSC3CLK	EXOSCCLK				
0x3	1/8	Reserved	1/16	Reserved				
0x2	1/4	Reserved	1/8	Reserved				
0x1	1/2	1/2	1/2	Reserved				
0x0	1/1	1/1	1/1	1/1				

Table 2.6.2 SYSCLK Clock Source and Division Ratio Settings at Wake-up

#### Bits 7–6 Reserved

#### Bits 5–4 CLKDIV[1:0]

These bits set the division ratio of the clock source to determine the SYSCLK frequency.

#### Bits 3–2 Reserved

#### Bits 1–0 CLKSRC[1:0]

These bits select the SYSCLK clock source. When a currently stopped clock source is selected, it will automatically start oscillating or clock input.

	CLGSCLK.CLKSRC[1:0] bits							
CLUGGULK.	0x0	0x1	0x2	0x3				
CENDIV[1:0] bits	IOSCCLK	OSC1CLK	OSC3CLK	EXOSCCLK				
0x3	1/8	Reserved	1/16	Reserved				
0x2	1/4	Reserved	1/8	Reserved				
0x1	1/2	1/2	1/2	Reserved				
0x0	1/1	1/1	1/1	1/1				

Table 2.6.3 SYSCLK Clock Source and Division Ratio Settings

### **CLG Oscillation Control Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
CLGOSC	15–12	-	0x0	-	R	-
	11	EXOSCSLPC	1	H0	R/W	
	10	OSC3SLPC	1	H0	R/W	
	9	OSC1SLPC	1	H0	R/W	
	8	IOSCSLPC	1	H0	R/W	
	7–4	-	0x0	-	R	
	3	EXOSCEN	0	H0	R/W	
	2	OSC3EN	0	H0	R/W	
	1	OSC1EN	0	H0	R/W	
	0	IOSCEN	1	H0	R/W	

#### Bits 15–12 Reserved

#### Bit 11 EXOSCSLPC

Bit 10 OSC3SLPC

#### Bit 9 OSC1SLPC

#### Bit 8 IOSCSLPC

These bits control the clock source operations in SLEEP mode.

1 (R/W): Stop clock source in SLEEP mode

0 (R/W): Continue operation state before SLEEP

Each bit corresponds to the clock source as follows: CLGOSC.EXOSCSLPC bit: EXOSC clock input CLGOSC.OSC3SLPC bit: OSC3 oscillator circuit CLGOSC.OSC1SLPC bit: OSC1 oscillator circuit CLGOSC.IOSCSLPC bit: IOSC oscillator circuit

#### Bits 7–4 Reserved

- Bit 3 EXOSCEN
- Bit 2 OSC3EN
- Bit 1 OSC1EN

#### Bit 0 IOSCEN

These bits control the clock source operation.

- 1(R/W): Start oscillating or clock input
- 0(R/W): Stop oscillating or clock input

Each bit corresponds to the clock source as follows:CLGOSC.EXOSCEN bit:EXOSC clock inputCLGOSC.OSC3EN bit:OSC3 oscillator circuitCLGOSC.OSC1EN bit:OSC1 oscillator circuitCLGOSC.IOSCEN bit:IOSC oscillator circuit

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
CLGIOSC	15–8	-	0x00	-	R	_
	7–5	-	0x0	-	R	
	4	IOSCSTM	0	H0	R/WP	
	3	-	0	-	R	
	2–0	IOSCFQ[2:0]	0x4	HO	R/WP	

### **CLG IOSC Control Register**

#### Bits 15–5 Reserved

#### Bit 4 IOSCSTM

This bit controls the IOSCCLK auto-trimming function.

- 1 (WP): Start trimming
- 0 (WP): Stop trimming
- 1 (R): Trimming is executing.
- 0 (R): Trimming has finished. (Trimming operation inactivated.)

This bit is automatically cleared to 0 when trimming has finished.

- **Notes:** Do not use IOSCCLK as the system clock or peripheral circuit clocks while the CLGIOSC. IOSCSTM bit = 1.
  - The auto-trimming function does not work if the OSC1 oscillator circuit is stopped. Make sure the CLGINTF.OSC1STAIF bit is set to 1 before starting the trimming operation.
  - Be sure to avoid altering the CLGIOSC.IOSCFQ[2:0] bits while the auto-trimming is being executed.

#### Bit 3 Reserved

#### Bits 2–0 IOSCFQ[2:0]

These bits select the IOSCCLK frequency.

CLGIOSC.	IOSCCLK frequency					
IOSCFQ[2:0] bits	V _{D1} voltage mode = mode0	VD1 voltage mode = mode1				
0x7	20 MHz					
0x6	16 MHz					
0x5	12 MHz	Catting probibited				
0x4	8 MHz	Setting prohibited				
0x3	Decement					
0x2	Reserved					
0x1	2 MHz	2 MHz				
0x0	1 MHz	1 MHz				

#### Table 2.6.4 IOSCCLK Frequency Selection

### **CLG OSC1 Control Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
CLGOSC1	15	_	0	-	R	-
	14	OSDRB	1	H0	R/WP	
	13	OSDEN	0	H0	R/WP	
	12	OSC1BUP	1	H0	R/WP	
	11	OSC1SELCR	0	H0	R/WP	
	10–8	CGI1[2:0]	0x0	H0	R/WP	
	7–6	INV1B[1:0]	0x2	H0	R/WP	
	5–4	INV1N[1:0]	0x1	H0	R/WP	
	3–2	-	0x0	-	R	
	1–0	OSC1WT[1:0]	0x2	H0	R/WP	

#### Bit 15 Reserved

#### Bit 14 OSDRB

This bit enables the OSC1 oscillator circuit restart function by the oscillation stop detector when OSC1 oscillation stop is detected.

1 (R/WP): Enable (Restart the OSC1 oscillator circuit when oscillation stop is detected.) 0 (R/WP): Disable

# Bit 13 OSDEN

This bit controls the oscillation stop detector in the OSC1 oscillator circuit. 1 (R/WP): OSC1 oscillation stop detector on 0 (R/WP): OSC1 oscillation stop detector off

Note: Do not write 1 to the CLGOSC1.OSDEN bit before stabilized OSC1CLK is supplied. Furthermore, the CLGOSC1.OSDEN bit should be set to 0 when the CLGOSC.OSC1EN bit is set to 0.

#### Bit 12 OSC1BUP

This bit enables the oscillation startup control circuit in the OSC1 oscillator circuit. 1 (R/WP): Enable (Activate booster operation at startup.) 0 (R/WP): Disable

#### Bit 11 OSC1SELCR

This bit selects an oscillator type of the OSC1 oscillator circuit. 1 (R/WP): Internal oscillator 0 (R/WP): Crystal oscillator

#### Bits 10-8 CGI1[2:0]

These bits set the internal gate capacitance in the OSC1 oscillator circuit.

CLGOSC1.CGI1[2:0] bits	Capacitance
0x7	Max.
0x6	1
0x5	
0x4	
0x3	
0x2	
0x1	] ↓
0x0	Min.

Table 2.6.5 OSC1 Internal Gate Capacitance Setting

For more information, refer to "OSC1 oscillator circuit characteristics, Internal gate capacitance CGII" in the "Electrical Characteristics" chapter.

#### Bits 7-6 INV1B[1:0]

These bits set the oscillation inverter gain that will be applied at boost startup of the OSC1 oscillator circuit.

CLGOSC1.INV1B[1:0] bits	Inverter gain
0x3	Max.
0x2	<b></b> ↑
0x1	] ↓
0x0	Min.

**Note:** The CLGOSC1.INV1B[1:0] bits must be set to a value equal to or larger than the CLGOSC1. INV1N[1:0] bits.

#### Bits 5-4 INV1N[1:0]

These bits set the oscillation inverter gain applied at normal operation of the OSC1 oscillator circuit.

Table 2.6.7 Setting Oscillation Inverter Gain at OSC1 Normal Operation

CLGOSC1.INV1N[1:0] bits	Inverter gain
0x3	Max.
0x2	↑
0x1	↓
0x0	Min.

#### Bits 3–2 Reserved

#### Bits 1-0 OSC1WT[1:0]

These bits set the oscillation stabilization waiting time for the OSC1 oscillator circuit.

Table 2.6.8	OSC1 (	Oscillation	Stabilization	Waiting	Time Setting
-------------	--------	-------------	---------------	---------	--------------

	5 5
CLGOSC1.OSC1WT[1:0] bits	Oscillation stabilization waiting time
0x3	65,536 clocks
0x2	16,384 clocks
0x1	4,096 clocks
0x0	Reserved

### **CLG OSC3 Control Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
CLGOSC3	15–8	-	0x00	-	R	-
	7–6	-	0x0	-	R	
	5–4	OSC3INV[1:0]	0x3	H0	R/WP	
	3	-	0	-	R	
	2–0	OSC3WT[2:0]	0x6	H0	R/WP	

#### Bits 15–6 Reserved

#### Bits 5–4 OSC3INV[1:0]

These bits set the oscillation inverter gain when crystal/ceramic oscillator is selected as the OSC3 oscillator type.

	0
CLGOSC3.OSC3INV[1:0] bits	Inverter gain
0x3	Max.
0x2	↑ (
0x1	↓
0x0	Min.

Table 2.6.9 OSC3 Oscillation Inverter Gain Setting

#### Bit 3 Reserved

#### Bits 2-0 OSC3WT[2:0]

These bits set the oscillation stabilization waiting time for the OSC3 oscillator circuit.

CLGOSC3.OSC3WT[2:0] bits	Oscillation stabilization waiting time
0x7	65,536 clocks
0x6	16,384 clocks
0x5	4,096 clocks
0x4	1,024 clocks
0x3	256 clocks
0x2	64 clocks
0x1	16 clocks
0x0	4 clocks

Table 2.6.10 OSC3 Oscillation Stabilization Waiting Time Setting

### **CLG Interrupt Flag Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
CLGINTF	15–9	-	0x00	-	R	-
	8	IOSCTERIF	0	H0	R/W	Cleared by writing 1.
	7	-	0	-	R	-
	6	(reserved)	0	H0	R	
	5	OSC1STPIF	0	H0	R/W	Cleared by writing 1.
	4	IOSCTEDIF	0	H0	R/W	
	3	-	0	-	R	-
	2	OSC3STAIF	0	H0	R/W	Cleared by writing 1.
	1	OSC1STAIF	0	H0	R/W	
	0	IOSCSTAIF	0	H0	R/W	

#### Bits 15-9, 7, 6, 3 Reserved

- Bit 8 IOSCTERIF
- Bit 5 OSC1STPIF
- Bit 4 IOSCTEDIF
- Bit 2 OSC3STAIF
- Bit 1 OSC1STAIF

#### Bit 0 IOSCSTAIF

These bits indicate the CLG interrupt cause occurrence statuses.

- 1 (R): Cause of interrupt occurred
- 0 (R): No cause of interrupt occurred
- 1 (W): Clear flag
- 0 (W): Ineffective

Each bit corresponds to the interrupt as follows:

CLGINTF.IOSCTERIF bit: IOSC oscillation auto-trimming error interrupt

CLGINTF.OSC1STPIF bit: OSC1 oscillation stop interrupt

CLGINTF.IOSCTEDIF bit: IOSC oscillation auto-trimming completion interrupt

CLGINTF.OSC3STAIF bit: OSC3 oscillation stabilization waiting completion interrupt

CLGINTF.OSC1STAIF bit: OSC1 oscillation stabilization waiting completion interrupt

CLGINTF.IOSCSTAIF bit: IOSC oscillation stabilization waiting completion interrupt

Note: The CLGINTF.IOSCSTAIF bit is 0 after system reset is canceled, but IOSCCLK has already been stabilized.

### **CLG Interrupt Enable Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
CLGINTE	15–9	_	0x00	-	R	-
	8	IOSCTERIE	0	H0	R/W	
	7	-	0	-	R	
	6	(reserved)	0	H0	R/W	
	5	OSC1STPIE	0	H0	R/W	
	4	IOSCTEDIE	0	H0	R/W	
	3	-	0	-	R	
	2	OSC3STAIE	0	H0	R/W	
	1	OSC1STAIE	0	H0	R/W	
	0	IOSCSTAIE	0	H0	R/W	

#### Bits 15-9, 7, 6, 3 Reserved

#### Bit 8 IOSCTERIE

- Bit 5 OSC1STPIE
- Bit 4 IOSCTEDIE
- Bit 2 OSC3STAIE

### Bit 1 OSC1STAIE

### Bit 0 IOSCSTAIE

These bits enable the OSC1 oscillation stop and IOSC oscillation auto-trimming completion interrupts.

1 (R/W): Enable interrupts

0 (R/W): Disable interrupts

Each bit corresponds to the interrupt as follows:

CLGINTE.IOSCTERIE bit: IOSC oscillation auto-trimming error interrupt

CLGINTE.OSC1STPIE bit: OSC1 oscillation stop interrupt

CLGINTE.IOSCTEDIE bit: IOSC oscillation auto-trimming completion interrupt

CLGINTE.OSC3STAIE bit: OSC3 oscillation stabilization waiting completion interrupt

CLGINTE.OSC1STAIE bit: OSC1 oscillation stabilization waiting completion interrupt

CLGINTE.IOSCSTAIE bit: IOSC oscillation stabilization waiting completion interrupt

### **CLG FOUT Control Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
CLGFOUT	15–8	_	0x00	-	R	-
	7	-	0	-	R	
	6–4	FOUTDIV[2:0]	0x0	H0	R/W	
	3–2	FOUTSRC[1:0]	0x0	H0	R/W	
	1	-	0	-	R	
	0	FOUTEN	0	H0	R/W	

#### Bits 15–7 Reserved

#### Bits 6–4 FOUTDIV[2:0]

These bits set the FOUT clock division ratio.

#### Bits 3–2 FOUTSRC[1:0]

These bits select the FOUT clock source.

Table 2.6.11	FOUT Clock	Source and	Division	Ratio	Settings
--------------	------------	------------	----------	-------	----------

				-			
CLOFOUT	CLGFOUT.FOUTSRC[1:0] bits						
	0x0	0x1	0x2	0x3			
FOUTDIV[2:0] bits	IOSCCLK	OSC1CLK	OSC3CLK	SYSCLK			
0x7	1/128	1/32,768	1/128	Reserved			
0x6	1/64	1/4,096	1/64	Reserved			
0x5	1/32	1/1,024	1/32	Reserved			
0x4	1/16	1/256	1/16	Reserved			
0x3	1/8	1/8	1/8	Reserved			
0x2	1/4	1/4	1/4	Reserved			
0x1	1/2	1/2	1/2	Reserved			
0x0	1/1	1/1	1/1	1/1			

**Note:** When the CLGFOUT.FOUTSRC[1:0] bits are set to 0x3, the FOUT output will be stopped in SLEEP/HALT mode as SYSCLK is stopped.

#### Bit 1 Reserved

#### Bit 0 FOUTEN

This bit controls the FOUT clock external output.

- 1 (R/W): Enable external output
- 0 (R/W): Disable external output
- **Note**: Since the FOUT signal generated is out of sync with writings to the CLGFOUT.FOUTEN bit, a glitch may occur when the FOUT output is enabled or disabled.

	-				-	
Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
CLGTRIM1	15–14	-	0x0	_	R	_
	13–8	IOSCLSAJ[5:0]	*	H0	R/WP	* Determined by factory adjustment.
	7–6	-	0x0	-	R	_
	5–0	IOSCHSAJ[5:0]	*	H0	R/WP	* Determined by factory adjustment.

#### **CLG Oscillation Frequency Trimming Register 1**

#### Bits 15–14 Reserved

#### Bits 13–8 IOSCLSAJ[5:0]

These bits set the frequency trimming value for the IOSC internal oscillator circuit. This setting affects the low-speed oscillation frequencies (1 MHz and 2 MHz).

Table 2.6.12 Low-Speed Oscillation Frequency Trimming Setting of IOSC Internal Oscillator Circuit

CLGTRIM1.IOSCLSAJ[5:0] bits	IOSC oscillation frequency (2/1 MHz)
0x3f	High
:	:
0x00	Low

#### Bits 7–6 Reserved

#### Bits 5–0 IOSCHSAJ[5:0]

These bits set the frequency trimming value for the IOSC internal oscillator circuit. This setting affects the high-speed oscillation frequencies (8 MHz to 20 MHz).

Table 2.6.13 High-Speed Oscillation Frequency Trimming Setting of IOSC Internal Oscillator Circuit

CLGTRIM1.IOSCHSAJ[5:0] bits	IOSC oscillation frequency (20/16/12/8 MHz)
0x3f	High
:	:
0x00	Low

**Note**: The initial values of the CLGTRIM1.IOSCLSAJ[5:0] and CLGTRIM1.IOSCHSAJ[5:0] bits were adjusted so that the IOSC oscillator circuit characteristics described in the "Electrical Characteristics" chapter can be guaranteed. Be aware that the frequency characteristics may not be satisfied when these settings are altered. When altering these settings, always make sure that the IOSC oscillator circuit is inactive.

#### CLG Oscillation Frequency Trimming Register 2

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
CLGTRIM2	15–8	-	0x00	-	R	_
	7–6	-	0x0	-	R	
	5–0	OSC1SAJ[5:0]	*	HO	R/WP	* Determined by factory adjustment.

#### Bits 15–6 Reserved

#### Bits 5–0 OSC1SAJ[5:0]

These bits set the frequency trimming value for the OSC1 internal oscillator circuit. This setting does not affect the OSC1 crystal oscillation frequency.

Table 2.6.14 Oscillation Frequency Trimming Setting of OSC1 Internal Oscillator Circuit

CLGTRIM2.OSC1SAJ[5:0] bits	OSC1 internal oscillator frequency
0x3f	High
:	:
0x00	Low

**Note**: The initial value of the CLGTRIM2.OSC1SAJ[5:0] bits was adjusted so that the OSC1 oscillator circuit characteristics described in the "Electrical Characteristics" chapter can be guaranteed. Be aware that the frequency characteristic may not be satisfied when this setting is altered. When altering this setting, always make sure that the OSC1 oscillator circuit is inactive.

# **3** CPU and Debugger

# 3.1 Overview

This IC incorporates a Cortex®-M0+ CPU manufactured by Arm Ltd.

# 3.2 CPU

The following shows the system configuration of the Cortex®-M0+ CPU embedded in this IC:

- Cortex[®]-M0+ core
- 32-bit single-cycle multiplier
- Nested vectored interrupt controller (NVIC)
- System timer (Systick)
- Serial-wire debug port (SW-DP)
- Micro trace buffer (MTB)
- Number of hardware break points: 4
- Number of watch points: 2

# 3.3 Debugger

This IC includes a serial-wire debug port (SW-DP).

## 3.3.1 List of Debugger Input/Output Pins

Table 3.3.3.1 lists the debug pins.

Table 3.3.1.1	List of Debug Pins
---------------	--------------------

Pin name	I/O	Initial state	Function
SWCLK	0	0	On-chip debugger clock input pin
			Input a clock from a debugging tool.
SWD	I/O	I	On-chip debugger data input/output pin
			Used to input/output debugging data.

The debugger input/output pins are shared with general-purpose I/O ports and are initially set as the debug pins. If the debugging function is not used, these pins can be switched to general-purpose I/O port pins. For details, refer to the "I/O Ports" chapter.

## 3.3.2 External Connection

Figure 3.3.2.1 shows a connection example between this IC and a debugging tool when performing debugging.



Figure 3.3.2.1 External Connection

For the recommended pull-up resistor value, refer to "Recommended Operating Conditions, Debug pin pull-up resistors RDBG1-2" in the "Electrical Characteristics" chapter. RDBG1 and RDBG2 are not required when using the debug pins as general-purpose I/O port pins.

# 3.4 Reference Documents

Arm Ltd. provides various documents for developing a system with a  $Cortex^{(B)}-M0+$  CPU included. For detailed information on the  $Cortex^{(B)}-M0+$  CPU that are not described in this manual, refer to the following documents:

- 1. ARM®v6-M Architecture Reference Manual
- 2. Cortex[®]-M0+Technical Reference Manual
- 3. Cortex[®]-M0+ Devices Generic User Guide

These documents can be downloaded from the document site of Arm Ltd.

https://developer.arm.com/documentation

# 4 Memory and Bus

# 4.1 Overview

This IC supports up to 4G bytes of accessible memory space for both instructions and data. The features are listed below.

- · Embedded Flash memory that supports on-board programming
- · Write-protect function to protect system control registers

Figure 4.1.1 shows the memory map.

0xffff fff:	Reserved
0xf023 7ff:	MTB area (224K bytes)
	(Device size: 32 bits)
0X1020 000	
UXIUII III.	Reserved
0xf000 100	
0xf000 Off:	System ROM table area (4K bytes)
0xf000 000	(Device size: 32 bits)
0xefff fff:	Reserved area for Cortex®-M0+ (256M bytes)
0.000 000	(Device size: 32 bits)
0xdfff fff	F
	Reserved
0x4000 400	
0X4000 311.	Peripheral circuit area (12K bytes)
0x4000 100	(Device size: 32 bits)
0x4000 0ff	Peripheral circuit area (4K bytes)
0x4000 000	(Device size: 16 bits)
0x3fff fff	E
012040 040	Reserved
0x2040 040 0x2040 03f	
0.2010 001	(Deutine sizes 10 hits)
0x2040 000	Device size: 16 bits)
UX2U3I III	Reserved
0x2001 800	
0x2001 7ff	
	RAIN area (96K bytes)
0	(Device size: 32 bits)
0x1fff fff:	
	Reserved
0x0014 000	
UXUUIS III.	
	Memory mapped access area
	for external Flash memory (1M bytes)
	(Device size: 32 bits)
0x0004 000	
0x0003 fff:	E
	Flash area (256K bytes)
	(Device size: 32 hits)
UX0000 000	)

# 4.2 Bus Access Cycle

The CPU uses the system clock for bus access operations. First, "Bus access cycle," "Device size," and "Access size" are defined as follows:

- Bus access cycle: One system clock period = 1 cycle
- Device size: Bit width of the memory and peripheral circuits that can be accessed in one cycle
- Access size: Access size designated by the CPU instructions (e.g., LDR Rt, [Rn]  $\rightarrow$  32-bit data transfer)

Table 4.2.1 lists numbers of bus access cycles by different device size and access size. The peripheral circuits can be accessed with an 8- or 16-bit instruction.

Device size	Access size	Number of bus access cycles
8 bits	8 bits	1
	16 bits	2
	32 bits	4
16 bits	8 bits	1
	16 bits	1
	32 bits	2
32 bits	8 bits	1
	16 bits	1
	32 bits	1

Table 4.2.1 Number of Bus Access Cycles

# 4.3 Flash Memory

The Flash memory is used to store application programs and data. Address 0x0 in the Flash area is defined as the vector table base address by default, therefore a vector table must be located beginning from this address. For more information on the vector table, refer to "Vector Table" in the "Interrupt" chapter.

### 4.3.1 Flash Memory Pin

Table 4.3.1.1 shows the Flash memory pin.

Table 4.3.1.1 Flash Memory Pin

Pin name	I/O	Initial status	Function
Vpp	Р	-	Flash programming power supply
(ENVPP)	O or Hi-Z	Hi-Z	Flash programming control signal output

For the VPP voltage, refer to "Recommended Operating Conditions, Flash programming voltage VPP" in the "Electrical Characteristics" chapter.

Notes: • Always leave the VPP pin open except when programming the Flash memory.

 The ENVPP pin outputs a control signal to the Bridge Board (S5U1C31001L) during Flash programming. Although this pin can be used as a general-purpose input/output port, take an effect of this signal on external circuits into consideration.

### 4.3.2 Flash Bus Access Cycle Setting

There is a limit of frequency to access the Flash memory with no wait cycle, therefore, the number of bus access cycles for reading must be changed according to the system clock frequency. The number of bus access cycles for reading can be configured using the FLASHCWAIT.RDWAIT[1:0] bits. Select a setting for higher frequency than the system clock.

## 4.3.3 Flash Programming

The Flash memory supports on-board programming, so it can be programmed using a flash loader. The VPP voltage can be supplied from either an external power supply or the internal voltage booster.

Be sure to connect CVPP between the Vss and VPP pins for stabilizing the voltage when the VPP voltage is supplied externally or for generating the voltage when the internal power supply is used.

The VPP pin must be left open except when programming the Flash memory. However, it is not necessary to disconnect the wire when using Bridge Board (S5U1C31001L) to supply the VPP voltage, as Bridge Board controls the power supply so that it will be supplied during Flash programming only.

Notes: • When programming the Flash memory, 2.4 V or more VDD voltage is required.

• Be sure to avoid using the VPP pin output for driving external circuits.

# 4.4 RAM

The RAM can be used to execute the instruction codes copied from another memory as well as storing variables or other data. This allows higher speed processing and lower power consumption than Flash memory.

#### Frame buffer for memory display controller

The memory display controller uses a frame buffer for storing an image to be sent to the display panel. The flame buffer is allocated in the RAM. The base address and size can be specified using the memory controller registers. For more information, refer to the "Memory Display Controller" chapter.

# 4.5 Peripheral Circuit Control Registers

The control registers for the peripheral circuits are located in the peripheral circuit area beginning with address 0x4000 0000. Table 4.5.1 shows the control register map. For details of each control register, refer to "List of Peripheral Circuit Registers" in the appendix or "Control Registers" in each peripheral circuit chapter.

Peripheral circuit	Address		Register name
System register (SYS)	0x4000 0000	SYSPROT	System Protect Register
Power generator (PWGA)	0x4000 0020	PWGACTL	PWGA Control Register
Clock generator(CLG)	0x4000 0040	CLGSCLK	CLG System Clock Control Register
	0x4000 0042	CLGOSC	CLG Oscillation Control Register
	0x4000 0044	CLGIOSC	CLG IOSC Control Register
	0x4000 0046	CLGOSC1	CLG OSC1 Control Register
	0x4000 0048	CLGOSC3	CLG OSC3 Control Register
	0x4000 004c	CLGINTF	CLG Interrupt Flag Register
	0x4000 004e	CLGINTE	CLG Interrupt Enable Register
	0x4000 0050	CLGFOUT	CLG FOUT Control Register
	0x4000 0052	CLGTRIM1	CLG Oscillation Frequency Trimming Register 1
	0x4000 0054	CLGTRIM2	CLG Oscillation Frequency Trimming Register 2
Cache controller (CACHE)	0x4000 0080	CACHECTL	CACHE Control Register
Watchdog timer (WDT2)	0x4000 00a0	WDT2CLK	WDT2 Clock Control Register
	0x4000 00a2	WDT2CTL	WDT2 Control Register
	0x4000 00a4	WDT2CMP	WDT2 Counter Compare Match Register
Real-time clock (RTCA)	0x4000 00c0	RTCACTLL	RTCA Control Register (Low Byte)
	0x4000 00c1	RTCACTLH	RTCA Control Register (High Byte)
	0x4000 00c2	RTCAALM1	RTCA Second Alarm Register
	0x4000 00c4	RTCAALM2	RTCA Hour/Minute Alarm Register
	0x4000 00c6	RTCASWCTL	RTCA Stopwatch Control Register
	0x4000 00c8	RTCASEC	RTCA Second/1Hz Register
	0x4000 00ca	RTCAHUR	RTCA Hour/Minute Register
	0x4000 00cc	RTCAMON	RTCA Month/Day Register
	0x4000 00ce	RTCAYAR	RTCA Year/Week Register
	0x4000 00d0	RTCAINTF	RTCA Interrupt Flag Register
	0x4000 00d2	RTCAINTE	RTCA Interrupt Enable Register
Supply voltage detector	0x4000 0100	SVD3CLK	SVD3 Clock Control Register
(SVD3)	0x4000 0102	SVD3CTL	SVD3 Control Register
	0x4000 0104	SVD3INTF	SVD3 Status and Interrupt Flag Register
	0x4000 0106	SVD3INTE	SVD3 Interrupt Enable Register

Table 4.5.1 Peripheral Circuit Control Register Map

Peripheral circuit	Address	Register name			
16-bit timer (T16) Ch.0	0x4000 0160	T16_0CLK	T16 Ch.0 Clock Control Register		
	0x4000 0162	T16_0MOD	T16 Ch.0 Mode Register		
	0x4000 0164	T16_0CTL	T16 Ch.0 Control Register		
	0x4000 0166	T16_0TR	T16 Ch.0 Reload Data Register		
	0x4000 0168	T16_0TC	T16 Ch.0 Counter Data Register		
	0x4000 016a	T16_0INTF	T16 Ch.0 Interrupt Flag Register		
	0x4000 016c	T16 OINTE	T16 Ch.0 Interrupt Enable Register		
Flash controller (FLASHC)	0x4000 01b0	FLASHCWAIT	FLASHC Flash Read Cycle Register		
I/O ports (PPORT)	0x4000 0200	PPORTPODAT	P0 Port Data Register		
	0x4000 0202	PPORTPOIOEN	P0 Port Enable Register		
	0x4000 0204	PPORTPORCTL	P0 Port Pull-up/down Control Register		
	0x4000 0206	PPORTPOINTE	P0 Port Interrupt Flag Register		
	0x4000 0208	PPORTPOINTCTI	P0 Port Interrupt Control Begister		
	0x4000 020a	PPORTP0CHATEN	P0 Port Chattering Filter Enable Begister		
	0x4000 020c	PPORTPOMODSEL	P0 Port Mode Select Register		
	0x4000 020e	PPORTPOFNCSEL	P0 Port Function Select Register		
	0x4000 0210	PPORTP1DAT	P1 Port Data Begister		
	0x4000 0210		P1 Port Enable Begister		
	0x4000 0212		P1 Port Pull-up/down Control Begister		
	0x4000 0214		P1 Port Interrupt Elog Register		
	0x4000 0210		P1 Port Interrupt Control Pagister		
	0x4000 0218		P1 Port Interrupt Control Register		
	0x4000 021a		PT Port Challening Filler Enable Register		
	0x4000 021c		PT Port Mode Select Register		
	0x4000 021e	PPORIPIFNCSEL	PT Port Function Select Register		
	0x4000 0220	PPORTP2DAT	P2 Port Data Register		
	0x4000 0222	PPORTP2IOEN	P2 Port Enable Register		
	0x4000 0224	PPORTP2RCTL	P2 Port Pull-up/down Control Register		
	0x4000 0226	PPORTP2INTF	P2 Port Interrupt Flag Register		
	0x4000 0228	PPORTP2INTCTL	P2 Port Interrupt Control Register		
	0x4000 022a	PPORTP2CHATEN	P2 Port Chattering Filter Enable Register		
	0x4000 022c	PPORTP2MODSEL	P2 Port Mode Select Register		
	0x4000 022e	PPORTP2FNCSEL	P2 Port Function Select Register		
	0x4000 0230	PPORTP3DAT	P3 Port Data Register		
	0x4000 0232	PPORTP3IOEN	P3 Port Enable Register		
	0x4000 0234	PPORTP3RCTL	P3 Port Pull-up/down Control Register		
	0x4000 0236	PPORTP3INTF	P3 Port Interrupt Flag Register		
	0x4000 0238	PPORTP3INTCTL	P3 Port Interrupt Control Register		
	0x4000 023a	PPORTP3CHATEN	P3 Port Chattering Filter Enable Register		
	0x4000 023c	PPORTP3MODSEL	P3 Port Mode Select Register		
	0x4000 023e	PPORTP3FNCSEL	P3 Port Function Select Register		
	0x4000 0240	PPORTP4DAT	P4 Port Data Register		
	0x4000 0242	PPORTP4IOEN	P4 Port Enable Register		
	0x4000 0244	PPORTP4RCTL	P4 Port Pull-up/down Control Register		
	0x4000 0246	PPORTP4INTF	P4 Port Interrupt Flag Register		
	0x4000 0248	PPORTP4INTCTL	P4 Port Interrupt Control Register		
	0x4000 024a	PPORTP4CHATEN	P4 Port Chattering Filter Enable Register		
	0x4000 024c	PPORTP4MODSEI	P4 Port Mode Select Register		
	0x4000 024e	PPORTP4FNCSFI	P4 Port Function Select Register		
	0x4000 0250	PPORTP5DAT	P5 Port Data Register		
	0x4000 0252	PPORTP5IOFN	P5 Port Enable Begister		
	0x4000 0254	PPORTP5RCTI	P5 Port Pull-up/down Control Register		
	0x4000 0254		P5 Port Interrupt Elag Register		
	0x4000 0200	PPORTP5INITCTI	P5 Port Interrupt Control Register		
	0x4000 0250	PPORTP5CHATEN	P5 Port Chattering Filter Enable Register		
	0x4000 0252		P5 Port Mode Select Register		
	0x4000 0250		P5 Port Function Select Register		
	0x4000 0200		P6 Port Data Register		
	0x4000 0200		P6 Port Epoble Register		
	0x4000 0262		PO FUIL EIIADIE REUSIER		
	0x4000 0264		P6 Port Interrupt Eleg Decister		
	0x4000 0266		PO PORT INTERPORT PAGE PAGE PAGE PAGE PAGE PAGE PAGE PAGE		
	0x4000 0268		Po Port Interrupt Control Register		
	0x4000 026a	PPORTP6CHATEN	Po Port Chattering Filter Enable Register		
	UX4000 026C	PROFILES	Po Port Mode Select Register		
	UX4000 026e	PPORTP6FNCSEL	P6 Port Function Select Register		
	0x4000 02d0	PPORTPDDAT	Pd Port Data Register		

Seiko Epson Corporation

Peripheral circuit	Address	Register name			
I/O ports (PPORT)	0x4000 02d2	PPORTPDIOEN	Pd Port Enable Register		
	0x4000 02d4	PPORTPDRCTL	Pd Port Pull-up/down Control Register		
	0x4000 02dc	PPORTPDMODSEL	Pd Port Mode Select Register		
	0x4000 02de	PPORTPDFNCSEL	Pd Port Function Select Register		
	0x4000 02e0	PPORTCLK	P Port Clock Control Register		
	0x4000 02e2	PPORTINTFGRP	P Port Interrupt Flag Group Register		
Universal port multiplexer	0x4000 0300	UPMUXP0MUX0	P00–01 Universal Port Multiplexer Setting Register		
(UPMUX)	0x4000 0302	UPMUXP0MUX1	P02–03 Universal Port Multiplexer Setting Register		
	0x4000 0304	UPMUXP0MUX2	P04–05 Universal Port Multiplexer Setting Register		
	0x4000 0306	UPMUXP0MUX3	P06–07 Universal Port Multiplexer Setting Register		
	0x4000 0308	UPMUXP1MUX0	P10–11 Universal Port Multiplexer Setting Register		
	0x4000 030a	UPMUXP1MUX1	P12–13 Universal Port Multiplexer Setting Register		
	0x4000 030c	UPMUXP1MUX2	P14–15 Universal Port Multiplexer Setting Register		
	0x4000 030e		P16 Universal Port Multiplexer Setting Register		
	0x4000 0310		P20–21 Universal Port Multiplexer Setting Register		
	0x4000 0312		P22–23 Universal Port Multiplexer Setting Register		
	0x4000 0314		P24–25 Universal Port Multiplexer Setting Register		
	0x4000 0316		P26-27 Universal Port Multiplexer Setting Register		
	0x4000 0318		P30–31 Universal Port Multiplexer Setting Register		
	0x4000 031a		P32-35 Universal Port Multiplexer Setting Register		
	0x4000 0310		P34-35 Universal Port Multiplexer Setting Register		
	0x4000 0310		LIART3 Ch 0 Clock Control Register		
	0x4000 0382	LIARTS OMOD	LIART3 Ch 0 Mode Begister		
	0x4000 0384	LIART3 ORR	LIABT3 Ch 0 Baud-Bate Begister		
	0x4000 0386	UART3 OCTI	UART3 Ch 0 Control Begister		
	0x4000 0388	UART3 OTXD	UABT3 Ch 0 Transmit Data Begister		
	0x4000 038a	UART3 ORXD	UABT3 Ch 0 Receive Data Begister		
	0x4000 038c	UART3 OINTE	UART3 Ch.0 Status and Interrupt Flag Register		
	0x4000 038e	UART3 OINTE	UART3 Ch.0 Interrupt Enable Register		
	0x4000 0390	UART3 0	UART3 Ch.0 Transmit Buffer Empty DMA Request		
		TBEDMAEN	Enable Register		
	0x4000 0392	UART3_0	UART3 Ch.0 Receive Buffer One Byte Full DMA		
		RB1FDMAEN	Request Enable Register		
	0x4000 0394	UART3_0CAWF	UART3 Ch.0 Carrier Waveform Register		
16-bit timer (T16) Ch.1	0x4000 03a0	T16_1CLK	T16 Ch.1 Clock Control Register		
	0x4000 03a2	T16_1MOD	T16 Ch.1 Mode Register		
	0x4000 03a4	T16_1CTL	T16 Ch.1 Control Register		
	0x4000 03a6	T16_1TR	T16 Ch.1 Reload Data Register		
	0x4000 03a8	T16_1TC	T16 Ch.1 Counter Data Register		
	0x4000 03aa		116 Ch.1 Interrupt Flag Register		
	0x4000 03ac		116 Ch.1 Interrupt Enable Register		
Synchronous serial interface	0x4000 03b0		SPIA Ch.U Mode Register		
(SPIA) CII.0	0x4000 03b2		SPIA Ch.U Control Register		
	0x4000 0304		SPIA Ch.U Transmit Data Register		
	0x4000 0306	SPIA_URAD	SPIA Ch.0 Interrupt Eleg Register		
	0x4000 03b8	SPIA_UINTE	SPIA Ch.0 Interrupt Flag Register		
	0x4000 03ba	SPIA OTREDMAEN	SPIA Ch 0 Transmit Buffer Empty DMA Bequest Enable		
	0,4000 0000		Register		
	0x4000 03be	SPIA ORBEDMAEN	SPIA Ch.0 Receive Buffer Full DMA Request Enable		
			Register		
I ² C (I2C) Ch.0	0x4000 03c0	I2C_0CLK	I2C Ch.0 Clock Control Register		
	0x4000 03c2	I2C_0MOD	I2C Ch.0 Mode Register		
	0x4000 03c4	I2C_0BR	I2C Ch.0 Baud-Rate Register		
	0x4000 03c8	I2C_0OADR	I2C Ch.0 Own Address Register		
	0x4000 03ca	I2C_0CTL	I2C Ch.0 Control Register		
	0x4000 03cc	I2C_0TXD	I2C Ch.0 Transmit Data Register		
	0x4000 03ce	I2C_0RXD	I2C Ch.0 Receive Data Register		
	0x4000 03d0	I2C_0INTF	I2C Ch.0 Status and Interrupt Flag Register		
	0x4000 03d2	I2C_0INTE	I2C Ch.0 Interrupt Enable Register		
	0x4000 03d4	I2C_0TBEDMAEN	I2C Ch.0 Transmit Buffer Empty DMA Request Enable		
	0. 4000 00 10				
	0x4000 03d6	12C_0RBFDMAEN	I2C Ch.0 Receive Buffer Full DMA Request Enable		
		1	negister		

Peripheral circuit	Address	Register name				
16-bit PWM timer (T16B)	0x4000 0400	T16B_0CLK	T16B Ch.0 Clock Control Register			
Ch.0	0x4000 0402	T16B_0CTL	T16B Ch.0 Counter Control Register			
	0x4000 0404	T16B_0MC	T16B Ch.0 Max Counter Data Register			
	0x4000 0406	T16B_0TC	T16B Ch.0 Timer Counter Data Register			
	0x4000 0408	T16B_0CS	T16B Ch.0 Counter Status Register			
	0x4000 040a	T16B_0INTF	T16B Ch.0 Interrupt Flag Register			
	0x4000 040c	T16B_0INTE	T16B Ch.0 Interrupt Enable Register			
	0x4000 040e	T16B_0MZDMAEN	T16B Ch.0 Counter Max/Zero DMA Request Enable Register			
	0x4000 0410	T16B_0CCCTL0	T16B Ch.0 Compare/Capture 0 Control Register			
	0x4000 0412	T16B_0CCR0	T16B Ch.0 Compare/Capture 0 Data Register			
	0x4000 0414	T16B_0CC0DMAEN	T16B Ch.0 Compare/Capture 0 DMA Request Enable Register			
	0x4000 0418	T16B_0CCCTL1	T16B Ch.0 Compare/Capture 1 Control Register			
	0x4000 041a	T16B_0CCR1	T16B Ch.0 Compare/Capture 1 Data Register			
	0x4000 041c	T16B_0CC1DMAEN	T16B Ch.0 Compare/Capture 1 DMA Request Enable Register			
	0x4000 0420	T16B_0CCCTL2	T16B Ch.0 Compare/Capture 2 Control Register			
	0x4000 0422	T16B_0CCR2	T16B Ch.0 Compare/Capture 2 Data Register			
	0x4000 0424	T16B_0CC2DMAEN	T16B Ch.0 Compare/Capture 2 DMA Request Enable Register			
	0x4000 0428	T16B_0CCCTL3	T16B Ch.0 Compare/Capture 3 Control Register			
	0x4000 042a	T16B 0CCR3	T16B Ch.0 Compare/Capture 3 Data Register			
	0x4000 042c	T16B_0CC3DMAEN	T16B Ch.0 Compare/Capture 3 DMA Request Enable			
		_	Register			
	0x4000 0430	T16B_0CCCTL4	T16B Ch.0 Compare/Capture 4 Control Register			
	0x4000 0432	T16B_0CCR4	T16B Ch.0 Compare/Capture 4 Data Register			
	0x4000 0434	T16B_0CC4DMAEN	T16B Ch.0 Compare/Capture 4 DMA Request Enable Register			
	0x4000 0438	T16B_0CCCTL5	T16B Ch.0 Compare/Capture 5 Control Register			
	0x4000 043a	T16B_0CCR5	T16B Ch.0 Compare/Capture 5 Data Register			
	0x4000 043c	T16B_0CC5DMAEN	T16B Ch.0 Compare/Capture 5 DMA Request Enable Register			
16-bit PWM timer (T16B)	0x4000 0440	T16B_1CLK	T16B Ch.1 Clock Control Register			
Ch.1	0x4000 0442	T16B_1CTL	T16B Ch.1 Counter Control Register			
	0x4000 0444	T16B_1MC	T16B Ch.1 Max Counter Data Register			
	0x4000 0446	T16B_1TC	T16B Ch.1 Timer Counter Data Register			
	0x4000 0448	T16B_1CS	T16B Ch.1 Counter Status Register			
	0x4000 044a	T16B_1INTF	T16B Ch.1 Interrupt Flag Register			
	0x4000 044c	TICD INTE	T16B Ch.1 Interrupt Enable Register			
	0x4000 044e	TIOB_TIMZDIVIAEN	Register			
	0x4000 0450	T16B_1CCCTL0	T16B Ch.1 Compare/Capture 0 Control Register			
	0x4000 0452	T16B_1CCR0	T16B Ch.1 Compare/Capture 0 Data Register			
	0x4000 0454	T16B_1CC0DMAEN	T16B Ch.1 Compare/Capture 0 DMA Request Enable Register			
	0x4000 0458	T16B_1CCCTL1	T16B Ch.1 Compare/Capture 1 Control Register			
	0x4000 045a	T16B_1CCR1	T16B Ch.1 Compare/Capture 1 Data Register			
	0x4000 045c	T16B_1CC1DMAEN	T16B Ch.1 Compare/Capture 1 DMA Request Enable Register			
	0x4000 0460	T16B_1CCCTL2	T16B Ch.1 Compare/Capture 2 Control Register			
	0x4000 0462	T16B_1CCR2	T16B Ch.1 Compare/Capture 2 Data Register			
	0x4000 0464	T16B_1CC2DMAEN	T16B Ch.1 Compare/Capture 2 DMA Request Enable Register			
	0x4000 0468	T16B_1CCCTL3	T16B Ch.1 Compare/Capture 3 Control Register			
	0x4000 046a	T16B_1CCR3	T16B Ch.1 Compare/Capture 3 Data Register			
	0x4000 046c	T16B_1CC3DMAEN	T16B Ch.1 Compare/Capture 3 DMA Request Enable Register			
	0x4000 0470	T16B_1CCCTL4	T16B Ch.1 Compare/Capture 4 Control Register			
	0x4000 0472	T16B_1CCR4	T16B Ch.1 Compare/Capture 4 Data Register			
	0x4000 0474	T16B_1CC4DMAEN	T16B Ch.1 Compare/Capture 4 DMA Request Enable			
			Register			
	0x4000 0478	T16B_1CCCTL5	T16B Ch.1 Compare/Capture 5 Control Register			
	Ux4000 047a	116B_1CCR5	116B Ch.1 Compare/Capture 5 Data Register			
	UX4000 047c	116B_1CC5DMAEN	Register			

Peripheral circuit	Address	Register name			
16-bit timer (T16) Ch.3	0x4000 0480	T16_3CLK	T16 Ch.3 Clock Control Register		
	0x4000 0482	T16_3MOD	T16 Ch.3 Mode Register		
	0x4000 0484	T16_3CTL	T16 Ch.3 Control Register		
	0x4000 0486	T16_3TR	T16 Ch.3 Reload Data Register		
	0x4000 0488	T16_3TC	T16 Ch.3 Counter Data Register		
	0x4000 048a	T16_3INTF	T16 Ch.3 Interrupt Flag Register		
	0x4000 048c	T16_3INTE	T16 Ch.3 Interrupt Enable Register		
16-bit timer (T16) Ch.4	0x4000 04a0	T16_4CLK	T16 Ch.4 Clock Control Register		
	0x4000 04a2	T16_4MOD	T16 Ch.4 Mode Register		
	0x4000 04a4	T16_4CTL	T16 Ch.4 Control Register		
	0x4000 04a6	T16_4TR	T16 Ch.4 Reload Data Register		
	0x4000 04a8	T16_4TC	T16 Ch.4 Counter Data Register		
	0x4000 04aa	T16_4INTF	T16 Ch.4 Interrupt Flag Register		
	0x4000 04ac	T16_4INTE	T16 Ch.4 Interrupt Enable Register		
16-bit timer (T16) Ch.5	0x4000 04c0	T16_5CLK	T16 Ch.5 Clock Control Register		
	0x4000 04c2	T16_5MOD	T16 Ch.5 Mode Register		
	0x4000 04c4	T16_5CTL	T16 Ch.5 Control Register		
	0x4000 04c6	T16_5TR	T16 Ch.5 Reload Data Register		
	0x4000 04c8	116_51C	116 Ch.5 Counter Data Register		
	0x4000 04ca	116_5INTF	T10 Ch.5 Interrupt Flag Register		
	0x4000 04CC		I 16 Cn.5 Interrupt Enable Register		
UART (UART3) Ch. I	0x4000 0600	UARI3_ICLK	UARTS Ch. I Clock Control Register		
	0x4000 0602		UARTS Ch.1 Mode Register		
	0x4000 0604		UARTS Ch. I Cantrol Pagister		
	0x4000 0608	UARTS_TOTE	UARTS Ch.1 Transmit Data Register		
	0x4000 0602	LIARTS 1RYD	UARTS Ch.1 Receive Data Register		
	0x4000 000a	LIARTS LINTE	LIART3 Ch 1 Status and Interrunt Flag Register		
	0x4000 060e	LIARTS 1INTE	LIABT3 Ch 1 Interrunt Enable Begister		
	0x4000 0610	UART3 1	UABT3 Ch 1 Transmit Buffer Empty DMA Bequest		
		TBEDMAEN	Enable Register		
	0x4000 0612	UART3 1	UART3 Ch.1 Receive Buffer One Byte Full DMA		
		RB1FDMAEN	Request Enable Register		
	0x4000 0614	UART3_1CAWF	UART3 Ch.1 Carrier Waveform Register		
UART (UART3) Ch.2	0x4000 0620	UART3_2CLK	UART3 Ch.2 Clock Control Register		
	0x4000 0622	UART3_2MOD	UART3 Ch.2 Mode Register		
	0x4000 0624	UART3_2BR	UART3 Ch.2 Baud-Rate Register		
	0x4000 0626	UART3_2CTL	UART3 Ch.2 Control Register		
	0x4000 0628	UART3_2TXD	UART3 Ch.2 Transmit Data Register		
	0x4000 062a	UART3_2RXD	UART3 Ch.2 Receive Data Register		
	0x4000 062c	UART3_2INTF	UART3 Ch.2 Status and Interrupt Flag Register		
	0x4000 062e	UART3_2INTE	UART3 Ch.2 Interrupt Enable Register		
	0x4000 0630	UART3_2	UART3 Ch.2 Transmit Buffer Empty DMA Request		
		IBEDMAEN			
	0x4000 0632		DART3 Ch.2 Receive Buffer One Byte Full DMA		
	0×4000 0634	ILARTS 2CAWE	ILARTS Ch 2 Carrier Wayeform Register		
16 bit timer (T16) Ch 6	0x4000 0034		T16 Ch 6 Clock Control Pagistor		
	0x4000 0000		T16 Ch 6 Mode Register		
	0x4000 0664		T16 Ch 6 Control Begister		
	0x4000 0666	T16_6TB	T16 Ch 6 Beload Data Begister		
	0x4000 0000	T16_6TC	T16 Ch 6 Counter Data Begister		
	0x4000 066a	T16_6INTE	T16 Ch 6 Interrupt Flag Begister		
	0x4000 066c	T16 6INTE	T16 Ch.6 Interrupt Enable Register		
Synchronous serial interface	0x4000 0670	SPIA 1MOD	SPIA Ch.1 Mode Register		
(SPIA) Ch.1	0x4000 0672	SPIA_1CTL	SPIA Ch.1 Control Register		
	0x4000 0674	SPIA 1TXD	SPIA Ch.1 Transmit Data Register		
	0x4000 0676	SPIA_1RXD	SPIA Ch.1 Receive Data Register		
	0x4000 0678	SPIA_1INTF	SPIA Ch.1 Interrupt Flag Register		
	0x4000 067a	SPIA_1INTE	SPIA Ch.1 Interrupt Enable Register		
	0x4000 067c	SPIA_1TBEDMAEN	SPIA Ch.1 Transmit Buffer Empty DMA Request Enable		
			Register		
	0x4000 067e	SPIA_1RBFDMAEN	SPIA Ch.1 Receive Buffer Full DMA Request Enable		
			Register		
16-bit timer (T16) Ch.2	0x4000 0680	T16 2CLK	T16 Ch.2 Clock Control Register		

Peripheral circuit	Address	Register name			
16-bit timer (T16) Ch.2	0x4000 0682	T16 2MOD	T16 Ch 2 Mode Begister		
	0x4000 0684	T16 2CTI	T16 Ch 2 Control Begister		
	0x4000 0686	T16 2TB	T16 Ch 2 Beload Data Begister		
	0x4000 0688	T16_2TC	T16 Ch 2 Counter Data Register		
	0x4000 0680	TIE DINTE	T16 Ch 2 Interrupt Eleg Register		
	0x4000 008a		T16 Ch 2 Interrupt Frag Register		
	0x4000 0660		116 CII.2 IIIterrupt Erlable Register		
Quad synchronous serial	0x4000 0690				
Interface (QSPI) Ch.0	0x4000 0692		QSPI Ch.U Control Register		
	0x4000 0694	QSPI_0TXD	QSPI Ch.0 Transmit Data Register		
	0x4000 0696	QSPI_0RXD	QSPI Ch.0 Receive Data Register		
	0x4000 0698	QSPI_0INTF	QSPI Ch.0 Interrupt Flag Register		
	0x4000 069a	QSPI_0INTE	QSPI Ch.0 Interrupt Enable Register		
	0x4000 069c	QSPI_0TBEDMAEN	QSPI Ch.0 Transmit Buffer Empty DMA Request Enable		
	0x4000 069e	QSPI_0RBFDMAEN	QSPI Ch.0 Receive Buffer Full DMA Request Enable Register		
	0x4000 06a0	QSPI_0FRLDMAEN	QSPI Ch.0 FIFO Data Ready DMA Request Enable Register		
	0x4000 06a2	QSPI_0MMACFG1	QSPI Ch.0 Memory Mapped Access Configuration Register 1		
	0x4000 06a4	QSPI_0RMADRH	QSPI Ch.0 Remapping Start Address High Register		
	0x4000 06a6	QSPI_0MMACFG2	QSPI Ch.0 Memory Mapped Access Configuration Register 2		
	0x4000 06a8	QSPI 0nMB	QSPI Ch.0 Mode Byte Register		
I ² C (I2C) Ch.1	0x4000 06c0	I2C 1CLK	I2C Ch.1 Clock Control Register		
	0x4000 06c2	I2C 1MOD	I2C Ch 1 Mode Begister		
	0x4000 06c4	120_118B	I2C Ch 1 Baud-Bate Begister		
	0x4000 06c8		12C Ch 1 Own Address Begister		
	0x4000 06ca		120 Ch 1 Control Begister		
	0x4000 00ca		120 Ch 1 Transmit Data Register		
	0x4000 0000		120 Ch 1 Ressive Data Register		
	0x4000 06ce		120 Ch. I Receive Data Register		
	0x4000 06d0		I2C Ch. I Status and Interrupt Flag Register		
	0x4000 06d2		I2C Ch.1 Interrupt Enable Register		
	0x4000 06d4	I2C_1TBEDMAEN	I2C Ch.1 Transmit Buffer Empty DMA Request Enable Register		
	0x4000 06d6	I2C_1RBFDMAEN	I2C Ch.1 Receive Buffer Full DMA Request Enable Register		
Sound generator (SNDA)	0x4000 0700	SNDACLK	SNDA Clock Control Register		
	0x4000 0702	SNDASEL	SNDA Select Register		
	0x4000 0704	SNDACTL	SNDA Control Register		
	0x4000 0706	SNDADAT	SNDA Data Register		
	0x4000 0708	SNDAINTF	SNDA Interrupt Flag Register		
	0x4000 070a	SNDAINTE	SNDA Interrupt Enable Begister		
	0x4000 070c	SNDAFMDMAFN	SNDA Sound Buffer Empty DMA Bequest Enable		
			Register		
IB remote controller (BEMC3)	0x4000 0720	BEMC3CLK	BEMC3 Clock Control Begister		
	0x4000 0722	BEMC3DBCTI	BEMC3 Data Bit Counter Control Begister		
	0x4000 0724	REMC3DBCNT	BEMC3 Data Bit Counter Begister		
	0x4000 0726	REMC3APLEN	BEMC3 Data Bit Active Pulse Length Begister		
	0x4000 0728	REMC3DRI EN	REMC3 Data Bit Length Register		
	0x4000 0720	REMCSINITE	REMC3 Status and Interrupt Elag Register		
	0x4000 072a	REMCSINTE	REMC3 Interrupt Enable Register		
	0x4000 0720		PEMC2 Corrier Wayoform Pagister		
	0x4000 0730		REMC3 Carrier Madulation Control Register		
	0x4000 0732	REMUSUUTL	REMUS Carrier Modulation Control Register		
16-bit timer (116) Cn.7	0x4000 0780	TI6_7ULK	The Ch.7 Clock Control Register		
	0x4000 0782		T16 Ch.7 Mode Register		
	0x4000 0784		116 Ch.7 Control Register		
	UX4000 0786		Tto Ch. 7 Reload Data Register		
	Ux4000 0788	116_7TC	116 Ch./ Counter Data Register		
	0x4000 078a	T16_7INTF	T16 Ch.7 Interrupt Flag Register		
	0x4000 078c	T16_7INTE	T16 Ch.7 Interrupt Enable Register		
12-bit A/D converter	0x4000 07a2	ADC12A_0CTL	ADC12A Ch.0 Control Register		
(ADC12A)	0x4000 07a4	ADC12A_0TRG	ADC12A Ch.0 Trigger/Analog Input Select Register		
	0x4000 07a6	ADC12A_0CFG	ADC12A Ch.0 Configuration Register		
	0x4000 07a8	ADC12A_0INTF	ADC12A Ch.0 Interrupt Flag Register		
	0x4000 07aa	ADC12A_0INTE	ADC12A Ch.0 Interrupt Enable Register		

Seiko Epson Corporation

Peripheral circuit	Address	Register name			
12-bit A/D converter	0x4000 07ac	ADC12A_0DMAEN0	ADC12A Ch.0 DMA Request Enable Register 0		
(ADC12A)	0x4000 07ae	ADC12A 0DMAEN1	ADC12A Ch.0 DMA Request Enable Register 1		
	0x4000 07b0	ADC12A 0DMAEN2	ADC12A Ch.0 DMA Request Enable Register 2		
	0x4000 07b2	ADC12A 0DMAEN3	ADC12A Ch.0 DMA Request Enable Register 3		
	0x4000 07b4	ADC12A 0DMAEN4	ADC12A Ch.0 DMA Request Enable Register 4		
	0x4000 07b6	ADC12A 0DMAEN5	ADC12A Ch.0 DMA Request Enable Register 5		
	0x4000 07b8	ADC12A 0DMAEN6	ADC12A Ch.0 DMA Bequest Enable Begister 6		
	0x4000 07ba	ADC12A 0DMAEN7	ADC12A Ch 0 DMA Bequest Enable Begister 7		
	0x4000 07bc		ADC12A Ch 0 Besult Begister		
Temperature sensor/reference	0x4000 07.50		TSRV/B Ch 0 Temperature Sensor Control Begister		
voltage generator (TSBVB)	0x4000 07c2	TSBVB OVCTI	TSBVB Ch 0 Beference Voltage Generator Control Begister		
USB 2.0 ES device controller	0x2040 0002		USB Control Register		
(LISB)	0x2040 0002		USB Control Register		
	0x2040 0003				
	0x2040 0004		USB Endpoint Control Register		
	0x2040 0000		USB Coperal-Purpose Endpoint EIEO Clear Register		
	0x2040 0009		USB EIEO Read Cycle Setup Register		
	0x2040 000a		USB FIFO head Cycle Setup hegister		
	0x2040 000e		USB Revision Number Register		
	0x2040 0010		USB EPU Setup Data Register 0		
	0x2040 0011		USB EPU Setup Data Register 1		
	0x2040 0012		USB EPU Setup Data Register 2		
	0x2040 0013		USB EP0 Setup Data Register 3		
	0x2040 0014		USB EPU Setup Data Register 4		
	0x2040 0015	USBEPUSETUPS	USB EPU Setup Data Register 5		
	0x2040 0016	USBEP0SETUP6	USB EP0 Setup Data Register 6		
	0x2040 0017	USBEPOSETUP7	USB EP0 Setup Data Register 7		
	0x2040 0018	USBADDR	USB Address Register		
	0x2040 001a	USBEPUCEG	USB EPU Configuration Register		
	0x2040 001b	USBEPOSIZE	USB EPU Maximum Packet Size Register		
	0x2040 001c	USBEPOICTL	USB EP0 IN Transaction Control Register		
	0x2040 001d	USBEPOOCTL	USB EP0 OUT Transaction Control Register		
	0x2040 0020	USBEPaCTL	USB EPa Control Register		
	0x2040 0022	USBEPbCTL	USB EPb Control Register		
	0x2040 0024	USBEPcCTL	USB EPc Control Register		
	0x2040 0030	USBEPaCFG	USB EPa Configuration Register		
	0x2040 0031	USBEPaMAXSZ	USB EPa Maximum Packet Size Register		
	0x2040 0032	USBEPbCFG	USB EPb Configuration Register		
	0x2040 0033	USBEPbMAXSZ	USB EPb Maximum Packet Size Register		
	0x2040 0034	USBEPcCFG	USB EPc Configuration Register		
	0x2040 0035	USBEPcMAXSZ	USB EPc Maximum Packet Size Register		
	0x2040 0040	USBRDFIFOSEL	USB Read FIFO Select Register		
	0x2040 0041	USBWRFIFOSEL	USB Write FIFO Select Register		
	0x2040 0042	USBFIFORWEN	USB FIFO Read/Write Enable Register		
	0x2040 0046	USBREMDATCNT	USB Remaining FIFO Data Count Register		
	0x2040 0048	USBREMSPCCNT	USB Remaining FIFO Space Count Register		
	0x2040 004a	USBDBGRAMADDR	USB Debug RAM Address Register		
	0x2040 0050	USBMAININTF	USB Main Interrupt Flag Register		
	0x2040 0051	USBSIEINTF	USB SIE Interrupt Flag Register		
	0x2040 0052	USBGPEPINTF	USB General-Purpose Endpoint Interrupt Flag Register		
	0x2040 0053	USBEPOINTF	USB EP0 Interrupt Flag Register		
	0x2040 0054	USBEPaINTF	USB EPa Interrupt Flag Register		
	0x2040 0055	USBEPbINTF	USB EPb Interrupt Flag Register		
	0x2040 0056	USBEPcINTF	USB EPc Interrupt Flag Register		
	0x2040 0060	USBMAININTE	USB Main Interrupt Enable Register		
	0x2040 0061	USBSIEINTE	USB SIE Interrupt Enable Register		
	0x2040 0062	USBGPEPINTE	USB General-Purpose Endpoint Interrupt Enable Register		
	0x2040 0063	USBEPOINTE	USB EP0 Interrupt Enable Register		
	0x2040 0064	USBEPaINTE	USB EPa Interrupt Enable Register		
	0x2040 0065	USBEPbINTE	USB EPb Interrupt Enable Register		
	0x2040 0066	USBEPcINTE	USB EPc Interrupt Enable Register		
	0x2040 0100	USBFIFODAT	USB FIFO Data Register		
	0x2040 0104	USBDBGRAMDAT	USB Debug RAM Data Register		
	0x4000 0970	USBMISCCTL	USB Misc Control Register		
	0x4000 0974	USBMISCWRDMAEN	USB FIFO Write DMA Request Enable Register		
	0x4000 0976	USBMISCRDDMAEN	USB FIFO Read DMA Request Enable Register		

Peripheral circuit	Address	Register name			
DMA controller (DMAC)	0x4000 1000	DMACSTAT	DMAC Status Register		
	0x4000 1004	DMACCFG	DMAC Configuration Register		
	0x4000 1008	DMACCPTR	DMAC Control Data Base Pointer Register		
	0x4000 100c	DMACACPTR	DMAC Alternate Control Data Base Pointer Register		
	0x4000 1014	DMACSWREQ	DMAC Software Reguest Register		
	0x4000 1020	DMACRMSET	DMAC Request Mask Set Register		
	0x4000 1024	DMACRMCLR	DMAC Request Mask Clear Register		
	0x4000 1028	DMACENSET	DMAC Enable Set Register		
	0x4000 102c	DMACENCI B	DMAC Enable Clear Begister		
	0x4000 1030	DMACPASET	DMAC Primary-Alternate Set Begister		
	0x4000 1034		DMAC Primary-Alternate Clear Begister		
	0x4000 1038	DMACPRSET	DMAC Priority Set Begister		
	0x4000 103c		DMAC Priority Clear Begister		
	0x4000 104c	DMACEBBIE	DMAC Error Interrupt Flag Begister		
	0x4000 2000		DMAC Transfer Completion Interrupt Flag Begister		
	0x4000 2008		DMAC Transfer Completion Interrupt Enable Set Begister		
	0x4000 2000		DMAC Transfer Completion Interrupt Enable Clear Begister		
	0x4000 2000	DMACEBBIESET	DMAC Error Interrupt Enable Set Register		
	0x4000 2010		DMAC Error Interrupt Enable Clear Register		
Memory display controller	0x4000 2014	MDCDISPCTI	MDC Display Control Register		
(MDC)	0x4000 3000		MDC Display Control Register		
(MDC)	0x4000 3002		MDC Display Width Register		
	0x4000 3004		MDC Display Height Register		
	0x4000 3006		MDC Display VCOW Clock Divider Register		
	0x4000 3008		MDC Display Clock Divider Register		
	0x4000 300a	MDCDISPPRM21	MDC Display Parameters 1 and 2 Register		
	0x4000 300c	MDCDISPPRM43	MDC Display Parameters 3 and 4 Register		
	0x4000 300e	MDCDISPPRM65	MDC Display Parameters 5 and 6 Register		
	0x4000 3010	MDCDISPPRM87	MDC Display Parameters 7 and 8 Register		
	0x4000 3012	MDCDISPSTARTY	MDC Display Update Start Line Register		
	0x4000 3014	MDCDISPENDY	MDC Display Update End Line Register		
	0x4000 3016	MDCDISPSTRIDE	MDC Display Frame Buffer Stride Register		
	0x4000 3018	MDCDISPFRMBUFF0	MDC Display Frame Buffer Base Address Register 0		
	0x4000 301a	MDCDISPFRMBUFF1	MDC Display Frame Buffer Base Address Register 1		
	0x4000 301c	MDCTRIGCTL	MDC Trigger Control Register		
	0x4000 301e	MDCINTCTL	MDC Interrupt Control Register		
	0x4000 3020	MDCGFXCTL	MDC Graphics Control Register		
	0x4000 3022	MDCGFXIXCENTER	MDC Input X Coordinate Register		
	0x4000 3024	MDCGFXIYCENTER	MDC Input Y Coordinate Register		
	0x4000 3026	MDCGFXIWIDTH	MDC Input Width Register		
	0x4000 3028	MDCGFXIHEIGHT	MDC Input Height Register		
	0x4000 302a	MDCGFXOXCENTER	MDC Output X Coordinate Register		
	0x4000 302c	MDCGFXOYCENTER	MDC Output Y Coordinate Register		
	0x4000 302e	MDCGFXOWIDTH	MDC Output Width Register		
	0x4000 3030	MDCGFXOHEIGHT	MDC Output Height Register		
	0x4000 3032	MDCGFXXLSCALE	MDC X Left Scale Register		
	0x4000 3034	MDCGFXXRSCALE	MDC X Right Scale Register		
	0x4000 3036	MDCGFXYTSCALE	MDC Y Top Scale Register		
	0x4000 3038	MDCGFXYBSCALF	MDC Y Bottom Scale Register		
	0x4000 303a	MDCGFXSHEAR	MDC X/Y Shear Register		
	0x4000 303c	MDCGFXROTVAL	MDC Rotation Register		
	0x4000 303e		MDC Color Begister		
	0x4000 3040	MDCGEXIBADDRO	MDC Source Window Base Address Register 0		
	0x4000 3042		MDC Source Window Base Address Register 0		
	0x4000 3044		MDC Destination Window Base Address Register 0		
	0x4000 3044		MDC Destination Window Base Address Register 1		
	0v4000 3040	MDCGEXISTRIDE	MDC Source Image Stride Register		
	0x4000 3040		MDC Destination Image Stride Projector		
	0x4000 304a		MDC Output Window Loft Edge Desister		
	0x4000 3040		MDC Output Window Leit Edge Register		
	0x4000 3046		MDC Output Window Right Edge Register		
	0x4000 3050		MDC Output Window Top Edge Register		
	0x4000 3052		MDC Output Window Bottom Edge Register		
	0x4000 3060	MDCSCRATCHAU	MDC Scratchpad A Register U		
	UX4000 3062	MDCSCRAICHA1	NDU Scratchpad A Register 1		
	UX4000 3068	MDCCLKCTL	MDC MDC Clock Control Register		
	0x4000 3080	MDCBSTCLK	MDC Voltage Booster Clock Control Register		

Seiko Epson Corporation

Peripheral circuit	Address	Register name				
Memory display controller	0x4000 3084	MDCBSTPWR	MDC Voltage Booster Power Control Register			
(MDC)	0x4000 3088	MDCBSTVMD	MDC Voltage Booster VMD Output Control Register			
	0x4000 30e0	MDCHOSTCTL	MDC Host Control Register			

### 4.5.1 System-Protect Function

The system-protect function protects control registers and bits from writings. They cannot be rewritten unless write protection is removed by writing 0x0096 to the SYSPROT.PROT[15:0] bits. This function is provided to prevent deadlock that may occur when a system-related register is altered by a runaway CPU. See "Control Registers" in each peripheral circuit to identify the registers and bits with write protection.

**Note**: Once write protection is removed using the SYSPROT.PROT[15:0] bits, write enabled status is maintained until write protection is applied again. After the registers/bits required have been altered, apply write protection.

# 4.6 Instruction Cache

This IC includes an instruction cache. Enabling the cache function translates into reduced current consumption, as the Flash memory access frequency is decreased.

This function is enabled by setting the CACHECTL.CACHEEN bit to 1. Setting this bit to 0 clears the instruction codes stored in the cache.

# 4.7 Memory Mapped Access Area For External Flash Memory

This area is used to read data from the external Flash memory via the quad synchronous serial interface. For more information, refer to the "Quad Synchronous Serial Interface" chapter.

# 4.8 Control Registers

### System Protect Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SYSPROT	15–0	PROT[15:0]	0x0000	H0	R/W	-

#### Bits 15-0 PROT[15:0]

These bits protect the control registers related to the system against writings.0x0096 (R/W):Disable system protectionOther than 0x0096 (R/W):Enable system protection

While the system protection is enabled, any data will not be written to the affected control bits (bits with "WP" or "R/WP" appearing in the R/W column).

### **CACHE Control Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
CACHECTL	15–8	-	0x00	_	R	_
	7–2	-	0x00	-	R	
	1	-	1	-	R	
	0	CACHEEN	0	HO	R/W	

#### Bits 15–1 Reserved

#### Bit 0 CACHEEN

This bit enables the instruction cache function. 1 (R/W): Enable instruction cache

0 (R/W): Disable instruction cache

### FLASHC Flash Read Cycle Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
FLASHCWAIT	15–9	-	0x00	_	R	_
	8	(reserved)	0	H0	R/WP	
	7–2	-	0x00	-	R	
	1–0	RDWAIT[1:0]	0x1	HO	R/WP	

#### Bits 15–2 Reserved

#### Bits 1–0 RDWAIT[1:0]

These bits set the number of bus access cycles for reading from the Flash memory.

FLASHCWAIT.	Number of bus	System clock frequency		
RDWAIT[1:0] bits	access cycles	PWGACTL. REGSEL bit = 0	PWGACTL. REGSEL bit = 1	
0x3	4		21 MHz (max.)	
0x2	3	2.1 MHz (max.)		
0x1	2		16.8 MHz (max.)	
0x0	1	1.05 MHz (max.)	8.4 MHz (max.)	

Table 4.8.1	Setting Number	of Bus Access	Cycles for Flash Read
-------------	----------------	---------------	-----------------------

**Notes**: • Be sure to set the FLASHCWAIT.RDWAIT[1:0] bits before the system clock is configured.

 When the FLASHCWAIT.RDWAIT[1:0] bit setting is altered from 0x2 to 0x1, add two NOP instructions immediately after that.

Program example: FLASHC->WAIT_b.RDWAIT = 1;

asm("NOP"); asm("NOP"); CLG->OSC_b.IOSCEN = 0;

# 5 Interrupt

# 5.1 Overview

This IC includes a nested vectored interrupt controller (NVIC). For detailed information on the NVIC, refer to the documents introduced in Section 3.4, such as "ARM[®]v6-M Architecture Reference Manual." Figure 5.1.1 shows the configuration of the interrupt system.



Figure 5.1.1 Configuration of Interrupt System

# 5.2 Vector Table

The vector table contains the vectors to the interrupt handler routines (handler routine start address) that will be read by the CPU to execute the handler when an interrupt occurs.

Table 5.2.1 shows the vector table.

Interrupt number	IRQ number	Vector address	Hardware interrupt name	Cause of hardware interrupt	Priority
-	-	VTOR + 0x00	(Stack pointer initial value)	Stack pointer initial value) -	
1	-	VTOR + 0x04	Reset	Low input to the #RESET pin	-3
				Power-on reset	
				Key reset	
				<ul> <li>Watchdog timer overflow *1</li> </ul>	
				<ul> <li>Supply voltage detector reset</li> </ul>	
2	-14	VTOR + 0x08	NMI	Watchdog timer overflow *1	-2
3	-13	VTOR + 0x0c	HardFault	Bus error	-1
				Undefined instruction	
				<ul> <li>Unaligned address etc.</li> </ul>	
4–10	-	-	Reserved	-	-
11	-5	VTOR + 0x2c	SVCall	SVC instruction	Configurable
12–13	-	-	Reserved	-	-
14	-2	VTOR + 0x38	PendSV	-	
15	-1	VTOR + 0x3c	SysTick	SysTick timer underflow	
16	0	VTOR + 0x40	DMA controller interrupt	DMA transfer completion	
				DMA transfer error	
17	1	VTOR + 0x44	Supply voltage detector interrupt	Power supply voltage drop detection	
18	2	VTOR + 0x48	Port interrupt	Port input	Configurable
19	3	VTOR + 0x4c	Clock generator interrupt	IOSC oscillation stabilization waiting completion	
				· OSC1 oscillation stabilization waiting completion	
				· OSC3 oscillation stabilization waiting completion	
				OSC1 oscillation stop	
				<ul> <li>IOSC oscillation auto-trimming completion</li> </ul>	
				<ul> <li>IOSC oscillation auto-trimming error</li> </ul>	

#### VTOR initial value = 0x0

Interrupt number	IRQ number	Vector address	Hardware interrupt name	Cause of hardware interrupt	Priority
20	4	VTOR + 0x50	Real-time clock interrupt	<ul> <li>1-day, 1-hour, 1-minute, and 1-second</li> <li>1/32-second, 1/8-second, 1/4-second, and 1/2-second</li> <li>Stopwatch 1 Hz, 10 Hz, and 100 Hz</li> <li>Alarm</li> </ul>	
				Theoretical regulation completion	
21	5	VTOR + 0x54	16-bit timer Ch.0 interrupt	Underflow	
22	6	VTOR + 0x58	UART Ch.0 interrupt	<ul> <li>End of transmission</li> <li>Framing error</li> <li>Parity error</li> <li>Overrun error</li> <li>Receive buffer two bytes full</li> <li>Receive buffer one byte full</li> </ul>	
23	7		16-bit timer Ch 1 interrupt	Inderflow	-
24	8	VTOR + 0x60	Synchronous serial interface Ch.0 interrupt	End of transmission     Receive buffer full     Transmit buffer empty     Overrun error	-
25	9	VTOR + 0x64	I ² C Ch.0 interrupt	<ul> <li>End of data transfer</li> <li>General call address reception</li> <li>NACK reception</li> <li>STOP condition</li> <li>START condition</li> <li>Error detection</li> <li>Receive buffer full</li> <li>Transmit buffer empty</li> </ul>	
26	10	VTOR + 0x68	16-bit PWM timer Ch.0 interrupt	Capture overwrite     Compare/capture     Counter MAX     Counter zero	
27	11	VTOR + 0x6c	16-bit PWM timer Ch.1 interrupt	Capture overwrite     Compare/capture     Counter MAX     Counter zero	Configurable
28	12	VTOR + 0x70	UART Ch.1 interrupt	End of transmission     Framing error     Parity error     Overrun error     Receive buffer two bytes full     Receive buffer one byte full     Transmit buffer empty	
29	13	VTOR + 0x74	16-bit timer Ch.2 interrupt	Underflow	
30	14	VTOR + 0x78	Quad synchronous serial interface Ch.0 interrupt	<ul> <li>End of transmission</li> <li>Receive buffer full</li> <li>Transmit buffer empty</li> <li>Overrun error</li> </ul>	
31	15	VTOR + 0x7c	I ² C Ch.1 interrupt	<ul> <li>End of data transfer</li> <li>General call address reception</li> <li>NACK reception</li> <li>STOP condition</li> <li>START condition</li> <li>Error detection</li> <li>Receive buffer full</li> <li>Transmit buffer empty</li> </ul>	
32	16	VTOR + 0x80	IR remote controller interrupt	Compare AP     Compare DB	
33	17	VTOR + 0x84	UART Ch.2 interrupt	<ul> <li>End of transmission</li> <li>Framing error</li> <li>Parity error</li> <li>Overrun error</li> <li>Receive buffer two bytes full</li> <li>Receive buffer one byte full</li> <li>Transmit buffer empty</li> </ul>	-
34	18	1 VIOR + 0x88	Lib-bit timer Ch 3 interrupt	Undertiow	1

Interrupt number	IRQ number	Vector address	Hardware interrupt name	Cause of hardware interrupt	Priority
35	19	VTOR + 0x8c	USB interrupt	EP0 setup completion	
				NonJ detection	
				Reset detection	
				Suspend detection	
				SOF reception	
				J detection	
				<ul> <li>Automatic address setting completion</li> </ul>	
				EP0/a/b/c ACK reception	
				EP0/a/b/c ACK transmission	
				EP0/a/b/c NAK reception	
				EP0/a/b/c NAK transmission	
				EP0/a/b/c STALL reception	
				EP0/a/b/c STALL transmission	
				EPa/b/c short packet reception	
36	20	VTOR + 0x90	Synchronous serial	End of transmission	
			interface Ch.1 interrupt	Receive buffer full	Configurable
				Transmit buffer empty	_
				Overrun error	_
37	21	VTOR + 0x94	Sound generator interrupt	Sound buffer empty	
				Sound output completion	_
38	22	VTOR + 0x98	16-bit timer Ch.4 interrupt	Underflow	
39	23	VTOR + 0x9c	16-bit timer Ch.5 interrupt	Underflow	
40	24	VTOR + 0xa0	16-bit timer Ch.6 interrupt	Underflow	
41	25	VTOR + 0xa4	16-bit timer Ch.7 interrupt	Underflow	
42	26	VTOR + 0xa8	Memory display controller	Display update/drawing/copy completion	
			interrupt		
43	27	VTOR + 0xac	12-bit A/D converter	<ul> <li>Analog input signal <i>m</i> A/D conversion</li> </ul>	
			interrupt	completion	
				<ul> <li>Analog input signal <i>m</i> A/D conversion result</li> </ul>	
				overwrite error	
44-47	_	_	Reserved	_	

*1 Either reset or NMI can be selected as the watchdog timer interrupt via software.

## 5.2.1 Vector Table Offset Address (VTOR)

The Cortex[®]-M0+ Vector Table Offset Register (VTOR) is provided to set the offset (start) address of the vector table in which interrupt vectors are programmed. "VTOR" described in Table 5.2.1 means the value set to this register. After an initial reset, VTOR is set to address 0x0. Therefore, even when the vector table location is changed, it is necessary that at least the reset vector be written to this address. For more information on VTOR, refer to the documents introduced in Section 3.4, such as "Cortex[®]-M0+ Devices Generic User Guide."

## 5.2.2 Priority of Interrupts

The priorities of SVCall, PendSV, and SysTick are configurable to the desired levels using the Cortex[®]-M0+ System Handler Priority Registers (SHPR2 and SHPR3). The priorities of the interrupt number 16 or later are configurable to the desired levels using the Cortex[®]-M0+ Interrupt Priority Registers (NVIC_IPR0–7). The priority value can be set within a range of 0 to 192 (a lower value has a higher priority). The priorities of reset, NMI, and HardFault are fixed at the predefined values. For more information, refer to the documents introduced in Section 3.4, such as "Cortex[®]-M0+ Devices Generic User Guide."

# 5.3 Peripheral Circuit Interrupt Control

The peripheral circuit that generates interrupts includes an interrupt enable bit and an interrupt flag for each interrupt cause.

Interrupt flag: The flag is set to 1 when the interrupt cause occurs. The clear condition depends on the peripheral circuit.

Interrupt enable bit: By setting this bit to 1 (interrupt enabled), an interrupt request will be sent to the CPU when the interrupt flag is set to 1. When this bit is set to 0 (interrupt disabled), no interrupt request will be sent to the CPU even if the interrupt flag is set to 1. An interrupt request is also sent to the CPU if the status is changed to interrupt enabled when the interrupt flag is 1.

#### **5 INTERRUPT**

For specific information on causes of interrupts, interrupt flags, and interrupt enable bits, refer to the respective peripheral circuit descriptions.

**Note**: To prevent occurrence of unnecessary interrupts, the corresponding interrupt flag should be cleared before setting the interrupt enable bit to 1 (interrupt enabled) and before terminating the interrupt handler routine.

# 5.4 NMI

The watchdog timer embedded in this IC can generate a non-maskable interrupt (NMI). This interrupt takes precedence over other interrupts and is unconditionally accepted by the CPU.

For detailed information on generating NMI, refer to the "Watchdog Timer" chapter.

# 6 DMA Controller (DMAC)

# 6.1 Overview

The main features of the DMAC are outlined below.

- Supports byte, halfword, and word transfers.
- Each DMAC channel can be configured to different transfer conditions independently.
- Supports memory-to-memory, memory-to-peripheral circuit, and peripheral circuit-to-memory transfers.
- Supports hardware DMA requests from peripheral circuits and software DMA requests.
- Priority level for each channel is selectable from two levels.
- DMA transfers are allowed even if the CPU is placed into HALT mode.

Figure 6.1.1 shows the configuration of the DMAC.

Table 6.1.1	DMAC	Channel	Configuration	of S1C31D01
-------------	------	---------	---------------	-------------

Item	S1C31D01		
Number of channels	4 channels (Ch.0 to Ch.3)		
Transfer source memories	Internal Flash memory, external Flash memory, and RAM		
Transfer destination memories	RAM		
Transfer source peripheral circuits	UART3, SPIA, QSPI, I2C, T16B, ADC12A, and USB		
Transfer destination peripheral circuits	UART3, SPIA, QSPI, I2C, T16B, USB, and SNDA		



Figure 6.1.1 DMAC Configuration

# 6.2 Operations

### 6.2.1 Initialization

The DMAC should be initialized with the procedure shown below.

- 1. Set the data structure base address to the DMACCPTR register.
- 2. Configure the data structure for the channels to be used.
  - Set the control data.
  - Set the transfer source end pointer.
  - Set the transfer destination end pointer.
- 3. Set the DMACCFG.MSTEN bit to 1. (Enable DMAC)
- 4. Configure the DMACRMSET and DMACRMCLR registers.

(Configure masks for DMA transfer requests from peripheral circuits)

- 5. Configure the DMACENSET and DMACENCLR registers. (Enable channels used)
- 6. Configure the DMACPASET and DMACPACLR registers. (Select data structure used)
- 7. Configure the DMACPRSET and DMACPRCLR registers. (Set priorities)
- 8 Set the following registers when using the interrupt:
- Write 1 to the interrupt flags in the DMACENDIF and DMACERRIF registers. (Clear interrupt flags)
   Configures the DMACENDIESET/DMACENDIECLR
- and DMACERRIESET/DMACERRIECLR registers. (Enable/disable interrupts)
- 9. Set the DMA request enable bits of the peripheral circuits that use DMA transfer to 1.
- 10. To issue a software DMA request to Ch.n, write 1 to the DMACSWREQ.SWREQn bit.

# 6.3 Priority

If DMA requests are issued to two or more channels, the DMA transfers are performed in order from the highestpriority channel. The channel of which the priority level is set to 1 by the DMACPRSET.PRSET*n* bit has the highest priority. If two or more channels have been set to the same priority level, the smaller channel number takes precedence.

# 6.4 Data Structure

To perform DMA transfers, a data structure that contains basic transfer control information must be provided. The data structure consists of two blocks, primary data structure and alternate data structure, and one of them is used according to the DMA transfer mode.

The data structure can be located at an arbitrary address in the RAM area by setting the base address to the DMAC-CPTR.CPTR[31:0] bits.

The data structure for each channel consists of a transfer source end pointer, a transfer destination end pointer, and control data. An area of 16 bytes  $\times$  2 is allocated in the RAM for each channel.

The whole size of the data structure and the alternate data structure base address depend on the number of channels implemented.

Number of channels	Data structure	Primary data structure	Alternate data structure
implemented	size	base address	base address
1	32 bytes	DMACCPTR.CPTR[31:0] (CPTR[4:0] = 0x00)	DMACCPTR.CPTR[31:0] + 0x010
2	64 bytes	DMACCPTR.CPTR[31:0] (CPTR[5:0] = 0x00)	DMACCPTR.CPTR[31:0] + 0x020
3 to 4	128 bytes	DMACCPTR.CPTR[31:0] (CPTR[6:0] = 0x00)	DMACCPTR.CPTR[31:0] + 0x040
5 to 8	256 bytes	DMACCPTR.CPTR[31:0] (CPTR[7:0] = 0x00)	DMACCPTR.CPTR[31:0] + 0x080
9 to 16	512 bytes	DMACCPTR.CPTR[31:0] (CPTR[8:0] = 0x000)	DMACCPTR.CPTR[31:0] + 0x100
17 to 32	1,024 bytes	DMACCPTR.CPTR[31:0] (CPTR[9:0] = 0x000)	DMACCPTR.CPTR[31:0] + 0x200

Table 6.4.1 Data Structure Size According to Number of Channels Implemented
Alternate data structure	Ð	Primary data structure	)		
Ch.31 (alternate)	0.22 € 0	Ch.31 (primary)	0.1.1.60		
Ch.30 (alternate)	0x300	Ch.30 (primary)	0x100		
Ch.29 (alternate)	02240	Ch.29 (primary)	0x1d0		
Ch.28 (alternate)	0x300	Ch.28 (primary)	0x1a0		
Ch.27 (alternate)	0x300	Ch.27 (primary)	0x100		
Ch.26 (alternate)	042200	Ch.26 (primary)	0x1b0		
Ch.25 (alternate)	0x3a0	Ch.25 (primary)	0x1a0		
Ch.24 (alternate)	0x390	Ch.24 (primary)	0x190		
Ch.23 (alternate)	0	Ch.23 (primary)	0.170		
Ch.22 (alternate)	0x370	Ch.22 (primary)	0x170		
Ch.21 (alternate)	02250	Ch.21 (primary)	0x160		
Ch.20 (alternate)	0x350	Ch.20 (primary)	0x150		
Ch.19 (alternate)	0x340	Ch.19 (primary)	0x140		
Ch.18 (alternate)	0x330	Ch.18 (primary)	0x130		
Ch.17 (alternate)	0x320	Ch.17 (primary)	0x120		
Ch.16 (alternate)	0x310	Ch.16 (primary)	0x100		
Ch.15 (alternate)	0x260	Ch.15 (primary)	0x100		
Ch.14 (alternate)	0x210	Ch.14 (primary)	010010		
Ch.13 (alternate)	0x2e0	Ch.13 (primary)	09020		
Ch.12 (alternate)	0x2a0	Ch.12 (primary)	0x0a0		
Ch.11 (alternate)	0x2C0	Ch.11 (primary)	0x0C0		
Ch.10 (alternate)	0x2b0	Ch.10 (primary)	04020		
Ch.9 (alternate)	0x2a0	Ch.9 (primary)	0x0a0		
Ch.8 (alternate)	0x290	Ch.8 (primary)	0x090		
Ch.7 (alternate)	0x280	Ch.7 (primary)	0x080		
Ch.6 (alternate)	0x270	Ch.6 (primary)	0x070		
Ch.5 (alternate)	0.200	Ch.5 (primary)	0.000		
Ch.4 (alternate)	10x250	Ch.4 (primary)	0x050		
Ch.3 (alternate)	10X240	Ch.3 (primary)	0x040	Reserved	000
Ch.2 (alternate)	0	Ch.2 (primary)	0.0.0.0	Control data	0.000
Ch.1 (alternate)	0.220	Ch.1 (primary)	0.020	Transfer destination end pointer	0.000
Ch.0 (alternate)	0200	Ch.0 (primary)	0102010	Transfer source end pointer	0x004
			0.000		0.000

Offset



Figure 6.4.1 Data Structure Address Map (when 32 channels are implemented)



Base address set with the DMACCPTR register

Figure 6.4.2 Data Structure Address Map (when 4 channels are implemented)

The alternate data structure base address can be determined from the DMACACPTR.ACPTR[31:0] bits.

# 6.4.1 Transfer Source End Pointer

Set the source data end address. The address of data to be transferred should be set as it is if the transfer source address is not incremented.

# 6.4.2 Transfer Destination End Pointer

Set the address to which the last transfer data is written. The address for writing transfer data should be set as it is if the transfer destination address is not incremented.

## 6.4.3 Control Data

Set the DMA transfer information. Figure 6.4.3.1 shows the constituent elements of the control data.



Figure 6.4.3.1 Constituent Elements of Control Data

#### dst_inc

Set the increment value of the transfer destination address. The setting value must be equal to or larger than the transfer data size when the address is incremented.

Increment value				
No increment				
+4				
+2				
+1				

Table 6.4.3.1 Increment Value of Transfer Destination Address

#### dst_size

Set the size of the data to be written to the transfer destination. It should be the same value as the src_size.

Table 6.4.3.2 Size of Data Written to Transfer Destination

dst_size	Data size
0x3	Reserved
0x2	Word
0x1	Halfword
0x0	Byte

#### src_inc

Set the increment value of the transfer source address. The setting value must be equal to or larger than the transfer data size when the address is incremented.

src_inc	Increment value
0x3	No increment
0x2	+4

+2

+1

Table 6.4.3.3 Increment Value of Transfer Source Address

#### src_size

Set the size of the data to be read from the transfer source. It should be the same value as the dst_size.

Table 6.4.3.4 Size of Data Read from Transfer Source

src_size	Data size
0x3	Reserved
0x2	Word
0x1	Halfword
0x0	Byte

#### **R_power**

Set the arbitration cycle during successive data transfer.

0x1

0x0

Arbitration cycle  $(2^R) = 2^{R_power}$ 

When the DMAC is performing a successive transfer, it suspends the data transfer at the cycle set with R_power. If DMA requests have been issued at that point, the DMAC re-arbitrates them according to their priorities and then performs a DMA transfer for the channel with the highest priority. If the arbitration cycle setting value is larger than the number of successive data transfers, successive data transfers will not be suspended.

#### n_minus_1

Set the number of DMA transfers to be executed successively.

Number of successive transfers  $(N) = n_{minus_1} + 1$ 

When the set number of successive transfers has completed, a transfer completion interrupt occurs.

#### cycle_ctrl

Set the DMA transfer mode. For detailed information on each transfer mode, refer to Section 6.5, "DMA Transfer Mode."

cycle_ctrl	DMA transfer mode			
0x7	Peripheral scatter-gather transfer			
	(for alternate data structure)			
0x6	Peripheral scatter-gather transfer			
	(for primary data structure)			
0x5	Memory scatter-gather transfer			
	(for alternate data structure)			
0x4	Memory scatter-gather transfer			
	(for primary data structure)			
0x3	Ping-pong transfer			
0x2	Auto-request transfer			
0x1	Basic transfer			
0x0	Stop			

Table 6.4.3.5 DMA Transfer Mode

# 6.5 DMA Transfer Mode

### 6.5.1 Basic Transfer

This is the basic DMA transfer mode. In this mode, DMA transfer starts when a DMA transfer request from a peripheral circuit or a software DMA request is issued, and it continues until it is completed for the set number of successive transfers or it is suspended at the arbitration cycle. To resume the DMA transfer suspended at the arbitration cycle, a DMA transfer request must be reissued.

When the set number of successive transfers has completed, a transfer completion interrupt occurs.

DMA transfer operation	DMA transfer 1 DMA transfer 2	(DMA transfer 3)(DMA transfer 4)	(DMA transfer 7)(DMA transfer 8)
DMACENDIF.ENDIFn			
	DMA transfer request	DMA transfer request	DMA transfer request

Figure 6.5.1.1 Basic Transfer Operation Example (N = 8,  $2^{R} = 2$ )

### 6.5.2 Auto-Request Transfer

Similar to the basic transfer, DMA transfer starts when a DMA transfer request from a peripheral circuit or a software DMA request is issued, and it continues until it is completed for the set number of successive transfers or it is suspended at the arbitration cycle. The DMAC resumes the DMA transfer suspended at the arbitration cycle without a DMA transfer request being reissued.

When the set number of successive transfers has completed, a transfer completion interrupt occurs.

DMA transfer _ operation	(DMA transfer 1)(DMA transfer 2)—(DMA transfer 3)(DMA transfer 4)—(DMA transfer 7)(DMA transfer 8)	
DMACENDIF.ENDIFn		

DMA transfer request

Figure 6.5.2.1 Auto-Request Transfer Operation Example (N = 8,  $2^{R} = 2$ )

# 6.5.3 Ping-Pong Transfer

In ping-pong transfer mode, the DMAC performs basic transfers repeatedly while switching between the primary data structure and alternate data structure. The data structures are referred alternately, and DMA transfer is terminated when the control data with cycle_ctrl set to 0x0 is referred. A transfer completion interrupt occurs each time a transfer using a data structure is completed.



Figure 6.5.3.1 Ping-Pong Transfer Operation Example

#### **DMA** transfer procedure

- 1. Start data transfer by following the procedure shown in Section 6.2.1, "Initialization." In Step 2 of the initialization procedure, set Task A and Task B to the primary data structure and the alternate data structure, respectively.
- 2. Set Task C to the primary data structure after a DMA transfer completion interrupt has occurred by Task A.
- 3. Set Task D to the alternate data structure when a DMA transfer completion interrupt has occurred by Task B.
- 4. Repeat Steps 2 and 3.
- 5. Set cycle_ctrl to 0x0 after a DMA transfer completion interrupt has occurred by the next to last task.
- 6. The DMA transfer is completed when a DMA transfer completion interrupt occurs by the last task.

# 6.5.4 Memory Scatter-Gather Transfer

In scatter-gather transfer mode, first the DMAC, using the primary data structure, copies a data structure from the data structure table, which has been prepared with multiple data structures included in advance, to the alternate data structure, and then it performs DMA transfer using the alternate data structure. The DMAC performs this operation repeatedly. By programming the transfer mode of the data structure located at the end of the table as a basic transfer, the DMA transfer can be terminated with a transfer completion interrupt. This mode requires a DMA transfer request only for starting the first data transfer. Subsequent data transfers are performed by auto-requests.



Figure 6.5.4.1 Example of Data Structure Table for Scatter-Gather Transfer



Figure 6.5.4.2 Memory Scatter-Gather Transfer Operation Example

#### **DMA** transfer procedure

- Configure the data structure table for scatter-gather transfer. Set the cycle_ctrl for the last task to 0x1 and those for other tasks to 0x5.
- 2. Start data transfer by following the procedure shown in Section 6.2.1, "Initialization." In Step 2 of the initialization procedure, configure the primary data structure with the control data shown below.

```
Transfer source end pointer = Data structure table end address

Transfer destination end pointer = Alternate data structure end address

dst_inc = 0x2

dst_size = 0x2

src_inc = 0x2

src_size = 0x2

R_power = 0x2

n_minus_1 = Number of tasks × 4 - 1

cycle_ctrl = 0x4
```

3. The DMA transfer is completed when a DMA transfer completion interrupt occurs.

## 6.5.5 Peripheral Scatter-Gather Transfer

In memory scatter-gather transfer mode, the second and subsequent DMA transfers are performed by auto-requests. On the other hand, in peripheral scatter-gather transfer mode, all DMA transfers are performed by a DMA transfer request issued by a peripheral circuit or a software DMA request.



#### DMA transfer procedure

- Configure the data structure table for scatter-gather transfer. Set the cycle_ctrl for the last task to 0x1 and those for other tasks to 0x7.
- 2. Start data transfer by following the procedure shown in Section 6.2.1, "Initialization." In Step 2 of the initialization procedure, configure the primary data structure with the control data shown below.

```
Transfer source end pointer = Data structure table end address
Transfer destination end pointer = Alternate data structure end address
dst_inc = 0x2
dst_size = 0x2
src_inc = 0x2
src_size = 0x2
R_power = 0x2
n_minus_1 = Number of tasks × 4 - 1
cycle_ctrl = 0x6
```

- 3. Issue a DMA transfer request in each task using a peripheral circuit or via software.
- 4. The DMA transfer is completed when a DMA transfer completion interrupt occurs.

# 6.6 DMA Transfer Cycle

A DMA transfer requires several clock cycles to execute. Figure 6.6.1 shows a detailed DAM transfer cycle. Note that the number of clock cycles for a DMA transfer may be increased due to a conflict with an access from the CPU or the Flash bus access cycle setting.



# 6.7 Interrupts

The DMAC has a function to generate the interrupts shown in Table 6.7.1.

Table 6.7.1	DMAC Interrupt Function
-------------	-------------------------

Interrupt	Interrupt flag	Set condition	Clear condition
DMA transfer completion	DMACENDIF.ENDIFn When DMA transfers for a set number of		Writing 1
		successive transfers have completed	
DMA transfer error	DMACERRIF.ERRIF	When an AHB bus error has occurred	Writing 1

The DMAC provides interrupt enable bits corresponding to each interrupt flag. An interrupt request is sent to the CPU only when the interrupt flag, of which interrupt has been enabled by the interrupt enable bit, is set. For more information on interrupt control, refer to the "Interrupt" chapter.

# 6.8 Control Registers

#### **DMAC Status Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACSTAT	31–24	_	0x00	-	R	_
	23–21	-	0x0	-	R	
	20–16	CHNLS[4:0]	*	H0	R	* Number of channels implemented - 1
	15–8	-	0x00	-	R	_
	7–4	STATE[3:0]	0x0	H0	R	
	3–1	-	0x0	-	R	
	0	MSTENSTAT	0	H0	R	

#### Bits 31–21 Reserved

#### Bits 20-16 CHNLS[4:0]

These bits show the number of DMAC channels implemented in this IC.

Number of channels implemented = CHNLS + 1

#### Bits 15–8 Reserved

#### Bits 7-4 STATE[3:0]

These bits indicates the DMA transfer status.

Table	6.8.1	DMA	Transfer	Status
iubic	0.0.1		nunoioi	olulus

DMACSTAT.STATE[3:0] bits	DMA transfer status				
0xf–0xbf	Reserved				
0xa	Peripheral scatter-gather transfer is in progress.				
0x9	Transfer has completed.				
0x8	Transfer has been suspended.				
0x7	Control data is being written.				
0x6	Standby for transfer request to be cleared.				
0x5	Transfer data is being written.				
0x4	Transfer data is being read.				
0x3	Transfer destination end pointer is being read.				
0x2	Transfer source end pointer is being read.				
0x1	Control data is being read.				
0x0	Idle				

#### Bits 3–1 Reserved

#### Bit 0 MSTENSTAT

This bit indicates the DMA controller status.

- 1 (R): DMA controller is operating.
- 0 (R): DMA controller is idle.

### **DMAC** Configuration Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACCFG	31–24	-	0x00	-	R	_
	23–16	-	0x00	-	R	
	15–8	-	0x00	-	R	_
	7–1	-	0x00	-	R	
	0	MSTEN	-	-	W	

#### Bits 31–1 Reserved

#### Bit 0 MSTEN

This bit enables the DMA controller.

1 (W): Enable

0 (W): Disable

### **DMAC Control Data Base Pointer Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACCPTR	31–0	CPTR[31:0]	0x0000 0000	H0	R/W	-

#### Bits 31-0 CPTR[31:0]

These bits set the leading address of the data structure.

Depending on the number of channels implemented, low-order bits are configured for read only.

Table 6.8.2 CPTR Writable/Read-Only Bits Depending On Number of Channel Implemented

Number of channel implemented	Writable bits	Read-only bits
1	CPTR[31:5]	CPTR[4:0]
2	CPTR[31:6]	CPTR[5:0]
3–4	CPTR[31:7]	CPTR[6:0]
5–8	CPTR[31:8]	CPTR[7:0]
9–16	CPTR[31:9]	CPTR[8:0]
17–32	CPTR[31:10]	CPTR[9:0]

#### **DMAC Alternate Control Data Base Pointer Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACACPTR	31–0	ACPTR[31:0]	-	H0	R	-

#### Bits 31-0 ACPTR[31:0]

These bits show the alternate data structure base address.

### **DMAC Software Request Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACSWREQ	31–0	SWREQ[31:0]	-	-	W	-

#### Bits 31-0 SWREQ [31:0]

These bits issue a software DMA transfer request to each channel.

1 (W): Issue a software DMA transfer request

0 (W): Ineffective

Each bit corresponds to a DMAC channel (e.g. bit *n* corresponds to Ch.*n*). The high-order bits for the unimplemented channels are ineffective.

### **DMAC Request Mask Set Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACRMSET	31–0	RMSET[31:0]	0x0000	HO	R/W	_
			0000			

#### Bits 31–0 RMSET[31:0]

These bits mask DMA transfer requests from peripheral circuits.

1 (W): Mask DMA transfer requests from peripheral circuits

- 0 (W): Ineffective
- 1 (R): DMA transfer requests from peripheral circuits have been disabled.
- 0 (R): DMA transfer requests from peripheral circuits have been enabled.

Each bit corresponds to a DMAC channel. The high-order bits for the unimplemented channels are ineffective.

### **DMAC Request Mask Clear Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACRMCLR	31–0	RMCLR[31:0]	-	-	W	-

#### Bits 31-0 RMCLR[31:0]

These bits cancel the mask state of DMA transfer requests from peripheral circuits

1 (W): Cancel mask state of DMA transfer requests from peripheral circuits (The DMACRMSET register is cleared to 0.)

0 (W): Ineffective

Each bit corresponds to a DMAC channel. The high-order bits for the unimplemented channels are ineffective.

#### **DMAC Enable Set Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACENSET	31–0	ENSET[31:0]	0x0000 0000	H0	R/W	-

#### Bits 31–0 ENSET[31:0]

These bits enable each DMAC channel.

1 (W): Enable DMAC channel

- 0 (W): Ineffective
- 1 (R): Enabled

0 (R): Disabled

These bits are cleared after the DMA transfer has completed.

Each bit corresponds to a DMAC channel. The high-order bits for the unimplemented channels are ineffective.

### **DMAC Enable Clear Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACENCLR	31–0	ENCLR[31:0]	-	-	W	-

#### Bits 31-0 ENCLR[31:0]

These bits disable each DMAC channel.

1 (W): Disable DMAC channel (The DMACENSET register is cleared to 0.)

0 (W): Ineffective

Each bit corresponds to a DMAC channel. The high-order bits for the unimplemented channels are ineffective.

#### **DMAC Primary-Alternate Set Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACPASET	31–0	PASET[31:0]	0x0000 0000	HO	R/W	-

#### Bits 31-0 PASET[31:0]

These bits enable the alternate data structures.

- 1 (W): Enable alternate data structure
- 0 (W): Ineffective
- 1 (R): The alternate data structure has been enabled.
- 0 (R): The primary data structure has been enabled.

Each bit corresponds to a DMAC channel. The high-order bits for the unimplemented channels are ineffective.

### **DMAC Primary-Alternate Clear Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACPACLR	31–0	PACLR[31:0]	-	-	W	-

#### Bits 31-0 PACLR[31:0]

These bits disable the alternate data structures.

1 (W): Disable alternate data structure (The DMACPASET register is cleared to 0.)

0 (W): Ineffective

Each bit corresponds to a DMAC channel. The high-order bits for the unimplemented channels are ineffective.

### **DMAC Priority Set Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACPRSET	31–0	PRSET[31:0]	0x0000	HO	R/W	-
			0000			

#### Bits 31–0 PRSET[31:0]

These bits increase the priority of each channel.

- 1 (W): Increase priority
- 0 (W): Ineffective

1 (R): Priority = High

0 (R): Priority = Normal

Each bit corresponds to a DMAC channel. The high-order bits for the unimplemented channels are ineffective.

### **DMAC Priority Clear Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACPRCLR	31–0	PRCLR[31:0]	-	-	W	-

#### Bits 31-0 PRCLR[31:0]

These bits decrease the priority of each channel.

1(W): Decrease priority (The DMACPRSET register is cleared to 0.)

0 (W): Ineffective

Each bit corresponds to a DMAC channel. The high-order bits for the unimplemented channels are ineffective.

### **DMAC Error Interrupt Flag Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACERRIF	31–24	-	0x00	-	R	_
	23–16	-	0x00	-	R	
	15–8	-	0x00	-	R	
	7–1	-	0x00	-	R	
	0	ERRIF	0	H0	R/W	Cleared by writing 1.

#### Bits 31–1 Reserved

#### Bit 0 ERRIF

This bit indicates the DMAC error interrupt cause occurrence status.

- 1 (R): Cause of interrupt occurred
- 0 (R): No cause of interrupt occurred
- 1 (W): Clear flag
- 0 (W): Ineffective

### **DMAC Transfer Completion Interrupt Flag Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACENDIF	31–0	ENDIF[31:0]	0x0000 0000	HO	R/W	Cleared by writing 1.

#### Bits 31-0 ENDIF[31:0]

These bits indicate the DMA transfer completion interrupt cause occurrence status of each DMAC channel.

1 (R): Cause of interrupt occurred

0 (R): No cause of interrupt occurred

1 (W): Clear flag

0 (W): Ineffective

Each bit corresponds to a DMAC channel. The high-order bits for the unimplemented channels are ineffective.

### **DMAC Transfer Completion Interrupt Enable Set Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACENDIESET	31–0	ENDIESET[31:0]	0x0000 0000	H0	R/W	-

#### Bits 31–0 ENDIESET[31:0]

These bits enable DMA transfer completion interrupts to be generated from each DMAC channel.

- 1 (W): Enable interrupt
- 0 (W): Ineffective
- 1 (R): Interrupt has been enabled.
- 0 (R): Interrupt has been disabled.

Each bit corresponds to a DMAC channel. The high-order bits for the unimplemented channels are ineffective.

### DMAC Transfer Completion Interrupt Enable Clear Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACENDIECLR	31–0	ENDIECLR[31:0]	-	-	W	_

#### Bits 31–0 ENDIECLR[31:0]

These bits disable DMA transfer completion interrupts to be generated from each DMAC channel.

1 (W): Disable interrupt (The DMACENDIESET register is cleared to 0.)

0 (W): Ineffective

Each bit corresponds to a DMAC channel. The high-order bits for the unimplemented channels are ineffective.

#### **DMAC Error Interrupt Enable Set Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACERRIESET	31–24	-	0x00	-	R	_
	23–16	-	0x00	-	R	
	15–8	-	0x00	-	R	
	7–1	-	0x00	-	R	
	0	ERRIESET	0	H0	R/W	

#### Bits 31–1 Reserved

#### Bit 0 ERRIESET

This bit enables DMA error interrupts.

- 1 (W): Enable interrupt
- 0 (W): Ineffective
- 1 (R): Interrupt has been enabled.
- 0 (R): Interrupt has been disabled.

### **DMAC Error Interrupt Enable Clear Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
DMACERRIECLR	31–24	-	0x00	-	R	_
	23–16	-	0x00	-	R	
	15–8	-	0x00	-	R	
	7–1	-	0x00	-	R	
	0	ERRIECLR	-	-	W	

#### Bits 31–1 Reserved

#### Bit 0 ERRIECLR

This bit disables DMA error interrupts.

1 (W): Disable interrupt (The DMACERRIESET register is cleared to 0.)

0 (W): Ineffective

# 7 I/O Ports (PPORT)

# 7.1 Overview

PPORT controls the I/O ports. The main features are outlined below.

- Allows port-by-port function configurations.
  - Each port can be configured with or without a pull-up or pull-down resistor.
  - Each port can be configured with or without a chattering filter.
  - Allows selection of the function (general-purpose I/O port (GPIO) function, up to four peripheral I/O functions) to be assigned to each port.
- Ports, except for those shared with debug pins, are initially placed into Hi-Z state. (No current passes through the pin during this Hi-Z state.)
- **Note:** '*x*', which is used in the port names P*xy*, register names, and bit names, refers to a port group ( $x = 0, 1, 2, \dots, d$ ) and '*y*' refers to a port number ( $y = 0, 1, 2, \dots, 7$ ).

Figure 7.1.1 shows the configuration of PPORT.

Table 7 1 1	Port Configuration	of S1C31D01
	i on configuration	0101001001

Item	S1C31D01
Port groups included	P0[7:0], P1[6:0], P2[7:0], P3[6:0], P4[7:0], P5[6:0], P6[7:0], Pd[3:0]
Ports with general-purpose I/O function (GPIO)	P0[7:0], P1[6:0], P2[7:0], P3[6:0], P4[7:0], P5[6:0], P6[7:0], Pd[3:0]
Ports with interrupt function	P0[7:0], P1[6:0], P2[7:0], P3[6:0], P4[7:0], P5[6:0], P6[7:0]
Ports for debug function	Pd[1:0]
Key-entry reset function	Supported (P0[3:0])



Figure 7.1.1 PPORT Configuration

# 7.2 I/O Cell Structure and Functions

Figure 7.2.1 shows the I/O cell Configuration.



Refer to "Pin Descriptions" in the "Overview" chapter for the cell type, either the over voltage tolerant fail-safe type I/O cell or the standard I/O cell, included in each port.

# 7.2.1 Schmitt Input

The input functions are all configured with the Schmitt interface level. When a port is set to input disable status (PPORTPxIOEN.PxIENy bit = 0), unnecessary current is not consumed if the Pxy pin is placed into floating status.

# 7.2.2 Over Voltage Tolerant Fail-Safe Type I/O Cell

The over voltage tolerant fail-safe type I/O cell allows interfacing without passing unnecessary current even if a voltage exceeding VDD is applied to the port. Also unnecessary current is not consumed when the port is externally biased without supplying VDD. However, be sure to avoid applying a voltage exceeding the recommended maximum operating power supply voltage to the port.

## 7.2.3 Pull-Up/Pull-Down

The GPIO port has a pull-up/pull-down function. Either pull-up or pull-down may be selected for each port individually. This function may also be disabled for the port that does not require pulling up/down.

When the port level is switched from low to high through the pull-up resistor included in the I/O cell or from high to low through the pull-down resistor, a delay will occur in the waveform rising/falling edge depending on the time constant by the pull-up/pull-down resistance and the pin load capacitance. The rising/falling time is commonly determined by the following equation:

$t_{PR} = -R_{INU}$	$(CIN + CBOARD) \times ln(1 - VT+/VDD)$	(Eq. 7.1)
$t_{\rm PF} = -R_{\rm IND} \times$	$(\text{Cin} + \text{Cboard}) \times \ln(1 - \text{Vt}/\text{Vdd})$	
Where		
tpr:	Rising time (port level = low $\rightarrow$ high) [second]	
tpf:	Falling time (port level = high $\rightarrow$ low) [second]	
VT+:	High level Schmitt input threshold voltage [V]	
VT-:	Low level Schmitt input threshold voltage [V]	
Rinu/Rin	ND: Pull-up/pull-down resistance [ $\Omega$ ]	
CIN:	Pin capacitance [F]	

CBOARD: Parasitic capacitance on the board [F]

# 7.2.4 CMOS Output and High Impedance State

The I/O cells except for analog output can output signals in the VDD and Vss levels. Also the GPIO ports may be put into high-impedance (Hi-Z) state.

# 7.3 Clock Settings

## 7.3.1 PPORT Operating Clock

When using the chattering filter for entering external signals to PPORT, the PPORT operating clock CLK_PPORT must be supplied to PPORT from the clock generator.

The CLK_PPORT supply should be controlled as in the procedure shown below.

- 1. Enable the clock source in the clock generator if it is stopped (refer to "Clock Generator" in the "Power Supply, Reset, and Clocks" chapter).
- 2. Write 0x0096 to the SYSPROT.PROT[15:0] bits. (Remove system protection)
- 3. Set the following PPORTCLK register bits:
  - PPORTCLK.CLKSRC[1:0] bitsPPORTCLK.CLKDIV[3:0] bits
- (Clock source selection)
- (Clock division ratio selection = Clock frequency setting)
- 4. Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits. (Set system protection)

Settings in Step 3 determine the input sampling time of the chattering filter.

# 7.3.2 Clock Supply in SLEEP Mode

When using the chattering filter function during SLEEP mode, the PPORT operating clock CLK_PPORT must be configured so that it will keep suppling by writing 0 to the CLGOSC*xxxx*SLPC bit for the CLK_PPORT clock source.

If the CLGOSC.xxxxSLPC bit for the CLK_PPORT clock source is 1, the CLK_PPORT clock source is deactivated during SLEEP mode and it disables the chattering filter function regardless of the PPORTPxCHATEN.Px-CHATENy bit setting (chattering filter enabled/disabled).

# 7.3.3 Clock Supply During Debugging

The CLK_PPORT supply during debugging should be controlled using the PPORTCLK.DBRUN bit.

The CLK_PPORT supply to PPORT is suspended when the CPU enters debug state if the PPORTCLK.DBRUN bit = 0. After the CPU returns to normal operation, the CLK_PPORT supply resumes. The PPORT chattering filter stops operating when the CLK_PPORT supply is suspended. If the chattering filter is enabled in PPORT, the input port function is also deactivated. However, the control registers can be altered. If the PPORTCLK.DBRUN bit = 1, the CLK_PPORT supply is not suspended and the chattering filter will keep operating in a debug state.

# 7.4 Operations

# 7.4.1 Initialization

After a reset, the ports except for the debugging function are configured as shown below.

- Port input: Disabled
- Port output: Disabled
- Pull-up: Off
- Pull-down: Off
- Port pins: High impedance state
- Port function: Configured to GPIO

This status continues until the ports are configured via software. The debugging function ports are configured for debug signal input/output.

#### Initial settings when using a port for a peripheral I/O function

When using the Pxy port for a peripheral I/O function, perform the following software initial settings:

1. Set the following PPORTPxIOEN register bits:

	- Set the PPORTPxIOEN.PxIENy bit to 0.	(Disable input)
	- Set the PPORTPxIOEN.PxOENy bit to 0.	(Disable output)
2.	Set the PPORTP <i>x</i> MODSEL.P <i>x</i> SEL <i>y</i> bit to 0.	(Disable peripheral I/O function)
3.	Initialize the peripheral circuit that uses the pin.	
4.	Set the PPORTPxFNCSEL.PxyMUX[1:0] bits.	(Select peripheral I/O function)
5.	Set the PPORTP <i>x</i> MODSEL.P <i>x</i> SEL <i>y</i> bit to 1.	(Enable peripheral I/O function)

For the list of the peripheral I/O functions that can be assigned to each port of this IC, refer to "Control Register and Port Function Configuration of this IC." For the specific information on the peripheral I/O functions, refer to the respective peripheral circuit chapter.

### Initial settings when using a port as a general-purpose output port (only for the ports with GPIO function)

When using the Pxy port pin as a general-purpose output pin, perform the following software initial settings:

1.	Set the PPORTPxIOEN.PxOENy bit to 1.	(Enable output)
2.	Set the PPORTP <i>x</i> MODSEL.P <i>x</i> SEL <i>y</i> bit to 0.	(Enable GPIO function)

### Initial settings when using a port as a general-purpose input port (only for the ports with GPIO function)

When using the Pxy port pin as a general-purpose input pin, perform the following software initial settings:

- 1. Write 0 to the PPORTPxINTCTL.PxIEy bit. * (Disable interrupt)
- 2. When using the chattering filter, configure the PPORT operating clock (see "PPORT Operating Clock") and set the PPORTPxCHATEN.PxCHATENy bit to 1.*

When the chattering filter is not used, set the PPORTPxCHATEN.PxCHATENy bit to 0 (supply of the PPORT operating clock is not required).

- 3. Configure the following PPORTP*x*RCTL register bits when pulling up/down the port using the internal pull-up or down resistor:
  - PPORTPxRCTL.PxPDPUy bit (Select pull-up or pull-down resistor)
  - Set the PPORTP*x*RCTL.P*x*REN*y* bit to 1. (Enable pull-up/down)

Set the PPORTPxRCTL.PxRENy bit to 0 if the internal pull-up/down resistors are not used.

4. Set the PPORTPxMODSEL.PxSELy bit to 0. (Enable GPIO function)

5. Configure the following bits when using the port input interrupt: *

-	Write 1 to the PPORTPxINTF.PxIFy bit.	(Clear interrupt flag)
_	PPORTPxINTCTL.PxEDGEy bit	(Select interrupt edge (input rising edge/falling edge))

- Set the PPORTP*x*INTCTL.*Px*IE*y* bit to 1. (Enable interrupt)

(Disable output)

- 6. Set the following PPORTPxIOEN register bits:
  - Set the PPORTPxIOEN.PxOENy bit to 0.
  - Set the PPORTPxIOEN.PxIENy bit to 1. (Enable input)
- * Steps 1 and 5 are required for the ports with an interrupt function. Step 2 is required for the ports with a chattering filter function.

Table 7.4.1.1 lists the port status according to the combination of data input/output control and pull-up/down control.

PPORTPxIOEN. PxIENy bit	PPORTPxIOEN. PxOENy bit	PPORTPxRCTL. PxRENy bit	PPORTPxRCTL. PxPDPUy bit	Input	Output	Pull-up/pull-down condition
0	0	0	×	Disa	bled	Off (Hi-Z) *1
0	0	1	0	Disa	bled	Pulled down
0	0	1	1	Disa	bled	Pulled up
1	0	0	×	Enabled	Disabled	Off (Hi-Z) *2
1	0	1	0	Enabled	Disabled	Pulled down
1	0	1	1	Enabled	Disabled	Pulled up
0	1	0	×	Disabled	Enabled	Off
0	1	1	0	Disabled	Enabled	Off
0	1	1	1	Disabled	Enabled	Off
1	1	1	0	Enabled	Enabled	Off
1	1	1	1	Enabled	Enabled	Off

#### Table 7.4.1.1 GPIO Port Control List

*1: Initial status. Current does not flow if the pin is placed into floating status.

*2: Use of the pull-up or pull-down function is recommended, as undesired current will flow if the port input is set to floating status.

**Note:** If the PPORTPxMODSEL.PxSELy bit for the port without a GPIO function is set to 0, the port goes into initial status (refer to "Initial Settings"). The GPIO control bits are configured to a read-only bit always read out as 0.

### 7.4.2 Port Input/Output Control

#### Peripheral I/O function control

The port for which a peripheral I/O function is selected is controlled by the peripheral circuit. For more information, refer to the respective peripheral circuit chapter.

#### Setting output data to a GPIO port

Write data (1 = high output, 0 = low output) to be output from the Pxy pin to the PPORTPxDAT.PxOUTy bit.

#### Reading input data from a GPIO port

The data (1 = high input, 0 = low input) input from the Pxy pin can be read out from the PPORTPxDAT.PxINy bit.

#### **Chattering filter function**

Some ports have a chattering filter function and it can be controlled in each port. This function is enabled by setting the PPORTPxCHATEN.PxCHATENy bit to 1. The input sampling time to remove chattering is determined by the CLK_PPORT frequency configured using the PPORTCLK register in common to all ports. The chattering filter removes pulses with a shorter width than the input sampling time.

Input sampling time =  $\frac{2 \text{ to } 3}{\text{CLK}_{PPORT} \text{ frequency [Hz]}}$  [second] (Eq. 7.2)

Make sure the Pxy port interrupt is disabled before altering the PPORTCLK register and PPORTPxCHATEN. PxCHATENy bit settings. A Pxy port interrupt may erroneously occur if these settings are altered in an interrupt enabled status. Furthermore, enable the interrupt after a lapse of four or more CLK_PPORT cycles from enabling the chattering filter function.

If the clock generator is configured so that it will supply CLK_PPORT to PPORT in SLEEP mode, the chattering filter of the port will function even in SLEEP mode. If CLK_PPORT is configured to stop in SLEEP mode, PPORT inactivates the chattering filter during SLEEP mode to input pin status transitions directly to itself.

#### Key-entry reset function

This function issues a reset request when low-level pulses are input to all the specified ports simultaneously. Make the following settings when using this function:

- 1. Configure the ports to be used for key-entry reset as general-purpose input ports (refer to "Initial settings when using a port as a general-purpose input port (only for the ports with GPIO function)").
- 2. Configure the input pin combination for key-entry reset using the PPORTCLK.KRSTCFG[1:0] bits.

#### 7 I/O PORTS (PPORT)

**Note**: When enabling the key-entry reset function, be sure to configure the port pins to be used for it as general-purpose input pins before setting the PPORTCLK.KRSTCFG[1:0] bits.

PPORT issues a reset request immediately after all the input pins specified by the PPORTCLK.KRSTCFG[1:0] are set to a low level if the chattering filter function is disabled (initial status). To issue a reset request only when low-level signals longer than the time configured are input, enable the chattering filter function for all the ports used for key-entry reset.

The pins configured for key-entry reset can also be used as general-purpose input pins.

# 7.5 Interrupts

When the GPIO function is selected for the port with an interrupt function, the port input interrupt function can be used.

Interrupt	Interrupt flag	Set condition	Clear condition								
Port input	PPORTPxINTF.PxIFy	Rising or falling edge of the input signal	Writing 1								
interrupt	PPORTINTFGRP.PxINT	Setting an interrupt flag in the port group	Clearing PPORTPxINTF.PxIFy								

Table 7.5.1	Port	Input	Interrupt	Function
-------------	------	-------	-----------	----------

#### Interrupt edge selection

Port input interrupts will occur at the falling edge of the input signal when setting the PPORTPxINTCTL. PxEDGEy bit to 1, or the rising edge when setting to 0.

#### Interrupt enable

PPORT provides interrupt enable bits (PPORTPxINTCTL.PxIEy bit) corresponding to each interrupt flag. An interrupt request is sent to the CPU only when the interrupt flag, of which interrupt has been enabled by the interrupt enable bit, is set. For more information on interrupt control, refer to the "Interrupt" chapter.

#### Interrupt check in port group unit

When interrupts are enabled in two or more port groups, check the PPORTINTFGRP.P.xINT bit in the interrupt handler first. It helps minimize the handler codes for finding the port that has generated an interrupt. If this bit is set to 1, an interrupt has occurred in the port group. Next, check the PPORTPxINTF.P.xIFy bit set to 1 in the port group to determine the port that has generated an interrupt. Clearing the PPORTPxINTF.P.xIFy bit also clears the PPORTINTFGRP.P.xINT bit. If the port is set to interrupt disabled status by the PPORTPxINTCTL. P.xIEy bit, the PPORTINTFGRP.P.xINT bit will not be set even if the PPORTPxINTF.P.xIFy bit is set to 1.

# 7.6 Control Registers

This section describes the same control registers of all port groups as a single register. For the register and bit configurations in each port group and their initial values, refer to "Control Register and Port Function Configuration of this IC."

### Px Port Data Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
PPORTP <i>x</i> DAT	15–8	PxOUT[7:0]	0x00	H0	R/W	_
	7–0	PxIN[7:0]	0x00	H0	R	

*1: This register is effective when the GPIO function is selected.

*2: The bit configuration differs depending on the port group.

*3: The initial value may be changed by the port.

#### Bits 15-8 PxOUT[7:0]

These bits are used to set data to be output from the GPIO port pins.

- 1 (R/W): Output high level from the port pin
- 0 (R/W): Output low level from the port pin

When output is enabled (PPORTPxIOEN.PxOENy bit = 1), the port pin outputs the data set here. Although data can be written when output is disabled (PPORTPxIOEN.PxOENy bit = 0), it does not affect the pin status. These bits do not affect the outputs when the port is used as a peripheral I/O function.

#### Bits 7-0 PxIN[7:0]

The GPIO port pin status can be read out from these bits.

1 (R): Port pin = High level

0 (R): Port pin = Low level

The port pin status can be read out when input is enabled (PPORTPxIOEN.PxIENy bit = 1). When input is disabled (PPORTPxIOEN.PxIENy bit = 0), these bits are always read as 0.

When the port is used for a peripheral I/O function, the input value cannot be read out from these bits.

#### Px Port Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
PPORTPxIOEN	15–8	PxIEN[7:0]	0x00	H0	R/W	-
	7–0	PxOEN[7:0]	0x00	HO	R/W	

*1: This register is effective when the GPIO function is selected.

*2: The bit configuration differs depending on the port group.

#### Bits 15-8 PxIEN[7:0]

These bits enable/disable the GPIO port input.

1 (R/W): Enable (The port pin status is input.)

0 (R/W): Disable (Input data is fixed at 0.)

When both data output and data input are enabled, the pin output status controlled by this IC can be read. These bits do not affect the input control when the port is used as a peripheral I/O function.

#### Bits 7–0 PxOEN[7:0]

These bits enable/disable the GPIO port output.

1 (R/W): Enable (Data is output from the port pin.)

0 (R/W): Disable (The port is placed into Hi-Z.)

These bits do not affect the output control when the port is used as a peripheral I/O function.

#### Px Port Pull-up/down Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
PPORTPxRCTL	15–8	PxPDPU[7:0]	0x00	HO	R/W	_
	7–0	PxREN[7:0]	0x00	H0	R/W	

*1: This register is effective when the GPIO function is selected.

*2: The bit configuration differs depending on the port group.

#### Bits 15–8 PxPDPU[7:0]

These bits select either the pull-up resistor or the pull-down resistor when using a resistor built into the port.

1 (R/W): Pull-up resistor

0 (R/W): Pull-down resistor

The selected pull-up/down resistor is enabled when the PPORTPxRCTL.PxRENy bit = 1.

#### Bits 7–0 PxREN[7:0]

These bits enable/disable the port pull-up/down control.

1 (R/W): Enable (The built-in pull-up/down resistor is used.)

0 (R/W): Disable (No pull-up/down control is performed.)

Enabling this function pulls up or down the port when output is disabled (PPORTPxIOEN.PxOENy bit = 0). When output is enabled (PPORTPxIOEN.PxOENy bit = 1), the PPORTPxRCTL.PxRENy bit setting is ineffective regardless of how the PPORTPxIOEN.PxIENy bit is set and the port is not pulled up/down. These bits do not affect the pull-up/down control when the port is used as a peripheral I/O function.

### Px Port Interrupt Flag Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks				
PPORTPxINTF	15–8	_	0x00	-	R	_				
	7–0	PxIF[7:0]	0x00	H0	R/W	Cleared by writing 1.				

*1: This register is effective when the GPIO function is selected.

*2: The bit configuration differs depending on the port group.

#### Bits 15–8 Reserved

#### Bits 7–0 PxIF[7:0]

These bits indicate the port input interrupt cause occurrence status.

- 1 (R): Cause of interrupt occurred
- 0 (R): No cause of interrupt occurred
- 1 (W): Clear flag
- 0 (W): Ineffective

### Px Port Interrupt Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
PPORTPxINTCTL	15–8	PxEDGE[7:0]	0x00	H0	R/W	-
	7–0	PxIE[7:0]	0x00	H0	R/W	

*1: This register is effective when the GPIO function is selected.

*2: The bit configuration differs depending on the port group.

#### Bits 15-8 PxEDGE[7:0]

These bits select the input signal edge to generate a port input interrupt.

1 (R/W): An interrupt will occur at a falling edge.

0 (R/W): An interrupt will occur at a rising edge.

#### Bits 7-0 PxIE[7:0]

These bits enable port input interrupts.

- 1 (R/W): Enable interrupts
- 0 (R/W): Disable interrupts
- **Note**: To prevent generating unnecessary interrupts, the corresponding interrupt flag should be cleared before enabling interrupts.

#### Px Port Chattering Filter Enable Register

		•	<u> </u>			
Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
PPORTP <i>x</i> CHATEN	15–8	_	0x00	-	R	_
	7–0	PxCHATEN[7:0]	0x00	H0	R/W	

*1: The bit configuration differs depending on the port group.

#### Bits 15–8 Reserved

#### Bits 7–0 PxCHATEN[7:0]

These bits enable/disable the chattering filter function.

1 (R/W): Enable (The chattering filter is used.)

0 (R/W): Disable (The chattering filter is bypassed.)

### Px Port Mode Select Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
PPORTPxMODSEL	15–8	-	0x00	-	R	-
	7–0	PxSEL[7:0]	0x00	H0	R/W	

*1: The bit configuration differs depending on the port group.

*2: The initial value may be changed by the port.

#### Bits 15–8 Reserved

#### Bits 7–0 PxSEL[7:0]

These bits select whether each port is used for the GPIO function or a peripheral I/O function.

1 (R/W): Use peripheral I/O function

0 (R/W): Use GPIO function

### Px Port Function Select Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
PPORTPxFNCSEL	15–14	Px7MUX[1:0]	0x0	HO	R/W	-
	13–12	Px6MUX[1:0]	0x0	H0	R/W	
	11–10	Px5MUX[1:0]	0x0	H0	R/W	
	9–8	Px4MUX[1:0]	0x0	H0	R/W	
	7–6	Px3MUX[1:0]	0x0	H0	R/W	
	5–4	Px2MUX[1:0]	0x0	H0	R/W	
	3–2	Px1MUX[1:0]	0x0	H0	R/W	
	1–0	Px0MUX[1:0]	0x0	H0	R/W	

*1: The bit configuration differs depending on the port group.

*2: The initial value may be changed by the port.

#### Bits 15-14 Px7MUX[1:0]

÷.

#### Bits 1-0 Px0MUX[1:0]

2

These bits select the peripheral I/O function to be assigned to each port pin.

PPORTPxFNCSEL.PxyMUX[1:0] bits	Peripheral I/O function				
0x3	Function 3				
0x2	Function 2				
0x1	Function 1				
0x0	Function 0				

Table 7.6.1 Selecting Peripheral I/O Function

This selection takes effect when the PPORTPxMODSEL.PxSELy bit = 1.

### P Port Clock Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
PPORTCLK	15–9	-	0x00	_	R	-
	8	DBRUN	0	H0	R/WP	
	7–4	CLKDIV[3:0]	0x0	H0	R/WP	
	3–2	KRSTCFG[1:0]	0x0	H0	R/WP	
	1–0	CLKSRC[1:0]	0x0	H0	R/WP	

#### Bits 15–9 Reserved

#### Bit 8 DBRUN

This bit sets whether the PPORT operating clock is supplied during debugging or not. 1 (R/WP): Clock supplied during debugging 0 (R/WP): No clock supplied during debugging

#### Bits 7–4 CLKDIV[3:0]

These bits select the division ratio of the PPORT operating clock (chattering filter clock).

#### Bits 3–2 KRSTCFG[1:0]

These bits configure the key-entry reset function.

Table 7.0.2 Rey-Entry Reset Function Setting	Table 7.6.2	Key-Entry	Reset	Function	Settings
----------------------------------------------	-------------	-----------	-------	----------	----------

PPORTCLK.KRSTCFG[1:0] bits	key-entry reset
0x3	Reset when P0[3:0] inputs = all low
0x2	Reset when P0[2:0] inputs = all low
0x1	Reset when P0[1:0] inputs = all low
0x0	Disable

#### 7 I/O PORTS (PPORT)

#### Bits 1–0 CLKSRC[1:0]

These bits select the clock source of PPORT (chattering filter).

The PPORT operating clock should be configured by selecting the clock source using the PPORT-CLK.CLKSRC[1:0] bits and the clock division ratio using the PPORTCLK.CLKDIV[3:0] bits as shown in Table 7.6.3. These settings determine the input sampling time of the chattering filter.

	PPORTCLK.CLKSRC[1:0] bits							
PPORICLK.CLKDIV[3:0]	0x0	0x1	0x2	0x3				
DITS	IOSC	OSC1	OSC3	EXOSC				
Oxf		1/32,768		1/1				
0xe		1/16,384						
0xd		1/8,192						
0xc		1/4,096						
0xb		1/2,048						
0xa								
0x9								
0x8								
0x7								
0x6								
0x5								
0x4								
0x3								
0x2		]						
0x1		1/2		]				
0x0		1/1		]				

(Note) The oscillation circuits/external input that are not supported in this IC cannot be selected as the clock source.

### P Port Interrupt Flag Group Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
PPORTINTFGRP	15–13	_	0x0	-	R	-
	12	PCINT	0	H0	R	
	11	PBINT	0	H0	R	
	10	PAINT	0	H0	R	
	9	P9INT	0	H0	R	
	8	P8INT	0	H0	R	
	7	P7INT	0	H0	R	
	6	P6INT	0	H0	R	
	5	P5INT	0	H0	R	
	4	P4INT	0	H0	R	
	3	P3INT	0	H0	R	
	2	P2INT	0	H0	R	
	1	P1INT	0	H0	R	
	0	POINT	0	HO	R	

*1: Only the bits corresponding to the port groups that support interrupts are provided.

#### Bits 15–13 Reserved

#### Bits 12–0 PxINT

These bits indicate that Px port group includes a port that has generated an interrupt.

- 1 (R): A port generated an interrupt
- 0 (R): No port generated an interrupt

The PPORTINTFGRP.PxINT bit is cleared when the interrupt flag for the port that has generated an interrupt is cleared.

# 7.7 Control Register and Port Function Configuration of this IC

This section shows the PPORT control register/bit configuration in this IC and the list of peripheral I/O functions selectable for each port.

# 7.7.1 P0 Port Group

The P0 port group supports the GPIO and interrupt functions.

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
PPORTP0DAT	15–8	P0OUT[7:0]	0x00	H0	R/W	_
(P0 Port Data Register)	7–0	P0IN[7:0]	0x00	H0	R	
PPORTPOIOEN	15–8	P0IEN[7:0]	0x00	HO	R/W	-
(P0 Port Enable Register)	7–0	P0OEN[7:0]	0x00	H0	R/W	
PPORTPORCTL	15–8	P0PDPU[7:0]	0x00	H0	R/W	-
(P0 Port Pull-up/down Control Register)	7–0	POREN[7:0]	0x00	H0	R/W	
PPORTPOINTF	15–8	-	0x00	-	R	-
(P0 Port Interrupt Flag Register)	7–0	P0IF[7:0]	0x00	H0	R/W	Cleared by writing 1.
PPORTPOINTCTL	15–8	P0EDGE[7:0]	0x00	HO	R/W	-
(P0 Port Interrupt Control Register)	7–0	P0IE[7:0]	0x00	H0	R/W	
PPORTPOCHATEN	15–8	-	0x00	-	R	-
(P0 Port Chattering Filter Enable Register)	7–0	POCHATEN[7:0]	0x00	H0	R/W	
PPORTPOMODSEL	15–8	-	0x00	-	R	-
(P0 Port Mode Select Register)	7–0	P0SEL[7:0]	0x00	H0	R/W	
PPORTPOFNCSEL	15–14	P07MUX[1:0]	0x0	HO	R/W	-
(P0 Port Function	13–12	P06MUX[1:0]	0x0	HO	R/W	-
Select Register)	11–10	P05MUX[1:0]	0x0	H0	R/W	-
	9–8	P04MUX[1:0]	0x0	H0	R/W	-
	7–6	P03MUX[1:0]	0x0	H0	R/W	-
	5–4	P02MUX[1:0]	0x0	H0	R/W	
	3–2	P01MUX[1:0]	0x0	H0	R/W	
	1–0	P00MUX[1:0]	0x0	HO	R/W	

	<u> </u>	<b>–</b> • •		-
Table (.(.1.1	Control	Registers	for P0	Port Group

Table 7.7.1.2 P0 Port Group Function Assignment

	POSELy = 0	P0SEL <i>y</i> = 1							
Port		P0yMU	X = 0x0	P0yMU	X = 0x1	P0yMU	X = 0x2	P0yMUX = 0x3	
name	GPIO	(Funct	tion 0)	(Function 1)		(Function 2)		(Function 3)	
		Peripheral	Pin	Peripheral	Pin	Peripheral	Pin	Peripheral	Pin
P00	P00	-	-	UPMUX	*1	ADC12A	VREFA0	-	-
P01	P01	T16B Ch.0	EXCL00	UPMUX	*1	ADC12A	ADIN00	-	-
P02	P02	T16B Ch.1	EXCL10	UPMUX	*1	ADC12A	ADIN01	-	-
P03	P03	REMC3	REMO	UPMUX	*1	ADC12A	ADIN02	-	-
P04	P04	REMC3	CLPLS	UPMUX	*1	ADC12A	ADIN03	-	-
P05	P05	RTCA	RTC1S	UPMUX	*1	ADC12A	ADIN04	-	-
P06	P06	CLG	EXOSC	UPMUX	*1	ADC12A	ADIN05	-	_
P07	P07	SNDA	#BZOUT	UPMUX	*1	ADC12A	ADIN06	-	-

# 7.7.2 P1 Port Group

The P1 port group consists of seven ports P10-P16 and they support the GPIO and interrupt functions.

Table 7.7.2.1	Control Registers for P1 Port Group	
---------------	-------------------------------------	--

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
PPORTP1DAT	15	-	0	-	R	_
(P1 Port Data	14–8	P1OUT[6:0]	0x00	H0	R/W	
Register)	7	-	0	-	R	
	6–0	P1IN[6:0]	0x00	H0	R	
PPORTP1IOEN	15	-	0	-	R	_
(P1 Port Enable	14–8	P1IEN[6:0]	0x00	H0	R/W	
Register)	7	_	0	-	R	
	6–0	P10EN[6:0]	0x00	H0	R/W	
PPORTP1RCTL	15	-	0	-	R	_
(P1 Port Pull-up/down	14–8	P1PDPU[6:0]	0x00	H0	R/W	
Control Register)	7	-	0	-	R	
	6–0	P1REN[6:0]	0x00	H0	R/W	
PPORTP1INTF	15–8	_	0x00	-	R	_
(P1 Port Interrupt	7	-	0	-	R	
Flag Register)	6–0	P1IF[6:0]	0x00	H0	R/W	Cleared by writing 1.
PPORTP1INTCTL	15	_	0	-	R	_
(P1 Port Interrupt	14–8	P1EDGE[6:0]	0x00	H0	R/W	
Control Register)	7	-	0	-	R	
	6–0	P1IE[6:0]	0x00	H0	R/W	
PPORTP1CHATEN	15–8	-	0x00	-	R	-
(P1 Port Chattering	7	_	0	-	R	
Filter Enable Register)	6–0	P1CHATEN[6:0]	0x00	H0	R/W	
PPORTP1MOD-	15–8	-	0x00	-	R	_
SEL	7	-	0	-	R	
(P1 Port Mode Select Register)	6–0	P1SEL[6:0]	0x00	H0	R/W	
PPORTP1FNCSEL	15–14	_	0x0	-	R	_
(P1 Port Function	13–12	P16MUX[1:0]	0x0	H0	R/W	
Select Register)	11–10	P15MUX[1:0]	0x0	H0	R/W	
	9–8	P14MUX[1:0]	0x0	H0	R/W	]
	7–6	P13MUX[1:0]	0x0	H0	R/W	
	5–4	P12MUX[1:0]	0x0	H0	R/W	
	3–2	P11MUX[1:0]	0x0	H0	R/W	
	1–0	P10MUX[1:0]	0x0	H0	R/W	

#### Table 7.7.2.2 P1 Port Group Function Assignment

	P1SELy = 0		P1SEL <i>y</i> = 1						
Port name	GPIO	P1yMU (Func	X = 0x0 tion 0)	P1yMUX = 0x1 (Function 1)		P1yMU (Func	X = 0x2 tion 2)	P1yMUX = 0x3 (Function 3)	
		Peripheral	Pin	Peripheral	Pin	Peripheral	Pin	Peripheral	Pin
P10	P10	SPIA Ch.1	#SPISS1	UPMUX	*1	-	-	-	-
P11	P11	SPIA Ch.1	SDI1	UPMUX	*1	-	-	-	-
P12	P12	SPIA Ch.1	SDO1	UPMUX	*1	-	-	-	-
P13	P13	SPIA Ch.1	SPICLK1	UPMUX	*1	-	-	-	-
P14	P14	SNDA	BZOUT	UPMUX	*1	SVD3	EXSVD0	-	-
P15	P15	ADC12A	#ADTRG	UPMUX	*1	SVD3	EXSVD1	-	-
P16	P16	T16B Ch.1	EXCL11	UPMUX	*1	-	-	-	-

# 7.7.3 P2 Port Group

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
PPORTP2DAT	15–8	P2OUT[7:0]	0x00	H0	R/W	-
(P2 Port Data Register)	7–0	P2IN[7:0]	0x00	H0	R	
PPORTP2IOEN	15–8	P2IEN[7:0]	0x00	H0	R/W	-
(P2 Port Enable Register)	7–0	P2OEN[7:0]	0x00	H0	R/W	
PPORTP2RCTL	15–8	P2PDPU[7:0]	0x00	HO	R/W	-
(P2 Port Pull-up/down Control Register)	7–0	P2REN[7:0]	0x00	H0	R/W	
PPORTP2INTF	15–8	-	0x00	-	R	-
(P2 Port Interrupt Flag Register)	7–0	P2IF[7:0]	0x00	H0	R/W	Cleared by writing 1.
PPORTP2INTCTL	15–8	P2EDGE[7:0]	0x00	H0	R/W	-
(P2 Port Interrupt Control Register)	7–0	P2IE[7:0]	0x00	H0	R/W	
PPORTP2CHATEN	15–8	-	0x00	-	R	-
(P2 Port Chattering Filter Enable Register)	7–0	P2CHATEN[7:0]	0x00	H0	R/W	
PPORTP2MODSEL	15–8	-	0x00	-	R	-
(P2 Port Mode Select Register)	7–0	P2SEL[7:0]	0x00	H0	R/W	
PPORTP2FNCSEL	15–14	P27MUX[1:0]	0x0	HO	R/W	_
(P2 Port Function	13–12	P26MUX[1:0]	0x0	H0	R/W	
Select Register)	11–10	P25MUX[1:0]	0x0	H0	R/W	
	9–8	P24MUX[1:0]	0x0	H0	R/W	
	7–6	P23MUX[1:0]	0x0	H0	R/W	
	5–4	P22MUX[1:0]	0x0	H0	R/W	
	3–2	P21MUX[1:0]	0x0	H0	R/W	
	1–0	P20MUX[1:0]	0x0	H0	R/W	

Table 7.7.3.1 Control Registers for P2 Port Group

Table 7.7.3.2	P2 Port	Group	Function	Assignment
10010 1.1.0.2	12101	aroup	i unotion	Assignment

	P2SELy = 0		P2SELy = 1								
Port		P2yMU	X = 0x0	P2yMUX = 0x1 P2yMUX			UX = 0x2 P2yMU		X = 0x3		
name	GPIO	(Func	tion 0)	(Function 1)		(Function 2)		(Function 3)			
		Peripheral	Pin	Peripheral	Pin	Peripheral	Pin	Peripheral	Pin		
P20	P20	MDC	HIFCNF	UPMUX	*1	-	-	-	-		
P21	P21	MDC	#HIFCS	UPMUX	*1	-	-	-	-		
P22	P22	MDC	#HIFRD	UPMUX	*1	-	-	-	-		
P23	P23	MDC	#HIFWR	UPMUX	*1	-	-	-	-		
P24	P24	MDC	#HIFDE	UPMUX	*1	-	-	-	-		
P25	P25	-	-	UPMUX	*1	-	-	-	-		
P26	P26	MDC	HIFD0	UPMUX	*1	-	-	-	-		
P27	P27	MDC	HIFD1	UPMUX	*1	-	-	-	-		

# 7.7.4 P3 Port Group

The P3 port group consists of seven ports P30-P36 and they support the GPIO and interrupt functions.

Table 7.7.4.1	Control Registers for P3 Port Grou	qL

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
PPORTP3DAT	15	-	0	-	R	_
(P3 Port Data	14–8	P3OUT[6:0]	0x00	H0	R/W	
Register)	7	-	0	-	R	
	6–0	P3IN[6:0]	0x00	H0	R	
PPORTP3IOEN	15	-	0	-	R	_
(P3 Port Enable	14–8	P3IEN[6:0]	0x00	H0	R/W	
Register)	7	-	0	-	R	
	6–0	P3OEN[6:0]	0x00	H0	R/W	
PPORTP3RCTL	15	_	0	-	R	_
(P3 Port Pull-up/down	14–8	P3PDPU[6:0]	0x00	H0	R/W	
Control Register)	7	-	0	-	R	
	6–0	P3REN[6:0]	0x00	H0	R/W	
PPORTP3INTF	15–8	-	0x00	-	R	_
(P3 Port Interrupt	7	-	0	-	R	
Flag Register)	6–0	P3IF[6:0]	0x00	H0	R/W	Cleared by writing 1.
PPORTP3INTCTL	15	_	0	-	R	_
(P3 Port Interrupt	14–8	P3EDGE[6:0]	0x00	H0	R/W	
Control Register)	7	-	0	-	R	
	6–0	P3IE[6:0]	0x00	H0	R/W	
<b>PPORTP3CHATEN</b>	15–8	-	0x00	-	R	_
(P3 Port Chattering	7	-	0	-	R	
Filter Enable Register)	6–0	P3CHATEN[6:0]	0x00	H0	R/W	
<b>PPORTP3MODSEL</b>	15–8	-	0x00	-	R	_
(P3 Port Mode Select	7	-	0	-	R	
Register)	6–0	P3SEL[6:0]	0x00	H0	R/W	
PPORTP3FNCSEL	15–14	_	0x0	-	R	_
(P3 Port Function	13–12	P36MUX[1:0]	0x0	H0	R/W	
Select Register)	11–10	P35MUX[1:0]	0x0	H0	R/W	
	9–8	P34MUX[1:0]	0x0	H0	R/W	
	7–6	P33MUX[1:0]	0x0	H0	R/W	
	5–4	P32MUX[1:0]	0x0	H0	R/W	
	3–2	P31MUX[1:0]	0x0	H0	R/W	
	1–0	P30MUX[1:0]	0x0	H0	R/W	

Table 7.7.4.2 P3 Port Group Function Assignment

	P3SELy = 0		P3SEL <i>y</i> = 1							
Port name	GPIO	P3yMU (Func	P3yMUX = 0x0 (Function 0)		P3yMUX = 0x1 (Function 1)		P3yMUX = 0x2 (Function 2)		P3yMUX = 0x3 (Function 3)	
		Peripheral	Pin	Peripheral	Pin	Peripheral	Pin	Peripheral	Pin	
P30	P30	MDC	HIFD2	UPMUX	*1	-	-	-	-	
P31	P31	MDC	HIFD3	UPMUX	*1	-	-	-	-	
P32	P32	MDC	HIFD4	UPMUX	*1	-	-	-	-	
P33	P33	MDC	HIFD5	UPMUX	*1	-	-	-	-	
P34	P34	MDC	HIFD6	UPMUX	*1	-	-	-	-	
P35	P35	MDC	HIFD7	UPMUX	*1	-	-	-	-	
P36	P36	MDC	INTMDC	UPMUX	*1	-	-	-	-	

# 7.7.5 P4 Port Group

The P4 port group supports the GPIO and interrupt functions.

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
PPORTP4DAT	15–8	P4OUT[7:0]	0x00	H0	R/W	-
(P4 Port Data	7–0	P4IN[7:0]	0x00	HO	R	-
Register)						
PPORTP4IOEN	15–8	P4IEN[7:0]	0x00	HO	R/W	-
(P4 Port Enable Register)	7–0	P40EN[7:0]	0x00	H0	R/W	
PPORTP4RCTL	15–8	P4PDPU[7:0]	0x00	H0	R/W	-
(P4 Port Pull-up/down Control Register)	7–0	P4REN[7:0]	0x00	H0	R/W	
PPORTP4INTF	15–8	_	0x00	-	R	-
(P4 Port Interrupt Flag Register)	7–0	P4IF[7:0]	0x00	H0	R/W	Cleared by writing 1.
PPORTP4INTCTL	15–8	P4EDGE[7:0]	0x00	H0	R/W	-
(P4 Port Interrupt Control Register)	7–0	P4IE[7:0]	0x00	H0	R/W	
PPORTP4CHATEN	15–8	-	0x00	-	R	-
Filter Enable Register)	7–0	P4CHATEN[7:0]	0x00	H0	R/W	
PPORTP4MODSEL	15–8	-	0x00	-	R	-
(P4 Port Mode Select Register)	7–0	P4SEL[7:0]	0x00	H0	R/W	
PPORTP4FNCSEL	15–14	P47MUX[1:0]	0x0	HO	R/W	-
(P4 Port Function	13–12	P46MUX[1:0]	0x0	H0	R/W	
Select Register)	11–10	P45MUX[1:0]	0x0	HO	R/W	
	9–8	P44MUX[1:0]	0x0	H0	R/W	
	7–6	P43MUX[1:0]	0x0	H0	R/W	
	5–4	P42MUX[1:0]	0x0	H0	R/W	
	3–2	P41MUX[1:0]	0x0	H0	R/W	
	1–0	P40MUX[1:0]	0x0	H0	R/W	

Table 7.7.5.1 Control Registers for P4 Port Group

Table 7752	D/ Dort	Group	Eunction	Accianmont
14010 1.1.3.2	14101	aroup	1 unction	Assignment

	P4SELy = 0		P4SELy = 1								
Port		P4yMU	X = 0x0	P4yMU	X = 0x1	P4yMU	P4yMUX = 0x2		P4yMUX = 0x3		
name	GPIO	(Funct	tion 0)	(Function 1)		(Function 2)		(Function 3)			
		Peripheral	Pin	Peripheral	Pin	Peripheral	Pin	Peripheral	Pin		
P40	P40	MDC	VCOM	-	-	-	-	-	-		
P41	P41	MDC	XFRP	-	-	-	-	-	-		
P42	P42	MDC	HST	-	-	-	-	-	-		
P43	P43	MDC	RED0	-	-	-	-	-	-		
P44	P44	MDC	RED1	-	-	-	-	-	-		
P45	P45	MDC	GRN0	-	-	-	-	-	-		
P46	P46	MDC	GRN1	-	-	-	-	-	-		
P47	P47	MDC	BLU0	-	-	-	-	-	-		

# 7.7.6 P5 Port Group

The P5 port group consists of seven ports P50-P56 and they support the GPIO and interrupt functions.

Table 7.7.6.1	Control	Reaisters	for P5	Port Group

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
PPORTP5DAT	15	-	0	-	R	-
(P5 Port Data	14–8	P5OUT[6:0]	0x00	H0	R/W	
Register)	7	-	0	-	R	
	6–0	P5IN[6:0]	0x00	H0	R	
PPORTP5IOEN	15	-	0	_	R	-
(P5 Port Enable	14–8	P5IEN[6:0]	0x00	H0	R/W	
Register)	7	-	0	-	R	
	6–0	P50EN[6:0]	0x00	H0	R/W	
PPORTP5RCTL	15	_	0	-	R	-
(P5 Port Pull-up/down	14–8	P5PDPU[6:0]	0x00	HO	R/W	
Control Register)	7	-	0	-	R	
	6–0	P5REN[6:0]	0x00	HO	R/W	
PPORTP5INTF	15–8	_	0x00	-	R	-
(P5 Port Interrupt	7	-	0	-	R	1
Flag Register)	6–0	P5IF[6:0]	0x00	HO	R/W	Cleared by writing 1.
PPORTP5INTCTL	15	_	0	_	R	-
(P5 Port Interrupt	14–8	P5EDGE[6:0]	0x00	HO	R/W	
Control Register)	7	-	0	-	R	
	6–0	P5IE[6:0]	0x00	HO	R/W	
PPORTP5CHATEN	15–8	-	0x00	-	R	-
(P5 Port Chattering	7	-	0	-	R	
Filter Enable Register)	6–0	P5CHATEN[6:0]	0x00	HO	R/W	
PPORTP5MODSEL	15–8	-	0x00	-	R	-
(P5 Port Mode Select	7	-	0	-	R	
Register)	6–0	P5SEL[6:0]	0x00	H0	R/W	
PPORTP5FNCSEL	15–14	_	0x0	-	R	-
(P5 Port Function	13–12	P56MUX[1:0]	0x0	HO	R/W	
Select Register)	11–10	P55MUX[1:0]	0x0	H0	R/W	
	9–8	P54MUX[1:0]	0x0	H0	R/W	
	7–6	P53MUX[1:0]	0x0	H0	R/W	]
	5–4	P52MUX[1:0]	0x0	HO	R/W	]
	3–2	P51MUX[1:0]	0x0	HO	R/W	
	1–0	P50MUX[1:0]	0x0	HO	R/W	

Table 7.7.6.2 P5 Port Group Function Assignment

	P5SELy = 0	0 P5SELy = 1								
Port name	GPIO	P5yMU (Func	X = 0x0 tion 0)	P5yMU (Func	P5yMUX = 0x1 (Function 1)		P5yMUX = 0x2 (Function 2)		P5yMUX = 0x3 (Function 3)	
		Peripheral	Pin	Peripheral	Pin	Peripheral	Pin	Peripheral	Pin	
P50	P50	MDC	BLU1	-	-	-	-	-	-	
P51	P51	MDC	HCK	-	-	-	-	-	-	
P52	P52	MDC	ENB	-	-	-	-	-	-	
P53	P53	-	-	-	-	-	-	-	-	
P54	P54	MDC	VST	-	-	-	-	-	-	
P55	P55	MDC	XRST	-	-	-	-	-	-	
P56	P56	MDC	VCK	-	-	-	-	-	-	

# 7.7.7 P6 Port Group

The P6 port group supports the GPIO and interrupt functions.

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
PPORTP6DAT	15–8	P6OUT[7:0]	0x00	H0	R/W	-
(P6 Port Data Register)	7–0	P6IN[7:0]	0x00	H0	R	
PPORTP6IOEN	15–8	P6IEN[7:0]	0x00	H0	R/W	-
(P6 Port Enable Register)	7–0	P6OEN[7:0]	0x00	H0	R/W	
PPORTP6RCTL	15–8	P6PDPU[7:0]	0x00	H0	R/W	-
(P6 Port Pull-up/down Control Register)	7–0	P6REN[7:0]	0x00	H0	R/W	
PPORTP6INTF	15–8	-	0x00	-	R	-
(P6 Port Interrupt Flag Register)	7–0	P6IF[7:0]	0x00	H0	R/W	Cleared by writing 1.
PPORTP6INTCTL	15–8	P6EDGE[7:0]	0x00	H0	R/W	-
(P6 Port Interrupt Control Register)	7–0	P6IE[7:0]	0x00	H0	R/W	
PPORTP6CHATEN	15–8	-	0x00	-	R	-
(P6 Port Chattering Filter Enable Register)	7–0	P6CHATEN[7:0]	0x00	H0	R/W	
PPORTP6MODSEL	15–8	-	0x00	-	R	-
(P6 Port Mode Select Register)	7–0	P6SEL[7:0]	0x00	H0	R/W	
PPORTP6FNCSEL	15–14	P67MUX[1:0]	0x0	HO	R/W	_
(P6 Port Function	13–12	P66MUX[1:0]	0x0	H0	R/W	
Select Register)	11–10	P65MUX[1:0]	0x0	H0	R/W	
	9–8	P64MUX[1:0]	0x0	H0	R/W	
	7–6	P63MUX[1:0]	0x0	H0	R/W	
	5–4	P62MUX[1:0]	0x0	H0	R/W	
	3–2	P61MUX[1:0]	0x0	H0	R/W	
	1–0	P60MUX[1:0]	0x0	H0	R/W	

Table 7.7.7.1 Control Registers for P6 Port Group

		~		
Table $(.(.))$	P6 Port	Group	Function	Assignment

	P6SELy = 0		P6SELy = 1								
Port		P6yMU	X = 0x0	P6yMU	X = 0x1	P6yMU	X = 0x2	P6yMUX = 0x3			
name	GPIO	(Func	tion 0)	(Function 1)		(Function 2)		(Function 3)			
		Peripheral	Pin	Peripheral	Pin	Peripheral	Pin	Peripheral	Pin		
P60	P60	QSPI Ch.0	QSPICLK0	-	-	-	-	-	-		
P61	P61	QSPI Ch.0	QSDIO00	-	-	-	-	-	-		
P62	P62	QSPI Ch.0	QSDIO01	-	-	-	-	-	-		
P63	P63	QSPI Ch.0	QSDIO02	-	-	-	-	-	-		
P64	P64	QSPI Ch.0	QSDIO03	-	-	-	-	-	-		
P65	P65	QSPI Ch.0	#QSPISS0	-	-	-	-	-	-		
P66	P66	CLG	FOUT	-	-	-	-	-	-		
P67	P67	T16B Ch.0	EXCL01	-	-	-	-	-	-		

# 7.7.8 Pd Port Group

The Pd port group consists of four ports Pd0–Pd3 and two ports Pd0–Pd1 are configured as debugging function ports at initialization. These four ports support the GPIO function.

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
PPORTPDDAT	15–12	_	0x0	-	R	-
(Pd Port Data	11–8	PDOUT[3:0]	0x0	H0	R/W	
Register)	7–4	-	0x0	-	R	
	3–0	PDIN[3:0]	х	H0	R	
PPORTPDIOEN	15–12	-	0x0	-	R	-
(Pd Port Enable	11–8	PDIEN[3:0]	0x0	H0	R/W	
Register)	7–4	-	0x0	-	R	
	3–0	PDOEN[3:0]	0x0	H0	R/W	
PPORTPDRCTL	15–12	-	0x0	-	R	-
(Pd Port Pull-up/down	11–8	PDPDPU[3:0]	0x0	H0	R/W	
Control Register)	7–4	-	0x0	-	R	
	3–0	PDREN[3:0]	0x0	H0	R/W	
PPORTPDINTF	15–0	_	0x0000	-	R	-
PPORTPDINTCTL						
PPORTPDCHATEN						
PPORTPDMODSEL	15–8	-	0x00	-	R	-
(Pd Port Mode Select	7–4	_	0x0	-	R	
Register)	3–0	PDSEL[3:0]	0x3	H0	R/W	
PPORTPDFNCSEL	15–8	_	0x00	-	R	-
(Pd Port Function	7–6	PD3MUX[1:0]	0x0	H0	R/W	
Select Register)	5–4	PD2MUX[1:0]	0x0	HO	R/W	
	3–2	PD1MUX[1:0]	0x0	HO	R/W	
	1–0	PD0MUX[1:0]	0x0	H0	R/W	

Table 7.7.8.1 Control Registers for Pd Port Group

Table 7.7.8.2	Pd Port Group	<b>Function Assignment</b>
---------------	---------------	----------------------------

	PdSELy = 0	PdSELy = 1										
Port name	GPIO	PdyMUX = 0x0 (Function 0)		PdyMUX = 0x0 (Function 0) PdyMUX = 0x1 (Function 1)		PdyMUX = 0x2 (Function 2)		PdyMUX = 0x3 (Function 3)				
		Peripheral	Pin	Peripheral	Pin	Peripheral	Pin	Peripheral	Pin			
Pd0	Pd0	CPU	SWCLK	-	-	-	-	-	-			
Pd1	Pd1	CPU	SWD	-	-	-	-	-	-			
Pd2	Pd2	-	-	-	-	CLG	OSC3	-	-			
Pd3	Pd3	-	-	-	-	CLG	OSC4	-	-			

	Table 7.7.9.1 Control Registers for Common Use with Port Groups								
Register name	Bit	Bit name	Initial	Reset	R/W	Remarks			
PPORTCLK	15–9	-	0x00	-	R	-			
(P Port Clock Control	8	DBRUN	0	H0	R/WP				
Register)	7–4	CLKDIV[3:0]	0x0	H0	R/WP				
	3–2	KRSTCFG[1:0]	0x0	H0	R/WP				
	1–0	CLKSRC[1:0]	0x0	H0	R/WP				
PPORTINTFGRP	15–8	-	0x00	-	R	-			
(P Port Interrupt Flag	7	-	0	-	R				
Group Register)	6	P6INT	0	HO	R				
	5	P5INT	0	H0	R				
	4	P4INT	0	H0	R				
	3	P3INT	0	H0	R				
	2	P2INT	0	H0	R				
	1	P1INT	0	H0	R				
	0	POINT	0	H0	R				

# 7.7.9 Common Registers between Port Groups

# 8 Universal Port Multiplexer (UPMUX)

# 8.1 Overview

UPMUX is a multiplexer that allows software to assign the desired peripheral I/O function to an I/O port. The main features are outlined below.

- Allows programmable assignment of the I²C, UART, synchronous serial interface, and 16-bit PWM timer peripheral I/O functions to the P0, P1, P2, and P3 port groups.
- The peripheral I/O function assigned via UPMUX is enabled by setting the PPORTPxFNCSEL.PxyMUX[1:0] bits to 0x1.
- **Note:** '*x*', which is used in the port names P*xy*, register names, and bit names, refers to a port group (x = 0, 1, 2, 3) and '*y*' refers to a port number ( $y = 0, 1, 2, \dots, 7$ ).

Figure 8.1.1 shows the configuration of UPMUX.



Figure 8.1.1 UPMUX Configuration

# 8.2 Peripheral Circuit I/O Function Assignment

An I/O function of a peripheral circuit supported may be assigned to peripheral I/O function 1 of an I/O port listed above. The following shows the procedure to assign a peripheral I/O function and enable it in the I/O port:

1.	Configure the PPORTPxIOEN register of the I/O port.	
	- Set the PPORTPxIOEN.PxIENy bit to 0.	(Disable input)
	- Set the PPORTPxIOEN.PxOENy bit to 0.	(Disable output)
2.	Set the PPORTP <i>x</i> MODSEL.P <i>x</i> SEL <i>y</i> bit of the I/O port to 0.	(Disable peripheral I/O function)
3.	Set the following UPMUXP $x$ MUX $n$ register bits ( $n = 0$ to 3).	
	- UPMUXPxMUXn.PxyPERISEL[2:0] bits	(Select peripheral circuit)
	- UPMUXPxMUXn.PxyPERICH[1:0] bits	(Select peripheral circuit channel)
	- UPMUXPxMUXn.PxyPPFNC[2:0] bits	(Select function to assign)
4.	Initialize the peripheral circuit.	
5.	Set the PPORTPxFNCSEL.PxyMUX[1:0] bits of the I/O port to 0x1.	(Select peripheral I/O function 1)
6.	Set the PPORTP <i>x</i> MODSEL.P <i>x</i> SEL <i>y</i> bit of the I/O port to 1.	(Enable peripheral I/O function)

# 8.3 Control Registers

### Pxy-xz Universal Port Multiplexer Setting Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
UPMUXPxMUXn	15–13	PxzPPFNC[2:0]	0x0	H0	R/W	-
	12–11	PxzPERICH[1:0]	0x0	H0	R/W	
	10–8	PxzPERISEL[2:0]	0x0	H0	R/W	
	7–5	PxyPPFNC[2:0]	0x0	H0	R/W	
	4–3	PxyPERICH[1:0]	0x0	H0	R/W	
	2–0	PxyPERISEL[2:0]	0x0	H0	R/W	

*1: 'x' in the register name refers to a port group number and 'n' refers to a register number (0-3).

*2: 'x' in the bit name refers to a port group number, 'y' refers to an even port number (0, 2, 4, 6), and 'z' refers to an odd port number (z = y + 1).

#### Bits 15-13 PxzPPFNC[2:0]

#### Bits 7–5 PxyPPFNC[2:0]

These bits specify the peripheral I/O function to be assigned to the port. (See Table 8.3.1.)

Bits 12–11 PxzPERICH[1:0]

### Bits 4–3 PxyPERICH[1:0]

These bits specify a peripheral circuit channel number. (See Table 8.3.1.)

#### Bits 10-8 PxzPERISEL[2:0]

#### Bits 2–0 PxyPERISEL[2:0]

These bits specify a peripheral circuit. (See Table 8.3.1.)

Table 8.3.1 Peripheral I/O Function Selections

	UPMUXPxMUXn.PxyPERISEL[2:0] bits (Peripheral circuit)									
UPMUXPxMUXn.	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7		
PxyPPFNC[2:0] bits	None *	I2C	SPIA	UART3	T16B	Reserved	Reserved	Reserved		
(Peripheral I/O	UPMUXPxMUXn.PxyPERICH[1:0] bits (Peripheral circuit channel)									
function)	-	0x0-0x1	0x0	0x0-0x2	0x0-0x1	-	-	-		
	-	Ch.0–1	Ch.0	Ch.0–2	Ch.0–1	-	-	-		
0x0	None *	None *	None *	None *	None *	None *	None *	None *		
0v1		SCI n	8Dia	LICINID	TOUTn0/					
UXI		3007	301/1	03111/1	CAPn0					
0v2		SDAn	SDOn	USOUTA	TOUTn1/					
0x2 0x3 0x4	Reserved	SDAT	300//	03001//	CAPn1	Reserved	Reserved	Reserved		
			SPICLKn	Reserved	TOUTn2/					
					CAPn2					
			#SPISSn		TOUTn3/					
					CAPn3					
0×5		Reserved			TOUTn4/					
0,0					CAPn4					
0×6			Reserved		TOUTn5/					
0.00					CAPn5					
0x7					Reserved					

* "None" means no assignment. Selecting this will put the Pxy pin into Hi-Z status when peripheral I/O function 1 is selected and enabled in the I/O port.

**Note**: Do not assign a peripheral input function to two or more I/O ports. Although the I/O ports output the same waveforms when an output function is assigned to two or more I/O port, a skew occurs due to the internal delay.

# 9 Watchdog Timer (WDT2)

# 9.1 Overview

WDT2 restarts the system if a problem occurs, such as when the program cannot be executed normally. The features of WDT2 are listed below.

- Includes a 10-bit up counter to count NMI/reset generation cycle.
- A counter clock source and clock division ratio are selectable.
- Can generate a reset or NMI in a cycle given via software.
- Can generate a reset at the next NMI generation cycle after an NMI is generated.

Figure 9.1.1 shows the configuration of WDT2.



Figure 9.1.1 WDT2 Configuration

# 9.2 Clock Settings

# 9.2.1 WDT2 Operating Clock

When using WDT2, the WDT2 operating clock CLK_WDT2 must be supplied to WDT2 from the clock generator. The CLK_WDT2 supply should be controlled as in the procedure shown below.

- 1. Write 0x0096 to the SYSPROT.PROT[15:0] bits. (Remove system protection)
- 2. Enable the clock source in the clock generator if it is stopped (refer to "Clock Generator" in the "Power Supply, Reset, and Clocks" chapter).
- 3. Set the following WDT2CLK register bits:

   WDT2CLK.CLKSRC[1:0] bits
   (Clock source selection)

   WDT2CLK.CLKDIV[1:0] bits
   (Clock division ratio selection = Clock frequency setting)
- 4. Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits. (Set system protection)

# 9.2.2 Clock Supply in DEBUG Mode

The CLK_WDT2 supply during DEBUG mode should be controlled using the WDT2CLK.DBRUN bit. The CLK_WDT2 supply to WDT2 is suspended when the CPU enters DEBUG mode if the WDT2CLK.DBRUN bit = 0. After the CPU returns to normal mode, the CLK_WDT2 supply resumes. Although WDT2 stops operating when the CLK_WDT2 supply is suspended, the register retains the status before DEBUG mode was entered. If the WDT2CLK.DBRUN bit = 1, the CLK_WDT2 supply is not suspended and WDT2 will keep operating in DEBUG mode.

# 9.3 Operations

### 9.3.1 WDT2 Control

#### Activating WDT2

WDT2 should be initialized and started up with the procedure listed below.

1.	Write 0x0096 to the SYSPROT.PROT[15:0] bits.	(Remove system protection)
2.	Configure the WDT2 operating clock.	
3.	Set the WDT2CTL.MOD[1:0] bits.	(Select WDT2 operating mode)
4.	Set the WDT2CMP.CMP[9:0] bits.	(Set NMI/reset generation cycle)
5.	Write 1 to the WDT2CTL.WDTCNTRST bit.	(Reset WDT2 counter)
6.	Write a value other than 0xa to the WDT2CTL.WDTRUN[3:0] bits.	(Start up WDT2)
_		

7. Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits. (Set system protection)

#### NMI/reset generation cycle

Use the following equation to calculate the WDT2 NMI/reset generation cycle.

$t_{WDT} = \frac{CMP + CLK_WI}{CLK_WI}$	1 )T2 (Eq. 9.1)	
Where		
twdt:	NMI/reset generation cycle [second]	

CLK_WDT2: WDT2 operating clock frequency [Hz] CMP: Setting value of the WDT2CMP.CMP[9:0] bits

Example) twDT = 2.5 seconds when CLK_WDT2 = 256 Hz and the WDT2CMP.CMP[9:0] bits = 639

#### **Resetting WDT2 counter**

To prevent an unexpected NMI/reset to be generated by WDT2, its embedded counter must be reset periodically via software while WDT2 is running.

1.	Write 0x0096 to the SYSPROT.PROT[15:0] bits.	(Remove system protection)
2.	Write 1 to the WDT2CTL.WDTCNTRST bit.	(Reset WDT2 counter)

3. Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits. (Set system protection)

A location should be provided for periodically processing this routine. Process this routine within the twDT cycle. After resetting, WDT2 starts counting with a new NMI/reset generation cycle.

#### Occurrence of counter compare match

If WDT2 is not reset within the two cycle for any reason and the counter reaches the setting value of the WDT2CMP.CMP[9:0] bits, a compare match occurs to cause WDT2 to issue an NMI or reset according to the setting of the WDT2CTL.MOD[1:0] bits.

If an NMI is issued, the WDT2CTL.STATNMI bit is set to 1. This bit can be cleared to 0 by writing 1 to the WDT2CTL.WDTCNTRST bit. Be sure to clear the WDT2CTL.STATNMI bit in the NMI handler routine, If a compare match occurs, the counter is automatically reset to 0 and it continues counting.

#### **Deactivating WDT2**

WDT2 should be stopped with the procedure listed below.

1. Write 0x0096 to the SYSPROT.PROT[15:0] bits. 2. Write 0xa to the WDT2CTL.WDTRUN[3:0] bits. (Remove system protection) (Stop WDT2)

3. Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits. (Set system protection)
# 9.3.2 Operations in HALT and SLEEP Modes

### **During HALT mode**

WDT2 operates in HALT mode. HALT mode is therefore cleared by an NMI or reset if it continues for more than the NMI/reset generation cycle and the CPU executes the interrupt handler. To disable WDT2 in HALT mode, stop WDT2 by writing 0xa to the WDT2CTL.WDTRUN[3:0] bits before setting to HALT mode. Reset WDT2 before resuming operations after HALT mode is cleared.

### **During SLEEP mode**

WDT2 operates in SLEEP mode if the selected clock source is running. SLEEP mode is cleared by an NMI or reset if it continues for more than the NMI/reset generation cycle and the CPU executes the interrupt handler. Therefore, stop WDT2 by setting the WDT2CTL.WDTRUN[3:0] bits before setting to SLEEP mode.

If the clock source stops in SLEEP mode, WDT2 stops. To prevent generation of an unnecessary NMI or reset after clearing SLEEP mode, reset WDT2 before executing the slp instruction. WDT2 should also be stopped as required using the WDT2CTL.WDTRUN[3:0] bits.

# 9.4 Control Registers

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks	
WDT2CLK	15–9	-	0x00	_	R	-	
	8	DBRUN	0	H0	R/WP		
	7–6	-	0x0	-	R		
	5–4	CLKDIV[1:0]	0x0	H0	R/WP		
	3–2	-	0x0	-	R		
	1–0	CLKSRC[1:0]	0x0	H0	R/WP		

### WDT2 Clock Control Register

### Bits 15–9 Reserved

### Bit 8 DBRUN

This bit sets whether the WDT2 operating clock is supplied in DEBUG mode or not. 1 (R/WP): Clock supplied in DEBUG mode 0 (R/WP): No clock supplied in DEBUG mode

### Bits 7–6 Reserved

### Bits 5–4 CLKDIV[1:0]

These bits select the division ratio of the WDT2 operating clock (counter clock). The clock frequency should be set to around 256 Hz.

### Bits 3–2 Reserved

### Bits 1–0 CLKSRC[1:0]

These bits select the clock source of WDT2.

Table 9.4.1 Clock Source and Division Ratio Settings

WDTOOLK	WDT2CLK.CLKSRC[1:0] bits							
CLKDIV(1.01 bits	0x0	0x1	0x2	0x3				
	IOSC	OSC1	OSC3	EXOSC				
0x3	1/65,536	1/128	1/65,536	1/1				
0x2	1/32,768		1/32,768					
0x1	1/16,384		1/16,384					
0x0	1/8,192		1/8,192	]				

(Note) The oscillation circuits/external input that are not supported in this IC cannot be selected as the clock source.

### **WDT2 Control Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
WDT2CTL	15–11	_	0x00	-	R	_
	10–9	MOD[1:0]	0x0	H0	R/WP	
	8	STATNMI	0	H0	R	
	7–5	-	0x0	-	R	
	4	WDTCNTRST	0	H0	WP	Always read as 0.
	3–0	WDTRUN[3:0]	0xa	H0	R/WP	_

### Bits 15–11 Reserved

### Bits 10-9 MOD[1:0]

These bits set the WDT2 operating mode.

Table 9.4.2	Operating	Mode Setting
10010 0.4.2	operating	moue octaing

WDT2CTL. MOD[1:0] bits	Operating mode	Description
0x3	Reserved	_
0x2	RESET after NMI mode	If the WDT2CTL.STATNMI bit is not cleared to 0 after an NMI
		has occurred due to a counter compare match, WDT2 issues
		a reset when the next compare match occurs.
0x1	NMI mode	WDT2 issues an NMI when a counter compare match occurs.
0x0	RESET mode	WDT2 issues a reset when a counter compare match occurs.

### Bit 8 STATNMI

This bit indicates that a counter compare match and NMI have occurred.

1 (R): NMI (counter compare match) occurred

0 (R): NMI not occurred

When the NMI generation function of WDT2 is used, read this bit in the NMI handler routine to confirm that WDT2 was the source of the NMI.

The WDT2CTL.STATNMI bit set to 1 is cleared to 0 by writing 1 to the WDT2CTL.WDTCNTRST bit.

#### Bits 7–5 Reserved

#### Bit 4 WDTCNTRST

This bit resets the 10-bit counter and the WDT2CTL.STATNMI bit.

- 1 (WP): Reset
- 0 (WP): Ignored
- 0 (R): Always 0 when being read

#### Bits 3–0 WDTRUN[3:0]

These bits control WDT2 to run and stop.

0xa (WP):	Stop
Values other than 0xa (WP):	Run
0xa (R):	Idle
0x0 (R):	Running

Always 0x0 is read if a value other than 0xa is written.

Since an NMI or reset may be generated immediately after running depending on the counter value, WDT2 should also be reset concurrently when running WDT2.

### WDT2 Counter Compare Match Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
WDT2CMP	15–10	-	0x00	-	R	_
	9–0	CMP[9:0]	0x3ff	H0	R/WP	

#### Bits 15–10 Reserved

### Bits 9–0 CMP[9:0]

These bits set the NMI/reset generation cycle.

The value set in this register is compared with the 10-bit counter value while WDT2 is running, and an NMI or reset is generated when they are matched.

# 10 Real-Time Clock (RTCA)

# 10.1 Overview

RTCA is a real-time clock with a perpetual calendar function. The main features of RTCA are outlined below.

- Includes a BCD real-time clock counter to implement a time-of-day clock (second, minute, and hour) and calendar (day, day of the week, month, and year with leap year supported).
- Provides a hold function for reading correct counter values by suspending the real-time clock counter operation.
- 24-hour or 12-hour mode is selectable.
- Capable of controlling the starting and stopping of the time-of-day clock.
- Provides a 30-second correction function to adjust time using a time signal.
- Includes a 1 Hz counter to count 128 to 1 Hz.
- Includes a BCD stopwatch counter with 1/100-second counting supported.
- Provides a theoretical regulation function to correct clock error due to frequency tolerance with no external parts required.



Figure 10.1.1 shows the configuration of RTCA.

Figure 10.1.1 RTCA Configuration

# **10.2 Output Pin and External Connection**

# 10.2.1 Output Pin

Table 10.2.1.1 shows the RTCA pin.

Table	10.2.1.1	RTCA	Pin

Pin name	I/O*	Initial status*	Function
RTC1S	0	O (L)	1-second signal monitor output pin
			* Indicates the status when the pin is configured for RTCA.

If the port is shared with the RTCA output function and other functions, the RTCA function must be assigned to the port. For more information, refer to the "I/O Ports" chapter.

# 10.3 Clock Settings

# 10.3.1 RTCA Operating Clock

RTCA uses CLK_RTCA, which is generated by the clock generator from OSC1 as the clock source, as its operating clock. RTCA is operable when OSC1 is enabled.

To continue the RTCA operation during SLEEP mode with OSC1 being activated, the CLGOSC.OSC1SLPC bit must be set to 0.

# 10.3.2 Theoretical Regulation Function

The time-of-day clock loses accuracy if the OSC1 frequency fosc1 has a frequency tolerance from 32.768 kHz. To correct this error without changing any external part, RTCA provides a theoretical regulation function. Follow the procedure below to perform theoretical regulation.

- 1. Measure fosc1 and calculate the frequency tolerance correction value "m [ppm] = -{(fosc1 - 32,768 [Hz]) / 32,768 [Hz]} × 10⁶."
- 2. Determine the theoretical regulation execution cycle time "n seconds."
- 3. Determine the value to be written to the RTCACTLH.RTCTRM[6:0] bits from the results in Steps 1 and 2.
- 4. Write the value determined in Step 3 to the RTCACTLH.RTCTRM[6:0] bits periodically in n-second cycles using an RTCA alarm or second interrupt.
- 5. Monitor the RTC1S signal to check that every n-second cycle has no error included.

The correction value for theoretical regulation can be specified within the range from -64 to +63 and it should be written to the RTCACTLH.RTCTRM[6:0] bits as a two's-complement number. Use Eq. 10.1 to calculate the correction value.

 $RTCTRM[6:0] = \frac{m}{10^6} \times 256 \times n \quad (However, RTCTRM[6:0] \text{ is an integer after rounding off to -64 to +63.}) \quad (Eq. 10.1)$ 

Where

- n: Theoretical regulation execution cycle time [second] (time interval to write the correct value to the RTCACTLH.RTCTRM[6:0] bits periodically via software)
- m: OSC1 frequency tolerance correction value [ppm]

Figure 10.3.2.1 shows the RTC1S signal waveform.



Table 10.3.2.1 lists the frequency tolerance correction rates when the theoretical regulation execution cycle time n is 4,096 seconds as an example.

Table 10.3.2.1	Correction	Rates when	Theoretical	Regulation	Execution	Cycle	Time n =	4,096	Seconds
----------------	------------	------------	-------------	------------	-----------	-------	----------	-------	---------

RTCACTLH.RTCTRM[6:0]	Correction	Correction rate	RTCACTLH.RTCTRM[6:0]	Correction	Correction rate
bits (two's-complement)	value (decimal)	[ppm]	bits (two's-complement)	value (decimal)	[ppm]
0x00	0	0.0	0x40	-64	-61.0
0x01	1	1.0	0x41	-63	-60.1
0x02	2	1.9	0x42	-62	-59.1
0x03	3	2.9	0x43	-61	-58.2
0x3e	62	59.1	0x7e	-2	-1.9
0x3f	63	60.1	0x7f	-1	-1.0

Minimum resolution: 1 ppm, Correction rate range: -61.0 to 60.1 ppm

- **Notes:** The theoretical regulation affects only the real-time clock counter and 1 Hz counter. It does not affect the stopwatch counter.
  - After a value is written to the RTCACTLH.RTCTRM[6:0] bits, the theoretical regulation correction takes effect on the 1 Hz counter value at the same timing as when the 1 Hz counter changes to 0x7f. Also an interrupt occurs depending on the counter value at this time.

# **10.4 Operations**

# 10.4.1 RTCA Control

Follow the sequences shown below to set time to RTCA, to read the current time and to set alarm.

### **Time setting**

- 1. Set RTCA to 12H or 24H mode using the RTCACTLL.RTC24H bit.
- 2. Write 1 to the RTCACTLL.RTCRUN bit to enable for the real-time clock counter to start counting up.
- 3. Check to see if the RTCACTLL.RTCBSY bit = 0 that indicates the counter is ready to rewrite. If the RTCACTLL.RTCBSY bit = 1, wait until it is set to 0.
- 4. Write the current date and time in BCD code to the control bits listed below. RTCASEC.RTCSH[2:0]/RTCSL[3:0] bits (second) RTCAHUR.RTCMIH[2:0]/RTCMIL[3:0] bits (minute) RTCAHUR.RTCHH[1:0]/RTCHL[3:0] bits (hour) RTCAHUR.RTCAP bit (AM/PM) (effective when RTCACTLL.RTC24H bit = 0) RTCAMON.RTCDH[1:0]/RTCDL[3:0] bits (day) RTCAMON.RTCMOH/RTCMOL[3:0] bits (day) RTCAMON.RTCYH[3:0]/RTCYL[3:0] bits (month) RTCAYAR.RTCYH[3:0]/RTCYL[3:0] bits (year) RTCAYAR.RTCWK[2:0] bits (day of the week)
- 5 Write 1 to the RTCACTLL.RTCADJ bit (execute 30-second correction) using a time signal to adjust the time. (For more information on the 30-second correction, refer to "Real-Time Clock Counter Operations.")
- 6. Write 1 to the real-time clock counter interrupt flags in the RTCAINTF register to clear them.
- 7. Write 1 to the interrupt enable bits in the RTCAINTE register to enable real-time clock counter interrupts.

### Time read

- 1. Check to see if the RTCACTLL.RTCBSY bit = 0. If the RTCACTLL.RTCBSY bit = 1, wait until it is set to 0.
- 2. Write 1 to the RTCACTLL.RTCHLD bit to suspend count-up operation of the real-time clock counter.
- 3. Read the date and time from the control bits listed in "Time setting, Step 4" above.
- 4. Write 0 to the RTCACTLL.RTCHLD bit to resume count-up operation of the real-time clock counter. If a second count-up timing has occurred in the count hold state, the hardware corrects the second counter for +1 second (for more information on the +1 second correction, refer to "Real-Time Clock Counter Operations").

### Alarm setting

- 1. Write 0 to the RTCAINTE.ALARMIE bit to disable alarm interrupts.
- Write the alarm time in BCD code to the control bits listed below (a time within 24 hours from the current time can be specified). RTCAALM1.RTCSHA[2:0]/RTCSLA[3:0] bits (second) RTCAALM2.RTCMIHA[2:0]/RTCMILA[3:0] bits (minute)

RTCAALM2.RTCHHA[1:0]/RTCHLA[3:0] bits (hundu

RTCAALM2.RTCAPA bit (AM/PM) (effective when RTCACTLL.RTC24H bit = 0)

- 3. Write 1 to the RTCAINTF.ALARMIF bit to clear the alarm interrupt flag.
- 4. Write 1 to the RTCAINTE.ALARMIE bit to enable alarm interrupts. When the real-time clock counter reaches the alarm time set in Step 2, an alarm interrupt occurs.

# 10.4.2 Real-Time Clock Counter Operations

The real-time clock counter consists of second, minute, hour, AM/PM, day, month, year, and day of the week counters and it performs counting up using the RTC1S signal. It has the following functions as well.

### **Recognizing leap years**

The leap year recognizing algorithm used in RTCA is effective only for Christian Era years. Years within 0 to 99 that can be divided by four without a remainder are recognized as leap years. If the year counter = 0x00, RTCA assumes it as a common year. If a leap year is recognized, the count range of the day counter changes when the month counter is set to February.

### Corrective operation when a value out of the effective range is set

When a value out of the effective range is set to the year, day of the week, or hour (in 24H mode) counter, the counter will be cleared to 0 at the next count-up timing. When a such value is set to the month, day, or hour (in 12H mode) counter, the counter will be set to 1 at the next count-up timing.

Note: Do not set the RTCAMON.RTCMOL[3:0] bits to 0x0 if the RTCAMON.RTCMOH bit = 0.

### 30-second correction

This function is provided to set the time-of-day clock by the time signal. Writing 1 to the RTCACTLL.RTC-ADJ bit clears the second counter and adds 1 to the minute counter if the second counter represents 30 to 59 seconds, or clears the second counter with the minute counter left unchanged if the second counter represents 0 to 29 seconds.

### +1 second correction

If a second count-up timing occurred while the RTCACTLL.RTCHLD bit = 1 (count hold state), the real-time clock counter counts up by +1 second (performs +1 second correction) after the counting has resumed by writing 0 to the RTCACTLL.RTCHLD bit.

**Note**: If two or more second count-up timings occurred while the RTCACTLL.RTCHLD bit = 1, the counter is always corrected for +1 second only.

### 10.4.3 Stopwatch Control

Follow the sequences shown below to start counting of the stopwatch and to read the counter.

### Count start

- 1. Write 1 to the RTCASWCTL.SWRST bit to reset the stopwatch counter.
- 2. Write 1 to the stopwatch interrupt flags in the RTCAINTF register to clear them.
- 3. Write 1 to the interrupt enable bits in the RTCAINTE register to enable stopwatch interrupts.
- 4. Write 1 to the RTCASWCTL.SWRUN bit to start stopwatch count up operation.

### **Counter read**

- 1. Read the count value from the RTCASWCTL.BCD10[3:0] and BCD100[3:0] bits.
- 2. Read again.
  - i. If the two read values are the same, assume that the count values are read correctly.
  - ii. If different values are read, perform reading once more and compare the read value with the previous one.

# 10.4.4 Stopwatch Count-up Pattern

The stopwatch consists of 1/100-second and 1/10-second counters and these counters perform counting up in increments of approximate 1/100 and 1/10 seconds with the count-up patterns shown in Figure 10.4.4.1.



Figure 10.4.4.1 Stopwatch Count-Up Patterns

# 10.5 Interrupts

RTCA has a function to generate the interrupts shown in Table 10.5.1.

Table 10.5.1 RTCA Interrupt Function						
Interrupt	Interrupt flag	Set condition	Clear condition			
Alarm	RTCAINTF.ALARMIF	Matching between the RTCAALM1-2 register	Writing 1			
		contents and the real-time clock counter contents				
1-day	RTCAINTF.T1DAYIF	Day counter count up	Writing 1			
1-hour	RTCAINTF.T1HURIF	Hour counter count up	Writing 1			
1-minute	RTCAINTF.T1MINIF	Minute counter count up	Writing 1			
1-second	RTCAINTF.T1SECIF	Second counter count up	Writing 1			
1/2-second	RTCAINTF.T1_2SECIF	See Figure 10.5.1.	Writing 1			
1/4-second	RTCAINTF.T1_4SECIF	See Figure 10.5.1.	Writing 1			
1/8-second	RTCAINTF.T1_8SECIF	See Figure 10.5.1.	Writing 1			
1/32-second	RTCAINTF.T1_32SECIF	See Figure 10.5.1.	Writing 1			
Stopwatch 1 Hz	RTCAINTF.SW1IF	1/10-second counter overflow	Writing 1			
Stopwatch 10 Hz	RTCAINTF.SW10IF	1/10-second counter count up	Writing 1			
Stopwatch 100 Hz	RTCAINTF.SW100IF	1/100-second counter count up	Writing 1			
Theoretical regulation	RTCAINTF.RTCTRMIF	At the end of theoretical regulation operation	Writing 1			
completion						





- **Notes:** 1-second to 1/32-second interrupts occur after a lapse of 1/256 second from change of the 1 Hz counter value.
  - An alarm interrupt occurs after a lapse of 1/256 second from matching between the AM/PM (in 12H mode), hour, minute, and second counter value and the alarm setting value.

RTCA provides interrupt enable bits corresponding to each interrupt flag. An interrupt request is sent to the CPU only when the interrupt flag, of which interrupt has been enabled by the interrupt enable bit, is set. For more information on interrupt control, refer to the "Interrupt" chapter.

# **10.6 Control Registers**

### **RTCA Control Register (Low Byte)**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RTCACTLL	7	_	0	-	R	-
	6	RTCBSY	0	H0	R	
	5	RTCHLD	0	H0	R/W	Cleared by setting the
						RTCACTLL.RTCRST bit to 1.
	4	RTC24H	0	H0	R/W	-
	3	-	0	-	R	
	2	RTCADJ	0	H0	R/W	Cleared by setting the
						RTCACTLL.RTCRST bit to 1.
	1	RTCRST	0	H0	R/W	-
	0	RTCRUN	0	H0	R/W	

### Bit 7 Reserved

### Bit 6 RTCBSY

This bit indicates whether the counter is performing count-up operation or not.

- 1 (R): In count-up operation
- 0 (R): Idle (ready to rewrite real-time clock counter)

This bit goes 1 when performing 1-second count-up, +1 second correction, or 30-second correction. It retains 1 for 1/256 second and then reverts to 0.

### Bit 5 RTCHLD

This bit halts the count-up operation of the real-time clock counter.

1 (R/W): Halt real-time clock counter count-up operation

0 (R/W): Normal operation

Writing 1 to this bit halts the count-up operation of the real-time clock counter, this makes it possible to read the counter value correctly without changing the counter. Write 0 to this bit to resume count-up operation immediately after the counter has been read. Depending on these operation timings, the +1 second correction may be executed after the count-up operation resumes. For more information on the +1 second correction, refer to "Real-Time Clock Counter Operations."

**Note:** When the RTCACTLH.RTCTRMBSY bit = 1, the RTCACTLL.RTCHLD bit cannot be rewritten to 1 (as fixed at 0).

#### Bit 4 RTC24H

This bit sets the hour counter to 24H mode or 12H mode. 1 (R/W): 24H mode 0 (R/W): 12H mode

This selection changes the count range of the hour counter. Note, however, that the counter value is not updated automatically, therefore, it must be programmed again.

Note: Be sure to avoid writing to this bit when the RTCACTLL.RTCRUN bit = 1.

### Bit 3 Reserved

### Bit 2 RTCADJ

This bit executes the 30-second correction time adjustment function.

- 1 (W): Execute 30-second correction
- 0 (W): Ineffective
- 1 (R): 30-second correction is executing.
- 0 (R): 30-second correction has finished. (Normal operation)

Writing 1 to this bit executes 30-second correction and an enabled interrupt occurs even if the RT-CACTLL.RTCRUN bit = 0. The correction takes up to 2/256 seconds. The RTCACTLL.RTCADJ bit is automatically cleared to 0 when the correction has finished. For more information on the 30-second correction, refer to "Real-Time Clock Counter Operations."

**Notes:** • Be sure to avoid writing to this bit when the RTCACTLL.RTCBSY bit = 1.

• Do not write 1 to this bit again while the RTCACTLL.RTCADJ bit = 1.

### Bit 1 RTCRST

This bit resets the 1 Hz counter, the RTCACTLL.RTCADJ bit, and the RTCACTLL.RTCHLD bit.

- 1 (W): Reset
- 0 (W): Ineffective
- 1 (R): Reset is being executed.
- 0 (R): Reset has finished. (Normal operation)

This bit is automatically cleared to 0 after reset has finished.

### Bit 0 RTCRUN

This bit starts/stops the real-time clock counter.

1 (R/W): Running/start control

0 (R/W): Idle/stop control

When the real-time clock counter stops counting by writing 0 to this bit, the counter retains the value when it stopped. Writing 1 to this bit again resumes counting from the value retained.

### **RTCA Control Register (High Byte)**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RTCACTLH	7	RTCTRMBSY	0	H0	R	_
	6–0	RTCTRM[6:0]	0x00	H0	W	Read as 0x00.

### Bit 7 RTCTRMBSY

This bit indicates whether the theoretical regulation is currently executed or not.

1 (R): Theoretical regulation is executing.

0 (R): Theoretical regulation has finished (or not executed).

This bit goes 1 when a value is written to the RTCACTLH.RTCTRM[6:0] bits. The theoretical regulation takes up to 1 second for execution. This bit reverts to 0 automatically after the theoretical regulation has finished execution.

### Bits 6–0 RTCTRM[6:0]

Write the correction value for adjusting the 1 Hz frequency to these bits to execute theoretical regulation. For a calculation method of correction value, refer to "Theoretical Regulation Function."

- **Notes:** When the RTCACTLH.RTCTRMBSY bit = 1, the RTCACTLH.RTCTRM[6:0] bits cannot be rewritten.
  - Writing 0x00 to the RTCACTLH.RTCTRM[6:0] bits sets the RTCACTLH.RTCTRMBSY bit to 1 as well. However, no correcting operation is performed.

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RTCAALM1	15	-	0	-	R	-
	14–12	RTCSHA[2:0]	0x0	H0	R/W	
	11–8	RTCSLA[3:0]	0x0	H0	R/W	
	7–0	-	0x00	-	R	

### **RTCA Second Alarm Register**

#### Bit 15 Reserved

#### Bits 14-12 RTCSHA[2:0]

### Bits 11-8 RTCSLA[3:0]

The RTCAALM1.RTCSHA[2:0] bits and the RTCAALM1.RTCSLA[3:0] bits set the 10-second digit and 1-second digit of the alarm time, respectively. A value within 0 to 59 seconds can be set in BCD code as shown in Table 10.6.1.

Table 10.6.1	Setting Examples in BCD Co	do
Table 10.0.1	Setting Examples in DOD OC	ue

Setting value			
RTCAALM1.RTCSHA[2:0] bits	RTCAALM1.RTCSLA[3:0] bits	Alarm (second) setting	
0x0	0x0	00 seconds	
0x0	0x1	01 second	
0x0	0x9	09 seconds	
0x1	0x0	10 seconds	
0x5	0x9	59 seconds	

### Bits 7–0 Reserved

### **RTCA Hour/Minute Alarm Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RTCAALM2	15	-	0	-	R	-
	14	RTCAPA	0	H0	R/W	
	13–12	RTCHHA[1:0]	0x0	H0	R/W	
	11–8	RTCHLA[3:0]	0x0	H0	R/W	
	7	-	0	-	R	
	6–4	RTCMIHA[2:0]	0x0	H0	R/W	
	3–0	RTCMILA[3:0]	0x0	H0	R/W	

### Bit 15 Reserved

### Bit 14 RTCAPA

This bit sets A.M. or P.M. of the alarm time in 12H mode (RTCACTLL.RTC24H bit = 0). 1 (R/W): P.M. 0 (R/W): A.M.

This setting is ineffective in 24H mode (RTCACTLL.RTC24H bit = 1).

### Bits 13-12 RTCHHA[1:0]

#### Bits 11-8 RTCHLA[3:0]

The RTCAALM2.RTCHHA[1:0] bits and the RTCAALM2.RTCHLA[3:0] bits set the 10-hour digit and 1-hour digit of the alarm time, respectively. A value within 1 to 12 o'clock in 12H mode or 0 to 23 in 24H mode can be set in BCD code.

#### Bit 7 Reserved

#### Bits 6–4 RTCMIHA[2:0]

### Bits 3–0 RTCMILA[3:0]

The RTCAALM2.RTCMIHA[2:0] bits and the RTCAALM2.RTCMILA[3:0] bits set the 10-minute digit and 1-minute digit of the alarm time, respectively. A value within 0 to 59 minutes can be set in BCD code.

RTCA	Stopwatch	Control	Register
------	-----------	---------	----------

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RTCASWCTL	15–12	BCD10[3:0]	0x0	H0	R	_
	11–8	BCD100[3:0]	0x0	H0	R	
	7–5	-	0x0	-	R	
	4	SWRST	0	H0	W	Read as 0.
	3–1	-	0x0	-	R	_
	0	SWRUN	0	H0	R/W	

### Bits 15-12 BCD10[3:0]

### Bits 11-8 BCD100[3:0]

The 1/10-second and 1/100-second digits of the stopwatch counter can be read as a BCD code from the RTCASWCTL.BCD10[3:0] bits and the RTCASWCTL.BCD100[3:0] bits, respectively.

Note: The counter value may not be read correctly while the stopwatch counter is running. The RTCASWCTL.BCD10[3:0]/BCD100[3:0] bits must be read twice and assume the counter value was read successfully if the two read results are the same.

### Bits 7–5 Reserved

### Bit 4 SWRST

This bit resets the stopwatch counter to 0x00.

- 1 (W): Reset
- 0 (W): Ineffective
- 0 (R): Always 0 when being read

When the stopwatch counter in running status is reset, it continues counting from count 0x00. The stopwatch counter retains 0x00 if it is reset in idle status.

### Bits 3–1 Reserved

### Bit 0 SWRUN

This bit starts/stops the stopwatch counter.

- 1 (R/W): Running/start control
- 0 (R/W): Idle/stop control

When the stopwatch counter stops counting by writing 0 to this bit, the counter retains the value when it stopped. Writing 1 to this bit again resumes counting from the value retained.

**Note**: The stopwatch counter stops in sync with the stopwatch clock after 0 is written to the RTCASWCTL.SWRUN bit. Therefore, the counter value may be incremented (+1) from the value at writing 0.

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RTCASEC	15	-	0	_	R	_
	14–12	RTCSH[2:0]	0x0	H0	R/W	
	11–8	RTCSL[3:0]	0x0	H0	R/W	
	7	RTC1HZ	0	H0	R	Cleared by setting the
	6	RTC2HZ	0	H0	R	RTCACTLL.RTCRST bit to 1.
	5	RTC4HZ	0	H0	R	
	4	RTC8HZ	0	H0	R	
	3	RTC16HZ	0	H0	R	
	2	RTC32HZ	0	H0	R	
	1	RTC64HZ	0	H0	R	
	0	RTC128HZ	0	H0	R	

### **RTCA Second/1Hz Register**

#### Bit 15 Reserved

### Bits 14-12 RTCSH[2:0]

### Bits 11-8 RTCSL[3:0]

The RTCASEC.RTCSH[2:0] bits and the RTCASEC.RTCSL[3:0] bits are used to set and read the 10-second digit and the 1-second digit of the second counter, respectively. The setting/read values are a BCD code within the range from 0 to 59.

Note: Be sure to avoid writing to the RTCASEC.RTCSH[2:0]/RTCSL[3:0] bits while the RTCACTLL. RTCBSY bit = 1.

Bit 7	RTC1HZ
Bit 6	RTC2HZ
Bit 5	RTC4HZ
Bit 4	RTC8HZ
Bit 3	RTC16HZ
Bit 2	RTC32HZ
Bit 1	RTC64HZ
Bit 0	RTC128HZ
	1 Hz counter data can be read from these bits.
	The following shows the correspondence between the bit and frequency:
	RTCASEC.RTC1HZ bit: 1 Hz
	RTCASEC.RTC2HZ bit: 2 Hz
	RTCASEC.RTC4HZ bit: 4 Hz
	RTCASEC.RTC8HZ bit: 8 Hz
	RTCASEC.RTC16HZ bit: 16 Hz
	RTCASEC.RTC32HZ bit: 32 Hz
	RTCASEC.RTC64HZ bit: 64 Hz
	RTCASEC.RTC128HZ bit: 128 Hz

**Note**: The counter value may not be read correctly while the 1 Hz counter is running. These bits must be read twice and assume the counter value was read successfully if the two read results are the same.

### **RTCA Hour/Minute Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RTCAHUR	15	_	0	-	R	-
	14	RTCAP	0	HO	R/W	
	13-12	RTCHH[1:0]	0x1	H0	R/W	
	11–8	RTCHL[3:0]	0x2	H0	R/W	
	7	-	0	-	R	
	6–4	RTCMIH[2:0]	0x0	H0	R/W	
	3–0	RTCMIL[3:0]	0x0	HO	R/W	

### Bit 15 Reserved

### Bit 14 RTCAP

This bit is used to set and read A.M. or P.M. data in 12H mode (RTCACTLL.RTC24H bit = 0). 1 (R/W): P.M. 0 (R/W): A.M.

In 24H mode (RTCACTLL.RTC24H bit = 1), this bit is fixed at 0 and writing 1 is ignored. However, if the RTCAHUR.RTCAP bit = 1 when changed to 24H mode, it goes 0 at the next count-up timing of the hour counter.

### Bits 13-12 RTCHH[1:0]

### Bits 11-8 RTCHL[3:0]

The RTCAHUR.RTCHH[1:0] bits and the RTCAHUR.RTCHL[3:0] bits are used to set and read the 10-hour digit and the 1-hour digit of the hour counter, respectively. The setting/read values are a BCD code within the range from 1 to 12 in 12H mode or 0 to 23 in 24H mode.

**Note**: Be sure to avoid writing to the RTCAHUR.RTCHH[1:0]/RTCHL[3:0] bits while the RTCACTLL. RTCBSY bit = 1.

### Bit 7 Reserved

### Bits 6-4 RTCMIH[2:0]

### Bits 3–0 RTCMIL[3:0]

The RTCAHUR.RTCMIH[2:0] bits and the RTCAHUR.RTCMIL[3:0] bits are used to set and read the 10-minute digit and the 1-minute digit of the minute counter, respectively. The setting/read values are a BCD code within the range from 0 to 59.

**Note**: Be sure to avoid writing to the RTCAHUR.RTCMIH[2:0]/RTCMIL[3:0] bits while the RTCACTLL.RTCBSY bit = 1.

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RTCAMON	15–13	_	0x0	-	R	-
	12	RTCMOH	0	H0	R/W	
	11–8	RTCMOL[3:0]	0x1	H0	R/W	
	7–6	-	0x0	-	R	
	5–4	RTCDH[1:0]	0x0	H0	R/W	
	3–0	RTCDL[3:0]	0x1	H0	R/W	

### **RTCA Month/Day Register**

### Bits 15–13 Reserved

### Bit 12 RTCMOH

### Bits 11–8 RTCMOL[3:0]

The RTCAMON.RTCMOH bit and the RTCAMON.RTCMOL[3:0] bits are used to set and read the 10-month digit and the 1-month digit of the month counter, respectively. The setting/read values are a BCD code within the range from 1 to 12.

- **Notes:** Be sure to avoid writing to the RTCAMON.RTCMOH/RTCMOL[3:0] bits while the RTCACTLL.RTCBSY bit = 1.
  - Be sure to avoid setting the RTCAMON.RTCMOH/RTCMOL[3:0] bits to 0x00.

### Bits 7–6 Reserved

### Bits 5-4 RTCDH[1:0]

### Bits 3-0 RTCDL[3:0]

The RTCAMON.RTCDH[1:0] bits and the RTCAMON.RTCDL[3:0] bits are used to set and read the 10-day digit and the 1-day digit of the day counter, respectively. The setting/read values are a BCD code within the range from 1 to 31 (to 28 for February in a common year, to 29 for February in a leap year, or to 30 for April/June/September/November).

**Note**: Be sure to avoid writing to the RTCAMON.RTCDH[1:0]/RTCDL[3:0] bits while the RTCACTLL.RTCBSY bit = 1.

### **RTCA Year/Week Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RTCAYAR	15–11	-	0x00	_	R	_
	10-8	RTCWK[2:0]	0x0	H0	R/W	
	7–4	RTCYH[3:0]	0x0	H0	R/W	
	3–0	RTCYL[3:0]	0x0	H0	R/W	

### Bits 15–11 Reserved

### Bits 10–8 RTCWK[2:0]

These bits are used to set and read day of the week.

The day of the week counter is a base-7 counter and the setting/read values are 0x0 to 0x6. Table 10.6.2 lists the correspondence between the count value and day of the week.

BTCAYAB.BTCWK[2:0] bits	Day of the week
0x6	Salurday
0x5	Friday
0x4	Thursday
0x3	Wednesday
0x2	Tuesday
0x1	Monday
0x0	Sunday

Table 10.6.2 Correspondence between the count value and day of the week

**Note**: Be sure to avoid writing to the RTCAYAR.RTCWK[2:0] bits while the RTCACTLL.RTCBSY bit = 1.

### Bits 7–4 RTCYH[3:0]

### Bits 3–0 RTCYL[3:0]

The RTCAYAR.RTCYH[3:0] bits and the RTCAYAR.RTCYL[3:0] bits are used to set and read the 10-year digit and the 1-year digit of the year counter, respectively. The setting/read values are a BCD code within the range from 0 to 99.

**Note**: Be sure to avoid writing to the RTCAYAR.RTCYH[3:0]/RTCYL[3:0] bits while the RTCACTLL. RTCBSY bit = 1.

#### Register name Bit Bit name Initial Reset R/W Remarks RTCAINTF RTCTRMIF 15 0 H0 R/W Cleared by writing 1. SW1IF 0 R/W 14 H0 13 SW10IF 0 H0 R/W SW100IF HO R/W 12 0 11–9 0x0 R 8 ALARMIF 0 H0 R/W Cleared by writing 1. 7 T1DAYIF 0 H0 R/W 6 T1HURIF 0 HO R/W 5 T1MINIF 0 HO R/W 4 T1SECIF 0 HO R/W 3 T1 2SECIF 0 H0 R/W 2 T1 4SECIF 0 HO R/W T1_8SECIF 0 HO R/W 1 T1_32SECIF 0 0 H0 R/W

### **RTCA Interrupt Flag Register**

- Bit 15 RTCTRMIF
- Bit 14 SW1IF
- Bit 13 SW10IF

#### Bit 12 SW100IF

These bits indicate the real-time clock interrupt cause occurrence status.

- 1 (R): Cause of interrupt occurred
- 0 (R): No cause of interrupt occurred
- 1 (W): Clear flag
- 0 (W): Ineffective

The following shows the correspondence between the bit and interrupt:RTCAINTF.RTCTRMIF bit:Theoretical regulation completion interruptRTCAINTF.SW1IF bit:Stopwatch 1 Hz interruptRTCAINTF.SW10IF bit:Stopwatch 10 Hz interruptRTCAINTF.SW100IF bit:Stopwatch 100 Hz interrupt

#### Bits 11–9 Reserved

- Bit 8ALARMIFBit 7T1DAYIFBit 6T1HURIFBit 5T1MINIFBit 4T1SECIF
- Bit 4 T1SECIF
- Bit 3 T1_2SECIF
- Bit 2 T1_4SECIF
- Bit 1 T1_8SECIF

### Bit 0 T1_32SECIF

These bits indicate the real-time clock interrupt cause occurrence status.

- 1 (R): Cause of interrupt occurred
- 0 (R): No cause of interrupt occurred
- 1 (W): Clear flag
- 0 (W): Ineffective

The following shows the correspondence between the bit and interrupt:

RTCAINTF. ALARMIF bit:	Alarm interrupt
RTCAINTF.T1DAYIF bit:	1-day interrupt
RTCAINTF.T1HURIF bit:	1-hour interrupt
RTCAINTF.T1MINIF bit:	1-minute interrupt
RTCAINTF.T1SECIF bit:	1-second interrupt
RTCAINTF.T1_2SECIF bit:	1/2-second interrupt
RTCAINTF.T1_4SECIF bit:	1/4-second interrupt
RTCAINTF.T1_8SECIF bit:	1/8-second interrupt
RTCAINTF.T1_32SECIF bit:	1/32-second interrupt

### **RTCA Interrupt Enable Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
RTCAINTE	15	RTCTRMIE	0	HO	R/W	-
	14	SW1IE	0	HO	R/W	
	13	SW10IE	0	H0	R/W	
	12	SW100IE	0	H0	R/W	
	11–9	-	0x0	-	R	
	8	ALARMIE	0	H0	R/W	
	7	T1DAYIE	0	H0	R/W	
	6	T1HURIE	0	H0	R/W	
	5	T1MINIE	0	H0	R/W	
	4	T1SECIE	0	H0	R/W	
	3	T1_2SECIE	0	H0	R/W	
	2	T1_4SECIE	0	HO	R/W	
	1	T1_8SECIE	0	H0	R/W	
	0	T1_32SECIE	0	H0	R/W	

### Bit 15 RTCTRMIE

### Bit 14 SW1IE

Bit 13 SW10IE

### Bit 12 SW100IE

These bits enable real-time clock interrupts.

1 (R/W): Enable interrupts

0 (R/W): Disable interrupts

The following shows the correspondence between the bit and interrupt:RTCAINTE.RTCTRMIE bit:Theoretical regulation completion interruptRTCAINTE.SW1IE bit:Stopwatch 1 Hz interruptRTCAINTE.SW10IE bit:Stopwatch 10 Hz interruptRTCAINTE.SW100IE bit:Stopwatch 100 Hz interrupt

- Bits 11–9ReservedBit 8ALARMIEBit 7T1DAYIEBit 6T1HURIEBit 5T1MINIEBit 4T1SECIEBit 3T1_2SECIEBit 3T1_2SECIE
- Bit 2 T1_4SECIE
- Bit 1 T1_8SECIE

### Bit 0 T1_32SECIE

These bits enable real-time clock interrupts.

1 (R/W): Enable interrupts

0 (R/W): Disable interrupts

The following shows the correspondence between the bit and interrupt:

RTCAINTE.ALARMIE bit:	Alarm interrupt
RTCAINTE.T1DAYIE bit:	1-day interrupt
RTCAINTE.T1HURIE bit:	1-hour interrupt
RTCAINTE.T1MINIE bit:	1-minute interrupt
RTCAINTE.T1SECIE bit:	1-second interrupt
RTCAINTE.T1_2SECIE bit:	1/2-second interrupt
RTCAINTE.T1_4SECIE bit:	1/4-second interrupt
RTCAINTE.T1_8SECIE bit:	1/8-second interrupt
RTCAINTE.T1_32SECIE bit:	1/32-second interrupt

# **11** Supply Voltage Detector (SVD3)

# 11.1 Overview

SVD3 is a supply voltage detector to monitor the VDD voltage, or an external voltage detection input pin. The main features are listed below.

- Power supply voltage to be detected: Selectable from VDD and external power sources (EXSVD0, EXSVD1)
- Detectable voltage level: Selectable from among 32 levels (max.) (Note: See the table below.)
- Detection results: - Can be read whether the power supply voltage is lower than the detection voltage level or not.
  - Can generate an interrupt or a reset when low power supply voltage is detected.
- Interrupt: 1 system (Low power supply voltage detection interrupt) • Supports intermittent operations:
  - Three detection cycles are selectable.
    - Low power supply voltage detection count function to generate an interrupt/reset when low power supply voltage is successively detected the number of times specified.
    - Continuous operation is also possible.

Figure 11.1.1 shows the configuration of SVD3.

Table 11.1.1 SVD3 Configuration of S1C31D01



Figure 11.1.1 SVD3 Configuration

# **11.2 Input Pins and External Connection**

# 11.2.1 Input Pins

Table 11.2.1.1 shows the SVD3 input pins.

Table 11 2 1 1	SVD3 Input Pins
	SVDS IIIput FIIIS

			•
Pin name	I/O	Initial status	Function
EXSVDn	A*	A (Hi-Z)*	External power supply voltage detection pin
		*	Indicates the status when the pin is configured for SVD3.

If the port is shared with the EXSVD*n* pin and other functions, the EXSVD*n* function must be assigned to the port before SVD3 can be activated. For more information, refer to the "I/O Ports" chapter.

# 11.2.2 External Connection



Figure 11.2.2.1 Connection between EXSVDn Pin and External Power Supply

REXT resistance value must be determined so that it will be sufficiently smaller than the EXSVD input impedance REXSVD. For the EXSVD*n* pin input voltage range and the EXSVD input impedance, refer to "Supply Voltage Detector Characteristics" in the "Electrical Characteristics" chapter.

# 11.3 Clock Settings

# 11.3.1 SVD3 Operating Clock

When using SVD3, the SVD3 operating clock CLK_SVD3 must be supplied to SVD3 from the clock generator. The CLK_SVD3 supply should be controlled as in the procedure shown below.

- 1. Write 0x0096 to the SYSPROT.PROT[15:0] bits. (Remove system protection)
- 2. Enable the clock source in the clock generator if it is stopped (refer to "Clock Generator" in the "Power Supply, Reset, and Clocks" chapter).
- 3. Set the following SVD3CLK register bits:
  - SVD3CLK.CLKSRC[1:0] bits (Clock source selection)
  - SVD3CLK.CLKDIV[2:0] bits (Clock division ratio selection = Clock frequency setting)
- 4. Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits. (Set system protection)

The CLK_SVD3 frequency should be set to around 32 kHz.

# 11.3.2 Clock Supply in SLEEP Mode

When using SVD3 during SLEEP mode, the SVD3 operating clock CLK_SVD3 must be configured so that it will keep supplying by writing 0 to the CLGOSC_xxxxSLPC bit for the CLK_SVD3 clock source.

If the CLGOSC*xxxx*SLPC bit for the CLK_SVD3 clock source is 1, the CLK_SVD3 clock source is deactivated during SLEEP mode and SVD3 stops with the register settings maintained at those before entering SLEEP mode. After the CPU returns to normal mode, CLK_SVD3 is supplied and the SVD3 operation resumes.

# 11.3.3 Clock Supply in DEBUG Mode

The CLK_SVD3 supply during DEBUG mode should be controlled using the SVD3CLK.DBRUN bit.

The CLK_SVD3 supply to SVD3 is suspended when the CPU enters DEBUG mode if the SVD3CLK.DBRUN bit = 0. After the CPU returns to normal mode, the CLK_SVD3 supply resumes. Although SVD3 stops operating when the CLK_SVD3 supply is suspended, the registers retain the status before DEBUG mode was entered.

If the SVD3CLK.DBRUN bit = 1, the CLK_SVD3 supply is not suspended and SVD3 will keep operating in DE-BUG mode.

# **11.4 Operations**

# 11.4.1 SVD3 Control

### Starting detection

SVD3 should be initialized and activated with the procedure listed below.

- 1. Write 0x0096 to the SYSPROT.PROT[15:0] bits. (Remove system protection)
- 2. Configure the operating clock using the SVD3CLK.CLKSRC[1:0] and SVD3CLK.CLKDIV[2:0] bits.
- 3. Set the following SVD3CTL register bits:
  - SVD3CTL.VDSEL and SVD3CTL.EXSEL bits (Select detection voltage (VDD, EXSVD0, or EXSVD1))
  - SVD3CTL.SVDSC[1:0] bits
  - SVD3CTL.SVDC[4:0] bits

- SVD3CTL.SVDRE[3:0] bits

- SVD3CTL.SVDMD[1:0] bits
- 4. Set the following bits when using the interrupt:
  - Write 1 to the SVD3INTF.SVDIF bit.
  - Set the SVD3INTE.SVDIE bit to 1.

5. Set the SVD3CTL.MODEN bit to 1.

6. Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits. (Set system protection)

### **Terminating detection**

Follow the procedure shown below to stop SVD3 operation.

- 1. Write 0x0096 to the SYSPROT.PROT[15:0] bits. (Remove system protection)
- 2. Write 0 to the SVD3CTL.MODEN bit. (Disable SVD3 detection)
- 3. Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits. (Set system protection)

### **Reading detection results**

The following two detection results can be obtained by reading the SVD3INTF.SVDDT bit:

- When SVD3INTF.SVDDT bit = 0 Power supply voltage (VDD, EXSVDn) ≥ SVD detection voltage VsvD or EXSVD detection voltage VsvD_EXT
- When SVD3INTF.SVDDT bit = 1 Power supply voltage (VDD, EXSVD*n*) < SVD detection voltage VsvD or EXSVD detection voltage VsvD_EXT

Before reading the SVD3INTF.SVDDT bit, wait for at least SVD circuit enable response time after 1 is written to the SVD3CTL.MODEN bit (refer to "Supply Voltage Detector Characteristics, SVD circuit enable response time tsvDEN" in the "Electrical Characteristics" chapter).

After the SVD3CTL.SVDC[4:0] bits setting value is altered to change the SVD detection voltage VsvD/EXS-VD detection voltage VsvD_EXT when the SVD3CTL.MODEN bit = 1, wait for at least SVD circuit response time before reading the SVD3INTF.SVDDT bit (refer to "Supply Voltage Detector Characteristics, SVD circuit response time tsvD" in the "Electrical Characteristics" chapter).

(Clear interrupt flag) (Enable SVD3 interrupt)

(Select reset/interrupt mode)

(Set intermittent operation mode)

(Set low power supply voltage detection counter) (Set SVD detection voltage VsvD/EXSVD detection

### (Enable SVD3 detection)

voltage VSVD EXT)

# 11.4.2 SVD3 Operations

### Continuous operation mode

SVD3 operates in continuous operation mode by default (SVD3CTL.SVDMD[1:0] bits = 0x0). In this mode, SVD3 operates continuously while the SVD3CTL.MODEN bit is set to 1 and it keeps loading the detection results to the SVD3INTF.SVDDT bit. During this period, the current detection results can be obtained by reading the SVD3INTF.SVDDT bit as necessary. Furthermore, an interrupt (if the SVD3CTL.SVDRE[3:0] bits  $\neq$ 0xa) or a reset (if the SVD3CTL.SVDRE[3:0] bits = 0xa) can be generated when the SVD3INTF.SVDDT bit is set to 1 (low power supply voltage is detected). This mode can keep detecting power supply voltage drop after the voltage detection masking time has elapsed even if the IC is placed into SLEEP status or accidental clock stoppage has occurred.

### Intermittent operation mode

SVD3 operates in intermittent operation mode when the SVD3CTL.SVDMD[1:0] bits are set to 0x1 to 0x3. In this mode, SVD3 turns on at an interval set using the SVD3CTL.SVDMD[1:0] bits to perform detection operation and then it turns off while the SVD3CTL.MODEN bit is set to 1. During this period, the latest detection results can be obtained by reading the SVD3INTF.SVDDT bit as necessary. Furthermore, an interrupt or a reset can be generated when SVD3 has successively detected low power supply voltage the number of times specified by the SVD3CTL.SVDSC[1:0] bits.





# 11.5 SVD3 Interrupt and Reset

### 11.5.1 SVD3 Interrupt

Setting the SVD3CTL.SVDRE[3:0] bits to a value other than 0xa allows use of the low power supply voltage detection interrupt function.

Interrupt	Interrupt flag	Set condition	Clear condition
Low power supply	SVD3INTF.SVDIF	In continuous operation mode	Writing 1
voltage detection		When the SVD3INTF.SVDDT bit is 1	
-		In intermittent operation mode	
		When low power supply voltage is successively de-	
		tected the specified number of times	

Table 11.5.1.1 Low Power Supply Voltage Detection Interrupt Function

SVD3 provides the interrupt enable bit (SVD3INTE.SVDIE bit) corresponding to the interrupt flag (SVD3INTF. SVDIF bit). An interrupt request is sent to the CPU only when the SVD3INTF.SVDIF bit is set while the interrupt is enabled by the SVD3INTE.SVDIE bit. For more information on interrupt control, refer to the "Interrupt" chapter.

Once the SVD3INTF.SVDIF bit is set, it will not be cleared even if the power supply voltage subsequently returns to a value exceeding the SVD detection voltage VsvD/EXSVD detection voltage VsvD_EXT. An interrupt may occur due to a temporary power supply voltage drop, check the power supply voltage status by reading the SVD3INTF. SVDDT bit in the interrupt handler routine.

# 11.5.2 SVD3 Reset

Setting the SVD3CTL.SVDRE[3:0] bits to 0xa allows use of the SVD3 reset issuance function.

The reset issuing timing is the same as that of the SVD3INTF.SVDIF bit being set when a low voltage is detected. After a reset has been issued, SVD3 enters continuous operation mode even if it was operating in intermittent operation mode, and continues operating. Issuing an SVD3 reset initializes the port assignment. However, when EXS-VDn is being detected, the input of the port for the EXSVD*n* pin is sent to SVD3 so that SVD3 will continue the EXSVD*n* detection operation.

If the power supply voltage reverts to the normal level, the SVD3INTF.SVDDT bit goes 0 and the reset state is canceled. After that, SVD3 resumes operating in the operation mode set previously via the initialization routine. During reset state, the SVD3 control bits are set as shown in Table 11.5.2.1.

Control register	Control bit	Setting
SVD3CLK	DBRUN	Reset to the initial values.
	CLKDIV[2:0]	
	CLKSRC[1:0]	
SVD3CTL	VDSEL	The set value is retained.
	SVDSC[1:0]	Cleared to 0. (The set value becomes invalid as SVD3
		enters continuous operation mode.)
	SVDC[4:0]	The set value is retained.
	SVDRE[3:0]	The set value (0xa) is retained.
	EXSEL	The set value is retained.
	SVDMD[1:0]	Cleared to 0 to set continuous operation mode.
	MODEN	The set value (1) is retained.
SVD3INTF	SVDIF	The status (1) before being reset is retained.
<b>SVD3INTE</b>	SVDIE	Cleared to 0.

Table 11.5.2.1 SVD3 Control Bits During Reset State

# **11.6 Control Registers**

# SVD3 Clock Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SVD3CLK	15–9	-	0x00	-	R	-
	8	DBRUN	1	H0	R/WP	
	7	-	0	-	R	
	6–4	CLKDIV[2:0]	0x0	H0	R/WP	
	3–2	-	0x0	-	R	
	1–0	CLKSRC[1:0]	0x0	H0	R/WP	

### Bits 15–9 Reserved

### Bit 8 DBRUN

This bit sets whether the SVD3 operating clock is supplied in DEBUG mode or not. 1 (R/WP): Clock supplied in DEBUG mode 0 (R/WP): No clock supplied in DEBUG mode

### Bit 7 Reserved

Bits 6–4 CLKDIV[2:0]

These bits select the division ratio of the SVD3 operating clock.

### Bits 3–2 Reserved

### Bits 1–0 CLKSRC[1:0]

These bits select the clock source of SVD3.

SVD2CLK	SVD3CLK.CLKSRC[1:0] bits							
CLKDIV[0:0] hite	0x0	0x1	0x2	0x3				
CENDIV[2:0] bits	IOSC	OSC1	OSC3	EXOSC				
0x7, 0x6	Reserved	1/1	Reserved	1/1				
0x5	1/512		1/512					
0x4	1/256		1/256					
0x3	1/128		1/128					
0x2	1/64		1/64					
0x1	1/32		1/32					
0x0	1/16		1/16					

Table 11.6.1 Clock Source and Division Ratio Settings

(Note) The oscillation circuits/external input that are not supported in this IC cannot be selected as the clock source.

Note: The clock frequency should be set to around 32 kHz.

### **SVD3 Control Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SVD3CTL	15	VDSEL	0	H1	R/WP	_
	14–13	SVDSC[1:0]	0x0	H0	R/WP	Writing takes effect when the
						SVD3CTL.SVDMD[1:0] bits are not 0x0.
	12–8	SVDC[4:0]	0x1e	H1	R/WP	-
	7–4	SVDRE[3:0]	0x0	H1	R/WP	
	3	EXSEL	0	H1	R/WP	
	2–1	SVDMD[1:0]	0x0	H0	R/WP	
	0	MODEN	0	H1	R/WP	

### Bit 15 VDSEL

This bit selects the power supply voltage to be detected by SVD3. 1 (R/WP): Voltage applied to the EXSVD*n* pin 0 (R/WP): VDD

### Bits 14-13 SVDSC[1:0]

These bits set the condition to generate an interrupt/reset (number of successive low voltage detections) in intermittent operation mode (SVD3CTL.SVDMD[1:0] bits = 0x1 to 0x3).

Table 11.6.2 Int	terrupt/Reset G	enerating Con	dition in Interm	ittent Operation Mode
------------------	-----------------	---------------	------------------	-----------------------

SVD3CTL.SVDSC[1:0] bits	Interrupt/reset generating condition
0x3	Low power supply voltage is successively detected eight times.
0x2	Low power supply voltage is successively detected four times.
0x1	Low power supply voltage is successively detected twice.
0x0	Low power supply voltage is successively detected once.

This setting is ineffective in continuous operation mode (SVD3CTL.SVDMD[1:0] bits = 0x0).

### Bits 12-8 SVDC[4:0]

These bits select an SVD detection voltage VsvD/EXSVD detection voltage VsvD_EXT for detecting low voltage.

Table 11.6.3 Setting of SVD Detection Voltage VsvD/EXSVD Detection Voltage VsvD_EXT

SVD3CTL.SVDC[4:0] bits	SVD detection voltage VsvD/ EXSVD detection voltage VsvD_EXT [V]
0x1f	High
0x1e	↑
0x1d	
:	
0x02	
0x01	↓
0x00	Low

For the configurable range and voltage values, refer to "Supply Voltage Detector Characteristics, SVD detection voltage VsvD/EXSVD detection voltage VsvD_Ext" in the "Electrical Characteristics" chapter.

### Bits 7–4 SVDRE[3:0]

These bits enable/disable the reset issuance function when a low power supply voltage is detected. 0xa (R/WP): Enable (Issue reset) Other than 0xa (R/WP): Disable (Generate interrupt)

For more information on the SVD3 reset issuance function, refer to "SVD3 Reset."

### Bit 3 EXSEL

This bit selects the voltage to be detected when the SVD3CTL.VDSEL bit = 1. 1 (R/WP): EXSVD1 0 (R/WP): EXSVD0

### Bits 2–1 SVDMD[1:0]

These bits select intermittent operation mode and its detection cycle.

Table 11.6.4 Intermittent Operation Mode Detection Cycle Selection

SVD3CTL.SVDMD[1:0] bits	Operation mode (detection cycle)
0x3	Intermittent operation mode (CLK_SVD3/512)
0x2	Intermittent operation mode (CLK_SVD3/256)
0x1	Intermittent operation mode (CLK_SVD3/128)
0x0	Continuous operation mode

For more information on intermittent and continuous operation modes, refer to "SVD3 Operations."

#### Bit 0 MODEN

This bit enables/disables for the SVD3 circuit to operate.

1 (R/WP): Enable (Start detection operations)

0 (R/WP): Disable (Stop detection operations)

After this bit has been altered, wait until the value written is read out from this bit without subsequent operations being performed.

- **Notes:** Writing 0 to the SVD3CTL.MODEN bit resets the SVD3 hardware. However, the register values set and the interrupt flag are not cleared. The SVD3CTL.MODEN bit is actually set to 0 after this processing has finished. If 1 is written to the SVD3CTL.MODEN bit continuously without waiting for the bit being read as 0 at this time, writing 0 may be ignored and a malfunction may occur as the hardware restarts without resetting.
  - The SVD3 internal circuit is initialized if the SVD3CTL.SVDSC[1:0] bits, SVD3CTL.SVDRE[3:0] bits, or SVD3CTL.SVDMD[1:0] bits are altered while SVD3 is in operation after 1 is written to the SVD3CTL.MODEN bit.

### SVD3 Status and Interrupt Flag Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SVD3INTF	15–9	-	0x00	_	R	_
	8	SVDDT	х	-	R	
	7–1	-	0x00	-	R	
	0	SVDIF	0	H1	R/W	Cleared by writing 1.

### Bits 15–9 Reserved

1 (R):

### Bit 8 SVDDT

The power supply voltage detection results can be read out from this bit.

Power supply voltage (VDD, EXSVD*n*) < SVD detection voltage VSVD

or EXSVD detection voltage VSVD_EXT

0 (R): Power supply voltage (VDD, EXSVDn)  $\geq$  SVD detection voltage VSVD

or EXSVD detection voltage VSVD_EXT

#### Bits 7–1 Reserved

#### Bit 0 SVDIF

This bit indicates the low power supply voltage detection interrupt cause occurrence status.

- 1 (R): Cause of interrupt occurred
- 0 (R): No cause of interrupt occurred
- 1 (W): Clear flag
- 0 (W): Ineffective
- **Note**: The SVD3 internal circuit is initialized if the interrupt flag is cleared while SVD3 is in operation after 1 is written to the SVD3CTL.MODEN bit.

### SVD3 Interrupt Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SVD3INTE	15–8	_	0x00	-	R	-
	7–1	-	0x00	-	R	
	0	SVDIE	0	H0	R/W	

### Bits 15–1 Reserved

### Bit 0 SVDIE

This bit enables low power supply voltage detection interrupts.

- 1 (R/W): Enable interrupts
- 0 (R/W): Disable interrupts
- **Notes:** If the SVD3CTL.SVDRE[3:0] bits are set to 0xa, no low power supply voltage detection interrupt will occur, as a reset is issued at the same timing as an interrupt.
  - To prevent generating unnecessary interrupts, the corresponding interrupt flag should be cleared before enabling interrupts.

# **12 16-bit Timers (T16)**

# 12.1 Overview

T16 is a 16-bit timer. The features of T16 are listed below.

- 16-bit presettable down counter
- Provides a reload data register for setting the preset value.
- A clock source and clock division ratio for generating the count clock are selectable.
- Repeat mode or one-shot mode is selectable.
- Can generate counter underflow interrupts.

Figure 12.1.1 shows the configuration of a T16 channel.

Table 12.1.1 T16 Channel Configuration of S1C31D01					
Item	S1C31D01				
Number of channels	8 channels (Ch.0–Ch.7)				
Event counter function	Not supported (No EXCL <i>m</i> pins are provided.)				
Peripheral clock output	Ch.1 $\rightarrow$ Synchronous serial interface Ch.0 master clock				
(Outputs the counter	Ch.2 $\rightarrow$ Quad synchronous serial interface Ch.0 master clock				
underflow signal.)	$Ch.6 \rightarrow Synchronous serial interface Ch.1 master clock$				



# 12.2 Input Pin

Table 12.2.1 shows the T16 input pin.

Table 12.2.1 T16 Input Pin							
Pin name	I/O*	Initial status*	Function				
EXCLm		I (Hi-Z)	External event signal input pin				

* Indicates the status when the pin is configured for T16.

If the port is shared with the EXCL*m* pin and other functions, the EXCL*m* input function must be assigned to the port before using the event counter function. The EXCL*m* signal can be input through the chattering filter. For more information, refer to the "I/O Ports" chapter.

# 12.3 Clock Settings

### 12.3.1 T16 Operating Clock

When using T16 Ch.*n*, the T16 Ch.*n* operating clock CLK_T16_*n* must be supplied to T16 Ch.*n* from the clock generator. The CLK_T16_*n* supply should be controlled as in the procedure shown below.

- 1. Enable the clock source in the clock generator if it is stopped (refer to "Clock Generator" in the "Power Supply, Reset, and Clocks" chapter).
- 2. Set the following T16_nCLK register bits:
  - T16_nCLK.CLKSRC[1:0] bits (Clock source selection)
  - T16_nCLK.CLKDIV[3:0] bits (Clock division ratio selection = Clock frequency setting)

# 12.3.2 Clock Supply in SLEEP Mode

When using T16 during SLEEP mode, the T16 operating clock CLK_T16_*n* must be configured so that it will keep supplying by writing 0 to the CLGOSC_*xxxx*SLPC bit for the CLK_T16_*n* clock source.

If the CLGOSC.xxxSLPC bit for the CLK_T16_n clock source is 1, the CLK_T16_n clock source is deactivated during SLEEP mode and T16 stops with the register settings and counter value maintained at those before entering SLEEP mode. After the CPU returns to normal mode, CLK_T16_n is supplied and the T16 operation resumes.

# 12.3.3 Clock Supply During Debugging

The CLK_T16_n supply during debugging should be controlled using the T16_nCLK.DBRUN bit.

The CLK_T16_n supply to T16 Ch.n is suspended when the CPU enters debug state if the T16_nCLK.DBRUN bit = 0. After the CPU returns to normal operation, the CLK_T16_n supply resumes. Although T16 Ch.n stops operating when the CLK_T16_n supply is suspended, the counter and registers retain the status before the debug state was entered. If the T16_nCLK.DBRUN bit = 1, the CLK_T16_n supply is not suspended and T16 Ch.n will keep operating in a debug state.

# 12.3.4 Event Counter Clock

The channel that supports the event counter function counts down at the rising edge of the EXCL*m* pin input signal when the  $T16_nCLK.CLKSRC[1:0]$  bits are set to 0x3.



Note that the EXOSC clock is selected for the channel that does not support the event counter function.

# 12.4 Operations

### 12.4.1 Initialization

T16 Ch.n should be initialized and started counting with the procedure shown below.

- 1. Configure the T16 Ch.n operating clock (see "T16 Operating Clock").
- 2. Set the T16_*n*CTL.MODEN bit to 1. (Enable count operation clock)
- 3. Set the T16_*n*MOD.TRMD bit. (Select operation mode (Repeat mode or One-shot mode))
- 4. Set the T16_*n*TR register. (Set reload data (counter preset data))
- 5. Set the following bits when using the interrupt:
  - Write 1 to the T16_*n*INTF.UFIF bit. (Clear interrupt flag)
  - Set the T16_nINTE.UFIE bit to 1. (Enable underflow interrupt)

- 6. Set the following T16_*n*CTL register bits:
  - Set the T16_nCTL.PRESET bit to 1. (Preset reload data to counter)
  - Set the T16_*n*CTL.PRUN bit to 1. (Start counting)

# 12.4.2 Counter Underflow

Normally, the T16 counter starts counting down from the reload data value preset and generates an underflow signal when an underflow occurs. This signal is used to generate an interrupt and may be output to a specific peripheral circuit as a clock (T16 Ch.*n* must be set to repeat mode to generate a clock). The underflow cycle is determined by the T16 Ch.*n* operating clock setting and reload data (counter initial value) set in the T16_*n*TR register. The following shows the equations to calculate the underflow cycle and frequency:

$$T = \frac{TR + 1}{f_{CLK_T16_n}} \qquad f_{T} = \frac{f_{CLK_T16_n}}{TR + 1} \qquad (Eq. 12.1)$$

Where

T:Underflow cycle [s]fr:Underflow frequency [Hz]TR:T16_nTR register setting

fclk_T16_n: T16 Ch.n operating clock frequency [Hz]

# 12.4.3 Operations in Repeat Mode

T16 Ch.n enters repeat mode by setting the T16_nMOD.TRMD bit to 0.

In repeat mode, the count operation starts by writing 1 to the T16_nCTL.PRUN bit and continues until 0 is written. A counter underflow presets the T16_nTR register value to the counter, so underflow occurs periodically. Select this mode to generate periodic underflow interrupts or when using the timer to output a trigger/clock to the peripheral circuit.



# 12.4.4 Operations in One-shot Mode

T16 Ch.n enters one-shot mode by setting the T16_nMOD.TRMD bit to 1.

In one-shot mode, the count operation starts by writing 1 to the T16_*n*CTL.PRUN bit and stops after the T16_*n*TR register value is preset to the counter when an underflow has occurred. At the same time the counter stops, the T16_*n*CTL.PRUN bit is cleared automatically. Select this mode to stop the counter after an interrupt has occurred once, such as for checking a specific lapse of time.



# 12.4.5 Counter Value Read

The counter value can be read out from the  $T16_nTC.TC[15:0]$  bits. However, since T16 operates on CLK_T16_n, one of the operations shown below is required to read correctly by the CPU.

- Read the counter value twice or more and check to see if the same value is read.
- Stop the timer and then read the counter value.

# 12.5 Interrupt

Each T16 channel has a function to generate the interrupt shown in Table 12.5.1.

Table 12.5.1 T16 Interrupt Function

Interrupt	Interrupt flag	Set condition	Clear condition
Underflow	T16_nINTF.UFIF	When the counter underflows	Writing 1

T16 provides interrupt enable bits corresponding to each interrupt flag. An interrupt request is sent to the CPU only when the interrupt flag, of which interrupt has been enabled by the interrupt enable bit, is set. For more information on interrupt control, refer to the "Interrupt" chapter.

# **12.6 Control Registers**

### T16 Ch.n Clock Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16_nCLK	15–9	-	0x00	-	R	-
	8	DBRUN	0	H0	R/W	
	7–4	CLKDIV[3:0]	0x0	H0	R/W	
	3–2	-	0x0	-	R	
	1–0	CLKSRC[1:0]	0x0	H0	R/W	

### Bits 15–9 Reserved

### Bit 8 DBRUN

This bit sets whether the T16 Ch.*n* operating clock is supplied during debugging or not. 1 (R/W): Clock supplied during debugging

0 (R/W): No clock supplied during debugging

### Bits 7–4 CLKDIV[3:0]

These bits select the division ratio of the T16 Ch.n operating clock (counter clock).

### Bits 3–2 Reserved

### Bits 1-0 CLKSRC[1:0]

These bits select the clock source of T16 Ch.n.

		T16_nCLK.CL	KSRC[1:0] bits	
	0x0	0x1	0x2	0x3
CERDIV[3:0] Bits	IOSC	OSC1	OSC3	EXOSC/EXCLm
Oxf	1/32,768	1/1	1/32,768	1/1
0xe	1/16,384		1/16,384	
0xd	1/8,192		1/8,192	
0xc	1/4,096		1/4,096	
0xb	1/2,048		1/2,048	
0xa	1/1,024		1/1,024	
0x9	1/512		1/512	
0x8	1/256	1/256	1/256	
0x7	1/128	1/128	1/128	
0x6	1/64	1/64	1/64	
0x5	1/32	1/32	1/32	
0x4	1/16	1/16	1/16	
0x3	1/8	1/8	1/8	
0x2	1/4	1/4	1/4	
0x1	1/2	1/2	1/2	
0x0	1/1	1/1	1/1	

Table 12.6.1 Clock Source and Division Ratio Settings

(Note 1) The oscillation circuits/external input that are not supported in this IC cannot be selected as the clock source.

(Note 2) When the T16_nCLK.CLKSRC[1:0] bits are set to 0x3, EXCL*m* is selected for the channel with an event counter function or EXOSC is selected for other channels.

### T16 Ch.n Mode Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16_nMOD	15–8	-	0x00	_	R	-
	7–1	-	0x00	-	R	
	0	TRMD	0	HO	R/W	

### Bits 15–1 Reserved

#### Bit 0 TRMD

This bit selects the T16 operation mode.

1 (R/W): One-shot mode O(R/W): Percent mode

0 (R/W): Repeat mode

For detailed information on the operation mode, refer to "Operations in One-shot Mode" and "Operations in Repeat Mode."

### T16 Ch.n Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16_nCTL	15–9	-	0x00	_	R	_
	8	PRUN	0	HO	R/W	
	7–2	-	0x00	-	R	
	1	PRESET	0	H0	R/W	
	0	MODEN	0	H0	R/W	

### Bits 15–9 Reserved

#### Bit 8 PRUN

This bit starts/stops the timer.

- 1 (W): Start timer
- 0 (W): Stop timer
- 1 (R): Timer is running
- 0 (R): Timer is idle

By writing 1 to this bit, the timer starts count operations. However, the T16_*n*CTL.MODEN bit must be set to 1 in conjunction with this bit or it must be set in advance. While the timer is running, writing 0 to this bit stops count operations. When the counter stops due to a counter underflow in one-shot mode, this bit is automatically cleared to 0.

### Bits 7–2 Reserved

### Bit 1 PRESET

This bit presets the reload data stored in the T16_nTR register to the counter.

- 1 (W): Preset
- 0 (W): Ineffective
- 1 (R): Presetting in progress
- 0 (R): Presetting finished or normal operation

By writing 1 to this bit, the timer presets the T16_*n*TR register value to the counter. However, the T16_*n*CTL.MODEN bit must be set to 1 in conjunction with this bit or it must be set in advance. This bit retains 1 during presetting and is automatically cleared to 0 after presetting has finished.

### Bit 0 MODEN

This bit enables the T16 Ch.*n* operations.

1 (R/W): Enable (Start supplying operating clock)

0 (R/W): Disable (Stop supplying operating clock)

### T16 Ch.n Reload Data Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16_ <i>n</i> TR	15–0	TR[15:0]	0xffff	H0	R/W	-

### Bits 15-0 TR[15:0]

These bits are used to set the initial value to be preset to the counter.

The value set to this register will be preset to the counter when 1 is written to the T16_nCTL.PRESET bit or when the counter underflows.

- **Notes:** The T16_*n*TR register cannot be altered while the timer is running (T16_*n*CTL.PRUN bit = 1), as an incorrect initial value may be preset to the counter.
  - When one-shot mode is set, the T16_nTR.TR[15:0] bits should be set to a value equal to or greater than 0x0001.

### T16 Ch.n Counter Data Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16_ <i>n</i> TC	15–0	TC[15:0]	0xffff	HO	R	_

### Bits 15-0 TC[15:0]

The current counter value can be read out from these bits.

### T16 Ch.n Interrupt Flag Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16_nINTF	15–8	-	0x00	-	R	_
	7–1	-	0x00	-	R	
	0	UFIF	0	HO	R/W	Cleared by writing 1.

#### Bits 15–1 Reserved

### Bit 0 UFIF

This bit indicates the T16 Ch.n underflow interrupt cause occurrence status.

1 (R): Cause of interrupt occurred

- 0 (R): No cause of interrupt occurred
- 1 (W): Clear flag
- 0 (W): Ineffective

### T16 Ch.n Interrupt Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16_nINTE	15–8	-	0x00	-	R	-
	7–1	-	0x00	-	R	
	0	UFIE	0	H0	R/W	

### Bits 15–1 Reserved

### Bit 0 UFIE

This bit enables T16 Ch.n underflow interrupts.

1 (R/W): Enable interrupts

0 (R/W): Disable interrupts

**Note**: To prevent generating unnecessary interrupts, the corresponding interrupt flag should be cleared before enabling interrupts.

# 13 UART (UART3)

# 13.1 Overview

The UART3 is an asynchronous serial interface. The features of the UART3 are listed below.

- Includes a baud rate generator for generating the transfer clock.
- Supports 7- and 8-bit data length (LSB first).
- Odd parity, even parity, or non-parity mode is selectable.
- The start bit length is fixed at 1 bit.
- The stop bit length is selectable from 1 bit and 2 bits.
- Supports full-duplex communications.
- Includes a 2-byte receive data buffer and a 1-byte transmit data buffer.
- Includes an RZI modulator/demodulator circuit to support IrDA 1.0-compatible infrared communications.
- Can detect parity error, framing error, and overrun error.
- Can generate receive buffer full (1 byte/2 bytes), transmit buffer empty, end of transmission, parity error, framing error, and overrun error interrupts.
- Can issue a DMA transfer request when a receive buffer one byte full or a transmit buffer empty occurs.
- Input pin can be pulled up with an internal resistor.
- The output pin is configurable as an open-drain output.
- Provides the carrier modulation output function.

Figure 13.1.1 shows the UART3 configuration.

#### Table 13.1.1 UART3 Channel Configuration of S1C31D01



# **13.2 Input/Output Pins and External Connections**

# 13.2.1 List of Input/Output Pins

Table 13.2.1.1 lists the UART3 pins.

Table 13.2.1.1 List of UART3 Pins					
Pin name	I/O*	Initial status*	Function		
USINn		I (Hi-Z)	UART3 Ch.n data input pin		
USOUTn	0	O (High)	UART3 Ch.n data output pin		

* Indicates the status when the pin is configured for the UART3.

If the port is shared with the UART3 pin and other functions, the UART3 input/output function must be assigned to the port before activating the UART3. For more information, refer to the "I/O Ports" chapter.

# 13.2.2 External Connections

Figure 13.2.2.1 shows a connection diagram between the UART3 in this IC and an external UART device.



Figure 13.2.2.1 Connections between UART3 and an External UART Device

### 13.2.3 Input Pin Pull-Up Function

The UART3 includes a pull-up resistor for the USIN*n* pin. Setting the UART3_*n*MOD.PUEN bit to 1 enables the resistor to pull up the USIN*n* pin.

# 13.2.4 Output Pin Open-Drain Output Function

The USOUT *n* pin supports the open-drain output function. Default configuration is a push-pull output and it is switched to an open-drain output by setting the UART3_nMOD.OUTMD bit to 1.

# 13.2.5 Input/Output Signal Inverting Function

The UART3 can invert the signal polarities of the USINn pin input and the USOUTn pin output by setting the UART3_nMOD.INVRX bit and the UART3_nMOD.INVTX bit, respectively, to 1.

**Note**: Unless otherwise specified, this chapter shows input/output signals with non-inverted waveforms (UART3_*n*MOD.INVRX bit = 0, UART3_*n*MOD.INVTX bit =0).

# 13.3 Clock Settings

### 13.3.1 UART3 Operating Clock

When using the UART3 Ch.*n*, the UART3 Ch.*n* operating clock CLK_UART3_*n* must be supplied to the UART3 Ch.*n* from the clock generator. The CLK_UART3_*n* supply should be controlled as in the procedure shown below.

- 1. Enable the clock source in the clock generator if it is stopped (refer to "Clock Generator" in the "Power Supply, Reset, and Clocks" chapter).
- 2. Set the following UART3_nCLK register bits:
  - UART3_nCLK.CLKSRC[1:0] bits (Clock source selection)
  - UART3_nCLK.CLKDIV[1:0] bits (Clock division ratio selection = Clock frequency setting)

The UART3 operating clock should be selected so that the baud rate generator will be configured easily.

### 13.3.2 Clock Supply in SLEEP Mode

When using the UART3 during SLEEP mode, the UART3 operating clock CLK_UART3_*n* must be configured so that it will keep supplying by writing 0 to the CLGOSC_*xxxx*SLPC bit for the CLK_UART3_*n* clock source.

### 13.3.3 Clock Supply During Debugging

The CLK_UART3_*n* supply during debugging should be controlled using the UART3_*n*CLK.DBRUN bit.

The CLK_UART3_*n* supply to the UART3 Ch.*n* is suspended when the CPU enters debug state if the UART3_*n*CLK.DBRUN bit = 0. After the CPU returns to normal mode, the CLK_UART3_*n* supply resumes. Although the UART3 Ch.*n* stops operating when the CLK_UART3_*n* supply is suspended, the output pin and registers retain the status before the debug state was entered. If the UART3_*n*CLK.DBRUN bit = 1, the CLK_UART3_*n* supply is not suspended and the UART3 Ch.*n* will keep operating in a debug state.

### 13.3.4 Baud Rate Generator

The UART3 includes a baud rate generator to generate the transfer (sampling) clock. The transfer rate is determined by the UART3_*n*MOD.BRDIV, UART3_*n*BR.BRT[7:0], and UART3_*n*BR.FMD[3:0] bit settings. Use the following equations to calculate the setting values for obtaining the desired transfer rate.

bps =	$\frac{\text{CLK}_{\text{UA}}}{\frac{\text{BRT} + 1}{\text{BRDIV}}}$	$\frac{\text{RT3}}{\text{FMD}} \qquad \qquad \text{BRT} = \text{BRDIV} \times \left(\frac{\text{CLK}_{\text{UART3}}}{\text{bps}} - \text{FMD}\right) - 1 \qquad (\text{Eq. 13.1})$
Where	e	
bp	os:	Transfer rate [bit/s]
Cl	LK_UART3:	UART3 operating clock frequency [Hz]
Bl	RDIV:	Baud rate division ratio (1/16 or 1/4) * Selected by the UART3_nMOD.BRDIV bit
Bl	RT:	UART3_nBR.BRT[7:0] setting value (0 to 255)
FN	MD:	UART3_nBR.FMD[3:0] setting value (0 to 15)

For the transfer rate range configurable in the UART3, refer to "UART Characteristics, Transfer baud rates UBRT1 and UBRT2" in the "Electrical Characteristics" chapter.

# 13.4 Data Format

The UART3 allows setting of the data length, stop bit length, and parity function. The start bit length is fixed at one bit.

### Data length

With the UART3_*n*MOD.CHLN bit, the data length can be set to seven bits (UART3_*n*MOD.CHLN bit = 0) or eight bits (UART3_*n*MOD.CHLN bit = 1).

### Stop bit length

With the UART3_nMOD.STPB bit, the stop bit length can be set to one bit (UART3_nMOD.STPB bit = 0) or two bits (UART3_nMOD.STPB bit = 1).

### **Parity function**

The parity function is configured using the UART3_nMOD.PREN and UART3_nMOD.PRMD bits.

Table 13.4.1 Parity Function Setting

	-	-
UART3_nMOD.PREN bit	UART3_nMOD.PRMD bit	Parity function
1	1	Odd parity
1	0	Even parity
0	*	Non parity

UART	「3_ <i>n</i> MOD re	gister	
CHLN bit	STPB bit	PREN bit	
0	0	0	<u>st ( D0 ) D1   D2   D3   D4   D5   D6 </u> sp
0	0	1	st ( D0 ) D1 ) D2 ) D3 ) D4 ) D5 ) D6 ) p ) sp
0	1	0	st ( D0 ) D1 ) D2 ) D3 ) D4 ) D5 ) D6 ) sp sp
0	1	1	st ( D0 ) D1 ) D2 ) D3 ) D4 ) D5 ) D6 ) p ) sp sp
1	0	0	st ( D0 ) D1 ) D2 ) D3 ) D4 ) D5 ) D6 ) D7 ) sp
1	0	1	st ( D0 ) D1 ) D2 ) D3 ) D4 ) D5 ) D6 ) D7 ) p ) sp
1	1	0	st ( D0 ) D1 ) D2 ) D3 ) D4 ) D5 ) D6 ) D7 ) sp sp
1	1	1	st ( D0 ) D1 ) D2 ) D3 ) D4 ) D5 ) D6 ) D7 ) p ) sp sp
			st: start bit, sp: stop bit, p: parity bit
			Figure 13.4.1 Data Format

# 13.5 Operations

# 13.5.1 Initialization

The UART3 Ch.n should be initialized with the procedure shown below.

- 1. Assign the UART3 Ch.n input/output function to the ports. (Refer to the "I/O Ports" chapter.)
- 2. Set the UART3_nCLK.CLKSRC[1:0] and UART3_nCLK.CLKDIV[1:0] bits. (Configure operating clock)
- 3. Configure the following UART3_*n*MOD register bits:
  - UART3_nMOD.BRDIV bit (Select baud rate division ratio (1/16 or 1/4))
  - UART3_nMOD.INVRX bit (Enable/disable USIN*n* input signal inversion)
  - UART3_nMOD.INVTX bit (Enable/disable USOUT*n* output signal inversion)
  - UART3_*n*MOD.PUEN bit (Enable/disable USIN*n* pin pull-up)
  - UART3_nMOD.OUTMD bit (Enable/disable USOUTn pin open-drain output)
  - UART3_nMOD.IRMD bit (Enable/disable IrDA interface)
  - UART3_*n*MOD.CHLN bit (Set data length (7 or 8 bits))
  - UART3_*n*MOD.PREN bit (Enable/disable parity function)
  - UART3_*n*MOD.PRMD bit (Select parity mode (even or odd))
  - UART3_*n*MOD.STPB bit (Set stop bit length (1 or 2 bits))
  - UART3_nMOD.CAREN bit (Enable/disable carrier modulation function)
  - UART3_nMOD.PECAR bit (Select carrier modulation period (H data period/L data period))

4. Set the UART3_nBR.BRT[7:0] and UART3_nBR.FMD[3:0] bits. (Set transfer rate)

5.	Set the UART3	nCAWF.CRPER[7:	0] bits.
<i>.</i> .	bet the orners_	_nonini .ord Erd /	0101

6. Set the following UART3_*n*CTL register bits:

- Set the UART3_nCTL.SFTRST bit to 1.	(Execute software reset)
- Set the UART3_nCTL.MODEN bit to 1.	(Enable UART3 Ch.n operations)
Set the following bits when using the interrupt:	

- 7. Set the following bits when using the interrupt:
  - Write 1 to the interrupt flags in the UART3_nINTF register. (Clear interrupt flags)
  - Set the interrupt enable bits in the UART3_nINTE register to 1.* (Enable interrupts)
  - * The initial value of the UART3_*n*INTF.TBEIF bit is 1, therefore, an interrupt will occur immediately after the UART3_*n*INTE.TBEIE bit is set to 1.

(Set carrier cycle)

- 8. Configure the DMA controller and set the following UART3 control bits when using DMA transfer:
  - Write 1 to the DMA transfer request enable bits in the UART3_*n*TBEDMAEN and UART3_*n*RB1FDMAEN registers. (Enable DMA transfer requests)
### 13.5.2 Data Transmission

A data sending procedure and the UART3 Ch.*n* operations are shown below. Figures 13.5.2.1 and 13.5.2.2 show a timing chart and a flowchart, respectively.

#### Data sending procedure

- 1. Check to see if the UART3_nINTF.TBEIF bit is set to 1 (transmit buffer empty).
- 2. Write transmit data to the UART3_*n*TXD register.
- 3. Wait for a UART3 interrupt when using the interrupt.
- 4. Repeat Steps 1 to 3 (or 1 and 2) until the end of transmit data.

### **UART3** data sending operations

The UART3 Ch.n starts data sending operations when transmit data is written to the UART3_nTXD register.

The transmit data in the UART3_*n*TXD register is automatically transferred to the shift register and the UART3_*n*INTF.TBEIF bit is set to 1 (transmit buffer empty).

The USOUT*n* pin outputs a start bit and the UART3_*n*INTF.TBSY bit is set to 1 (transmit busy). The shift register data bits are then output successively from the LSB. Following output of MSB, the parity bit (if parity is enabled) and the stop bit are output.

Even if transmit data is being output from the USOUT*n* pin, the next transmit data can be written to the UART3_*n*TXD register after making sure the UART3_*n*INTF.TBEIF bit is set to 1.

If no transmit data remains in the UART3_nTXD register after the stop bit has been output from the USOUT*n* pin, the UART3_nINTF.TBSY bit is cleared to 0 and the UART3_nINTF.TENDIF bit is set to 1 (transmission completed).



#### 13 UART (UART3)

### Data transmission using DMA

By setting the UART3_*n*TBEDMAEN.TBEDMAEN*x* bit to 1 (DMA transfer request enabled), a DMA transfer request is sent to the DMA controller and transmit data is transferred from the specified memory to the UART3_*n*TXD register via DMA Ch.*x* when the UART3_*n*INTF.TBEIF bit is set to 1 (transmit buffer empty). This automates the data sending procedure described above.

The transfer source/destination and control data must be set for the DMA controller and the relevant DMA channel must be enabled to start a DMA transfer in advance so that transmit data will be transferred to the UART3_*n*TXD register. For more information on DMA, refer to the "DMA Controller" chapter.

Item		Setting example				
End pointer	Transfer source	Memory address in which the last transmit data is stored				
	Transfer destination	UART3_nTXD register address				
Control data	dst_inc	0x3 (no increment)				
	dst_size	0x0 (byte)				
	src_inc	0x0 (+1)				
	src_size	0x0 (byte)				
	R_power	0x0 (arbitrated for every transfer)				
	n_minus_1	Number of transfer data				
	cycle_ctrl	0x1 (basic transfer)				

Table 13.5.2.1 DMA Data Structure Configuration Example (for Data Transmission)

### 13.5.3 Data Reception

A data receiving procedure and the UART3 Ch.*n* operations are shown below. Figures 13.5.3.1 and 13.5.3.2 show a timing chart and flowcharts, respectively.

### Data receiving procedure (read by one byte)

- 1. Wait for a UART3 interrupt when using the interrupt.
- 2. Check to see if the UART3_nINTF.RB1FIF bit is set to 1 (receive buffer one byte full).
- 3. Read the received data from the UART3_nRXD register.
- 4. Repeat Steps 1 to 3 (or 2 and 3) until the end of data reception.

### Data receiving procedure (read by two bytes)

- 1. Wait for a UART3 interrupt when using the interrupt.
- 2. Check to see if the UART3_nINTF.RB2FIF bit is set to 1 (receive buffer two bytes full).
- 3. Read the received data from the UART3_nRXD register twice.
- 4. Repeat Steps 1 to 3 (or 2 and 3) until the end of data reception.

### **UART3** data receiving operations

The UART3 Ch.n starts data receiving operations when a start bit is input to the USINn pin.

After the receive circuit has detected a low level as a start bit, it starts sampling the following data bits and loads the received data into the receive shift register. The UART3_nINTF.RBSY bit is set to 1 when the start bit is detected.

The UART3_*n*INTF.RBSY bit is cleared to 0 and the receive shift register data is transferred to the receive data buffer at the stop bit receive timing.

The receive data buffer consists of a 2-byte FIFO and receives data until it becomes full. When the receive data buffer receives the first data, it sets the UART3_*n*INTF.RB1FIF bit to 1 (receive buffer one byte full). If the second data is received without reading the first data, the UART3_*n*INTF.RB2FIF bit is set to 1 (receive buffer two bytes full).



(st: start bit, sp: stop bit, p: parity bit)





Figure 13.5.3.2 Data Reception Flowcharts

#### Data reception using DMA

By setting the UART3_nRB1FDMAEN.RB1FDMAENx bit to 1 (DMA transfer request enabled), a DMA transfer request is sent to the DMA controller and the received data is transferred from the UART3_nRXD register to the specified memory via DMA Ch_x when the UART3_nINTF.RB1FIF bit is set to 1 (receive buffer one byte full).

This automates the procedure (read by one byte) described above.

The transfer source/destination and control data must be set for the DMA controller and the relevant DMA channel must be enabled to start a DMA transfer in advance. For more information on DMA, refer to the "DMA Controller" chapter.

Item		Setting example				
End pointer	Transfer source	UART3_nRXD register address				
	Transfer destination	Memory address to which the last received data is stored				
Control data	dst_inc	0x0 (+1)				
	dst_size	0x0 (byte)				
	src_inc	0x3 (no increment)				
	src_size	0x0 (byte)				
	R_power	0x0 (arbitrated for every transfer)				
	n_minus_1	Number of transfer data				
	cycle_ctrl	0x1 (basic transfer)				

Table 13.5.3.1 DMA Data Structure Configuration Example (for Data Reception)

### 13.5.4 IrDA Interface

This UART3 includes an RZI modulator/demodulator circuit enabling implementation of IrDA 1.0-compatible infrared communication function simply by adding simple external circuits.

Set the UART3_*n*MOD.IRMD bit to 1 to use the IrDA interface.

Data transfer control is identical to that for normal interface even if the IrDA interface function is enabled.



Figure 13.5.4.1 Example of Connections with an Infrared Communication Module

The transmit data output from the UART3 Ch.n transmit shift register is output from the USOUTn pin after the low pulse width is converted into 3/16 by the RZI modulator in SIR method.



The received IrDA signal is input to the RZI demodulator and the low pulse width is converted into the normal width before input to the receive shift register.



Notes: • Set the baud rate division ratio to 1/16 when using the IrDA interface function.

• The low pulse width (T₂) of the IrDA signal input must be CLK_UART3_ $n \times 3$  cycles or longer.

### 13.5.5 Carrier Modulation

The UART3 has a carrier modulation function.

Writing 1 to the UART3_*n*MOD.CAREN bit enables the carrier modulation function allowing carrier modulation waveforms to be output according to the UART3_*n*MOD.PECAR bit setting. Data transmit control is identical to that for normal interface even in this case.



(UART3_nMOD.CHLN = 1, UART3_nMOD.STPB = 0, UART3_nMOD.PREN = 1)

The carrier modulation output frequency is determined by the UART3_nCAWF.CRPER[7:0] bit settings. Use the following equations to calculate the setting values for obtaining the desired frequency.

Carrier modulation output frequency =  $\frac{\text{CLK}_{\text{UART3}}}{(\text{CRPER} + 1) \times 2}$  [Hz] (Eq. 13.2)

Where

CLK_UART3: UART3 operating clock frequency [Hz] CRPER: UART3_nCAWF.CRPER[7:0] setting value (0 to 255)

### **13.6 Receive Errors**

Three different receive errors, framing error, parity error, and overrun error, may be detected while receiving data. Since receive errors are interrupt causes, they can be processed by generating interrupts.

### 13.6.1 Framing Error

The UART3 determines loss of sync if a stop bit is not detected (when the stop bit is received as 0) and assumes that a framing error has occurred. The received data that encountered an error is still transferred to the receive data buffer and the UART3_*n*INTF.FEIF bit (framing error interrupt flag) is set to 1 when the data becomes ready to read from the UART3_*n*RXD register.

#### Note: Framing error/parity error interrupt flag set timings

These interrupt flags will be set after the data that encountered an error is transferred to the receive data buffer. Note, however, that the set timing depends on the buffer status at that point.

- When the receive data buffer is empty The interrupt flag will be set when the data that encountered an error is transferred to the receive data buffer.
- When the receive data buffer has a one-byte free space The interrupt flag will be set when the first data byte already loaded is read out after the data that encountered an error is transferred to the second byte entry of the receive data buffer.

### 13.6.2 Parity Error

If the parity function is enabled, a parity check is performed when data is received. The UART3 checks matching between the data received in the shift register and its parity bit, and issues a parity error if the result is a non-match. The received data that encountered an error is still transferred to the receive data buffer and the UART3_nINTF. PEIF bit (parity error interrupt flag) is set to 1 when the data becomes ready to read from the UART3_nRXD register (see the Note on framing error).

### 13.6.3 Overrun Error

If the receive data buffer is still full (two bytes of received data have not been read) when a data reception to the shift register has completed, an overrun error occurs as the data cannot be transferred to the receive data buffer. When an overrun error occurs, the UART3_nINTF.OEIF bit (overrun error interrupt flag) is set to 1.

# 13.7 Interrupts

The UART3 has a function to generate the interrupts shown in Table 13.7.1.

Interrupt	Interrupt flag	Set condition	Clear condition
End of transmission	UART3_nINTF.TENDIF	When the UART3_nINTF.TBEIF bit = 1 after the stop bit has been sent	Writing 1 or software reset
Framing error	UART3_nINTF.FEIF	Refer to the "Receive Errors."	Writing 1, reading received data that encountered an error, or software reset
Parity error	UART3_nINTF.PEIF	Refer to the "Receive Errors."	Writing 1, reading received data that encountered an error, or software reset
Overrun error	UART3_nINTF.OEIF	Refer to the "Receive Errors."	Writing 1 or software reset
Receive buffer two bytes full	UART3_nINTF.RB2FIF	When the second received data byte is loaded to the receive data buffer in which the first byte is already received	Reading received data or software reset
Receive buffer one byte full	UART3_nINTF.RB1FIF	When the first received data byte is load- ed to the emptied receive data buffer	Reading data to empty the receive data buffer or software reset
Transmit buffer empty	UART3_nINTF.TBEIF	When transmit data written to the trans- mit data buffer is transferred to the shift register	Writing transmit data

Table 13 7 1	UART3	Interrupt	Function
10.7.1	OAITO	michupi	i unonon

The UART3 provides interrupt enable bits corresponding to each interrupt flag. An interrupt request is sent to the CPU only when the interrupt flag, of which interrupt has been enabled by the interrupt enable bit, is set. For more information on interrupt control, refer to the "Interrupt" chapter.

# 13.8 DMA Transfer Requests

The UART3 has a function to generate DMA transfer requests from the causes shown in Table 13.8.1.

Cause to request DMA transfer	DMA transfer request flag	Set condition	Clear condition
Receive buffer	Receive buffer one byte full flag	When the first received data	Reading data to empty
one byte full	(UART3_nINTF.RB1FIF)	byte is loaded to the emptied receive data buffer	the receive data buffer or software reset
Transmit buffer empty	Transmit buffer empty flag	When transmit data written	Writing transmit data
	(UART3_nINTF.TBEIF)	to the transmit data buffer is	
		transferred to the shift register	

Table 13.8.1 DMA Transfer Request Causes of UART3

The UART3 provides DMA transfer request enable bits corresponding to each DMA transfer request flag shown above for the number of DMA channels. A DMA transfer request is sent to the pertinent channel of the DMA controller only when the DMA transfer request flag, of which DMA transfer has been enabled by the DMA transfer request enable bit, is set. The DMA transfer request flag also serves as an interrupt flag, therefore, both the DMA transfer request and the interrupt cannot be enabled at the same time. After a DMA transfer has completed, disable the DMA transfer to prevent unintended DMA transfer requests from being issued. For more information on the DMA control, refer to the "DMA Controller" chapter.

# **13.9 Control Registers**

#### Register name Bit Bit name Initial R/W Reset Remarks UART3_nCLK 15–9 0x00 R _ 8 DBRUN R/W 0 H0 7–6 0x0 R 5-4 CLKDIV[1:0] 0x0 HO R/W 3–2 0x0 R _ R/W 1-0 CLKSRC[1:0] 0x0 HO

# UART3 Ch.n Clock Control Register

### Bits 15–9 Reserved

#### Bit 8 DBRUN

This bit sets whether the UART3 operating clock is supplied in DEBUG mode or not. 1 (R/W): Clock supplied in DEBUG mode 0 (R/W): No clock supplied in DEBUG mode

0 (R/W): No clock supplied in DEBUG

### Bits 7–6 Reserved

#### Bits 5–4 CLKDIV[1:0]

These bits select the division ratio of the UART3 operating clock.

#### Bits 3–2 Reserved

#### Bits 1-0 CLKSRC[1:0]

These bits select the clock source of the UART3.

Table 15.3.1 Clock Source and Division hallo Settings		Table 13.9.1	Clock Source and Division Ratio Settings	
-------------------------------------------------------	--	--------------	------------------------------------------	--

	UART3_nCLK.CLKSRC[1:0] bits							
	0x0	0x1	0x2	0x3				
CLKDIV[1:0] bits	IOSC	OSC1	OSC3	EXOSC				
0x3	1/8	1/1	1/8	1/1				
0x2	1/4		1/4					
0x1	1/2	-	1/2					
0x0	1/1		1/1					

(Note) The oscillation circuits/external input that are not supported in this IC cannot be selected as the clock source.

**Note**: The UART3_*n*CLK register settings can be altered only when the UART3_*n*CTL.MODEN bit = 0.

### UART3 Ch.n Mode Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
UART3_nMOD	15–13	-	0x0	-	R	-
	12	PECAR	0	H0	R/W	
	11	CAREN	0	H0	R/W	
	10	BRDIV	0	H0	R/W	
	9	INVRX	0	H0	R/W	
	8	INVTX	0	H0	R/W	
	7	-	0	-	R	
	6	PUEN	0	H0	R/W	
	5	OUTMD	0	H0	R/W	
	4	IRMD	0	H0	R/W	
	3	CHLN	0	H0	R/W	
	2	PREN	0	H0	R/W	
	1	PRMD	0	H0	R/W	
	0	STPB	0	HO	R/W	

#### Bits 15–13 Reserved

Bit 12	PECAR
	This bit selects the carrier modulation period.
	0 (R/W): Carrier modulation during L data period
Bit 11	
DICTI	This bit enables the carrier modulation function.
	1 (R/W): Enable carrier modulation function
	0 (R/W): Disable carrier modulation function
Bit 10	BRDIV
	This bit sets the UART3 operating clock division ratio for generating the transfer (sampling) clock
	using the baud rate generator.
	1 (R/W): 1/4
	0 (R/W): 1/16
Bit 9	INVRX
	This bit enables the USIN <i>n</i> input inverting function.
	1 (R/W): Enable input inverting function
	0 (K/w): Disable input inverting function
Bit 8	INVTX
	This bit enables the USOUT <i>n</i> output inverting function. 1 (D(W)). Eachly submit inverting function
	(K/W): Enable output inverting function O(R/W): Disable output inverting function
D:1 7	Disade output inverting function
BIT /	Reserved
Bit 6	PUEN
	This bit enables pull-up of the USIN $n$ pin. 1 (D(W)) Enables pull-up of the USIN $n$ pin.
	(K/W): Enable pull-up O(R/W): Disable pull-up
D:+ 5	
DIL J	This bit sets the USOUT <i>n</i> pin output mode
	1 (R/W): Open-drain output
	0 (R/W): Push-pull output
Bit 4	IRMD
	This bit enables the IrDA interface function.
	1 (R/W): Enable IrDA interface function
	0 (R/W): Disable IrDA interface function
Bit 3	CHLN
	This bit sets the data length.
	1 (R/W): 8 bits
	U (R/W): / bits
Bit 2	PREN
	1 (P/W): Enable parity function.
	0 (R/W): Disable parity function
Rit 1	
	This bit selects either odd parity or even parity when using the parity function
	1 (R/W): Odd parity
	0 (R/W): Even parity

#### Bit 0 STPB

This bit sets the stop bit length. 1 (R/W): 2 bits 0 (R/W): 1 bit

- **Notes:** The UART3_nMOD register settings can be altered only when the UART3_nCTL.MODEN bit = 0.
  - Do not set both the UART3_nMOD.IRMD and UART3_nMOD.CAREN bits simultaneously.

### UART3 Ch.n Baud-Rate Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
UART3_nBR	15–12	-	0x0	-	R	-
	11–8	FMD[3:0]	0x0	H0	R/W	
	7–0	BRT[7:0]	0x00	H0	R/W	

#### Bits 15–12 Reserved

### Bits 11-8 FMD[3:0]

### Bits 7–0 BRT[7:0]

These bits set the UART3 transfer rate. For more information, refer to "Baud Rate Generator."

- **Notes**: The UART3_*n*BR register settings can be altered only when the UART3_*n*CTL.MODEN bit = 0.
  - Do not set the UART3_*n*BR.FMD[3:0] bits to a value other than 0 to 3 when the UART3_ *n*MOD.BRDIV bit = 1.

### UART3 Ch.n Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
UART3_nCTL	15–8	-	0x00	-	R	-
	7–2	-	0x00	-	R	
	1	SFTRST	0	H0	R/W	
	0	MODEN	0	H0	R/W	

#### Bits 15–2 Reserved

#### Bit 1 SFTRST

This bit issues software reset to the UART3.

- 1 (W): Issue software reset
- 0 (W): Ineffective
- 1 (R): Software reset is executing.
- 0 (R): Software reset has finished. (During normal operation)

Setting this bit resets the UART3 transmit/receive control circuit and interrupt flags. This bit is automatically cleared after the reset processing has finished.

#### Bit 0 MODEN

This bit enables the UART3 operations.

- 1 (R/W): Enable UART3 operations (The operating clock is supplied.)
- 0 (R/W): Disable UART3 operations (The operating clock is stopped.)
- **Note:** If the UART3_*n*CTL.MODEN bit is altered from 1 to 0 while sending/receiving data, the data being sent/received cannot be guaranteed. When setting the UART3_*n*CTL.MODEN bit to 1 again after that, be sure to write 1 to the UART3_*n*CTL.SFTRST bit as well.

### UART3 Ch.n Transmit Data Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
UART3_nTXD	15–8	-	0x00	-	R	_
	7–0	TXD[7:0]	0x00	H0	R/W	

### Bits 15–8 Reserved

### Bits 7-0 TXD[7:0]

Data can be written to the transmit data buffer through these bits. Make sure the UART3_*n*INTF. TBEIF bit is set to 1 before writing data.

### UART3 Ch.n Receive Data Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
UART3_nRXD	15–8	-	0x00	_	R	_
	7–0	RXD[7:0]	0x00	H0	R	

#### Bits 15–8 Reserved

### Bits 7-0 RXD[7:0]

The receive data buffer can be read through these bits. The receive data buffer consists of a 2-byte FIFO, and older received data is read first.

### UART3 Ch.n Status and Interrupt Flag Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
UART3_nINTF	15–10	-	0x00	-	R	_
	9	RBSY	0	H0/S0	R	
	8	TBSY	0	H0/S0	R	
	7	-	0	-	R	
	6	TENDIF	0	H0/S0	R/W	Cleared by writing 1.
	5	FEIF	0	H0/S0	R/W	Cleared by writing 1 or reading the
	4	PEIF	0	H0/S0	R/W	UART3_nRXD register.
	3	OEIF	0	H0/S0	R/W	Cleared by writing 1.
	2	RB2FIF	0	H0/S0	R	Cleared by reading the UART3_nRXD
	1	RB1FIF	0	H0/S0	R	register.
	0	TBEIF	1	H0/S0	R	Cleared by writing to the UART3_
						nTXD register.

#### Bits 15–10 Reserved

### Bit 9 RBSY

This bit indicates the receiving status. (See Figure 13.5.3.1.)

- 1 (R): During receiving
- 0 (R): Idle

#### Bit 8 TBSY

This bit indicates the sending status. (See Figure 13.5.2.1.)

- 1 (R): During sending
- 0 (R): Idle

### Bit 7 Reserved

Bit 6	TENDIF
Bit 5	FEIF
Bit 4	PEIF
Bit 3	OEIF
Bit 2	RB2FIF
Bit 1	RB1FIF
Bit 0	TBEIF

These bits indicate the UART3 interrupt cause occurrence status.

- 1 (R): Cause of interrupt occurred
- 0 (R): No cause of interrupt occurred
- 1 (W): Clear flag
- 0 (W): Ineffective

The following shows the correspondence between the bit and interrupt:

UART3_nINTF.TENDIF bit: End-of-transmission interrupt

UART3_nINTF.FEIF bit: Framing error interrupt

UART3_*n*INTF.PEIF bit: Parity error interrupt

UART3_nINTF.OEIF bit: Overrun error interrupt

UART3_nINTF.RB2FIF bit: Receive buffer two bytes full interrupt

UART3_nINTF.RB1FIF bit: Receive buffer one byte full interrupt

UART3_nINTF.TBEIF bit: Transmit buffer empty interrupt

### UART3 Ch.n Interrupt Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
UART3_nINTE	15–8	_	0x00	-	R	-
	7	-	0	-	R	
	6	TENDIE	0	H0	R/W	
	5	FEIE	0	H0	R/W	
	4	PEIE	0	H0	R/W	
	3	OEIE	0	H0	R/W	
	2	RB2FIE	0	H0	R/W	
	1	RB1FIE	0	H0	R/W	
	0	TBEIE	0	HO	R/W	

#### Bits 15–7 Reserved

- Bit 6 TENDIE
- Bit 5 FEIE
- Bit 4 PEIE
- Bit 3 OEIE
- Bit 2 RB2FIE
- Bit 1 RB1FIE

#### Bit 0 TBEIE

These bits enable UART3 interrupts.

1 (R/W): Enable interrupts

0 (R/W): Disable interrupts

The following shows the correspondence between the bit and interrupt:UART3_nINTE.TENDIE bit:End-of-transmission interruptUART3_nINTE.FEIE bit:Framing error interruptUART3_nINTE.PEIE bit:Parity error interruptUART3_nINTE.OEIE bit:Overrun error interruptUART3_nINTE.RB2FIE bit:Receive buffer two bytes full interruptUART3_nINTE.RB1FIE bit:Receive buffer one byte full interruptUART3_nINTE.TBEIE bit:Transmit buffer empty interrupt

### UART3 Ch.n Transmit Buffer Empty DMA Request Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
UART3_nT	15–0	TBEDMAEN[15:0]	0x0000	H0	R/W	-
BEDMAEN						

### Bits 15-0 TBEDMAEN[15:0]

These bits enable the UART3 to issue a DMA transfer request to the corresponding DMA controller channel (Ch.0–Ch.15) when a transmit buffer empty state has occurred.

1 (R/W): Enable DMA transfer request

0 (R/W): Disable DMA transfer request

Each bit corresponds to a DMA controller channel. The high-order bits for the unimplemented channels are ineffective.

### UART3 Ch.n Receive Buffer One Byte Full DMA Request Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
UART3_n	15–0	RB1FDMAEN[15:0]	0x0000	H0	R/W	-
RB1FDMAEN						

### Bits 15-0 RB1FDMAEN[15:0]

These bits enable the UART3 to issue a DMA transfer request to the corresponding DMA controller channel (Ch.0–Ch.15) when a receive buffer one byte full state has occurred.

1 (R/W): Enable DMA transfer request

0 (R/W): Disable DMA transfer request

Each bit corresponds to a DMA controller channel. The high-order bits for the unimplemented channels are ineffective.

### UART3 Ch.n Carrier Waveform Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
UART3_nCAWF	15–8	-	0x00	-	R	_
	7–0	CRPER[7:0]	0x00	H0	R/W	

### Bits 15–8 Reserved

### Bits 7–0 CRPER[7:0]

These bits set the carrier modulation output frequency. For more information, refer to "Carrier Modulation."

# 14 Synchronous Serial Interface (SPIA)

# 14.1 Overview

SPIA is a synchronous serial interface. The features of SPIA are listed below.

- Supports both master and slave modes.
- Data length: 2 to 16 bits programmable
- Either MSB first or LSB first can be selected for the data format.
- Clock phase and polarity are configurable.
- Supports full-duplex communications.
- Includes separated transmit data buffer and receive data buffer registers.
- Can generate receive buffer full, transmit buffer empty, end of transmission, and overrun interrupts.
- Can issue a DMA transfer request when a receive buffer full or a transmit buffer empty occurs.
- Master mode allows use of a 16-bit timer to set baud rate.
- Slave mode is capable of being operated with the external input clock SPICLKn only.
- Slave mode is capable of being operated in SLEEP mode allowing wake-up by an SPIA interrupt.
- Input pins can be pulled up/down with an internal resistor.

Figure 14.1.1 shows the SPIA configuration.

Table 14.1.1 SPIA Channel Configuration of S1C31D01





Figure 14.1.1 SPIA Configuration

# 14.2 Input/Output Pins and External Connections

### 14.2.1 List of Input/Output Pins

Table 14.2.1.1 lists the SPIA pins.

Pin name	I/O*	Initial status*	Function		
SDIn	I	I (Hi-Z)	SPIA Ch.n data input pin		
SDOn	O or Hi-Z	Hi-Z	SPIA Ch.n data output pin		
SPICLKn	l or O	I (Hi-Z)	SPIA Ch.n external clock input/output pin		
#SPISSn	l	I (Hi-Z)	SPIA Ch.n slave select signal input pin		

abla 1/1 2 1 1	List of SDIA D	Dine
able 14.2.1.1	LIST OF SPIA F	าทร

* Indicates the status when the pin is configured for SPIA.

If the port is shared with the SPIA pin and other functions, the SPIA input/output function must be assigned to the port before activating SPIA. For more information, refer to the "I/O Ports" chapter.

### 14.2.2 External Connections

SPIA operates in master mode or slave mode. Figures 14.2.2.1 and 14.2.2.2 show connection diagrams between SPIA in each mode and external SPI devices.





SDI SPICLK

### 14.2.3 Pin Functions in Master Mode and Slave Mode

The pin functions are changed according to the master or slave mode selection. The differences in pin functions between the modes are shown in Table 14.2.3.1.

Pin	Function in master mode	Function in slave mode
SDIn	Always placed	into input state.
SDOn	Always placed into output state.	This pin is placed into output state while a low level
		is applied to the #SPISSn pin or placed into Hi-Z
		state while a high level is applied to the #SPISSn
		pin.
SPICLKn	Outputs the SPI clock to external devices.	Inputs an external SPI clock.
	Output clock polarity and phase can be configured	Clock polarity and phase can be designated accord-
	if necessary.	ing to the input clock.
#SPISSn	Not used.	Applying a low level to the #SPISSn pin enables
	This input function is not required to be assigned to	SPIA to transmit/receive data. While a high level is
	the port. To output the slave select signal in master	applied to this pin, SPIA is not selected as a slave
	mode, use a general-purpose I/O port function.	device. Data input to the SDIn pin and the clock
		input to the SPICLKn pin are ignored. When a high
		level is applied, the transmit/receive bit count is
		cleared to 0 and the already received bits are dis-
		carded.

Table 14.2.3.1	Pin Function Differences	between Modes
10010 14.2.0.1		between models

### 14.2.4 Input Pin Pull-Up/Pull-Down Function

The SPIA input pins (SDI*n* in master mode or SDI*n*, SPICLK*n*, and #SPISS*n* pins in slave mode) have a pull-up or pull-down function as shown in Table 14.2.4.1. This function is enabled by setting the SPIA_*n*MOD.PUEN bit to 1.

Table 14.2.4.1 Pull-Up or Pull-	Down of Input Pins
Master mode	Slave mode

Pin	Master mode	Slave mode
SDIn	Pull-up	Pull-up
SPICLKn	-	SPIA_nMOD.CPOL bit = 1: Pull-up
		SPIA_ <i>n</i> MOD.CPOL bit = 0: Pull-down
#SPISSn	-	Pull-up

# 14.3 Clock Settings

### 14.3.1 SPIA Operating Clock

### Operating clock in master mode

In master mode, the SPIA operating clock is supplied from the 16-bit timer. The following two options are provided for the clock configuration.

### Use the 16-bit timer operating clock without dividing

By setting the SPIA_nMOD.NOCLKDIV bit to 1, the operating clock CLK_T16_m, which is configured by selecting a clock source and a division ratio, for the 16-bit timer channel corresponding to the SPIA channel is input to SPIA as CLK_SPIAn. Since this clock is also used as the SPI clock SPICLKn without changing, the CLK_SPIAn frequency becomes the baud rate.

To supply CLK_SPIA*n* to SPIA, the 16-bit timer clock source must be enabled in the clock generator. It does not matter how the T16_mCTL.MODEN and T16_mCTL.PRUN bits of the corresponding 16-bit timer channel are set (1 or 0).

When setting this mode, the timer function of the corresponding 16-bit timer channel may be used for another purpose.

### Use the 16-bit timer as a baud rate generator

By setting the SPIA_nMOD.NOCLKDIV bit to 0, SPIA inputs the underflow signal generated by the corresponding 16-bit timer channel and converts it to the SPICLK*n*. The 16-bit timer must be run with an appropriate reload data set. The SPICLK*n* frequency (baud rate) and the 16-bit timer reload data are calculated by the equations shown below.

#### 14 SYNCHRONOUS SERIAL INTERFACE (SPIA)

 $f_{SPICLK} = \frac{f_{CLK_SPIA}}{2 \times (RLD + 1)} \qquad RLD = \frac{f_{CLK_SPIA}}{f_{SPICLK} \times 2} - 1 \qquad (Eq. 14.1)$ Where  $f_{SPICLK:} SPICLKn \text{ frequency [Hz] (= baud rate [bps])}$   $f_{CLK_SPIA:} SPIA \text{ operating clock frequency [Hz]}$  RLD: 16-bit timer reload data value

For controlling the 16-bit timer, refer to the "16-bit Timers" chapter.

### Operating clock in slave mode

SPIA set in slave mode operates with the clock supplied from the external SPI master to the SPICLK*n* pin. The 16-bit timer channel (including the clock source selector and the divider) corresponding to the SPIA channel is not used. Furthermore, the SPIA_nMOD.NOCLKDIV bit setting becomes ineffective.

SPIA keeps operating using the clock supplied from the external SPI master even if all the internal clocks halt during SLEEP mode, so SPIA can receive data and can generate receive buffer full interrupts.

### 14.3.2 Clock Supply During Debugging

In master mode, the operating clock supply during debugging should be controlled using the T16_mCLK.DBRUN bit.

The CLK_T16_m supply to SPIA Ch.n is suspended when the CPU enters debug state if the T16_mCLK.DBRUN bit = 0. After the CPU returns to normal operation, the CLK_T16_m supply resumes. Although SPIA Ch.n stops operating when the CLK_T16_m supply is suspended, the output pins and registers retain the status before the debug state was entered. If the T16_mCLK.DBRUN bit = 1, the CLK_T16_m supply is not suspended and SPIA Ch.n will keep operating in a debug state.

SPIA in slave mode operates with the external SPI master clock input from the SPICLK*n* pin regardless of whether the CPU is placed into debug state or normal operation state.

### 14.3.3 SPI Clock (SPICLKn) Phase and Polarity

The SPICLK*n* phase and polarity can be configured separately using the SPIA_*n*MOD.CPHA bit and the SPIA_ *n*MOD.CPOL bit, respectively. Figure 14.3.3.1 shows the clock waveform and data input/output timing in each setting.

SPIA_nMC	D register	Cycle No.	1	2	3	4	5	6	7	8	
1	1	SPICLKn									
1	0	SPICLKn									$\square$
0	1	SPICLKn					$\frown$	<u> </u>		<u> </u>	
0	0	SPICLKn									
x	x	SDIn	( MSB	X	X	X		(	X	LSB	
x	x	(Master mode) SDOn	MSB	X	X	X				LSB	
x	1	(Slave mode) SDOn	MSB	X	<u> </u>	,				LSB	
x	0	(Slave mode) SDOn	MSB	X	X	X			<u> </u>	LSB	
		T	ing data to the		register						
	whiting data to the SHA_MAD register										

Figure 14.3.3.1 SPI Clock Phase and Polarity (SPIA_nMOD.LSBFST bit = 0, SPIA_nMOD.CHLN[3:0] bits = 0x7)

# 14.4 Data Format

The SPIA data length can be selected from 2 bits to 16 bits by setting the SPIA_nMOD.CHLN[3:0] bits. The input/ output permutation is configurable to MSB first or LSB first using the SPIA_nMOD.LSBFST bit. Figure 14.4.1 shows a data format example when the SPIA_nMOD.CHLN[3:0] bits = 0x7, the SPIA_nMOD.CPOL bit = 0 and the SPIA_nMOD.CPHA bit = 0.



(SPIA_nMOD.CHLN[3:0] bits = 0x7, SPIA_nMOD.CPOL bit = 0, SPIA_nMOD.CPHA bit = 0)

# 14.5 Operations

### 14.5.1 Initialization

SPIA Ch.n should be initialized with the procedure shown below.

- 1. <Master mode only> Generate a clock by controlling the 16-bit timer and supply it to SPIA Ch.n.
- 2. Configure the following SPIA_*n*MOD register bits:
- SPIA nMOD.PUEN bit (Enable input pin pull-up/down) - SPIA nMOD.NOCLKDIV bit (Select master mode operating clock) - SPIA nMOD.LSBFST bit (Select MSB first/LSB first) - SPIA nMOD.CPHA bit (Select clock phase) - SPIA nMOD.CPOL bit (Select clock polarity) - SPIA_nMOD.MST bit (Select master/slave mode) 3. Assign the SPIA Ch.n input/output function to the ports. (Refer to the "I/O Ports" chapter.) 4. Set the following SPIA *n*CTL register bits: - Set the SPIA *n*CTL.SFTRST bit to 1. (Execute software reset) - Set the SPIA_nCTL.MODEN bit to 1. (Enable SPIA Ch.n operations)
- 5. Set the following bits when using the interrupt:
  - Write 1 to the interrupt flags in the SPIA_nINTF register. (Clear interrupt flags)
    Set the interrupt enable bits in the SPIA_nINTE register to 1.* (Enable interrupts)
  - * The initial value of the SPIA_*n*INTF.TBEIF bit is 1, therefore, an interrupt will occur immediately after the SPIA *n*INTE.TBEIE bit is set to 1.
- 6. Configure the DMA controller and set the following SPIA control bits when using DMA transfer:
  - Write 1 to the DMA transfer request enable bits in the SPIA_*n*TBEDMAEN and SPIA_*n*RBFDMAEN registers. (Enable DMA transfer requests)

### 14.5.2 Data Transmission in Master Mode

A data sending procedure and operations in master mode are shown below. Figures 14.5.2.1 and 14.5.2.2 show a timing chart and a flowchart, respectively.

### Data sending procedure

- 1. Assert the slave select signal by controlling the general-purpose output port (if necessary).
- 2. Check to see if the SPIA_nINTF.TBEIF bit is set to 1 (transmit buffer empty).
- 3. Write transmit data to the SPIA_*n*TXD register.
- 4. Wait for an SPIA interrupt when using the interrupt.
- 5. Repeat Steps 2 to 4 (or 2 and 3) until the end of transmit data.
- 6. Negate the slave select signal by controlling the general-purpose output port (if necessary).

### **Data sending operations**

SPIA Ch.n starts data sending operations when transmit data is written to the SPIA_nTXD register.

The transmit data in the SPIA_*n*TXD register is automatically transferred to the shift register and the SPIA_ *n*INTF.TBEIF bit is set to 1. If the SPIA_*n*INTE.TBEIE bit = 1 (transmit buffer empty interrupt enabled), a transmit buffer empty interrupt occurs at the same time.

The SPICLK*n* pin outputs clocks of the number of the bits specified by the SPIA_*n*MOD.CHLN[3:0] bits and the transmit data bits are output in sequence from the SDO*n* pin in sync with these clocks.

Even if the clock is being output from the SPICLK*n* pin, the next transmit data can be written to the SPIA_*n*TXD register after making sure the SPIA_*n*INTF.TBEIF bit is set to 1.

If transmit data has not been written to the SPIA_*n*TXD register after the last clock is output from the SPI-CLK*n* pin, the clock output halts and the SPIA_*n*INTF.TENDIF bit is set to 1. At the same time SPIA issues an end-of-transmission interrupt request if the SPIA_*n*INTE.TENDIE bit = 1.



Figure 14.5.2.1 Example of Data Sending Operations in Master Mode (SPIA_nMOD.CHLN[3:0] bits = 0x7)



Figure 14.5.2.2 Data Transmission Flowchart in Master Mode

### Data transmission using DMA

By setting the SPIA_*n*TBEDMAEN.TBEDMAEN*x* bit to 1 (DMA transfer request enabled), a DMA transfer request is sent to the DMA controller and transmit data is transferred from the specified memory to the SPIA_*n*TXD register via DMA Ch.*x* when the SPIA_*n*INTF.TBEIF bit is set to 1 (transmit buffer empty).

This automates the procedure from Step 2 to Step 5 described above.

The transfer source/destination and control data must be set for the DMA controller and the relevant DMA channel must be enabled to start a DMA transfer in advance so that transmit data will be transferred to the SPIA_*n*TXD register. For more information on DMA, refer to the "DMA Controller" chapter.

	Item	Setting example
End pointer	Transfer source	Memory address in which the last transmit data is stored
	Transfer destination	SPIA_nTXD register address
Control data	dst_inc	0x3 (no increment)
	dst_size	0x1 (haflword)
	src_inc	0x1 (+2)
	src_size	0x1 (halfword)
	R_power	0x0 (arbitrated for every transfer)
	n_minus_1	Number of transfer data
	cycle_ctrl	0x1 (basic transfer)

Table 14.5.2.1 DMA Data Structure Configuration Example (for 16-bit Data Transmission)

### 14.5.3 Data Reception in Master Mode

A data receiving procedure and operations in master mode are shown below. Figures 14.5.3.1 and 14.5.3.2 show a timing chart and flowcharts, respectively.

#### Data receiving procedure

- 1. Assert the slave select signal by controlling the general-purpose output port (if necessary).
- 2. Check to see if the SPIA_nINTF.TBEIF bit is set to 1 (transmit buffer empty).
- 3. Write dummy data (or transmit data) to the SPIA_nTXD register.
- 4. Wait for a transmit buffer empty interrupt (SPIA_*n*INTF.TBEIF bit = 1).
- 5. Write dummy data (or transmit data) to the SPIA_nTXD register.
- 6. Wait for a receive buffer full interrupt (SPIA_*n*INTF.RBFIF bit = 1).
- 7. Read the received data from the SPIA_nRXD register.
- 8. Repeat Steps 5 to 7 until the end of data reception.
- 9. Negate the slave select signal by controlling the general-purpose output port (if necessary).
- **Note**: To perform continuous data reception without stopping SPICLK*n*, Steps 7 and 5 operations must be completed within the SPICLK*n* cycles equivalent to "Data bit length 1" after Step 6.

### Data receiving operations

SPIA Ch.*n* starts data receiving operations simultaneously with data sending operations when transmit data (may be dummy data if data transmission is not required) is written to the SPIA_*n*TXD register.

The SPICLK*n* pin outputs clocks of the number of the bits specified by the SPIA_*n*MOD.CHLN[3:0] bits. The transmit data bits are output in sequence from the SDO*n* pin in sync with these clocks and the receive data bits input from the SDI*n* pin are shifted into the shift register.

When the last clock is output from the SPICLK*n* pin and receive data bits are all shifted into the shift register, the received data is transferred to the receive data buffer and the SPIA_*n*INTF.RBFIF bit is set to 1. At the same time SPIA issues a receive buffer full interrupt request if the SPIA_*n*INTE.RBFIE bit = 1. After that, the received data in the receive data buffer can be read through the SPIA_*n*RXD register.

**Note:** If data of the number of the bits specified by the SPIA_nMOD.CHLN[3:0] bits is received when the SPIA_nINTF.RBFIF bit is set to 1, the SPIA_nRXD register is overwritten with the newly received data and the previously received data is lost. In this case, the SPIA_nINTF.OEIF bit is set.



Figure 14.5.3.1 Example of Data Receiving Operations in Master Mode (SPIA_nMOD.CHLN[3:0] bits = 0x7)



Figure 14.5.3.2 Data Reception Flowcharts in Master Mode

### Data reception using DMA

For data reception, two DMA controller channels should be used to write dummy data to the SPIA_*n*TXD register as a reception start trigger and to read the received data from the SPIA_*n*RXD register.

By setting the SPIA_*n*TBEDMAEN.TBEDMAEN*x1* bit to 1 (DMA transfer request enabled), a DMA transfer request is sent to the DMA controller and dummy data is transferred from the specified memory to the SPIA_*n*TXD register via DMA Ch*x1* when the SPIA_*n*INTF.TBEIF bit is set to 1 (transmit buffer empty).

By setting the SPIA_*n*RBFDMAEN.RBFDMAEN*x*² bit to 1 (DMA transfer request enabled), a DMA transfer request is sent to the DMA controller and the received data is transferred from the SPIA_*n*RXD register to the specified memory via DMA Ch.*x*² when the SPIA_*n*INTF.RBFIF bit is set to 1 (receive buffer full).

This automates the procedure from Step 2 to Step 8 described above.

The transfer source/destination and control data must be set for the DMA controller and the relevant DMA channel must be enabled to start a DMA transfer in advance. For more information on DMA, refer to the "DMA Controller" chapter.

	Item	Setting example
End pointer	Transfer source	Memory address in which dummy data is stored
	Transfer destination	SPIA_nTXD register address
Control data	dst_inc	0x3 (no increment)
	dst_size	0x1 (haflword)
	src_inc	0x3 (no increment)
	src_size	0x1 (halfword)
	R_power	0x0 (arbitrated for every transfer)
	n_minus_1	Number of transfer data
	cycle_ctrl	0x1 (basic transfer)

Table 14.5.3.1 DMA Data Structure Configuration Example (for Writing 16-bit Dummy Transmit Data)

Item		Setting example
End pointer	Transfer source	SPIA_nRXD register address
	Transfer destination	Memory address to which the last received data is stored
Control data	dst_inc	0x1 (+2)
	dst_size	0x1 (haflword)
	src_inc	0x3 (no increment)
	src_size	0x1 (halfword)
	R_power	0x0 (arbitrated for every transfer)
	n_minus_1	Number of transfer data
	cycle_ctrl	0x1 (basic transfer)

 Table 14.5.3.2
 DMA Data Structure Configuration Example (for 16-bit Data Reception)

### 14.5.4 Terminating Data Transfer in Master Mode

A procedure to terminate data transfer in master mode is shown below.

- 1. Wait for an end-of-transmission interrupt (SPIA_*n*INTF.TENDIF bit = 1).
- 2. Set the SPIA_nCTL.MODEN bit to 0 to disable the SPIA Ch.n operations.
- 3. Stop the 16-bit timer to disable the clock supply to SPIA Ch.n.

### 14.5.5 Data Transfer in Slave Mode

A data sending/receiving procedure and operations in slave mode are shown below. Figures 14.5.5.1 and 14.5.5.2 show a timing chart and flowcharts, respectively.

### Data sending procedure

- 1. Check to see if the SPIA_nINTF.TBEIF bit is set to 1 (transmit buffer empty).
- 2. Write transmit data to the SPIA_*n*TXD register.
- 3. Wait for a transmit buffer empty interrupt (SPIA_*n*INTF.TBEIF bit = 1).
- 4. Repeat Steps 2 and 3 until the end of transmit data.
- **Note**: Transmit data must be written to the SPIA_nTXD register after the SPIA_nINTF.TBEIF bit is set to 1 by the time the sending SPIA_nTXD register data written is completed. If no transmit data is written during this period, the data bits input from the SDIn pin are shifted and output from the SDOn pin without being modified.

### Data receiving procedure

- 1. Wait for a receive buffer full interrupt (SPIA_nINTF.RBFIF bit = 1).
- 2. Read the received data from the SPIA_*n*RXD register.
- 3. Repeat Steps 1 and 2 until the end of data reception.

### **Data transfer operations**

The following shows the slave mode operations different from master mode:

- Slave mode operates with the SPI clock supplied from the external SPI master to the SPICLK*n* pin. The data transfer rate is determined by the SPICLK*n* frequency. It is not necessary to control the 16-bit timer.
- SPIA can operate as a slave device only when the slave select signal input from the external SPI master to the #SPISSn pin is set to the active (low) level.

If #SPISSn = high, the software transfer control, the SPICLKn pin input, and the SDIn pin input are all ineffective. If the #SPISSn signal goes high during data transfer, the transfer bit counter is cleared and data in the shift register is discarded.

• Slave mode starts data transfer when SPICLK*n* is input from the external SPI master after the #SPISS*n* signal is asserted. Writing transmit data is not a trigger to start data transfer. Therefore, it is not necessary to write dummy data to the transmit data buffer when performing data reception only.

• Data transmission/reception can be performed even in SLEEP mode, it makes it possible to wake the CPU up using an SPIA interrupt.

Other operations are the same as master mode.

- **Notes:** If data of the number of bits specified by the SPIA_nMOD.CHLN[3:0] bits is received when the SPIA_nINTF.RBFIF bit is set to 1, the SPIA_nRXD register is overwritten with the newly received data and the previously received data is lost. In this case, the SPIA_nINTF.OEIF bit is set.
  - When the clock for the first bit is input from the SPICLK*n* pin, SPIA starts sending the data currently stored in the shift register even if the SPIA_*n*INTF.TBEIF bit is set to 1.



### 14.5.6 Terminating Data Transfer in Slave Mode

A procedure to terminate data transfer in slave mode is shown below.

- 1. Wait for an end-of-transmission interrupt (SPIA_*n*INTF.TENDIF bit = 1). Or determine end of transfer via the received data.
- 2. Set the SPIA_*n*CTL.MODEN bit to 0 to disable the SPIA Ch.*n* operations.

# 14.6 Interrupts

SPIA has a function to generate the interrupts shown in Table 14.6.1.

Interrupt	Interrupt flag	Set condition	Clear condition						
End of transmission	SPIA_nINTF.TENDIF	When the SPIA_nINTF.TBEIF bit = 1 after data	Writing 1						
		of the specified bit length (defined by the SPIA_							
		nMOD.CHLN[3:0] bits) has been sent							
Receive buffer full	SPIA_nINTF.RBFIF	When data of the specified bit length is received	Reading the SPIA_						
		and the received data is transferred from the shift	nRXD register						
		register to the received data buffer							
Transmit buffer empty	SPIA_nINTF.TBEIF	When transmit data written to the transmit data	Writing to the SPIA_						
		buffer is transferred to the shift register	nTXD register						
Overrun error	SPIA_nINTF.OEIF	When the receive data buffer is full (when the re-	Writing 1						
		ceived data has not been read) at the point that							
		receiving data to the shift register has completed							

Table 14.6.1 SPIA Interrupt Function

SPIA provides interrupt enable bits corresponding to each interrupt flag. An interrupt request is sent to the CPU only when the interrupt flag, of which interrupt has been enabled by the interrupt enable bit, is set. For more information on interrupt control, refer to the "Interrupt" chapter.

The SPIA_nINTF register also contains the BSY bit that indicates the SPIA operating status.

Figure 14.6.1 shows the SPIA_nINTF.BSY and SPIA_nINTF.TENDIF bit set timings.



Figure 14.6.1 SPIA_nINTF.BSY and SPIA_nINTF.TENDIF Bit Set Timings (when SPIA_nMOD.CHLN[3:0] bits = 0x7)

# 14.7 DMA Transfer Requests

The SPIA has a function to generate DMA transfer requests from the causes shown in Table 14.7.1.

Cause to request DMA transfer	DMA transfer request flag	Set condition	Clear condition
Receive buffer full	Receive buffer full flag (SPIA_nINTF.RBFIF)	When data of the specified bit length is received and the received data is transferred from the shift register to the received data buffer.	Reading the SPIA_ <i>n</i> RXD
Transmit buffer empty	Transmit buffer empty flag (SPIA_ <i>n</i> INTF.TBEIF)	When transmit data written to the transmit data buffer is transferred to the shift register	Writing to the SPIA_ <i>n</i> TXD register

Table 14.7.1 DMA Transfer Request Causes of SPIA

The SPIA provides DMA transfer request enable bits corresponding to each DMA transfer request flag shown above for the number of DMA channels. A DMA transfer request is sent to the pertinent channel of the DMA controller only when the DMA transfer request flag, of which DMA transfer has been enabled by the DMA transfer request enable bit, is set. The DMA transfer request flag also serves as an interrupt flag, therefore, both the DMA transfer request and the interrupt cannot be enabled at the same time. After a DMA transfer has completed, disable the DMA transfer to prevent unintended DMA transfer requests from being issued. For more information on the DMA control, refer to the "DMA Controller" chapter.

# 14.8 Control Registers

### SPIA Ch.n Mode Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SPIA_nMOD	15–12	_	0x0	-	R	-
	11–8	CHLN[3:0]	0x7	H0	R/W	
	7–6	-	0x0	-	R	
	5	PUEN	0	H0	R/W	
	4	NOCLKDIV	0	H0	R/W	
	3	LSBFST	0	H0	R/W	
	2	CPHA	0	H0	R/W	
	1	CPOL	0	H0	R/W	
	0	MST	0	H0	R/W	

### Bits 15–12 Reserved

### Bits 11-8 CHLN[3:0]

These bits set the bit length of transfer data.

	Dit Eength Octangs
SPIA_nMOD.CHLN[3:0] bits	Data bit length
0xf	16 bits
0xe	15 bits
0xd	14 bits
0xc	13 bits
0xb	12 bits
0xa	11 bits
0x9	10 bits
0x8	9 bits
0x7	8 bits
0x6	7 bits
0x5	6 bits
0x4	5 bits
0x3	4 bits
0x2	3 bits
0x1	2 bits
0x0	Setting prohibited

Table 14.8.1 Data Bit Length Settings

#### Bits 7–6 Reserved

### Bit 5 PUEN

This bit enables pull-up/down of the input pins.

1 (R/W): Enable pull-up/down

0 (R/W): Disable pull-up/down

For more information, refer to "Input Pin Pull-Up/Pull-Down Function."

### Bit 4 NOCLKDIV

This bit selects SPICLK*n* in master mode. This setting is ineffective in slave mode. 1 (R/W): SPICLK*n* frequency = CLK_SPIA*n* frequency ( = 16-bit timer operating clock frequency) 0 (R/W): SPICLK*n* frequency = 16-bit timer output frequency / 2

For more information, refer to "SPIA Operating Clock."

#### Bit 3 LSBFST

This bit configures the data format (input/output permutation). 1 (R/W): LSB first 0 (R/W): MSB first

#### Bit 2 CPHA

#### Bit 1 CPOL

These bits set the SPI clock phase and polarity. For more information, refer to "SPI Clock (SPICLK*n*) Phase and Polarity."

#### Bit 0 MST

This bit sets the SPIA operating mode (master mode or slave mode).

1 (R/W): Master mode

0 (R/W): Slave mode

Note: The SPIA_nMOD register settings can be altered only when the SPIA_nCTL.MODEN bit = 0.

### SPIA Ch.n Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SPIA_nCTL	15–8	-	0x00	-	R	-
	7–2	-	0x00	-	R	
	1	SFTRST	0	H0	R/W	
	0	MODEN	0	H0	R/W	

#### Bits 15–2 Reserved

### Bit 1 SFTRST

This bit issues software reset to SPIA.

- 1 (W): Issue software reset
- 0 (W): Ineffective
- 1 (R): Software reset is executing.
- 0 (R): Software reset has finished. (During normal operation)

Setting this bit resets the SPIA shift register and transfer bit counter. This bit is automatically cleared after the reset processing has finished.

#### Bit 0 MODEN

This bit enables the SPIA operations.

- 1 (R/W): Enable SPIA operations (In master mode, the operating clock is supplied.)
- 0 (R/W): Disable SPIA operations (In master mode, the operating clock is stopped.)
- **Note**: If the SPIA_*n*CTL.MODEN bit is altered from 1 to 0 while sending/receiving data, the data being sent/received cannot be guaranteed. When setting the SPIA_*n*CTL.MODEN bit to 1 again after that, be sure to write 1 to the SPIA_*n*CTL.SFTRST bit as well.

### SPIA Ch.n Transmit Data Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SPIA_nTXD	15–0	TXD[15:0]	0x0000	H0	R/W	-

### Bits 15-0 TXD[15:0]

Data can be written to the transmit data buffer through these bits.

In master mode, writing to these bits starts data transfer.

Transmit data can be written when the SPIA_*n*INTF.TBEIF bit = 1 regardless of whether data is being output from the SDO*n* pin or not.

Note that the upper data bits that exceed the data bit length configured by the SPIA_nMOD. CHLN[3:0] bits will not be output from the SDOn pin.

**Note**: Be sure to avoid writing to the SPIA_*n*TXD register when the SPIA_*n*INTF.TBEIF bit = 0. Otherwise, transfer data cannot be guaranteed.

### SPIA Ch.n Receive Data Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SPIA_nRXD	15–0	RXD[15:0]	0x0000	H0	R	-

### Bits 15-0 RXD[15:0]

The receive data buffer can be read through these bits. Received data can be read when the SPIA_nINTF.RBFIF bit = 1 regardless of whether data is being input from the SDIn pin or not. Note that the upper bits that exceed the data bit length configured by the SPIA_nMOD.CHLN[3:0] bits become 0.

### SPIA Ch.n Interrupt Flag Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SPIA_nINTF	15–8	-	0x00	-	R	_
	7	BSY	0	H0	R	
	6–4	-	0x0	-	R	
	3	OEIF	0	H0/S0	R/W	Cleared by writing 1.
	2	TENDIF	0	H0/S0	R/W	
	1	RBFIF	0	H0/S0	R	Cleared by reading the
						SPIA_nRXD register.
	0	TBEIF	1	H0/S0	R	Cleared by writing to the
						SPIA_nTXD register.

### Bits 15–8 Reserved

### Bit 7 BSY

This bit indicates the SPIA operating status.

1 (R): Transmit/receive busy (master mode), #SPISS*n* = Low level (slave mode) 0 (R): Idle

#### Bits 6–4 Reserved

- Bit 3 OEIF
- Bit 2 TENDIF
- Bit 1 RBFIF

### Bit 0 TBEIF

These bits indicate the SPIA interrupt cause occurrence status.

- 1 (R): Cause of interrupt occurred
- 0 (R): No cause of interrupt occurred
- 1 (W): Clear flag (OEIF, TENDIF)
- 0 (W): Ineffective

The following shows the correspondence between the bit and interrupt: SPIA_nINTF.OEIF bit: Overrun error interrupt SPIA_nINTF.TENDIF bit: End-of-transmission interrupt SPIA_nINTF.RBFIF bit: Receive buffer full interrupt SPIA_nINTF.TBEIF bit: Transmit buffer empty interrupt

### SPIA Ch.n Interrupt Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SPIA_nINTE	15–8	_	0x00	-	R	-
	7–4	-	0x0	-	R	
	3	OEIE	0	H0	R/W	
	2	TENDIE	0	H0	R/W	
	1	RBFIE	0	H0	R/W	
	0	TBEIE	0	H0	R/W	

#### Bits 15-4 Reserved

- Bit 3 OEIE
- Bit 2 TENDIE
- Bit 1 RBFIE

#### Bit 0 TBEIE

These bits enable SPIA interrupts.

1 (R/W): Enable interrupts

0 (R/W): Disable interrupts

The following shows the correspondence between the bit and interrupt:

SPIA_*n*INTE.OEIE bit: Overrun error interrupt

SPIA_nINTE.TENDIE bit: End-of-transmission interrupt

SPIA_nINTE.RBFIE bit: Receive buffer full interrupt

SPIA_nINTE.TBEIE bit: Transmit buffer empty interrupt

### SPIA Ch.n Transmit Buffer Empty DMA Request Enable Register

Register name	ster name Bit Bit name		Initial	Reset	R/W	Remarks
SPIA_nTBEDMAEN	15–0	TBEDMAEN[15:0]	0x0000	HO	R/W	_

### Bits 15–0 TBEDMAEN[15:0]

These bits enable the SPIA to issue a DMA transfer request to the corresponding DMA channel (Ch.0–Ch.15) when a transmit buffer empty state has occurred.

1 (R/W): Enable DMA transfer request

0 (R/W): Disable DMA transfer request

Each bit corresponds to a DMA controller channel. The high-order bits for the unimplemented channels are ineffective.

### SPIA Ch.n Receive Buffer Full DMA Request Enable Register

Register name	ame Bit Bit name		Initial	Reset	R/W	Remarks		
SPIA_nRBFDMAEN	15–0	RBFDMAEN[15:0]	0x0000	HO	R/W	-		

### Bits 15–0 RBFDMAEN[15:0]

These bits enable the SPIA to issue a DMA transfer request to the corresponding DMA channel (Ch.0–Ch.15) when a receive buffer full state has occurred.

1 (R/W): Enable DMA transfer request

0 (R/W): Disable DMA transfer request

Each bit corresponds to a DMA controller channel. The high-order bits for the unimplemented channels are ineffective.

# 15 Quad Synchronous Serial Interface (QSPI)

# 15.1 Overview

The QSPI is a quad synchronous serial interface. The features of the QSPI are listed below.

- Supports both master and slave modes.
- Supports single, dual, and quad transfer modes.
- Data length: 2 to 16 clocks programmable.
- Data line drive length: 1 to 16 clocks programmable (for output direction only).
- Either MSB first or LSB first can be selected for the data format.
- Clock phase and polarity are configurable.
- Supports full-duplex communications.
- Includes separated transmit data buffer and receive data buffer registers.
- Can generate receive buffer full, transmit buffer empty, end of transmission, and overrun interrupts.
- Master mode allows use of a 16-bit timer to set baud rate.
- Slave mode is capable of being operated with the external input clock QSPICLKn only.
- Slave mode is capable of being operated in SLEEP mode allowing wake-up by a QSPI interrupt.
- Input pins can be pulled up/down with an internal resistor.
- Low CPU overhead memory mapped access mode that can access the external Flash memory with XIP (eXecute-In-Place) mode in the same manner as the embedded system memory.
  - Memory mapped access size: 8, 16, and 32-bit access.
  - 1M-byte external Flash memory mapped access area that allows programmable re-mapping.
  - Configurable 3 or 4-byte address cycle length.
  - Single, dual, or quad transfer mode is configurable for each address, mode byte/dummy, and data cycle.
  - Programmable mode bytes for both XIP mode activation and termination.
  - Configurable mode byte/dummy output cycle length.
- Can issue a DMA transfer request when a receive buffer full, a transmit buffer empty, or a memory mapped access (32-bit read) occurs.

Figure 15.1.1 shows the QSPI configuration.

#### Table 15.1.1 QSPI Channel Configuration of S1C31D01

Item	S1C31D01
Number of channels	1 channel (Ch.0)
Internal clock input	Ch.0 ← 16-bit timer Ch.2
Memory mapped access area	1M-byte area beginning with address 0x0004_0000
for external Flash memory	



Figure 15.1.1 QSPI Configuration

# **15.2 Input/Output Pins and External Connections**

### 15.2.1 List of Input/Output Pins

Table 15.2.1.1 lists the QSPI pins.

Table 15.2.1.1 List of QSPI Pins

Pin name	I/O*	Initial status*	Function
QSDIOn[3:0]	l or O	I (Hi-Z)	QSPI Ch.n data input/output pin
QSPICLK <i>n</i>	l or O	I (Hi-Z)	QSPI Ch.n external clock input/output pin
#QSPISSn	l or O	I (Hi-Z)	QSPI Ch.n slave select signal input/output pin

* Indicates the status when the pin is configured for the QSPI.

If the port is shared with the QSPI pin and other functions, the QSPI input/output function must be assigned to the port before activating the QSPI. For more information, refer to the "I/O Ports" chapter.

### 15.2.2 External Connections

The QSPI operates in master or slave mode. The memory mapped access mode is available only in master mode.

When QSPI Ch.*n* is operating in memory mapped access mode, the #QSPISS*n* output is controlled by the internal state machine. In this case, only one external QSPI device can be connected.

When QSPI Ch.*n* is operating in register access master mode, the #QSPISS*n* output is directly controlled by a register bit. In this case, GPIO pins other than #QSPISS*n* can also be used as the slave select output ports to connect the QSPI to more than one external QSPI device.

Figures 15.2.2.1 to 15.2.2.7 show connection diagrams between the QSPI in each mode and external QSPI devices.







Figure 15.2.2.2 Connections between QSPI in Register Access Master Mode and External Single-I/O SPI (Legacy SPI) Slave Devices



Figure 15.2.2.3 Connections between QSPI in Register Access Master Mode and External Dual-I/O SPI Slave Devices







Figure 15.2.2.6 Connections between QSPI in Slave Mode and External Dual-I/O SPI Master Device



Figure 15.2.2.7 Connections between QSPI in Slave Mode and External QSPI Master Device

### 15.2.3 Pin Functions in Master Mode and Slave Mode

The pin functions are changed according to the transfer direction, transfer mode, and master/slave mode selections. The differences in pin functions between the modes are shown in Table 15.2.3.1.

	Eur	otion in master m	ada	Function in slave mode					
Pin	Fur Cinale transfer at a de	Duel trenefer me		FL Simula transfer as a de	Duel trenefer mo				
	Single transfer mode	Dual transfer mode	Quad transfer mode	Single transfer mode	Dual transfer mode	Quad transfer mode			
QSDIOn[3:2]	Always placed into	HI-Z state.	These pins are	Always placed into	HI-Z state.	These pins are			
QSDIOn1	Always placed into	These pins are	placed into input	Always placed into	These pins are	placed into output			
	input state.	placed into input	or output state	input state.	placed into output	state while a low			
QSDIOn0	Always placed into	or output state	according to the	This pin is placed	state while a low	level is applied			
	output state.	according to the	QSPI_nCTL.DIR bit	into output state	level is applied	to the #QSPISSn			
		QSPI_nCTL.DIR bit	setting.	while a low level	to the #QSPISSn	pin and the QSPI_			
		setting.		is applied to the	pin and the QSPI_	nCTL.DIR bit is set			
				#QSPISSn pin or	nCTL.DIR bit is set	to 0 (output), or			
				placed into Hi-Z	to 0 (output), or	placed into Hi-Z			
				state while a high	placed into Hi-Z	state while a high			
				level is applied to	state while a high	level is applied to			
				the #QSPISSn pin.	level is applied to	the #QSPISSn pin			
					the #QSPISSn pin	or the QSPI_nCTL.			
					or the QSPI_nCTL.	DIR bit is set to 1			
					DIR bit is set to 1	(input).			
					(input).				
<b>QSPICLK</b> n	Outputs the QSPI c	lock to external dev	ices.	Inputs an external (	QSPI clock.				
	Output clock polari	ty and phase can b	e configured if nec-	Clock polarity and	nated according to				
	essary.			the input clock.					
#QSPISSn	This pin is used to	output the slave se	elect signal in mas-	Applying a low level to the #QSPISSn pin enables the					
	ter mode. In mem	ory mapped acces	s mode, this pin is	QSPI to transmit/receive data. While a high level is applied					
	controlled by the i	nternal state mach	ine. In register ac-	to this pin, the QSPI is not selected as a slave device. Data					
	cess mode, this pi	n is controlled by a	a register bit. When	input to the QSDIOn pins and the clock input to the QSPI-					
	connecting more th	nan one external sla	ve device, general-	CLKn pin are igno	red. When a high le	evel is applied, the			
	purpose I/O ports	can be used to out	put the extra slave	transmit/receive bit	count is cleared to	0 and the already			
	select signals.			received bits are dis	scarded.	· · · · · · · · · · · · · · · · · · ·			
	1								

Table 15.2.3.1 Pin Function Differences between Modes

### 15.2.4 Input Pin Pull-Up/Pull-Down Function

The QSPI pins (QSDIOn[3:0] pins in master mode or QSDIOn[3:0] pins, QSPICLKn, and #QSPISSn pins in slave mode) have a pull-up or pull-down function as shown in Table 15.2.4.1. This function is enabled by setting the QSPI_nMOD.PUEN bit to 1.

Pin	Master mode	Slave mode
QSDIOn[3:0]	Pull-up	Pull-up
QSPICLK <i>n</i>	-	QSPI_ $n$ MOD.CPOL bit = 1: Pull-up QSPL $n$ MOD.CPOL bit = 0: Pull-down
#QSPISSn	_	Pull-up

Table 15.2.4.1 Pull-Up or Pull-Down of QSPI Pins

# 15.3 Clock Settings

### 15.3.1 QSPI Operating Clock

### Operating clock in master mode

In master mode, the QSPI operating clock is supplied from the 16-bit timer. The following two options are provided for the clock configuration.

### Use the 16-bit timer operating clock without dividing

By setting the QSPI_*n*MOD.NOCLKDIV bit to 1, the operating clock CLK_T16_*m*, which is configured by selecting a clock source and a division ratio, for the 16-bit timer channel corresponding to the QSPI channel is input to the QSPI as CLK_QSPIn. Since this clock is also used as the QSPI clock QSPICLK*n* without changing, the CLK_QSPIn frequency becomes the baud rate.

To supply CLK_QSPIn to the QSPI, the 16-bit timer clock source must be enabled in the clock generator. It does not matter how the T16_mCTL.MODEN and T16_mCTL.PRUN bits of the corresponding 16-bit timer channel are set (1 or 0).

When setting this mode, the timer function of the corresponding 16-bit timer channel may be used for another purpose.

#### Use the 16-bit timer as a baud rate generator

By setting the QSPI_nMOD.NOCLKDIV bit to 0, the QSPI inputs the underflow signal generated by the corresponding 16-bit timer channel and converts it to the QSPICLK*n*. The 16-bit timer must be run with an appropriate reload data set. The QSPICLK*n* frequency (baud rate) and the 16-bit timer reload data are calculated by the equations shown below.

$$f_{QSPICLK} = \frac{f_{CLK_QSPI}}{2 \times (RLD + 1)} \qquad RLD = \frac{f_{CLK_QSPI}}{f_{QSPICLK} \times 2} - 1 \qquad (Eq. 15.1)$$
Where
$$f_{QSPICLK}: \qquad QSPICLKn \text{ frequency [Hz] (= baud rate [bps])}$$

fQSPICLK: QSPICLK*n* frequency [Hz] (= baud rate [bps]) fCLK_QSPI: QSPI operating clock frequency [Hz] RLD: 16-bit timer reload data value

For controlling the 16-bit timer, refer to the "16-bit Timers" chapter.

### Operating clock in slave mode

The QSPI set in slave mode operates with the clock supplied from the external SPI/QSPI master to the QSPI-CLK*n* pin. The 16-bit timer channel (including the clock source selector and the divider) corresponding to the QSPI channel is not used. Furthermore, the QSPI_*n*MOD.NOCLKDIV bit setting becomes ineffective. The QSPI keeps operating using the clock supplied from the external SPI/QSPI master even if all the internal clocks halt during SLEEP mode, so the QSPI can receive data and can generate receive buffer full interrupts.

### 15.3.2 Clock Supply During Debugging

In master mode, the operating clock supply during debugging should be controlled using the T16_mCLK.DBRUN bit.

The CLK_T16_*m* supply to QSPI Ch.*n* is suspended when the CPU enters debug state if the T16_*m*CLK.DBRUN bit = 0. After the CPU returns to normal operation, the CLK_T16_*m* supply resumes. Although QSPI Ch.*n* stops operating when the CLK_T16_*m* supply is suspended, the output pins and registers retain the status before the debug state was entered. If the T16_*m*CLK.DBRUN bit = 1, the CLK_T16_*m* supply is not suspended and QSPI Ch.*n* will keep operating in a debug state.

The QSPI in slave mode operates with the external SPI/QSPI master clock input from the QSPICLKn pin regardless of whether the CPU is placed into debug state or normal operation state.

### 15.3.3 QSPI Clock (QSPICLKn) Phase and Polarity

The QSPICLK*n* phase and polarity can be configured separately using the QSPI_*n*MOD.CPHA bit and the QSPI_ *n*MOD.CPOL bit, respectively. Figure 15.3.3.1 shows the clock waveform and data input/output timing in each setting.

QSPI_ <i>n</i> MC	DD register	Cycle No.	1	2	3	4	5	6	7	8	
1	1	QSPICLKn									
1	0	QSPICLKn [—]									
0	1	QSPICLKn_									
0	0	QSPICLKn_									
х	х	(Input) QSDIOn	MSB	X	X	X				LSB	_
x	х	(Master mode, output) _ QSDIOn _	MSB	X	X	X				LSB	
х	1	_ (Slave mode, output) _ QSDIOn	MSB	×	×	,				LSB	
х	0	(Slave mode, output) _ QSDIOn	MSB	X	X					LSB	
			T Writing data to the	QSPI_nTXD	register						

Figure 15.3.3.1 QSPI Clock Phase and Polarity (QSPI_nMOD.LSBFST bit = 0, QSPI_nMOD.CHLN[3:0] bits = 0x7)

# 15.4 Data Format

The QSPI data length can be selected from 2 to 16 clocks by setting the QSPI_nMOD.CHLN[3:0] bits. The input/ output permutation is configurable to MSB first or LSB first using the QSPI_nMOD.LSBFST bit. Figures 15.4.1 to 15.4.3 show data format examples in different transfer modes (QSPI_nMOD.TMOD[1:0]) when the QSPI_nMOD. CPOL bit = 0 and the QSPI_nMOD.CPHA bit = 0.



Figure 15.4.2 Data Format Selection for Dual Transfer Mode Using the QSPI_nMOD.LSBFST Bit (QSPI_nMOD.TMOD[1:0] bits = 0x1, QSPI_nMOD.CHDL[3:0] bits = 0x7, QSPI_nMOD.CHLN[3:0] bits = 0x7, QSPI_nMOD.CPOL bit = 0, QSPI_nMOD.CPHA bit = 0)
	Cycle No.	1	2	3	4	
QSPI_ <i>n</i> MOD.	QSPICLKn					
	QSDIO <i>n</i> 3	Dw15	Dw11	Dw7	Dw3	_
	QSDIOn2	Dw14	Dw10	Dw6	Dw2	
	QSDIOn1	Dw13	Dw9	Dw5	Dw1	
	QSDIO <i>n</i> 0	Dw12	Dw8	Dw4	Dw0	
0	QSDIO <i>n</i> 3	Dr15	Dr11	Dr7	Dr3	
	QSDIOn2	Dr14	Dr10	Dr6	Dr2	
	QSDIOn1	Dr13	Dr9	Dr5	Dr1	_
	QSDIO <i>n</i> 0	Dr12	Dr8	Dr4	Dr0	_
	QSDIO <i>n</i> 3	Dw0	Dw4	Dw8	Dw12	
	QSDIOn2	Dw1	Dw5	Dw9	Dw13	
	QSDIOn1	Dw2	Dw6	Dw10	Dw14	_
	QSDIO <i>n</i> 0	Dw3	Dw7	Dw11	Dw15	
1	QSDIO <i>n</i> 3	Dr0 (	Dr4	Dr8	Dr12	
	QSDIOn2	Dr1	Dr5	Dr9	Dr13	
	QSDIOn1	Dr2 (	Dr6	Dr10	Dr14	_
	QSDIOn0	Dr3	Dr7	Dr11	Dr15	
	Writi	ing Dw[15:0] to the QSPI_ <i>n</i> TX	D register	Loading Dr[15:0] to the QSF	PI_ <i>n</i> RXD register	

Figure 15.4.3 Data Format Selection for Quad Transfer Mode Using the QSPI_nMOD.LSBFST Bit (QSPI_nMOD.TMOD[1:0] bits = 0x2, QSPI_nMOD.CHDL[3:0] bits = 0x3, QSPI_nMOD.CHLN[3:0] bits = 0x3, QSPI_nMOD.CPOL bit = 0, QSPI_nMOD.CPHA bit = 0)

# 15.5 Operations

# 15.5.1 Register Access Mode

Data can be read from or written to the external SPI/QSPI device by accessing the registers in both master and slave modes.

In single transfer mode, transmit data are always output from the QSDIOn0 pin and receive data are always input to the QSDIOn1 pin (the QSDIOn[3:2] pins are not used). The operations are backward compatible with legacy SPI (e.g., synchronous serial interface of this MCU).

In dual transfer mode, transmit data are output from the QSDIOn[1:0] pins when the transfer direction is set to output (QSPI_nCTL.DIR bit = 0). Receive data are input from the QSDIOn[1:0] pins when the transfer direction is set to input (QSPI_nCTL.DIR bit = 1). The QSDIOn[3:2] pins are not used. The number of data transfer clocks is configured using the QSPI_nMOD.CHLN[3:0] bits. Since two data lines are used for data transfer, the data bit length (number of clocks) is obtained by dividing the number of transfer data bits by two.

In quad transfer mode, transmit data are output from the QSDIOn[3:0] pins when the transfer direction is set to output (QSPI_nCTL.DIR bit = 0). Receive data are input from the QSDIOn[3:0] pins when the transfer direction is set to input (QSPI_nCTL.DIR bit = 1). The number of data transfer clocks is configured with the QSPI_nMOD. CHLN[3:0] bits. Since four data lines are used for data transfer, the data bit length (number of clocks) is obtained by dividing the number of transfer data bits by four.

LENGTH = 
$$\frac{BIT}{N}$$
 [clocks] (Eq. 15.2)  
Where  
LENGTH: Data bit length [clocks]

BIT: Number of transfer data bits

N: 1 (single transfer mode), 2 (dual transfer mode), or 4 (quad transfer mode)

# 15.5.2 Memory Mapped Access Mode

Memory mapped access mode is a low CPU overhead operation mode used with master mode to read data from an external Flash memory, which supports XIP (eXecute-In-Place) mode. Once the external Flash memory enters XIP mode and a read command is executed, the same read command operation can be performed by controlling the slave select signal (inactive to active) and sending a new address to be accessed without the command being resent. This may reduce command re-execution overhead and random access time.

An XIP session consists of a command cycle, an address cycle, a dummy cycle, and consecutive data cycles, and it begins with an XIP specific read command similar to a general read command. Unlike a general read command, one or more data lines must be driven to send XIP activation or termination confirmation bit(s) at the beginning of the dummy cycle of an XIP session

In an XIP session, to start reading from a non-sequential Flash memory address, which is not continuous to the previous read address, assert the slave signal again after negating it once. After that, just send an address cycle to specify the new read start address and a dummy cycle including an XIP activation (continuation) confirmation bit(s), as the command cycle is not needed in this XIP session. The Flash memory performs read operations the same as the read command previously executed to execute a data cycle that includes a given number of data stored from the newly specified address.

To terminate an XIP session, first assert the slave signal again after negating it once. Then, send an address cycle with the address bits set to all high (suggested by most Flash memory manufacturers) and a dummy cycle including an XIP termination confirmation bit(s) at the beginning of the cycle on one or more data lines. After that, negate the slave select signal.

Figures 15.5.2.1 and 15.5.2.2 show Spansion S25FL128S Quad I/O Read command sequences as XIP operation examples.

CS# ]		[[				
8 cycles		6 cycles	2 cycles	4 cycles	2 cycles	2 cycles
Instruction		24-bit address	Mode	Dummy	Data 1	Data 2
IO0 - 7 <u>6 5 4 3 2 1 0</u>	20	4 0	<u>4</u> <u>0</u>		(4) 0	<u>4</u> 0
IO1	(21)	) (5 ) (1 )	5_1		(5)1	5 1
102	22	χ 6 χ 2 )	6	8 8 8 8 8	6 2	6 2 2
IO3	(23)		7 3		7)3	) 7 ( 3 )

The QSPI treats the dummy cycle as 6 cycles including 1 driving cycle. (QSPI_nMMACFG2.DUMDL[3:0] bits = 0x0, QSPI_nMMACFG2.DUMLN[3:0] bits = 0x5) The QSPI treats the data cycle as 2 cycles including 2 driving cycles. (QSPI_nMOD.CHDL[3:0] bits = 0x1, QSPI_nMOD.CHLN[3:0] bits = 0x1)

Figure 15.5.2.1 XIP Example - Spansion S25FL128S Quad I/O Read Command Sequence (3-byte address, 0xeb [ExtAdd = 0], LC = 0b00)

#### 15 Quad Synchronous Serial Interface (QSPI)



The QSPI treats the dummy cycle as 6 cycles including 1 driving cycle.

(QSPI_nMMACFG2.DUMDL[3:0] bits = 0x0, QSPI_nMMACFG2.DUMLN[3:0] bits = 0x5) The QSPI treats the data cycle as 2 cycles including 2 driving cycles.

(QSPI_nMOD.CHDL[3:0] bits = 0x1, QSPI_nMOD.CHLN[3:0] bits = 0x1)

Figure 15.5.2.2 XIP Example - Spansion S25FL128S Continuous Quad I/O Read Command Sequence (3-byte address, LC = 0b00)

In memory mapped access mode, the QSPI automates toggling of the slave select signal and executing address, dummy, and data cycles so that the CPU will be able to read the external Flash memory mapped to the system memory area. This further reduces CPU overhead.

The transfer mode can be configured for address, dummy, and data cycles individually. The address cycle supports 24 and 32-bit addresses. The QSPI considers that the mode cycle (or XIP activation/termination confirmation) is a part of the dummy cycle, so a mode cycle is sent out on the I/O data line in a dummy cycle.

The memory mapped access area for external Flash memory in the system memory area is used to map the external Flash memory and to access from the CPU. Up to 4G-byte Flash memory can be accessed from this area using a remapping register. Once the external Flash memory is set into XIP mode and a read command is sent in register access mode, the CPU can directly read external Flash memory data through this area. When a read access to a non-sequential address occurs in memory mapped access mode, the QSPI automatically executes a new address and dummy cycles. When memory mapped access mode is disabled by setting a register, the QSPI executes an address cycle and a dummy cycle including a mode byte that specifies to terminate XIP mode.

Memory mapped access mode supports 8, 16, and 32-bit read accesses.

The 32-bit access is mainly used to read data in a large memory block sequentially. In this access, up to two 32bit data are prefetched into the internal FIFO. Therefore, zero-wait read access is possible if the desired data has already been fetched in the FIFO.

The 8 and 16-bit accesses are mainly used to read data in a small memory block or to read data from non-sequential addresses. Prefetching is not performed as it is unnecessary in non-sequential read. Therefore, overhead of a couple of clocks occurs between accesses.

The QSPI allows incorporating 8 and 16-bit accesses into 32- bit accesses. Prefetching data into FIFO is only performed immediately after a 32-bit read. An 8 or 16-bit read at the sequential address after a 32-bit read allows zerowait read if the desired data has already been fetched in the FIFO.

# 15.5.3 Initialization

QSPI Ch.n should be initialized with the procedure shown below.

- 1. <Master mode only> Generate a clock by controlling the 16-bit timer and supply it to QSPI Ch.n.
- 2. Configure the following QSPI_nMOD register bits:
  - QSPI_nMOD.PUEN bit (Enable input pin pull-up/down)
  - QSPI_nMOD.NOCLKDIV bit
  - QSPI_nMOD.LSBFST bit (Select MSB first/LSB first)
  - QSPI_*n*MOD.CPHA bit
- (Select clock phase)

(Select master mode operating clock)

- QSPI_nMOD.CPOL bit (Select clock polarity)
- QSPI_nMOD.MST bit (Select master/slave mode)

- 3. Configure the following register bits when using memory mapped access mode:
  - QSPI_nMMACFG1.TCSH[3:0] bits (Set slave select signal negation period)
  - QSPI_nRMADRH.RMADR[31:20] bits (Set remapping address)
  - QSPI_nMMACFG2.DUMDL[3:0] bits (Select dummy cycle drive length)
  - QSPI_nMMACFG2.DUMLN[3:0] bits (Select dummy cycle length)
  - QSPI_nMMACFG2.DATTMOD[1:0] bits (Select data cycle transfer mode)
  - QSPI_nMMACFG2.DUMTMOD[1:0] bits (Select dummy cycle transfer mode)
  - QSPI_nMMACFG2.ADRTMOD[1:0] bits (Select address cycle transfer mode)
  - QSPI_nMMACFG2.ADRCYC bit (Select 24 or 32-bit address cycle)
  - QSPI_nMB.XIPACT[7:0] bits (Set XIP activation mode byte)
  - QSPI_nMB.XIPEXT[7:0] bits (Set XIP termination mode byte)
- 4. Assign the QSPI Ch.n input/output function to the ports. (Refer to the "I/O Ports" chapter.)
- 5. Set the following QSPI_*n*CTL register bits:
  - Set the QSPI_nCTL.SFTRST bit to 1. (Execute software reset)
  - Set the QSPI_nCTL.MODEN bit to 1. (Enable QSPI Ch.n operations)
- 6. Set the following bits when using the interrupt:
  - Write 1 to the interrupt flags in the QSPI_nINTF register. (Clear interrupt flags)
  - Set the interrupt enable bits in the QSPI_nINTE register to 1. * (Enable interrupts)
  - * The initial value of the QSPI_*n*INTF.TBEIF bit is 1, therefore, an interrupt will occur immediately after the QSPI_*n*INTE.TBEIE bit is set to 1.
- 7. Configure the DMA controller and set the following QSPI control bits when using DMA transfer:
  - Write 1 to the DMA transfer request enable bits in the QSPI_*n*TBEDMAEN, QSPI_*n*RBFDMAEN, and QSPI_*n*FRLDMAEN registers. (Enable DMA transfer requests)

# 15.5.4 Data Transmission in Master Mode

A data sending procedure and operations in master mode are shown below. Figures 15.5.4.1 and 15.5.4.2 show a timing chart and a flowchart, respectively.

## Data sending procedure

- 1. Set the QSPI_*n*CTL.DIR bit to 0 when QSPI Ch.*n* is set to dual or quad transfer mode. (This setting is not necessary in single transfer mode.)
- 2. Assert the slave select signal for the external slave device to be accessed by controlling the QSPI_nCTL. MSTSSO bit or the general-purpose output port used for an extra slave select signal output (if necessary).
- 3. Check to see if the QSPI_nINTF.TBEIF bit is set to 1 (transmit buffer empty).
- 4. Write transmit data to the QSPI_*n*TXD register.
- 5. Wait for a QSPI interrupt when using interrupt.
- 6. Repeat Steps 3 to 5 (or 3 and 4) until the end of transmit data.
- 7. Negate the slave select signal that has been asserted in Step 2 by controlling the QSPI_*n*CTL.MSTSSO bit or the general-purpose output port (if necessary).

## Data sending operations

QSPI Ch.n starts data sending operations when transmit data is written into the QSPI_nTXD register.

The transmit data in the QSPI_nTXD register is automatically transferred to the shift register and the QSPI_nINTF.TBEIF bit is set to 1. If the QSPI_nINTE.TBEIE bit = 1 (transmit buffer empty interrupt enabled), a transmit buffer empty interrupt occurs at the same time.

The QSPICLK*n* pin outputs clocks for the number of cycles specified by the QSPI_*n*MOD.CHLN[3:0] bits and the transmit data bits are output in sequence from the QSDIO*n* pins, according to the transfer mode specified by the QSPI_*n*MOD.TMOD[1:0] bits, in sync with these clocks.

Even if the clock is being output from the QSPICLKn pin, the next transmit data can be written to the QSPI_nTXD register after making sure the QSPI_nINTF.TBEIF bit is set to 1.

If transmit data has not been written to the QSPI_nTXD register after the last clock is output from the QSPI-CLKn pin, the clock output halts and the QSPI_nINTF.TENDIF bit is set to 1. At the same time QSPI issues an end-of-transmission interrupt request if the QSPI_nINTE.TENDIE bit = 1.



Figure 15.5.4.2 Data Transmission Flowchart in Master Mode

## Data transmission using DMA

By setting the QSPI_*n*TBEDMAEN.TBEDMAEN*x* bit to 1 (DMA transfer request enabled), a DMA transfer request is sent to the DMA controller and transmit data is transferred from the specified memory to the QSPI_*n*TXD register via DMA Ch.*x* when the QSPI_*n*INTF.TBEIF bit is set to 1 (transmit buffer empty).

This automates the procedure from Step 3 to Step 6 described above.

The transfer source/destination and control data must be set for the DMA controller and the relevant DMA channel must be enabled to start a DMA transfer in advance so that transmit data will be transferred to the QSPI_*n*TXD register. For more information on DMA, refer to the "DMA Controller" chapter.

	Item	Setting example
End pointer	Transfer source	Memory address in which the last transmit data is stored
	Transfer destination	QSPI_nTXD register address
Control data	dst_inc	0x3 (no increment)
	dst_size	0x1 (haflword)
	src_inc	0x1 (+2)
	src_size	0x1 (halfword)
	R_power	0x0 (arbitrated for every transfer)
	n_minus_1	Number of transfer data
	cycle_ctrl	0x1 (basic transfer)

Table 15.5.4.1 DMA Data Structure Configuration Example (for 16-bit Data Transmission)

# 15.5.5 Data Reception in Register Access Master Mode

A data receiving procedure and operations in register access master mode are shown below. Figures 15.5.5.1 and 15.5.5.2 show a timing chart and flowcharts, respectively.

## Data receiving procedure

- 1. Set the QSPI_nCTL.DIR bit to 1 when QSPI Ch.n is set to dual or quad transfer mode. (This setting is not necessary in single transfer mode.)
- 2. Assert the slave select signal for the external slave device to be accessed by controlling the QSPI_nCTL. MSTSSO bit or the general-purpose output port used for an extra slave select signal output (if necessary).
- 3. Check to see if the QSPI_nINTF.TBEIF bit is set to 1 (transmit buffer empty).
- 4. Write dummy data (or transmit data) to the QSPI_nTXD register.
- 5. Wait for a transmit buffer empty interrupt (QSPI_nINTF.TBEIF bit = 1).
- 6. Write dummy data (or transmit data) to the QSPI_nTXD register.
- 7. Wait for a receive buffer full interrupt (QSPI_nINTF.RBFIF bit = 1).
- 8. Read the received data from the QSPI_*n*RXD register.
- 9. Repeat Steps 6 to 8 until the end of data reception.
- 10. Negate the slave select signal that has been asserted in Step 2 by controlling the QSPI_nCTL.MSTSSO bit or the general-purpose output port (if necessary).
- **Note**: To perform continuous data reception without stopping QSPICLK*n*, Steps 8 and 6 operations must be completed within the QSPICLK*n* cycles equivalent to "Data bit length 1" after Step 7.

## Data receiving operations

In single transfer mode (QSPI_nMOD.TMOD[1:0] bits = 0), QSPI Ch.n operates similar to legacy SPI devices. The data receiving operation starts simultaneously with a data sending operation when transmit data (may be dummy data if data transmission is not required) is written to the QSPI_nTXD register. Transmit data are output from the QSDIOn0 pin and receive data are input from the QSDIOn1 pin.

In dual or quad transfer mode (QSPI_*n*MOD.TMOD[1:0] bits = 1 or 2), transmit data are not sent at data reception. Writing dummy data to the QSPI_*n*TXD register triggers the QSPI Ch.*n* to start supplying the data transfer clock from the QSPICLK*n* pin to the slave device.

The QSPICLK*n* pin outputs the number of clocks specified by the QSPI_*n*MOD.CHLN[3:0] bits. The receive data bits input from the QSDIO*n* pins, according to the transfer mode specified by the QSPI_*n*MOD. TMOD[1:0] bits, are shifted into the shift register in sync with these clocks.

When the last clock is output from the QSPICLK*n* pin and receive data bits are all shifted into the shift register, the received data is transferred to the receive data buffer and the QSPI_*n*INTF.RBFIF bit is set to 1. At the same time QSPI Ch.*n* issues a receive buffer full interrupt request if the QSPI_*n*INTE.RBFIE bit = 1. After that, the received data in the receive data buffer can be read through the QSPI_*n*RXD register.

**Note:** If data of the number of the bits specified by the QSPI_nMOD.CHLN[3:0] bits and QSPI_nMOD. TMOD[1:0] bits is received when the QSPI_nINTF.RBFIF bit is set to 1, the QSPI_nRXD register is overwritten with the newly received data and the previously received data is lost. In this case, the QSPI_nINTF.OEIF bit is set.

#### 15 Quad Synchronous Serial Interface (QSPI)



## Data reception using DMA

For data reception, two DMA controller channels should be used to write dummy data to the QSPI_*n*TXD register as a reception start trigger and to read the received data from the QSPI_*n*RXD register.

By setting the QSPI_*n*TBEDMAEN.TBEDMAEN*x*¹ bit to 1 (DMA transfer request enabled), a DMA transfer request is sent to the DMA controller and dummy data is transferred from the specified memory to the QSPI_*n*TXD register via DMA Ch.*x*¹ when the QSPI_*n*INTF.TBEIF bit is set to 1 (transmit buffer empty).

#### 15 Quad Synchronous Serial Interface (QSPI)

By setting the QSPI_*n*RBFDMAEN.RBFDMAEN*x*² bit to 1 (DMA transfer request enabled), a DMA transfer request is sent to the DMA controller and the received data is transferred from the QSPI_*n*RXD register to the specified memory via DMA Ch_*x*² when the QSPI_*n*INTF.RBFIF bit is set to 1 (receive buffer full). This automates the procedure from Step 3 to Step 9 described above.

The transfer source/destination and control data must be set for the DMA controller and the relevant DMA channel must be enabled to start a DMA transfer in advance. For more information on DMA, refer to the "DMA Controller" chapter.

	Item	Setting example
End pointer Transfer source		Memory address in which dummy data is stored
	Transfer destination	QSPI_nTXD register address
Control data	dst_inc	0x3 (no increment)
	dst_size	0x1 (haflword)
src_inc		0x3 (no increment)
	src_size	0x1 (halfword)
	R_power	0x0 (arbitrated for every transfer)
	n_minus_1	Number of transfer data
	cycle_ctrl	0x1 (basic transfer)

Table 15.5.5.1 DMA Data Structure Configuration Example (for Writing 16-bit Dummy Transmit Data)

Table 15.5.5.2 DMA Data Structure Configuration Example (for 16-bit Data Reception)

Item		Setting example			
End pointer Transfer source		QSPI_nRXD register address			
	Transfer destination	Memory address to which the last received data is stored			
Control data	dst_inc	0x1 (+2)			
	dst_size	0x1 (haflword)			
	src_inc	0x3 (no increment)			
	src_size	0x1 (halfword)			
	R_power	0x0 (arbitrated for every transfer)			
	n_minus_1	Number of transfer data			
	cycle_ctrl	0x1 (basic transfer)			

The following shows an example of the control procedure including the DMA controller operations:

- 1. Configure the primary data structure for the DMA channel (Ch.x) used for writing dummy bytes to the QSPI_*n*TXD register as shown in Table 15.5.5.1.
- 2. Configure the primary data structure for the DMA channel (Ch.y) used for reading data from the QSPI_ *n*RXD register as shown in Table 15.5.5.2.
- 3. Enable both the DMA channels using the DMA controller register.
- 4. Increase the priority of the DMA channel used for reading data using the DMA controller register.
- 5. Clear the channel request masks for both the DMA channels using the DMA controller register.
- 6. Clear the DMA transfer completion interrupt flags using the DMA controller register.
- Enable only the DMA transfer completion interrupt of the DMA channel used for reading using the DMA controller register.
- 8. Clear pending DMA interrupts in the CPU.
- 9. Enable pending DMA interrupts in the CPU.
- 10. Enable the QSPI to issue DMA transfer requests to both the DMA channels using the QSPI_*n*TBEDMAEN. TBEDMAEN*x* and QSPI_*n*RBFDMAEN.RBFDMAEN*y* bits.
- 11. Assert the slave select signal by controlling the QSPI_nCTL.MSTSSO bit, or the general-purpose output port used for an extra slave select signal output (if necessary).
- 12. Issue a software DMA transfer request to the DMA channel used for writing dummy bytes by setting the DMA controller register. This operation is required to read the first data and to set the receive buffer full status flag. Once the receive buffer full status flag is set, a hardware DMA request is generated, and the DMA controller transfers data from the QSPI_nRXD register and then writes another dummy byte to the QSPI_nTXD register, allowing the QSPI to read the next data.
- 13. Wait for a DMA interrupt.

- 14. Disable the DMA requests to be sent to both the DMA channels using the QSPI_*n*TBEDMAEN.TBED-MAEN*x* and QSPI_*n*RBFDMAEN.RBFDMAEN*y* bits.
- 15. Set the channel request masks for both the DMA channels using the DMA controller register.
- 16. Disable both the DMA channels using the DMA controller register.
- 17. Negate the slave select signal by controlling the QSPI_nCTL.MSTSSO bit or the general-purpose output port (if necessary).

# 15.5.6 Data Reception in Memory Mapped Access Mode

A data receiving procedure, and 32-bit and 8/16-bit received data read operations in memory mapped access mode are shown below. Figures 15.5.6.1 to 15.5.6.7 show their timing charts and a flowchart.

## Data receiving procedure

QSPI Flash memories of different manufacturers have a different XIP operation mode setup procedure. The procedure described below assumes that the external Flash memory has already been placed into XIP operation mode.

- Send a read command that supports XIP mode to the external Flash memory. For the sending procedure, see Steps 1 to 5 of the data sending procedure described in Section 15.5.4, "Data Transmission in Master Mode." The slave select signal that has been asserted should be left unchanged.
- 2. Set the QSPI_nMADRH.RMADR[31:20] bits. (Remap external Flash memory)
- 3. Write 1 to the QSPI_nMMACFG2.MMAEN bit. (Enable memory mapped access mode)
- 4. Read the memory mapped access area for external Flash memory with an 8, 16, or 32-bit memory read instruction.

This operation directly reads data within the 1M-byte external Flash memory area remapped to the memory mapped access area for external Flash memory at Step 2.

 Repeat Step 4 as needed. When reading an address outside the remapped area, start from Step 2 again after setting the QSPI_nM-MACFG2.MMAEN bit to 0 once.

## Data receiving operations (32-bit read)

In memory mapped access mode, the internal state machine detects the address in the memory mapped access area from which data is read. If it is the first read operation after the QSPI has entered memory mapped access mode, the state machine generates an address cycle and a dummy cycle (including the XIP activation confirmation bit(s)). At the same time, it pulls the HREADY signal on the internal system bus down to low.

The address cycle can be configured for 24 or 32-bit addresses and it consists of two transfer cycles. The state machine determines actual Flash memory address from the memory mapped access area start address, the read address in that area, and the external Flash memory remapping start address set using the QSPI_nRMADRH[31:20] bits. The first transfer cycle is an 8-bit transfer that sends the high-order 8 bits of the address (when 24-bit address cycle is configured) or a 16-bit transfer that sends the high-order 16 bits of the address (when 32-bit address cycle is configured). The second cycle is fixed at 16-bit transfer that sends the low-order 16 bits of the address.

A dummy cycle follows. The XIP activation confirmation byte set in the QSPI_nMB.XIPACT[7:0] bits is sent at the beginning of the cycle.

Then, the state machine starts fetching data from the external Flash memory. Once 32-bit data has been fetched into the internal FIFO, the FIFO read level is incremented (FIFO data ready). At this time, the HREADY signal reverts to high and the data fetched into the FIFO is sent to the internal system bus. The state machine prefetches two more 32-bit data from the continuous address and stores it into the FIFO.

If the address in the memory mapped access area that is continuous to the previous read address is read when the FIFO contains the prefetched data (FIFO data ready status), the prefetched data is sent to the internal system bus with the HREADY signal held high (zero-wait read).

If an address in the memory mapped access area that is not continuous to the previous read address is read, the HREADY signal is pulled down to low immediately and the FIFO read level is cleared to 0 (empty status). The #QSPISS*n* signal is negated once for the period set in the QSPI_*n*MMACFG1.TCSH[3:0] bits and then asserted again. After that a new address cycle, dummy cycle, and data cycle are executed.

The beginning and the end of each address, dummy, or data cycle take a couple of HCLK clocks for handshaking.



Figure 15.5.6.1 Data Receiving Operation in Memory Mapped Access Mode - First 32-bit Read



Figure 15.5.6.2 Data Receiving Operation in Memory Mapped Access Mode - 32-bit Sequential Read



Figure 15.5.6.3 Data Receiving Operation in Memory Mapped Access Mode - 32-bit Non-Sequential Read

## Data receiving operations (8/16-bit read)

The 8 and 16-bit read operations are the same as the 32-bit read operation except that data are not prefetched into the FIFO.







Figure 15.5.6.5 Data Receiving Operation in Memory Mapped Access Mode - 8/16-bit Sequential Read



Figure 15.5.6.6 Data Receiving Operation in Memory Mapped Access Mode - 8/16-bit Non-Sequential Read



Figure 15.5.6.7 Data Reception Flowchart in Memory Mapped Access Mode

## Data reception using DMA

In memory mapped access mode, DMA transfer from the external Flash memory to the internal memory is allowed only for the 32-bit sequential read using the internal FIFO. A non-sequential read and 8/16-bit reads cannot issue a DMA transfer request as they cannot use the FIFO.

By setting the QSPI_*n*FRLDMAEN.FRLDMAEN*x* bit to 1 (DMA transfer request enabled), a DMA transfer request is sent to the DMA controller and the external Flash memory data is transferred to the specified internal memory via DMA Ch.*x* when the FIFO read level is incremented (FIFO data ready flag is set). This function allows high-speed data block transfer as it does not need to execute read commands and uses the data pre-fetched into the FIFO.

Note, however, that the first data read must be performed via software or a software triggered DMA.

The transfer source/destination and control data must be set for the DMA controller and the relevant DMA channel must be enabled to start a DMA transfer in advance. For more information on DMA, refer to the "DMA Controller" chapter.

	Item	Setting example
End pointer	Transfer source	External Flash memory transfer start address
	Transfer destination	Memory area start address from which the read data are stored
Control data	dst_inc	0x2 (+4)
	dst_size	0x2 (word)
	src_inc	0x2 (+4)
	src_size	0x2 (word)
	R_power	0x0 (arbitrated for every transfer)
	n_minus_1	Number of receive data
	cycle_ctrl	0x1 (basic transfer)

Table 15.5.6.1 DMA Data Structure Configuration Example (for 32-bit Sequential Read in Memory Mapped Access Mode)

The following shows an example of the control procedure including the DMA controller operations:

- 1. Configure the primary data structure for the DMA channel (Ch.x) as shown in Table 15.5.6.1.
- 2. Enable the DMA channel using the DMA controller register.
- 3. Clear the channel request mask for the DMA channel using the DMA controller register.
- 4. Clear the DMA transfer completion interrupt flag using the DMA controller register.
- 5. Enable the DMA transfer completion interrupt of the DMA channel using the DMA controller register.
- 6. Clear pending DMA interrupts in the CPU.
- 7. Enable pending DMA interrupts in the CPU.
- 8. Enable the QSPI to issue DMA transfer requests to the DMA channel using the QSPI_*n*FRLDMAEN. FRLDMAEN*x* bit.
- 9. Issue a software DMA transfer request to the DMA channel by setting the DMA controller register. This operation is required to kickstart the first data fetching.
- 10. Wait for a DMA interrupt.
- 11. Disable DMA requests to be sent to the DMA channel using the QSPI_nFRLDMAEN.FRLDMAENx bit.
- 12. Set the channel request masks for the DMA channel using the DMA controller register.
- 13. Disable the DMA channels using the DMA controller register.

# 15.5.7 Terminating Memory Mapped Access Operations

A procedure to terminate memory mapped access operations is shown below.

- Write 0 to the QSPI_nMMACFG2.MMAEN bit. (Disable memory mapped access mode)
  The slave select signal is negated. Note that the slave signal control via software is disabled by the state machine in memory mapped access mode.
- 2. Wait until the QSPI_nINTF.MMABSY bit is set to 0 (memory mapped access operation not busy).

## 15.5.8 Terminating Data Transfer in Master Mode

A procedure to terminate data transfer in master mode is shown below.

- 1. Wait for an end-of-transmission interrupt (QSPI_nINTF.TENDIF bit = 1).
- 2. Set the QSPI_nCTL.MODEN bit to 0 to disable the QSPI Ch.n operations.
- 3. Stop the 16-bit timer to disable the clock supply to QSPI Ch.n.

# 15.5.9 Data Transfer in Slave Mode

A data sending/receiving procedure and operations in slave mode are shown below. Figures 15.5.9.1 and 15.5.9.2 show a timing chart and flowcharts, respectively.

## Data sending procedure

- 1. Check to see if the QSPI_nINTF.TBEIF bit is set to 1 (transmit buffer empty).
- 2. Write transmit data to the QSPI_nTXD register.
- 3. Wait for a transmit buffer empty interrupt (QSPI_*n*INTF.TBEIF bit = 1).
- 4. Repeat Steps 2 and 3 until the end of transmit data.
- **Note**: Transmit data must be written to the QSPI_nTXD register after the QSPI_nINTF.TBEIF bit is set to 1 by the time the sending QSPI_nTXD register data written is completed. If no transmit data is written during this period, the data bits input from the QSDIOn pins are shifted and output from the QSDIOn pins without being modified.

## Data receiving procedure

- 1. Wait for a receive buffer full interrupt (QSPI_nINTF.RBFIF bit = 1).
- 2. Read the received data from the QSPI_*n*RXD register.
- 3. Repeat Steps 1 and 2 until the end of data reception.

## Data transfer operations

The following shows the slave mode operations different from master mode:

- Slave mode operates with the QSPI clock supplied from the external QSPI master to the QSPICLK*n* pin. The data transfer rate is determined by the QSPICLK*n* frequency. It is not necessary to control the 16-bit timer.
- QSPI can operate as a slave device only when the slave select signal input from the external QSPI master to the #QSPISSn pin is set to the active (low) level. If #QSPISSn = high, the software transfer control, the QSPICLKn pin input, and the QSDIOn pins input are all ineffective. If the #QSPISSn signal goes high during data transfer, the transfer bit counter is cleared and data in the shift register is discarded.
- Slave mode starts data transfer when QSPICLK*n* is input from the external QSPI master after the #QSPISS*n* signal is asserted. Writing transmit data is not a trigger to start data transfer. Therefore, it is not necessary to write dummy data to the transmit data buffer when performing data reception only.
- Data transmission/reception can be performed even in SLEEP mode, it makes it possible to wake the CPU up using a QSPI interrupt.

Other operations are the same as master mode.

- **Notes:** If data of the number of cycles specified by the QSPI_nMOD.CHLN[3:0] bits is received when the QSPI_nINTF.RBFIF bit is set to 1, the QSPI_nRXD register is overwritten with the newly received data and the previously received data is lost. In this case, the QSPI_nINTF.OEIF bit is set.
  - When the clock for the first bit is input from the QSPICLK*n* pin, QSPI starts sending the data currently stored in the shift register even if the QSPI_*n*INTF.TBEIF bit is set to 1.



#### 15 Quad Synchronous Serial Interface (QSPI)





# 15.5.10 Terminating Data Transfer in Slave Mode

A procedure to terminate data transfer in slave mode is shown below.

- 1. Wait for an end-of-transmission interrupt (QSPI_*n*INTF.TENDIF bit = 1). Or determine end of transfer via the received data.
- 2. Set the QSPI_nCTL.MODEN bit to 0 to disable the QSPI Ch.n operations.

# 15.6 Interrupts

The QSPI has a function to generate the interrupts shown in Table 15.6.1.

Interrupt	Interrupt flag	Set condition	Clear condition		
End of transmission	QSPI_nINTF.TENDIF	When the QSPI_nINTF.TBEIF bit = 1 after data	Writing 1		
		of the specified bit length (defined by the QSPI_			
		nMOD.CHLN[3:0] bits) has been sent			
Receive buffer full	QSPI_nINTF.RBFIF	When data of the specified bit length is received	Reading of the		
		and the received data is transferred from the shift	QSPI_nRXD		
		register to the received data buffer	register		
Transmit buffer empty	QSPI_nINTF.TBEIF	When transmit data written to the transmit data	Writing to the		
		buffer is transferred to the shift register	QSPI_nTXD register		
Overrun error	QSPI_nINTF.OEIF	When the receive data buffer is full (when the re-	Writing 1		
		ceived data has not been read) at the point that			
		receiving data to the shift register has completed			

Table 15.6.1	QSPI	Interrupt	Function
10.010 101011	~~		

The QSPI provides interrupt enable bits corresponding to each interrupt flag. An interrupt request is sent to the CPU only when the interrupt flag, of which interrupt has been enabled by the interrupt enable bit, is set. For more information on interrupt control, refer to the "Interrupt" chapter.

The QSPI_*n*INTF register also contains the BSY and MMABSY bits that indicate the QSPI operating status in register access and memory mapped access modes, respectively. Figure 15.6.1 shows the QSPI_*n*INTF.BSY, QSPI_ *n*INTF.MMABSY and QSPI_*n*INTF.TENDIF bit set timings.

#### 15 Quad Synchronous Serial Interface (QSPI)



# 15.7 DMA Transfer Requests

The QSPI has a function to generate DMA transfer requests from the causes shown in Table 15.7.1.

Table 15.7.1 DMA Transfer Request Causes of QSPI					
Cause to request	DMA transfer request flag	Set condition	Clear condition		
DMA transfer	Divid transfer request hag	Set condition			
Receive buffer full	Receive buffer full flag	When data of the specified bit length is re-	Reading of the QSPI_		
	(QSPI_nINTF.RBFIF)	ceived and the received data is transferred from	nRXD register		
		the shift register to the received data buffer			
Transmit buffer	Transmit buffer empty flag	When transmit data written to the transmit data	Writing to the QSPI_		
empty	(QSPI_nINTF.TBEIF)	buffer is transferred to the shift register	nTXD register		
Memory mapped	Memory mapped access	When a 32-bit data is prefetched into the FIFO	When the FIFO read		
access FIFO data	FIFO data ready flag	in memory mapped access mode	level is cleared to 0		
ready	(internal signal)				
15-28	S	Seiko Epson Corporation S1C31D0	1 TECHNICAL MANUAL (Rev. 1.2)		

The QSPI provides DMA transfer request enable bits corresponding to each DMA transfer request flag shown above for the number of DMA channels. A DMA transfer request is sent to the pertinent channel of the DMA controller only when the DMA transfer request flag, of which DMA transfer has been enabled by the DMA transfer request enable bit, is set. The receive buffer full and transmit buffer empty DMA transfer request flags also serve as interrupt flags, therefore, both the DMA transfer request and the interrupt cannot be enabled at the same time. After a DMA transfer has completed, disable the DMA transfer to prevent unintended DMA transfer requests from being issued. For more information on the DMA control, refer to the "DMA Controller" chapter.

# **15.8 Control Registers**

## QSPI Ch.n Mode Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
QSPI_nMOD	15–12	CHDL[3:0]	0x7	HO	R/W	-
	11–8	CHLN[3:0]	0x7	H0	R/W	
	7–6	TMOD[1:0]	0x0	HO	R/W	
	5	PUEN	0	HO	R/W	
	4	NOCLKDIV	0	HO	R/W	
	3	LSBFST	0	H0	R/W	
	2	CPHA	0	H0	R/W	
	1	CPOL	0	H0	R/W	
	0	MST	0	H0	R/W	

## Bits 15-12 CHDL[3:0]

These bits set the number of clocks to drive the serial output data lines.

QSPI nMOD.CHDL[3:0] bits	Data line drive length
0xf	16 clocks
0xe	15 clocks
0xd	14 clocks
0xc	13 clocks
0xb	12 clocks
0xa	11 clocks
0x9	10 clocks
0x8	9 clocks
0x7	8 clocks
0x6	7 clocks
0x5	6 clocks
0x4	5 clocks
0x3	4 clocks
0x2	3 clocks
0x1	2 clocks
0x0	1 clock

Table 15.8.1 Data Line Drive Length Settings

These bits must be set to a value smaller than or equal to the QSPI_nMOD.CHLN[3:0] bit setting.

**Note**: When using the QSPI in slave mode, the QSPI_*n*MOD.CHDL[3:0] bits should be set to the same value as the QSPI_*n*MOD.CHLN[3:0] bits.

## Bits 11-8 CHLN[3:0]

These bits set the number of clocks for data transfer.

OSPL nMOD CHI N[3:0] bits	Number of data transfer clocks
Oxf	16 clocks
9x0	
UXU	14 CIOCKS
0xc	13 clocks
0xb	12 clocks
0xa	11 clocks
0x9	10 clocks
0x8	9 clocks
0x7	8 clocks
0x6	7 clocks
0x5	6 clocks
0x4	5 clocks
0x3	4 clocks
0x2	3 clocks
0x1	2 clocks
0x0	Setting prohibited

Table 15.8.2 Setting of Number of Data Transfer Clocks

#### Bits 7-6 TMOD[1:0]

These bits select a transfer mode.

Table 15.8.3 Transfer Mode

QSPI_nMOD. TMOD[1:0] bits	Transfer mode
0x3	Reserved
0x2	Quad transfer mode The QSDIOn[3:0] pins are configured as input or out- put pins according to the QSPI_nMOD.DIR bit setting.
0x1	Dual transfer mode The QSDIOn[1:0] pins are configured as input or out- put pins according to the QSPI_nMOD.DIR bit setting. The QSDIOn[3:2] pins are not used.
0x0	Single transfer mode The QSDIOn0 and QSDIOn1 pins are configured as an output pin and an input pin, respectively. The QSDIOn[3:2] pins are not used.

## Bit 5 PUEN

This bit enables pull-up/down of the pins that are configured as an input or are not used.

- 1 (R/W): Enable pull-up/down
- 0 (R/W): Disable pull-up/down

For more information, refer to "Input Pin Pull-Up/Pull-Down Function."

## Bit 4 NOCLKDIV

This bit selects QSPICLK*n* in master mode. This setting is ineffective in slave mode. 1 (R/W): QSPICLK*n* frequency = CLK_QSPI*n* frequency (= 16-bit timer operating clock frequency) 0 (R/W): QSPICLK*n* frequency = 16-bit timer output frequency / 2

For more information, refer to "QSPI Operating Clock."

#### Bit 3 LSBFST

This bit configures the data format (input/output permutation). 1 (R/W): LSB first 0 (R/W): MSB first

#### Bit 2 CPHA

#### Bit 1 CPOL

These bits set the QSPI clock phase and polarity. For more information, refer to "QSPI Clock (QSPI-CLK*n*) Phase and Polarity."

#### Bit 0 MST

This bit sets the QSPI operating mode (master mode or slave mode). 1 (R/W): Master mode 0 (R/W): Slave mode

**Note**: The QSPI_nMOD register settings can be altered only when the QSPI_nCTL.MODEN bit = 0.

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
QSPI_nCTL	15–8	-	0x00	_	R	-
	7–4	-	0x0	-	R	
	3	DIR	0	H0	R/W	
	2	MSTSSO	1	H0	R/W	
	1	SFTRST	0	H0	R/W	
	0	MODEN	0	H0	R/W	

## QSPI Ch.n Control Register

#### Bits 15–4 Reserved

## Bit 3 DIR

This bit sets the data transfer direction on the QSDIOn[3:0] lines when the QSPI_nMOD.TMOD[1:0] bits are set to 1 or 2.

1 (R/W): Input 0 (R/W): Output

0 (R/W): Output

#### Bit 2 MSTSSO

This bit controls and indicates the #QSPISSn pin status.

1 (R/W): #QSPISSn = high (The device is deselected.)

0 (R/W): #QSPISSn =low (The device is selected.)

In memory mapped access mode, the #QSPISS*n* pin is automatically controlled by the internal state machine. Reading this bit allows monitoring of the current #QSPISS*n* pin output status at any time.

## Bit 1 SFTRST

This bit issues software reset to QSPI.

- 1 (W): Issue software reset
- 0 (W): Ineffective
- 1 (R): Software reset is executing.
- 0 (R): Software reset has finished. (During normal operation)

Setting this bit resets the QSPI shift register and transfer bit counter. This bit is automatically cleared after the reset processing has finished.

## Bit 0 MODEN

This bit enables the QSPI operations.

- 1 (R/W): Enable QSPI operations (The operating clock is supplied.)
- 0 (R/W): Disable QSPI operations (The operating clock is stopped.)
- **Note:** If the QSPI_*n*CTL.MODEN bit is altered from 1 to 0 while sending/receiving data, the data being sent/received cannot be guaranteed. When setting the QSPI_*n*CTL.MODEN bit to 1 again after that, be sure to write 1 to the QSPI_*n*CTL.SFTRST bit as well.

## QSPI Ch.n Transmit Data Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
QSPI_nTXD	15–0	TXD[15:0]	0x0000	H0	R/W	-

## Bits 15-0 TXD[15:0]

Data can be written to the transmit data buffer through these bits. Writing to these bits starts data transfer. Transmit data can be written when the QSPI_nINTF.TBEIF bit = 1 regardless of whether data is being output from the QSDIOn pins or not.

Note that the upper data bits that exceed the data bit length configured by the QSPI_*n*MOD. CHLN[3:0] bits will not be output from the QSDIO*n* pin.

**Note**: Be sure to avoid writing to the QSPI_*n*TXD register when the QSPI_*n*INTF.TBEIF bit = 0. Otherwise, transfer data cannot be guaranteed.

## QSPI Ch.n Receive Data Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
QSPI_nRXD	15–0	RXD[15:0]	0x0000	H0	R	_

## Bits 15-0 RXD[15:0]

The receive data buffer can be read through these bits. Received data can be read when the QSPI_nINTF.RBFIF bit = 1 regardless of whether data is being input from the QSDIOn pin or not. Note that the upper bits that exceed the data bit length configured by the QSPI_nMOD.CHLN[3:0] bits become 0.

## QSPI Ch.n Interrupt Flag Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
QSPI_nINTF	15–8	-	0x00	-	R	-
	7	BSY	0	HO	R	
	6	MMABSY	0	H0	R	
	5–4	-	0x0	-	R	
	3	OEIF	0	H0/S0	R/W	Cleared by writing 1.
	2	TENDIF	0	H0/S0	R/W	
	1	RBFIF	0	H0/S0	R	Cleared by reading the
						QSPI_nRXD register.
	0	TBEIF	1	H0/S0	R	Cleared by writing to the
						QSPI_nTXD register.

#### Bits 15–8 Reserved

#### Bit 7 BSY

This bit indicates the QSPI operating status.

- 1 (R): Transmit/receive busy
- 0 (R): Idle

## Bit 6 MMABSY

This bit indicates the QSPI memory mapped access operating status.

- 1 (R): Memory mapped access state machine busy
- 0 (R): Idle

#### Bits 5–4 Reserved

## Bit 3 OEIF

#### Bit 2 TENDIF

Bit 1 RBFIF

## Bit 0 TBEIF

These bits indicate the QSPI interrupt cause occurrence status.

- 1 (R): Cause of interrupt occurred
- 0 (R): No cause of interrupt occurred
- 1 (W): Clear flag (OEIF, TENDIF)
- 0 (W): Ineffective

The following shows the correspondence between the bit and interrupt:

QSPI_nINTF.OEIF bit: Overrun error interrupt

QSPI_nINTF.TENDIF bit: End-of-transmission interrupt

QSPI_*n*INTF.RBFIF bit: Receive buffer full interrupt

QSPI_nINTF.TBEIF bit: Transmit buffer empty interrupt

## QSPI Ch.n Interrupt Enable Register

			-			
Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
QSPI_nINTE	15–8	-	0x00	-	R	_
	7–4	-	0x0	-	R	
	3	OEIE	0	H0	R/W	
	2	TENDIE	0	H0	R/W	
	1	RBFIE	0	H0	R/W	
	0	TBEIE	0	HO	R/W	

#### Bits 15–4 Reserved

- Bit 3 OEIE
- Bit 2 TENDIE
- Bit 1 RBFIE

#### Bit 0 TBEIE

These bits enable QSPI interrupts.

1 (R/W): Enable interrupts

0 (R/W): Disable interrupts

The following shows the correspondence between the bit and interrupt:QSPI_nINTE.OEIE bit:Overrun error interruptQSPI_nINTE.TENDIE bit:End-of-transmission interruptQSPI_nINTE.RBFIE bit:Receive buffer full interruptQSPI_nINTE.TBEIE bit:Transmit buffer empty interrupt

## QSPI Ch.n Transmit Buffer Empty DMA Request Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
QSPI_nTBEDMAEN	15–0	TBEDMAEN[15:0]	0x0000	H0	R/W	_

## Bits 15–0 TBEDMAEN[15:0]

These bits enable the QSPI to issue a DMA transfer request to the corresponding DMA channel (Ch.0–Ch.15) when a transmit buffer empty state has occurred.

1 (R/W): Enable DMA transfer request

0 (R/W): Disable DMA transfer request

Each bit corresponds to a DMA controller channel. The high-order bits for the unimplemented channels are ineffective.

## QSPI Ch.n Receive Buffer Full DMA Request Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
QSPI_nRBFDMAEN	15–0	RBFDMAEN[15:0]	0x0000	-	R/W	-

#### Bits 15-0 RBFDMAEN[15:0]

These bits enable the QSPI to issue a DMA transfer request to the corresponding DMA channel (Ch.0–Ch.15) when a receive buffer full state has occurred.

1 (R/W): Enable DMA transfer request

0 (R/W): Disable DMA transfer request

Each bit corresponds to a DMA controller channel. The high-order bits for the unimplemented channels are ineffective.

## QSPI Ch.n FIFO Data Ready DMA Request Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
QSPI_nFRLDMAEN	15–8	FRLDMAEN[15:0]	0x0000	H0	R/W	_

#### Bits 15-0 FRLDMAEN[15:0]

These bits enable the QSPI to issue a DMA transfer request to the corresponding DMA channel (Ch.0–Ch.15) when data is prefetched into the FIFO (FIFO data ready).

1 (R/W): Enable DMA transfer request

0 (R/W): Disable DMA transfer request

Each bit corresponds to a DMA controller channel. The high-order bits for the unimplemented channels are ineffective.

## QSPI Ch.n Memory Mapped Access Configuration Register 1

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
QSPI_nMMACFG1	15–8	_	0x00	-	R	-
	7–4	-	0x0	-	R	
	3–0	TCSH[3:0]	0x0	H0	R/W	

#### Bits 15–4 Reserved

## Bits 3-0 TCSH[3:0]

When non-sequential reading from a Flash memory address, which is not continuous to the previous read address, occurs in memory mapped access mode, the #QSPISS*n* signal is reasserted after negated once. Then the new address is sent to the Flash memory before reading data.

The QSPI_nMMACFG1.TCSH[3:0] bits specify the period to negate the #QSPISSn signal at this time in a number of clocks.

Table 15.8.4 #QSPISSn Inactive Period between Non-Sequential Readings

QSPI_nMMACFG1.TCSH[3:0] bits	#QSPISSn Inactive Period
Oxf	16 clocks
0xe	15 clocks
0xd	14 clocks
0xc	13 clocks
0xb	12 clocks
0xa	11 clocks
0x9	10 clocks
0x8	9 clocks
0x7	8 clocks
0x6	7 clocks
0x5	6 clocks
0x4	5 clocks
0x3	4 clocks
0x2	3 clocks
0x1	2 clocks
0x0	1 clock

Note: These bits specify a number of system clocks.

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
QSPI_nRMADRH	15–4	RMADR[31:20]	0x000	H0	R/W	_
	3-0	_	0x0	-	R	

## QSPI Ch.n Remapping Start Address High Register

## Bits 15-4 RMADR[31:20]

These bits specify the high-order 12 bits of the external Flash memory area start address (assumed as 32 bits) to be remapped to the system memory area allocated for memory mapped access mode. When the external Flash memory is read using the memory mapped access function, the value specified here is added, as an offset, to the relative address in the memory mapped access area to generate the external Flash memory address to actually be accessed.

## **Note**: Make sure the QSPI_*n*MMACFG2.MMAEN = 0 when altering the QSPI_*n*RMADRH. RMADR[31:20] bits.



Figure 15.8.1 External Flash Memory Remapping

## Bits 3–0 Reserved

## QSPI Ch.n Memory Mapped Access Configuration Register 2

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
QSPI_nMMACFG2	15–12	DUMDL[3:0]	0x7	HO	R/W	_
	11–8	DUMLN[3:0]	0x7	H0	R/W	
	7–6	DATTMOD[1:0]	0x0	H0	R/W	
	5–4	DUMTMOD[1:0]	0x0	H0	R/W	
	3–2	ADRTMOD[1:0]	0x0	H0	R/W	
	1	ADRCYC	0	H0	R/W	
	0	MMAEN	0	H0	R/W	

## Bits 15-12 DUMDL[3:0]

These bits set the number of clocks for driving the serial data lines during the dummy cycle output when accessing the external Flash memory in the memory mapped access mode. This setting is required to output the XIP confirmation bit to Micron Flash memories or to output the mode byte to Spansion Flash memories.

QSPI_nMMACFG2.DUMDL[3:0] bits	Data line drive length
0xf	16 clocks
0xe	15 clocks
0xd	14 clocks
0xc	13 clocks
0xb	12 clocks
0xa	11 clocks
0x9	10 clocks
0x8	9 clocks
0x7	8 clocks
0x6	7 clocks
0x5	6 clocks
0x4	5 clocks
0x3	4 clocks
0x2	3 clocks
0x1	2 clocks
0x0	1 clock

Table 15.8.5 Settings of Data Line Drive Length during Dummy Cycle

These bits must be set to a value smaller than or equal to the QSPI_nMMACFG2.DUMLN[3:0] bit setting.

## Bits 11-8 DUMLN[3:0]

These bits set the dummy cycle length in a number of clocks when accessing the external Flash memory in the memory mapped access mode.

,	, 0 0
QSPI_nMMACFG2.DUMLN[3:0] bits	Dummy cycle length
Oxf	16 clocks
0xe	15 clocks
0xd	14 clocks
0xc	13 clocks
0xb	12 clocks
0xa	11 clocks
0x9	10 clocks
0x8	9 clocks
0x7	8 clocks
0x6	7 clocks
0x5	6 clocks
0x4	5 clocks
0x3	4 clocks
0x2	3 clocks
0x1	2 clocks
0x0	Setting prohibited

Table 15.8.6 Dummy Cycle Length Settings

#### Bits 7–6 DATTMOD[1:0]

These bits select the transfer mode for the data cycle when accessing the external Flash memory in the memory mapped access mode.

QSPI_nMMACFG2.DATTMOD[1:0] bits QSPI_nMMACFG2.DUMTMOD[1:0] bits QSPI_nMMACFG2.ADRTMOD[1:0] bits	Transfer mode
0x3	Reserved
0x2	Quad transfer mode The QSDIO <i>n</i> [3:0] pins are used.
0x1	Dual transfer mode The QSDIOn[1:0] pins are used. The QSDIOn[3:2] pins are not used.
0x0	Single transfer mode The QSDIOn[1:0] pins are used. The QSDIOn[3:2] pins are not used.

Table 15.8.7 Transfer Mode for Data, Dummy, and Address Cycles

## Bits 5–4 DUMTMOD[1:0]

These bits select the transfer mode for the dummy cycle when accessing the external Flash memory in the memory mapped access mode.

## Bits 3–2 ADRTMOD[1:0]

These bits select the transfer mode for the address cycle when accessing the external Flash memory in the memory mapped access mode.

#### Bit 1 ADRCYC

This bit selects the address mode from 24 and 32 bits when accessing the external Flash memory in the memory mapped access mode.

1 (R/W): 32-bit address mode (4-byte address cycle)

0 (R/W): 24-bit address mode (3-byte address cycle)

#### Bit 0 MMAEN

This bit enables memory mapped access mode for accessing the external Flash memory.

1 (R/W): Enable memory mapped access mode

0 (R/W): Disable memory mapped access mode (register access mode)

When this bit is altered from 1 to 0, the QSPI sends extra address and dummy cycles to the external Flash memory. The address cycle outputs either a three or four-byte address according to the QSPI_*n*MMACFG2.ADRCYC bit setting, with all address bits set to 1. The dummy cycle is output according to the QSPI_*n*MMACFG2.DUMLN[3:0] and QSPI_*n*MMACFG2.DUMDL[3:0] bit settings, with a mode byte for terminating the XIP session of the external Flash memory that has been configured using the QSPI_*n*MB.XIPEXT[7:0] bits.

**Note**: Slave mode does not support memory mapped access mode, therefore, setting the QSPI_ *n*MMACFG2.MMAEN bit to 1 does not take effect when the QSPI_*n*MOD.MST bit = 0.

## QSPI Ch.n Mode Byte Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
QSPI_nMB	15–8	XIPACT[7:0]	0x00	H0	R/W	_
	7–0	XIPEXT[7:0]	0x00	H0	R/W	

## Bits 15–8 XIPACT[7:0]

These bits configure the mode byte for activating an XIP session of the external Flash memory to be accessed in memory mapped access mode.

#### Bits 7–0 XIPEXT[7:0]

These bits configure the mode byte for terminating the XIP session of the external Flash memory being accessed in memory mapped access mode.

**Note:** In memory mapped access mode, the mode byte is always output from the LSB first. When using a Flash memory that expects the mode byte to be output from the MSB first, write the mode byte to this register in reverse bit order.

# 16 I²C (I2C)

# 16.1 Overview

The I2C is a subset of the I2C bus interface. The features of the I2C are listed below.

- Functions as an I²C bus master (single master) or a slave device.
- Supports standard mode (up to 100 kbit/s) and fast mode (up to 400 kbit/s).
- Supports 7-bit and 10-bit address modes.
- Supports clock stretching.
- Includes a baud rate generator for generating the clock in master mode.
- No clock source is required to run the I2C in slave mode, as it can run with the I2C bus signals only.
- Slave mode is capable of being operated in SLEEP mode allowing wake-up by an interrupt when an address match is detected.
- Master mode supports automatic bus clear sending function.
- Can generate receive buffer full, transmit buffer empty, and other interrupts.
- Can issue a DMA transfer request when a receive buffer full or a transmit buffer empty occurs.
- The input filter for the SDA and SCL inputs does not comply with the standard for removing noise spikes less than 50 ns.

Figure 16.1.1 shows the I2C configuration.

#### Table 16.1.1 I2C Channel Configuration of S1C31D01



# 16.2 Input/Output Pins and External Connections

# 16.2.1 List of Input/Output Pins

Table 16.2.1.1 lists the I2C pins.

Table 16.2.1.1 List of I2C Pins				
Pin name	I/O*	Initial status*	Function	
SDAn	I/O	I	I ² C bus serial data input/output pin	
SCLn	I/O	I	I ² C bus clock input/output pin	

* Indicates the status when the pin is configured for the I2C.

If the port is shared with the I2C pin and other functions, the I2C input/output function must be assigned to the port before activating the I2C. For more information, refer to the "I/O Ports" chapter.

# 16.2.2 External Connections

Figure 16.2.2.1 shows a connection diagram between the I2C in this IC and external I²C devices.

The serial data (SDA) and serial clock (SCL) lines must be pulled up with an external resistor.

When the I2C is set into master mode, one or more slave devices that have a unique address may be connected to the I²C bus. When the I2C is set into slave mode, one or more master and slave devices that have a unique address may be connected to the I²C bus.



Figure 16.2.2.1 Connections between I2C and External I²C Devices

- **Notes:** The SDA and SCL lines must be pulled up to a VDD of this IC or lower voltage. However, if the I2C input/output ports are configured with the over voltage tolerant fail-safe type I/O, these lines can be pulled up to a voltage exceeding the VDD of this IC but within the recommended operating voltage range of this IC.
  - The internal pull-up resistors for the I/O ports cannot be used for pulling up SDA and SCL.
  - When the I2C is set into master mode, no other master device can be connected to the I²C bus.

# 16.3 Clock Settings

## 16.3.1 I2C Operating Clock

## Master mode operating clock

When using the I2C Ch.*n* in master mode, the I2C Ch.*n* operating clock CLK_I2C*n* must be supplied to the I2C Ch.*n* from the clock generator. The CLK_I2C*n* supply should be controlled as in the procedure shown below.

- 1. Enable the clock source in the clock generator if it is stopped (refer to "Clock Generator" in the "Power Supply, Reset, and Clocks" chapter).
- 2. Set the following I2C_nCLK register bits:
  - I2C_nCLK.CLKSRC[1:0] bits (Clock source selection)
  - I2C_nCLK.CLKDIV[1:0] bits (Clock division ratio selection = Clock frequency setting)

When using the I2C in master mode during SLEEP mode, the I2C Ch.n operating clock CLK_I2Cn must be configured so that it will keep supplying by writing 0 to the CLGOSC_xxxSLPC bit for the CLK_I2Cn clock source.

The I2C operating clock should be selected so that the baud rate generator will be configured easily.

#### Slave mode operating clock

The I2C set to slave mode uses the SCL supplied from the I²C master as its operating clock. The clock setting by the I2C_nCLK register is ineffective.

The I2C keeps operating using the clock supplied from the external I²C master even if all the internal clocks halt during SLEEP mode, so the I2C can receive data and can generate receive buffer full interrupts.

## 16.3.2 Clock Supply During Debugging

In master mode, the CLK_I2Cn supply during debugging should be controlled using the I2C_nCLK.DBRUN bit. The CLK_I2Cn supply to the I2C Ch.n is suspended when the CPU enters debug state if the I2C_nCLK.DBRUN bit = 0. After the CPU returns to normal operation, the CLK_I2Cn supply resumes. Although the I2C Ch.n stops operating when the CLK_I2Cn supply is suspended, the output pin and registers retain the status before debug state was entered. If the I2C_nCLK.DBRUN bit = 1, the CLK_I2Cn supply is not suspended and the I2C Ch.n will keep operating in debug state.

In slave mode, the I2C Ch.n operates with the external I²C master clock input from the SCLn pin regardless of whether the CPU is placed into debug state or normal operation state.

## 16.3.3 Baud Rate Generator

The I2C includes a baud rate generator to generate the serial clock SCL used in master mode. The I2C set to slave mode does not use the baud rate generator, as it operates with the serial clock input from the SCLn pin.

## Setting data transfer rate (for master mode)

The transfer rate is determined by the I2C_*n*BR.BRT[6:0] bit settings. Use the following equations to calculate the setting values for obtaining the desired transfer rate.

$$bps = \frac{f_{CLK_12Cn}}{(BRT+3) \times 2} \qquad BRT = \frac{f_{CLK_12Cn}}{bps \times 2} - 3 \qquad (Eq. 16.1)$$

Where

bps: Data transfer rate [bit/s]

 $\label{eq:clk_l2Cn} \mbox{fclk_l2Cn} : I2C \mbox{ operating clock frequency [Hz]}$ 

- BRT: I2C_nBR.BRT[6:0] bits setting value (1 to 127)
- * The equations above do not include SCL rising/falling time and delay time by clock stretching (see Figure 16.3.3.1).
- **Note**: The I²C bus transfer rate is limited to 100 kbit/s in standard mode or 400 kbit/s in fast mode. Do not set a transfer rate exceeding the limit.

## Baud rate generator clock output and operations for supporting clock stretching

Figure 16.3.3.1 shows the clock generated by the baud rate generator and the clock waveform on the  $I^{2}C$  bus.



Figure 16.3.3.1 Baud Rate Generator Output Clock and SCLn Output Waveform

The baud rate generator output clock SCLO is compared with the SCL*n* pin status and the results are returned to the baud rate generator. If a mismatch has occurred between SCLO and SCL*n* pin levels, the baud rate generator suspends counting. This extends the clock to control data transfer during the SCL signal rising/falling period and clock stretching period in which SCL is fixed at low by a slave device.

# 16.4 Operations

## 16.4.1 Initialization

The I2C Ch.n should be initialized with the procedure shown below.

## When using the I2C in master mode

- 1. Configure the operating clock and the baud rate generator using the I2C_nCLK and I2C_nBR registers.
- 2. Assign the I2C Ch.n input/output function to the ports. (Refer to the "I/O Ports" chapter.)

3.	Set the following bits when using the interrupt:	
	- Write 1 to the interrupt flags in the I2C_nINTF register.	(Clear interrupt flags)
	- Set the interrupt enable bits in the $I2C_nINTE$ register to 1.	(Enable interrupts)
4.	Set the following I2C_nCTL register bits:	
	- Set the I2C_nCTL.MST bit to 1.	(Set master mode)
	- Set the I2C_nCTL.SFTRST bit to 1.	(Execute software reset)
	- Set the I2C_nCTL.MODEN bit to 1.	(Enable I2C Ch.n operations)

## When using the I2C in slave mode

Set the following I2C_ <i>n</i> MOD register bits:	
- I2C_nMOD.OADR10 bit	(Set 10/7-bit address mode)
- I2C_nMOD.GCEN bit	(Enable response to general call address)

- 2. Set its own address to the I2C_nOADR.OADR[9:0] (or OADR[6:0]) bits.
- 3. Assign the I2C Ch.n input/output function to the ports. (Refer to the "I/O Ports" chapter.)
- 4. Set the following bits when using the interrupt:

	- Write 1 to the interrupt flags in the I2C_nINTF register.	(Clear interrupt flags)
	- Set the interrupt enable bits in the I2C_ <i>n</i> INTE register to 1.	(Enable interrupts)
5.	Set the following I2C_nCTL register bits:	
	- Set the I2C_nCTL.MST bit to 0.	(Set slave mode)

- Set the I2C_nCTL.SFTRST bit to 1. (Execute software reset)
- Set the I2C_nCTL.MODEN bit to 1. (Enable I2C Ch.n operations)

1

# 16.4.2 Data Transmission in Master Mode

A data sending procedure in master mode and the I2C Ch.*n* operations are shown below. Figures 16.4.2.1 and 16.4.2.2 show an operation example and a flowchart, respectively.

## Data sending procedure

- 1. Issue a START condition by setting the I2C_nCTL.TXSTART bit to 1.
- Wait for a transmit buffer empty interrupt (I2C_nINTF.TBEIF bit = 1) or a START condition interrupt (I2C_ nINTF.STARTIF bit = 1).

Clear the I2C_nINTF.STARTIF bit by writing 1 after the interrupt has occurred.

- 3. Write the 7-bit slave address to the I2C_*n*TXD.TXD[7:1] bits and 0 that represents WRITE as the data transfer direction to the I2C_*n*TXD.TXD0 bit.
- 4. (When DMA is used) Configure the DMA controller and set a DMA transfer request enable bit in the I2C_ *n*TBEDMAEN register to 1 (DMA transfer request enabled). (This automates the data sending procedure Steps 5, 6, and 8.)
- 5. (When DMA is not used) Wait for a transmit buffer empty interrupt (I2C_nINTF.TBEIF bit = 1) generated when an ACK is received.
- 6. (When DMA is not used) Write transmit data to the I2C_nTXD register.
- 7. If a NACK reception interrupt (I2C_*n*INTF.NACKIF bit = 1) has occurred, go to Step 9 or 1 after clearing the I2C_*n*INTF.NACKIF bit.
- 8. (When DMA is not used) Repeat Steps 5 and 6 until the end of transmit data.
- 9. Issue a STOP condition by setting the I2C_*n*CTL.TXSTOP bit to 1.
- Wait for a STOP condition interrupt (I2C_nINTF.STOPIF bit = 1).
   Clear the I2C_nINTF.STOPIF bit by writing 1 after the interrupt has occurred.

## Data sending operations

## Generating a START condition

The I2C Ch.*n* starts generating a START condition when the I2C_*n*CTL.TXSTART bit is set to 1. When the generating operation has completed, the I2C Ch.*n* clears the I2C_*n*CTL.TXSTART bit to 0 and sets both the I2C_*n*INTF.STARTIF and I2C_*n*INTF.TBEIF bits to 1.

## Sending slave address and data

If the I2C_*n*INTF.TBEIF bit = 1, a slave address or data can be written to the I2C_*n*TXD register. The I2C Ch.*n* pulls down SCL to low and enters standby state until data is written to the I2C_*n*TXD register. The writing operation triggers the I2C Ch.*n* to send the data to the shift register automatically and to output eight clock pulses and data bits to the I²C bus.

When the slave device returns an ACK as the response, the I2C_nINTF.TBEIF bit is set to 1. After this interrupt occurs, the subsequent data may be sent or a STOP/repeated START condition may be issued to terminate transmission. If the slave device returns NACK, the I2C_nINTF.NACKIF bit is set to 1 without setting the I2C_nINTF.TBEIF bit.

## Generating a STOP/repeated START condition

After the I2C_nINTF.TBEIF bit is set to 1 (transmit buffer empty) or the I2C_nINTF.NACKIF bit is set to 1 (NACK received), setting the I2C_nCTL.TXSTOP bit to 1 generates a STOP condition. When the bus free time (tBUF defined in the I²C Specifications) has elapsed after the STOP condition has been generated, the I2C_nCTL.TXSTOP bit is cleared to 0 and the I2C_nINTF.STOPIF bit is set to 1.

When setting the I2C_*n*CTL.TXSTART bit to 1 while the I2C_*n*INTF.TBEIF bit = 1 (transmit buffer empty) or the I2C_*n*INTF.NACKIF bit = 1 (NACK received), the I2C Ch.*n* generates a repeated START condition. When the repeated START condition has been generated, the I2C_*n*INTF.STARTIF and I2C_*n*INTF. TBEIF bits are both set to 1 same as when a START condition has been generated.

## 16 I²C (I2C)







## Data transmission using DMA

By setting the I2C_*n*TBEDMAEN.TBEDMAEN*x* bit to 1 (DMA transfer request enabled), a DMA transfer request is sent to the DMA controller and transmit data is transferred from the specified memory to the I2C_*n*TXD register via DMA Ch.*x* when the I2C_*n*INTF.TBEIF bit is set to 1 (transmit buffer empty).

This automates the data sending procedure from Steps 5, 6, and 8 described above.

The transfer source/destination and control data must be set for the DMA controller and the relevant DMA channel must be enabled to start a DMA transfer in advance so that transmit data will be transferred to the I2C_*n*TXD register. For more information on DMA, refer to the "DMA Controller" chapter.

	Item	Setting example
End pointer	Transfer source	Memory address in which the last transmit data is stored
	Transfer destination	I2C_nTXD register address
Control data	dst_inc	0x3 (no increment)
	dst_size	0x0 (byte)
	src_inc	0x0 (+1)
	src_size	0x0 (byte)
	R_power	0x0 (arbitrated for every transfer)
	n_minus_1	Number of transfer data
	cycle_ctrl	0x1 (basic transfer)

Table 16.4.2.1 DMA Data Structure Configuration Example (for Data Transmission)

# 16.4.3 Data Reception in Master Mode

A data receiving procedure in master mode and the I2C Ch.*n* operations are shown below. Figures 16.4.3.1 and 16.4.3.2 show an operation example and a flowchart, respectively.

## Data receiving procedure

- 1. When receiving one-byte data, write 1 to the I2C_nCTL.TXNACK bit.
- 2. Issue a START condition by setting the I2C_*n*CTL.TXSTART bit to 1.
- 3. Wait for a transmit buffer empty interrupt (I2C_nINTF.TBEIF bit = 1) or a START condition interrupt (I2C_ nINTF.STARTIF bit = 1).

Clear the I2C_nINTF.STARTIF bit by writing 1 after the interrupt has occurred.

- 4. Write the 7-bit slave address to the I2C_*n*TXD.TXD[7:1] bits and 1 that represents READ as the data transfer direction to the I2C_*n*TXD.TXD0 bit.
- 5. (When DMA is used) Configure the DMA controller and set a DMA transfer request enable bit in the I2C_ *n*RBFDMAEN register to 1 (DMA transfer request enabled). (This automates the data receiving procedure Steps 6, 8, and 10.)
- 6. (When DMA is not used) Wait for a receive buffer full interrupt (I2C_nINTF.RBFIF bit = 1) generated when a one-byte reception has completed.
- 7. Perform one of the operations below when the last or next-to-last data is received.
  - i. When the next-to-last data is received, write 1 to the I2C_nCTL.TXNACK bit to send a NACK after the last data is received, and then go to Step 8.
  - ii. When the last data is received, read the received data from the I2C_*n*RXD register and set the I2C_*n*CTL.TXSTOP to 1 to generate a STOP condition. Then go to Step 11.
- 8. (When DMA is not used) Read the received data from the I2C_nRXD register.
- If a NACK reception interrupt (I2C_nINTF.NACKIF bit = 1) has occurred, clear the I2C_nINTF.NACKIF bit and issue a STOP condition by setting the I2C_nCTL.TXSTOP bit to 1. Then go to Step 11 or Step 2 if making a retry.
- 10. (When DMA is not used) Repeat Steps 6 to 8 until the end of data reception.
- Wait for a STOP condition interrupt (I2C_nINTF.STOPIF bit = 1). Clear the I2C_nINTF.STOPIF bit by writing 1 after the interrupt has occurred.
#### Data receiving operations

#### Generating a START condition

It is the same as the data transmission in master mode.

#### Sending slave address

It is the same as the data transmission in master mode. Note, however, that the I2C_nTXD.TXD0 bit must be set to 1 that represents READ as the data transfer direction to issue a request to the slave to send data.

#### **Receiving data**

After the slave address has been sent, the slave device sends an ACK and the first data. The I2C Ch.n sets the I2C_nINTF.RBFIF bit to 1 after the data reception has completed. Furthermore, the I2C Ch.n returns an ACK. To return a NACK, such as for a response after the last data has been received, write 1 to the I2C_nCTL.TXNACK bit before the I2C_nINTF.RBFIF bit is set to 1.

The received data can be read out from the I2C_nRXD register after a receive buffer full interrupt has occurred. The I2C Ch.n pulls down SCL to low and enters standby state until data is read out from the I2C_nRXD register.

This reading triggers the I2C Ch.n to start subsequent data reception.

#### Generating a STOP or repeated START condition

It is the same as the data transmission in master mode.



Figure 16.4.3.1 Example of Data Receiving Operations in Master Mode



Figure 16.4.3.2 Master Mode Data Reception Flowchart

#### Data reception using DMA

By setting the I2C_*n*RBFDMAEN.RBFDMAEN*x* bit to 1 (DMA transfer request enabled), a DMA transfer request is sent to the DMA controller and the received data is transferred from the I2C_*n*RXD register to the specified memory via DMA Ch_x when the I2C_*n*INTF.RBFIF bit is set to 1 (receive buffer full).

This automates the data receiving procedure Steps 6, 8, and 10 described above.

The transfer source/destination and control data must be set for the DMA controller and the relevant DMA channel must be enabled to start a DMA transfer in advance. For more information on DMA, refer to the "DMA Controller" chapter.

Item		Setting example
End pointer	Transfer source	I2C_nRXD register address
	Transfer destination	Memory address to which the last received data is stored
Control data	dst_inc	0x0 (+1)
	dst_size	0x0 (byte)
	src_inc	0x3 (no increment)
	src_size	0x0 (byte)
	R_power	0x0 (arbitrated for every transfer)
	n_minus_1	Number of receive data
	cycle_ctrl	0x1 (basic transfer)

Table 16.4.3.1 DMA Data Structure Configuration Example (for Data Reception)

# 16.4.4 10-bit Addressing in Master Mode

A 10-bit address consists of the first address that contains two high-order bits and the second address that contains eight low-order bits.



The following shows a procedure to start data transfer in 10-bit address mode when the I2C Ch.*n* is placed into master mode (see the 7-bit mode descriptions above for control procedures when a NACK is received or sending/ receiving data). Figure 16.4.4.2 shows an operation example.

#### Starting data transmission in 10-bit address mode

- 1. Issue a START condition by setting the I2C_nCTL.TXSTART bit to 1.
- Wait for a transmit buffer empty interrupt (I2C_nINTF.TBEIF bit = 1) or a START condition interrupt (I2C_ nINTF.STARTIF bit = 1).
   Clear the I2C_nINTF.STARTIF bit by writing 1 after the interrupt has occurred.
- 3. Write the first address to the I2C_*n*TXD.TXD[7:1] bits and 0 that represents WRITE as the data transfer direction to the I2C_*n*TXD.TXD0 bit.
- 4. Wait for a transmit buffer empty interrupt (I2C_nINTF.TBEIF bit = 1).
- 5. Write the second address to the I2C_nTXD.TXD[7:0] bits.
- 6. Wait for a transmit buffer empty interrupt (I2C_nINTF.TBEIF bit = 1).
- 7. Perform data transmission.

#### Starting data reception in 10-bit address mode

1 to 6. These steps are the same as the data transmission starting procedure described above.

- 7. Issue a repeated START condition by setting the I2C_nCTL.TXSTART bit to 1.
- Wait for a transmit buffer empty interrupt (I2C_nINTF.TBEIF bit = 1) or a START condition interrupt (I2C_ nINTF.STARTIF bit = 1).

Clear the I2C_nINTF.STARTIF bit by writing 1 after the interrupt has occurred.

- 9. Write the first address to the I2C_nTXD.TXD[7:1] bits and 1 that represents READ as the data transfer direction to the I2C_nTXD.TXD0 bit.
- 10. Perform data reception.



Figure 16.4.4.2 Example of Data Transfer Starting Operations in 10-bit Address Mode (Master Mode)

# 16.4.5 Data Transmission in Slave Mode

A data sending procedure in slave mode and the I2C Ch.*n* operations are shown below. Figures 16.4.5.1 and 16.4.5.2 show an operation example and a flowchart, respectively.

#### Data sending procedure

- Wait for a START condition interrupt (I2C_nINTF.STARTIF bit = 1). Clear the I2C_nINTF.STARTIF bit by writing 1 after the interrupt has occurred.
- Check to see if the I2C_nINTF.TR bit = 1 (transmission mode).
  (Start a data receiving procedure if the I2C_nINTF.TR bit = 0.)
- 3. Write transmit data to the I2C_nTXD register.
- 4. Wait for a transmit buffer empty interrupt (I2C_*n*INTF.TBEIF bit = 1), a NACK reception interrupt (I2C_ *n*INTF.NACKIF bit = 1), or a STOP condition interrupt (I2C_*n*INTF.STOPIF bit = 1).
  - i. Go to Step 3 when a transmit buffer empty interrupt has occurred.
  - ii. Go to Step 5 after clearing the I2C_nINTF.NACKIF bit when a NACK reception interrupt has occurred.
  - iii. Go to Step 6 when a STOP condition interrupt has occurred.
- 5. Wait for a STOP condition interrupt (I2C_*n*INTF.STOPIF bit = 1) or a START condition interrupt (I2C_*n*INTF.STARTIF bit = 1).
  - i. Go to Step 6 when a STOP condition interrupt has occurred.
  - ii. Go to Step 2 when a START condition interrupt has occurred.
- 6. Clear the I2C_nINTF.STOPIF bit and then terminate data sending operations.

#### Data sending operations

#### START condition detection and slave address check

While the I2C_nCTL.MODEN bit = 1 and the I2C_nCTL.MST bit = 0 (slave mode), the I2C Ch.n monitors the I²C bus. When the I2C Ch.n detects a START condition, it starts receiving of the slave address sent from the master. If the received address is matched with the own address set to the I2C_nOADR.OADR[6:0] bits (when the I2C_nMOD.OADR10 bit = 0 (7-bit address mode)) or the I2C_nOADR.OADR[9:0] bits (when the I2C_nMOD.OADR10 bit = 1 (10-bit address mode)), the I2C_nINTF.STARTIF bit and the I2C_nINTF.BSY bit are both set to 1. The I2C Ch.n sets the I2C_nINTF.TR bit to the R/W bit value in the received address. If this value is 1, the I2C Ch.n sets the I2C_nINTF.TBEIF bit to 1 and starts data sending operations.

#### Sending the first data byte

After the valid slave address has been received, the I2C Ch.n pulls down SCL to low and enters standby state until data is written to the I2C_nTXD register. This puts the I²C bus into clock stretching state and the external master into standby state. When transmit data is written to the I2C_nTXD register, the I2C Ch.n clears the I2C_nINTF.TBEIF bit and sends an ACK to the master. The transmit data written in the I2C_nTXD register is automatically transferred to the shift register and the I2C_nINTF.TBEIF bit is set to 1. The data bits in the shift register are output in sequence to the I²C bus.

#### Sending subsequent data

If the I2C_*n*INTF.TBEIF bit = 1, subsequent transmit data can be written during data transmission. If the I2C_*n*INTF.TBEIF bit is still set to 1 when the data transmission from the shift register has completed, the I2C Ch.*n* pulls down SCL to low (sets the I²C bus into clock stretching state) until transmit data is written to the I2C_*n*TXD register.

If the next transmit data already exists in the I2C_*n*TXD register or data has been written after the above, the I2C Ch.*n* sends the subsequent eight-bit data when an ACK from the external master is received. At the same time, the I2C_*n*INTF.BYTEENDIF bit is set to 1. If a NACK is received, the I2C_*n*INTF.NACKIF bit is set to 1 without sending data.

#### STOP/repeated START condition detection

While the I2C_nCTL.MST bit = 0 (slave mode) and the I2C_nINTF.BSY = 1, the I2C Ch.n monitors the I²C bus. When the I2C Ch.n detects a STOP condition, it terminates data sending operations. At this time, the I2C_nINTF.BSY bit is cleared to 0 and the I2C_nINTF.STOPIF bit is set to 1. Also when the I2C Ch.n detects a repeated START condition, it terminates data sending operations. In this case, the I2C_nINTF.STARTIF bit is set to 1.



Figure 16.4.5.1 Example of Data Sending Operations in Slave Mode



Figure 16.4.5.2 Slave Mode Data Transmission Flowchart

# 16.4.6 Data Reception in Slave Mode

A data receiving procedure in slave mode and the I2C Ch.*n* operations are shown below. Figures 16.4.6.1 and 16.4.6.2 show an operation example and a flowchart, respectively.

#### Data receiving procedure

- 1. When receiving one-byte data, write 1 to the I2C_nCTL.TXNACK bit.
- 2. Wait for a START condition interrupt (I2C_*n*INTF.STARTIF bit = 1).
- Check to see if the I2C_nINTF.TR bit = 0 (reception mode).
  (Start a data sending procedure if I2C_nINTF.TR bit = 1.)
- 4. Clear the I2C_*n*INTF.STARTIF bit by writing 1.
- 5. Wait for a receive buffer full interrupt (I2C_nINTF.RBFIF bit = 1) generated when a one-byte reception has completed or an end of transfer interrupt (I2C_nINTF.BYTEENDIF bit = 1). Clear the I2C_nINTF.BYTEENDIF bit by writing 1 after the interrupt has occurred.
- 6. If the next receive data is the last one, write 1 to the I2C_nCTL.TXNACK bit to send a NACK after it is received.
- 7. Read the received data from the  $I2C_nRXD$  register.
- 8. Repeat Steps 5 to 7 until the end of data reception.
- 9. Wait for a STOP condition interrupt (I2C_*n*INTF.STOPIF bit = 1) or a START condition interrupt (I2C_*n*INTF.STARTIF bit = 1).
  - i. Go to Step 10 when a STOP condition interrupt has occurred.
  - ii. Go to Step 3 when a START condition interrupt has occurred.
- 10. Clear the I2C_nINTF.STOPIF bit and then terminate data receiving operations.

#### Data receiving operations

#### START condition detection and slave address check

It is the same as the data transmission in slave mode.

However, the I2C_nINTF.TR bit is cleared to 0 and the I2C_nINTF.TBEIF bit is not set.

If the I2C_*n*MOD.GCEN bit is set to 1 (general call address response enabled), the I2C Ch.*n* starts data receiving operations when the general call address is received.

Slave mode can be operated even in SLEEP mode, it makes it possible to wake the CPU up using an interrupt when an address match is detected.

#### Receiving the first data byte

After the valid slave address has been received, the I2C Ch.n sends an ACK and pulls down SCL to low until 1 is written to the I2C_nINTF.STARTIF bit. This puts the I²C bus into clock stretching state and the external master into standby state. When 1 is written to the I2C_nINTF.STARTIF bit, the I2C Ch.n releases SCL and receives data sent from the external master into the shift register. After eight-bit data has been received, the I2C Ch.n sends an ACK and pulls down SCL to low. The received data in the shift register is transferred to the receive data buffer and the I2C_nINTF.RBFIF and I2C_nINTF.BYTEENDIF bits are both set to 1. After that, the received data can be read out from the I2C_nRXD register.

#### Receiving subsequent data

When the received data is read out from the I2C_nRXD register after the I2C_nINTF.RBFIF bit has been set to 1, the I2C Ch.n clears the I2C_nINTF.RBFIF bit to 0, releases SCL, and receives subsequent data sent from the external master. After eight-bit data has been received, the I2C Ch.n sends an ACK and pulls down SCL to low. The received data in the shift register is transferred to the receive data buffer and the I2C_nINTF.RBFIF and I2C_nINTF.BYTEENDIF bits are both set to 1.

To return a NACK after eight-bit data is received, such as when terminating data reception, write 1 to the I2C_nCTL.TXNACK bit before the data reception is completed. The I2C_nCTL.TXNACK bit is automatically cleared to 0 after a NACK has been sent.

#### STOP/repeated START condition detection

It is the same as the data transmission in slave mode.





Seiko Epson Corporation S1C3⁻

# 16.4.7 Slave Operations in 10-bit Address Mode

The I2C Ch.*n* functions as a slave device in 10-bit address mode when the I2C_*n*CTL.MST bit = 0 and the I2C_*n*MOD.OADR10 bit = 1.

The following shows the address receiving operations in 10-bit address mode. Figure 16.4.7.1 shows an operation example. See Figure 16.4.4.1 for the 10-bit address configuration.

#### 10-bit address receiving operations

After a START condition is issued, the master sends the first address that includes the two high-order slave address bits and the R/W bit (= 0). If the received two high-order slave address bits are matched with the I2C_nOADR.OADR[9:8] bits, the I2C Ch.*n* returns an ACK. At this time, other slaves may returns an ACK as the two high-order bits may be matched.

Then the master sends the eight low-order slave address bits as the second address. If this address is matched with the I2C_nOADR.OADR[7:0] bits, the I2C Ch.n returns an ACK and starts data receiving operations.

If the master issues a request to the slave to send data (data reception in the master), the master generates a repeated START condition and sends the first address with the R/W bit set to 1. This reception switches the I2C Ch.*n* to data sending mode.



Figure 16.4.7.1 Example of Data Transfer Starting Operations in 10-bit Address Mode (Slave Mode)

# 16.4.8 Automatic Bus Clearing Operation

The I2C Ch.*n* set into master mode checks the SDA state immediately before generating a START condition. If SDA is set to a low level at this time, the I2C Ch.*n* automatically executes bus clearing operations that output up to ten clocks from the SCL*n* pin with SDA left free state.

When SDA goes high from low within nine clocks, the I2C Ch.*n* issues a START condition and starts normal operations. If SDA does not change from low when the I2C Ch.*n* outputs the ninth clock, it is regarded as an automatic bus clearing failure. In this case, the I2C Ch.*n* clears the I2C_*n*CTL.TXSTART bit to 0 and sets both the I2C_*n*INTF. ERRIF and I2C_*n*INTF.STARTIF bits to 1.



Figure 16.4.8.1 Automatic Bus Clearing Operation

# 16.4.9 Error Detection

The I2C includes a hardware error detection function.

Furthermore, the I2C_nINTF.SDALOW and I2C_nINTF.SCLLOW bits are provided to allow software to check whether the SDA and SCL lines are fixed at low. If unintended low level is detected on SDA or SCL, a software recovery processing, such as I2C Ch.n software reset, can be performed.

The table below lists the hardware error detection conditions and the notification method.

No.	Error detecting period/timing	I ² C bus line monitored and error condition	Notification method
1	While the I2C Ch. <i>n</i> controls SDA to high for sending address, data, or a NACK	SDA = low	$I2C_nINTF.ERRIF = 1$
2	<master mode="" only=""> When 1 is written to the I2C_<i>n</i>CTL.TX- START bit while the I2C_<i>n</i>INTF.BSY bit = 0</master>	SCL = low	$I2C_nINTF.ERRIF = 1$ $I2C_nCTL.TXSTART = 0$ $I2C_nINTF.STARTIF = 1$
3	<master mode="" only=""> When 1 is written to the I2C_nCTL.TX- STOP bit while the I2C_nINTF.BSY bit = 0</master>	SCL = low	$I2C_nINTF.ERRIF = 1$ $I2C_nCTL.TXSTOP = 0$ $I2C_nINTF.STOPIF = 1$
4	<pre><master mode="" only=""> When 1 is written to the I2C_nCTL. TXSTART bit while the I2C_nINTF.BSY bit = 0 (Refer to "Au- tomatic Bus Clearing Operation.")</master></pre>	SDA Automatic bus clearing failure	I2C_ <i>n</i> INTF.ERRIF = 1 I2C_ <i>n</i> CTL.TXSTART = 0 I2C_ <i>n</i> INTF.STARTIF = 1

# 16.5 Interrupts

The I2C has a function to generate the interrupts shown in Table 16.5.1.

Interrupt	Interrupt flag	Set condition	Clear condition
End of data	I2C_nINTF.BYTEENDIF	When eight-bit data transfer and the following ACK/	Writing 1,
transfer		NACK transfer are completed	software reset
General call	I2C_nINTF.GCIF	Slave mode only: When the general call address is	Writing 1,
address reception		received	software reset
NACK reception	I2C_nINTF.NACKIF	When a NACK is received	Writing 1,
			software reset
STOP condition	I2C_nINTF. STOPIF	Master mode: When a STOP condition is generated	Writing 1,
		and the bus free time (t_BUF) between STOP and START conditions has elapsed	software reset
		Slave mode: When a STOP condition is detected	
		while the I2C Ch n is selected as the slave currently	
		accessed	
START condition	I2C_nINTF. STARTIF	Master mode: When a START condition is issued	Writing 1,
			software reset
		Slave mode: when an address match is delected	
Error datastica		Defer to "Error Detection "	M/witing 1
Error detection		Refer to Error Detection.	vonung 1,
Bassive buffer full		When received data is leaded to the receive data	Booding received
		buffor	data (to ompty the
		buller	receive data buffer)
			software reset
Transmit buffer	12C PINTE TREIF	Master mode: When a START condition is issued or	Writing transmit data
empty		when an ACK is received from the slave	
		Slave mode: When transmit data written to the transmit data buffer is transferred to the shift register or when an address match is detected with R/W bit set to 1	

The I2C provides interrupt enable bits corresponding to each interrupt flag. An interrupt request is sent to the CPU only when the interrupt flag, of which interrupt has been enabled by the interrupt enable bit, is set. For more information on interrupt control, refer to the "Interrupt" chapter.

(1) START condition interrupt

Master mode



#### (2) STOP condition interrupt

Master mode



(fcLK_l2Cn: I2C operating clock frequency [Hz], BRT: I2C_nBR.BRT[6:0] bits setting value (1 to 127)) Figure 16.5.1 START/STOP Condition Interrupt Timings

# 16.6 DMA Transfer Requests

The I2C has a function to generate DMA transfer requests from the causes shown in Table 16.6.1.

Table 16.6.1	DMA	Transfer	Request	Causes of I2C
--------------	-----	----------	---------	---------------

Cause to request DMA transfer	DMA transfer request flag	Set condition	Clear condition
Receive buffer full	Receive buffer full flag (I2C_nINTF.RBFIF)	When received data is loaded to the re- ceive data buffer	Reading received data (to empty the receive data buffer), software reset
Transmit buffer empty	Transmit buffer empty flag (I2C_nINTF.TBEIF)	Master mode: When a START condition is issued or when an ACK is received from the slave	Writing transmit data
		Slave mode: When transmit data written to the transmit data buffer is transferred to the shift register or when an address match is detected with R/W bit set to 1	

The I2C provides DMA transfer request enable bits corresponding to each DMA transfer request flag shown above for the number of DMA channels. A DMA transfer request is sent to the pertinent channel of the DMA controller only when the DMA transfer request flag, of which DMA transfer has been enabled by the DMA transfer request enable bit, is set. The DMA transfer request flag also serves as an interrupt flag, therefore, both the DMA transfer request flag also serves as an interrupt flag, therefore, both the DMA transfer request and the interrupt cannot be enabled at the same time. After a DMA transfer has completed, disable the DMA transfer to prevent unintended DMA transfer requests from being issued. For more information on the DMA control, refer to the "DMA Controller" chapter.

# **16.7 Control Registers**

#### I2C Ch.n Clock Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
I2C_nCLK	15–9	_	0x00	-	R	-
	8	DBRUN	0	H0	R/W	
	7–6	-	0x0	-	R	
	5–4	CLKDIV[1:0]	0x0	H0	R/W	
	3–2	-	0	-	R	
	1–0	CLKSRC[1:0]	0x0	HO	R/W	

#### Bits 15–9 Reserved

#### Bit 8 DBRUN

This bit sets whether the I2C operating clock is supplied during debugging or not.

1 (R/W): Clock supplied during debugging

0 (R/W): No clock supplied during debugging

#### Bits 7–6 Reserved

#### Bits 5-4 CLKDIV[1:0]

These bits select the division ratio of the I2C operating clock.

#### Bits 3–2 Reserved

#### Bits 1–0 CLKSRC[1:0]

These bits select the clock source of the I2C.

Table 16.7.1	Clock Source	and Division	Ratio Setting	lS

	I2C_nCLK.CLKSRC[1:0] bits							
	0x0	0x1	0x2	0x3				
CLKDIV[1:0] bits	IOSC	OSC1	OSC3	EXOSC				
0x3	1/8	1/1	1/8	1/1				
0x2	1/4		1/4					
0x1	1/2		1/2					
0x0	1/1		1/1					

(Note) The oscillation circuits/external input that are not supported in this IC cannot be selected as the clock source.

**Note**: The I2C_*n*CLK register settings can be altered only when the I2C_*n*CTL.MODEN bit = 0.

### I2C Ch.n Mode Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
I2C_nMOD	15–8	-	0x00	-	R	-
	7–3	-	0x00	-	R	
	2	OADR10	0	H0	R/W	
	1	GCEN	0	H0	R/W	
	0	-	0	-	R	

#### Bits 15–3 Reserved

#### Bit 2 OADR10

This bit sets the number of own address bits for slave mode. 1 (R/W): 10-bit address 0 (R/W): 7-bit address

#### Bit 1 GCEN

This bit sets whether to respond to master general calls in slave mode or not.

1 (R/W): Respond to general calls.

0 (R/W): Do not respond to general calls.

#### Bit 0 Reserved

Note: The I2C_nMOD register settings can be altered only when the I2C_nCTL.MODEN bit = 0.

#### I2C Ch.n Baud-Rate Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
I2C_nBR	15–8	_	0x00	-	R	-
	7	-	0	_	R	
	6–0	BRT[6:0]	0x7f	H0	R/W	

#### Bits 15–7 Reserved

#### 16 I²C (I2C)

#### Bits 6-0 BRT[6:0]

These bits set the I2C Ch.*n* transfer rate for master mode. For more information, refer to "Baud Rate Generator."

- **Notes:** The I2C_*n*BR register settings can be altered only when the I2C_*n*CTL.MODEN bit = 0.
  - Be sure to avoid setting the I2C_nBR register to 0.

#### I2C Ch.n Own Address Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
I2C_nOADR	15–10	-	0x00	-	R	_
	9–0	OADR[9:0]	0x000	H0	R/W	

#### Bits 15–10 Reserved

#### Bits 9-0 OADR[9:0]

These bits set the own address for slave mode.

The I2C_nOADR.OADR[9:0] bits are effective in 10-bit address mode (I2C_nMOD.OADR10 bit = 1), or the I2C_nOADR.OADR[6:0] bits are effective in 7-bit address mode (I2C_nMOD.OADR10 bit = 0).

Note: The I2C_nOADR register settings can be altered only when the I2C_nCTL.MODEN bit = 0.

#### I2C Ch.n Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
I2C_nCTL	15–8	_	0x00	-	R	-
	7–6	-	0x0	-	R	
	5	MST	0	HO	R/W	
	4	TXNACK	0	H0/S0	R/W	
	3	TXSTOP	0	H0/S0	R/W	
	2	TXSTART	0	H0/S0	R/W	
	1	SFTRST	0	H0	R/W	
	0	MODEN	0	H0	R/W	

#### Bits 15–6 Reserved

#### Bit 5 MST

This bit selects the I2C Ch.n operating mode.

- 1 (R/W): Master mode
- 0 (R/W): Slave mode

#### Bit 4 TXNACK

This bit issues a request for sending a NACK at the next responding.

- 1 (W): Issue a NACK.
- 0 (W): Ineffective
- 1 (R): On standby or during sending a NACK
- 0 (R): NACK has been sent.

This bit is automatically cleared after a NACK has been sent.

#### Bit 3 TXSTOP

This bit issues a STOP condition in master mode. This bit is ineffective in slave mode.

- 1 (W): Issue a STOP condition.
- 0 (W): Ineffective
- 1 (R): On standby or during generating a STOP condition
- 0 (R): STOP condition has been generated.

This bit is automatically cleared when the bus free time (tBUF defined in the I²C Specifications) has elapsed after the STOP condition has been generated.

#### Bit 2 TXSTART

This bit issues a START condition in master mode. This bit is ineffective in slave mode.

- 1 (W): Issue a START condition.
- 0 (W): Ineffective
- 1 (R): On standby or during generating a START condition
- 0 (R): START condition has been generated.

This bit is automatically cleared when a START condition has been generated.

#### Bit 1 SFTRST

This bit issues software reset to the I2C.

- 1 (W): Issue software reset
- 0 (W): Ineffective
- 1 (R): Software reset is executing.
- 0 (R): Software reset has finished. (During normal operation)

Setting this bit resets the I2C transmit/receive control circuit and interrupt flags. This bit is automatically cleared after the reset processing has finished.

#### Bit 0 MODEN

This bit enables the I2C operations.

1 (R/W): Enable I2C operations (The operating clock is supplied.)

0 (R/W): Disable I2C operations (The operating clock is stopped.)

**Note**: If the I2C_*n*CTL.MODEN bit is altered from 1 to 0 while sending/receiving data, the data being sent/received cannot be guaranteed. When setting the I2C_*n*CTL.MODEN bit to 1 again after that, be sure to write 1 to the I2C_*n*CTL.SFTRST bit as well.

### I2C Ch.n Transmit Data Register

		V				
Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
I2C_nTXD	15–8	-	0x00	-	R	-
	7–0	TXD[7:0]	0x00	H0	R/W	

#### Bits 15–8 Reserved

#### Bits 7–0 TXD[7:0]

Data can be written to the transmit data buffer through these bits. Make sure the I2C_nINTF.TBEIF bit is set to 1 before writing data.

**Note**: Be sure to avoid writing to the I2C_nTXD register when the I2C_nINTF.TBEIF bit = 0, otherwise transmit data cannot be guaranteed.

#### I2C Ch.n Receive Data Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
I2C_nRXD	15–8	-	0x00	_	R	-
	7–0	RXD[7:0]	0x00	H0	R	

#### Bits 15–8 Reserved

Bits 7–0 RXD[7:0]

The receive data buffer can be read through these bits.

### I2C Ch.n Status and Interrupt Flag Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
I2C_nINTF	15–13	-	0x0	-	R	_
	12	SDALOW	0	H0	R	
	11	SCLLOW	0	H0	R	
	10	BSY	0	H0/S0	R	
	9	TR	0	H0	R	
	8	-	0	-	R	-
	7	BYTEENDIF	0	H0/S0	R/W	Cleared by writing 1.
	6	GCIF	0	H0/S0	R/W	
	5	NACKIF	0	H0/S0	R/W	
	4	STOPIF	0	H0/S0	R/W	
	3	STARTIF	0	H0/S0	R/W	
	2	ERRIF	0	H0/S0	R/W	
	1	RBFIF	0	H0/S0	R	Cleared by reading the I2C_nRXD
						register.
	0	TBEIF	0	H0/S0	R	Cleared by writing to the I2C_nTXD register.

#### Bits 15–13 Reserved

#### Bit 12 SDALOW

This bit indicates that SDA is set to low level.

- 1 (R): SDA = Low level
- 0 (R): SDA = High level

#### Bit 11 SCLLOW

This bit indicates that SCL is set to low level.

1 (R): SCL = Low level

0 (R): SCL = High level

#### Bit 10 BSY

This bit indicates that the I²C bus is placed into busy status.

- 1 (R): I²C bus busy
- 0 (R):  $I^2C$  bus free

#### Bit 9 TR

- This bit indicates whether the I2C is set in transmission mode or not.
- 1 (R): Transmission mode
- 0 (R): Reception mode

#### Bit 8 Reserved

#### Bit 7 BYTEENDIF

- Bit 6 GCIF
- Bit 5 NACKIF
- Bit 4 STOPIF
- Bit 3 STARTIF
- Bit 2 ERRIF
- Bit 1 RBFIF
- Bit 0 TBEIF

These bits indicate the I2C interrupt cause occurrence status.

- 1 (R): Cause of interrupt occurred
- 0 (R): No cause of interrupt occurred
- 1 (W): Clear flag
- 0 (W): Ineffective

The following shows the correspondence between the bit and interrupt:

I2C_nINTF.BYTEENDIF bit: End of transfer interrupt I2C_nINTF.GCIF bit: General call address reception interrupt

I2C_nINTF.GCIF bit:	General call address reception in
I2C_nINTF.NACKIF bit:	NACK reception interrupt
I2C_nINTF.STOPIF bit:	STOP condition interrupt
I2C_nINTF.STARTIF bit:	START condition interrupt
I2C_nINTF.ERRIF bit:	Error detection interrupt
I2C_nINTF.RBFIF bit:	Receive buffer full interrupt
I2C_nINTF.TBEIF bit:	Transmit buffer empty interrupt

# I2C Ch.n Interrupt Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
I2C_nINTE	15–8	-	0x00	-	R	-
	7	BYTEENDIE	0	H0	R/W	
	6	GCIE	0	H0	R/W	
	5	NACKIE	0	H0	R/W	
	4	STOPIE	0	H0	R/W	
	3	STARTIE	0	H0	R/W	
	2	ERRIE	0	H0	R/W	
	1	RBFIE	0	H0	R/W	
	0	TBEIE	0	H0	R/W	

#### Bits 15–8 Reserved

- Bit 7 BYTEENDIE
- Bit 6 GCIE
- Bit 5 NACKIE
- Bit 4 STOPIE
- Bit 3 STARTIE
- Bit 2 ERRIE
- Bit 1 RBFIE

#### Bit 0 TBEIE

These bits enable I2C interrupts.

1 (R/W): Enable interrupts

0 (R/W): Disable interrupts

The following shows the correspondence between the bit and interrupt:

I2C_nINTE.BYTEENDIE bit: End of transfer interrupt

I2C_nINTE.GCIE bit:	General call address reception interrupt
I2C_nINTE.NACKIE bit:	NACK reception interrupt
I2C_nINTE.STOPIE bit:	STOP condition interrupt
I2C_nINTE.STARTIE bit:	START condition interrupt
I2C_nINTE.ERRIE bit:	Error detection interrupt
I2C_nINTE.RBFIE bit:	Receive buffer full interrupt
I2C_nINTE.TBEIE bit:	Transmit buffer empty interrupt

## I2C Ch.n Transmit Buffer Empty DMA Request Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
I2C_nTBEDMAEN	15–0	TBEDMAEN[15:0]	0x0000	H0	R/W	-

#### Bits 15-0 TBEDMAEN[15:0]

These bits enable the I2C to issue a DMA transfer request to the corresponding DMA controller channel (Ch.0–Ch.15) when a transmit buffer empty state has occurred.

1 (R/W): Enable DMA transfer request

0 (R/W): Disable DMA transfer request

Each bit corresponds to a DMA controller channel. The high-order bits for the unimplemented channels are ineffective.

### I2C Ch.n Receive Buffer Full DMA Request Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
I2C_nRBFDMAEN	15–0	RBFDMAEN[15:0]	0x0000	H0	R/W	-

#### Bits 15-0 RBFDMAEN[15:0]

These bits enable the I2C to issue a DMA transfer request to the corresponding DMA controller channel (Ch.0–Ch.15) when a receive buffer full state has occurred.

1 (R/W): Enable DMA transfer request

0 (R/W): Disable DMA transfer request

Each bit corresponds to a DMA controller channel. The high-order bits for the unimplemented channels are ineffective.

# 17 16-bit PWM Timers (T16B)

# 17.1 Overview

T16B is a 16-bit PWM timer with comparator/capture functions. The features of T16B are listed below.

- Counter block
  - 16-bit up/down counter
  - A clock source and a clock division ratio for generating the count clock are selectable in each channel.
  - The count mode is configurable from combinations of up, down, or up/down count operations, and one-shot operations (counting for one cycle configured) or repeat operations (counting continuously until stopped via software).
  - Supports an event counter function using an external clock.
- Comparator/capture block
  - Supports up to six comparator/capture circuits to be included per one channel.
  - The comparator compares the counter value with the values specified via software to generate interrupt or DMA request signals, and a PWM waveform. (Can be used as an interval timer, PWM waveform generator, and external event counter.)
  - The capture circuit captures counter values using external/software trigger signals and generates interrupts or DMA requests. (Can be used to measure external event periods/cycles.)

Figure 17.1.1 shows the T16B configuration.

Table 17.1.1	T16B C	hannel	Configuration	of S1C31D01
--------------	--------	--------	---------------	-------------

Item	S1C31D01
Number of channels	2 channels (Ch.0 and Ch.1)
Event counter function	Ch.0: EXCL00 or EXCL01 pin input
	Ch.1: EXCL10 or EXCL11 pin input
Number of comparator/	6 systems (0 to 5)
capture circuits per channel	0 393(6113 (0 10 0)
Timer generating signal output	Ch.0: TOUT00 to TOUT05 pin outputs (6 systems)
	Ch.1: TOUT10 to TOUT15 pin outputs (6 systems)
Capture signal input	Ch.0: CAP00 to CAP05 pin inputs (6 systems)
	Ch.1: CAP10 to CAP15 pin inputs (6 systems)

**Note**: In this chapter, '*n*' refers to a channel number, and '*m*' refers to an input/output pin number or a comparator/capture circuit number in a channel.



Figure 17.1.1 T16B Configuration

# 17.2 Input/Output Pins

Table 17.2.1 lists the T16B pins.

Table 17.2.1 List of T16B Pins

Pin name	I/O*	Initial status*	Function		
EXCLnm	I	I (Hi-Z)	External clock input		
TOUTnm/CAPnm	O or I	O (L)	TOUT signal output (in comparator mode) or		

* Indicates the status when the pin is configured for T16B.

If the port is shared with the T16B pin and other functions, the T16B input/output function must be assigned to the port before activating T16B. For more information, refer to the "I/O Ports" chapter.

# 17.3 Clock Settings

# 17.3.1 T16B Operating Clock

When using T16B Ch.*n*, the T16B Ch.*n* operating clock CLK_T16B*n* must be supplied to T16B Ch.*n* from the clock generator. The CLK_T16B*n* supply should be controlled as in the procedure shown below.

1. Enable the clock source in the clock generator if it is stopped (refer to "Clock Generator" in the "Power Supply, Reset, and Clocks" chapter).

When an external clock is used, select the EXCLnm pin function (refer to the "I/O Ports" chapter).

- 2. Set the following T16B_nCLK register bits:
  - T16B_nCLK.CLKSRC[2:0] bits (Clock source selection)
  - T16B_nCLK.CLKDIV[3:0] bits (Clock division ratio selection = Clock frequency setting)

# 17.3.2 Clock Supply in SLEEP Mode

When using T16B during SLEEP mode, the T16B operating clock CLK_T16B*n* must be configured so that it will keep supplying by writing 0 to the CLGOSC_*xxxx*SLPC bit for the CLK_T16B*n* clock source.

If the CLGOSC*xxxx*SLPC bit for the CLK_T16B*n* clock source is 1, the CLK_T16B*n* clock source is deactivated during SLEEP mode and T16B stops with the register settings and counter value maintained at those before entering SLEEP mode. After the CPU returns to normal mode, CLK_T16B*n* is supplied and the T16B operation resumes.

# 17.3.3 Clock Supply During Debugging

The CLK_T16Bn supply during debugging should be controlled using the T16B_nCLK.DBRUN bit.

The CLK_T16B*n* supply to T16B Ch.*n* is suspended when the CPU enters debug state if the T16B_*n*CLK.DBRUN bit = 0. After the CPU returns to normal operation, the CLK_T16B*n* supply resumes. Although T16B Ch.*n* stops operating when the CLK_T16B*n* supply is suspended, the counter and registers retain the status before debug state was entered. If the T16B_*n*CLK.DBRUN bit = 1, the CLK_T16B*n* supply is not suspended and T16B Ch.*n* will keep operating in debug state.

# 17.3.4 Event Counter Clock

When EXCL*nm* is selected as the clock source using the T16B_nCLK.CLKSRC[2:0] bits, the channel functions as a timer or event counter that counts the EXCL*nm* pin input clocks.

The counter counts rising edges of the input signal. This can be changed so that the counter will count falling edges of the original signal by selecting EXCL*nm* inverted input as the clock source.



Figure 17.3.4.1 Count Timing (During Count Up Operation)

**Note**: When running the counter using the event counter clock, two dummy clocks must be input before the first counting up/down can be performed.

# **17.4 Operations**

### 17.4.1 Initialization

T16B Ch.n should be initialized and started counting with the procedure shown below. Perform initial settings for comparator mode when using T16B as an interval timer, PWM waveform generator, or external event counter. Perform initial settings for capture mode when using T16B to measure external event periods/cycles.

#### Initial settings for comparator mode

- 1. Configure the T16B Ch.n operating clock.
- 2 Set the T16B_*n*CTL.MODEN bit to 1. (Enable T16B operations)
- 3. Set the following T16B *n*CCCTL0 and T16B *n*CCCTL1 register bits:
  - Set the T16B nCCCTLm.CCMD bit to 0.* (Set comparator mode)

(Configure compare buffer)

(Select one-shot/repeat operation)

(Reset counter)

(Start counting)

- T16B_nCCCTLm.CBUFMD[2:0] bits
- * Another circuit in the comparator/capture circuit pair (circuits 0 and 1, 2 and 3, 4 and 5) can be set to capture mode.

Set the following bits when the TOUT*nm* output is used.

- T16B_nCCCTLm.TOUTMT bit
- (Select waveform generation signal) - T16B_nCCCTLm.TOUTMD[2:0] bits (Select TOUT signal generation mode) - T16B_nCCCTLm.TOUTINV bit (Select TOUT signal polarity) 4. Set the T16B_nMC register. (Set MAX counter data) 5. Set the T16B_nCCR0 and T16B_nCCR1 registers. (Set the counter comparison value) 6. Set the following bits when using the interrupt: - Write 1 to the interrupt flags in the T16B_*n*INTF register. (Clear interrupt flags) - Set the interrupt enable bits in the T16B_nINTE register to 1. (Enable interrupts) 7. Configure the DMA controller and set the following T16B control bits when using DMA transfer: - Write 1 to the DMA transfer request enable bits in the T16B_nMZDMAEN and T16B_nCCmDMAEN registers. (Enable DMA transfer requests) 8. Set the following T16B_nCTL register bits: - T16B nCTL.CNTMD[1:0] bits (Select count up/down operation)
  - T16B nCTL.ONEST bit
  - Set the T16B_nCTL.PRESET bit to 1.
  - Set the T16B *n*CTL.RUN bit to 1.

#### Initial settings for capture mode

1. Configure the T16B Ch.n operating clock. 2 Set the T16B *n*CTL.MODEN bit to 1. (Enable T16B operations) 3. Set the following T16B_nCCCTL0 and T16B_nCCCTL1 register bits: - Set the T16B_nCCCTLm.CCMD bit to 1.* (Set capture mode) - T16B_nCCCTLm.SCS bit (Set synchronous/asynchronous mode) - T16B_nCCCTLm.CAPIS[1:0] bits (Set trigger signal) - T16B_nCCCTLm.CAPTRG[1:0] bits (Select trigger edge) * Another circuit in the comparator/capture circuit pair (circuits 0 and 1, 2 and 3, 4 and 5) can be set to comparator mode. 4. Set the T16B_*n*MC register. (Set MAX counter data) 5. Set the following bits when using the interrupt: - Write 1 to the interrupt flags in the T16B_nINTF register. (Clear interrupt flags) - Set the interrupt enable bits in the T16B *n*INTE register to 1. (Enable interrupts)

- 6. Configure the DMA controller and set the following T16B control bits when using DMA transfer:
  - Write 1 to the DMA transfer request enable bits in the T16B_*n*MZDMAEN and T16B_*n*CC*m*DMAEN registers. (Enable DMA transfer requests)
- 7. Set the following T16B_*n*CTL register bits:
  - T16B_nCTL.CNTMD[1:0] bits
  - T16B_nCTL.ONEST bit
  - Set the T16B_nCTL.PRESET bit to 1.
  - Set the T16B_nCTL.RUN bit to 1.

# 17.4.2 Counter Block Operations

(Select count up/down operation) (Select one-shot/repeat operation) (Reset counter)

(Start counting)

The counter in each counter block channel is a 16-bit up/down counter that counts the selected operating clock (count clock).

#### Count mode

The T16B_nCTL.CNTMD[1:0] bits allow selection of up, down, and up/down mode. The T16B_nCTL.ON-EST bit allows selection of repeat and one-shot mode. The counter operates in six counter modes specified with a combination of these modes.

Repeat mode enables the counter to continue counting until stopped via software. Select this mode to generate periodic interrupts at desired intervals or to generate timer output waveforms.

One-shot mode enables the counter to stop automatically. Select this mode to stop the counter after an interrupt has occurred once, such as for measuring pulse width or external event intervals and checking a specific lapse of time.

Up, down, and up/down mode configures the counter as an up counter, down counter and up/down counter, respectively.

#### MAX counter data register

The MAX counter data register (T16B_nMC.MC[15:0] bits) is used to set the maximum value of the counter (hereafter referred to as MAX value). This setting limits the count range to 0x0000–MAX value and determines the count and interrupt cycles. When the counter is set to repeat mode, the MAX value can be rewritten in the procedure shown below even if the counter is running.

- 1. Check to see if the T16B_nCTL.MAXBSY bit is set to 0.
- 2. Write the MAX value to the T16B_*n*MC.MC[15:0] bits.
- **Note**: When rewriting the MAX value, the new MAX value should be written after the counter has been reset to the previously set MAX value.

#### **Counter reset**

Setting the T16B_nCTL.PRESET bit to 1 resets the counter. This clears the counter to 0x0000 in up or up/down mode, or presets the MAX value to the counter in down mode.

The counter is also cleared to 0x0000 when the counter value exceeds the MAX value during count up operation.

#### **Counting start**

To start counting, set the T16B_nCTL.RUN bit to 1. The counting stop control depends on the count mode set.

#### Counter value read

The counter value can be read out from the T16B_nTC.TC[15:0] bits. However, since T16B operates on CLK_T16Bn, one of the operations shown below is required to read correctly by the CPU.

- Read the counter value twice or more and check to see if the same value is read.
- Stop the timer and then read the counter value.

#### Counter status check

The counter operating status can be checked using the T16B_nCS.BSY bit. The T16B_nCS.BSY bit is set to 1 while the counter is running or 0 while the counter is idle.

The current count direction can also be checked using the T16B_nCS.UP_DOWN bit. The T16B_nCS.UP_ DOWN bit is set to 1 during count up operation or 0 during count down operation.

#### Operations in repeat up count and one-shot up count modes

In these modes, the counter operates as an up counter and counts from 0x0000 (or current value) to the MAX value.

In repeat up count mode, the counter returns to 0x0000 if it exceeds the MAX value and continues counting until the T16B_nCTL.RUN bit is set to 0. If the MAX value is altered to a value larger than the current counter value during counting, the counter keeps counting up to the new MAX value. If the MAX value is altered to a value smaller than the current counter value, the counter is cleared to 0x0000 and continues counting up to the new MAX value.

In one-shot up count mode, the counter returns to 0x0000 if it exceeds the MAX value and stops automatically at that point.



Figure 17.4.2.1 Operations in Repeat Up Count and One-shot Up Count Modes

#### Operations in repeat down count and one-shot down count modes

In these modes, the counter operates as a down counter and counts from the MAX value (or current value) to 0x0000.

In repeat down count mode, the counter returns to the MAX value if a counter underflow occurs and continues counting until the T16B_nCTL.RUN bit is set to 0. If the MAX value is altered during counting, the counter keeps counting down to 0x0000 and continues counting down from the new MAX value after a counter underflow occurs.

In one-shot down count mode, the counter returns to the MAX value if a counter underflow occurs and stops automatically at that point.

Seiko Epson Corporation



Figure 17.4.2.2 Operations in Repeat Down Count and One-shot Down Count Modes

#### Operations in repeat up/down count and one-shot up/down count modes

In these modes, the counter operates as an up/down counter and counts as 0x0000 (or current value)  $\rightarrow$  the MAX value  $\rightarrow 0x0000$ .

In repeat up/down count mode, the counter repeats counting up from 0x0000 to the MAX value and counting down from the MAX value to 0x0000 until the T16B_nCTL.RUN bit is set to 0. If the MAX value is altered to a value larger than the current counter value during count up operation, the counter keeps counting up to the new MAX value. If the MAX value is altered to a value smaller than the current counter value, the counter is cleared to 0x0000 and continues counting up to the new MAX value. If the MAX value is altered to 0x0000 and continues counting up to the new MAX value. If the MAX value is altered during count down operation, the counter keeps counting down to 0x0000 and then starts counting up to the new MAX value. In one-shot up/down count mode, the counter stops automatically when it reaches 0x0000 during count down operation.



Figure 17.4.2.3 Operations in Repeat Up/Down Count and One-shot Up/Down Count Modes

### 17.4.3 Comparator/Capture Block Operations

The comparator/capture block functions as a comparator to compare the counter value with the register value set or a capture circuit to capture counter values using the external/software trigger signals.

#### Comparator/capture block operating mode

The comparator/capture block includes two systems (four or six systems) of comparator/capture circuits and each system can be set to comparator mode or capture mode, individually.

Set the T16B_nCCCTLm.CCMD bit to 0 to set the comparator/capture circuit *m* to comparator mode or 1 to set it to capture mode.

#### Operations in comparator mode

The comparator mode compares the counter value and the value set via software. It generates an interrupt and toggles the timer output signal level when the values are matched. The T16B_nCCRm register functions as the compare data register used for setting a comparison value in this mode. The TOUTnm/CAPnm pin is configured to the TOUTnm pin.

When the counter reaches the value set in the T16B_*n*CCR*m* register during counting, the comparator asserts the MATCH signal and sets the T16B_*n*INTF.COMPCAP*m*IF bit (compare interrupt flag) to 1.

When the counter reaches the MAX value in comparator mode, the T16B_nINTF.CNTMAXIF bit (counter MAX interrupt flag) is set to 1. When the counter reaches 0x0000, the T16B_nINTF.CNTZEROIF bit (counter zero interrupt flag) is set to 1.



(Note that the T16B_nINTF.CMPCAP*m*IF/CNTMAXIF/CNTZEROIF bit clearing operations via software are omitted from the figure.) Figure 17.4.3.1 Operation Examples in Comparator Mode

The time from counter = 0x0000 or MAX value to occurrence of a compare interrupt (compare period) and the time to occurrence of a counter MAX or counter zero interrupt (count cycle) can be calculated as follows:

During counting up

Compare period = 
$$\frac{(CC + 1)}{f_{CLK_T16B}}$$
 [s] Count cycle =  $\frac{(MAX + 1)}{f_{CLK_T16B}}$  [s] (Eq. 17.1)

During counting down

Compare period = 
$$\frac{(MAX - CC + 1)}{f_{CLK_T16B}}$$
 [s] Count cycle =  $\frac{(MAX + 1)}{f_{CLK_T16B}}$  [s] (Eq. 17.2)

Where

CC: T16B_nCCRm register setting value (0 to 65,535) MAX: T16B_nMC register setting value (0 to 65,535) fcLk_T16B: Count clock frequency [Hz] The comparator MATCH signal and counter MAX/ZERO signals are also used to generate a timer output waveform (TOUT). Refer to "TOUT Output Control" for more information.

#### Compare buffer

The comparator loads the comparison value, which has been written to the T16B_nCCRm register, to the compare buffer before comparing it with the counter value. For example, when generating a PWM waveform, the waveform with the desired duty ratio may not be generated if the comparison value is altered asynchronous to the count operation. To avoid this problem, the timing to load the comparison value to the compare buffer can be configured using the T16B_nCCCTLm.CBUFMD[2:0] bits for synchronization with the count operation.

#### (1) Repeat up count mode





### (1.3) T16B_nCCCTLm.CBUFMD[2:0] bits = 0x2







Seiko Epson Corporation

#### Compare period and count cycle settings using DMA

By setting the T16B_nCCmDMAEN.CCmDMAENx bit to 1 (DMA transfer request enabled) in comparator mode, a DMA transfer request is sent to the DMA controller and compare data is transferred from the specified memory to the T16B_nCCRm register via DMA Ch.x when the T16B_nINTF.CMPCAPmIF bit is set to 1 (when the counter reaches the compare buffer value).

Similarly, by setting the T16B_nCCmDMAEN.MZDMAENx bit to 1 (DMA transfer request enabled), a DMA transfer request is sent to the DMA controller and a counter MAX value is transferred from the specified memory to the T16B_nMC register via DMA Ch_x when the T16B_nINTF.CNTMAXIF bit is set to 1 (when the counter reaches the MAX value) in up or up/down count mode, or when the T16B_nINTF. CNTZEROIF bit is set to 1 (when the counter reaches zero) in down count mode.

This automates the compare period and count cycle settings of the timer counter.

The transfer source/destination and control data must be set for the DMA controller and the relevant DMA channel must be enabled to start a DMA transfer in advance so that the setting data will be transferred to the T16B_nCCRm or T16B_nMC register. For more information on DMA, refer to the "DMA Controller" chapter.

Item		Setting example				
End pointer	Transfer source	Memory address in which the last setting data is stored				
	Transfer destination	T16B_nCCRm or T16B_nMC register address				
Control data	dst_inc	0x3 (no increment)				
	dst_size	0x1 (haflword)				
	src_inc	0x1 (+2)				
	src_size	0x1 (halfword)				
	R_power	0x0 (arbitrated for every transfer)				
	n_minus_1	Number of transfer data				
	cycle_ctrl	0x1 (basic transfer)				

Table 17.4.3.1 DMA Data Structure Configuration Example (T16B Compare Period and Count Cycle Settings)

#### Operations in capture mode

The capture mode captures the counter value when an external event, such as a key entry, occurs (at the specified edge of the external input/software trigger signal). In this mode, the T16B_nCCRm register functions as the capture register from which the captured data is read. Furthermore, the TOUTnm/CAPnm pin is configured to the CAPnm pin.

The trigger signal and the trigger edge to capture the counter value are selected using the T16B_nCCCTLm. CAPIS[1:0] bits and the T16B_nCCCTLm.CAPTRG[1:0] bits, respectively.

When a specified trigger edge is input during counting, the current counter value is loaded to the T16B_nC-CRm register. At the same time the T16B_nINTF.CMPCAPmIF bit is set. The interrupt occurred by this bit can be used to read the captured data from the T16B_nCCRm register. For example, external event cycles and pulse widths can be measured from the difference between two captured counter values read.

If the captured data stored in the T16B_nCCR*m* register is overwritten by the next trigger when the T16B_ *n*INTF.CMPCAP*m*IF bit is still set, an overwrite error occurs (the T16B_nINTF.CAPOW*m*IF bit is set).



An overwrite error occurs as the T16B_*n*INTF.CMPCAP*m*IF bit has not been cleared. Figure 17.4.3.3 Operations in Capture Mode (Example in One-shot Up Count Mode)

#### Synchronous capture mode/asynchronous capture mode

The capture circuit can operate in two operating modes: synchronous capture mode and asynchronous capture mode.

Synchronous capture mode is provided to avoid the possibility of invalid data reading by capturing counter data simultaneously with the counter being counted up/down. Set the T16B_nCCCTLm.SCS bit to 1 to set the capture circuit to synchronous capture mode. This mode captures counter data by synchronizing the capture signal with the counter clock.

On the other hand, asynchronous capture mode can capture counter data by detecting a trigger pulse even if the pulse is shorter than the counter clock cycle that becomes invalid in synchronous capture mode. Set the T16B_nCCCTLm.SCS bit to 0 to set the capture circuit to asynchronous capture mode.



(1) Synchronous capture mode

#### Capture data transfer using DMA

By setting the T16B_nCCmDMAEN.CCmDMAENx bit to 1 (DMA transfer request enabled) in capture mode, a DMA transfer request is sent to the DMA controller and the T16B_nCCRm register value is transferred to the specified memory via DMA Ch_x when the T16B_nINTF.CMPCAPmIF bit is set to 1 (when data has been captured).

This automates reading and saving of capture data.

The transfer source/destination and control data must be set for the DMA controller and the relevant DMA channel must be enabled to start a DMA transfer in advance. For more information on DMA, refer to the "DMA Controller" chapter.

Item		Setting example		
End pointer	Transfer source	T16B_nCCRm register address		
	Transfer destination	Memory address to which the last capture data is stored		
Control data	dst_inc	0x1 (+2)		
	dst_size	0x1 (haflword)		
	src_inc	0x3 (no increment)		
	src_size	0x1 (halfword)		
	R_power	0x0 (arbitrated for every transfer)		
	n_minus_1	Number of transfer data		
	cycle_ctrl	0x1 (basic transfer)		

Table 17 4 3 2	DMA Data Structure	Configuration	Example	(Capture Data	Transfer)
10010 17.4.0.2	DIVIA Data Otracture	Configuration	слатріс	(Oapture Data	manaicij

# 17.4.4 TOUT Output Control

Comparator mode can generate TOUT signals using the comparator MATCH and counter MAX/ZERO signals. The generated signals can be output to outside the IC. Figure 17.4.4.1 shows the TOUT output circuits (circuits 0 and 1).



Each timer channel includes two (four, or six) TOUT output circuits and their signal generation and output can be controlled individually.

#### **TOUT** generation mode

The T16B_nCCCTLm.TOUTMD[2:0] bits are used to set how the TOUT signal waveform is changed by the MATCH and MAX/ZERO signals.

Furthermore, when the T16B_nCCCTLm.TOUTMT bit is set to 1, the TOUT circuit uses the MATCH signal output from another system in the circuit pair (0 and 1, 2 and 3, 4 and 5). This makes it possible to change the signal twice within a counter cycle.

#### **TOUT** signal polarity

The TOUT signal polarity (active level) can be set using the  $T16B_nCCCTLm.TOUTINV$  bit. It is set to active high by setting the  $T16B_nCCCTLm.TOUTINV$  bit to 0 and active low by setting to 1.

Figures 17.4.4.2 and 17.4.4.3 show the TOUT output waveforms.



 $\ast$  ( ) indicates the T16B_nCCCTLm.TOUTMD[2:0] bit-setting value.



Figure 17.4.4.2 TOUT Output Waveform (T16B_nCCCTLm.TOUTMT bit = 0)
#### 17 16-BIT PWM TIMERS (T16B)

(1) Repeat up count mode	(MAX value = 5, Compare buffer (0) value = 2, Compare buffer (1) value = 3, T16B_nCCCTLm.TOUTINV bit = 0)
RUN	
PRESET	
Count clock	
T16B_nTC.TC[15:0]	0 1 2 3 4 5 0 1 2 3 4 5 0 0 1 2 3 4 5 0 0 1 2 3
MATCH(0) signal	
MATCH(1) signal	
T16B_nCCCTLm.TOUTO	
TOUT output (*) Software control mode (0x0) TOUT <i>n</i> 0	
TOUT <i>n</i> 1	
Set mode (0x1) TOUT <i>n</i> 0	
TOUT <i>n</i> 1	
Toggle/reset mode (0x2) TOUT <i>n</i> 0	
TOUT <i>n</i> 1	
Set/reset mode (0x3) TOUT <i>n</i> 0	
TOUT <i>n</i> 1	
Toggle mode(0x4) TOUT <i>a</i> 0	
TOUT <i>n</i> 1	
Reset mode (0x5) TOUT <i>n</i> 0	
TOUT <i>n</i> 1	
Toggle/set mode (0x6)	
Reset/cot mode (0v7)	
TOUT <i>n</i> 0	
TOUT <i>n</i> 1	

* () indicates the T16B_nCCCTLm.TOUTMD[2:0] bit-setting value.

#### 17 16-BIT PWM TIMERS (T16B)

(2) Repeat down count mode	(MAX value = 5, Compare buffer (0) value = 2, Compare buffer (1) value = 3, T16B_nCCCTLm.TOUTINV bit	t = 0)
RUN		
PRESET		
Count clock		
T16B_nTC.TC[15:0]	5 4 3 2 1 0 5 4 3 2 1 0 5 4 3 2 1 0 5 4 3 2 2 1 0 5 4 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<u> </u>
MATCH(0) signal		
MATCH(1) signal		
T16B_nCCCTLm.TOUTO		
TOUT output (*) Software control mode (0x0) TOUT <i>n</i> 0		
TOUT <i>n</i> 1		
Set mode (0x1) TOUT <i>n</i> 0		
TOUT <i>n</i> 1		—
Toggle/reset mode (0x2) TOUT <i>n</i> 0		
TOUT <i>n</i> 1		Ę
Set/reset mode (0x3) TOUT <i>n</i> 0		-
TOUT <i>n</i> 1		Ę
Toggle mode(0x4) TOUT <i>n</i> 0		
TOUT <i>n</i> 1		-
Reset mode (0x5) TOUT <i>n</i> 0		
TOUT <i>n</i> 1		
Toggle/set mode (0x6) TOUT <i>n</i> 0		
TOUT <i>n</i> 1		F
Reset/set mode (0x7) TOUT <i>n</i> 0		
TOUT <i>n</i> 1		F

* () indicates the T16B_nCCCTLm.TOUTMD[2:0] bit-setting value.

#### 17 16-BIT PWM TIMERS (T16B)

(3) Repeat up/down count mode	(MAX value = 5, Compare buffer (0) value = 2, Compare buffer (1) value = 3, T16B_nCCCTLm.TOUTINV bit = 0)
RUN	
PRESET	
Count clock	
T16B_nTC.TC[15:0]	<u> </u>
MATCH(0) signal	
MATCH(1) signal	
T16B_nCCCTLm.TOUTO	
TOUT output (*) Software control mode (0x0) TOUT <i>n</i> 0	
TOUT <i>n</i> 1	
Set mode (0x1) TOUT <i>n</i> 0	
TOUTn1	
Toggle/reset mode (0x2) TOUT <i>n</i> 0	
TOUT <i>n</i> 1	
Set/reset mode (0x3) TOUT <i>n</i> 0	
TOUT <i>n</i> 1	
Toggle mode(0x4) TOUT <i>n</i> 0	
TOUT <i>n</i> 1	
Reset mode (0x5) TOUT <i>n</i> 0	
TOUT <i>n</i> 1	
Toggle/set mode (0x6) TOUT <i>n</i> 0	
TOUT <i>n</i> 1	
Reset/set mode (0x7) TOUT <i>n</i> 0	
TOUT <i>n</i> 1	
	i i i i i i i i i i i i i i i i i i i

Figure 17.4.4.3 TOUT Output Waveform (T16B_nCCCTL0.TOUTMT bit = 1, T16B_nCCCTL1.TOUTMT bit = 0)

# 17.5 Interrupt

Each T16B channel has a function to generate the interrupt shown in Table 17.5.1.

Interrupt	Interrupt flag	Set condition	Clear condition
Capture	T16B_nINTF.CAPOWmIF	When the T16B_nINTF.CMPCAPmIF bit =1 and the T16B_	Writing 1
overwrite		n CCRm register is overwritten with new captured data in	
		capture mode	
Compare/	T16B_nINTF.CMPCAPmIF	When the counter value becomes equal to the compare	Writing 1
capture		buffer value in comparator mode	
		When the counter value is loaded to the T16B_nCCRm reg-	
		ister by a capture trigger input in capture mode	
Counter MAX	T16B_nINTF.CNTMAXIF	When the counter reaches the MAX value	Writing 1
Counter zero	T16B_nINTF.CNTZEROIF	When the counter reaches 0x0000	Writing 1

Table 17.5.1 T16B Interrupt Function

T16B provides interrupt enable bits corresponding to each interrupt flag. An interrupt request is sent to the CPU only when the interrupt flag, of which interrupt has been enabled by the interrupt enable bit, is set. For more information on interrupt control, refer to the "Interrupt" chapter.

# 17.6 DMA Transfer Requests

The T16B has a function to generate DMA transfer requests from the causes shown in Table 17.6.1.

Cause to request	DMA transfer request flag	Set condition	Clear condition			
DMA transfer	DinA transier request hag	oct condition	olcar contaition			
Compare/	Compare/capture flag	bare/capture flag When the counter value becomes equal to the com-				
capture	(T16B_nINTF.CMPCAPmIF)	pare buffer value in comparator mode	DMA transfer			
		When the counter value is loaded to the T16B_nCCRm	request is ac-			
		register by a capture trigger input in capture mode	cepted			
Counter MAX/	Counter MAX flag	When the counter reaches the MAX value in up or up/	When the			
zero	(T16B_nINTF.CNTMAXIF)	down count mode	DMA transfer			
	Counter zero flag	When the counter reaches 0x0000 in down count	request is ac-			
	(T16B_nINTF.CNTZEROIF)	mode	cepted			

Table 17.6.1 DMA Transfer Request Causes of T16B

The T16B provides DMA transfer request enable bits corresponding to each DMA transfer request flag shown above for the number of DMA channels. A DMA transfer request is sent to the pertinent channel of the DMA controller only when the DMA transfer request flag, of which DMA transfer has been enabled by the DMA transfer request enable bit, is set. The DMA transfer request flag also serves as an interrupt flag, therefore, both the DMA transfer request and the interrupt cannot be enabled at the same time. After a DMA transfer has completed, disable the DMA transfer to prevent unintended DMA transfer requests from being issued. For more information on the DMA control, refer to the "DMA Controller" chapter.

# **17.7 Control Registers**

## T16B Ch.n Clock Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16B_nCLK	15–9	_	0x00	-	R	-
	8	DBRUN	0	H0	R/W	
	7–4	CLKDIV[3:0]	0x0	H0	R/W	
	3	-	0	-	R	
	2–0	CLKSRC[2:0]	0x0	H0	R/W	

#### Bits 15–9 Reserved

#### Bit 8 DBRUN

This bit sets whether the T16B Ch.*n* operating clock is supplied during debugging or not. 1 (R/W): Clock supplied during debugging 0 (R/W): No clock supplied during debugging

0 (R/W): No clock supplied during debugging

#### Bits 7-4 CLKDIV[3:0]

These bits select the division ratio of the T16B Ch.n operating clock (counter clock).

#### Bit 3 Reserved

#### Bits 2-0 CLKSRC[2:0]

These bits select the clock source of T16B Ch.n.

	T16B_nCLK.CLKSRC[2:0] bits								
TIGE OCI K	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7	
CLKDIV[3:0] bits	IOSC	OSC1	OSC3	EXOSC	EXCLn0	EXCLn1	EXCLn0 inverted input	EXCLn1 inverted input	
Oxf	1/32,768	1/1	1/32,768	1/1	1/1	1/1	1/1	1/1	
0xe	1/16,384		1/16,384						
0xd	1/8,192		1/8,192						
0xc	1/4,096		1/4,096						
0xb	1/2,048		1/2,048						
0xa	1/1,024		1/1,024						
0x9	1/512		1/512						
0x8	1/256	1/256	1/256						
0x7	1/128	1/128	1/128						
0x6	1/64	1/64	1/64						
0x5	1/32	1/32	1/32						
0x4	1/16	1/16	1/16						
0x3	1/8	1/8	1/8						
0x2	1/4	1/4	1/4						
0x1	1/2	1/2	1/2						
0x0	1/1	1/1	1/1						

Table 17.7.1 Clock Source and Division Ratio Settings

(Note) The oscillator circuits/external inputs that are not supported in this IC cannot be selected as the clock source.

### T16B Ch.n Counter Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16B_nCTL	15–9	-	0x00	-	R	-
	8	MAXBSY	0	H0	R	
	7–6	-	0x0	-	R	
	5–4	CNTMD[1:0]	0x0	H0	R/W	
	3	ONEST	0	H0	R/W	
	2	RUN	0	H0	R/W	
	1	PRESET	0	H0	R/W	
	0	MODEN	0	H0	R/W	

#### Bits 15–9 Reserved

#### Bit 8 MAXBSY

This bit indicates whether data can be written to the T16B_nMC register or not.

- 1 (R): Busy status (cannot be written)
- 0 (R): Idle (can be written)

While this bit is 1, the T16B_*n*MC register is loading the MAX value. Data writing is prohibited during this period.

#### Bits 7–6 Reserved

#### Bits 5–4 CNTMD[1:0]

These bits select the counter up/down mode. The count mode is configured with this selection and the  $T16B_nCTL.ONEST$  bit setting (see Table 17.7.2).

#### Bit 3 ONEST

This bit selects the counter repeat/one-shot mode. The count mode is configured with this selection and the T16B_nCTL.CNTMD[1:0] bit settings (see Table 17.7.2).

TICE ACTI CNTMD[1:0] bits	Count mode						
	T16B_nCTL.ONEST bit = 1	T16B_nCTL.ONEST bit = 0					
0x3	Reserved						
0x2	One-shot up/down count mode	Repeat up/down count mode					
0x1	One-shot down count mode	Repeat down count mode					
0x0	One-shot up count mode	Repeat up count mode					

#### Bit 2 RUN

This bit starts/stops counting.

1 (W): Start counting

0 (W): Stop counting

1 (R): Counting

0 (R): Idle

By writing 1 to this bit, the counter block starts count operations. However, the T16B_nCTL.MODEN bit must be set to 1 in conjunction with this bit or it must be set in advance. While the timer is running, writing 0 to the T16B_nCTL.RUN bit stops count operations. When the counter stops by the counter MAX/ZERO signal in one-shot mode, this bit is automatically cleared to 0.

#### Bit 1 PRESET

This bit resets the counter.

- 1 (W): Reset
- 0 (W): Ineffective
- 1 (R): Resetting in progress
- 0 (R): Resetting finished or normal operation

In up mode or up/down mode, the counter is cleared to 0x0000 by writing 1 to this bit. In down mode, the MAX value, which has been set to the T16B_*n*MC register, is preset to the counter. However, the T16B_*n*CTL.MODEN bit must be set to 1 in conjunction with this bit or it must be set in advance.

#### Bit 0 MODEN

This bit enables the T16B Ch.n operations.

1 (R/W): Enable (Start supplying operating clock)

- 0 (R/W): Disable (Stop supplying operating clock)
- **Note**: The counter reset operation using the T16B_*n*CTL.PRESET bit and the counting start operation using the T16B_*n*CTL.RUN bit take effect only when the T16B_*n*CTL.MODEN bit = 1.

### T16B Ch.n Max Counter Data Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16B_nMC	15–0	MC[15:0]	0xffff	HO	R/W	-

#### Bits 15-0 MC[15:0]

These bits are used to set the MAX value to preset to the counter. For more information, refer to "Counter Block Operations - MAX counter data register."

- **Notes:** When one-shot mode is selected, do not alter the T16B_nMC.MC[15:0] bits (MAX value) during counting.
  - Make sure the T16B_nCTL.MODEN bit is set to 1 before writing data to the T16B_nMC. MC[15:0] bits. If the T16B_nCTL.MODEN bit = 0 when writing to the T16B_nMC.MC[15:0] bits, set the T16B_nCTL.MODEN bit to 1 until the T16B_nCS.BSY bit is set to 0 from 1.
  - Do not set the T16B_nMC.MC[15:0] bits to 0x0000.

### T16B Ch.n Timer Counter Data Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16B_nTC	15–0	TC[15:0]	0x0000	H0	R	-

#### Bits 15-0 TC[15:0]

The current counter value can be read out through these bits.

#### T16B Ch.n Counter Status Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16B_nCS	15–8	_	0x00	-	R	-
	7	CAPI5	0	H0	R	
	6	CAPI4	0	H0	R	
	5	CAPI3	0	H0	R	
	4	CAPI2	0	H0	R	
	3	CAPI1	0	H0	R	
	2	CAPI0	0	H0	R	
	1	UP_DOWN	1	H0	R	
	0	BSY	0	H0	R	

#### Bits 15–8 Reserved

- Bit 7 CAPI5
- Bit 6 CAPI4
- Bit 5 CAPI3
- Bit 4 CAPI2
- Bit 3 CAPI1

#### Bit 2 CAPI0

These bits indicate the signal level currently input to the CAPnm pin.

- 1 (R): Input signal = High level
- 0 (R): Input signal = Low level

The following shows the correspondence between the bit and the CAPnm pin:

T16B_nCS.CAPI5 bit: CAPn5 pin T16B_nCS.CAPI4 bit: CAPn4 pin T16B_nCS.CAPI3 bit: CAPn3 pin T16B_nCS.CAPI2 bit: CAPn2 pin T16B_nCS.CAPI1 bit: CAPn1 pin T16B_nCS.CAPI0 bit: CAPn0 pin

**Note:** The configuration of the T16B_*n*CS.CAPI*m* bits depends on the model. The bits corresponding to the CAP*nm* pins that do not exist are read-only bits and are always fixed at 0.

#### Bit 1 UP_DOWN

- This bit indicates the currently set count direction.
- 1 (R): Count up
- 0 (R): Count down

#### Bit 0 BSY

This bit indicates the counter operating status.

- 1 (R): Running
- 0 (R): Idle

### T16B Ch.n Interrupt Flag Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16B_nINTF	15–14	_	0x0	-	R	-
	13	CAPOW5IF	0	H0	R/W	Cleared by writing 1.
	12	CMPCAP5IF	0	H0	R/W	
	11	CAPOW4IF	0	H0	R/W	
	10	CMPCAP4IF	0	H0	R/W	
	9	CAPOW3IF	0	H0	R/W	
	8	CMPCAP3IF	0	H0	R/W	
	7	CAPOW2IF	0	H0	R/W	
	6	CMPCAP2IF	0	H0	R/W	
	5	CAPOW1IF	0	H0	R/W	
	4	CMPCAP1IF	0	H0	R/W	
	3	CAPOW0IF	0	H0	R/W	
	2	CMPCAP0IF	0	H0	R/W	
	1	CNTMAXIF	0	H0	R/W	]
	0	CNTZEROIF	0	HO	R/W	

Bits 15–14 Reserved

- Bit 13 CAPOW5IF
- Bit 12 CMPCAP5IF
- Bit 11 CAPOW4IF
- Bit 10 CMPCAP4IF
- Bit 9 CAPOW3IF
- Bit 8 CMPCAP3IF
- Bit 7 CAPOW2IF
- Bit 6 CMPCAP2IF
- Bit 5 CAPOW1IF
- Bit 4 CMPCAP1IF
- Bit 3 CAPOW0IF
- Bit 2 CMPCAP0IF
- Bit 1 CNTMAXIF

#### Bit 0 CNTZEROIF

These bits indicate the T16B Ch.n interrupt cause occurrence status.

- 1 (R): Cause of interrupt occurred
- 0 (R): No cause of interrupt occurred
- 1 (W): Clear flag
- 0 (W): Ineffective

The following shows the correspondence between the bit and interrupt: T16B_nINTF.CAPOW5IF bit: Capture 5 overwrite interrupt T16B_nINTF.CMPCAP5IF bit: Compare/capture 5 interrupt T16B_nINTF.CMPCAP4IF bit: Capture 4 overwrite interrupt T16B_nINTF.CMPCAP4IF bit: Compare/capture 4 interrupt T16B_nINTF.CAPOW3IF bit: Capture 3 overwrite interrupt T16B_nINTF.CMPCAP3IF bit: Compare/capture 3 interrupt T16B_nINTF.CMPCAP3IF bit: Capture 2 overwrite interrupt T16B_nINTF.CMPCAP2IF bit: Capture 2 overwrite interrupt T16B_nINTF.CMPCAP2IF bit: Capture 1 overwrite interrupt T16B_nINTF.CMPCAP1IF bit: Capture 1 overwrite interrupt T16B_nINTF.CMPCAP1IF bit: Capture 0 overwrite interrupt T16B_nINTF.CAPOW0IF bit: Capture 0 overwrite interrupt T16B_nINTF.CMPCAP0IF bit: Compare/capture 0 interrupt

**Note**: The configuration of the T16B_nINTF.CAPOWmIF and T16B_nINTF.CMPCAPmIF bits depends on the model. The bits corresponding to the comparator/capture circuits that do not exist are read-only bits and are always fixed at 0.

### T16B Ch.n Interrupt Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16B_nINTE	15–14	-	0x0	-	R	-
	13	CAPOW5IE	0	H0	R/W	
	12	CMPCAP5IE	0	H0	R/W	
	11	CAPOW4IE	0	H0	R/W	
	10	CMPCAP4IE	0	H0	R/W	
	9 CA 8 CN		0	H0	R/W	
			0	H0	R/W	
	7	CAPOW2IE	0	H0	R/W	
	6	CMPCAP2IE	0	H0	R/W	
	5	CAPOW1IE	0	H0	R/W	
	4	CMPCAP1IE	0	H0	R/W	
	3	CAPOW0IE	0	H0	R/W	
	2	CMPCAP0IE	0	H0	R/W	
	1	CNTMAXIE	0	H0	R/W	
	0	CNTZEROIE	0	H0	R/W	

#### Bits 15–14 Reserved

- Bit 13 **CAPOW5IE** Bit 12 **CMPCAP5IE** Bit 11 CAPOW4IF Bit 10 **CMPCAP4IE** Bit 9 **CAPOW3IE** Bit 8 **CMPCAP3IE** Bit 7 CAPOW2IE Bit 6 **CMPCAP2IE** Bit 5 CAPOW1IE Bit 4 **CMPCAP1IE**
- BIT 4 CMPCAPTIE
- Bit 3 CAPOWOIE
- Bit 2 CMPCAP0IE
- Bit 1 CNTMAXIE

#### Bit 0 CNTZEROIE

These bits enable T16B Ch.n interrupts.

1 (R/W): Enable interrupts

0 (R/W): Disable interrupts

The following shows the correspondence between the bit and interrupt: T16B_nINTE.CAPOW5IE bit: Capture 5 overwrite interrupt T16B_nINTE.CMPCAP5IE bit: Compare/capture 5 interrupt T16B_nINTE.CAPOW4IE bit: Capture 4 overwrite interrupt T16B_nINTE.CMPCAP4IE bit: Compare/capture 4 interrupt T16B_nINTE.CAPOW3IE bit: Capture 3 overwrite interrupt T16B_nINTE.CMPCAP3IE bit: Compare/capture 3 interrupt T16B_nINTE.CAPOW2IE bit: Capture 2 overwrite interrupt T16B_nINTE.CAPOW2IE bit: Capture 2 overwrite interrupt T16B_nINTE.CAPOW2IE bit: Capture 1 overwrite interrupt T16B_nINTE.CAPOW1IE bit: Capture 1 overwrite interrupt T16B_nINTE.CAPOW0IE bit: Capture 0 overwrite interrupt T16B_nINTE.CAPOW0IE bit: Capture 0 interrupt T16B_nINTE.CAPOW0IE bit: Compare/capture 0 interrupt T16B_nINTE.CMPCAP0IE bit: Compare/capture 0 interrupt

- **Notes:** The configuration of the T16B_nINTE.CAPOWmIE and T16B_nINTE.CMPCAPmIE bits depends on the model. The bits corresponding to the comparator/capture circuits that do not exist are read-only bits and are always fixed at 0.
  - To prevent generating unnecessary interrupts, the corresponding interrupt flag should be cleared before enabling interrupts.

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16B_nCCCTLm	15	SCS	0	HO	R/W	-
	14–12	CBUFMD[2:0]	0x0	H0	R/W	
	11–10	CAPIS[1:0]	0x0	H0	R/W	
	9–8	CAPTRG[1:0]	0x0	H0	R/W	
	7	-	0	-	R	
	6	TOUTMT	0	H0	R/W	
	5	TOUTO	0	H0	R/W	
	4–2	TOUTMD[2:0]	0x0	H0	R/W	
	1	TOUTINV	0	H0	R/W	
	0	CCMD	0	HO	R/W	

### T16B Ch.n Comparator/Capture m Control Register

#### Bit 15 SCS

This bit selects either synchronous capture mode or asynchronous capture mode.

- 1 (R/W): Synchronous capture mode
- 0 (R/W): Asynchronous capture mode

For more information, refer to "Comparator/Capture Block Operations - Synchronous capture mode/ asynchronous capture mode." The T16B_nCCCTLm.SCS bit is control bit for capture mode and is ineffective in comparator mode.

#### Bits 14–12 CBUFMD[2:0]

These bits select the timing to load the comparison value written in the T16B_nCCRm register to the compare buffer. The T16B_nCCCTLm.CBUFMD[2:0] bits are control bits for comparator mode and are ineffective in capture mode.

T16B_nCCCTLm. CBUFMD[2:0] bits	Count mode	Comparison Value load timing
0x7–0x5		Reserved
0x4	Up mode	When the counter becomes equal to the comparison value set previously Also the counter is reset to 0x0000 simultaneously.
	Down mode	When the counter becomes equal to the comparison value set previously Also the counter is reset to the MAX value simultaneously.
	Up/down mode	When the counter becomes equal to the comparison value set previously Also the counter is reset to 0x0000 simultaneously.
0x3	Up mode	When the counter reverts to 0x0000
	Down mode	When the counter reverts to the MAX value
	Up/down mode	When the counter becomes equal to the comparison value set previously or when the counter reverts to $0x0000$
0x2	Up mode	When the counter becomes equal to the comparison value set previously
	Down mode	
	Up/down mode	
0x1	Up mode	When the counter reaches the MAX value
	Down mode	When the counter reaches 0x0000
	Up/down mode	When the counter reaches 0x0000 or the MAX value
0x0	Up mode	At the CLK_T16Bn rising edge after writing to the T16B_nCCRm register
	Down mode	
	Up/down mode	

Table 17.7.3 Timings to Load Comparison Value to Compare Buffer

#### Bits 11-10 CAPIS[1:0]

These bits select the trigger signal for capturing (see Table 17.7.4). The T16B_nCCCTLm.CAPIS[1:0] bits are control bits for capture mode and are ineffective in comparator mode.

#### Bits 9–8 CAPTRG[1:0]

These bits select the trigger edge(s) of the trigger signal at which the counter value is captured in the T16B_nCCRm register in capture mode (see Table 17.7.4). The T16B_nCCCTLm.CAPTRG[1:0] bits are control bits for capture mode and are ineffective in comparator mode.

T16B_nCCCTLm.	Trigger condition						
CAPTRG[1:0] bits	T16B_nCCCTLm.CAPIS[1:0] bits (Trigger signal)						
(Trigger edge)	0x0 (External trigger signal) 0x2 (Software trigger signal = L) 0x3 (Software trigger						
0x3 (↑ & ↓)	Rising or falling edge of the CAPnm pin input	Altering the T16B_nCCCTLm.CAPIS[1:0] bits from 0x2 to 0x3, or					
	signal	from 0x3 to 0x2					
0x2 (↓)	Falling edge of the CAPnm pin input signal	Altering the T16B_nCCCTLm.CAPIS[1:0] bits from 0x3 to 0x2					
0x1 (↑)	Rising edge of the CAPnm pin input signal	Altering the T16B_nCCCTLm.CAPIS[1:0] bits from 0x2 to 0x3					
0x0	Not triggered (disable capture function)						

Table 17.7.4 Trigger Signal/Edge for Capturing Counter Value

#### Bit 7 Reserved

#### Bit 6 TOUTMT

This bit selects whether the comparator MATCH signal of another system is used for generating the TOUT*nm* signal or not.

- 1 (R/W): Generate TOUT using two comparator MATCH signals of the comparator circuit pair (0 and 1, 2 and 3, 4 and 5)
- 0 (R/W): Generate TOUT using one comparator MATCH signal of comparator m and the counter MAX or ZERO signals

The T16B_nCCCTLm.TOUTMT bit is control bit for comparator mode and is ineffective in capture mode.

#### Bit 5 TOUTO

This bit sets the TOUT*nm* signal output level when software control mode (T16B_*n*CCCTL*m*.TOUT-MD[2:0] = 0x0) is selected for the TOUT*nm* output.

1 (R/W): High level output

0 (R/W): Low level output

The T16B_nCCCTLm.TOUTO bit is control bit for comparator mode and is ineffective in capture mode.

#### Bits 4–2 TOUTMD[2:0]

These bits configure how the TOUT*nm* signal waveform is changed by the comparator MATCH and counter MAX/ZERO signals.

The T16B_nCCCTLm.TOUTMD[2:0] bits are control bits for comparator mode and are ineffective in capture mode.

T16B_nCCCTLm.	TOUT generation mode and operations								
TOUTMD[2:0] bits	T16B_nCCCTLm. TOUTMT bit	Count mode	Output signal	Change in the signal					
0x7	Reset/set mode								
	0	Up count mode Up/down count mode	TOUTnm	The signal becomes inactive by the MATCH signal and it becomes active by the MAX signal.					
		Down count mode	TOUTnm	The signal becomes inactive by the MATCH signal and it becomes active by the ZERO signal.					
	1	All count modes	TOUTnm	The signal becomes inactive by the MATCH $m$ signal and it becomes active by the MATCH $m$ +1 signal.					
			TOUTnm+1	The signal becomes inactive by the MATCH <i>m</i> +1 signal and it becomes active by the MATCH <i>m</i> signal.					
0x6	Toggle/set mode								
	0	Up count mode Up/down count mode	TOUTnm	The signal is inverted by the MATCH signal and it be- comes active by the MAX signal.					
		Down count mode	TOUTnm	The signal is inverted by the MATCH signal and it be- comes active by the ZERO signal.					
	1	All count modes	TOUTnm	The signal is inverted by the MATCH <i>m</i> signal and it be- comes active by the MATCH <i>m</i> +1 signal.					
			TOUTnm+1	The signal is inverted by the MATCH <i>m</i> +1 signal and it be- comes active by the MATCH <i>m</i> signal.					
0x5	Reset mode								
	0	All count modes	TOUTnm	The signal becomes inactive by the MATCH signal.					
	1	All count modes	TOUTnm	The signal becomes inactive by the MATCH <i>m</i> or MATCH <i>m</i> +1 signal.					
			TOUTnm+1	The signal becomes inactive by the MATCH <i>m</i> +1 or MATCH <i>m</i> signal.					

Table 17.7.5 TOUT Generation Mode

Seiko Epson Corporation

S1C31D01 TECHNICAL MANUAL (Rev. 1.2)

T16B_nCCCTLm.	n. TOUT generation mode and operations				
TOUTMD[2:0] bits	T16B_nCCCTLm. TOUTMT bit	Count mode	Output signal	Change in the signal	
0x4	Toggle mode				
	0	All count modes	TOUTnm	The signal is inverted by the MATCH signal.	
	1	All count modes	TOUTnm	The signal is inverted by the MATCH <i>m</i> or MATCH <i>m</i> +1 signal.	
			TOUTnm+1	The signal is inverted by the MATCHm+1 or MATCHm signal.	
0x3	Set/reset mode				
	0	Up count mode Up/down count mode	TOUTnm	The signal becomes active by the MATCH signal and it becomes inactive by the MAX signal.	
		Down count mode	TOUTnm	The signal becomes active by the MATCH signal and it becomes inactive by the ZERO signal.	
	1	All count modes	TOUTnm	The signal becomes active by the MATCH <i>m</i> signal and it becomes inactive by the MATCH <i>m</i> +1 signal.	
			TOUTnm+1	The signal becomes active by the MATCH <i>m</i> +1 signal and it becomes inactive by the MATCH <i>m</i> signal.	
0x2	Toggle/reset mod	le			
	0	Up count mode Up/down count mode	TOUTnm	The signal is inverted by the MATCH signal and it be- comes inactive by the MAX signal.	
		Down count mode	TOUTnm	The signal is inverted by the MATCH signal and it be- comes inactive by the ZERO signal.	
	1	All count modes	TOUTnm	The signal is inverted by the MATCH <i>m</i> signal and it be- comes inactive by the MATCH <i>m</i> +1 signal.	
			TOUTnm+1	The signal is inverted by the MATCH <i>m</i> +1 signal and it be- comes inactive by the MATCH <i>m</i> signal.	
0x1	Set mode				
	0	All count modes	TOUTnm	The signal becomes active by the MATCH signal.	
	1	All count modes	TOUTnm	The signal becomes active by the MATCH <i>m</i> or MATCH <i>m</i> +1 signal.	
			TOUTnm+1	The signal becomes active by the MATCH <i>m</i> +1 or MATCH <i>m</i> signal.	
0x0	Software control	mode		·	
	*	All count modes	TOUTnm	The signal becomes active by setting the T16B_ nCCCTLm.TOUTO bit to 1 and it becomes inactive by setting to 0.	

#### Bit 1 TOUTINV

This bit selects the TOUT*nm* signal polarity.

1 (R/W): Inverted (active low)

0 (R/W): Normal (active high)

The T16B_nCCCTLm.TOUTINV bit is control bit for comparator mode and is ineffective in capture mode.

#### Bit 0 CCMD

This bit selects the operating mode of the comparator/capture circuit m.

1 (R/W): Capture mode (T16B_nCCR*m* register = capture register)

0 (R/W): Comparator mode (T16B_nCCRm register = compare data register)

### T16B Ch.n Compare/Capture m Data Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16B_nCCRm	15–0	CC[15:0]	0x0000	H0	R/W	_

#### Bits 15-0 CC[15:0]

In comparator mode, this register is configured as the compare data register and used to set the comparison value to be compared with the counter value.

In capture mode, this register is configured as the capture register and the counter value captured by the capture trigger signal is loaded.

### T16B Ch.n Counter Max/Zero DMA Request Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16B_nMZDMAEN	15–0	MZDMAEN[15:0]	0x0000	H0	R/W	-

#### Bits 15-0 MZDMAEN[15:0]

These bits enable T16B to issue a DMA transfer request to the corresponding DMA controller channel (Ch.0–Ch.15) when the counter value reaches the MAX value or 0x0000.

1 (R/W): Enable DMA transfer request

0 (R/W): Disable DMA transfer request

Each bit corresponds to a DMA controller channel. The high-order bits for the unimplemented channels are ineffective.

### T16B Ch.n Compare/Capture m DMA Request Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
T16B_nCCmDMAEN	15–0	CCmDMAEN[15:0]	0x0000	H0	R/W	-

#### Bits 15-0 CCmDMAEN[15:0]

These bits enable T16B to issue a DMA transfer request to the corresponding DMA controller channel (Ch.0–Ch.15) when the counter value reaches the compare data or is captured.

1 (R/W): Enable DMA transfer request

0 (R/W): Disable DMA transfer request

Each bit corresponds to a DMA controller channel. The high-order bits for the unimplemented channels are ineffective.

# **18 Sound Generator (SNDA)**

# 18.1 Overview

- Pitch:

SNDA is a sound generator that generates melodies and buzzer signals. The features of the SNDA are listed below.

- Sound output mode is selectable from three types.
  - 1. Normal buzzer mode (for normal buzzer output of which the output duration is controlled via software)
    - Output frequency: Can be set within the range of 512 Hz to 16,384 Hz.
    - Duty ratio: Can be set within the range of 0 % to 100 %.
  - 2. One-shot buzzer mode (for short buzzer output such as a clicking sound)
    - Output frequency: Can be set within the range of 512 Hz to 16,384 Hz.
    - Duty ratio: Can be set within the range of 0 % to 100 %.
    - One-shot output duration: Can be set within the range of 15.6 ms to 250 ms. (16 types)
  - 3. Melody mode (for playing single note melody)
    - Can be set within the range of 128 Hz to 16,384 Hz.
      - (Scale: 3 octave from C3 to C6 with reference to A4 = 443 Hz)
    - Duration: Can be set within the range of half note/rest to thirty-second note/rest. (7 types)
    - Tempo: Can be set within the range of 30 to 480. (16 types)
    - Other: Tie and slur can be specified.
- A piezoelectric buzzer can be driven with the inverted and non-inverted output pins.
- Can control the non-inverted output pin status while sound stops.

Figure 18.1.1 shows the SNDA configuration.



Figure 18.1.1 SNDA Configuration

# **18.2 Output Pins and External Connections**

### 18.2.1 List of Output Pins

Table 18.2.1.1 lists the SNDA pins.

Table 18.2.1.1 List of SNDA Pins							
Pin name	I/O*	Initial status*	Function				
BZOUT	0	O (Low)	Non-inverted buzzer output pin				
#BZOUT	0	O (Low)	Inverted buzzer output pin				

* Indicates the status when the pin is configured for SNDA

If the port is shared with the SNDA pin and other functions, the SNDA output function must be assigned to the port before activating the SNDA. For more information, refer to the "I/O Ports" chapter.

### 18.2.2 Output Pin Drive Mode

The drive mode of the BZOUT and #BZOUT pins can be set to one of the two types shown below using the SN-DASEL.SINV bit.

#### Direct drive mode (SNDASEL.SINV bit = 0)

This mode drives both the BZOUT and #BZOUT pins to low while the buzzer signal output is off to prevent the piezoelectric buzzer from applying unnecessary bias.

#### Normal drive mode (SNDASEL.SINV bit = 1)

In this mode, the #BZOUT pin always outputs the inverted signal of the BZOUT pin even when the buzzer output is off.

### 18.2.3 External Connections

Figures 18.2.2.1 and 18.2.2.2 show connection diagrams between SNDA and a piezoelectric buzzer.



S1C31 SNDA

Figure 18.2.2.1 Connection between SNDA and Piezoelectric Buzzer (Direct Drive)



Figure 18.2.2.2 Connection between SNDA and Piezoelectric Buzzer (Single Pin Drive)

# 18.3 Clock Settings

### 18.3.1 SNDA Operating Clock

When using SNDA, the SNDA operating clock CLK_SNDA must be supplied to SNDA from the clock generator. The CLK_SNDA supply should be controlled as in the procedure shown below.

- 1. Enable the clock source in the clock generator if it is stopped (refer to "Clock Generator" in the "Power Supply, Reset, and Clocks" chapter).
- 2. Set the following SNDACLK register bits:
  - SNDACLK.CLKSRC[1:0] bits (Clock source selection)
  - SNDACLK.CLKDIV[2:0] bits (Clock division ratio selection = Clock frequency setting)

The CLK_SNDA frequency should be set to around 32,768 Hz.

# 18.3.2 Clock Supply in SLEEP Mode

When using SNDA during SLEEP mode, the SNDA operating clock CLK_SNDA must be configured so that it will keep supplying by writing 0 to the CLGOSC_xxxxSLPC bit for the CLK_SNDA clock source.

If the CLGOSC*xxxx*SLPC bit for the CLK_SNDA clock source is 1, the CLK_SNDA clock source is deactivated during SLEEP mode and SNDA stops with the register settings maintained at those before entering SLEEP mode. After the CPU returns to normal mode, CLK_SNDA is supplied and the SNDA operation resumes.

# 18.3.3 Clock Supply in DEBUG Mode

The CLK_SNDA supply during DEBUG mode should be controlled using the SNDACLK.DBRUN bit.

The CLK_SNDA supply to SNDA is suspended when the CPU enters DEBUG mode if the SNDACLK.DBRUN bit = 0. After the CPU returns to normal mode, the CLK_SNDA supply resumes. Although SNDA stops operating when the CLK_SNDA supply is suspended, the output pin and registers retain the status before DEBUG mode was entered. If the SNDACLK.DBRUN bit = 1, the CLK_SNDA supply is not suspended and SNDA will keep operating in DEBUG mode.

# **18.4 Operations**

### 18.4.1 Initialization

SNDA should be initialized with the procedure shown below.

- 1. Assign the SNDA output function to the ports. (Refer to the "I/O Ports" chapter.)
- 2. Configure the SNDA operating clock.
- 6. Configure the DMA controller and set the following SNDA control bits when using DMA transfer:
  - Write 1 to the DMA transfer request enable bits in the SNDAEMDMAEN register. (Enable DMA transfer requests)

## 18.4.2 Buzzer Output in Normal Buzzer Mode

Normal buzzer mode generates a buzzer signal with the software specified frequency and duty ratio, and outputs the generated signal to outside the IC. The buzzer output duration can also be controlled via software. An output start/stop procedure and the SNDA operations are shown below.

#### Normal buzzer output start/stop procedure

- 1. Set the SNDASEL.MOSEL[1:0] bits to 0x0.
- 2. Write data to the following sound buffer (SNDADAT register) bits.

(Set normal buzzer mode)

(Start buzzer output)

(Set buzzer output signal duty ratio) (Set buzzer output signal frequency)

- SNDADAT.SLEN[5:0] bitsSNDADAT.SFRQ[7:0] bits
- 3. Write 1 to the SNDACTL.SSTP bit after the output period has elapsed. (Stop buzzer output)

#### Normal buzzer output operations

When data is written to the sound buffer (SNDADAT register), SNDA clears the SNDAINTF.EMIF bit (sound buffer empty interrupt flag) to 0 and starts buzzer output operations.

The data written to the sound buffer is loaded into the sound register in sync with the CLK_SNDA clock. At the same time, the SNDAINTF.EMIF bit and SNDAINTF.SBSY bit are both set to 1. The output pin outputs the buzzer signal with the frequency/duty ratio specified.

Writing 1 to the SNDACTL.SSTP bit stops buzzer output and sets the SNDAINTF.EDIF bit (sound output completion interrupt flag) to 1. The SNDAINTF.SBSY bit is cleared to 0.

Figure 18.4.2.1 shows a buzzer output timing chart in normal buzzer mode.



Figure 18.4.2.1 Buzzer Output Timing Chart in Normal Buzzer Mode

#### Buzzer output waveform configuration (normal buzzer mode/one-shot buzzer mode)

Set the buzzer signal frequency and duty ratio (high period/cycle) using the SNDADAT.SFRQ[7:0] and SNDA-DAT.SLEN[5:0] bits, respectively. Use the following equations to calculate these setting values.

$$SNDADAT.SFRQ[7:0] \text{ bits} = \frac{f_{CLK_SNDA}}{f_{BZOUT}} -1$$
(Eq. 18.1)  
$$SNDADAT.SLEN[5:0] \text{ bits} = \left(\frac{f_{CLK_SNDA}}{f_{BZOUT}} \times \frac{DUTY}{100}\right) -1$$
(Eq. 18.2)

Where

fCLK_SNDA:CLK_SNDA frequency [Hz]fBZOUT:Buzzer signal frequency [Hz]DUTY:Buzzer signal duty ratio [%]

However, the following settings are prohibited:

- Settings as SNDADAT.SFRQ[7:0] bits ≤ SNDADAT.SLEN[5:0] bits
- Settings as SNDADAT.SFRQ[7:0] bits = 0x00

SNDADAT.	Frequency	SNDADAT.	Frequency	SNDADAT.	Frequency	SNDADAT.	Frequency
SFRQ[7:0] bits	[Hz]						
0x3f	512.0	0x2f	682.7	0x1f	1,024.0	0x0f	2,048.0
0x3e	520.1	0x2e	697.2	0x1e	1,057.0	0x0e	2,184.5
0x3d	528.5	0x2d	712.3	0x1d	1,092.3	0x0d	2,340.6
0x3c	537.2	0x2c	728.2	0x1c	1,129.9	0x0c	2,520.6
0x3b	546.1	0x2b	744.7	0x1b	1,170.3	0x0b	2,730.7
0x3a	555.4	0x2a	762.0	0x1a	1,213.6	0x0a	2,978.9
0x39	565.0	0x29	780.2	0x19	1,260.3	0x09	3,276.8
0x38	574.9	0x28	799.2	0x18	1,310.7	0x08	3,640.9
0x37	585.1	0x27	819.2	0x17	1,365.3	0x07	4,096.0
0x36	595.8	0x26	840.2	0x16	1,424.7	0x06	4,681.1
0x35	606.8	0x25	862.3	0x15	1,489.5	0x05	5,461.3
0x34	618.3	0x24	885.6	0x14	1,560.4	0x04	6,553.6
0x33	630.2	0x23	910.2	0x13	1,638.4	0x03	8,192.0
0x32	642.5	0x22	936.2	0x12	1,724.6	0x02	10,922.7
0x31	655.4	0x21	963.8	0x11	1,820.4	0x01	16,384.0
0x30	668.7	0x20	993.0	0x10	1,927.5	0x00	Cannot be set

Table 18.4.2.1 Buzzer Frequency Settings (when fcLK_SNDA = 32,768 Hz)

Table 18.4.2.2 Buzzer Duty Ratio Setting Examples (when fcLK_SNDA = 32,768 Hz)

SNDADAT.	Duty ratio by buzzer frequency					
SLEN[5:0] bits	16,384 Hz	8,192 Hz	4,096 Hz	2,048 Hz	1,024 Hz	512 Hz
0x3f	-	-	-	-	-	-
0x3e	-	-	-	-	-	98.4
0x3d	-	-	-	-	-	96.9
0x3c	-	-	-	-	-	95.3
0x3b	-	-	-	-	-	93.8
0x3a	-	-	-	-	-	92.2
0x39	-	-	-	-	-	90.6
0x38	_	-	_	-	-	89.1
0x37	-	-	-	-	-	87.5
0x36	-	-	-	-	-	85.9
0x35	-	_	_	-	_	84.4
0x34	-	-	-	-	_	82.8
0x33	_	_	_	_	_	81.3
0x32	_	_	_	_	_	79.7
0x31	_	-	_	_	_	78.1
0x30	_	-	_	_	-	76.6
0x2f	_	-	_	_	-	75.0
0x2e	_	_	_	_	_	73.4
0x2d	_	-	_	_	-	71.9
0x2c	_	_	_	_	_	70.3
0x2b	_	_	_	_	_	68.8
0x2a	_	_	_	_	_	67.2
0x20	_	_	_	_	_	65.6
0x28	_	_	_	_	_	64.1
0x27	_	_	_	_	_	62.5
0x26	_	_	_	_	_	60.9
0x25	_	_	_	_	_	59.4
0x20	_	_	_	_	_	57.8
0x24						56.3
0x20	_	_				54.7
0x22						53.1
0x20		_				51.6
0x20	_	_	_	_	_	50.0
0x10	-	-	-	_		19.0
0x1d	-	-	-	-	90.9	40.4
0x10	-	-	-	-	93.0	40.9
0x10	-	-	-	_	90.0	40.0
0x10	-	-	-	-	07.3	43.0
0x1a	-	-	-	-	04.4	42.2
0x19	-	-	-	-	70.1	40.0
0x10	-	-	-	-	75.0	39.1
UX1/	-	-	-	-	71.0	37.5
UX16	-	-	-	-	/1.9	35.9
0x15	-	-	-	-	68.8	34.4
UX14	-	-	-	-	65.6	32.8
0x13	-	-	-	-	62.5	31.3
0x12	-	-	-	-	59.4	29.7

SNDADAT.	Duty ratio by buzzer frequency					
SLEN[5:0] bits	16,384 Hz	8,192 Hz	4,096 Hz	2,048 Hz	1,024 Hz	512 Hz
0x11	-	-	-	-	56.3	28.1
0x10	-	-	-	-	53.1	26.6
0x0f	-	-	-	-	50.0	25.0
0x0e	-	-	-	93.8	46.9	23.4
0x0d	-	-	-	87.5	43.8	21.9
0x0c	-	-	-	81.3	40.6	20.3
0x0b	-	-	-	75.0	37.5	18.8
0x0a	-	-	-	68.8	34.4	17.2
0x09	-	-	-	62.5	31.3	15.6
0x08	-	-	-	56.3	28.1	14.1
0x07	-	-	-	50.0	25.0	12.5
0x06	-	-	87.5	43.8	21.9	10.9
0x05	-	-	75.0	37.5	18.8	9.4
0x04	-	-	62.5	31.3	15.6	7.8
0x03	-	-	50.0	25.0	12.5	6.3
0x02	-	75.0	37.5	18.8	9.4	4.7
0x01	-	50.0	25.0	12.5	6.3	3.1
0x00	50.0	25.0	12.5	6.3	3.1	1.6

### 18.4.3 Buzzer Output in One-shot Buzzer Mode

One-shot buzzer mode is provided for clicking sound and short-duration buzzer output. This mode generates a buzzer signal with the software specified frequency and duty ratio, and outputs the generated signal for the short duration specified.

An output start procedure and the SNDA operations are shown below. For the buzzer output waveform, refer to "Buzzer Output in Normal Buzzer Mode."

#### One-shot buzzer output start procedure

1.	Set the following SNDASEL register bits:	
	- Set the SNDASEL.MOSEL[1:0] bits to 0x1.	(Set one-shot buzzer mode)
	- SNDASEL.STIM[3:0] bits	(Set output duration)
2.	Write data to the following sound buffer (SNDADAT register) bits.	(Start buzzer output)
	- SNDADAT.SLEN[5:0] bits	(Set buzzer output signal duty ratio)
	- SNDADAT.SFRQ[7:0] bits	(Set buzzer output signal frequency)

#### One-shot buzzer output operations

When data is written to the sound buffer (SNDADAT register), SNDA clears the SNDAINTF.EMIF bit (sound buffer empty interrupt flag) to 0 and starts buzzer output operations.

The data written to the sound buffer is loaded into the sound register in sync with the CLK_SNDA clock. At the same time, the SNDAINTF.EMIF bit and SNDAINTF.SBSY bit are both set to 1. The output pin outputs the buzzer signal with the frequency/duty ratio specified.

The buzzer output automatically stops when the duration specified by the SNDASEL.STIM[3:0] bits has elapsed. At the same time, the SNDAINTF.EDIF bit (sound output completion interrupt flag) is set to 1 and the SNDAINTF.SBSY bit is cleared to 0.

Figure 18.4.3.1 shows a buzzer output timing chart in one-shot buzzer mode.

#### **18 SOUND GENERATOR (SNDA)**



Figure 18.4.3.1 Buzzer Output Timing Chart in One-shot Buzzer Mode

### 18.4.4 Output in Melody Mode

Melody mode generates the buzzer signal with a melody according to the data written to the sound buffer (SNDADAT register) successively, and outputs the generated signal to outside the IC. An output start procedure and the SNDA operations are shown below.

#### Melody output start procedure

1.	Set the following SNDASEL register bits:	
	- Set the SNDASEL.MOSEL[1:0] bits to 0x2.	(Set melody mode)
	- SNDASEL.STIM[3:0] bits	(Set tempo)
2.	Write data to the following sound buffer (SNDADAT register) bits.	(Start sound output)
	- SNDADAT.MDTI bit	(Set tie/slur)
	- SNDADAT.MDRS bit	(Set note/rest)
	- SNDADAT.SLEN[5:0] bits	(Set duration)
	- SNDADAT.SFRQ[7:0] bits	(Set scale)
-		

- 3. Check to see if the SNDAINTF.EMIF bit is set to 1 (an interrupt can be used).
- 4. Repeat Steps 2 and 3 until the end of the melody.

#### Melody output operations

When data is written to the sound buffer (SNDADAT register), SNDA clears the SNDAINTF.EMIF bit (sound buffer empty interrupt flag) to 0 and starts sound output operations.

The data written to the sound buffer is loaded into the sound register by the internal trigger signal. At the same time, the SNDAINTF.EMIF bit and SNDAINTF.SBSY bit are both set to 1. The output pin outputs the sound specified.

The sound output stops if data is not written to the sound buffer (SNDADAT register) until the next trigger is issued. At the same time, the SNDAINTF.EDIF bit (sound output completion interrupt flag) is set to 1 and the SNDAINTF.SBSY bit is cleared to 0.

Figure 18.4.4.1 shows a melody mode operation timing chart.

#### **18 SOUND GENERATOR (SNDA)**



Figure 18.4.4.1 Melody Mode Operation Timing Chart

#### Melody output using DMA

By setting the SNDAEMDMAEN.EMDMAEN*x* bit to 1 (DMA transfer request enabled), a DMA transfer request is sent to the DMA controller and melody data is transferred from the specified memory to the sound buffer (SNDADAT register) via DMA Ch.*x* when the SNDAINTF.EMIF bit is set to 1 (sound buffer empty). This automates the melody output procedure from Steps 2 to 4 described above.

The transfer source/destination and control data must be set for the DMA controller and the relevant DMA channel must be enabled to start a DMA transfer in advance so that transmit data will be transferred to the sound buffer (SNDADAT register). For more information on DMA, refer to the "DMA Controller" chapter.

Item	Setting example
Transfer source	Memory address in which the last melody data is stored
Transfer destination	SNDADAT register address
dst_inc	0x3 (no increment)
dst_size	0x1 (halfword)
src_inc	0x1 (+2)
src_size	0x1 (halfword)
R_power	0x0 (arbitrated for every transfer)
n_minus_1	Number of transfer data
cycle_ctrl	0x1 (basic transfer)
	Item Transfer source Transfer destination dst_inc dst_size src_inc src_size R_power n_minus_1 cycle_ctrl

 Table 18.4.4.1
 DMA Data Structure Configuration Example (for Melody Output)

#### Melody output waveform configuration

#### Note/rest (duration) specification

Notes and rests can be specified using the SNDADAT.MDRS and SNDADAT.SLEN[5:0] bits.

SNDADAT SI ENISIOI bito	SNDADAT.MDRS bit			
SNDADAI.SLEN[5:0] bits	0: Note	1: Rest		
0x0f	Half note	Half rest		
0x0b	Dotted quarter note	Dotted quarter rest		
0x07	Quarter note	Quarter rest		
0x05	Dotted eighth note	Dotted eighth rest		
0x03	Eighth note	Eighth rest		
0x01	Sixteenth note	Sixteenth rest		
0x00	Thirty-second note	Thirty-second rest		
Other	Setting prohibited			

Table 18.4.4.2 Note/Rest Specification (when fclk_sNDA = 32,768 Hz)

#### **Tie/slur specification**

A tie or slur takes effect by setting the SNDADAT.MDTI bit to 1 and the previous note and the current note are played continuously.



#### Scale specification

Scales can be specified using the SNDADAT.SFRQ[7:0] bits.

Table 18.4.4	4.3 Scale	Specification	(when folk SNDA	= 32.768 Hz
10010 10.1.	1.0 00ulo	opeeniouden		- 02,100112

SNDADAT.SFRQ[7:0] bits	Scale	Frequency [Hz]
0xf8	C3	131.60
Oxea	C#3	139.44
0xdd	D3	147.60
0xd1	D#3	156.04
0xc5	E3	165.49
0xba	F3	175.23
0xaf	F#3	186.18
0xa5	G3	197.40
0x9c	G#3	208.71
0x93	A3	221.41
0x8b	A#3	234.06
0x83	B3	248.24
0x7c	C4	262.14
0x75	C#4	277.69
0x6e	D4	295.21
0x68	D#4	312.08
0x62	E4	330.99
0x5c	F4	352.34
0x57	F#4	372.36
0x52	G4	394.80
0x4e	G#4	414.78
0x49	A4	442.81
0x45	A#4	468.11
0x41	B4	496.48
0x3d	C5	528.52
0x3a	C#5	555.39
0x37	D5	585.14
0x33	D#5	630.15
0x30	E5	668.73
0x2e	F5	697.19
0x2b	F#5	744.73
0x29	G5	780.19
0x26	G#5	840.21
0x24	A5	885.62
0x22	A#5	936.23
0x20	B5	992.97
0x1e	C6	1057.03

# 18.5 Interrupts

SNDA has a function to generate the interrupts shown in Table 18.5.1.

Table 18.5.1 SNDA Interrupt Function

Interrupt	Interrupt flag	Set condition	Clear condition
Sound buffer empty	SNDAINTF.EMIF	When data in the sound buffer (SNDADAT reg-	Writing to the SNDADAT
		ister) is transferred to the sound register or 1 is	register
		written to the SNDACTL.SSTP bit	
Sound output	SNDAINTF.EDIF	When a sound output has completed	Writing 1 or writing to
completion			the SNDADAT register

#### 18 SOUND GENERATOR (SNDA)

SNDA provides interrupt enable bits corresponding to each interrupt flag. An interrupt request is sent to the CPU only when the interrupt flag, of which interrupt has been enabled by the interrupt enable bit, is set. For more information on interrupt control, refer to the "Interrupt" chapter.

# 18.6 DMA Transfer Requests

The SNDA has a function to generate DMA transfer requests from the causes shown in Table 18.6.1.

Cause to request DMA transfer	DMA transfer request flag	Set condition	Clear condition
Sound buffer	Sound buffer empty flag	When data in the sound buffer (SNDADAT register) is	Writing to the
empty	(SNDAINTF.EMIF)	transferred to the sound register or 1 is written to the	SNDADAT register
		SNDACTL.SSTP bit	

Table 18.6.1	DMA Tran	sfer Request	Causes of SNDA
--------------	----------	--------------	----------------

The SNDA provides DMA transfer request enable bits corresponding to each DMA transfer request flag shown above for the number of DMA channels. A DMA transfer request is sent to the pertinent channel of the DMA controller only when the DMA transfer request flag, of which DMA transfer has been enabled by the DMA transfer request enable bit, is set. The DMA transfer request flag also serves as an interrupt flag, therefore, both the DMA transfer request and the interrupt cannot be enabled at the same time. After a DMA transfer has completed, disable the DMA transfer to prevent unintended DMA transfer requests from being issued. For more information on the DMA control, refer to the "DMA Controller" chapter.

# **18.7 Control Registers**

#### **SNDA Clock Control Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SNDACLK	15–9	_	0x00	-	R	_
	8	DBRUN	0	H0	R/W	
	7	-	0	-	R	
	6–4	CLKDIV[2:0]	0x0	H0	R/W	
	3–2	-	0x0	-	R	
	1–0	CLKSRC[1:0]	0x0	H0	R/W	

#### Bits 15–9 Reserved

#### Bit 8 DBRUN

This bit sets whether the SNDA operating clock is supplied in DEBUG mode or not. 1 (R/W): Clock supplied in DEBUG mode

0 (R/W): No clock supplied in DEBUG mode

#### Bit 7 Reserved

#### Bits 6-4 CLKDIV[2:0]

These bits select the division ratio of the SNDA operating clock.

Bits 3–2 Reserved

#### Bits 1-0 CLKSRC[1:0]

These bits select the clock source of SNDA.

	SNDACLK.CLKSRC[1:0] bits								
	0x0	0x1	0x2	0x3					
CLKDIV[2:0] Bits	IOSC	OSC1	OSC3	EXOSC					
0x7	Reserved	1/1	Reserved	1/1					
0x6									
0x5	1/512	]	1/512						
0x4	1/256		1/256						
0x3	1/128		1/128						
0x2	1/64	]	1/64						
0x1	1/32	]	1/32						
0x0	1/16		1/16						

Table 18.7.1 Clock Source and Division Ratio Settings

(Note) The oscillation circuits/external input that are not supported in this IC cannot be selected as the clock source.

Note: The SNDACLK register settings can be altered only when the SNDACTL.MODEN bit = 0.

### **SNDA Select Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SNDASEL	15–12	-	0x0	-	R	_
	11–8	STIM[3:0]	0x0	H0	R/W	
	7–3	-	0x00	-	R	
	2	SINV	0	H0	R/W	
	1–0	MOSEL[1:0]	0x0	HO	R/W	

### Bits 15–12 Reserved

#### Bits 11-8 STIM[3:0]

These bits select a tempo (when melody mode is selected) or a one-shot buzzer output duration (when one-shot buzzer mode is selected).

Table 18.7.2 Tempo/One-shot Buzzer Output Duration Selections (when fclk_snDA = 32,768 Hz)

	· -	<u> </u>
SNDASEL.	Iempo	One-shot buzzer output
STIM[3:0] bits	(= Quarter note/minute)	duration [ms]
0xf	30	250.0
0xe	32	234.4
0xd	34.3	218.8
0xc	36.9	203.1
0xb	40	187.5
0xa	43.6	171.9
0x9	48	156.3
0x8	53.3	140.6
0x7	60	125.0
0x6	68.6	109.4
0x5	80	93.8
0x4	96	78.1
0x3	120	62.5
0x2	160	46.9
0x1	240	31.3
0x0	480	15.6

Note: Be sure to avoid altering these bits when SNDAINTF.SBSY bit = 1.

#### Bits 7–3 Reserved

#### Bit 2 SINV

This bit selects an output pin drive mode.

1 (R/W): Normal drive mode

0 (R/W): Direct drive mode

For more information, refer to "Output Pin Drive Mode."

#### Bits 1-0 MOSEL[1:0]

These bits select a sound output mode.

Table 18.7.5 Sound Output Mode Selection					
SNDASEL.MOSEL[1:0] bits	Sound output mode				
0x3	Reserved				
0x2	Melody mode				
0x1	One-shot buzzer mode				
0x0	Normal buzzer mode				

Table 18.7.3 Sound Output Mode Selection

### **SNDA Control Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SNDACTL	15–9	-	0x00	-	R	-
	8	SSTP	0	H0	R/W	
	7–1	-	0x00	-	R	
	0	MODEN	0	H0	R/W	

#### Bits 15–9 Reserved

#### Bit 8 SSTP

This bit stops sound output.

1 (W): Stop sound output

- 0 (W): Ineffective
- 1 (R): In stop process
- 0 (R): Stop process completed/Idle

The SNDACTL.SSTP bit is used to stop buzzer output in normal buzzer mode. After 1 is written, this bit is cleared to 0 when the sound output has completed. Also in one-shot buzzer mode/melody mode, writing 1 to this bit can forcibly terminate the sound output.

#### Bits 7–1 Reserved

#### Bit 0 MODEN

This bit enables the SNDA operations.

- 1 (R/W): Enable SNDA operations (The operating clock is supplied.)
- 0 (R/W): Disable SNDA operations (The operating clock is stopped.)

### **SNDA Data Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SNDADAT	15	MDTI	0	H0	R/W	_
	14	MDRS	0	H0	R/W	
	13–8	SLEN[5:0]	0x00	H0	R/W	
	7–0	SFRQ[7:0]	0xff	H0	R/W	

This register functions as a sound buffer. Writing data to this register starts sound output. For detailed information on the setting data, refer to "Buzzer output waveform configuration (normal buzzer mode/one-shot buzzer mode)" and "Melody output waveform configuration."

#### Bit 15 MDTI

This bit specifies a tie or slur (continuous play with the previous note) in melody mode.

- 1 (R/W): Enable tie/slur
- 0 (R/W): Disable tie/slur

This bit is ignored in normal buzzer mode/one-shot buzzer mode.

#### Bit 14 MDRS

This bit selects the output type in melody mode from a note or a rest .

- 1 (R/W): Rest
- 0 (R/W): Note

When a rest is selected, the BZOUT pin goes low and the #BZOUT pin goes high during the output duration. This bit is ignored in normal buzzer mode/one-shot buzzer mode.

#### Bits 13-8 SLEN[5:0]

These bits select a duration (when melody mode is selected) or a buzzer signal duty ratio (when normal buzzer mode/one-shot buzzer mode is selected).

#### Bits 7–0 SFRQ[7:0]

These bits select a scale (when melody mode is selected) or a buzzer signal frequency (when normal buzzer mode/one-shot buzzer mode is selected).

- Notes: In normal buzzer mode/one-shot buzzer mode, only the low-order 6 bits (SNDADAT. SFRQ[5:0] bits) are effective within the SNDADAT.SFRQ[7:0] bits. Always set the SNDADAT. SFRQ[7:6] bits to 0x0.
  - The SNDADAT register allows 16-bit data writing only. Data writings in 8-bit size will be ignored.

#### **SNDA Interrupt Flag Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SNDAINTF	15–9	-	0x00	-	R	_
	8	SBSY	0	H0	R	
	7–2	-	0x00	-	R	
	1	EMIF	1	H0	R	Cleared by writing to the SNDADAT
						register.
	0	EDIF	0	H0	R/W	Cleared by writing 1 or writing to the
						SNDADAT register.

#### Bits 15–9 Reserved

#### Bit 8 SBSY

This bit indicates the sound output status. (See Figures 18.4.2.1, 18.4.3.1, and 18.4.4.1.)

- 1 (R): Outputting
- 0 (R): Idle

#### Bits 7–2 Reserved

#### Bit 1 EMIF

#### Bit 0 EDIF

These bits indicate the SNDA interrupt cause occurrence status.

- 1 (R): Cause of interrupt occurred
- 0 (R): No cause of interrupt occurred
- 1 (W): Clear flag
- 0 (W): Ineffective

The following shows the correspondence between the bit and interrupt: SNDAINTF.EMIF bit: Sound buffer empty interrupt SNDAINTF.EDIF bit: Sound output completion interrupt

#### **SNDA Interrupt Enable Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SNDAINTE	15–8	-	0x00	-	R	-
	7–2	-	0x00	-	R	
	1	EMIE	0	H0	R/W	
	0	EDIE	0	HO	R/W	

#### Bits 15–2 Reserved

1	EMIE
	1

Bit 0 EDIE

These bits enable SNDA interrupts.

1 (R/W): Enable interrupts

0 (R/W): Disable interrupts

The following shows the correspondence between the bit and interrupt: SNDAINTE.EMIE bit: Sound buffer empty interrupt SNDAINTE.EDIE bit: Sound output completion interrupt

### SNDA Sound Buffer Empty DMA Request Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
SNDAEMDMAEN	15–0	EMDMAEN[15:0]	0x0000	H0	R/W	-

#### Bits 15-0 EMDMAEN[15:0]

These bits enable the SNDA to issue a DMA transfer request to the corresponding DMA controller channel (Ch.0–Ch.15) when a sound buffer empty state has occurred.

1 (R/W): Enable DMA transfer request

0 (R/W): Disable DMA transfer request

Each bit corresponds to a DMA controller channel. The high-order bits for the unimplemented channels are ineffective.

# **19 IR Remote Controller (REMC3)**

# **19.1 Overview**

The REMC3 circuit generates infrared remote control output signals. This circuit can also be applicable to an EL lamp drive circuit by adding a simple external circuit.

The features of the REMC3 are listed below.

- Outputs an infrared remote control signal.
- Includes a carrier generator.
- Flexible carrier signal generation and data pulse width modulation.
- Automatic data setting function for continuous data transmission.
- Output signal inverting function supporting various formats.
- EL lamp drive waveform can be generated for an application example.

Figure 19.1.1 shows the REMC3 configuration.







Figure 19.1.1 REMC3 Configuration

# **19.2 Output Pins and External Connections**

### 19.2.1 List of Output Pins

Table 19.2.1.1 shows the REMC3 pin.

Table 19.2.1.1 REMC3 Pin

Pin name	I/O*	Initial status*	Function					
REMO	0	O (L)	IR remote controller transmit data output					
CLPLS	0	O (L)	O (L) IR remote controller clear pulse output					

* Indicates the status when the pin is configured for the REMC3.

#### 19 IR REMOTE CONTROLLER (REMC3)

If the port is shared with the REMC3 pin and other functions, the REMC3 output function must be assigned to the port before activating the REMC3. For more information, refer to the "I/O Ports" chapter.

### **19.2.2 External Connections**

Figure 19.2.2.1 shows a connection example between the REMC3 and an external infrared module.



Figure 19.2.2.1 Connection Example Between REMC3 and External Infrared Module

# 19.3 Clock Settings

### 19.3.1 REMC3 Operating Clock

When using the REMC3, the REMC3 operating clock CLK_REMC3 must be supplied to the REMC3 from the clock generator. The CLK_REMC3 supply should be controlled as in the procedure shown below.

- 1. Enable the clock source in the clock generator if it is stopped (refer to "Clock Generator" in the "Power Supply, Reset, and Clocks" chapter).
- 2. Set the following REMC3CLK register bits:
  - REMC3CLK.CLKSRC[1:0] bits (Clock source selection)
  - REMC3CLK.CLKDIV[3:0] bits (Clock division ratio selection = Clock frequency setting)

### 19.3.2 Clock Supply in SLEEP Mode

When using REMC3 during SLEEP mode, the REMC3 operating clock CLK_REMC3 must be configured so that it will keep supplying by writing 0 to the CLGOSC_xxxxSLPC bit for the CLK_REMC3 clock source. If the CLGOSC_xxxxSLPC bit for the CLK_REMC3 clock source is 1, the CLK_REMC3 clock source is deactivated during SLEEP mode and REMC3 stops with the register settings maintained at those before entering SLEEP mode. After the CPU returns to normal mode, CLK_REMC3 is supplied and the REMC3 operation resumes.

### 19.3.3 Clock Supply During Debugging

The CLK_REMC3 supply during debugging should be controlled using the REMC3CLK.DBRUN bit.

The CLK_REMC3 supply to the REMC3 is suspended when the CPU enters debug state if the REMC3CLK.DB-RUN bit = 0. After the CPU returns to normal operation, the CLK_REMC3 supply resumes. Although the REMC3 stops operating when the CLK_REMC3 supply is suspended, the output pin and registers retain the status before debug state was entered. If the REMC3CLK.DBRUN bit = 1, the CLK_REMC3 supply is not suspended and the REMC3 will keep operating in debug state.

# 19.4 Operations

### 19.4.1 Initialization

The REMC3 should be initialized with the procedure shown below.

1. Write 1 to the REMC3DBCTL.REMCRST bit.

(Reset REMC3)

- 2. Configure the REMC3CLK.CLKSRC[1:0] and REMC3CLK.CLKDIV[3:0] bits. (Configure operating clock)
- 3. Assign the REMC3 output function to the port. (Refer to the "I/O Ports" chapter.)

4.	Configure the following REMC3DBCTL register bits:	
	- Set the REMC3DBCTL.MODEN bit to 1.	(Enable count operation clock)
	- REMC3DBCTL.TRMD bit	(Select repeat mode/one-shot mode)
	- Set the REMC3DBCTL.BUFEN bit to 1.	(Enable compare buffer)
	- REMC3DBCTL.REMOINV bit	(Configure inverse logic output signal)
5.	Configure the following REMC3CARR register bits:	
	- REMC3CARR.CRPER[7:0] bit	(Set carrier signal cycle)
	- REMC3CARR.CRDTY[7:0] bit	(Set carrier signal duty)
6.	Configure the following REMC3CCTL register bits:	
	- REMC3CCTL.CARREN bit	(Enable/disable carrier modulation)
	- REMC3CCTL.OUTINVEN bit	(Configure output signal polarity)
7.	Set the following bits when using the interrupt:	
	- Write 1 to the interrupt flags in the REMC3INTF register.	(Clear interrupt flags)
	- Set the interrupt enable bits in the REMC3INTE register to 1.	(Enable interrupts)

# 19.4.2 Data Transmission Procedures

#### Starting data transmission

The following shows a procedure to start data transmission.

1.	Set the REMC3APLEN.APLEN[15:0] bits.	(Set data signal duty)
2.	Set the REMC3DBLEN.DBLEN[15:0] bits.	(Set data signal cycle)
3.	Set the following REMC3DBCTL register bits:	
	- Set the REMC3DBCTL.PRESET bit to 1.	(Reset internal counters)
	- Set the REMC3DBCTL.PRUN bit to 1.	(Start counting)

#### Continuous data transmission control

The following shows a procedure to send data continuously after starting data transmission (after Step 3 above).

- Set the duty and cycle for the subsequent data to the REMC3APLEN.APLEN[15:0] and REMC3DBLEN. DBLEN[15:0] bits, respectively, before a compare DB interrupt (REMC3INTF.DBIF bit = 1) occurs. (It is not necessary to rewrite settings when sending the same data with the current settings.)
- 2. Wait for a compare DB interrupt (REMC3INTF.DBIF bit = 1).
- 3. Repeat Steps 1 and 2 until the end of data.

#### Terminating data transmission

The following shows a procedure to terminate data transmission.

- 1. Wait for a compare DB interrupt (REMC3INTF.DBIF bit = 1).
- 2. Set the REMC3DBCTL.PRUN bit to 0. (Stop counting)
- 3. Set the REMC3DBCTL.MODEN bit to 0. (Disable count operation clock)

### 19.4.3 REMO Output Waveform

Carrier refers to infrared frequency in infrared remote control communication. Note, however, that carrier in this manual refers to sub-carrier used in infrared remote control communication, as REMC3 does not control infrared rays directly.

The REMC3 outputs the logical AND between the carrier signal output from the carrier generator and the data signal output from the data signal generator. Figure 19.4.3.1 shows an example of the output waveform.

#### 19 IR REMOTE CONTROLLER (REMC3)





#### Carrier signal

The carrier signal is generated by comparing the values of the 8-bit counter for carrier generation that runs with CLK_REMC3 and the setting values of the REMC3CARR.CRDTY[7:0] and REMC3CARR.CRPER[7:0] bits. Figure 19.4.3.2 shows an example of the carrier signal generated.

Example) REMC3CARR.CRDTY[7:0] bits = 2, REMC3CARR.CRPER[7:0] bits = 8



Figure 19.4.3.2 Example of Carrier Signal Generated

The carrier signal frequency and duty ratio can be calculated by the equations shown below.

Carrier frequency =  $\frac{f_{CLK_REMC3}}{CRPER + 1}$  Duty ratio =  $\frac{CRDTY + 1}{CRPER + 1}$  (Eq. 19.1)

Where

fCLK_REMC3: CLK_REMC3 frequency [Hz]CRPER:REMC3CARR.CRPER[7:0] bit-setting value (1–255)CRDTY:REMC3CARR.CRDTY[7:0] bit-setting value (0–254)* REMC3CARR.CRDTY[7:0] bits < REMC3CARR.CRPER[7:0] bits</td>

The 8-bit counter for carrier generation is reset by the REMC3DBCTL.PRESET bit and is started/stopped by the REMC3DBCTL.PRUN bit in conjunction with the 16-bit counter for data signal generation. When the counter value is matched with the REMC3CARR.CRDTY[7:0] bits, the carrier signal waveform is inverted. When the counter value is matched with the REMC3CARR.CRPER[7:0] bits, the carrier signal waveform is inverted and the counter is reset to 0x00.

#### Data signal

The data signal is generated by comparing the values of the 16-bit counter for data signal generation (REMC3DBCNT.DBCNT[15:0] bits) that runs with CLK_REMC3 and the setting values of the REMC3A-PLEN.APLEN[15:0] and REMC3DBLEN.DBLEN[15:0] bits. Figure 19.4.3.3 shows an example of the data signal generated.

Example) REMC3APLEN.APLEN[15:0] bits = 0x0bd0, REMC3DBLEN.DBLEN[15:0] bits = 0x11b8, REMC3DBCTL.TRMD bit = 0 (repeat mode), REMC3DBCTL.REMOINV bit = 0 (signal logic non-inverted)



Figure 19.4.3.3 Example of Data Signal Generated

The data length and duty ratio of the pulse-width-modulated data signal can be calculated with the equations shown below.

Data length = 
$$\frac{\text{DBLEN} + 1}{\text{fcLK}_{\text{REMC2}}}$$
 Duty ratio =  $\frac{\text{APLEN} + 1}{\text{DBLEN} + 1}$  (Eq. 19.2)

Where

fCLK_REMC3: CLK_REMC3 frequency [Hz] DBLEN: REMC3DBLEN.DBLEN[15:0] bit-setting value (1–65,535) APLEN: REMC3APLEN.APLEN[15:0] bit-setting value (0–65,534) * REMC3APLEN.APLEN[15:0] bits < REMC3DBLEN.DBLEN[15:0] bits

The 16-bit counter for data signal generation is reset by the REMC3DBCTL.PRESET bit and is started/ stopped by the REMC3DBCTL.PRUN bit. When the counter value is matched with the REMC3APLEN. APLEN[15:0] bits (compare AP), the data signal waveform is inverted. When the counter value is matched with the REMC3DBLEN.DBLEN[15:0] bits (compare DB), the data signal waveform is inverted and the counter is reset to 0x0000.

A different interrupt can be generated when the counter value is matched with the REMC3DBLEN. DBLEN[15:0] and REMC3APLEN.APLEN[15:0] bits, respectively.

#### Repeat mode and one-shot mode

When the 16-bit counter for data signal generation is set to repeat mode (REMC3DBCTL.TRMD bit = 0), the counter keeps operating until it is stopped using the REMC3DBCTL.PRUN bit. When the counter is set to one-shot mode (REMC3DBCTL.TRMD bit = 1), the counter stops automatically when the counter value is matched with the REMC3DBLEN.DBLEN[15:0] bit-setting value.

### 19.4.4 Continuous Data Transmission and Compare Buffers

Figure 19.4.4.1 shows an operation example of continuous data transmission with the compare buffer enabled.

#### 19 IR REMOTE CONTROLLER (REMC3)

Example) REMC3DBCTL.TRMD bit = 0 (repeat mode), REMC3DBCTL.BUFEN bit = 1 (compare buffer enabled), REMC3DBCTL.REMOINV bit = 0 (signal logic non-inverted)

REMC3DBCTL.PRUN											
16-bit counter for data signal generation (DBCNT[15:0])	0	<u>\1\2\3</u>	0x0bd0	0x0bd1 0x11b8	3 0x00 (0∕1∕	bd (	0x00be 0x01	7a 0x00bd (0)(1)())	0x00be	0x02f4 	↓ 0\(1)
REMC3APLEN.APLEN[15:0]	4	0x0bd0			0x0	0bd					
REMC3DBLEN.DBLEN[15:0	J	0x11b8		0x017a				0x02f4		0x017	a
REMC3APLEN buffer	$\downarrow$		0x0bd0	1 		0x0	0bd		0x00bd		
REMC3DBLEN buffer	$\downarrow$		0x11b8			0x0	17a		0x02f4		
REMC3INTF.APIF Compare AP interrupt			,	← Cleared			← Clea	ared	-C	leared	
REMC3INTF.DBIF Compare DB interrupt				, , ,	t t	Clea	ared	← Clea	ured		
REMC3INTF.DBCNTRUN	_										
REMC3INTF.APLENBSY	_										
REMC3INTF.DBLENBSY	$\downarrow$			1 1 1 1 1						— į	
Data signal (Modulated data)		<u></u>	г	<u>"</u> 8Т	, т		<u>, т</u>	% т	% 		
						"(	)"		"1"		

Figure 19.4.4.1 Continuous Data Transmission Example

When the compare buffer is disabled (REMC3DBCTL.BUFEN bit = 0), the 16-bit counter value is directly compared with the REMC3APLEN.APLEN[15:0] and REMC3DBLEN.DBLEN[15:0] bit values. The comparison value is altered immediately after the REMC3APLEN.APLEN[15:0] or REMC3DBLEN.DBLEN[15:0] bits are rewritten.

When the compare buffer is enabled (REMC3DBCTL.BUFEN bit = 1), the REMC3APLEN.APLEN[15:0] and REMC3DBLEN.DBLEN[15:0] bit values are loaded into the compare buffers provided respectively (REMC3A-PLEN buffer and REMC3DBLEN buffer) and the 16-bit counter value is compared with the compare buffers.

The comparison values are loaded into the compare buffers when the 16-bit counter is matched with the REMC3D-BLEN buffer (when the count for the data length has completed). Therefore, the next transmit data can be set during the current data transmission. When the compare buffers are enabled, the buffer status flags (REMC3INTF. APLENBSY bit and REMC3INTF.DBLENBSY bit) become effective. The flag is set to 1 when the setting value is written to the register and cleared to 0 when the written value is transferred to the buffer.

# 19.5 Interrupts

The REMC3 has a function to generate the interrupts shown in Table 19.5.1.

Interrupt	Interrupt flag	Set condition	Clear condition
Compare AP REMC3INTF.APIF When the		When the REMC3APLEN register (or	Writing 1 to the interrupt flag or
		REMC3APLEN buffer) value and the 16-bit	the REMC3DBCTL.REMCRST bit
		counter for data signal generation are matched	
Compare DB	REMC3INTF.DBIF	When the REMC3DBLEN register (or	Writing 1 to the interrupt flag or
		REMC3DBLEN buffer) value and the 16-bit	the REMC3DBCTL.REMCRST bit
		counter for data signal generation are matched	

Table 19.5.1 REMC3 Interrupt Function

The REMC3 provides interrupt enable bits corresponding to each interrupt flag. An interrupt request is sent to the CPU only when the interrupt flag, of which interrupt has been enabled by the interrupt enable bit, is set. For more information on interrupt control, refer to the "Interrupt" chapter.

# 19.6 Application Example: Driving EL Lamp

The REMC3 can be used to simply drive an EL lamp as an application example. Figures 19.6.1 and 19.6.2 show an example of an EL lamp drive circuit and an example of the drive waveform generated, respectively. For details of settings and an example of components, refer to the Application Note provided separately.



The REMO and CLPLS signals are output from the respective pins while the REMC3DBCTL.PRUN bit = 1. The difference between the setting values of the REMC3DBLEN.DBLEN[15:0] bits and REMC3APLEN.APLEN[15:0] bits becomes the CLPLS pulse width (high period).

# **19.7 Control Registers**

### **REMC3 Clock Control Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
REMC3CLK	15–9	-	0x00	-	R	-
	8	DBRUN	0	H0	R/W	
	7–4	CLKDIV[3:0]	0x0	H0	R/W	
	3–2	-	0x0	-	R	
	1–0	CLKSRC[1:0]	0x0	H0	R/W	

#### Bits 15–9 Reserved

### Bit 8 DBRUN

This bit sets whether the REMC3 operating clock is supplied during debugging or not. 1 (R/W): Clock supplied during debugging

- (K/W): Clock supplied during debugging
- 0 (R/W): No clock supplied during debugging

#### Bits 7–4 CLKDIV[3:0]

These bits select the division ratio of the REMC3 operating clock.

#### Bits 3–2 Reserved

#### Bits 1-0 CLKSRC[1:0]

These bits select the clock source of the REMC3.

DEMC2CLK	REMC3CLK.CLKSRC[1:0] bits									
	0x0	0x1	0x2	0x3						
CLKDIV[3:0] bits	IOSC	OSC1	OSC3	EXOSC						
Oxf	1/32,768	1/1	1/32,768	1/1						
0xe	1/16,384		1/16,384							
0xd	1/8,192		1/8,192							
0xc	1/4,096		1/4,096							
0xb	1/2,048		1/2,048							
0xa	1/1,024		1/1,024							
0x9	1/512		1/512							
0x8	1/256	1/256	1/256							
0x7	1/128	1/128	1/128							
0x6	1/64	1/64	1/64							
0x5	1/32	1/32	1/32							
0x4	1/16	1/16	1/16							
0x3	1/8	1/8	1/8							
0x2	1/4	1/4	1/4							
0x1	1/2	1/2	1/2							
0x0	1/1	1/1	1/1							

Table 19.7.1 Clock Source and Division Ratio Settings

(Note) The oscillation circuits/external input that are not supported in this IC cannot be selected as the clock source.

**Note:** The REMC3CLK register settings can be altered only when the REMC3DBCTL.MODEN bit = 0.

### **REMC3 Data Bit Counter Control Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
REMC3DBCTL	15–10	-	0x00	-	R	_
	9	PRESET	0	H0/S0	R/W	Cleared by writing 1 to the
	8	PRUN	0	H0/S0	R/W	REMC3DBCTL.REMCRST bit.
	7–5	-	0x0	-	R	_
	4	REMOINV	0	H0	R/W	
	3	BUFEN	0	H0	R/W	
	2	TRMD	0	H0	R/W	
	1	REMCRST	0	HO	W	
	0	MODEN	0	H0	R/W	

#### Bits 15–10 Reserved

#### Bit 9 PRESET

This bit resets the internal counters (16-bit counter for data signal generation and 8-bit counter for carrier generation).

- 1 (W): Reset
- 0 (W): Ineffective
- 1 (R): Resetting in progress
- 0 (R): Resetting finished or normal operation

Before the counter can be reset using this bit, the REMC3DBCTL.MODEN bit must be set to 1. This bit is cleared to 0 after the counter reset operation has finished or when 1 is written to the REMC3DBCTL.REMCRST bit.

#### Bit 8 PRUN

This bit starts/stops counting by the internal counters (16-bit counter for data signal generation and 8-bit counter for carrier generation).

- 1 (W): Start counting
- 0 (W): Stop counting
- 1 (R): Counting
- 0 (R): Idle

Before the counter can start counting by this bit, the REMC3DBCTL.MODEN bit must be set to 1. While the counter is running, writing 0 to the REMC3DBCTL.PRUN bit stops count operations. When the counter stops by occurrence of a compare DB in one-shot mode, this bit is automatically cleared to 0.

#### Bits 7–5 Reserved

#### Bit 4 REMOINV

This bit inverts the REMO output signal. 1 (R/W): Inverted 0 (R/W): Non-inverted

For more information, see Figure 19.4.3.1.

#### Bit 3 BUFEN

This bit enables or disables the compare buffers. 1 (R/W): Enable

0 (R/W): Disable

For more information, refer to "Continuous Data Transmission and Compare Buffers."

**Note**: The REMC3DBCTL.BUFEN bit must be set to 0 when setting the data signal duty and cycle for the first time.

#### Bit 2 TRMD

This bit selects the operation mode of the 16-bit counter for data signal generation.

- 1 (R/W): One-shot mode
- 0 (R/W): Repeat mode

For more information, refer to "REMO Output Waveform, Data signal."

#### Bit 1 REMCRST

This bit issues software reset to the REMC3.

- 1 (W): Issue software reset
- 0 (W): Ineffective
- 1 (R): Software reset is executing.
- 0 (R): Software reset has finished. (During normal operation)

Setting this bit resets the REMC3 internal counters and interrupt flags. This bit is automatically cleared after the reset processing has finished.

Note: After the data signal is output in one-shot mode, set the REMC3DBCTL.REMCRST bit to 1.

#### Bit 0 MODEN

This bit enables the REMC3 operations.

1 (R/W): Enable REMC3 operations (The operating clock is supplied.)

0 (R/W): Disable REMC3 operations (The operating clock is stopped.)

**Note:** If the REMC3DBCTL.MODEN bit is altered from 1 to 0 while sending data, the data being sent cannot be guaranteed. When setting the REMC3DBCTL.MODEN bit to 1 again after that, be sure to write 1 to the REMC3DBCTL.REMCRST bit as well.

### **REMC3** Data Bit Counter Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
REMC3DBCNT	15–0	DBCNT[15:0]	0x0000	H0/S0	R	Cleared by writing 1 to the REMC3DBCTL.REMCRST bit.

#### Bits 15-0 DBCNT[15:0]

The current value of the 16-bit counter for data signal generation can be read out through these bits.
## **REMC3 Data Bit Active Pulse Length Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
REMC3APLEN	15–0	APLEN[15:0]	0x0000	H0	R/W	Writing enabled when REMC3DBCTL. MODEN bit = 1.

## Bits 15-0 APLEN[15:0]

These bits set the active pulse length of the data signal (high period when the REMC3DBCTL.RE-MOINV bit = 0 or low period when the REMC3DBCTL.REMOINV bit = 1).

The REMO pin output is set to the active level from the 16-bit counter for data signal generation = 0x0000 and it is inverted to the inactive level when the counter exceeds the REMC3APLEN. APLEN[15:0] bit-setting value. The data signal duty ratio is determined by this setting and the REMC3DBLEN.DBLEN[15:0] bit-setting. (See Figure 19.4.3.3.)

Before this register can be rewritten, the REMC3DBCTL.MODEN bit must be set to 1.

## **REMC3 Data Bit Length Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
REMC3DBLEN	15–0	DBLEN[15:0]	0x0000	H0	R/W	Writing enabled when REMC3DBCTL. MODEN bit = 1.

## Bits 15-0 DBLEN[15:0]

These bits set the data length of the data signal (length of one cycle). A data signal cycle begins with the 16-bit counter for data signal generation = 0x0000 and ends when the counter exceeds the REMC3DBLEN.DBLEN[15:0] bit-setting value. (See Figure 19.4.3.3.)

Before this register can be rewritten, the REMC3DBCTL.MODEN bit must be set to 1.

## **REMC3 Status and Interrupt Flag Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
REMC3INTF	15–11	_	0x00	-	R	-
	10	DBCNTRUN	0	H0/S0	R	Cleared by writing 1 to the
						REMC3DBCTL.REMCRST bit.
	9	DBLENBSY	0	H0	R	Effective when the REMC3DBCTL.
	8	APLENBSY	0	HO	R	BUFEN bit = 1.
	7–2	-	0x00	-	R	-
	1	DBIF	0	H0/S0	R/W	Cleared by writing 1 to this bit or the
						REMC3DBCTL REMCBST bit
	0	APIF	0	H0/S0	R/W	

## Bits 15–11 Reserved

## Bit 10 DBCNTRUN

This bit indicates whether the 16-bit counter for data signal generation is running or not. (See Figure 19.4.4.1.)

1 (R): Running (Counting)

0 (R): Idle

#### Bit 9 DBLENBSY

This bit indicates whether the value written to the REMC3DBLEN.DBLEN[15:0] bits is transferred to the REMC3DBLEN buffer or not. (See Figure 19.4.4.1.)

- 1 (R): Transfer to the REMC3DBLEN buffer has not completed.
- 0 (R): Transfer to the REMC3DBLEN buffer has completed.

While this bit is set to 1, writing to the REMC3DBLEN.DBLEN[15:0] bits is ineffective.

#### Bit 8 APLENBSY

This bit indicates whether the value written to the REMC3APLEN.APLEN[15:0] bits is transferred to the REMC3APLEN buffer or not. (See Figure 19.4.4.1.)

- 1 (R): Transfer to the REMC3APLEN buffer has not completed.
- 0 (R): Transfer to the REMC3APLEN buffer has completed.

While this bit is set to 1, writing to the REMC3APLEN.APLEN[15:0] bits is ineffective.

Seiko Epson Corporation

## Bits 7–2 Reserved

## Bit 1 DBIF

## Bit 0 APIF

These bits indicate the REMC3 interrupt cause occurrence status.

- 1 (R): Cause of interrupt occurred
- 0 (R): No cause of interrupt occurred
- 1 (W): Clear flag
- 0 (W): Ineffective

The following shows the correspondence between the bit and interrupt:

REMC3INTF.DBIF bit: Compare DB interrupt

REMC3INTF.APIF bit: Compare AP interrupt

These interrupt flags are also cleared to 0 when 1 is written to the REMC3DBCTL.REMCRST bit.

## **REMC3 Interrupt Enable Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
REMC3INTE	15–8	_	0x00	-	R	_
	7–2	-	0x00	-	R	
	1	DBIE	0	H0	R/W	
	0	APIE	0	HO	R/W	

## Bits 15–2 Reserved

## Bit 1 DBIE

## Bit 0 APIE

These bits enable REMC3 interrupts.

1 (R/W): Enable interrupts

0 (R/W): Disable interrupts

The following shows the correspondence between the bit and interrupt: REMC3INTE.DBIE bit: Compare DB interrupt REMC3INTE.APIE bit: Compare AP interrupt

## **REMC3 Carrier Waveform Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
REMC3CARR	15–8	CRDTY[7:0]	0x00	H0	R/W	-
	7–0	CRPER[7:0]	0x00	H0	R/W	

## Bits 15-8 CRDTY[7:0]

These bits set the high level period of the carrier signal.

The carrier signal is set to high level from the 8-bit counter for carrier generation = 0x00 and it is inverted to low level when the counter exceeds the REMC3CARR.CRDTY[7:0] bit-setting value. The carrier signal duty ratio is determined by this setting and the REMC3CARR.CRPER[7:0] bit-setting. (See Figure 19.4.3.2.)

## Bits 7–0 CRPER[7:0]

These bits set the carrier signal cycle.

A carrier signal cycle begins with the 8-bit counter for carrier generation = 0x00 and ends when the counter exceeds the REMC3CARR.CRPER[7:0] bit-setting value. (See Figure 19.4.3.2.)

## **REMC3** Carrier Modulation Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
REMC3CCTL	15–9	_	0x00	-	R	-
	8	OUTINVEN	0	H0	R/W	
	7–1	-	0x00	-	R	
	0	CARREN	0	H0	R/W	

#### Bits 15–9 Reserved

## Bit 8 OUTINVEN

This bit inverts the REMO output polarity. 1 (R/W): Inverted 0 (R/W): Non-inverted

For more information, see Figure 19.4.3.1.

## Bits 7–1 Reserved

## Bit 0 CARREN

This bit enables carrier modulation.

1 (R/W): Enable carrier modulation

0 (R/W): Disable carrier modulation (output data signal only)

Note: When carrier modulation is disabled, the REMC3DBCTL.REMOINV bit should be set to 0.

# 20 12-bit A/D Converter (ADC12A)

# 20.1 Overview

The ADC12A is a successive approximation type 12-bit A/D converter. The features of the ADC12A are listed below.

- Conversion method: Successive approximation type
- Resolution:
- Analog input voltage range: Reference voltage VREFA to Vss

12 bits

- Supports two conversion modes:
- 1. One-time conversion mode
- 2. Continuous conversion mode
- · Supports three conversion triggers: 1. Software trigger
  - 2. 16-bit timer underflow trigger
  - 3. External trigger
- Can convert multiple analog input signals sequentially.
- Can generate conversion completion and overwrite error interrupts.
- Can issue a DMA transfer request when a conversion has completed.

Figure 20.1.1 shows the ADC12A configuration.

Table 20 1 1	ADC12A	Configuration	of S1C31D01
Table 20.1.1	ADUTZA	Connyuration	0131031001

Item	S1C31D01
Number of channels	1 channel (Ch.0)
Number of analog signal inputs per channel	Ch.0: 8 inputs (ADIN00–ADIN07 *1)
16-bit timer used as conversion clock and trigger sources	Ch.0 ← 16-bit timer Ch.7
VREFA pin (reference voltage input)	Can be input externally or generated internally *2

*1 ADIN07 is connected to the temperature sensor output.

*2 The reference voltage generator output can be input as the reference voltage.

For more information, refer to the "Temperature Sensor/Reference Voltage Generator" chapter.



#### Figure 20.1.1 ADC12A Configuration

**Note:** In this chapter, *n*, *m*, and *k* refer to an ADC12A channel number, an analog input pin number, and a 16-bit timer channel number, respectively.

# 20.2 Input Pins and External Connections

## 20.2.1 List of Input Pins

Table 20.2.1.1 lists the ADC12A pins.

Pin name	I/O*	Initial status*	Function		
ADIN <i>nm</i>	A	Hi-Z	Analog signal input		
#ADTRGn	I	I	External trigger input		
VREFAn	А	Hi-Z	Reference voltage input		

Table 20.2.1.1 List of ADC12A Pins

* Indicates the status when the pin is configured for the ADC12A.

If the port is shared with the ADC12A pin and other functions, the ADC12A input function must be assigned to the port before activating the ADC12A. For more information, refer to the "I/O Ports" chapter.

## 20.2.2 External Connections

Figure 20.2.2.1 shows a connection diagram between the ADC12A and external devices.



Figure 20.2.2.1 Connections between ADC12A and External Devices

# 20.3 Clock Settings

## 20.3.1 ADC12A Operating Clock

The 16-bit timer Ch.k operating clock CLK_T16_k is also used as the ADC12A operating clock. For more information on the CLK_T16_k settings and clock supply in SLEEP and DEBUG modes, refer to "Clock Settings" in the "16-bit Timers" chapter.

**Note**: When the CLK_T16_*k* supply stops during A/D conversion (e.g., when the CPU enters SLEEP or DEBUG mode), correct conversion results cannot be obtained even if the clock supply is resumed after that. In this case, perform A/D conversion again.

## 20.3.2 Sampling Time

The ADC12A includes a sample and hold circuit. The sampling time must be set so that it will satisfy the time required for acquiring input voltage (tACQ: acquisition time). Figure 20.3.2.1 shows an equivalent circuit of the analog input portion.



Figure 20.3.2.1 Equivalent Circuit of Analog Input Portion

For the RADIN and CADIN values in the equivalent circuit, refer to "12-bit A/D Converter Characteristics" in the "Electrical Characteristics" chapter. Based on these values, configure the ADC12A operating clock CLK_T16_k and the ADC12A_nTRG.SMPCLK[2:0] bits that set the sampling time so that these settings will satisfy the equations shown below.

$tacq = 8 \times (Rs + Radin) \times Cadin$	(Eq. 20.1)
$\frac{1}{\text{fclk}_{ADC}} \times \text{SMPCLK} > \text{tacq}$	(Eq. 20.2)

Where

fclk_adc: CLK_T16_k frequency [Hz]

SMPCLK: Sampling time = ADC12A_nTRG.SMPCLK[2:0] bit-setting (4 to 11 CLK_T16_k cycles)

(Set sampling time)

(Set conversion mode)

(Set data storing mode)

(Select conversion start trigger source)

(Set analog input pin to be A/D converted first)

(Set analog input pin to be A/D converted last)

(Set operating voltage range according to VDD)

The following shows the relationship between the sampling time and the maximum sampling rate.

Maximum sampling rate [sps] =  $\frac{\text{fcLK}_{ADC}}{\text{SMPCLK} + 13}$  (Eq. 20.3)

# 20.4 Operations

## 20.4.1 Initialization

The ADC12A should be initialized with the procedure shown below.

- 1. Assign the ADC12A input function to the ports. (Refer to the "I/O Ports" chapter.)
- 2. Configure the 16-bit timer Ch.k operating clock so that it will satisfy the sampling time.
- 3. Set the ADC12A_*n*CTL.MODEN bit to 1. (Enable ADC12A operations)
- 4. Configure the following ADC12A_nTRG register bits:
  - ADC12A_nTRG.SMPCLK[2:0] bits
  - ADC12A_nTRG.CNVTRG[1:0] bits
  - ADC12A_nTRG.CNVMD bit
  - ADC12A_nTRG.STMD bit
  - ADC12A_nTRG.STAAIN[2:0] bits
  - ADC12A_nTRG.ENDAIN[2:0] bits
- 5. Set the ADC12A_nCFG.VRANGE[1:0] bits.
- 6. Set the following bits when using the interrupt:
  - Write 1 to the interrupt flags in the ADC12A_nINTF register. (Clear interrupt flags)
  - Set the interrupt enable bits in the ADC12A_*n*INTE register to 1. (Enable interrupts)
- 7. Configure the DMA controller and set the following ADC12A control bit when using DMA transfer:
  - Write 1 to the DMA transfer request enable bit in the ADC12A_nDMAEN register. (Enab

#### (Enable DMA transfer requests)

## 20.4.2 Conversion Start Trigger Source

The trigger source, which starts A/D conversion, can be selected from the three types shown below using the AD- $C12A_nTRG.CNVTRG[1:0]$  bits.

## External trigger (#ADTRGn pin)

Writing 1 to the ADC12A_nCTL.ADST bit enables the ADC12A to accept trigger inputs. After that, the falling edge of the signal input to the #ADTRGn pin starts A/D conversion.

## 16-bit timer Ch.k underflow trigger

Writing 1 to the ADC12A_nCTL.ADST bit enables the ADC12A to accept trigger inputs. After that, A/D conversion is started when an underflow occurs in the 16-bit timer Ch.k.

## Software trigger

Writing 1 to the ADC12A_nCTL.ADST bit starts A/D conversion.

#### 20 12-BIT A/D CONVERTER (ADC12A)

Trigger inputs can be accepted while the ADC12A_nCTL.BSYSTAT bit is set to 0 and are ignored while set to 1. A/D conversion is actually started in sync with CLK_T16_k after a trigger is accepted.

Writing 0 to the ADC12A_nCTL.ADST bit stops A/D conversion after the one currently being executed has completed.

## 20.4.3 Conversion Mode and Analog Input Pin Settings

The ADC12A can be put into two conversion modes shown below using the ADC12A_*n*TRG.CNVMD bit. Each mode allows setting of analog input pin range to be A/D converted. The analog input pin range can be set using the ADC12A_*n*TRG.STAAIN[2:0] bits for specifying the first analog input pin and the ADC12A_*n*TRG.ENDAIN[2:0] bits for specifying the last analog input pin. The analog input signals within the specified range are A/D converted successively in ascending order of the pin numbers.

## One-time conversion mode

Once the ADC12A executes A/D conversion for all the analog input signals within the specified range, it is automatically stopped.

## Continuous conversion mode

The ADC12A repeatedly executes A/D conversion within the specified range until 0 is written to the ADC12A_nCTL.ADST bit.

## 20.4.4 A/D Conversion Operations and Control Procedures

The following shows A/D conversion control procedures and the ADC12A operations.

## Control procedure in one-time conversion mode

- 1. Write 1 to the ADC12A_nCTL.ADST bit.
- 2. Wait for an ADC12A interrupt.
  - i. If the ADC12A_nINTF.ADmCIF bit = 1 (analog input signal *m* A/D conversion completion interrupt), clear the ADC12A_nINTF.ADmCIF bit and then go to Step 3.
  - ii. If the ADC12A_nINTF.OVIF bit = 1 (A/D conversion result overwrite error interrupt), clear the ADC12A_ nINTF.OVIF bit and terminate as an error or retry A/D conversion.
- 3. Read the A/D conversion result of the analog input *m* (ADC12A_nADD.ADD[15:0] bits).
  - * The 12-bit conversion results are located at the low-order 12 bits or high-order 12-bits within the ADC12A_ nADD.ADD[15:0] bits according to the ADC12A_nTRG.STMD bit setting.
- 4. Repeat Steps 2 and 3 until A/D conversion for all the analog input pins within the specified range is completed.
- 5. To forcefully terminate the A/D conversion being executed, write 0 to the ADC12A_nCTL.ADST bit. The ADC12A stops operating after the A/D conversion currently being executed has completed.

The ADC12A_nCTL.ADST bit must be cleared by writing 0 even if A/D conversion is completed and automatically stopped.

## Control procedure in continuous conversion mode

- 1. Write 1 to the ADC12A_*n*CTL.ADST bit.
- 2. Wait for an ADC12A interrupt.
  - i. If the ADC12A_nINTF.ADmCIF bit = 1 (analog input signal *m* A/D conversion completion interrupt), clear the ADC12A_nINTF.ADmCIF bit and then go to Step 3.
  - ii. If the ADC12A_nINTF.OVIF bit = 1 (A/D conversion result overwrite error interrupt), clear the ADC12A_ nINTF.OVIF bit and terminate as an error or retry A/D conversion.
- 3. Read the A/D conversion result of the analog input *m* (ADC12A_nADD.ADD[15:0] bits).
- 4. Repeat Steps 2 and 3 until terminating A/D conversion.
- Write 0 to the ADC12A_nCTL.ADST bit. The ADC12A stops operating after the A/D conversion currently being executed has completed.

<ol> <li>One-time conversion n A/D conversion for AD External trigger (ADC1 ADC12A_nCTL.ADST</li> </ol>	mode (ADC12A_nTRG.C NNn0 (ADC12A_nTRG.S 2A_nTRG.CNVTRG[1:0]	CNVMD bit = 0) TAAIN[2:0] bits = 0x0, ] bits = 0x3)	ADC12A_n	[rg.endain[	2:0] bits = 0x0)
#ADTRG <i>n</i> pin (trigger)		•			↓
ADC12A_nCTL.BSYSTAT	A/D converting	A/D c	onverting		A/D converting
ADC12A_nCTL.ADSTAT[2:0]		0x1 (ADIN <i>n</i> 1) 0x0 (	ADIN <i>n</i> 0)	0x1 (ADINn1)	
A/D conversion operations	ADINn0 ADINn0	ADIN <i>n</i> C	) ADIN <i>n</i> 0		ADIN <i>n</i> 0 ADIN <i>n</i> 0
ADC12A_nADD.ADD[15:0]	X	ADINn0 conversion result	t (first)	ADINn0 convers	ion result (second)
ADC12A_nINTF.AD0CIF		← Cleared			
ADC12A_nINTF.OVIF					
(2) One-time conversion n A/D conversion for AD External trigger (ADC1 ADC12A_nCTL.ADST	mode (ADC12A_nTRG.C NNn2-4 (ADC12A_nTRG 2A_nTRG.CNVTRG[1:0] 	CNVMD bit = 0) 3.STAAIN[2:0] bits = 0x ] bits = 0x3)	<2, ADC12A_	_ntrg.endai	N[2:0] bits = 0x4)
#ADTRG <i>n</i> pin (trigger)					
ADC12A_nCTL.BSYSTAT		A/D converting	igger		
ADC12A_nCTL.ADSTAT[2:0]	0x2 (ADIN <i>n</i> 2)	0x3 (ADIN <i>n</i> 3) 0x4 (	ADIN <i>n</i> 4)	0x5 (ADIN <i>n</i> 5)	
A/D conversion operations	ADINn2 ADINn2	ADIN <i>n</i> 3 ADIN <i>n</i> 3 ADIN <i>n</i> 4	g Conversion		
ADC12A_nADD.ADD[15:0]	XA	DINn2 conversion result XADINn3 co	nversion result	ADINn4 conversion	result
ADC12A_nINTF.AD2CIF		Cleared	Ovorwrite		
ADC12A_nINTF.AD3CIF					
ADC12A_nINTF.AD4CIF					
ADC12A_nINTF.OVIF					
(3) Continuous conversio A/D conversion for AD Software trigger (ADC	n mode (ADC12A_nTRG Nn3-4 (ADC12A_nTRG 12A_nTRG.CNVTRG[1:0	G.CNVMD bit = 1) G.STAAIN[2:0] bits = 0: D] bits = 0x0)	x3, ADC12A	_ <i>n</i> TRG.ENDA	IN[2:0] bits = 0x4)
		A/D converting		*	
	Sampling Conversion S	Sampling Conversion Sampling	g Conversion Sa	ampling Conversion	
				cond ADIN <i>n</i> 3 result	
		Cleared		Cleare	d
			Cleared		Cleared
	Figure 20.4.4	.1 A/D Conversion Op	perations		

## A/D converted data transfer using DMA

By setting the ADC12A_nDMAEN.ADCDMAENx bit to 1 (DMA transfer request enabled), a DMA transfer request is sent to the DMA controller and the ADC12A_nADD register value is transferred to the specified memory via DMA Ch $_x$  when the ADC12A_nINTF.ADmCIF bit is set to 1 (when A/D conversion for the analog input signal m has completed).

This automates reading and saving of A/D converted data.

The transfer source/destination and control data must be set for the DMA controller and the relevant DMA channel must be enabled to start a DMA transfer in advance. For more information on DMA, refer to the "DMA Controller" chapter.

	Item	Setting example
End pointer	Transfer source	ADC12A_nADD register address
	Transfer destination	Memory address to which the last A/D converted data is stored
Control data	dst_inc	0x1 (+2)
	dst_size	0x1 (haflword)
	src_inc	0x3 (no increment)
	src_size	0x1 (halfword)
	R_power	0x0 (arbitrated for every transfer)
	n_minus_1	Number of transfer data
	cycle_ctrl	0x1 (basic transfer)

 Table 20.4.4.1
 DMA Data Structure Configuration Example (Capture Data Transfer)

## 20.5 Interrupts

The ADC12A has a function to generate the interrupts shown in Table 20.5.1.

Interrupt	Interrupt flag	Set condition	Clear condition
Analog input signal <i>m</i> A/D conversion completion	ADC12A_nINTF.ADmCIF	When an analog input signal <i>m</i> A/D conver- sion result is loaded to the ADC12A_ <i>n</i> ADD register	Writing 1
A/D conversion result over- write error	ADC12A_nINTF.OVIF	When a new A/D conversion result is loaded to the ADC12A_nADD register while the ADC12A_nINTF.ADmCIF bit = 1	Writing 1

Table 20.5.1 ADC12A Interrupt Function

Note that the A/D conversion continues even if an A/D conversion result overwrite error has occurred. A/D conversion result overwrite errors are decided regardless of whether the ADC12A_nADD register has been read or not.

The ADC12A provides interrupt enable bits corresponding to each interrupt flag. An interrupt request is sent to the CPU only when the interrupt flag, of which interrupt has been enabled by the interrupt enable bit, is set. For more information on interrupt control, refer to the "Interrupt" chapter.

# 20.6 DMA Transfer Requests

The ADC12A has a function to generate DMA transfer requests from the causes shown in Table 20.6.1.

Cause to request DMA transfer	DMA transfer request flag	Set condition	Clear condition
Analog input signal <i>m</i> A/D	A/D conversion completion flag	When an analog input signal m A/	When the DMA
conversion completion	(ADC12A_nINTF.ADmCIF)	D conversion result is loaded to the	transfer request
		ADC12A_nADD register	is accepted

Table 20.6.1 DMA Transfer Request Causes of ADC12A

The ADC12A provides DMA transfer request enable bits corresponding to each DMA transfer request flag shown above for the number of DMA channels. A DMA transfer request is sent to the pertinent channel of the DMA controller only when the DMA transfer request flag, of which DMA transfer has been enabled by the DMA transfer request enable bit, is set. The DMA transfer request flag also serves as an interrupt flag, therefore, both the DMA transfer request and the interrupt cannot be enabled at the same time. After a DMA transfer has completed, disable the DMA transfer to prevent unintended DMA transfer requests from being issued. For more information on the DMA control, refer to the "DMA Controller" chapter.

# 20.7 Control Registers

## ADC12A Ch.n Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
ADC12A_nCTL	15	_	0	-	R	-
	14–12	ADSTAT[2:0]	0x0	HO	R	
	11	-	0	-	R	
	10	BSYSTAT	0	H0	R	
	9–8	-	0x0	-	R	
	7–2	-	0x00	-	R	
	1	ADST	0	H0	R/W	
	0	MODEN	0	H0	R/W	

## Bit 15 Reserved

## Bits 14–12 ADSTAT[2:0]

These bits indicate the analog input pin number m being A/D converted.

Table 20.7.1	Relationship	Between	Control	Bit Value	and A	Analog	Input	Pin

ADC12A_nCTL.ADSTAT[2:0] bits ADC12A_nTRG.STAAIN[2:0] bits ADC12A_nTRG.ENDAIN[2:0] bits	Analog input pin				
0x7	ADINn7				
0x6	ADINn6				
0x5	ADINn5				
0x4	ADINn4				
0x3	ADINn3				
0x2	ADINn2				
0x1	ADINn1				
0x0	ADINn0				

These bits indicate the last converted analog input pin number after A/D conversion is forcefully terminated by writing 0 to the ADC12A_nCTL.ADST bit or automatically terminated in one-time conversion mode (ADC12A_nTRG.CNVMD = 0). If A/D conversion is stopped after the maximum analog input pin number (different in each model) has been completed, these bits indicate ADINn0.

## Bit 11 Reserved

## Bit 10 BSYSTAT

This bit indicates whether the ADC12A is executing A/D conversion or not. 1 (R/W): A/D converting 0 (R/W): Idle

## Bits 9–2 Reserved

## Bit 1 ADST

This bit starts A/D conversion or enables to accept triggers.

1 (R/W): Start sampling and conversion (software trigger)/

Enable trigger acceptance (external trigger, 16-bit timer underflow trigger)

0 (R/W): Terminate conversion

This bit does not revert to 0 automatically after A/D conversion has completed. Write 0 to this bit once and write 1 again to start another A/D conversion. After 0 is written to this bit to forcefully terminate conversion, the ADC12A stops after the A/D conversion being executed is completed. Therefore, this bit cannot be used to determine whether the ADC12A is executing A/D conversion or not.

**Note**: The data written to the ADC12A_*n*CTL.ADST bit must be retained for one or more CLK_T16_ *k* clock cycles when 1 is written or two or more CLK_T16_*k* clock cycles when 0 is written.

#### Bit 0 MODEN

This bit enables the ADC12A operations.

1 (R/W): Enable ADC12A operations (The operating clock is supplied.)

0 (R/W): Disable ADC12A operations (The operating clock is stopped.)

**Note**: After 0 is written to the ADC12A_nCTL.MODEN bit, the ADC12A executes a terminate processing. Before the clock source is deactivated, read the ADC12A_nCTL.MODEN bit to make sure that it is set to 0.

## ADC12A Ch.n Trigger/Analog Input Select Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
ADC12A_nTRG	15–14	_	0x0	-	R	-
	13–11	ENDAIN[2:0]	0x0	H0	R/W	
	10-8	STAAIN[2:0]	0x0	H0	R/W	
	7	STMD	0	H0	R/W	
	6	CNVMD	0	H0	R/W	
	5–4	CNVTRG[1:0]	0x0	H0	R/W	
	3	-	0	-	R	
	2–0	SMPCLK[2:0]	0x7	H0	R/W	

**Note**: Make sure that the ADC12A_*n*CTL.BSYSTAT bit is set to 0 before altering the ADC12A_*n*TRG register.

#### Bits 15–14 Reserved

#### Bits 13-11 ENDAIN[2:0]

These bits set the analog input pin to be A/D converted last. See Table 20.7.1 for the relationship between analog input pins and bit setting values.

**Note**: The analog input pin range to perform A/D conversion must be set as ADC12A_*n*TRG. ENDAIN[2:0] bits  $\geq$  ADC12A_*n*TRG.STAAIN[2:0] bits.

#### Bits 10-8 STAAIN[2:0]

These bits set the analog input pin to be A/D converted first. See Table 20.7.1 for the relationship between analog input pins and bit setting values.

## Bit 7 STMD

This bit selects the data alignment when the conversion results are loaded into the A/D conversion result register (ADC12A_nADD.ADD[15:0] bits).

1 (R/W): Left justify

0 (R/W): Right justify

All the A/D conversion result registers change their data alignment immediately after this bit is altered. This does not affect the conversion results.

	ADC12A_nADD.ADD[15:0] bits															
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Left justified (ADC12A_nTRG.STMD bit = 1)	(MS	VISB) 12-bit conversion result (LSB) 0 0 0											0			
Right justified (ADC12A_nTRG.STMD bit = 0)	0	0	0	0	(MS	SB)	12-bit conversion result						sult	(LSB		SB)
Right justified (ADC12A_nTRG.STMD bit = 1) $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	0	0	0	0	(MS	BB)	51510	12-	bit c	conve	ersio	n res	sult		0	U U (L

Figure 20.7.1 Conversion Data Alignment

## Bit 6 CNVMD

This bit sets the A/D conversion mode.

1 (R/W): Continuous conversion mode

0 (R/W): One-time conversion mode

#### Bits 5–4 CNVTRG[1:0]

These bits select a trigger source to start A/D conversion.

Table 20.7.2	Trigger Source	Selection
10010 20.1.2		Selection

Trigger source
#ADTRGn pin (external trigger)
Reserved
16-bit timer Ch.k underflow
ADC12A_nCTL.ADST bit (software trigger)

#### Bit 3 Reserved

#### Bits 2–0 SMPCLK[2:0]

These bits set the analog input signal sampling time.

Table 20.7.3 Sampling Time Settings						
ADC12A_nTRG.SMPCLK[2:0] bits	Sampling time (Number of CLK T16 <i>k</i> cycles)					
0x7	11 cycles					
0x6	10 cycles					
0x5	9 cycles					
0x4	8 cycles					
0x3	7 cycles					
0x2	6 cycles					
0x1	5 cycles					
0x0	4 cycles					

Table 20.7.3	Sampling	Time	Settinas

## ADC12A Ch.n Configuration Register

			<u> </u>			
Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
ADC12A_nCFG	15–8	-	0x00	-	R	-
	7–2	-	0x00	-	R	
	1–0	VRANGE[1:0]	0x0	H0	R/W	

**Note**: Make sure that the ADC12A_nCTL.BSYSTAT bit is set to 0 before altering the ADC12A_nCFG register.

#### Bits 15–2 Reserved

#### Bits 1–0 VRANGE[1:0]

These bits set the A/D converter operating voltage range.

Table 20.7.4 A	A/D Converter	Operating	Voltage	Range	Setting
----------------	---------------	-----------	---------	-------	---------

ADC12A_nCFG.VRANGE[1:0] bits	A/D converter operating voltage range
0x3	1.8 to 5.5 V
0x2	3.6 to 5.5 V
0x1	4.8 to 5.5 V
0x0	Conversion disabled

- **Notes:** A/D conversion will not be performed if the ADC12_*n*CFG.VRANGE[1:0] bits = 0x0. Set these bits to the value according to the operating voltage to perform A/D conversion.
  - Be aware that ADC circuit current IADC flows if the ADC12_nCFG.VRANGE[1:0] bits are set to a value other than 0x0 when the ADC12_nCTL.BSYSTAT bit = 1.

## ADC12A Ch.n Interrupt Flag Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
ADC12A_nINTF	15–9	-	0x00	-	R	_
	8	OVIF	0	H0	R/W	Cleared by writing 1.
	7	AD7CIF	0	H0	R/W	
	6	AD6CIF	0	H0	R/W	
	5	AD5CIF	0	H0	R/W	
	4	AD4CIF	0	H0	R/W	
	3	AD3CIF	0	H0	R/W	
	2	AD2CIF	0	H0	R/W	
	1	AD1CIF	0	H0	R/W	
	0	AD0CIF	0	HO	R/W	

#### Bits 15–9 Reserved

## Bit 8 OVIF

## Bits 7–0 ADmCIF

These bits indicate the ADC12A interrupt cause occurrence status.

- 1 (R): Cause of interrupt occurred
- 0 (R): No cause of interrupt occurred
- 1 (W): Clear flag
- 0 (W): Ineffective

The following shows the correspondence between the bit and interrupt:

ADC12A_nINTF.OVIF bit: A/D conversion result overwrite error interrupt

ADC12A_nINTF.ADmCIF bit: Analog input signal m A/D conversion completion interrupt

## ADC12A Ch.n Interrupt Enable Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
ADC12A_nINTE	15–9	-	0x00	-	R	-
	8	OVIE	0	H0	R/W	
	7	AD7CIE	0	H0	R/W	
	6	AD6CIE	0	H0	R/W	
	5	AD5CIE	0	H0	R/W	
	4	AD4CIE	0	H0	R/W	
	3	AD3CIE	0	H0	R/W	
	2	AD2CIE	0	H0	R/W	
	1	AD1CIE	0	HO	R/W	
	0	AD0CIE	0	H0	R/W	

## Bits 15–9 Reserved

## Bit 8 OVIE

## Bits 7–0 ADmCIE

These bits enable ADC12A interrupts.

1 (R/W): Enable interrupts

0 (R/W): Disable interrupts

The following shows the correspondence between the bit and interrupt:

ADC12A_nINTE.OVIE bit: A/D conversion result overwrite error interrupt

ADC12A_nINTE.ADmCIE bit: Analog input signal m A/D conversion completion interrupt

## ADC12A Ch.n DMA Request Enable Register m

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
ADC12A_nDMAENm	15–0	ADCDMAEN[15:0]	0x0000	H0	R/W	_

## Bits 15-0 ADCDMAEN[15:0]

These bits enable ADC12A to issue a DMA transfer request to the corresponding DMA controller channel (Ch.0–Ch.15) when the A/D conversion for each analog input has completed.

1 (R/W): Enable DMA transfer request

0 (R/W): Disable DMA transfer request

Each bit corresponds to a DMA controller channel. The high-order bits for the unimplemented channels are ineffective.

## ADC12A Ch.n Result Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
ADC12A_nADD	15–0	ADD[15:0]	0x0000	H0	R	_

## Bits 15-0 ADD[15:0]

The A/D conversion results are set to these bits.

# 21 Temperature Sensor/Reference Voltage Generator (TSRVR)

# 21.1 Overview

The TSRVR is a peripheral circuit for the internal A/D converter that outputs the internal temperature sensor detection values and generates the reference voltage. The features of the TSRVR are listed below.

- Includes a temperature sensor that has a linear output characteristic and the sensor output can be measured using the internal A/D converter without external components being attached.
- Can supply a reference voltage (2.0 V, 2.5 V, or VDD selectable) to the internal A/D converter.
- Can supply the reference voltage generated in this circuit to external devices if this IC has the VREFA exclusive pin.

Table 21.1.1. TSB\/R Configuration of S1C31D01

Figure 21.1.1 shows the TSRVR configuration.

Item	S1C31D01					
Number of channels	1 channel (Ch.0)					
Correspondence between TSRVR and internal A/D	TSRVR Ch.0 → ADC12A Ch.0					
converter channels						
A/D converter input connected to temperature sensor	ADIN07					
Reference voltage output to external devices	Unavailable					



**Note**: In this chapter, *n* and *m* refer to a TSRVR channel number and an internal A/D converter channel number, respectively.

# 21.2 Output Pin and External Connections

## 21.2.1 Output Pin

Table 21.2.1.1 shows the TSRVR pin.

Table 21.2.1.1 TSRVR Pin

Pin name	I/O	Initial status	Function			
VREFA <i>m</i>	А	Hi-Z	Reference voltage output			

If the port is shared with the TSRVR pin and other functions, the TSRVR output function must be assigned to the port before activating the TSRVR. For more information, refer to the "I/O Ports" chapter.

## 21.2.2 External Connections

Figure 21.2.2.1 shows connection diagrams between the TSRVR and external components.



# 21.3 Operations

TSRVR should be configured before starting measurements using the internal A/D converter.

## 21.3.1 Reference Voltage Setting

The TSRVR output voltage can be supplied to the internal A/D converter as the reference voltage VREFAm when it is not supplied externally. The output voltage can be selected using the TSRVR_nVCTL.VREFAMD[1:0] bits. Connect CVREFA to the VREFAm pin when supplying the reference voltage from TSRVR. A/D conversion by the internal A/D converter should be started after the reference voltage stabilization time tVREFA has elapsed from the time when the output voltage is selected.

## 21.3.2 Temperature Sensor Setting

The temperature sensor output voltage can be directly measured using the internal A/D converter. The measurement should be started after the temperature sensor output stabilization time  $t_{TEMP}$  has elapsed from writing 1 to the  $TSRVR_nTCTL.TEMPEN$  bit to activate the temperature sensor.

From the temperature sensor output voltage, the measured temperature can be calculated by the equations shown below.

$$T_{\text{SEN}} = \frac{(V_{\text{TSEN}} - V_{\text{TREF}}) \times 1,000}{\Delta V_{\text{TEMP}}} + T_{\text{REF}}$$
(Eq. 21.1)

Where

TSEN:	Actual temperature [°C]
VTSEN:	Temperature sensor output voltage at temperature TSEN [V]
Tref:	Reference temperature for calibration [°C]
VTREF:	Temperature sensor output voltage at temperature TREF [V]
$\Delta V$ TEMP:	Temperature sensor output voltage temperature coefficient [mV/°C] (Refer to the "Electrical Char-
	acteristics" chapter.)

Convert the digital values corresponding to the respective temperatures, that are obtained by the internal A/D converter, into voltage values and assign them to VTSEN and VTREF.

$$V(\text{TSEN}, \text{TREF}) = \frac{\text{ADD}}{4.096} \times \text{VREFA}$$
(Eq. 21.2)

Where

ADD: A/D conversion result at temperature TSEN or TREF (decimal)

VREFA: A/D converter reference voltage [V]

For details of the internal A/D converter, refer to the "12-bit A/D Converter" chapter.

# **21.4 Control Registers**

	Torran on an temperature bensor bontrol negister					
Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
TSRVR_nTCTL	15–8	-	0x00	-	R	_
	7–1	-	0x00	H0	R	
	0	TEMPEN	0	HO	R/W	

## TSRVR Ch.n Temperature Sensor Control Register

#### Bits 15–1 Reserved

#### Bit 0 TEMPEN

This bit enables the temperature sensor operation.

1 (R/W): Enable temperature sensor output

0 (R/W): Disable temperature sensor output

## TSRVR Ch.n Reference Voltage Generator Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
TSRVR_nVCTL	15–8	-	0x00	-	R	-
	7–2	-	0x00	H0	R	
	1–0	VREFAMD[1:0]	0x0	HO	R/W	

#### Bits 15–2 Reserved

#### Bits 1–0 VREFAMD[1:0]

These bits set the reference voltage generator output voltage.

Table 21.4.1 Output Voltage Settings

TSRVR_nVCTL.VREFAMD[1:0] bits	Output voltage
0x3	2.5 V output
0x2	2.0 V output
0x1	VDD level output
0x0	Hi-Z (An external voltage can be applied.)

- **Notes:** Be aware that VREFA operating current IVREFA flows when the TSRVR_nVCTL.VREFAMD[1:0] bits are set to 0x2 or 0x3.
  - When the TSRVR_*n*VCTL.VREFAMD[1:0] bits are not set to 0x0, do not apply an external voltage to the VREFA*m* pin.

# 22 USB 2.0 FS Device Controller (USB, USBMISC)

# 22.1 Overview

The USB 2.0 FS Device Controller (hereinafter referred to as USB controller) is a USB target device controller that supports FS mode based on the USB 2.0 standard. The features of the USB controller are listed below.

- Supports transfer at FS (12 Mbps).
- Supports control, bulk, and interrupt transfers (isochronous transfer is not supported).
- Supports three general-purpose endpoints (transaction direction, endpoint number, and enabling/disabling of the endpoint are configurable individually) and endpoint 0.
- Incorporates total 256-byte FIFO for endpoints (64 bytes for each endpoint).
- Includes a PLL (12 MHz  $\times$  4) for generating the 48 MHz operating clock.

Figure 22.1.1 shows the USB controller configuration.





Figure 22.1.1 USB Controller Configuration

## SIE (Serial interface engine)

The SIE manages transactions and generates packets. It also controls bus events such as Suspend, Resume and Reset operations.

## FIFO

This is a 256-byte buffer for endpoints.

## **FIFO** controller

This controller performs FIFO SRAM address management, timing generation, arbitration and more.

## CPU interface (user bus interface and peripheral bus interface)

Controls timings of the CPU interface and enables register access.

- **Notes:** The USB controller hardware provides endpoints and manages transactions. However, <u>it</u> <u>does not provide a management function in the interface defined for USB (hereinafter referred to as USB-defined interface).</u> The USB-defined interface should be implemented in the firmware. According to the device-specific descriptor definition, set endpoints as required and configure the USB-defined interface using an appropriate endpoint combination.
  - This chapter use a general name as shown below to describe the endpoints and the control registers/bits with the same function that are provided for each endpoint.
    - EPn: Refers to all endpoints (EP0, EPa, EPb, and EPc), and it is also used for their registers/ bits with the same function.
       Example: USBEPnCFG.DIR bit (= USBEP0CFG.DIR, USBEPACFG.DIR, USBEPBCFG.DIR, or USBEPCCFG.DIR bit)
    - **EPm**: Refers to general-purpose endpoints (EPa, EPb, and EPc), and it is also used for their registers/bits with the same function.

Example: USBEPmCTL.TGLSTAT bit

(= USBEPACTL.TGLSTAT, USBEPBCTL.TGLSTAT, or USBEPCCTL.TGLSTAT bit) USBRWFIFOSEL.EP*m*RD bit (= USBRWFIFOSEL.EPARD, USBRWFIFOSEL.EPBRD, or USBRWFIFOSEL.EPCRD bit)

## 22.2 Input/Output Pins and External Connections

## 22.2.1 List of Input/Output Pins

Table 22.2.1.1 lists the USB controller pins.

Pin name	I/O*	Initial status*	Function	
USB_DP	I/O		USB D+ signal input/output	
USB_DM	I/O	I	USB D- signal input/output	
VBUS	Р	-	USB VBUS input (5 V can be applied.)	
USB18VOUT	Р	-	USB 1.8 V regulator output	
USB33VOUT	Р	-	USB 3.3 V regulator output	

* Indicates the status when the pin is configured for the USB controller.

If the port is shared with the USB controller pin and other functions, the USB input/output function must be assigned to the port before activating the USB controller. For more information, refer to the "I/O Ports" chapter.

## 22.2.2 External Connections

Figure 22.2.2.1 shows a connection diagram between the USB controller pins of this IC and an external USB device. The USB_DP pin has a built-in pull up resistor that can be enabled/disabled via software.



S1C31D01 TECHNICAL MANUAL (Rev. 1.2)

# 22.3 Clock Settings

This IC includes a PLL that multiplies the OSC3 oscillator circuit output clock by four to generate the 48 MHz USB operating clock. Therefore, a stable 12 MHz clock must be supplied from the OSC3 oscillator circuit.



The PLL operation can be controlled using the USBMISCCTL.USBPLLEN bit. The PLL requires an output stabilization time (refer to "Electrical Characteristics") until the output clock can be used after the PLL starts operating. For controlling the OSC3 oscillator circuit, refer to the "Clock Generator" section in the "Power Supply, Reset, and Clocks" chapter.

For the clock source control timings, refer to Section 22.5.1, "Initialization."

Note: Configure the system clock to 16 MHz or lower when operating the USB controller.

## Clock supply during debugging

In debug state, control the USB clock in the same way as normal operation.

# 22.4 USB Power Supply

The USB controller includes 3.3 V and 1.8 V regulators to operate the USB functional blocks using the V_{BUS} power only as the power source.



The 3.3V regulator and the 1.8 V regulator are controlled with the USBMISCCTL.REG3.3EN bit and the USB-MISCCTL.REG1.8EN bit, respectively. These regulators require an output stabilization time (refer to "Electrical Characteristics") until the output voltage can be used after they start operating. For the regulator control timings, refer to Section 22.5.1, "Initialization."

**Note:** Configure the V_{D1} regulator voltage mode to mode0 when operating the USB controller.

# 22.5 Operations

## 22.5.1 Initialization

The S1C31 MCU assumes that the USB controller is powered by VBUS, therefore it is necessary to perform advance settings before connecting to VBUS (Attach), power sequence control after connecting to VBUS, and sequence control after power-up. The following shows these procedures.



Figure 22.5.1.1 Processing flow before and after VBUS is connected

## Advance settings before connecting to VBUS

- 1. Write 0x0096 to the SYSPROT.PROT[15:0] bits.
- 2. Set the USBMISCCTL. USBWAIT bit.

(Remove system protection) (Select number of bus access cycles)

(Turn 1.8 V regulator on)

(Turn 3.3 V regulator on)

- 3. Configure the general-purpose port Pxx to be connected to VBUs as an input with pull-down and enable an input interrupt to be occurred at the rising edge (refer to the "I/O Ports" chapter).
- 4. Wait for a Pxx input interrupt.

When  $V_{BUS}$  is connected, an input interrupt occurs from the Pxx port. When the interrupt has occurred, perform the power sequence control after connecting to  $V_{BUS}$  as shown below.

Note: The USB regulator and FIFO cannot be accessed before VBUS is connected.

## Power sequence control after connecting to VBUS

- 1. Configure the following USBMISCCTL register bits:
  - Set the USBMISCCTL.REG18VEN bit to 1.
  - Set the USBMISCCTL.REG33VEN bit to 1.
- 2. Measure the USB regulator output stabilization waiting time using a timer with the interrupt enabled.
- 3. Activate the OSC3 oscillator circuit after setting the oscillation stabilization waiting time and interrupt (refer to the "Clock Generator" section in the "Power Supply, Reset, and Clocks" chapter).

This operation is not required when the OSC3 oscillator circuit is stably operating already.

4. Wait for the timer interrupt enabled in Step 2.

#### 22 USB 2.0 FS DEVICE CONTROLLER (USB, USBMISC)

(Turn PLL on)

- 5. Configure the Pxx port to generate an input interrupt at the falling edge (refer to the "I/O Ports" chapter).
- 6. Wait for the OSC3 oscillation stabilization waiting completion interrupt enabled in Step 3.
- 7. Set the USBMISCCTL.USBPLLEN bit to 1.
- 8. Measure the PLL output stabilization waiting time using a timer with the interrupt enabled.
- 9. Wait for a timer interrupt enabled in Step 8.

When the interrupt has occurred, perform the sequence control after power-up.

## Sequence control after power-up

- 1. Set the USBMISCCTL.USBRST bit to 1. (Cancel USB circuit reset state)
- Set the USBMISCCTL.VBUSDET bit to 1. (Notify detected VBUS connection) This operation notifies the logical blocks related to the USB that the port has detected VBUS connection. This connects the logical blocks to the USB controller. This operation enables the USB control registers to be accessed.
- 3. Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits. (Set system protection)

## **USB** register initial settings

The basic configurations for the USB controller and endpoints are shown below. Settings related to the transaction and auto-negotiation control are described later.

1.	Set the USBCTL.USBEN bit to 1.	(Enable USB controller)
2.	Configure the USBEP0SIZE.MAXSIZE[3:0] bits.	(Set EP0 maximum packet size)
3.	Configure the following USBEPmCFG register bits:	
	- USBEPmCFG.MAXSIZE[6:0] bits	(Set EPm maximum packet size)
	- USBEPmCFG.DIR bit	(Set EPm transaction direction)
	- USBEPmCFG.EPNUM[3:0] bits	(Set EPm endpoint number)
	- USBEPmCFG.TGLMOD bit	(Set EP <i>m</i> toggle mode)
	- Set the USBEPmCFG.EPEN bit to 1.	(Enable EPm)
4.	Set the USBFIFORDCYC.RDCYC[1:0] bits.	(Set number of FIFO read access cycles)
5.	Set interrupt control bits as necessary when using the interrupt:	
	- Write 1 to the interrupt flags in the USB***INTF register.	(Clear interrupt flags)
	- Set the interrupt enable bits in the USB***INTE register to 1.	(Enable interrupts)
6.	Configure the DMA controller and set the following USB control b	its when using DMA transfer:
	- Write 1 to the DMA transfer request enable bits in the	
	USBMISCWRDMAEN and USBMISCRDDMAEN registers.	(Enable DMA transfer requests)
7.	Check that the USBSTAT.LINESTAT[1:0] bits are set to 0x1 (J).	
8.	Set the USBCTL.AUTONEGOEN bit to 1.	(Enable auto-negotiation)

## 22.5.2 Settings when VBUS is Disconnected

Use the Pxx port for detecting VBUS disconnection (Detach) and perform the processing shown below when an interrupt has occurred at the falling edge of the input.

#### 22 USB 2.0 FS DEVICE CONTROLLER (USB, USBMISC)

CPU (firmware) processing Monitor Veus disconnection using Pxx	USB	Other peripheral circuits VBUS disconnection is detected. (Pxx interrupt)	Processing outline Detect VBUS disconnection using a Pxx input (falling edge) interrupt.
Put USB circuit into reset state (USBRST) Assert mask signal between USB and logic core (VBUSDET) Initialize other settings • REG18VEN/REG33VEN • PLL and OSC3			These processing steps must be performed as soon as possible to avoid irregular signals being sent to the host, and to minimize the flow-through current by the floating node that is generated because the power supply to the USB circuit has stopped.

Figure 22.5.2.1 Processing Flow when VBUS is Disconnected

- 1. Write 0x0096 to the SYSPROT.PROT[15:0] bits.
- 2. Set the USBMISCCTL.USBRST bit to 0.
- 3. Set the USBMISCCTL.VBUSDET bit to 0.

(Remove system protection) (Put USB circuit into reset state) (Notify detected VBUS disconnection)

(Turn 1.8 V regulator off)

(Turn 3.3 V regulator off)

- Note: When VBUS is disconnected, the power supply to the USB controller is cut off. Therefore, Steps 1 to 3 above must be performed as soon as possible after a Pxx input interrupt has occurred to avoid irregular signals being sent to the CPU, and to minimize the flow-through current by the floating node generated.
- 4. Configure the following USBMISCCTL register bits:
  - Set the USBMISCCTL.REG18VEN bit to 0.
  - Set the USBMISCCTL.REG33VEN bit to 0.
- 5. Set the USBMISCCTL.USBPLLEN bit to 0.

(Turn PLL off) 6. Deactivate the OSC3 oscillator circuit if it is not necessary (refer to the "Clock Generator" section in the "Power

7. Write a value other than 0x0096 to the SYSPROT.PROT[15:0] bits. (Set system protection)

## 22.5.3 Transaction Control

Supply, Reset, and Clocks" chapter).

The USB controller references the FIFO when responding to a transaction and determines if data transfer is possible based on the number of data or vacancies to automatically handle the transaction. For example, for an OUT endpoint, software can smoothly and sequentially process OUT transactions by reading data from the FIFO to create a space in the FIFO. On the other hand, for an IN endpoint, software can smoothly and sequentially process IN transactions by writing data to the FIFO to create valid data. The following describes the basic operations of the SETUP, OUT, and IN transactions.

## SETUP transaction

A SETUP transaction sequence is shown below.



Figure 22.5.3.1 SETUP Transaction

- 1. The host issues a SETUP token addressed to EP0 of this node.
- 2. Next, the host sends an 8-byte data packet.
- 3. The USB controller writes this data to the USBEP0SETUP0 to 7 registers.

When Steps 1 to 3 have been finished normally

- 4. The USB controller automatically returns an ACK response.
- 5. The USB controller sets/clears the following bits:
  - The USBMAININTF.EP0SETIF bit is set.
  - The USBEP0ICTL.FNAK bit is set.
  - The USBEP0ICTL.FSTALL bit is cleared.
  - The USBEP0ICTL.TGLSTAT bit is set.
  - The USBEPOOCTL.FNAK bit is set.
  - The USBEP0OCTL.FSTALL bit is cleared.
  - The USBEPOOCTL.TGLSTAT bit is set.
- 6. The software decides the transaction direction of the next stage by reading the USBEP0SETUP0 to 7 register contents and clears the USBEP0ICTL.FNAK bit (IN) or USBEP0OCTL.FNAK bit (OUT) for the transaction direction.

When an error has occurred

- 4a. The USB controller does not respond to the host.
- 5a. The USB controller does not set/clear the control bits in Step 5 above.

For the control method and operations of the control transfer including a SETUP transaction, refer to Section 22.5.4, "Control Transfer."

## **OUT** transaction

An OUT transaction sequence is shown below.



Figure 22.5.3.2 OUT Transaction

- 1. The host issues an OUT token addressed to an OUT endpoint of this node.
- 2. Next, the host sends a data packet under the maximum packet size.
- The USB controller writes this data in the relevant endpoint's FIFO. The USB controller starts data reception regardless of the available space in the FIFO, and it continues data reception if the FIFO is not full.

When data has been received successfully

- 4. The USB controller returns an ACK response.
- 5. The USB controller updates the FIFO so that the received data can be read out.
- 6. The USB controller sets the USBEPnINTF.OUTACKIF bit of the relevant endpoint.
- 7. When EPm has received a short-packet data, the USB controller sets the USBEPmINTF.OUTSHACKIF bit of the relevant endpoint. If the USBEPmCTL.AUTOFNAKDIS bit is cleared, the USBEPmCTL. FNAK bit is also set.

When a toggle mismatch has occurred

- 4a. The USB controller returns an ACK response.
- 5a. The USB controller does not update the FIFO.
- 6a. The USB controller does not set the USBEPnINTF.OUTACKIF bit.
- 7a. The USB controller does not set the USBEPmINTF.OUTSHACKIF and USBEPmCTL.FNAK bits.

When the FIFO becomes full

- 3b. The USB controller suspends data reception if the FIFO becomes full in Step 3.
- 4b. The USB controller returns a NAK response.
- 5a. The USB controller does not update the FIFO.
- 6b. The USB controller sets the USBEPnINTF.OUTNAKIF bit.
- 7b. The USB controller does not set the USBEPmINTF.OUTSHACKIF and USBEPmCTL.FNAK bits.

#### When an error has occurred

- 4b. If an error has occurred during data transfer, the USB controller does not return a response to the transaction.
- 5b. The USB controller does not update the FIFO.
- 6b. The USB controller sets the USBEPnINTF.OUTERRIF bit.
- 7b. The USB controller does not set the USBEPmINTF.OUTSHACKIF and USBEPmCTL.FNAK bits.

## **IN transaction**

An IN transaction sequence is shown below.



Figure 22.5.3.3 IN Transaction

- 1. The host issues an IN token addressed to an IN endpoint of this node.
- 2. If data of a maximum packet size or larger exists in the FIFO for the IN endpoint, the USB controller transmits data of a maximum packet size.

When short-packet transmission has been enabled (USBEP0(I/O)CTL.SPKTEN bit or USBEPmCTL. SPKTEN bit = 1), the USB controller transmits data written into the FIFO (including a zero-length data packet) even if no maximum packet size data exists in the FIFO. However, make sure that no attempt is made to write any new data into the endpoint's FIFO until the transaction is closed.

## When all data has been transmitted successfully

- 3. The host returns an ACK response.
- 4. The USB controller updates the FIFO and frees the space for the transmitted data.
- 5. The USB controller sets the following bits after an ACK response is received:
  - The USBEPnINTF.INACKIF bit is set.
  - The USBEP0ICTL.FNAK bit is set. *
  - * When the IN transaction that transmits a short-packet data is closed on EP0.

When no maximum packet size data exists in the FIFO and short-packet transmission has not been enabled

2b. The USB controller returns a NAK response instead of data transmission.

- 4b. The USB controller does not update the FIFO.
- 5b. The USB controller sets the USBEPnINTF.INNAK bit.

When no ACK response is returned from the host after data has been transmitted

5b. The USB controller sets the USBEP*n*INTF.INERR bit.

## 22.5.4 Control Transfer

Control transfer on EP0 consists of a setup stage, a data stage, and a status stage that are controlled as a combination of a number of discrete transactions.

A control transfer sequence for an OUT data stage is shown below.



Figure 22.5.4.1 Control Transfer Having an OUT Data Stage

- 1. The host starts control transfer in a SETUP transaction. The device's firmware analyzes the request contents to prepare for responding to a data stage.
- 2. The host issues an OUT transaction and executes a data stage, and the device receives data.
- 3. The host issues an IN transaction and executes a status stage, and the device returns a zero-length data packet. Transition to a status stage is triggered by an issuance of a transaction by the host whose direction is opposite to that of the data stage.

Control transfer without a data stage is executed as in this example but without the data stage.

A control transfer sequence for an IN data stage is shown below.



Figure 22.5.4.2 Control Transfer Having an IN Data Stage

- 1. The host starts control transfer in a SETUP transaction. The device's firmware analyzes the request contents to prepare for responding to a data stage.
- 2. The host issues an IN transaction and executes a data stage, and the device transmits data.
- 3. The host issues an OUT transaction and executes a status stage, and the device returns an ACK response. Transition to a status stage is triggered by an issuance of a transaction by the host whose direction is opposite to that of the data stage.

Since data and status stages in control transfer execute ordinary OUT and IN transactions, flow control using NAK responses works effectively. The device is allowed to prepare for returning responses within a specified time frame.

## Setup stage

The USB controller automatically executes a SETUP transaction upon reception of a SETUP token addressed to its own node.

A software processing flow in a setup stage is shown below.

- 1. Wait until the USBMAININTF.EPOSETIF bit is set to 1 (an interrupt can be used).
- 2. Read the USBEP0SETUP0-USBEP0SETUP7 registers and analyze the request.
- 3. Clear the USBMAININTF.EPOSETIF bit by writing 1.
- 4. Transit to the data or status stage according to the analysis result of the request.

## Data stage

When a request that involves an OUT data stage is received

- 1. Set the USBEP0CFG.DIR bit to 0. (Configure EP0 to OUT direction)
- 2. Set the following OUT transaction control bits in the USBEP0OCTL register:
  - USBEP0OCTL.AUTOFNAK bit (Enable/disable automatic forced NAK response function)
  - Set the USBEP0OCTL.FNAK bit to 0. (Disable forced NAK response)

If the FIFO has an available space, the USB controller automatically receives data. For more information, refer to "OUT transfer" in Section 22.5.6, "Data Flow Control."

Furthermore, monitor the USBEP0INTF.INNAKIF bit (an interrupt can be used) and transit to the status stage if it is set.

When a request that involves an IN data stage is received

- 1. Set the USBEP0CFG.DIR bit to 1. (Configure EP0 to IN direction)
- 2. Set the following IN transaction control bits in the USBEP0ICTL register:
  - USBEP0ICTL.SPKTEN bit (Enable/disable short packet transmission)
  - Set the USBEP0ICTL.FNAK bit to 0. (Disable forced NAK response)

If the FIFO contains valid data, the USB controller automatically transmits data. For more information, refer to "IN transfer" in Section 22.5.6, "Data Flow Control."

Furthermore, monitor the USBEP0INTF.OUTNAKIF bit (an interrupt can be used) and transit to the status stage if it is set.

## Status stage

When a request that does not involve a data stage is received, or when starting a status stage after an OUT data stage

- 1. Set the USBEP0CFG.DIR bit to 1. (Configure EP0 to IN direction)
- 2. Set the following IN transaction control bits in the USBEP0ICTL register:
  - Set the USBEP0ICTL.SPKTEN bit to 1. (Enable short packet transmission)
  - Set the USBEP0ICTL.FNAK bit to 0. (Disable forced NAK response)

The USB controller returns a zero-length packet data.

When starting a status stage after an IN data stage

- 1. Set the USBEP0CFG.DIR bit to 0. (Configure EP0 to OUT direction)
- 2. Set the following OUT transaction control bit in the USBEP0OCTL register:
  - Set the USBEP0OCTL.FNAK bit to 0. (Disable forced NAK response)

The USB controller returns an ACK response.

## Automatic address setting function

The USB controller can automatically load the address to the USBADDR.USBADDR[6:0] bits when EP0 has received a SetAddress() request in a control transfer. To enable this function, perform the processing shown below via software.

- 1. Confirm if the value read from the USBEP0SETUP0-USBEP0SETUP7 registers is a valid SetAddress() request in the setup stage.
- 2. Set the USBADDR.ATADDR bit to 1. (Enabl
  - (Enable automatic address setting function)
- 3. Set the USBEP0CFG.DIR bit to 1. (Configure EP0 to IN direction)
- 4. Set the following IN transaction control bits in the USBEP0ICTL register:
  - Set the USBEP0ICTL.SPKTEN bit to 1. (Enable short packet transmission)
  - Set the USBEP0ICTL.FNAK bit to 0. (Disable forced NAK response)

After this function is enabled and the IN transaction at EP0 is completed, the USB controller extracts the address from the data in the SetAddress() request and sets it to the USBADDR.USBADDR[6:0] bits. Meanwhile, the USBSIEINTF.ATADDRIF is set to 1 (an interrupt can be generated).

After this function is enabled, if any other transaction is invoked at EP0 before an IN transaction is executed, this function is canceled and the USBADDR.ATADDR bit is cleared. Accordingly, the USBSIEINTF.ATADDRIF is not set.

## 22.5.5 Bulk Transfer/Interrupt Transfer

Bulk and interrupt transfers at a general-purpose endpoint EPm, can be controlled either as a data flow (refer to Section 22.5.6, "Data Flow Control") or as a series of discrete transactions (refer to Section 22.5.3, "Transaction Control").

## 22.5.6 Data Flow Control

This section describes controlling standard data flows in OUT and IN transfers.

## **OUT** transfer

If the FIFO has available space for receiving data packets, the USB controller automatically responds to OUT transactions to receive data. This enables software to perform OUT transfer without individual transaction control. Note, however, that the USBEPmCTL.FNAK bit of the endpoint is set if a short packet is received (including zero-length data packet) when the USBEPmCTL.AUTOFNAKDIS bit is cleared. Clear the USBEPmCTL. FNAK bit when the next data transfer is ready.

Data received from an OUT transfer is placed on the FIFO at the respective endpoint. For the FIFO data reading procedure, refer to Section 22.5.9, "FIFO Management."

Figure 22.5.6.1 shows a data flow in OUT transfer. In this example, the FIFO area assigned to this endpoint is assumed to be twice as large as the maximum packet size.



- (U1) Data transfer of the packet size is performed in the first OUT transaction.
- (U2) Data transfer of the packet size is performed in the second OUT transaction.
- (F1) The FIFO is empty.
- (F2) An OUT transaction is proceeded, and data reception has started in the FIFO. At this point, the FIFO data is not considered to be valid since the transaction is not closed.
- (F3) Although data packet reception is completed from the OUT transaction, the FIFO data is not considered to be valid since the transaction is not closed.
- (F4) The OUT transaction is closed and the received data are considered to be valid.
- (F5) The presence of valid data in the FIFO causes the CPU to start reading the FIFO.
- (F6) Reading the FIFO by the CPU reduces the amount of the remaining valid data in the FIFO.
- (F7) Starting the next transaction starts writing data. The CPU continues reading the FIFO as long as any valid data remains.
- (F8) The CPU has stopped reading the FIFO as there is no valid data left. The second OUT transaction is not closed yet.
- (F9) The second OUT transaction is closed, causing the FIFO data to become valid.
- (F10) The presence of valid data in the FIFO causes the CPU to restart reading the FIFO.

## **IN transfer**

If the FIFO contains data exceeding the maximum packet size, the USB controller automatically responds to IN transactions to perform data transmission. This enables software to perform IN transfer without individual transaction control. Note, however, that the USBEPmCTL.SPKTEN bit should be set if it is necessary to transmit a short packet at the end of the data transfer. Since this bit is cleared when the IN transaction which has transmitted the short packet is closed, it can be set after data is completely written into the FIFO.

For the FIFO data writing procedure, refer to Section 22.5.9, "FIFO Management."

Figure 22.5.6.2 shows a data flow in IN transfer. In this example, the FIFO area assigned to this endpoint is assumed to be twice as large as the maximum packet size.

#### 22 USB 2.0 FS DEVICE CONTROLLER (USB, USBMISC)



- (U1) In the first IN transaction, an NAK response is returned since the FIFO has no valid packet size data.
- (U2) Data transfer of the packet size is performed in the second IN transaction.
- (U3) Data transfer of the packet size is performed in the third IN transaction.
- (F1) The FIFO is empty.
- (F2) The CPU starts writing and valid data is written into the FIFO.
- (F3) As the FIFO still has an available space, the CPU continues writing.
- (F4) Since the FIFO contains valid maximum packet size data, the USB controller responds to the IN transaction with data packet transmission. As the transaction is not closed yet, the FIFO area from which data are transmitted is not freed and the FIFO becomes full.
- (F5) Although data packet transmission in the IN transaction has been completed, the FIFO area is not freed since the transaction is not closed and data writing by the CPU remains discontinued.
- (F6) The FIFO area is freed as the transaction is closed upon reception of an ACK handshake packet.
- (F7) As the FIFO now has some available space, the CPU resumes writing data into the FIFO.
- (F8) The USB controller responds to an IN transaction and transmits a data packet. Since the FIFO has some available space, the CPU continues writing data into the FIFO.
- (F9) Although data packet transmission in the IN transaction has been completed, the FIFO area is not freed since the transaction is not closed. Since the FIFO has some available space, the CPU continues writing data into the FIFO.
- (F10) The FIFO area is freed when the transaction is closed upon reception of an ACK handshake packet. The CPU can continue writing data into the FIFO.

## 22.5.7 Auto-Negotiation Function

The auto-negotiation function automatically performs Suspend detection, Reset detection, and Resume detection, with checking the state of the USB bus for each operation. On the other hand, this function does not perform Attach and Detach processing, therefore, this function should be enabled after Attach has detected and disabled after Detach is detected. Check each interrupt flag (USBSIEINTF.RESETIF bit and USBSIEINTF.SUSPENDIF bit) to confirm what has been actually detected.



Figure 22.5.7.1 Auto-Negotiator

## (1) DISABLE

The USB controller is placed into DISABLE state when the USBCTL.AUTONEGOEN bit = 0. To enable the auto-negotiation function from this state, perform the procedure shown below.

- 1. Set the USBSIEINTE.RESETIE bit to 1. (Enable Reset detection interrupt)
- 2. Set the USBSIEINTE.SUSPENDIE bit to 1. (Enable Suspend detection interrupt)
- 3. Set the USBMAININTE.SIEIE bit to 1. (Enable SIE interrupt)
- 4. Set the USBCTL.AUTONEGOEN bit to 1. (Enable auto-negotiation)

When the auto-negotiation function is enabled, the controller hardware automatically clears the USBCTL.BUS-DETDIS bit to enable the event detection function. While the auto-negotiation function is enabled, never set the USBCTL.BUSDETDIS bit.

## (2) NORMAL

This is a state of waiting for Reset or Suspend detection. The state is determined to be Reset if SE0 of 2.5  $\mu$ s or more is detected, and it is determined to be Suspend if no activities are detected beyond 3 ms. Concurrently with judgment as described above, the USBSIEINTF.RESETIF bit or the USBSIEINTF.SUSPENDIF bit is set and a Reset detection or Suspend detection interrupt is generated. If the state is determined to be Suspend, the USB controller enters IN_SUSPEND state.

#### 22 USB 2.0 FS DEVICE CONTROLLER (USB, USBMISC)

## (3) IN_SUSPEND

When the USB controller enters this state, the USBCTL.NONJDETEN bit is automatically set by the hardware to enable the function for detecting bus state transitions from FS-J (Suspend) to Reset or Resume. If a such bus transition is detected, the USBSIEINTF.NONJIF bit is set to indicate that the host requests to return from Suspend and a NonJ interrupt occurs when the USBSIEINTE.NONJIE and USBMAININTE.SIEIE bits = 1. In this case, the USBCTL.NONJDETEN bit should be cleared. This puts the USB controller into the CHK_EVENT state.

To resume from Suspend with a remote wake-up, set the USBCTL.WAKEUP bit in this state and output the resume signal (FS-K) for 1 to 15 ms.

## (4) CHK_EVENT

In the CHK_EVENT state, the USB controller checks the USB signal and determines that the state is Resume if FS-K is detected, and that it is Reset if SE0 is detected. When determined to be Reset, the USBSIEINTF.RESE-TIF bit is set.

Note that software should terminate this auto-negotiation function in any state as soon as the USB cable is unplugged, as the USB controller does not consider the implication of USB cable disconnection.

## 22.5.8 Description by Negotiation Function

## **Detecting Suspend**

When the USBCTL.BUSDETDIS bit is cleared to 0, the USB controller automatically performs the following Suspend detection sequence.

- 1. Checks that there is no data transmission/reception (the USBSTAT.LINESTAT[1:0] bits = 0x01 (J) is continuously detected) for 3 ms or longer (T1) using an internal timer.
- 2. Sets the USBSIEINTF.SUSPENDIF bit if the USBSTAT.LINESTAT[1:0] bits = 0x01 (J) is detected at T2.
- 3. Outputs an interrupt request to the CPU if the USBSIEINTE.SUSPENDIE and USBMAININTE.SIEIE bits are both set to 1.

When the USBSIEINTF.SUSPENDIF bit has been set (when an interrupt has occurred), perform the processing shown below via software.

- 1. Set the USBCTL.BUSDETDIS bit to 1. (Disable Reset/Suspend detection)
- 2. Start a Snooze processing before reaching T4 (refer to Section 22.5.10, "Snooze").

Figure 22.5.8.1 shows the operation between Suspend detection and transition to Snooze.

Time						+	+
	Т	o 1	1	Г2 Т :	- 	<b>T</b> 4	Г5 
USBSIEINTF.SUSPENDIF				f			
SNOOZE signal*						£	
USBCTL.BUSDETDIS					/		
USBSTAT.LINESTATE[1:0]		(			J state		
USB_DP/USB_DM pins	Last activity				J state		
Internal USB clock		Fully me	et USB 2.	0 required free	uency		)
	*	The SNOOZE sig	nal shoul	d be control	led using the USBMISC	СТІ	USBSNZ bit.

 The SNOOZE signal should be controlled using the USBMISCCTL.USBSNZ bit. Figure 22.5.8.1 Suspend Timing

## **Detecting Reset**

When the USBCTL.BUSDETDIS bit is set to 0, the USB controller automatically performs the following Reset detection sequence.

- Checks that the USBSTAT.LINESTAT[1:0] bits = 0x0 (SE0) are continuously detected for 2.5 μs or longer using an internal timer (T1).
- 2. Sets the USBSIEINTF.RESETIF bit if the USBSTAT.LINESTAT[1:0] bits = 0x0 (SE0) are detected at T2.
- 3. Outputs an interrupt request to the CPU if the USBSIEINTE.RESETIE and USBMAININTE.SIEIE bits are both set to 1.

This reset detection is effective when the USBCTL.USBEN bit is set to 1. If the USBSIEINTF.RESETIF bit is set to 1 when the auto-negotiation function is disabled, set the USBCTL.BUSDETDIS bit to 1 to disable Reset/ Suspend state detection so that the continuous Reset state will not be erroneously detected. The USBCTL.BUS-DETDIS bit should be set to 0 to enable Reset/Suspend state detection after the reset processing has completed.

Time					
Time	T-1	1 T	o T	1 T	2
USBSIEINTF.RESETIF				7	
USBCTL.BUSDETDIS					
USBSTAT.LINESTATE[1:0]		J state	SE0 state		
USB_DP/USB_DM pins		J state	SE0 state		



## **Issuing Resume**

The following describes how to enable automatic resume to be triggered by some cause when remote wakeup is supported and the remote wakeup function is enabled from the host.

Remote wakeup can only be enabled 5 ms after the bus enters the Idle state.

- 1. Set the USBSIEINTE.NONJIE bit to 0. (Disable NONJ detection interrupt)
- 2. Set the USBCTL.WAKEUP bit to 1. (Start remote wakeup signal output)

The USB controller sets the USBTRCTL.OPMOD[1:0] bits to 0x02 (Disable Bit Stuffing and NRZI encoding). It also starts data transmission and sends out "FS K" (Resume signal) to an upstream port. The host detects this Resume signal and returns "FS K" (Resume signal) onto the bus.

- 3. Set the USBCTL.WAKEUP bit to 0. (Stop remote wakeup signal output)
- 4. Set the USBCTL.NONJDETEN bit to 0. (Disable NONJ state detection)

The host suspends Resume signal send-out.

To detect the end of the Resume signal sent from the host, the following procedure is needed after Step 4 is performed.

5. Set the USBCTL JDETEN bit to 1. (Enable J state detection)

When the host suspends Resume signal send-out, the USB controller sets the USBSIEINTF.JIF bit and outputs an interrupt request to the CPU if the USBSIEINTE.JIE and USBMAININTE.SIEIE bits are both set to 1.

Note that the Resume signal from the host has EOP of LS at the end.

6. Set the USBCTL.JDETEN bit to 0. (Disable J state detection)

However, Steps 5 and 6 are not necessary when the auto-negotiation function is used, so wait for another event to be issued.

The description above assumes that the oscillator circuit is operating (the 48-MHz clock is supplied to the USB controller, and the CPU is not in SLEEP mode). If the CPU is in SLEEP mode and the oscillator is deactivated, an oscillation stabilization waiting time is required before resuming.

## **Detecting Resume**

When the USB is suspended, J state is observed on the bus (USBSTAT.LINESTAT[1:0] bits = 0x01 (J)). If K state is observed on the bus, it means the instruction for wakeup (Resume) is received from the host. At this point, the USB controller clears the USBMISCCTL.USBSNZ bit to 0 (Resume). It also sets the USBSIEINTF. NONJIF bit and outputs an interrupt request to the CPU if the USBSIEINTE.NONJIE and USBMAININTE. SIEIE bits are both set to 1. When this interrupt has occurred, perform the following processing via software.

- 1. Set the USBCTL.WAKEUP bit to 0. (Stop remote wakeup signal output)
- 2. Set the USBCTL.NONJDETEN bit to 0.(Disable NONJ state detection)

The host suspends Resume signal (K) send-out.

To detect the end of Resume signal sent from the host, the following procedure is needed after Step 2 is performed.

3. Set the USBCTL JDETEN bit to 1. (Enable J state detection)

When the host suspends Resume signal (K) send-out, the USB controller sets the USBSIEINTF.JIF bit and outputs an interrupt request to the CPU if the USBSIEINTE.JIE and USBMAININTE.SIEIE bits are both set to 1.

4. Set the USBCTL.JDETEN bit to 0. (Disable J state detection)

However, Steps 3 and 4 are not necessary when the auto-negotiation function is used, so wait for another event to be issued.

The description above assumes that the oscillator circuit is operating (the 48-MHz clock is supplied to the USB controller, and the CPU is not in SLEEP mode). If the CPU is in SLEEP mode and the oscillator is deactivated, an oscillation stabilization waiting time is required before resuming.

## Cable plug-in

For the control procedure when the USB controller is connected to the hub or the host (via cable plug-in), refer to Section 22.5.1, "Initialization." The operation of the USB controller is shown below.



Figure 22.5.8.3 Device Attach Timing

Timing parameter	Description	Value
TO	VBUS is connected and an input interrupt is generated from the Pxx port.	(Reference)
T1	The software turns the USB regulator on.	T1
	The software turns the OSC3 oscillator circuit on (if it is off) and turns the	
	PLL on after waiting for the oscillation to be stabilized.	
T2	After the USB clock is stabilized, the software sets the USBMISCCTL.US-	T1 + 4 ms < T2
	BRST, USBMISCCTL.VBUSDET, and USBMISCCTL.USBCLKEN bits to 1.	
T3	The software sets the USBCTL.USBEN bit to 1 and the USBTRCTL.OP-	T0 + 100 ms {TSIGATT} < T3
	MOD[1:0] bits to 0x0.	
T4	The software checks if the USBSTAT.LINESTAT[1:0] bits are set to 0x1 (J	
	= FS idle) and sets the USBCTL.AUTONEGOEN bit to 1.	
	The USB controller sets the USBCTL.BUSDETDIS bit to 1.	
T5	Reset is sent from the host.	T3 + 100 ms {TATTDB} < T5

Table 22.5.8.1 Device Attach Timing Values

* Parentheses { } indicate the names defined in the USB2.0 Specification.

## 22.5.9 FIFO Management

## **FIFO Memory Map**

The figure below shows the memory map for the FIFO.



The FIFO memory is divided into the number of areas for the endpoints (EP0 area + EPm general-purpose endpoints) supported in this IC.

The EP0 area is used for the endpoint 0 required for USB devices, and can be used for both IN and OUT transactions. This area is located at the beginning of the FIFO and it is used as a single buffer of which the size is determined by the maximum packet size of EP0 that is set up in the USBEP0SIZE.MAXSIZE[3:0] bits.

The EPm areas are for the general-purpose endpoints of which the endpoint number and IN/OUT direction can be configured.

Set the USBEPCTL.EPNFIFOCLR bit to 1 after an area setting is altered. Once the initial setting for the area is established, the USBEPCTL.EPNFIFOCLR bit is automatically cleared. This bit will never cause the FIFO data to be cleared. Therefore, unless the descriptor area has been changed, there is no need to re-set the information recorded within the area since it will never be cleared otherwise.

## Accessing to FIFO by CPU

Follow the procedure shown below to access the FIFO from the CPU.

#### **Reading FIFO data**

- 1. Set the USBFIFORWEN.FIFORDEN bit to 1.
- 2. Set the USBRDFIFOSEL.EPmRD bit.
- 3. Read the USBREMDATCNT.REMDAT[6:0] bits. (Check number of valid FIFO data)
- 4. Read FIFO data through the USBFIFODAT.FIFODAT[7:0] bits.

By repeatedly executing Step 4, data in the FIFO of the specified endpoint can be read one byte at a time in the order of reception.

#### Writing FIFO data

1.	Set the USBFIFORWEN.FIFOWREN bit to 1.	(Enable USBWRFIFOSEL register)
2.	Set the USBWRFIFOSEL.EPmWR bit.	(Select endpoint to write data)
3.	Read the USBREMSPCCNT.REMSPC[6:0] bits.	(Check available space in FIFO)
4.	Write data to the FIFO through the USBFIFODAT.FIF	FODAT[7:0] bits.

By repeatedly executing Step 4, data can be written to the FIFO of the specified endpoint one byte at a time. The data written to the FIFO will be transmitted in data packets in the order of writing.

## FIFO read/write using DMA

#### **Reading FIFO data**

By setting the USBMISCRDDMAEN.RDDMAEN*x* bit to 1 (DMA transfer request enabled), a DMA transfer request is sent to the DMA controller and FIFO data is transferred from the USBFIFODAT register to the specified memory via DMA Ch.*x* when a valid data is loaded into the FIFO (USBREMDATCNT.REMDAT[6:0] bits  $\neq$  0).

This automates the FIFO read procedure from Step 3 to Step 4 described above.

The transfer source/destination and control data must be set for the DMA controller and the relevant DMA channel must be enabled to start a DMA transfer in advance. For more information on DMA, refer to the "DMA Controller" chapter.

	Item	Setting example
End pointer	Transfer source	USBFIFODAT register address
	Transfer destination	Memory address to which the last received data is stored
Control data	dst_inc	0x0 (+1)
	dst_size	0x0 (byte)
	src_inc	0x3 (no increment)
	src_size	0x0 (byte)
	R_power	0x0 (arbitrated for every transfer)
	n_minus_1	Number of transfer data
	cycle_ctrl	0x1 (basic transfer)

 Table 22.5.9.1
 DMA Data Structure Configuration Example (FIFO Data Read)

## Writing FIFO data

By setting the USBMISCWRDMAEN.WRDMAEN*x* bit to 1 (DMA transfer request enabled), a DMA transfer request is sent to the DMA controller and FIFO data is transferred from the specified memory to the USBFI-FODAT register via DMA Ch.*x* when an available space is generated in the FIFO (USBREMSPCCNT.REM-SPC[6:0] bits  $\neq$  0).

This automates the FIFO write procedure from Step 3 to Step 4 described above.

The transfer source/destination and control data must be set for the DMA controller and the relevant DMA channel must be enabled to start a DMA transfer in advance. For more information on DMA, refer to the "DMA Controller" chapter.

Seiko Epson Corporation

(Enable USBRDFIFOSEL register)

(Select endpoint to read data)

	Item	Setting example
End pointer	Transfer source	Memory address in which the last write data is stored
	Transfer destination	USBFIFODAT register address
Control data	dst_inc	0x3 (no increment)
	dst_size	0x0 (byte)
	src_inc	0x0 (+1)
	src_size	0x0 (byte)
	R_power	0x0 (arbitrated for every transfer)
	n_minus_1	Number of transfer data
	cycle_ctrl	0x1 (basic transfer)

Table 22.5.9.2 DMA Data Structure Configuration Example (FIFO Data Write)

## Limiting Access to FIFO

The FIFO of the USB controller allows concurrent execution of data reception/transmission between the USB controller and the USB host and/or writing/reading to and from the CPU. Because of this, there are two limitations for accessing the FIFO from the CPU:

- From the CPU, no writing is allowed to the same endpoint while the USB host is writing data to the FIFO.
- No reading from the CPU is allowed from the same endpoint while the USB host is reading from the FIFO.

Never execute these operations; they may destroy data continuity.

## 22.5.10 Snooze

The USB controller has a Snooze function to reduce current consumption when it is not active or in Suspend state. When the SNOOZE signal is asserted by writing 1 to the USBMISCCTL.USBSNZ bit, the following procedure is performed allowing the 48 MHz clock input to be disabled after 5 clock cycles have elapsed.

- 1. Disables USB differential comparator.
- 2. Enables asynchronous accesses to the USBSIEINTF.NONJIF bits. (The USB interface input can be monitored.)
- 3. Masks read/write from/to the USB registers.
- 4. Masks USB interrupts.

When the SNOOZE signal is negated, the USB controller resumes operating after 5 clocks have elapsed. (The oscillation must be stabilized at this time.)



- **Notes:** Be sure to avoid accessing to the USB controller for five 48-MHz clock cycles from the SNOOZE signal being asserted/negated.
  - Be sure to avoid accessing to the FIFO while the 48 MHz clock is stopped after the SNOOZE signal is asserted.
# 22.6 Interrupts

The USB controller has a function to generate the interrupts shown in Table 22.6.1.

Interrupt	Interrupt flag	Set condition	Clear condition
SIE	USBMAININTF. SIEIF *	When an interrupt flag in the USBSIEINTF register for the interrupt that has been enabled is set	Clearing the interrupt flag in the USBSIEINTF register or software
General-purpose endpoint	USBMAININTF. GPEPIF *	When an interrupt flag in the USBGPEPINTF register for the interrupt that has been enabled is set	Clearing the interrupt flag in the USBGPEPINTF register or soft- ware reset
EP0	USBMAININTF. EP0IF *	When an interrupt flag in the USBEP0INTF register for the interrupt that has been enabled is set	Clearing the interrupt flag in the USBEP0INTF register or software reset
EP0 Setup completion	USBMAININTF. EP0SETIF	When the setup stage in a control transfer is completed	Writing 1 or software reset
NonJ detection	USBSIEINTF. NONJIF	When a state other than J state is detected on the USB bus	Writing 1 or software reset
Reset detection	USBSIEINTF. RESETIF	When Reset state is detected on the USB bus	Writing 1 or software reset
Suspend detection	USBSIEINTF. SUSPENDIF	When Suspend state is detected on the USB bus	Writing 1 or software reset
SOF reception	USBSIEINTF. SOFIF	When an SOF token is received	Writing 1 or software reset
J detection	USBSIEINTF.JIF	When J state is detected on the USB bus	Writing 1 or software reset
Automatic	USBSIEINTF.	When the automatic address setting operation in a control	Writing 1 or software reset
address setting completion	ATADDRIF	transfer is completed	
EPm	USBGPEPINTF. EP <i>m</i> IF *	When an interrupt flag in the USBEPmINTF register for the interrupt that has been enabled is set	Clearing the interrupt flag in the USBEPmINTF register or software reset
EP0 ACK reception	USBEP0INTF. INACKIF	When an ACK is received in an EP0 IN transaction	Writing 1 or software reset
EP0 ACK transmission	USBEP0INTF. OUTACKIF	When an ACK is transmitted in an EP0 OUT transaction	Writing 1 or software reset
EP0 NAK reception	USBEP0INTF. INNAKIF	When a NAK is received in an EP0 IN transaction	Writing 1 or software reset
EP0 NAK transmission	USBEP0INTF. OUTNAKIF	When a NAK is transmitted in an EP0 OUT transaction	Writing 1 or software reset
EP0 STALL reception	USBEPOINTF. INERRIF	When a STALL is received in an EP0 IN transaction, a packet error has occurred, or a handshake time out has occurred	Writing 1 or software reset
EP0 STALL transmission	USBEP0INTF. OUTERRIF	When a STALL is transmitted in an EP0 OUT transaction or a packet error has occurred	Writing 1 or software reset
EPm short packet reception	USBEP <i>m</i> INTF. OUTSHACKIF	When a short packet is received and an ACK is transmitted in an EPm OUT transaction	Writing 1 or software reset
EPm ACK reception	USBEP <i>m</i> INTF.	When an ACK is received in an EPm IN transaction	Writing 1 or software reset
EPm ACK	USBEP <i>m</i> INTF.	When an ACK is transmitted in an EPm OUT transaction	Writing 1 or software reset
EP <i>m</i> NAK	USBEP <i>m</i> INTF.	When a NAK is received in an EPm IN transaction	Writing 1 or software reset
EPm NAK		When a NAK is transmitted in an EDm OLIT transcation	Writing 1 or software reast
transmission	OUTNAKIF		winning i or sontware reset
EPm STALL reception	USBEP <i>m</i> INTF. INERRIF	When a STALL is received in an EPm IN transaction	Writing 1 or software reset
EPm STALL transmission	USBEP <i>m</i> INTF.	When a STALL is transmitted in an EPm OUT transaction	Writing 1 or software reset

Table 22.6.1 USB Interrupt Function

* These interrupt flags are provided to easily determine the cause of the interrupt generated; they indicate that an interrupt flag in an interrupt group of which interrupt has been enabled is set.

#### 22 USB 2.0 FS DEVICE CONTROLLER (USB, USBMISC)



Figure 22.6.1 USB Interrupt System

The USB controller provides interrupt enable bits corresponding to the interrupt flags in the USBMAININTF register. An interrupt request is sent to the CPU only when the interrupt flag, of which interrupt has been enabled by the interrupt enable bit, is set.

The interrupt flags other than above also have a corresponding interrupt enable bit. These interrupt flags do not cause an interrupt request to be output directly to the CPU. When an interrupt flag for the interrupt enabled is set, the higher-level interrupt flag, which is marked with *, is set simultaneously.

For more information on interrupt control, refer to the "Interrupt" chapter.

# 22.7 DMA Transfer Requests

The USB controller has a function to generate DMA transfer requests from the causes shown in Table 22.7.1.

Cause to request DMA transfer	DMA transfer request flag	DMA transfer request issuing timing					
Write endpoint status	USBREMSPCCNT register status flag	When an available space is generated in the FIFO					
	(internal signal)	selected by the USBWRFIFOSEL.EPmWR bit					
Read endpoint status	USBREMDATCNT register status flag	When valid data is loaded into the FIFO selected by					
	(internal signal)	the USBRDFIFOSEL.EPmRD bit.					

Table 22.7.1 DMA Transfer Request Causes of USB Controller

The USB controller provides DMA transfer request enable bits corresponding to each DMA transfer request flag shown above for the number of DMA channels. A DMA transfer request is sent to the pertinent channel of the DMA controller only when the DMA transfer request flag, of which DMA transfer has been enabled by the DMA transfer request enable bit, is set. For more information on the DMA control, refer to the "DMA Controller" chapter.

# 22.8 Control Registers

# **USB Control Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
USBCTL	7	BUSDETDIS	0	H0/S0	R/W	-
	6	AUTONEGOEN	0	H0/S0	R/W	
	5	NONJDETEN	0	H0/S0	R/W	
	4	JDETEN	0	H0/S0	R/W	
	3	WAKEUP	0	H0/S0	R/W	
	2–1	-	0x0	-	R	
	0	USBEN	0	H0/S0	R/W	

#### Bit 7 BUSDETDIS

This bit disables the automatic Reset/Suspend state detection.

1 (R/W): Disable automatic Reset/Suspend state detection

0 (R/W): Enable automatic Reset/Suspend state detection

Setting this bit to 1 disables the automatic detection of the USB Reset and Suspend states. When this bit is set to 0, activities on the USB bus is monitored to detect the Reset/Suspend state.

If the bus activities cannot be detected within 3 ms, the USB bus is determined to be Suspend state, or if "SE0" longer than 2.5  $\mu$ s is detected, the USB bus is determined to be Reset state, and then the relevant cause of interrupt (USBSIEINTF.SUSPENDIF, USBSIEINTF.RESETIF) is set.

If the USBSIEINTF.RESETIF or USBSIEINTF.SUSPENDIF bit is set to 1, set the USBCTL.BUS-DETDIS bit to 1 to disable detection when the Reset/Suspend state is continued.

When using the auto-negotiation function, do not set this bit to 1.

## Bit 6 AUTONEGOEN

This bit enables the auto-negotiation function.

1 (R/W): Enable auto-negotiation function

0 (R/W): Disable auto-negotiation function

For detailed information on the auto-negotiation function, refer to Section 22.5.7, "Auto-Negotiation Function."

#### Bit 5 NONJDETEN

This bit enables the NonJ state detection function.

1 (R/W): Enable NonJ state detection

0 (R/W): Disable NonJ state detection

This bit is automatically set to 1 to enable the detection of the NonJ state if Suspend state is detected on the USB bus when the auto-negotiation function is enabled. To return from the Suspend state, set this bit to 0.

The NonJ state can be detected only when this bit is set. For detailed information on the auto-negotiation function, refer to Section 22.5.7, "Auto-Negotiation Function."

# Bit 4 JDETEN

This bit enables the J state detection function.

1 (R/W): Enable J state detection

0 (R/W): Disable J state detection

If a J state is detected after this bit is set to 1, the USBSIEINTF.JIF bit is set (the USBMAININTF. SIEIF bit is also set when USBSIEINTE.JIE bit = 1).

# Bit 3 WAKEUP

This bit controls the remote wakeup signal (K) output.

1 (R/W): Start remote wakeup signal output

0 (R/W): Stop remote wakeup signal output

Setting this bit to 1 outputs the remote wakeup signal (K) to the USB port. Within the time between 1 ms and 15 ms after starting to send the remote wakeup signal, set this bit to 0 to stop sending the signal.

#### Bits 2–1 Reserved

# Bit 0 UEBEN

This bit enables the USB controller operations.

1 (R/W): Enable USB controller operations

0 (R/W): Disable USB controller operations

Since this bit is cleared to 0 after an initial reset, all USB functions are stopped. The operation as a USB device will be enabled by setting this bit to 1 after the configuration of this USB controller has completed.

# USB Transceiver Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
USBTRCTL	7	DPPUEN	0	H0/S0	R/W	_
	6–2	-	0x00	-	R	
	1–0	OPMOD[1:0]	0x1	H0/S0	R/W	

# Bit 7 DPPUEN

This bit enables the USB_DP pin (D+ line) pull-up resistor (FS termination).

1 (R/W): Enable pull-up

0 (R/W): Disable pull-up

**Note**: Always enable this pull-up while the USB controller is enabled, as this IC supports FS mode only.

# Bits 6–2 Reserved

# Bits 1–0 OPMOD[1:0]

These bits set the operation mode of the USB transceiver unit.

It is not necessary to set up this bit normally, excluding when the USB cable is pulled out (*) and during test mode.

	•
USBTRCTL.OPMOD[1:0] bits	Operation mode
0x3	Reserved
0x2	Disable Bit Stuffing and NRZI Encoding
0x1	Non-Driving
0x0	Normal Operation

Table 22.8.1 USB Transceiver Operation Mode

* When the USB cable is pulled out, it is recommended to set these bits to 0x1. (This IC does not need the operation above, as it assumes that power is turned off when the cable is disconnected.)

# **USB Status Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
USBSTAT	7	VBUSSTAT	Х	-	R	-
	6	FSMOD	Х	-	R	
	5–2	-	Х	-	R	
	1–0	LINESTAT[1:0]	Х	-	R	

This register is effective during Snooze as well.

# Bit 7 VBUSSTAT

This bit indicates the VBUS pin status.

1 (R):  $V_{BUS} = High$ 

0 (R): VBUS = Low

# Bit 6 FSMOD

This bit indicates the currently set transfer mode, FS (Full-Speed) mode or LS (Low-Speed) mode.

- 1 (R): FS mode
- 0 (R): LS mode

Note: This bit is fixed at 1, as this IC supports FS mode only.

# Bits 5–2 Reserved

# Bits 1–0 LINESTAT[1:0]

These bits indicate the USB bus status (signal status at the USB_DP and USB_DM pins).

USBSTAT.LINESTAT[1:0] bits	USB bus status					
0x3	SE1					
0x2	K					
0x1	J					
0x0	SE0					

#### Table 22.8.2 USB Bus Status

# **USB Endpoint Control Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
USBEPCTL	7	EPNFNAKSET	0	H0/S0	R/W	_
	6	EPMFSTALLSET	0	H0/S0	R/W	-
	5	EPNFIFOCLR	0	H0/S0	R/W	
	4–1	-	0x0	-	R	
	0	EP0FIFOCLR	0	H0/S0	R/W	

# Bit 7 EPNFNAKSET

This bit sets the FNAK bit of all endpoints to 1.

1 (R/W): Set FNAK bits

0 (R/W): Ineffective

Writing 1 to this bit sets all the USBEP0ICTL.FNAK, USBEP0OCTL.FNAK, and USBEPmCTL. FNAK bits to 1. After that, this bit automatically reverts to 0.

# Bit 6 EPMFSTALLSET

This bit sets the FSTALL bit of all the general-purpose endpoints to 1. 1 (R/W): Set FSTALL bits 0 (R/W): Ineffective

Writing 1 to this bit sets all the USBEPmCTL.FSTALL bits to 1. After that, this bit automatically reverts to 0.

# Bit 5 EPNFIFOCLR

This bit clears the FIFOs of all endpoints. 1 (R/W): Clear FIFOs 0 (R/W): Ineffective

Writing 1 to this bit clears all the FIFOs. After that, this bit automatically reverts to 0.

# Bits 4–1 Reserved

# Bit 0 EP0FIFOCLR

This bit clears the EP0 FIFO.

1 (R/W): Clear EP0 FIFO

0 (R/W): Ineffective

Writing 1 to this bit clears the EP0 FIFO only. After that, this bit automatically reverts to 0.

# USB General-Purpose Endpoint FIFO Clear Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
USBGPEPFIFOCLR	7–3	-	0x00	-	R	_
	2	EPCFIFOCLR	0	H0/S0	R/W	
	1	EPBFIFOCLR	0	H0/S0	R/W	
	0	EPAFIFOCLR	0	H0/S0	R/W	

# Bits 7–3 Reserved

# Bit 2 EPCFIFOCLR

This bit clears the EPc FIFO. 1 (R/W): Clear EPc FIFO 0 (R/W): Ineffective Writing 1 to this bit clears the EPc FIFO only. After that, this bit automatically reverts to 0.

# Bit 1 EPBFIFOCLR

This bit clears the EPb FIFO. 1 (R/W): Clear EPb FIFO 0 (R/W): Ineffective

Writing 1 to this bit clears the EPb FIFO only. After that, this bit automatically reverts to 0.

# Bit 0 EPAFIFOCLR

This bit clears the EPa FIFO. 1 (R/W): Clear EPa FIFO 0 (R/W): Ineffective

Writing 1 to this bit clears the EPa FIFO only. After that, this bit automatically reverts to 0.

# **USB FIFO Read Cycle Setup Register**

			<u> </u>			
Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
USBFIFORDCYC	7–2	_	0x00	-	R	-
	1–0	RDCYC[1:0]	0x3	H0/S0	R/W	

#### Bits 7–2 Reserved

# Bits 1–0 RDCYC[1:0]

These bits set the number of FIFO read access cycles.

Table 22.8.3 FIFO Read Access Cycle Setting

USBFIFORDCYC.RDCYC[1:0] bits	Number of read access cycles	SYSCLK frequency
0x3	4 cycles	21.7 MHz or lower
0x2	3 cycles	
0x1	2 cycles	
0x0	1 cycle	8 MHz or lower

# **USB Revision Number Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
USBREV	7–0	REVNUM[7:0]	0x12	H0/S0	R	-

This register is effective during Snooze as well.

# Bits 7–0 REVNUM[7:0]

These bits show the revision number of the USB controller.

# USB EP0 Setup Data Registers 0-7

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
USBEP0SETUP0	7–0	BMREQTYP[7:0]	0x00	-	R	-
USBEP0SETUP1	7–0	BREQ[7:0]	0x00	-	R	_
USBEP0SETUP2	7–0	WVAL[7:0]	0x00	-	R	_
USBEP0SETUP3	7–0	WVAL[15:8]	0x00	-	R	_
USBEP0SETUP4	7–0	WINDX[7:0]	0x00	-	R	_
USBEP0SETUP5	7–0	WINDX[15:8]	0x00	-	R	_
USBEP0SETUP6	7–0	WLEN[7:0]	0x00	-	R	-
USBEP0SETUP7	7–0	WLEN[15:8]	0x00	-	R	_

Eight-byte data received at EP0 SETUP stage are stored from the USBEP0SETUP0 register sequentially. The contents stored in each register are listed below.

#### 22 USB 2.0 FS DEVICE CONTROLLER (USB, USBMISC)

USBEP0SETUP0.BMREQTYP[7:0] bits:	BmRequestType
USBEP0SETUP1.BREQ[7:0] bits:	BRequest
USBEP0SETUP2.WVAL[7:0] bits:	Low-order 8 bits of Wvalue
USBEP0SETUP3.WVAL[15:8] bits:	High-order 8 bits of Wvalue
USBEP0SETUP4.WINDX[7:0] bits:	Low-order 8 bits of WIndex
USBEP0SETUP5.WINDX[15:8] bits:	High-order 8 bits of WIndex
USBEP0SETUP6.WLEN[7:0] bits:	Low-order 8 bits of WLength
USBEP0SETUP7.WLEN[15:8] bits:	High-order 8 bits of WLength

# **USB Address Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
USBADDR	7	ATADDR	0	-	R/W	_
	6–0	USBADDR[6:0]	0x00	H0/S0	R/W	

# Bit 7 ATADDR

This bit enables the automatic address setting function.

1 (R/W): Enable automatic address setting function

0 (R/W): Disable automatic address setting function

When this bit is set to 1 after receiving the SetAddress() request in the setup stage of a control transfer and before starting the status stage, the address sent from the host will be written into the USBAD-DR.USBADDR[6:0] bits. For details of the control procedure, refer to "Automatic address setting function" in Section 22.5.4, "Control Transfer."

The USBADDR.USBADDR[6:0] bits are writable, therefore, use a read-modify-write instruction to set the USBADDR.ATADDR bit so that the USBADDR.USBADDR[6:0] bits will not be altered.

#### Bits 6-0 USBADDR[6:0]

These bits set the USB address.

The USB address is written automatically by the automatic address setting function. Or it can be written via software.

# **USB EP0 Configuration Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
USBEP0CFG	7	DIR	0	H0/S0	R/W	_
	6–0	-	0x00	-	R	

## Bit 7 DIR

This bit sets the EP0 transfer direction. 1 (R/W): IN 0 (R/W): OUT

Determine the transfer direction from the request received at the setup stage and set it with this bit.

#### Bits 6–0 Reserved

# **USB EP0 Maximum Packet Size Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
USBEP0SIZE	7	_	0	-	R	-
	6–3	MAXSIZE[3:0]	0x1	H0/S0	R/W	
	2–0		0x0	-	R	

## Bit 7 Reserved

#### Bits 6–3 MAXSIZE[3:0]

These bits set the EP0 maximum packet size.

USBEP0SIZE.MAXSIZE[3:0] bits	EP0 maximum packet size
0x8	64 bytes
0x4	32 bytes
0x2	16 bytes
0x1	8 bytes
Other	Setting prohibited

Table 22.9.4		Movimum	Dealert	0170
Table 22.6.4	EPU	Maximum	Packet	Size

It should be set to the same size as the bMaxPacketSize0 in the Device Descriptor.

## Bits 2–0 Reserved

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks					
USBEPOICTL	7	-	0	-	R	-					
	6	SPKTEN	0	H0/S0	R/W						
	5	-	0	-	R						
	4	TGLSTAT	0	H0/S0	R						
	3	TGLSET	0	H0/S0	W	Read as 0.					
	2	TGLCLR	0	H0/S0	W						
	1	FNAK	0	H0/S0	R/W	_					
	0	FSTALL	0	H0/S0	R/W						

# **USB EP0 IN Transaction Control Register**

#### Bit 7 Reserved

## Bit 6 SPKTEN

This bit enables short packet transmissions.

1 (R/W): Enable short packet transmission

0 (R/W): Disable short packet transmission

Setting this bit to 1 enables data transmission within the FIFO that is less than the quantity specified for the maximum packet size, as a short packet for the IN transaction of EP0. When the IN transaction that transmitted short packets completes, this bit is automatically cleared to 0. When a packet of the maximum packet size is transmitted, this bit is not cleared.

If this bit is set to 1 when the FIFO has no data, a zero-length packet can be transmitted for the IN token from the host.

**Note:** If data is written into the EP0 FIFO that is in a transmission process with a packet to which the USBEP0ICTL.SPKTEN bit is set to 1, that data may be included in transmission. Therefore, do not write data into the FIFO until the packet transmission completes and this bit is cleared.

# Bit 5 Reserved

# Bit 4 TGLSTAT

This bit indicates the status of the toggle sequence bit in the IN transaction of EP0.

1 (R): Toggle sequence bit = 1 (DATA1)

0 (R): Toggle sequence bit = 0 (DATA0)

# Bit 3 TGLSET

This bit sets the toggle sequence bit in the IN transaction of EP0, to 1.

- 1 (W): Set toggle sequence bit
- 0 (W): Ineffective
- 0 (R): Always 0 when being read

# Bit 2 TGLCLR

This bit clears the toggle sequence bit in the IN transaction of EP0, to 0.

- 1 (W): Clear toggle sequence bit
- 0 (W): Ineffective
- 0 (R): Always 0 when being read

#### Bit 1 FNAK

This bit configures EP0 to return a NAK response for IN transactions.

1 (R/W): Enable NAK response

0 (R/W): Disable NAK response

When this bit is set to 1, a NAK response is returned for the IN transaction of EP0, regardless of the FIFO data quantity.

When the USBMAININTF.EPOSETIF bit is set to 1 upon completion of the setup stage, this bit is set to 1, and cannot be cleared to 0 as long as the USBMAININTF.EPOSETIF bit is 1. When an IN transaction that transmitted short packets completes, this bit is set to 1.

## Bit 0 FSTALL

This bit configures EP0 to return a STALL response for IN transactions.

1 (R/W): Enable STALL response

0 (R/W): Disable STALL response

When this bit is set to 1, a STALL response is returned for the IN transaction of EP0.

This bit has a priority over the setting of the USBEP0ICTL.FNAK bit.

When the USBMAININTF.EPOSETIF bit is set to 1 upon completion of the setup stage, this bit is cleared to 0, and cannot be set to 1 as long as the USBMAININTF.EPOSETIF bit is 1.

# **USB EP0 OUT Transaction Control Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
USBEP0OCTL	7	AUTOFNAK	0	H0/S0	R/W	_
	6–5	-	0x0	H0/S0	R/W	
	4	TGLSTAT	0	H0/S0	R	
	3	TGLSET	0	H0/S0	W	Read as 0.
	2	TGLCLR	0	H0/S0	W	
	1	FNAK	0	H0/S0	R/W	_
	0	FSTALL	0	H0/S0	R/W	

# Bit 7 AUTOFNAK

This bit enables the automatic USBEP0OCTL.FNAK bit setting function.

1 (R/W): Enable automatic FNAK setting

0 (R/W): Disable automatic FNAK setting

When this bit is set to 1, the USBEPOOCTL.FNAK bit is set to 1 when the OUT transaction of EPO completes normally.

# Bits 6–5 Reserved

# Bit 4 TGLSTAT

This bit indicates the status of the toggle sequence bit in the OUT transaction of EP0.

- 1 (R): Toggle sequence bit = 1 (DATA1)
- 0 (R): Toggle sequence bit = 0 (DATA0)

# Bit 3 TGLSET

This bit sets the toggle sequence bit in the OUT transaction of EP0, to 1.

- 1 (W): Set toggle sequence bit
- 0 (W): Ineffective
- 0 (R): Always 0 when being read

# Bit 2 TGLCLR

This bit clears the toggle sequence bit in the OUT transaction of EP0, to 0.

- 1 (W): Clear toggle sequence bit
- 0 (W): Ineffective
- 0 (R): Always 0 when being read

# Bit 1 FNAK

This bit configures EP0 to return a NAK response for OUT transactions. 1 (R/W): Enable NAK response

0 (R/W): Disable NAK response

When this bit is set to 1, a NAK response is returned for the OUT transaction of EP0, regardless of the FIFO space capacity.

When the USBMAININTF.EPOSETIF bit is set to 1 upon completion of the setup stage, this bit is set to 1, and cannot be cleared to 0 as long as the USBMAININTF.EPOSETIF bit is 1.

## Bit 0 FSTALL

This bit configures EP0 to return a STALL response for OUT transactions.

1 (R/W): Enable STALL response

0 (R/W): Disable STALL response

If this bit is set to 1, a STALL response is returned for the OUT transaction of EP0.

This bit has a priority over the setting of the USBEP0OCTL.FNAK bit.

When the USBMAININTF.EP0SETIF bit is set to 1 upon completion of the setup stage, this bit is cleared to 0, and cannot be set to 1 as long as the USBMAININTF.EP0SETIF bit is 1.

# USB EPm Control Registers

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
USBEP <i>m</i> CTL	7	AUTOFNAK	0	H0/S0	R/W	_
	6	SPKTEN	0	H0/S0	R/W	
	5	AUTOFNAKDIS	0	H0/S0	R/W	
	4	TGLSTAT	0	H0/S0	R	
	3	TGLSET	0	H0/S0	W	Read as 0.
	2	TGLCLR	0	H0/S0	W	
	1	FNAK	0	H0/S0	R/W	_
	0	FSTALL	0	H0/S0	R/W	

# Bit 7 AUTOFNAK

This bit enables the automatic USBEPmCTL.FNAK bit setting function.

1 (R/W): Enable automatic FNAK setting

0 (R/W): Disable automatic FNAK setting

If this bit is set to 1, the USBEP*m*CTL.FNAK bit is set to 1 when the transaction of EP*m* completes normally.

# Bit 6 SPKTEN

This bit enables short packet transmissions.

1 (R/W): Enable short packet transmission

0 (R/W): Disable short packet transmission

Setting this bit to 1 enables data transmission within the FIFO that is less than the quantity specified for the maximum packet size, as a short packet for the IN transaction of EPm. When the IN transaction that transmitted short packets completes, this bit is automatically cleared to 0. When a packet of the maximum packet size is transmitted, this bit is not cleared.

If this bit is set to 1 when the FIFO has no data, a zero-length packet can be transmitted for the IN token from the host.

**Note**: If data is written into the EP*m* FIFO that is in a transmission process with a packet to which the USBEP*m*CTL.SPKTEN bit is set to 1, that data may be included in transmission. Therefore, do not write data into the FIFO until the packet transmission completes and this bit is cleared.

#### Bit 5 AUTOFNAKDIS

This bit disables the automatic USBEPmCTL.FNAK bit setting function when a short packet is received.

1 (R/W): Disable automatic FNAK setting (when a short packet is received)

0 (R/W): Enable automatic FNAK setting (when a short packet is received)

If this bit is set to 0 and if a short packet is received when an OUT transaction has completed normally, the USBEPmCTL.FNAK bit is automatically set to 1. When the USBEPmCTL.AUTOFNAKDIS bit is set to 1, this function is disabled.

When the USBEPmCTL.AUTOFNAK bit is set to 1, it has a priority over the setting of this bit.

#### Bit 4 TGLSTAT

This bit indicates the status of the toggle sequence bit of EPm.

- 1 (R): Toggle sequence bit = 1 (DATA1)
- 0 (R): Toggle sequence bit = 0 (DATA0)

#### Bit 3 TGLSET

This bit sets the toggle sequence bit of EPm to 1.

- 1 (W): Set toggle sequence bit
- 0 (W): Ineffective
- 0 (R): Always 0 when being read

#### Bit 2 TGLCLR

This bit clears the toggle sequence bit of EPm to 0.

- 1 (W): Clear toggle sequence bit
- 0 (W): Ineffective
- 0 (R): Always 0 when being read

#### Bit 1 FNAK

This bit configures EPm to return a NAK response for transactions.

1 (R/W): Enable NAK response

0 (R/W): Disable NAK response

When this bit is set to 1, a NAK response is returned for the transaction of EPm, regardless of the FIFO data quantity or space capacity.

#### Bit 0 FSTALL

This bit configures EPm to return a STALL response for transactions.

1 (R/W): Enable STALL response

0 (R/W): Disable STALL response

When this bit is set to 1, a STALL response is returned for the transaction of EPm. This bit has a priority over the setting of the USBEPmCTL.FNAK bit.

# **USB EPm Configuration Registers**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
USBEP <i>m</i> CFG	7	DIR	0	H0/S0	R/W	-
	6	TGLMOD	0	H0/S0	R/W	
	5	EPEN	0	H0/S0	R/W	
	4	-	0	-	R	-
	3–0	EPNUM[3:0]	0x0	H0/S0	R/W	

#### Bit 7 DIR

This bit sets the transfer direction of EP*m*. 1 (R/W): IN 0 (R/W): OUT

# Bit 6 TGLMOD

This bit sets the operation mode of the toggle sequence bit. (Effective only for the IN transaction) 1 (R/W): Always toggle mode (Always performs the toggle for every transaction.) 0 (R/W): Normal toggle mode (Performs the toggle only when the transaction ends normally.)

# Bit 5 EPEN

This bit enables EPm. 1 (R/W): Enable EPm 0 (R/W): Disable EPm

Setting this bit to 1 configures EPm to get ready to operate. When this bit is 0, access to EPm is neglected. Perform the setup according to the SetConfiguration() request from the host.

## Bit 4 Reserved

# Bits 3–0 EPNUM[3:0]

These bits set the EPm endpoint number (0x1–0xf).

**Note:** Perform the configuration so that combination of the USBEP*m*CFG.EPNUM[3:0] and USBEP*m*-CFG.DIR bit settings do not overlap with those of other endpoints.

# USB EPm Maximum Packet Size Registers

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
USBEP <i>m</i> MAXSZ	7	-	0	-	R	_
	6–0	MAXSIZE[6:0]	0x00	H0/S0	R/W	

#### Bit 7 Reserved

#### Bits 6–0 MAXSIZE[6:0]

These bits set the maximum packet size of EPm.

When using EP*m* for bulk transfer, 8, 16, 32, or 64 bytes (0x08, 0x10, 0x20, or 0x40) should be set. When using EP*m* for interrupt transfer, any size up to 64 bytes (0x01-0x40) can be set.

If the EPm area is smaller than specified here, the USB controller does not operate normally. It should be set to the same size as the wMaxPacketSize in the Endpoint Descriptor.

# **USB Read FIFO Select Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
USBRDFIFOSEL	7–3	-	0x00	-	R	_
	2	EPCRD	0	H0/S0	R/W	
	1	EPBRD	0	H0/S0	R/W	
	0	EPARD	0	H0/S0	R/W	

This register is used to select the FIFO of an endpoint from which data is read from the CPU. This register is effective when the USBFIFORWEN.FIFORDEN bit = 1.

For more information on the FIFO data reading procedure, refer to "Accessing to FIFO by CPU" in Section 22.5.9, "FIFO Management."

- Bits 7–3 Reserved
- Bit 2 EPCRD
- Bit 1 EPBRD

#### Bit 0 EPARD

These bits specify the endpoint from which FIFO data is read.

- 1 (R/W): Enable reading data from EPm FIFO
- 0 (R/W): Disable reading data from EPm FIFO

- **Notes:** This register contains the EP*m*RD bits of the number of general-purpose endpoints. However, this register allows only one bit to be set to 1 at a time. When 1 is written to multiple bits at the same time, writing in the higher order bit is regarded as valid. When all bits are set to 0, the EP0 FIFO is selected.
  - The USB controller allows software to specify an IN direction endpoint using the USBRDFI-FOSEL.EPmRD bit to read transmit data from the FIFO. However, before reading data, set the USBEP0ICTL.FNAK or USBEPmCTL.FNAK bit so that the USB controller will not respond to an IN transaction and transmit data.

# **USB Write FIFO Select Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
USBWRFIFOSEL	7–3	_	0x00	-	R	-
	2	EPCWR	0	H0/S0	R/W	
	1	EPBWR	0	H0/S0	R/W	
	0	EPAWR	0	H0/S0	R/W	

This register is used to select the FIFO of an endpoint to which data is written from the CPU. This register is effective when the USBFIFORWEN. FIFOWREN bit = 1.

For more information on the FIFO data writing procedure, refer to "Accessing to FIFO by CPU" in Section 22.5.9, "FIFO Management."

# Bits 7–3 Reserved

- Bit 2 EPCWR
- Bit 1 EPBWR
- Bit 0 EPAWR

These bits specify the endpoint to which FIFO data is written.

- 1 (R/W): Enable writing data to EPm FIFO
- 0 (R/W): Disable writing data to EPm FIFO
- **Notes:** This register contains the EP*m*WR bits of the number of general-purpose endpoints. However, this register allows only one bit to be set to 1 at a time. When 1 is written to multiple bits at the same time, writing in the higher order bit is regarded as valid. When all bits are set to 0, the EP0 FIFO is selected.
  - The USB controller allows software to specify an OUT direction endpoint using the USB-WRFIFOSEL.EPmWR bit to write data to the FIFO. However, before writing data, set the US-BEP0OCTL.FNAK or USBEPmCTL.FNAK bit so that the USB controller will not receive data in an OUT transaction.

# **USB FIFO Read/Write Enable Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
USBFIFORWEN	7–2	-	0x00	-	R	-
	1	FIFOWREN	0	H0/S0	R/W	
	0	FIFORDEN	0	H0/S0	R/W	

# Bits 7–2 Reserved

# Bit 1 FIFOWREN

This bit enables the USBWRFIFOSEL register.

1 (R/W): Enable USBWRFIFOSEL register

0 (R/W): Disable USBWRFIFOSEL register

When this bit is set to 1, the CPU can write data to the FIFO of the endpoint selected by the USB-WRFIFOSEL register.

# Bit 0 FIFORDEN

This bit enables the USBRDFIFOSEL register. 1 (R/W): Enable USBRDFIFOSEL register 0 (R/W): Disable USBRDFIFOSEL register

When this bit is set to 1, the CPU can read data from the FIFO of the endpoint selected by the US-BRDFIFOSEL register.

# **USB Remaining FIFO Data Count Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
USBREMDATCNT	7	-	0	-	R	_
	6–0	REMDAT[6:0]	0x00	H0/S0	R	

# Bit 7 Reserved

# Bits 6–0 REMDAT[6:0]

These bits show the remaining data quantity in the FIFO of the endpoint selected by the USBRDFI-FOSEL register.

# **USB Remaining FIFO Space Count Register**

	<u> </u>			<u> </u>		
Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
USBREMSPCCNT	7	-	0	-	R	-
	6–0	REMSPC[6:0]	0x08	H0/S0	R	

# Bit7 Reserved

# Bit6-0 REMSPC[6:0]

These bits show the available space capacity in the FIFO of the endpoint selected by the USBWRFI-FOSEL register.

# **USB Debug RAM Address Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
USBDBGRAM ADDR	7–0	DRAMADDR[7:0]	0x00	H0/S0	R/W	-

# Bits 7–0 DRAMADDR[7:0]

These bits specify the read/write start address of the FIFO for debugging without an FIFO area allocation. Any address within the entire FIFO area from address 0x00 to address 0xff (256 bytes) can be specified.

The address set in the USBDBGRAMADDR.DRAMADDR[7:0] bits is incremented by 1 every time data is read/written from/to the FIFO during debugging. Refer to the description of the USBDB-GRAMDAT register for how to read/write data from/to the FIFO.

# **USB Main Interrupt Flag Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
USBMAININTF	7	SIEIF	0	H0/S0	R	Cleared by writing 1 to the interrupt flag in the USBSIEINTF register.
	6	GPEPIF	0	H0/S0	R	Cleared by writing 1 to the interrupt flag in the USBEP <i>m</i> INTF register.
	5–2	-	0x0	-	R	-
	1	EP0IF	0	H0/S0	R	Cleared by writing 1 to the interrupt flag in the USBEP0INTF register.
	0	EP0SETIF	0	H0/S0	R/W	Cleared by writing 1.

#### Bits 5–2 Reserved

- Bit 7 SIEIF
- Bit 6 GPEPIF
- Bit 1 EP0IF

These bits indicate the interrupt cause occurrence status in each USB interrupt group.

- 1 (R): Cause of interrupt occurred
- 0 (R): No cause of interrupt occurred

These bits are set if a cause of interrupt, which is assigned to the registers shown below, occurs when the interrupt enable bit corresponding to the cause of interrupt is set to 1. These bits are cleared at the same time the interrupt flag in the following register is cleared by writing 1.

USBMAININTF.SIEIF bit: USBSIEINTF register

USBMAININTF.GPEPIF bit: USBGPEPINTF register

USBMAININTF.EP0IF bit: USBEP0INTF register

The USBMAININTF.SIEIF bit can be read during Snooze as well.

#### Bit 0 EP0SETIF

This bit indicates the EP0 setup completion interrupt cause occurrence status.

- 1 (R): Cause of interrupt occurred
- 0 (R): No cause of interrupt occurred
- 1 (W): Clear flag
- 0 (W): Ineffective

When the interrupt is enabled using the corresponding interrupt enable bit (USBMAININTE register), setting the interrupt flag in this register outputs an interrupt request to the CPU.

# **USB SIE Interrupt Flag Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
USBSIEINTF	7	_	0	-	R	_
	6	NONJIF	0	H0/S0	R/W	Cleared by writing 1.
	5	RESETIF	0	H0/S0	R/W	
	4	SUSPENDIF	0	H0/S0	R/W	
	3	SOFIF	0	H0/S0	R/W	
	2	JIF	0	H0/S0	R/W	
	1	-	0	-	R	_
	0	ATADDRIF	0	H0/S0	R/W	Cleared by writing 1.

- Bit 7 Reserved
- Bit 1 Reserved
- Bit 6 NONJIF
- Bit 5 RESETIF
- Bit 4 SUSPENDIF
- Bit 3 SOFIF
- Bit 2 JIF

#### Bit 0 ATADDRIF

These bits indicate the SIE interrupt cause occurrence status.

- 1 (R): Cause of interrupt occurred
- 0 (R): No cause of interrupt occurred
- 1 (W): Clear flag
- 0 (W): Ineffective

The following shows the correspondence between the bit and interrupt:

USBSIEINTF.NONJIF bit:NonJ detection interruptUSBSIEINTF.RESETIF bit:Reset detection interruptUSBSIEINTF.SUSPENDIF bit:Suspend detection interruptUSBSIEINTF.SOFIF bit:SOF reception interruptUSBSIEINTF.JIF bit:J detection interruptUSBSIEINTF.ATADDRIF bit:Automatic address setting completion interrupt

When the interrupt is enabled using the corresponding interrupt enable bit (USBSIEINTE register), setting the interrupt flag in this register sets the USBMAININTF.SIEIF bit. An SIE interrupt occurs if the USBMAININTE.SIEIE bit = 1 at this time. The interrupt flags in this register do not output an interrupt request directly to the CPU.

The USBSIEINTF.NONJIF bit is effective during Snooze as well.

# **USB General-Purpose Endpoint Interrupt Flag Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
USBGPEPINTF	7–3	_	0x00	-	R	_
	2	EPCIF	0	H0/S0	R	Cleared by writing 1 to the interrupt
	1	EPBIF	0	H0/S0	R	flag in the USBEPmINTF register.
	0	EPAIF	0	H0/S0	R	

# Bits 7–3 Reserved

- Bit 2 EPCIF
- Bit 1 EPBIF

# Bit 0 EPAIF

These bits indicate the interrupt cause occurrence status in each EPm interrupt group.

- 1 (R): Cause of interrupt occurred
- 0 (R): No cause of interrupt occurred

These bits are set if a cause of interrupt, which is assigned to the registers shown below, occurs when the interrupt enable bit corresponding to the cause of interrupt is set to 1. These bits are cleared at the same time the interrupt flag in the following register is cleared by writing 1.

USBGPEPINTF.EPCIF bit: USBEPCINTF register

USBGPEPINTF.EPBIF bit: USBEPBINTF register

USBGPEPINTF.EPAIF bit: USBEPAINTF register

When the interrupt is enabled using the corresponding interrupt enable bit (USBGPEPINTE register), setting the interrupt flag in this register sets the USBMAININTF.GPEPIF bit. An EPm interrupt occurs if the USBMAININTE.GPEPIE bit = 1 at this time. The interrupt flags in this register do not output an interrupt request directly to the CPU.

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
USBEPOINTF	7–6	-	0x0	-	R	-
	5	INACKIF	0	H0/S0	R/W	Cleared by writing 1.
	4	OUTACKIF	0	H0/S0	R/W	
	3	INNAKIF	0	H0/S0	R/W	
	2	OUTNAKIF	0	H0/S0	R/W	
	1	INERRIF	0	H0/S0	R/W	
	0	OUTERRIF	0	H0/S0	R/W	

# **USB EP0 Interrupt Flag Register**

# Bits 7–6 Reserved

- Bit 5 INACKIF
- Bit 4 OUTACKIF
- Bit 3 INNAKIF
- Bit 2 OUTNAKIF
- Bit 1 INERRIF

# Bit 0 OUTERRIF

These bits indicate the EP0 interrupt cause occurrence status.

- 1 (R): Cause of interrupt occurred
- 0 (R): No cause of interrupt occurred
- 1 (W): Clear flag
- 0 (W): Ineffective

The following shows the correspondence between the bit and interrupt:USBEP0INTF.INACKIF bit:EP0 ACK reception interruptUSBEP0INTF.OUTACKIF bit:EP0 ACK transmission interruptUSBEP0INTF.OUTNAKIF bit:EP0 NAK reception interruptUSBEP0INTF.OUTNAKIF bit:EP0 NAK transmission interruptUSBEP0INTF.INERRIF bit:EP0 STALL reception interruptUSBEP0INTF.OUTERRIF bit:EP0 STALL transmission interrupt

When the interrupt is enabled using the corresponding interrupt enable bit (USBEP0INTE register), setting the interrupt flag in this register sets the USBMAININTF.EP0IF bit. An EP0 interrupt occurs if the USBMAININTE.EP0IE bit = 1 at this time. The interrupt flags in this register do not output an interrupt request directly to the CPU.

# USB EPm Interrupt Flag Registers

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
USBEP <i>m</i> INTF	7	_	0	-	R	-
	6	OUTSHACKIF	0	H0/S0	R/W	Cleared by writing 1.
	5	INACKIF	0	H0/S0	R/W	
	4	OUTACKIF	0	H0/S0	R/W	
	3	INNAKIF	0	H0/S0	R/W	
	2	OUTNAKIF	0	H0/S0	R/W	
	1	INERRIF	0	H0/S0	R/W	
	0	OUTERRIF	0	H0/S0	R/W	

- Bit 7 Reserved
- Bit 6 OUTSHACKIF
- Bit 5 INACKIF
- Bit 4 OUTACKIF
- Bit 3 INNAKIF
- Bit 2 OUTNAKIF
- Bit 1 INERRIF

# Bit 0 OUTERRIF

These bits indicate the EPm interrupt cause occurrence status.

- 1 (R): Cause of interrupt occurred
- 0 (R): No cause of interrupt occurred
- 1 (W): Clear flag
- 0 (W): Ineffective

The following shows the correspondence between the bit and interrupt:

USBEPmINTF.OUTSHACKIF bit	: EPm short packet reception interrupt
USBEPmINTF.INACKIF bit:	EPm ACK reception interrupt
USBEPmINTF.OUTACKIF bit:	EPm ACK transmission interrupt
USBEPmINTF.INNAKIF bit:	EPm NAK reception interrupt
USBEP <i>m</i> INTF.OUTNAKIF bit:	EPm NAK transmission interrupt
USBEP <i>m</i> INTF.INERRIF bit:	EPm STALL reception interrupt
USBEPmINTF.OUTERRIF bit:	EPm STALL transmission interrupt

When the interrupt is enabled using the corresponding interrupt enable bit (USBEP*m*INTE register), setting the interrupt flag in this register sets the USBGPEPINTF.EP*m*IF bit. The interrupt flags in this register do not output an interrupt request directly to the CPU.

# **USB Main Interrupt Enable Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
USBMAININTE	7	SIEIE	0	H0/S0	R/W	_
	6	GPEPIE	0	H0/S0	R/W	
	5–2	-	0x0	-	R	
	1	EPOIE	0	H0/S0	R/W	
	0	EPOSETIE	0	H0/S0	R/W	

This register enables the USB interrupt request output to the CPU.

#### Bits 5–2 Reserved

- Bit 7 SIEIE
- Bit 6 GPEPIE

# Bit 1 EP0IE

These bits enable SIE, general-purpose endpoint, and EP0 interrupts.

1 (R/W): Enable interrupts

0 (R/W): Disable interrupts

The following shows the correspondence between the bit and interrupt: USBMAININTE.SIEIE bit: SIE interrupt USBMAININTE.GPEPIE bit: general-purpose endpoint interrupt USBMAININTE.EPOIE bit: EPO interrupt

The USBMAININTE.SIEIE bit is effective during Snooze as well.

# Bit 0 EP0SETIE

This bit enables EP0 setup completion interrupts.

1 (R/W): Enable interrupts

0 (R/W): Disable interrupts

# **USB SIE Interrupt Enable Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
USBSIEINTE	7	(reserved)	0	H0/S0	R/W	-
	6	NONJIE	0	H0/S0	R/W	
	5	RESETIE	0	H0/S0	R/W	
	4	SUSPENDIE	0	H0/S0	R/W	
	3	SOFIE	0	H0/S0	R/W	
	2	JIE	0	H0/S0	R/W	
	1	-	0	-	R	
	0	ATADDRIE	0	H0/S0	R/W	

#### Bit 7 Reserved

Bit 1 Reserved

Bit 6	NONJIE			
Bit 5	RESETIE			
Bit 4	SUSPENDIE			
Bit 3	SOFIE			
Bit 2	JIE			
Bit 0	ATADDRIE			
	These bits enable SIE ir	nterrupts.		
	1 (R/W): Enable interr	rupts		
	0 (R/W): Disable inter	rupts		
	The following shows the	e corresp	ondence between the bit and interrupt:	
	USBSIEINTE.NONJIE	bit:	NonJ detection interrupt	
	USBSIEINTE.RESETII	E bit:	Reset detection interrupt	
	USBSIEINTE.SUSPEN	DIE bit:	Suspend detection interrupt	
	USBSIEINTE.SOFIE b	it:	SOF reception interrupt	
	USBSIEINTE.JIE bit:		J detection interrupt	
	USBSIEINTE.ATADDI	RIE bit:	Automatic address setting completion interrupt	

When an interrupt flag in the USBSIEINTF register that is enabled using this register is set, the USB-MAININTF.SIEIF bit is set. To generate an SIE interrupt to the CPU, the USBMAININTE.SIEIE bit must be set to 1 in addition to this register.

The USBSIEINTE.NONJIE bit is effective during Snooze as well.

# **USB General-Purpose Endpoint Interrupt Enable Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
USBGPEPINTE	7–3	-	0x00	-	R	-
	2	EPCIE	0	H0/S0	R/W	
	1	EPBIE	0	H0/S0	R/W	
	0	EPAIE	0	H0/S0	R/W	

- Bit 2 EPCIE
- Bit 1 EPBIE
- Bit 0 EPAIE

These bits enable EPm interrupts.

- 1 (R/W): Enable interrupts
- 0 (R/W): Disable interrupts

The following shows the correspondence between the bit and interrupt:

USBGPEPINTE.EPCIE bit: EPc interrupt

USBGPEPINTE.EPBIE bit: EPb interrupt

USBGPEPINTE.EPAIE bit: EPa interrupt

When an interrupt flag in the USBGPEPINTF register that is enabled using this register is set, the USBMAININTF.GPEPIF bit is set. To generate an EPm interrupt to the CPU, the USBMAININTE. GPEPIE bit must be set to 1 in addition to this register.

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
USBEPOINTE	7–6	-	0x0	-	R	_
	5	INACKIE	0	H0/S0	R/W	
	4	OUTACKIE	0	H0/S0	R/W	
	3	INNAKIE	0	H0/S0	R/W	
	2	OUTNAKIE	0	H0/S0	R/W	
	1	INERRIE	0	H0/S0	R/W	
	0	OUTERRIE	0	H0/S0	R/W	

# **USB EP0 Interrupt Enable Register**

- Bits 7–6 Reserved
- Bit 5 INACKIE
- Bit 4 OUTACKIE
- Bit 3 INNAKIE
- Bit 2 OUTNAKIE
- Bit 1 INERRIE

# Bit 0 OUTERRIE

These bits enable EP0 interrupts. 1 (R/W): Enable interrupts 0 (R/W): Disable interrupts

The following shows the correspondence between the bit and interrupt:USBEPOINTE.INACKIE bit:EP0 ACK reception interruptUSBEPOINTE.OUTACKIE bit:EP0 ACK transmission interruptUSBEPOINTE.INNAKIE bit:EP0 NAK reception interruptUSBEPOINTE.OUTNAKIE bit:EP0 NAK transmission interruptUSBEPOINTE.INERRIE bit:EP0 STALL reception interruptUSBEPOINTE.OUTERRIE bit:EP0 STALL transmission interrupt

When an interrupt flag in the USBEP0INTF register that is enabled using this register is set, the USB-MAININTF.EP0IF bit is set. To generate an EP0 interrupt to the CPU, the USBMAININTE.EP0IE bit must be set to 1 in addition to this register.

# USB EPm Interrupt Enable Registers

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
<b>USBEP</b> <i>m</i> <b>INTE</b>	7	-	0	-	R	_
	6	OUTSHACKIE	0	H0/S0	R/W	
	5	INACKIE	0	H0/S0	R/W	
	4	OUTACKIE	0	H0/S0	R/W	
	3	INNAKIE	0	H0/S0	R/W	
	2	OUTNAKIE	0	H0/S0	R/W	
	1	INERRIE	0	H0/S0	R/W	
	0	OUTERRIE	0	H0/S0	R/W	

# Bit 7 Reserved

- Bit 6 OUTSHACKIE
- Bit 5 INACKIE
- Bit 4 OUTACKIE
- Bit 3 INNAKIE
- Bit 2 OUTNAKIE
- Bit 1 INERRIE

# Bit 0 OUTERRIE

These bits enable EPm interrupts.

1 (R/W): Enable interrupts

0 (R/W): Disable interrupts

The following shows the correspondence between the bit and interrupt:USBEPmINTE.OUTSHACKIE bit:EPm short packet reception interruptUSBEPmINTE.INACKIE bit:EPm ACK reception interruptUSBEPmINTE.OUTACKIE bit:EPm ACK transmission interruptUSBEPmINTE.INNAKIE bit:EPm NAK reception interruptUSBEPmINTE.OUTNAKIE bit:EPm NAK reception interruptUSBEPmINTE.OUTNAKIE bit:EPm NAK transmission interruptUSBEPmINTE.OUTNAKIE bit:EPm NAK transmission interruptUSBEPmINTE.INERRIE bit:EPm STALL reception interrupt

When an interrupt flag in the USBEP*m*INTF register that is enabled using this register is set, the US-BGPEPINTF.EP*m*IF bit is set. To generate an EP*m* interrupt to the CPU, the USBGPEPINTE.EP*m*IE and USBMAININTE.GPEPIE bits must be both set to 1 in addition to this register.

# **USB FIFO Data Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
USBFIFODAT	7–0	FIFODAT[7:0]	Х	-	R/W	-

## Bits 7–0 FIFODAT[7:0]

Data can be read/write from/to the FIFO of the specified endpoint through these bits. For the FIFO access procedure, refer to "Accessing to FIFO by CPU" in Section 22.5.9, "FIFO Management."

- **Notes:** If the FIFO is read through this register without setting the USBFIFORWEN.FIFORDEN bit to 1, or this register is read when the FIFO of the relevant endpoint is empty, a dummy data is read out.
  - If an attempt is made to write data to this register without setting the USBFIFORWEN.FI-FOWREN bit to 1, or an attempt is made to write data to this register when the FIFO of the relevant endpoint is full, no data is written to the FIFO.

# **USB Debug RAM Data Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
USBDBGRAMDAT	7–0	DBRAMDAT[7:0]	Х	-	R/W	-

# Bits 7–0 DBRAMDAT[7:0]

Data can be read/write from/to the FIFO for debugging through these bits.

Before accessing the FIFO, set the access start address within the FIFO to the USBDBGRAMADDR. DRAMADDR[7:0] bits. After that read or write 1-byte data from/to this register. The FIFO address set in the USBDBGRAMADDR.DRAMADDR[7:0] bits are automatically incremented every time data is read or written from/to this register.

Note that the FIFO address is incremented even if reading follows writing, therefore, data written to an address cannot be read in the subsequent reading.

Do not use this register during normal operation, as it is provided only for debugging.

# **USB Misc Control Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
USBMISCCTL	15–13	-	0x0	_	R	-
	12	USBWAIT	1	H0	R/WP	
	11–9	-	0x0	-	R	
	8	USBSNZ	0	H0	R/WP	
	7	-	0	-	R	
	6	USBPLLEN	0	H0	R/WP	
	5	_	0	-	R	
	4	VBUSDET	0	HO	R/WP	
	3	USBRST	0	H0	R/WP	
	2	-	0	-	R	
	1	REG18VEN	0	H0	R/WP	
	0	REG33VEN	0	H0	R/WP	

# Bits 15–13 Reserved

## Bit 12 USBWAIT

This bit sets the number of bus access cycles for accessing a USB register.

	•	0 0
USBMISCCTL.USBWAIT bit	Number of bus access cycles	System clock frequency
1	3	21 MHz (max.)
0	1	4 MHz (max.)

#### Bits 11–9 Reserved

# Bit 8 USBSNZ

This bit controls Snooze mode.

1 (R/W): Enter Snooze mode (assert SNOOZE signal) 0 (R/W): Exit Snooze mode (negate SNOOZE signal)

0 (R/W): Exit Snooze mode (negate SNOOZE signal)

When this bit is set to 1, the USB controller performs a transition sequence and then it enters Snooze mode. When this bit is set to 0 in Snooze mode, the USB controller resumes operating. For details of the snooze sequence, Refer to Section 22.5.10, "Snooze."

## Bit 7 Reserved

#### Bit 6 USBPLLEN

This bit enables the PLL operation.

1 (R/W): Enable PLL operation

0 (R/W): Disable PLL operation

When this bit is set to 1, the PLL inputs the 12 MHz OSC3 clock and generates the 48 MHz USB clock by multiplying the input clock by four. Therefore, before enabling the PLL, the OSC3 oscillator circuit must be activated and the output clock must be stabilized. For control of the OSC3 oscillator circuit, refer to the "Clock Sources" section in the "Power Supply, Reset, and Clocks" chapter. Before the PLL output clock is stabilized, do not set the USBMISCCTL.USBRST bit to 1 to release the USB controller from the reset state. For the PLL output clock stabilization waiting time, refer to "PLL characteristic, lock-up time" in the "Electrical Characteristics" chapter.

#### Bit 5 Reserved

#### Bit 4 VBUSDET

This bit notifies the USB controller that V_{BUS} connection is detected, and enables the communication between the USB controller and other blocks in this IC.

1 (R/W): VBUS connection is detected

0 (R/W): VBUS connection is not detected

Set this bit to 1 via software after VBUS connection is detected using the Pxx port. For the control when VBUS is connected, refer to Section 22.5.1, "Initialization."

# **Note**: When the USBMISCCTL.VBUSDET bit = 0, all the USB register values (except for the USBMISCCTL register) are read as 0.

#### Bit 3 USBRST

This bit puts/releases the USB circuits into/from reset state asynchronously with the clock. 1 (R/W): Release USB circuit from reset state 0 (R/W): Put USB circuit into reset state

For the control timing, refer to Section 22.5.1, "Initialization."

# Bit 2 Reserved

#### Bit 1 REG18VEN

This bit turns the 1.8 V regulator for the USB logic circuits on or off. 1 (R/W): Regulator On 0 (R/W): Regulator Off

# Bit 0 REG33VEN

This bit turns the 3.3 V regulator for the PHY on or off. 1 (R/W): Regulator On 0 (R/W): Regulator Off

# **USB FIFO Write DMA Request Enable Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
	15–0	WRDMAEN[15:0]	0x0000	H0	R/W	-
DMAEN						

# Bits 15-0 WRDMAEN[15:0]

These bits enable the USB controller to issue a DMA transfer request to the corresponding DMA controller channel (Ch.0–Ch.15) when an available space is generated in the FIFO of the specified endpoint (USBREMSPCCNT.REMSPC[6:0] bits  $\neq 0$ ).

1 (R/W): Enable DMA transfer request

0 (R/W): Disable DMA transfer request

Each bit corresponds to a DMA controller channel. The high-order bits for the unimplemented channels are ineffective.

# **USB FIFO Read DMA Request Enable Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
USBMISCRD	15–0	RDDMAEN[15:0]	0x0000	H0	R/W	_
DMAEN						

#### Bits 15-0 RDDMAEN[15:0]

These bits enable the USB controller to issue a DMA transfer request to the corresponding DMA controller channel (Ch.0–Ch.15) when a valid data is loaded into the FIFO of the specified endpoint (USBREMDATCNT.REMDAT[6:0] bits  $\neq$  0).

1 (R/W): Enable DMA transfer request

0 (R/W): Disable DMA transfer request

Each bit corresponds to a DMA controller channel. The high-order bits for the unimplemented channels are ineffective.

# 23 Memory Display Controller (MDC)

# 23.1 Overview

The MDC is a multi-function peripheral which provides hardware support for interfacing to memory displays. It also provides graphics hardware acceleration functions. The features of the MDC are listed below.

- Panel interfaces:
  - Parallel 6-bit color interface
  - SPI 1-bit black-and-white interface + COM
  - SPI 3-bit color interface + COM
  - 1/2/4/8 bpp grayscale 8-bit parallel interface
  - 1/2/4/8 bpp grayscale 3-wire serial interface
  - 1/2/4/8 bpp grayscale 4-wire serial interface
- Output voltage supplies for display panels:
- Programmable VMDH and VMDL step-up voltage supplies
- Rotation of frame buffer image to panel: 0, 90, 180, and 270 degrees
- Color formats: 6-bit RRGGBB, 3-bit RGB color, 1/2/4/8 bpp grayscale
- Bitmap formats: 1 bit, 2 bits (with alpha-blending value)
- Image/bitmap copy functions:
  - Image/bitmap copy with scaling and rotation from source to destination memory location with alpha-blending of background and foreground pixels for 6-bit color.
  - Image/bitmap copy with horizontal and vertical shearing from source to destination memory location with alpha-blending of background and foreground pixels for 6-bit color.
- Drawing functions:
  - Line drawing with programmable thickness.
  - Rectangle drawing, filled and unfilled, with programmable horizontal and vertical line thickness for unfilled rectangle drawing.
  - Ellipse drawing, filled and unfilled, with programmable thickness at X- and Y-axis crossings for unfilled ellipse drawing.
  - Arc drawing with programmable starting/ending angle and thickness at X- and Y-axis crossings.
- External Host Interface:
  - Configurable indirect 8-bit parallel, SPI, or QSPI interface.
  - Allows an external host MCU to access the internal bus.

Figure 23.1.1 shows the MDC configuration.

#### 23 MEMORY DISPLAY CONTROLLER (MDC)



Figure 23.1.1 MDC Configuration

# 23.2 Input/Output Pins and External Connections

# 23.2.1 List of Input/Output Pins

Table 23.2.1.1 lists the MDC pins.

Pin name	I/O*	Initial status*	Function
HIFVDD	Р	-	Host interface and I/O power supply pin
CMD1-3	A	-	MDC power supply booster capacitor connect pins
VMD2-3	Α	-	MDC power supply booster output pins
V _{MVD1}	A	_	MDC power supply booster capacitor connect pin
VMDH	Р	_	Memory display drive voltage output (4.4 to 5.05 V)
VMDI	Р	_	Memory display drive voltage output (2 7 to 3 4 V)
V WIDE	·		(I/O power supply pin when MDC is not used)
XBST	0	0(1)	6-bit color panel interface XBST output
(A0)		0 (=)	(4-wire serial gravscale panel interface A0 output)
VST	0	0 (L)	6-bit color panel interface VST output
(SCLK, XRD,	-	- (-)	(SPI panel interface SCLK output, 8-bit parallel gravscale panel interface XRD output, 3-/4-wire
SCL)			serial gravscale panel interface SCL output)
VCK	0	0 (L)	6-bit color panel interface VCK output
(DOUTO)		- (-)	(8-bit parallel gravscale panel interface DOUT0 output)
ENB	0	0 (L)	6-bit color panel interface ENB output
(SDO, XWR)		- (-)	(SPI panel interface SDO output, 8-bit parallel gravscale panel interface XWR output, 3-/4-wire
(,,			serial gravscale panel interface SDO output)
HST	0	O (L)	6-bit color panel interface HST output
(SCS, XCS)		- ( )	(SPI panel interface SCS output, 8-bit parallel/3-/4-wire serial grayscale panel interface XCS
(,			output)
НСК	0	O (L)	6-bit color panel interface HCK output
(DOUT1)		- ( )	(8-bit parallel grayscale panel interface DOUT1 output)
RED[1:0]	0	O (L)	6-bit color panel interface RED[1:0] outputs
(DOUT[3:2])		- ( )	(8-bit parallel grayscale panel interface DOUT[3:2] outputs)
GRN[1:0]	0	O (L)	6-bit color panel interface GRN[1:0] outputs
(DOUT[5:4])			(8-bit parallel grayscale panel interface DOUT[5:4] outputs)
BLU[1:0]	0	O (L)	6-bit color panel interface BLU[1:0] outputs
(DOUT[7:6])			(8-bit parallel grayscale panel interface DOUT[7:6] outputs)
VCOM/FRP	0	O (L)	6-bit color panel interface VCOM/FRP output
(COM)			(SPI panel interface COM output)
XFRP	0	O (L)	6-bit color panel interface XFRP output
HIFCNF	Ι	I	Host interface configuration input
#HIFCS	I	I	Indirect 8-bit host interface chip-select input
#HIFWR	1	I	Indirect 8-bit host interface write input
(HSPICLK)			(SPI/QSPI host interface clock input)
#HIFRD	1	I	Indirect 8-bit host interface read input
#HIFDE	1	1	Indirect 8-bit host interface device enable input
(#HSPISS)			(SPI/QSPI host interface slave-select input)
HIFD0	I/O	I	Indirect 8-bit host interface D0 input/output
(HSPID0)			(SPI/QSPI host interface data input/output)
HIFD1	1/0	1	Indirect 8-bit host interface D1 input/output
(HSPID1)			(SPI/QSPI host interface data input/output)
HIFD2	I/O	I	Indirect 8-bit host interface D2 input/output
(HSPID2)			(SPI/QSPI host interface data input/output)
HIFD3	1/0	I	Indirect 8-bit host interface D3 input/output
(HSPID3)			(SPI/QSPI host interface data input/output)
HIFD4	I/O	I	Indirect 8-bit host interface D4 input/output
(HSPISEL0)			(SPI/QSPI host interface SPI mode-select input)
HIFD5	I/O		Indirect 8-bit host interface D5 input/output
(HSPISEL1)			(SPI/QSPI host interface SPI mode-select input)
HIFD6	1/0	1	Indirect 8-bit host interface D6 input/output
HIFD7	1/0	· · ·	Indirect 8-bit host interface D7 input/output
	0	0(1)	Host interface interrupt output
			noor monuoo monupi ouput

Table 23 2 1 1	List of MDC	Pins

* Indicates the status when the pin is configured for MDC.

If the port is shared with the MDC pin and other functions, the MDC output function must be assigned to the port before activating the MDC. For more information, refer to the "I/O Ports" chapter.

Note: Be sure to avoid using the VMVD1, VMD2, and VMD3 pin outputs for driving external circuits.

# 23.2.2 Display Panel External Connections

Figures 23.2.2.1 and 1.2.2.2 show connection diagrams between the MDC and the different types of display panels supported.

		<u>ل</u>	VDOT	
	XRST L-	L_	XRST	
	VST 🗂	ſ*	VST	
		千	VOK	
			VUN	
	ENB 🖵		ENB	
	нет 🖧		нот	
			1101	
	HCK L	L_	HCK	
		ſ*	BED0	
		,		
	RED1 L-F		REDI	
01001 1000	GRN0 🗋		GRN0	
S1C31 MDC				External 6-bit color panel
			GUNI	
	BLU0 🖵 –		BLU0	
	BILLI I		BI I I	
		<u></u>		
	VCOM L	•	VCOM	
	XEBP 🗀		FRP	
		그   그		
			XFRP	
	Vмрн 🗂		VDDP	(4.5 V)
		[_]		(20)
			VLCD	(3.2 V)
		External step-up	VDDC	(6.6 V)
			-	· · · ·
		regulator		
Fic	nure 23 2 2 1 Conner	tion between MDC and	6-bit C	olor Panel
1 15				
		-		
		ــــــــــــــــــــــــــــــــــــــ		
	HST (SCS) L⊢	L_	SCS	
	VST (SCLK) 🗇	ſ*	SCLK	
01001 1000		그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그		
S1C31 MDC	ENB (SDO) L–	L	SI	External SPI panel
	VCOM (COM)		COM	
	` ́Т	Т		
	VMDH Or VMDL*		VDD/V	/DDA*
		L		
* Connect VDI	 ⊃/VDDA to Vмрн or V№	L MDL depending on the SI	PI panel	voltage specification.
* Connect VDI	D/VDDA to VMDH or VM	L MDL depending on the SI	Pl panel	voltage specification.
* Connect VDI	 D/VDDA to VмDн or V№ Figure 23.2.2.2 Cor	L MDL depending on the Si Innection between MDC a	PI panel and SPI	voltage specification. Panel
* Connect VDI	D/VDDA to VMDH or VM Figure 23.2.2.2 Cor	L MDL depending on the SI nnection between MDC :	PI panel and SPI	voltage specification. Panel
* Connect VDI	D/VDDA to VMDH or VM Figure 23.2.2.2 Cor	L MDL depending on the Sf nnection between MDC : 	PI panel and SPI	voltage specification. Panel
* Connect VDI	D/VDDA to VMDH or VM Figure 23.2.2.2 Cor HST (XCS)	L MDL depending on the SI Innection between MDC	PI panel and SPI	voltage specification. Panel
* Connect VDI	D/VDDA to VmDH or Vr Figure 23.2.2.2 Cor HST (XCS)	L MDL depending on the SI Inection between MDC	PI panel and SPI XCS	voltage specification. Panel
* Connect VDI	D/VDDA to VMDH or VI Figure 23.2.2.2 Cor HST (XCS)	L MDL depending on the SI Innection between MDC :	PI panel and SPI XCS	voltage specification. Panel
* Connect VDI	D/VDDA to VMDH or VI Figure 23.2.2.2 Cor HST (XCS) VST (XRD) ENB (XWR)	L MDL depending on the SF Innection between MDC : L	PI panel and SPI   XCS   XRD   XWR	voltage specification. Panel
* Connect VDI	D/VDDA to VMDH or Vf Figure 23.2.2.2 Cor HST (XCS) VST (XRD) ENB (XWR)	L MDL depending on the SI Innection between MDC	PI panel and SPI XCS XRD XRD	voltage specification. Panel
* Connect VDI	D/VDDA to VMDH or Vf Figure 23.2.2.2 Cor HST (XCS) VST (XRD) ENB (XWR) VCK (DOUT0)	L MDL depending on the SI anection between MDC : 	PI panel and SPI XCS XRD XRD XWR D0	voltage specification. Panel
* Connect VDI	D/VDDA to VMDH or Vt Figure 23.2.2.2 Cor HST (XCS) VST (XRD) ENB (XWR) VCK (DOUT0) HCK (DOUT1)	L MDL depending on the SI Innection between MDC	PI panel and SPI XCS XRD XRD XWR D0 D1	voltage specification. Panel
* Connect VDI	D/VDDA to VMDH or Vf Figure 23.2.2.2 Cor HST (XCS) VST (XRD) ENB (XWR) VCK (DOUT0) HCK (DOUT1) BED0 (DOUT2)	L MDL depending on the SI Innection between MDC	PI panel and SPI XCS XRD XRD XWR D0 D1 D1 D2	voltage specification. Panel External grayscale panel
* Connect VDI S1C31 MDC	D/VDDA to VMDH or Vf Figure 23.2.2.2 Cor HST (XCS) VST (XRD) ENB (XWR) VCK (DOUT0) HCK (DOUT1) RED0 (DOUT2)	L MDL depending on the SI Innection between MDC	PI panel and SPI XCS XRD XWR D0 D1 D2	voltage specification. Panel External grayscale panel with 8-bit parallel interface
* Connect VDI	D/VDDA to VMDH or Vt Figure 23.2.2.2 Cor HST (XCS) VST (XRD) ENB (XWR) VCK (DOUT0) HCK (DOUT1) RED0 (DOUT2) RED1 (DOUT3)	L depending on the SI	PI panel and SPI XCS XRD XWR D0 D1 D2 D3	voltage specification. Panel External grayscale panel with 8-bit parallel interface
* Connect VDI S1C31 MDC	D/VDDA to VMDH or Vf Figure 23.2.2.2 Cor HST (XCS) VST (XRD) ENB (XWR) VCK (DOUT0) HCK (DOUT1) RED0 (DOUT2) RED1 (DOUT3) GRN0 (DOUT4)	L MDL depending on the SI Innection between MDC	PI panel and SPI XCS XRD XWR D0 D1 D2 D3 D3 D4	voltage specification. Panel External grayscale panel with 8-bit parallel interface
* Connect VDI S1C31 MDC	D/VDDA to VMDH or Vf Figure 23.2.2.2 Cor HST (XCS) VST (XRD) ENB (XWR) VCK (DOUT0) HCK (DOUT1) RED0 (DOUT2) GRN0 (DOUT4)	L MDL depending on the SI Innection between MDC	PI panel and SPI XCS XRD XWR D0 D1 D2 D3 D4 D5	voltage specification. Panel External grayscale panel with 8-bit parallel interface
* Connect VDI	D/VDDA to VMDH or Vt Figure 23.2.2.2 Cor HST (XCS) VST (XRD) ENB (XWR) VCK (DOUT0) HCK (DOUT1) RED0 (DOUT2) RED1 (DOUT3) GRN0 (DOUT4) GRN1 (DOUT5)	L MDL depending on the SI Innection between MDC	PI panel and SPI XCS XRD XWR D0 D1 D2 D3 D4 D5	voltage specification. Panel External grayscale panel with 8-bit parallel interface
* Connect VDI	D/VDDA to VMDH or Vf Figure 23.2.2.2 Cor HST (XCS) VST (XRD) ENB (XWR) VCK (DOUT0) HCK (DOUT1) RED0 (DOUT2) RED1 (DOUT3) GRN0 (DOUT4) GRN1 (DOUT5) BLU0 (DOUT6)	L MDL depending on the SI Innection between MDC	PI panel and SPI XCS XRD XWR D0 D1 D2 D3 D3 D4 D5 D6	voltage specification. Panel External grayscale panel with 8-bit parallel interface
* Connect VDI	D/VDDA to VMDH or Vf Figure 23.2.2.2 Cor HST (XCS) UST (XRD) ENB (XWR) VCK (DOUT0) HCK (DOUT1) RED0 (DOUT2) GRN0 (DOUT4) GRN1 (DOUT5) BLU0 (DOUT6)	L MDL depending on the SI Innection between MDC	PI panel and SPI XCS XRD XWR D0 D1 D2 D3 D4 D5 D6 D7	voltage specification. Panel External grayscale panel with 8-bit parallel interface
* Connect VDI	D/VDDA to VMDH or Vt Figure 23.2.2.2 Cor HST (XCS) VST (XRD) ENB (XWR) VCK (DOUT0) HCK (DOUT1) RED0 (DOUT2) RED1 (DOUT3) GRN0 (DOUT4) GRN1 (DOUT5) BLU0 (DOUT6) BLU1 (DOUT7)	L depending on the SI nection between MDC	PI panel and SPI XCS XRD XWR D0 D1 D2 D3 D4 D5 D6 D7	voltage specification. Panel External grayscale panel with 8-bit parallel interface
* Connect VDI	D/VDDA to VMDH or Vf Figure 23.2.2.2 Cor HST (XCS) VST (XRD) ENB (XWR) VCK (DOUT0) HCK (DOUT1) RED0 (DOUT2) RED1 (DOUT3) GRN0 (DOUT4) GRN1 (DOUT5) BLU0 (DOUT6) BLU1 (DOUT7)	L depending on the Sinnection between MDC	PI panel and SPI XCS XRD XWR D0 D1 D2 D3 D4 D3 D4 D5 D6 D7	voltage specification. Panel External grayscale panel with 8-bit parallel interface
* Connect VDI S1C31 MDC Figure 23.2.	D/VDDA to VMDH or Vf Figure 23.2.2.2 Cor HST (XCS) ENB (XWR) VCK (DOUT0) HCK (DOUT0) HCK (DOUT1) RED0 (DOUT2) GRN0 (DOUT4) GRN1 (DOUT5) BLU0 (DOUT6) BLU1 (DOUT7) 2.3 Connection betw	VIDL depending on the SI Innection between MDC	PI panel and SPI XCS XRD D0 D1 D2 D3 D4 D5 D6 D7 e Panel	voltage specification. Panel External grayscale panel with 8-bit parallel interface
* Connect VDI S1C31 MDC Figure 23.2.	D/VDDA to VMDH or Vf Figure 23.2.2.2 Cor HST (XCS) VST (XRD) ENB (XWR) VCK (DOUT0) HCK (DOUT1) RED0 (DOUT2) RED1 (DOUT3) GRN0 (DOUT4) GRN1 (DOUT5) BLU0 (DOUT6) BLU1 (DOUT7)	VIDL depending on the SF Innection between MDC	PI panel and SPI XCS XRD XWR D0 D1 D2 D3 D4 D5 D6 D7 e Panel	voltage specification. Panel External grayscale panel with 8-bit parallel interface
* Connect VDI S1C31 MDC Figure 23.2.	D/VDDA to VMDH or Vf Figure 23.2.2.2 Cor HST (XCS) VST (XRD) ENB (XWR) VCK (DOUT0) HCK (DOUT1) RED0 (DOUT2) RED1 (DOUT3) GRN0 (DOUT4) GRN1 (DOUT5) BLU0 (DOUT6) BLU0 (DOUT6) BLU1 (DOUT7)	VIDL depending on the SF Innection between MDC	PI panel and SPI XCS XRD XWR D0 D1 D2 D3 D4 D3 D4 D5 D6 D7 e Panel	voltage specification. Panel External grayscale panel with 8-bit parallel interface
* Connect VDI S1C31 MDC Figure 23.2.	D/VDDA to VMDH or Vf Figure 23.2.2.2 Cor HST (XCS) UST (XRD) ENB (XWR) VCK (DOUT0) HCK (DOUT0) HCK (DOUT1) RED0 (DOUT2) GRN0 (DOUT4) GRN1 (DOUT5) BLU0 (DOUT6) BLU1 (DOUT7) 2.3 Connection betw	VIDL depending on the SI Innection between MDC	PI panel and SPI XCS XRD D0 D1 D2 D3 D4 D5 D6 D5 D6 D7 e Panel	voltage specification. Panel External grayscale panel with 8-bit parallel interface
* Connect VDI S1C31 MDC Figure 23.2.	D/VDDA to VMDH or Vf Figure 23.2.2.2 Cor HST (XCS) VST (XRD) ENB (XWR) VCK (DOUT0) HCK (DOUT1) RED0 (DOUT2) RED1 (DOUT3) GRN0 (DOUT4) GRN1 (DOUT5) BLU0 (DOUT6) BLU0 (DOUT6) BLU1 (DOUT7) 2.3 Connection betw	VIDL depending on the SI Innection between MDC	PI panel and SPI XCS XRD XWR D0 D1 D2 D3 D4 D5 D6 D5 D6 D7 e Panel XCS	voltage specification. Panel External grayscale panel with 8-bit parallel interface
* Connect VDI S1C31 MDC Figure 23.2. S1C31 MDC	D/VDDA to VMDH or Vf Figure 23.2.2.2 Cor HST (XCS) VST (XRD) ENB (XWR) VCK (DOUT0) HCK (DOUT1) RED0 (DOUT2) RED1 (DOUT3) GRN0 (DOUT4) GRN1 (DOUT5) BLU0 (DOUT6) BLU0 (DOUT6) BLU1 (DOUT7) 2.3 Connection betw HST (XCS)	VIDL depending on the SF Innection between MDC	PI panel and SPI XCS XRD XWR D0 D1 D2 D3 D4 D5 D4 D5 D6 D7 e Panel XCS SCL	voltage specification. Panel External grayscale panel with 8-bit parallel interface with 8-bit Interface
* Connect VDI S1C31 MDC Figure 23.2. S1C31 MDC	D/VDDA to VMDH or Vf Figure 23.2.2.2 Cor HST (XCS) ENB (XWR) VCK (DOUT0) HCK (DOUT0) HCK (DOUT1) RED0 (DOUT2) GRN0 (DOUT4) GRN1 (DOUT5) BLU0 (DOUT6) BLU1 (DOUT7) 2.3 Connection betw HST (XCS) ENB (SD0)	VIDL depending on the SI Innection between MDC	PI panel and SPI XCS XRD D0 D1 D2 D3 D4 D5 D6 D5 D6 D7 e Panel XCS SCL SD	voltage specification. Panel External grayscale panel with 8-bit parallel interface with 8-bit Interface External grayscale panel with 3-wire serial interface
* Connect VDI S1C31 MDC Figure 23.2. S1C31 MDC	D/VDDA to VMDH or Vf Figure 23.2.2.2 Cor HST (XCS) VST (XRD) ENB (XWR) VCK (DOUT0) HCK (DOUT1) RED0 (DOUT2) RED1 (DOUT3) GRN0 (DOUT4) GRN1 (DOUT5) BLU0 (DOUT6) BLU0 (DOUT6) BLU1 (DOUT7) 2.3 Connection betw HST (XCS) VST (SCL) ENB (SDO)	VIDL depending on the SI Innection between MDC	PI panel and SPI XCS XRD XWR D0 D1 D2 D3 D4 D5 D6 D7 e Panel XCS SCL SD	voltage specification. Panel External grayscale panel with 8-bit parallel interface with 8-bit Interface External grayscale panel with 3-wire serial interface
* Connect VDI S1C31 MDC Figure 23.2. S1C31 MDC	D/VDDA to VMDH or Vf Figure 23.2.2.2 Cor HST (XCS) VST (XRD) ENB (XWR) VCK (DOUT0) HCK (DOUT1) RED0 (DOUT2) RED1 (DOUT3) GRN0 (DOUT4) GRN1 (DOUT5) BLU0 (DOUT6) BLU0 (DOUT6) BLU1 (DOUT7) 2.3 Connection betw VST (XCS) VST (SCL) ENB (SDO)	VIDL depending on the Sinnection between MDC	PI panel and SPI XCS XRD D0 D1 D2 D3 D4 D5 D6 D7 e Panel XCS SCL SD	voltage specification. Panel External grayscale panel with 8-bit parallel interface with 8-bit Interface External grayscale panel with 3-wire serial interface
* Connect VDI S1C31 MDC Figure 23.2. S1C31 MDC Figure 23.2.2.4	D/VDDA to VMDH or Vf Figure 23.2.2.2 Cor HST (XCS) VST (XRD) ENB (XWR) HCK (DOUT0) HCK (DOUT1) RED0 (DOUT2) GRN0 (DOUT4) GRN1 (DOUT5) BLU1 (DOUT5) BLU1 (DOUT7) 2.3 Connection between Connection between	VIDL depending on the SI Innection between MDC	PI panel and SPI XCS XRD XWR D0 D1 D2 D3 D4 D5 D6 D7 e Panel XCS SCL SD anel with	voltage specification. Panel External grayscale panel with 8-bit parallel interface with 8-bit Interface External grayscale panel with 3-wire serial interface
* Connect VDI S1C31 MDC Figure 23.2. S1C31 MDC Figure 23.2.2.4	D/VDDA to VMDH or Vf Figure 23.2.2.2 Cor HST (XCS) VST (XRD) HCK (DOUT0) HCK (DOUT0) HCK (DOUT1) RED0 (DOUT2) RED1 (DOUT3) GRN0 (DOUT4) GRN1 (DOUT5) BLU0 (DOUT6) BLU0 (DOUT6) BLU1 (DOUT7) 2.3 Connection between	VIDL depending on the SI Innection between MDC	PI panel and SPI XCS XRD XWR D0 D1 D2 D3 D4 D5 D6 D7 e Panel XCS SCL SD anel with	voltage specification. Panel External grayscale panel with 8-bit parallel interface with 8-bit Interface External grayscale panel with 3-wire serial interface
* Connect VDI S1C31 MDC Figure 23.2. S1C31 MDC Figure 23.2.2.4	D/VDDA to VMDH or Vf Figure 23.2.2.2 Cor HST (XCS) VST (XRD) HCK (DOUT0) HCK (DOUT0) HCK (DOUT1) RED0 (DOUT2) RED1 (DOUT3) GRN0 (DOUT4) GRN1 (DOUT5) BLU0 (DOUT6) BLU0 (DOUT6) BLU1 (DOUT7) 2.3 Connection between VST (SCL) ENB (SDO)	VIDL depending on the Sinnection between MDC	PI panel and SPI XCS XRD D0 D1 D2 D3 D4 D5 D6 D7 e Panel XCS SCL SD	voltage specification. Panel External grayscale panel with 8-bit parallel interface with 8-bit Interface External grayscale panel with 3-wire serial interface
* Connect VDI S1C31 MDC Figure 23.2. S1C31 MDC Figure 23.2.2.4	D/VDDA to VMDH or Vf Figure 23.2.2.2 Cor HST (XCS) VST (XRD) ENB (XWR) VCK (DOUT0) HCK (DOUT1) RED0 (DOUT2) GRN0 (DOUT4) GRN1 (DOUT3) BLU0 (DOUT6) BLU1 (DOUT7) 2.3 Connection between HST (XCS) VST (SCL) ENB (SDO)	VIDL depending on the Sinnection between MDC	PI panel and SPI XCS XRD XWR D0 D1 D2 D3 D4 D5 D6 D7 e Panel XCS SCL SD anel with	voltage specification. Panel External grayscale panel with 8-bit parallel interface with 8-bit Interface External grayscale panel with 3-wire serial interface
* Connect VDI S1C31 MDC Figure 23.2. S1C31 MDC Figure 23.2.2.4	D/VDDA to VMDH or Vf Figure 23.2.2.2 Cor HST (XCS) VST (XRD) HCK (DOUT0) HCK (DOUT0) HCK (DOUT1) RED0 (DOUT2) RED1 (DOUT3) GRN0 (DOUT4) GRN1 (DOUT5) BLU0 (DOUT6) BLU0 (DOUT6) BLU0 (DOUT6) BLU1 (DOUT7) 2.3 Connection between HST (XCS) Connection between	VIDL depending on the SI Innection between MDC	PI panel and SPI XCS XRD XWR D0 D1 D2 D3 D4 D5 D6 D7 e Panel XCS SCL SD anel with XCS	voltage specification. Panel External grayscale panel with 8-bit parallel interface with 8-bit Interface External grayscale panel with 3-wire serial interface
* Connect VDI S1C31 MDC Figure 23.2. S1C31 MDC Figure 23.2.2.4	D/VDDA to VMDH or Vf Figure 23.2.2.2 Cor HST (XCS) VST (XRD) ENB (XWR) VCK (DOUT0) HCK (DOUT1) RED0 (DOUT2) RED1 (DOUT3) GRN0 (DOUT4) GRN1 (DOUT5) BLU0 (DOUT6) BLU0 (DOUT6) BLU0 (DOUT6) BLU1 (DOUT7) 2.3 Connection between HST (XCS) VST (SCL) ENB (SDO)	VIDL depending on the Sinnection between MDC	PI panel and SPI XCS XRD D0 D1 D2 D3 D4 D5 D6 D7 e Panel XCS SCL SD unel with XCS SCL	voltage specification. Panel External grayscale panel with 8-bit parallel interface with 8-bit Interface External grayscale panel with 3-wire serial interface
* Connect VDI S1C31 MDC Figure 23.2. S1C31 MDC Figure 23.2.2.4 S1C31 MDC	D/VDDA to VMDH or Vf Figure 23.2.2.2 Cor HST (XCS) VST (XRD) ENB (XWR) VCK (DOUT0) HCK (DOUT1) RED0 (DOUT2) HCK (DOUT1) RED1 (DOUT3) GRN0 (DOUT4) GRN1 (DOUT5) BLU0 (DOUT6) BLU1 (DOUT7) 2.3 Connection between HST (XCS) VST (SCL) ENB (SDO) Connection between HST (XCS) VST (SCL) ENB (SDO)	VIDL depending on the SI Innection between MDC	PI panel and SPI XCS XRD XWR D0 D1 D2 D3 D4 D5 D6 D7 e Panel XCS SCL SD Anel with	voltage specification. Panel External grayscale panel with 8-bit parallel interface with 8-bit Interface External grayscale panel with 3-wire serial interface
* Connect VDI S1C31 MDC Figure 23.2. S1C31 MDC Figure 23.2.2.4 S1C31 MDC	D/VDDA to VMDH or Vf Figure 23.2.2.2 Cor HST (XCS) VST (XRD) HCK (DOUT0) HCK (DOUT0) HCK (DOUT1) RED0 (DOUT2) RED1 (DOUT3) GRN0 (DOUT4) GRN1 (DOUT5) BLU0 (DOUT6) BLU0 (DOUT6) BLU0 (DOUT6) BLU1 (DOUT7) 2.3 Connection between HST (XCS) VST (SCL) ENB (SDO) VST (SCL) ENB (SDO)	VIDL depending on the SI Innection between MDC	PI panel and SPI XCS XRD XWR D0 D1 D2 D3 D4 D5 D6 D7 e Panel XCS SCL SD anel with XCS SCL	voltage specification. Panel External grayscale panel with 8-bit parallel interface with 8-bit Interface External grayscale panel with 3-wire serial interface External grayscale panel with 3-wire serial interface
* Connect VDI S1C31 MDC Figure 23.2. S1C31 MDC Figure 23.2.2.4 S1C31 MDC	D/VDDA to VMDH or Vf Figure 23.2.2.2 Cor HST (XCS) VST (XRD) ENB (XWR) VCK (DOUT0) HCK (DOUT1) RED0 (DOUT2) RED1 (DOUT3) GRN0 (DOUT4) GRN1 (DOUT5) BLU0 (DOUT6) BLU0 (DOUT6) BLU0 (DOUT6) BLU1 (DOUT7) 2.3 Connection between HST (XCS) VST (SCL) ENB (SDO) XRST (A0)	VIDL depending on the Sinnection between MDC	PI panel and SPI XCS XRD D0 D1 D2 D3 D4 D5 D6 D7 e Panel XCS SCL SD XCS SCL SD XCS SCL SD A0	voltage specification. Panel External grayscale panel with 8-bit parallel interface with 8-bit Interface External grayscale panel with 3-wire serial interface External grayscale panel with 3-wire serial interface
* Connect VDI S1C31 MDC Figure 23.2. S1C31 MDC Figure 23.2.2.4 S1C31 MDC	D/VDDA to VMDH or Vf Figure 23.2.2.2 Cor HST (XCS) VST (XRD) ENB (XWR) VCK (DOUT0) HCK (DOUT1) RED0 (DOUT2) RED1 (DOUT3) GRN0 (DOUT4) GRN1 (DOUT5) BLU0 (DOUT6) BLU1 (DOUT7) 2.3 Connection between HST (XCS) VST (SCL) ENB (SDO) VST (SCL) ENB (SDO) XRST (A0)	VIDL depending on the Sinnection between MDC	PI panel and SPI XCS XRD XWR D0 D1 D2 D3 D4 D5 D6 D7 e Panel XCS SCL SD A0	voltage specification. Panel External grayscale panel with 8-bit parallel interface with 8-bit Interface External grayscale panel with 3-wire serial interface External grayscale panel with 3-wire serial interface

igure 23.2.2.5 Connection between MDC and Grayscale Panel with 4-wire Serial Interfa

# 23.2.3 External Host Interface Connections

Figures 23.2.3.1 to 23.2.3.4 show connection diagrams between an external host MCU and the MDC with the different types of host interfaces supported.



Figure 23.2.3.3 Connection between External MCU and MDC with Quad-Data SPI Host Interface



Figure 23.2.3.4 Connection between External MCU and MDC with INDIRECT 8-bit Host Interface

# 23.3 Clock Settings

The MDC operates with three operating clocks, voltage booster clock, low frequency clock, and high frequency clock.

# 23.3.1 Voltage Booster Clock

The voltage booster clock CLK_MDCBOOST is used to clock the voltage booster circuit. It must be supplied to MDC from the clock generator before the VMDH and VMDL voltages can be generated. The CLK_MDCBOOST supply should be controlled as in the procedure shown below. If the display panel does not use the VMDH and VMDL voltages, this operation procedure is not necessary.

- 1. Enable the clock source in the clock generator if it is stopped (refer to "Clock Generator" in the "Power Supply, Reset, and Clocks" chapter).
- 2. Set the following MDCBSTCLK register bits:
  - MDCBSTCLK.CLKSRC[1:0] bits (Clock source selection)
  - MDCBSTCLK.CLKDIV[2:0] bits (Clock division ratio selection = Clock frequency setting)

Determine the clock frequency so that the best voltage output stability can be obtained after being evaluated using the actual circuit board.

For more information on the voltage booster circuit, refer to "VMD Power Supply Circuit."

# 23.3.2 Low Frequency Clock (CLK32K)

The low frequency clock (CLK32K) is used to generate the VCOM and XFRP output signals. The source for CLK32K is the OSC1 clock. The CLK32K supply should be controlled as in the procedure shown below.

- 1. Enable the OSC1 oscillator in the clock generator if it is stopped.
- 2. Set the MDCCLKCTL.CLK32KON bit to 1. (Enable low frequency clock supply to MDC)

For more information on the OSC1 oscillator, refer to "Clock Generator" in the "Power Supply, Reset, and Clocks" chapter.

# 23.3.3 High Frequency Clock (SYSCLK)

The high frequency clock (SYSCLK = CPU and internal bus clock) is used to clock the majority of the MDC circuits. The MDC has no control bit for gating SYSCLK. It is automatically gated on when the MDC is performing a task and automatically gated off when the MDC has finished a task.

In SLEEP mode, SYSCLK is gated off regardless of how the CLGOSC xxxxSLPC bits have been set.

For more information on SYSCLK, refer to "Clock Generator" in the "Power Supply, Reset, and Clocks" chapter.

# 23.3.4 Clock Supply in SLEEP Mode

The high frequency clock is not supplied to the MDC in SLEEP mode, as SYSCLK stops. To perform an MDC task, put the internal CPU into active state or HALT mode. However, by setting the MDCHOSTCTL.SYSOSCEN bit to 1 with the external host MCU, the SYSCLK clock source can also be enabled to supply the high frequency clock to the MDC without waking up the internal CPU even if it is placed into SLEEP mode and SYSCLK is inactive.

The voltage booster clock and low frequency clock can be supplied even in SLEEP mode by writing 0 to the CLGOSC*xxxx*SLPC bits for the MDC clock sources.

Also the external host MCU can enable the OSC1 oscillator by setting the MDCHOSTCTL.CLK32KOSCEN bit to 1 even if SYSCLK is inactive.

Figure 23.3.4.1 shows the logic for controlling the oscillators.



# 23.3.5 Clock Supply During Debugging

The CLK_MDCBOOST supply during debugging should be controlled using the MDCBSTCLK.DBRUN bit. The CLK_MDCBOOST supply to MDC is suspended when the CPU enters debug state if the MDCBSTCLK. DBRUN bit = 0. After the CPU returns to normal operation, the CLK_MDCBOOST supply resumes. Although the voltage booster stops operating and the voltage output is turned off when the CLK_MDCBOOST supply is suspended, the registers retain the status before debug state was entered. If the MDCCLK.DBRUN bit = 1, the CLK_ MDCBOOST supply is not suspended and the voltage booster will keep operating in debug state. The MDC functions that use the low or high frequency clock are effective even in debug state.

# 23.4 VMD Power Supply Circuit

The display drive voltages VMDH and VMDL can be generated by the internal VMD power supply circuit.

# 23.4.1 Configuration of VMD Power Supply Circuit

The internal VMD power supply circuit consists of an input voltage regulator, a charge pump booster, and an output voltage regulator (see Figure 23.1.1). The input voltage regulator generates a regulated constant voltage for driving the charge pump booster from the power supply voltage VDD. The charge pump booster generates a boosted voltage VMD3 which is used as the reference voltage in the output voltage regulator. The output voltage regulator generates VMDH and VMDL from VMD3. The VMDH and VMDL output voltage levels can be adjusted via software. Figure 23.4.1.1 shows an external connection example.



Figure 23.4.1.1 External Connection Example

If the display panel does not use the VMDH and VMDL voltages, leave the VMDH pin open and an I/O power voltage should be supplied to the VMDL pin. Do not alter the VMD power supply control bit initial values.

# 23.4.2 Controlling VMD Power Supply Circuit

The VMD power supply circuit should be controlled as in the procedure shown below.

- Configure the MDCBSTCLK.CLKSRC[1:0] and MDCBSTCLK.CLKDIV[2:0] bits.
- 2. Configure the following MDCBSTPWR register bits:
  - Write 0 to the MDCBSTPWR.REGECO bit. (Set voltage regulator to normal mode) *1
  - Write 1 to the MDCBSTPWR.REGON bit. (Activate voltage regulator)
  - Write 1 to the MDCBSTPWR.BSTON bit. (Activate voltage booster)
  - *1 The voltage regulator enters economy mode for saving power by setting the MDCBSTPWR.REGECO bit to 1. Note, however, that economy mode should be entered only when the load is small (still image is displayed) and set the MDCBSTPWR.REGECO bit to 0 in normal operation.

(Configure voltage booster clock)

- Wait for the VMD boosted voltage output to stabilize. For the boosted voltage output stabilization time, refer to "MDC Characteristics" in the "Electrical Characteristics" chapter.
- 4. Configure the following MDCBSTVMD register bits:
  - MDCBSTVMD.VMDHVOL[2:0] bits (Adjust VMDH voltage level)
  - MDCBSTVMD.VMDLVOL[2:0] bits (Adjust VMDL voltage level)
  - Write 1 to the MDCBSTVMD.VMDHON bit. (Enable VMDH output)
  - Write 1 to the MDCBSTVMD.VMDLON bit. (Enable VMDL output)
- 5. Wait for the VMDH and VMDL voltage outputs to stabilize.

For the drive voltage output stabilization time, refer to "MDC Characteristics" in the "Electrical Characteristics" chapter.

# 23.5 Image Data Format

# 23.5.1 Pixel Data Formats

The MDC supports 6-bit color, 3-bit color, and 1-bit black-and-white pixel data formats that include alpha channel data, and 1/2/4/8 bpp grayscale formats that do not have alpha channel.

# 6-bit color

The 6-bit color format supports a 6-bit RRGGBB data (2 bits per color) and each pixel is stored as a byte in memory. The format of each pixel byte is as follows:

7	6	5	4	3	2	1	0			
A1	A0	R1	R0	G1	G0	B1	B0			

Table 23.5.1.1	6-bit Color	Byte Format

The upper two bits store the alpha-channel value (0 to 3). The alpha-channel value is only used during drawing or pixel copy operations and is ignored by the display updater which transfers pixels to the panel. Alpha value of 0b00 means the pixel is transparent and alpha value of 0b11 means the pixel is 100% visible. Alpha value of 0b01 is 33% visible and alpha value of 0b10 is 67% visible.

The memory organization of the frame buffer has the top left pixel at the base address of the frame buffer. The address increases from left to right pixel of each line of the image and continues increasing onto the subsequent lines until the bottom right of the image, as shown below:

Base address of image in memory

		V	rtual width (stri	de) of image (V	W)			
0	1	2		1		1/10/-2	V/W/_1	] ▲
VW	VW+1	2 VW+2	· · ·	· ·	· ·	2VW-2	2VW-1	
2VW	2VW+1	2VW+2				3VW-3	3VW-1	Height of
· ·								image (H
	· ·				· ·			
(H-1)VW	(H-1)VW+1	(H-1)VW+2	•			(H)VW-2	(H)VW-1	] ↓

Figure 23.5.1.1 Frame Buffer for 6-bit Color Image

Figure 23.5.1.2 shows an	example of a $10 \times 2$	2 image pattern	of pixels.
0	1	01	1

0	1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18	19

Assuming the alpha channel is 100% (0b11) and color component values are 100% (0b11) for all the pixels in this example, the bytes in memory would be as follows:

Address	Value (binary)	Value (hex)	Color	Address	Value (binary)	Value (hex)	Color
0	0b11110000	0xf0		10	0b11111111	0xff	10
1	0b11001100	0xcc	1	11	0b11000011	0xc3	11
2	0b11000011	0xc3	2	12	0b11111111	0xff	12
3	0b11111111	0xff	3	13	0b11001100	0xcc	13
4	0b11000000	0xc0	4	14	0b11110000	0xf0	14
5	0b11111100	0xfc	5	15	0b11110000	0xf0	15
6	0b11110011	0xf3	6	16	0b11111111	0xff	16
7	0b11001111	0xcf	7	17	0b11000000	0xc0	17
8	0b11001100	0xcc	8	18	0b11111100	0xfc	18
9	0b11001100	0xcc	9	19	0b11111100	0xfc	19

Figure 23.5.1.2 6-bit Color Image Data Example

#### SPI 1-bit black-and-white

_

Four SPI 1-bit black-and-white pixels are packed into a byte in memory. The format of each pixel byte is as follows:

Table 23.5.1.2 SPI 1-bit Black-and-White Byte Format

					,		
7	6	5	4	3	2	1	0
A3	P3	A2	P2	A1	P1	A0	P0

The Px bits are the four pixel bits and the Ax bits are the alpha channel bits. The alpha-channel bit is only used during drawing and pixel copy operations and is ignored by the display updater which transfers pixels to the panel. Ax = 0 means the pixel is transparent and Ax = 1 means the pixel is 100% visible.

P0 is the leftmost pixel on the display and P3 is the rightmost pixel. The memory organization of the frame buffer has the top, four leftmost pixel data (first byte) at the base address of the frame buffer. The address increases from left to right groups of four pixels of each line of the image and continues increasing onto the subsequent lines until the bottom right of the image, as shown below:

se address of	image in memor	y V	irtual width (stri	de) of image (V	N)			•
0	1	2				VW/4-2	VW/4-1	] 🕈
VW/4	VW/4+1	VW/4+2				2VW/4-2	2VW/4-1	1
2VW/4	2VW/4+1	2VW/4+2				3VW/4-3	3VW/4-1	Height
								image
								1
(H-1)VW/4	(H-1)VW/4+1	(H-1)VW/4+2				(H)VW/4-2	(H)VW/4-1	1

Figure 23.5.1.3 Frame Buffer for SPI 1-bit Black-and-White Image

Figure 23.5.1.4 shows an example of a  $10 \times 2$  image pattern of black-and-white pixels.

0	1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18	19

Assuming the alpha channel (bit) is 100% (0b1) for all the pixels in this example, the bytes in memory would be as follows:

Address	Value (binary)	Value (hex)				
0	0b11101110	0xee	3	2	1	0
1	0b11111010	0xfa	7	6	5	4
2	0bXXXX1110	0x0e	$\geq$	$\searrow$	9	8
3	0b10111011	0xbb	13	12	11	10
4	0b11101011	0xeb	17	16	15	14
5	0bXXXX1011	0x0b	$\geq$	$\geq$	19	18

There are 4 pixel data per byte and each line occupies 3 bytes (roundup (10/4)) in this example. The upper 4 bits of the third byte of a line are not used.

Figure 23.5.1.4 SPI 1-bit Black-and-White Image Data Example

# SPI 3-bit color

Two SPI 3-bit color pixels are packed into a byte in memory. The format of each pixel byte is as follows:

	Table 23.5.1.3 SPI 3-bit Color Byte Format											
7	7 6 5 4 3 2 1 0											
A1 R1 G1 B1 A0 R0 G0 B0												

The Rx/Gx/Bx bits are the pixel bits and the Ax bits are the alpha channel bits. The alpha-channel bit is only used during drawing and pixel copy operations and is ignored by the display updater which transfers pixels to the panel. Ax = 0 means the pixel is transparent and Ax = 1 means the pixel is 100% visible.

R0G0B0 is the left pixel on the display and R1G1B1 is the right pixel. The memory organization of the frame buffer has the top, two leftmost pixel data (first byte) at the base address of the frame buffer. The address increases from left to right groups of two pixels of each line of the image and continues increasing onto the subsequent lines until the bottom right of the image, as shown below:

•			V	'irtual width (strie	de) of image (VV	V)			
ᡟ	0	1	2				VW/2-2	VW/2-1	♠
	VW/2	VW/2+1	VW/2+2				2VW/2-2	2VW/2-1	
	2VW/2	2VW/2+1	2VW/2+2				3VW/2-3	3VW/2-1	Height of
									image (H
	(H-1)VW/2	(H-1)VW/2+1	(H-1)VW/2+2				(H)VW/2-2	(H)VW/2-1	↓ ↓

Base address of image in memory

Figure 23.5.1.5 Frame Buffer for SPI 3-bit Color Image

Figure 23.5.1.6 shows an example of a  $10 \times 2$  image pattern of pixels.

0	1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18	19

Assuming the alpha channel (bit) is 100% (0b1) for all the pixels in this example, the bytes in memory would be as follows:

Address	Value (binary)	Value (hex)		
0	0b10101100	0xac	1	
1	0b11111001	0xf9	3	2
2	0b11101000	0xe8	5	4
3	0b10111101	0xbd	7	6
4	0b10101010	0xaa	9	8
5	0b10011111	0x9f	11	10
6	0b10101111	0xaf	13	12
7	0b11001100	0xcc	15	14
8	0b10001111	0x8f	17	16
9	0b11101110	0xee	19	18

Figure 23.5.1.6 SPI 3-bit Color Image Data Example

# 1 bpp grayscale

Eight 1 bpp pixels are packed into a byte in memory. The format of each pixel byte is as follows:

7 6 5 4 3 2 1 0											
P7	P6	P5	P4	P3	P2	P1	P0				

Table 23.5.1.4.1 bop Gravscale Byte Format

The Px bits are the eight pixel bits. P0 is the leftmost pixel on the display and P7 is the rightmost pixel. The memory organization of the frame buffer has the top, eight leftmost pixel data (first byte) at the base address of the frame buffer. The address increases from left to right groups of eight pixels of each line of the image and continues increasing onto the subsequent lines until the bottom right of the image, as shown below:

Base address o	f image in memor	ry						
		V	irtual width (strie	de) of image (V\	N)			
¥							•	
0	1	2				VW/8-2	VW/8-1	1 🕈
VW/8	VW/8+1	VW/8+2				2VW/8-2	2VW/8-1	1
2VW/8	2VW/8+1	2VW/8+2				3VW/8-3	3VW/8-1	Height of
								image (H)
(H-1)VW/8	(H-1)VW/8+1	(H-1)VW/8+2				(H)VW/8-2	(H)VW/8-1	] 🖌

Figure 23 5 1 7	Frame Buffer for 1	hon Gravscale Image

Figure 23.5.1.8 shows an example of a  $10 \times 2$  image pattern of black-and-white pixels.

0	1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18	19

The bytes in memory would be as follows:

Address	Value (binary)	Value (hex)								
0	0b11001010	0xca	7	6	5	4	3	2	1	0
1	0bXXXXXX10	0x02	$\bowtie$	$\triangleright$	$\triangleright$	$\succ$	$\succ$	$\succ$	9	8
2	0b00110101	0x35	17	16	15	14	13	12	11	10
3	0bXXXXXX01	0x01	$\triangleright$	$\triangleright$	$\triangleright$	$\triangleright$	$\succ$	$\succ$	19	18

There are 8 pixel data per byte and each line occupies 2 bytes (roundup (10/8)) in this example. The upper 6 bits of the second byte of a line are not used.

Figure 23.5.1.8 1 bpp Black-and-White Image Data Example

# 2 bpp grayscale

Four 2 bpp pixels are packed into a byte in memory. The format of each pixel byte is as follows:

Table 23.5.1.5 2 bpp Grayscale Byte Format

7	6	5	4	3	2	1	0
Р	3	Р	2	Р	1	Р	0

The Px bits are the four pixel bits. P0 is the leftmost pixel on the display and P3 is the rightmost pixel. The memory organization of the frame buffer has the top, four leftmost pixel data (first byte) at the base address of the frame buffer. The address increases from left to right groups of four pixels of each line of the image and continues increasing onto the subsequent lines until the bottom right of the image, as shown below:

Bas	e address of	image in memor	у										
			V	irtual width (strid	de) of image (VV	V)							
┣													
T	0	1	2				VW/4-2	VW/4-1	1 🕈				
	VW/4	VW/4+1	VW/4+2				2VW/4-2	2VW/4-1	1				
	2VW/4	2VW/4+1	2VW/4+2				3VW/4-3	3VW/4-1	Height of				
									image (H)				
									]				
	(H-1)VW/4	(H-1)VW/4+1	(H-1)VW/4+2				(H)VW/4-2	(H)VW/4-1	] 🖌				

Figure 23.5.1.9 Frame Buffer for 2 bpp Grayscale Image

Figure 23.5.1.10 shows an example of a  $10 \times 2$  image pattern of 2 bpp grayscale pixels.

0	1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18	19

The bytes in memory would be as follows:

Address	Value (binary)	Value (hex)				
0	0b01001000	0x48	3	2	1	0
1	0b01111000	0x78	7	6	5	4
2	0bXXXX1100	0x0c	$\geq$	$\triangleright$	9	8
3	0b00100011	0x23	13	12	11	10
4	0b10000111	0x87	17	16	15	14
5	0bXXXX0011	0x03	$\geq$	$\geq$	19	18

There are 4 pixel data per byte and each line occupies 3 bytes (roundup (10/4)) in this example. The upper 4 bits of the third byte of a line are not used.

Figure 23.5.1.10 2 bpp Grayscale Image Data Example

#### 4 bpp grayscale

Two 4 bpp pixels are packed into a byte in memory. The format of each pixel byte is as follows:

Table 23.5.1.6	4 bpp Grayscale Byte Format
----------------	-----------------------------

7	6	5	4	3	2	1	0					
	P	'1			P	0						

The Px bits are the two pixel bits. P0 is the left pixel on the display and P1 is the right pixel. The memory organization of the frame buffer has the top, two leftmost pixel data (first byte) at the base address of the frame buffer. The address increases from left to right groups of two pixels of each line of the image and continues increasing onto the subsequent lines until the bottom right of the image, as shown below:

Base address of image in memory

4	Virtual width (stride) of image (VW)												
0	1	2				VW/2-2	VW/2-1	1 🔺					
VW/2	VW/2+1	VW/2+2				2VW/2-2	2VW/2-1						
2VW/2	2VW/2+1	2VW/2+2				3VW/2-3	3VW/2-1	Height of					
	-							image (H)					
(H-1)VW/2	(H-1)VW/2+1	(H-1)VW/2+2				(H)VW/2-2	(H)VW/2-1	] ↓					

Figure 23.5.1.11 Frame Buffer for 4 bpp Grayscale Image

Figure 23.5.1.12 shows an example of a  $10 \times 2$  image pattern of 4 bpp grayscale pixels.

0	1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18	19

Assuming "light gray" has a value of 10 and "dark gray" has a value of 5, the bytes in memory would be as follows:

Address	Value (binary)	Value (hex)		
0	0b10100000	0xa0	1	0
1	0b01010000	0x50	3	2
2	0b10100000	0xa0	5	4
3	0b01011111	0x5f	7	6
4	0b11110000	0xf0	9	8
5	0b00001111	0x0f	11	10
6	0b00001010	0x0a	13	12
7	0b01011111	0x5f	15	14
8	0b10100000	0xa0	17	16
9	0b00001111	0x0f	19	18

Figure 23.5.1.12 4 bpp Grayscale Image Data Example

# 8 bpp grayscale

Table 23.5.1.7 8 bpp Grayscale Byte Format											
7	6	5	4	3	2	1	0				
			P	0							

The memory organization of the frame buffer has the top, leftmost pixel data (first byte) at the base address of the frame buffer. The address increases from left to right pixels of each line of the image and continues increasing onto the subsequent lines until the bottom right of the image, as shown below:

Base address of	image in memor	'y						
1.		V	irtual width (strie	de) of image (VV	V)			
•				,				•
0	1	2				VW-2	VW-1	1 🕈
VW	VW+1	VW+2				2VW-2	2VW-1	1
2VW	2VW+1	2VW+2				3VW-3	3VW-1	Heigh
								image
								]
(H-1)VW	(H-1)VW+1	(H-1)VW+2				(H)VW-2	(H)VW-1	] 🖌

of (H)

Figure 23.5.1.13 Frame Buffer for 8 bpp Grayscale Image

Figure 23.5.1.14 shows an example of a  $10 \times 2$  image pattern of 8 bpp grayscale pixels.

0	1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18	19

Assuming "light gray" has a value of 171 (0xab) and "dark gray" has a value of 85 (0x55), the bytes in memory would be as follows:

Address	Value (binary)	Value (hex)		Address	Value (binary)	Value (hex)	
0	0b00000000	0x00	0	10	0b11111111	0xff	10
1	0b10101011	0xab	1	11	0b00000000	0x00	11
2	0b00000000	0x00	2	12	0b10101011	0xab	12
3	0b01010101	0x55	3	13	0b00000000	0x00	13
4	0b00000000	0x00	4	14	0b11111111	0xff	14
5	0b10101011	0xab	5	15	0b01010101	0x55	15
6	0b11111111	0xff	6	16	0b00000000	0x00	16
7	0b01010101	0x55	7	17	0b10101011	0xab	17
8	0b00000000	0x00	8	18	0b11111111	0xff	18
9	0b11111111	0xff	9	19	0b00000000	0x00	19

Figure 23.5.1.14 8 bpp Grayscale Image Data Example

# 23.5.2 Bitmap Formats

The MDC supports 1-bit per pixel and 2-bit per pixel bitmap formats.

For 1-bit per pixel bitmap format, each bit specifies whether or not the fill color is copied to the destination image. If the bit is 0, no pixel is copied. If the bit is 1, the fill color is copied.

For 2-bit per pixel bitmap format, each 2-bit value specifies the alpha value for blending the fill color with the background pixel color at the destination.

For grayscale, SPI 1-bit black-and-white, and 3-bit color panels, only the 1-bit per pixel bitmap format is supported. For 6-bit color panels, there is an option for 2-bit per pixel bitmap format.

Bitmaps are typically used for rendering character fonts or icons to the frame buffer.

# 1-bit bitmap

For the 1-bit bitmap, eight 1-bit pixels are packed into a byte in memory. The format of each byte is as follows:

Table 23.5.2.1 1-bit Bitmap Byte Format											
7	6	5	4	3	2	1	0				
P7	P6	P5	P4	P3	P2	P1	P0				

Px = 0 means the pixel is not written to the destination and Px = 1 means the pixel is written. P0 is the leftmost pixel on the display and P7 is the rightmost pixel. The memory organization of the frame buffer has the top, eight leftmost pixel data (first byte) at the base address of the frame buffer. The address increases from left to right groups of eight pixels of each line of the image and continues increasing onto the subsequent lines until the bottom right of the image, as shown below:
#### 23 MEMORY DISPLAY CONTROLLER (MDC)

Base address of image in memory

Virtual width (stride) of image (VW)

7						
0	1	2		VW/8-2	VW/8-1	1 🕈
VW/8	VW/8+1	VW/8+2		2VW/8-2	2VW/8-1	1
2VW/8	2VW/8+1	2VW/8+2		3VW/8-3	3VW/8-1	Height of
						image (H)
						]
(H-1)VW/8	(H-1)VW/8+1	(H-1)VW/8+2		(H)VW/8-2	(H)VW/8-1	↓

Figure 23.5.2.1 Frame Buffer for 1-bit Bitmap Image

Figure 23.5.2.2 shows an example of a  $10 \times 11$  1-bit bitmap image for character '8'.

0			3	4	5	6			
10		12	13			16	17	18	
20	31	22	23		25	26	27	28	29
30	31	32	33	34	35	36	37		39
40	41	42	43	44	45	46	47	48	49
50	51	52	53	54	55	56	57	58	59
60	61	62	63	64	65	66	67	68	69
70		72	73			76	77	78	79
80	81	82	83	84	85	86	87		89
90	91	92	93	94	95	96	97	98	99
100	101	102	103	104	105	106	107	108	109

The shaded pixels have bit value 0 (transparent, pixel not copied to destination) and the white pixels have bit value 1 (pixel is copied to destination). In this example, the bytes in memory would be as follows:

Address	Value(binary)	Value(hex)								
0	0b01111000	0x78	7	6	5	4	3	2		0
1	0bXXXXXX00	0x00	$\triangleright$	$\triangleright$	$\succ$	$\triangleright$	$\triangleright$	$\geq$		
2	0b11001100	0xcc	17	16			13	12		10
3	0bXXXXXX00	0x00	$\succ$	$\triangleright$	$\succ$	$\triangleright$	$\geq$	$\ge$	19	18
4	0b10000100	0x84	27	26	25		23	22	21	20
5	0bXXXXXX00	0x00	$\triangleright$	$\triangleright$	$\succ$	$\triangleright$	$\triangleright$	$\ge$	29	28
6	0b10000100	0x84	37	36	35	34	33	32	31	30
7	0bXXXXXX00	0x00	$\triangleright$	$\triangleright$	$\geq$	$\triangleright$	$\triangleright$	$\ge$	39	
8	0b11111100	0xfc	47	46	45	44	43	42	41	40
9	0bXXXXXX00	0x00	$\triangleright$	$\triangleright$	$\geq$	$\triangleright$	$\triangleright$	$\ge$		48
10	0b01111000	0x78	57	56	55	54	53	52	51	50
11	0bXXXXXX00	0x00	$\geq$	$\triangleright$	$\geq$	$\triangleright$	$\triangleright$	$\ge$	59	58
12	0b11111100	0xfc	67	66	65	64	63	62	61	60
13	0bXXXXXX00	0x00	$\triangleright$	$\triangleright$	$\geq$	$\triangleright$	$\geq$	$\ge$	69	68
14	0b10000100	0x84	77	76	75		73	72		70
15	0bXXXXXX00	0x00	$\triangleright$	$\triangleright$	$\geq$	$\triangleright$	$\triangleright$	$\succ$	79	78
16	0b10000100	0x84	87	86	85	84	83	82	81	80
17	0bXXXXXX00	0x00	$\triangleright$	$\triangleright$	$\geq$	$\triangleright$	$\triangleright$	$\succ$	89	
18	0b11001100	0xcc	97	96	95	94	93	92	91	90
19	0bXXXXXX00	0x00	$\triangleright$	$\triangleright$	$\geq$	$\triangleright$	$\triangleright$	$\geq$	99	98
20	0b01111000	0x78	107	106	105	104	103	102	101	100
21	0bXXXXXX00	0x00	$\geq$	$\geq$	$\geq$	$\supset$	$\geq$	$\geq$	109	108

Figure 23.5.2.2 1-bit Bitmap Image Data Example

## 2-bit bitmap

For the 2-bit bitmap format, four 2-bit pixels are packed into a byte in memory. The format of each byte is as follows:

Table 23.3.2.2 2-bit bitmap byter offiat								
7	6	5	4	3	2	1	0	
P31	P30	P21	P20	P11	P10	P01	P00	

Table 23.5.2.2 2-Bit Bitmap Byte Format

Each Px[1:0] value specifies the alpha-blend value for the pixel. The MDCGFXCOLOR.COLOR[5:0] value is alpha-blended with the destination pixel according to the Px[1:0] value of the pixel.

P0[1:0] is the leftmost pixel on the display and P3[1:0] is the rightmost pixel. The memory organization of the frame buffer has the top, four leftmost pixel data (first byte) at the base address of the frame buffer. The address increases from left to right groups of four pixels of each line of the image and continues increasing onto the subsequent lines until the bottom right of the image, as shown below:

Base address of	image in memor	y V	irtual width (strid	de) of image (V	N)			
0	1	2				VW/4-2	VW/4-1	♠
VW/4	VW/4+1	VW/4+2				2VW/4-2	2VW/4-1	
2VW/4	2VW/4+1	2VW/4+2				3VW/4-3	3VW/4-1	Height of
								image (H
(H-1)VW/4	(H-1)VW/4+1	(H-1)VW/4+2				(H)VW/4-2	(H)VW/4-1	<b>↓</b>

Figure 23.5.2.3 Frame Buffer for 2-bit Bitmap Image

Figure 23.5.2.4 shows an example of a  $10 \times 11$  2-bit bitmap image for character '8'.

0			3	4	5	6			
10		12	13			16	17	18	19
20	31	22	23		25	26	27	28	29
30	31	32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47	48	49
50	51	52	53	54	55	56	57	58	59
60	61	62	63	64	65	66	67	68	69
70		72	73			76	77	78	79
80	81	82	83	84	85	86	87	88	89
90	91	92	93			96	97	98	99
100	101	102	103	104	105	106		108	109

The white pixels have an alpha value of 0b11, the light gray pixels have an alpha value of 0b10, the dark gray pixels have an alpha value of 0b01, and the diagonally shaded pixels have an alpha value of 0b00 (transparent). In this example, the bytes in memory would be as follows:

#### 23 MEMORY DISPLAY CONTROLLER (MDC)

Address	Value(binary)	Value(hex)				
0	0b11000000	0xc0	3	2	1	0
1	0b00111111	0x3f	7	6	5	4
2	0bXXXX0000	0x00	$\geq$	$\geq$		
3	0b10110000	0xb0	13	12		10
4	0b11100000	0xe0	17	16		
5	0bXXXX0000	0x00	$\geq$	$\geq$	19	18
6	0b00110000	0x30	23	22	21	20
7	0b11000000	0xc0	27	26	25	
8	0bXXXX0000	0x00	$\geq$	$\geq$	29	28
9	0b00110000	0x30	33	32	31	30
10	0b11000000	0xc0	37	36	35	34
11	0bXXXX0000	0x00	$\geq$	$\geq$	39	
12	0b10110000	0xb0	43	42	41	40
13	0b11100101	0xe5	47	46	45	44
14	0bXXXX0000	0x00	$\geq$	$\geq$	49	48
15	0b11000000	0xc0	53	52	51	50
16	0b00111111	0x3f	57	56	55	54
17	0bXXXX0000	0x00	$\geq$	$\geq$	59	58
18	0b10110000	0xb0	63	62	61	60
19	0b11100101	0xe5	67	66	65	64
20	0bXXXX0000	0x00	$\geq$	$\geq$	69	68
21	0b00110000	0x30	73	72		70
22	0b11000000	0xc0	77	76	75	
23	0bXXXX0000	0x00	$\geq$	$\geq \leq$	79	78
24	0b00110000	0x30	83	82	81	80
25	0b11000000	0xc0	87	86	85	84
26	0bXXXX0000	0x00	$\geq$	$\geq$	89	
27	0b10110000	0xb0	93	92	91	90
28	0b11100000	0xe0	97	96	95	94
29	0bXXXX0000	0x00	$\geq$	$\geq \leq$	99	98
30	0b11000000	0xc0	103	102	101	100
31	0b00111111	0x3f	107	106	105	104
32	0bXXXX0000	0x00	$\triangleright$	$\geq$	109	108

Figure 23.5.2.4 2-bit Bitmap Image Data Example

# 23.6 Operations

# 23.6.1 Initialization

The MDC should be initialized with the procedure shown below.

- 1. Assign the MDC input/output function to the ports. (Refer to the "I/O Ports" chapter.)
- 2. Configure the MDC operating clock. (Refer to "Clock Settings.")
- 3. Configure the VMD power supply. (Refer to "MDC Power Supply Circuit.")

For other initial settings, refer to the descriptions for each MDC function.

# 23.6.2 Display Updater

The display updater handles the transfer of pixel data from the frame buffer to the display panel. The display updater supports three main types of interfaces: 6-bit color panel, SPI panel, and grayscale panel. The image can be rotated in 0, 90, 180, or 270 degree during data transfer in the 6-bit color and SPI panel interfaces. For example, an  $160 \times 120$ -pixel image can be transferred to the  $120 \times 160$ -pixel display panel by rotating in 90 or 270 degree.

## 6-bit color panel updater



Figure 23.6.2.1 shows the timing diagrams and parameters of a 6-bit color panel.

* DATA = Red[0:1], Green[0:1], Blue[0:1]

Figure 23.6.2.1 6-bit Color Panel Timing Diagram (example of 180 × 180 6-bit color panel)

i∙ **≁i∢**₹

MDCDISPCLKDIV.TIM0[7:0]

4

MDCDISPPRM21.TIM2[7:0]

MDCDISPPRM43.TIM3[7:0]

i₩ -

MDCDISPPRM21.TIM1[7:0]

⁽Note:) The timings depend on the panel used.

#### 6-bit color panel updater initialization procedure

To set up the 6-bit color panel, the following register initialization sequence is needed:

1.	Set the MDCDISPVCOMDIV.DISPVCOMDIV[15:0] bits.	(Set VCOM	period)
----	------------------------------------------------	-----------	---------

- 2. Configure the following MDCDISPCTL register bits:
  - Set both the MDCDISPCTL.DISPGS and MDCDISPCTL.DISPSPI bits to 0.
  - MDCDISPCTL.ROTSEL[1:0] bits
  - Set the MDCDISPCTL.VCOMEN bit to 1.
  - MDCDISPCTL.DISPINVERT bit
- 3. Configure the following MDCDISPCLKDIV register bits:
  - MDCDISPCLKDIV.CLKDIV[7:0] bits
  - MDCDISPCLKDIV.TIM0[7:0] bits
- 4. Configure the following MDCDISPPRM21 register bits:
   MDCDISPPRM21.TIM1[7:0] bits

- MDCDISPPRM21.TIM2[7:0] bits

- 5. Configure the following MDCDISPPRM43 register bits:
  - MDCDISPPRM43.TIM3[7:0] bits
  - MDCDISPPRM43.TIM4[7:0] bits
- 6. Configure the following MDCDISPPRM65 register bits:
  - MDCDISPPRM65.TIM5[7:0] bits
  - MDCDISPPRM65.TIM6[7:0] bits

(Select 6-bit color panel interface) (Select swivel orientation) (Turn VCOM/XFRP output on) (Enable/disable pixel inversion)

(Set panel timing unit (T)) (Set VCK rise to HST rise time and VCK fall to VST fall time)

(Set VST rise to VCK rise time, horizontal end to next VCK edge time) (Set HST rise to HCK rise time)

(Set half HCK high/low time) (Set VCK rise/fall to ENB rise time)

(Set ENB high time) (Set XRST rise delay time, XRST rise to VST rise time, and data transfer end to XRST fall time)

(Set display update starting line number)

(Set display update ending line number)

(Set display width) (Set display height)

 Set the MDCDISPFRMBUFF0.FRMBUFFADDR[15:0] and MDCDISPFRMBUFF1.FRMBUFFADDR[31:16] bits. (Set frame buffer base address)

- 10. Set the MDCDISPSTRIDE.DISPSTRIDE[9:0] bits. (Set frame buffer stride) The frame buffer image can be wider than the display width to allow for panning.
- 11. Set the MDCDISPSTARTY.STARTY[9:0] bits.

7. Set the MDCDISPWIDTH.DISPWIDTH[9:0] bits.

8. Set the MDCDISPHEIGHT.DISPHEIGHT[9:0] bits.

12. Set the MDCDISPENDY.ENDY[9:0] bits.

#### Triggering a display update

To update the display, follow the procedure shown below.

1.	Write 1 to the MDCBSTPWR.VMDBUP bit.	(Increase response speed)
2.	Set the following bits when using the interrupt:	
	- Write 1 to the MDCINTCTL.GFXIF bit.	(Clear interrupt flag)
	- Set the MDCINTCTL.GFXIE bit to 1.	(Enable MDC interrupt)
3.	Set the MDCGFXCTL.GFXFUNC[2:0] bits to 0x6.	(Select display update function)
4.	Write 1 to the MDCTRIGCTL.GFXTRIG bit.	(Start display update)

When the update is finished, the MDCTRIGCTL.GFXTRIG bit is automatically cleared to 0 and the MD-CINTCTL.GFXIF bit is set to 1. After that, set the MDCBSTPWR.VMDBUP bit to 0, and the MDCBSTPWR. REGECO bit to 1.

## SPI panel updater

Figure 23.6.2.2 shows the timing diagrams and parameters of an SPI panel.



• twsclkh will be one tsysclk longer than twsclkl when the MDCDISPCLKDIV.CLKDIV[7:0] bits are an even value, or 2 × tsysclk longer than twsclkl when the MDCDISPCLKDIV.CLKDIV[7:0] bits are an odd value.

#### Triggering a display update

To update the display, follow the procedure shown below.

1.	Write 1 to the MDCBSTPWR.VMDBUP bit.	(Increase response speed)
2.	Set the following bits when using the interrupt:	
	- Write 1 to the MDCINTCTL.GFXIF bit.	(Clear interrupt flag)
	- Set the MDCINTCTL.GFXIE bit to 1.	(Enable MDC interrupt)
3.	Set the MDCGFXCTL.GFXFUNC[2:0] bits to 0x6.	(Select display update function)
4.	Write 1 to the MDCTRIGCTL.GFXTRIG bit.	(Start display update)
** 71		

When the update is finished, the MDCTRIGCTL.GFXTRIG bit is automatically cleared to 0 and the MD-CINTCTL.GFXIF bit is set to 1. After that, set the MDCBSTPWR.VMDBUP bit to 0, and the MDCBSTPWR. REGECO bit to 1.

#### Grayscale panel updater

There are 3 types of grayscale panel interfaces: parallel, 3-wire serial, and 4-wire serial. All three interfaces have the same byte sequence for writing to registers and display memory. A command byte is indicated by A0 = 0 and a parameter byte is indicated by A0 = 1. A command sequence starts with A0 = 0 and a command byte followed by parameter bytes with A0 = 1. The number of parameter bytes depends on the command. Figures 23.6.2.3 and 23.6.2.4 show the byte sequence and the timing diagrams of grayscale panels, respectively.



#### Gravscale panel updater initialization procedure

To set up the grayscale panel, the following register initialization sequence is needed:

1. Configure the following MDCDISPCTL register bits: - Set the MDCDISPCTL.DISPGS bit to 1. (Select grayscale panel interface) - MDCDISPCTL.GSTYPE[1:0] bits (Select grayscale panel interface type (parallel/3-wire serial/4-wire serial)) (Enable/disable pixel inversion) - MDCDISPCTL.DISPINVERT bit 2. Set the MDCTRIGCTL.DISPBPP[1:0] bits. (Set BPP (1/2/4/8 bpp)) 3. Set the MDCDISPCLKDIV.CLKDIV[7:0] bits. (Set panel timing unit (T)) 4. Set the MDCDISPWIDTH.DISPWIDTH[9:0] bits. (Set display width) 5. Set the MDCDISPHEIGHT.DISPHEIGHT[9:0] bits. (Set display height) 6. Set the MDCDISPFRMBUFF0.FRMBUFFADDR[15:0] and MDCDISPFRMBUFF1.FRMBUFFADDR[31:16] bits. (Set frame buffer base address) 7. Set the MDCDISPSTRIDE.DISPSTRIDE[9:0] bits. (Set frame buffer stride) The frame buffer image can be wider than the display width to allow for panning. 8. Set the MDCDISPSTARTY.STARTY[9:0] bits. (Set display update starting line number) 9. Set the MDCDISPENDY.ENDY[9:0] bits. (Set display update ending line number) Sending a command

To send a command to the grayscale panel, follow the procedure shown below.

- 1. Set the command and parameters to be sent to the panel to the following registers/bits:
- MDCDISPCLKDIV.TIM0[7:0] bits (Command) - MDCDISPPRM21.TIM1[7:0] bits (Parameter 1) - MDCDISPPRM21.TIM2[7:0] bits (Parameter 2) - MDCDISPPRM43.TIM3[7:0] bits (Parameter 3) - MDCDISPPRM43.TIM4[2:0] bits (Parameter 4) - MDCDISPPRM65.TIM5[3:0] bits (Parameter 5) - MDCDISPPRM65.TIM6[7:0] bits (Parameter 6) - MDCDISPPRM87.TIM7[3:0] bits (Parameter 7) - MDCDISPPRM87.TIM8[7:0] bits (Parameter 8) * Note that the number of parameters depends on the command. 2. Set the MDCDISPCTL.UPDFUNC bit to 1. (Select command write function)
- 3. Set the MDCGFXCTL.GFXFUNC[2:0] bits to 0x6. (Select display update function) 4. Configure the following MDCTRIGCTL register bits: - MDCTRIGCTL.NPARAM[3:0] bits (Set number of parameter bytes)
  - Write 1 to MDCTRIGCTL.GFXTRIG bit.

When the command transfer is finished, the MDCTRIGCTL.GFXTRIG bit is automatically cleared to 0 and the MDCINTCTL.GFXIF bit is set to 1.

(Send command)

#### Triggering a display update

To update the display, follow the procedure shown below.

1.	Write 1 to the MDCBSTPWR.VMDBUP bit.	(Increase response speed)
2.	Set the WRRAM command and dummy parameter to be sent	to the panel to the following registers/bits:
	- MDCDISPCLKDIV.TIM0[7:0] bits	(Set WRRAM command)
	- MDCDISPPRM21.TIM1[7:0] bits	(Set dummy parameter)
3.	Set the following bits when using the interrupt:	
	- Write 1 to the MDCINTCTL.GFXIF bit.	(Clear interrupt flag)
	- Set the MDCINTCTL.GFXIE bit to 1.	(Enable MDC interrupt)
4.	Set the MDCGFXCTL.GFXFUNC[2:0] bits to 0x6.	(Select display update function)

4. Set the MDCGFXCTL.GFXFUNC[2:0] bits to 0x6.

#### 23 MEMORY DISPLAY CONTROLLER (MDC)

- 5. Configure the following MDCTRIGCTL register bits:
  - Set the MDCTRIGCTL.NPARAM[3:0] bits to 0x2.
  - Write 1 to MDCTRIGCTL.GFXTRIG bit.

(Set number of parameter bytes) (Start display update)

When the update is finished, the MDCTRIGCTL.GFXTRIG bit is automatically cleared to 0 and the MDCINTCTL.GFXIF bit is set to 1. After that, set the MDCBSTPWR.VMDBUP bit to 0, and the MDCBSTPWR. REGECO bit to 1.

## Frame buffer-to-panel rotation

For the 6-bit color and SPI panels, the frame buffer image can be rotated 0, 90, 180, or 270 degrees when the panel is updated.

If the panel (and frame buffer image) is a square resolution (number of width and height pixels are equal), then the following register settings apply for all rotation settings:

MDCDISPWIDTH.DISPWIDTH[9:0] bits = MDCGFXOWIDTH.OWIDTH[9:0] bits = [panel width] MDCDISPHEIGHT.DISPHEIGHT[9:0] bits = MDCGFXOHEIGHT.OHEIGHT[9:0] bits = [panel height] MDCDISPSTRIDE.DISPSTRIDE[9:0] bits = MDCGFXOSTRIDE.OSTRIDE[9:0] bits = [display image stride]

If the panel (and frame buffer image) is rectangular (width and height are not equal), because of a limitation in the rotation hardware, the following register settings should be used to work around the limitation:

## 0- or 180-degree rotation

MDCDISPWIDTH.DISPWIDTH[9:0] bits = MDCGFXOWIDTH.OWIDTH[9:0] bits = [panel width] MDCDISPHEIGHT.DISPHEIGHT[9:0] bits = MDCGFXOHEIGHT.OHEIGHT[9:0] bits = [panel height] MDCDISPSTRIDE.DISPSTRIDE[9:0] bits = MDCGFXOSTRIDE.OSTRIDE[9:0] bits = [display image stride] MDCDISPFRMBUFF0/1.FRMBUFFADDR[31:0] bits = MDCGFXOBADDR0/1.OBASEADDR[31:0] bits

= [frame buffer base address]

Frame Buffer Size = ([linebytes]  $\times$  [panel height]) bytes

For 6-bit color:[linebytes] = [display image stride]For SPI 3-bit color:[linebytes] = ROUNDUP([display image stride] / 2)For SPI 1-bit B&W:[linebytes] = ROUNDUP([display image stride] / 4)

## 90-degree rotation, [panel width] > [panel height]

MDCDISPWIDTH.DISPWIDTH[9:0] bits = [panel width] MDCDISPHEIGHT.DISPHEIGHT[9:0] bits = [panel width] MDCDISPSTRIDE.DISPSTRIDE[9:0] bits = [panel width] MDCDISPFRMBUFF0/1.FRMBUFFADDR[31:0] bits = [frame buffer base address] + ([panel height] - [panel width]) for 6-bit color ROUNDUP(([panel height] - [panel width]) / 2) for SPI 3-bit color ROUNDUP(([panel height] - [panel width]) / 4) for SPI 1-bit B&W MDCGFXOWIDTH.OWIDTH[9:0] bits = [panel height] MDCGFXOHEIGHT.OHEIGHT[9:0] bits = [panel height] MDCGFXOSTRIDE.OSTRIDE[9:0] bits = [panel width] MDCGFXOBADDR0/1.OBASEADDR[31:0] bits = [frame buffer base address] Frame Buffer Size = ([linebytes] × [panel width]) bytes

For 6-bit color: [linebytes] = [panel width] For SPI 3-bit color: [linebytes] = ROUNDUP([panel width] / 2) For SPI 1-bit B&W: [linebytes] = ROUNDUP([panel width] / 4)

## 90-degree rotation, [panel height] > [panel width]

MDCDISPWIDTH.DISPWIDTH[9:0] bits = [panel height] MDCDISPHEIGHT.DISPHEIGHT[9:0] bits = [panel height] MDCDISPSTRIDE.DISPSTRIDE[9:0] bits = [panel height] MDCDISPFRMBUFF0/1.FRMBUFFADDR[31:0] bits = [frame buffer base address] MDCGFXOWIDTH.OWIDTH[9:0] bits = [panel height] MDCGFXOHEIGHT.OHEIGHT[9:0] bits = [panel width] MDCGFXOSTRIDE.OSTRIDE[9:0] bits = [panel height] MDCGFXOBADDR0/1.0BASEADDR[31:0] bits = [frame buffer base address] Frame Buffer Size = ([linebytes]  $\times$  [panel height]) bytes [linebytes] = [panel height] For 6-bit color: For SPI 3-bit color: [linebytes] = ROUNDUP([panel height] / 2) For SPI 1-bit B&W: [linebytes] = ROUNDUP([panel height] / 4) 270-degree rotation. [panel width] > [panel height] MDCDISPWIDTH.DISPWIDTH[9:0] bits = [panel width] MDCDISPHEIGHT.DISPHEIGHT[9:0] bits = [panel width] MDCDISPSTRIDE.DISPSTRIDE[9:0] bits = [panel width] MDCDISPFRMBUFF0/1.FRMBUFFADDR[31:0] bits = [frame buffer base address] MDCGFXOWIDTH.OWIDTH[9:0] bits = [panel height] MDCGFXOHEIGHT.OHEIGHT[9:0] bits = [panel width] MDCGFXOSTRIDE.OSTRIDE[9:0] bits = [panel width] MDCGFXOBADDR0/1.0BASEADDR[31:0] bits = [frame buffer base address] Frame Buffer Size = ([linebytes]  $\times$  [panel width]) bytes For 6-bit color: [linebytes] = [panel width] For SPI 3-bit color: [linebytes] = ROUNDUP([panel width] / 2)For SPI 1-bit B&W: [linebytes] = ROUNDUP([panel width] / 4) 270-degree Rotation, [panel height] > [panel width] MDCDISPWIDTH.DISPWIDTH[9:0] bits = [panel height] MDCDISPHEIGHT.DISPHEIGHT[9:0] bits = [panel height] MDCDISPSTRIDE.DISPSTRIDE[9:0] bits = [panel height] MDCDISPFRMBUFF0/1.FRMBUFFADDR[31:0] bits = [frame buffer base address] + ([panel width] - [panel height]) × [panel height] for 6-bit color

= [frame buffer base address] + ([panel width] - [panel height]) × [panel height] for 6-bit color ([panel width] - [panel height]) × ROUNDUP([panel height] / 2) for SPI 3-bit color ([panel width] - [panel height]) × ROUNDUP([panel height] / 4) for SPI 1-bit B&W

```
MDCGFXOWIDTH.OWIDTH[9:0] bits = [panel height]
MDCGFXOHEIGHT.OHEIGHT[9:0] bits = [panel width]
MDCGFXOSTRIDE.OSTRIDE[9:0] bits = [panel height]
MDCGFXOBADDR0/1.OBASEADDR[31:0] bits = [frame buffer base address]
```

Frame Buffer Size = ([linebytes] × [panel height]) bytes
For 6-bit color: [linebytes] = [panel height]
For SPI 3-bit color: [linebytes] = ROUNDUP([panel height] / 2)
For SPI 1-bit B&W: [linebytes] = ROUNDUP([panel height] / 4)

# 23.6.3 Drawing Engine

The drawing engine draws a line, rectangle, ellipse, or arc to a frame buffer. The top left corner of the rectangular frame buffer has a reference coordinate of (0, 0), and the X and Y coordinate parameters for the drawing functions are positive values relative to the reference coordinate. X coordinates are positive values to the right of the top left corner and Y coordinates are positive values below the top left corner.

**Note**: The drawing functions do not update the display. It is necessary to execute the display update function.

## Line drawing

The line drawing function draws a line with a specified thickness and line color. The following shows a procedure to draw a line:

- Set the MDCGFXOBADDR0.OBASEADDR[15:0] and MDCGFXOBADDR1.OBASEADDR[31:16] bits. (Specify frame buffer base address)
- 2. Set the MDCGFXOSTRIDE.OSTRIDE[9:0] bits. (Specify frame buffer stride)
- 3. Set the MDCGFXIXCENTER.IXCENTER[9:0] bits. (Specify X coordinate (X1) of starting point of line)*1
- 4. Set the MDCGFXIYCENTER.IYCENTER[9:0] bits. (Specify Y coordinate (Y1) of starting point of line)*1
- 5. Set the MDCGFXOXCENTER.OXCENTER[9:0] bits. (Specify X coordinate (X2) of ending point of line)*1
- 6. Set the MDCGFXOYCENTER.OYCENTER[9:0] bits. (Specify Y coordinate (Y2) of ending point of line)*1
  *1 Specify coordinates relative to the frame buffer top left corner coordinates of (0, 0).

(Specify line thickness)

(Specify pen color/gray level)

- 7. Set the MDCGFXIWIDTH.IWIDTH[9:0] bits.
- 8. Set the MDCGFXCOLOR.COLOR[7:0] bits.
- 9. Set the following bits when using the interrupt:

  Write 1 to the MDCINTCTL.GFXIF bit.
  Set the MDCINTCTL.GFXIE bit to 1.

  10. Set the MDCGFXCTL.GFXFUNC[2:0] bits to 0x3.
  11. Write 1 to the MDCTRIGCTL.GFXTRIG bit.
  (Start line drawing)

When the line drawing is finished, the MDCTRIGCTL.GFXTRIG is automatically cleared to 0 and the MD-CINTCTL.GFXIF bit is set to 1.

The following diagram shows an example of line drawing on a  $180 \times 180$  6-bit color panel.





The line thickness (MDCGFXIWIDTH.IWIDTH[9:0] bits) value is 10 but actual thickness is  $2 \times 10 + 1 = 21$  pixels ( $2 \times$  MDCGFXIWIDTH.IWIDTH[9:0] bits + 1).

## **Rectangle drawing**

The rectangle drawing function draws a filled or unfilled rectangle. The following shows a procedure to draw a rectangle:

1.	Set the MDCGFXOBADDR0.OBASEADDR[15:0] and MDCGFXOBADDR1.OBASEADDR[31:16] bits.	(Specify frame buffer base address)
2.	Set the MDCGFXOSTRIDE.OSTRIDE[9:0] bits.	(Specify frame buffer stride)
3.	Set the MDCGFXIXCENTER.IXCENTER[9:0] bits.	(Specify X coordinate (X1) of top left corner of rectangle)*1
4.	Set the MDCGFXIYCENTER.IYCENTER[9:0] bits.	(Specify Y coordinate (Y1) of top left corner of rectangle)*1
5.	Set the MDCGFXOXCENTER.OXCENTER[9:0] bits.	(Specify X coordinate (X2) of bottom right corner of rectangle)*1
6.	Set the MDCGFXOYCENTER.OYCENTER[9:0] bits.	(Specify Y coordinate (Y2) of bottom right corner of rectangle)*1
	*1 Specify coordinates relative to the frame buffer top	left corner coordinates of $(0, 0)$ .
7.	Set the MDCGFXIWIDTH.IWIDTH[9:0] bits.	(Specify vertical line thickness for unfilled rectangle drawing)*2
8.	Set the MDCGFXIHEIGHT.IHEIGHT[9:0] bits.	(Specify horizontal line thickness for unfilled rectangle drawing)*2
	*2 If vertical line thickness > [ $((X2 - X1) - 1) / 2$ ], it If horizontal line thickness > [ $((Y2 - Y1) - 1) / 2$ ]	is internally clipped to [ $((X2 - X1) - 1)/2$ ]. , it is internally clipped to [ $((Y2 - Y1) - 1)/2$ ].
9.	<ul><li>Set the MDCGFXCOLOR.COLOR[7:0] bits.</li><li>*3 These bits specify the fill color/gray level for fille filled rectangle.</li></ul>	(Specify pen color/gray level)* ³ d rectangle or the edge line color/gray level for un-
10.	<ul><li>Set the following bits when using the interrupt:</li><li>Write 1 to the MDCINTCTL.GFXIF bit.</li><li>Set the MDCINTCTL.GFXIE bit to 1.</li></ul>	(Clear interrupt flag) (Enable MDC interrupt)
11.	<ul><li>Configure the following MDCGFXCTL register bits:</li><li>Set the MDCGFXCTL.GFXFUNC[2:0] bits to 0x2.</li><li>MDCGFXCTL.FILLEN bit</li></ul>	(Select rectangle drawing function) (Enable/disable fill option)
12.	Write 1 to the MDCTRIGCTL.GFXTRIG bit.	(Start rectangle drawing)

12. Write 1 to the MDCTRIGCTL.GFXTRIG bit.

When the rectangle drawing is finished, the MDCTRIGCTL.GFXTRIG is automatically cleared to 0 and the MDCINTCTL.GFXIF bit is set to 1.

The following diagram shows an example of filled and unfilled rectangle drawing on a 6-bit color panel.



Figure 23.6.3.2 Rectangle Drawing Examples

## **Ellipse drawing**

The ellipse drawing function draws a filled or unfilled ellipse. The following shows a procedure to draw an ellipse:

- 1. Set the MDCGFXOBADDR0.0BASEADDR[15:0] and MDCGFXOBADDR1.OBASEADDR[31:16] bits. (Specify frame buffer base address) 2. Set the MDCGFXOSTRIDE.OSTRIDE[9:0] bits. (Specify frame buffer stride) (Specify X coordinate of ellipse center)*1 3. Set the MDCGFXIXCENTER.IXCENTER[9:0] bits. 4. Set the MDCGFXIYCENTER.IYCENTER[9:0] bits. (Specify Y coordinate of ellipse center)*1 *1 Specify coordinates relative to the frame buffer top left corner coordinates of (0, 0). 5. Set the MDCGFXOXCENTER.OXCENTER[9:0] bits. (Specify X radius (XR))*2 6. Set the MDCGFXOYCENTER.OYCENTER[9:0] bits. (Specify Y radius (YR))*2 *2 XR > 0, YR > 0. If XR = 0 or YR = 0, nothing happens. 7. Set the MDCGFXIWIDTH.IWIDTH[9:0] bits. (Specify thickness of X-axis crossing for unfilled ellipse drawing)*3 8. Set the MDCGFXIHEIGHT.IHEIGHT[9:0] bits. (Specify thickness of Y-axis crossing for unfilled ellipse drawing)*3 *3 The line thickness is "tapered" in the transition between the X-axis and Y-axis crossings. If XR < 3, the thickness of X-axis crossing is internally clipped to 0. If YR < 3, the thickness of Y-axis crossing is internally clipped to 0. Thickness of X-axis crossing  $\leq$  (XR/2) Thickness of Y-axis crossing  $\leq$  (YR/2) 9. Set the MDCGFXCOLOR.COLOR[7:0] bits. (Specify pen color/gray level)*4 *4 These bits specify the fill color/gray level for filled ellipse or the edge line color/gray level for unfilled ellipse. 10. Set the following bits when using the interrupt: - Write 1 to the MDCINTCTL.GFXIF bit. (Clear interrupt flag) - Set the MDCINTCTL.GFXIE bit to 1. (Enable MDC interrupt)
- 11. Configure the following MDCGFXCTL register bits:
  - Set the MDCGFXCTL.GFXFUNC[2:0] bits to 0x4. (Select ellipse drawing function)
  - MDCGFXCTL.FILLEN bit
- 12. Write 1 to the MDCTRIGCTL.GFXTRIG bit.

(Select ellipse drawing function) (Enable/disable fill option) (Start ellipse drawing)

When the ellipse drawing is finished, the MDCTRIGCTL.GFXTRIG is automatically cleared to 0 and the MD-CINTCTL.GFXIF bit is set to 1.

The following diagram shows an example of filled and unfilled ellipse drawing on a 6-bit color panel.





## Arc drawing

The arc drawing function draws an elliptical or circular arc with specified X/Y center coordinate, starting/ending angle (counterclockwise from 0 degrees = positive X-axis), X radius, and Y radius. The following shows a procedure to draw an arc:

1.	Set the MDCGFXOBADDR0.0BASEADDR[15:0] and MDCGEXOBADDR1 0BASEADDR[31:16] bits	(Specify frame buffer base address)
2.	Set the MDCGFXOSTRIDE OSTRIDE[9:0] bits.	(Specify frame buffer stride)
3.	Set the MDCGFXIXCENTER.IXCENTER[9:0] bits.	(Specify X coordinate of arc center)*1
4.	Set the MDCGFXIYCENTER.IYCENTER[9:0] bits. *1 Specify coordinates relative to the frame buffer top	(Specify Y coordinate of arc center)* ¹ left corner coordinates of $(0, 0)$ .
5.	Set the MDCGFXOXCENTER.OXCENTER[9:0] bits.	. (Specify X radius XR)*2
6.	Set the MDCGFXOYCENTER.OYCENTER[9:0] bits. *2 XR > 0, YR > 0. If XR = 0 or YR = 0, nothing happ	. (Specify Y radius YR)*2 pens.
7.	Set the MDCGFXROTVAL.ROTVAL[8:0] bits.	(Specify starting angle)
8.	Set the MDCGFXISTRIDE.ISTRIDE[9:0] bits.	(Specify ending angle)
9.	Set the MDCGFXIWIDTH.IWIDTH[9:0] bits.	(Specify thickness of X-axis crossing)*3
10.	Set the MDCGFXIHEIGHT.IHEIGHT[9:0] bits. *3 The line thickness is "tapered" in the transition betw If XR < 3, the thickness of X-axis crossing is intern If YR < 3, the thickness of Y-axis crossing is intern Thickness of X-axis crossing ≤ (XR/2) Thickness of Y-axis crossing ≤ (YR/2)	(Specify thickness of Y-axis crossing)* ³ ween the X-axis and Y-axis crossings. hally clipped to 0. ally clipped to 0.
11.	Set the MDCGFXCOLOR.COLOR[7:0] bits.	(Specify pen color/gray level)
12.	<ul><li>Set the following bits when using the interrupt:</li><li>Write 1 to the MDCINTCTL.GFXIF bit.</li><li>Set the MDCINTCTL.GFXIE bit to 1.</li></ul>	(Clear interrupt flag) (Enable MDC interrupt)
13.	Set the MDCGFXCTL.GFXFUNC[2:0] bits to 0x7.	(Select arc drawing function)
14.	Write 1 to the MDCTRIGCTL.GFXTRIG bit.	(Start arc drawing)
** 71		

When the arc drawing is finished, the MDCTRIGCTL.GFXTRIG is automatically cleared to 0 and the MD-CINTCTL.GFXIF bit is set to 1.

The following diagram shows an example of arc drawing on a 6-bit color panel.



**Note**: The edge lines of arcs can only be drawn as a smooth straight lines for specified angles (0, 90, 180, or 270 degree). For other angles use the "seMDC_GFX_DrawArc" function included in the "S1C31D01 sample programs" to draw smooth lines.

# 23.6.4 Copy Engine

# **Overview and definitions**

The copy engine copies pixels from a window of a source image or bitmap to a window of a destination image with transformation (scaling + rotation or horizontal/vertical shear).



Figure 23.6.4.1 Copy Engine Definitions

**Note**: The copy functions do not update the display. It is necessary to execute the display update function.

## Source image and window

Pixels are copied from a window within the source image (or bitmap) to a window within the destination image with transformation applied. Typically, the source window is the same size as the source image, but it can be smaller to allow for panning within the source image. The source window and image are defined by the following parameters:

- Source (input) window base address (MDCGFXIBADDR1/0.IBASEADDR[31:0] bits)
  - This points to the memory location of the top left corner of the source window.
  - The top left corner of the source window has coordinates of (0, 0).
  - Panning of the source image is achieved by changing this base address.
- Source (input) window width (MDCGFXIWIDTH.IWIDTH[9:0] bits)
  - This is the width of the source window in pixels.
- Source (input) window height (MDCGFXIHEIGHT.IHEIGHT[9:0] bits)
  - This is the height of the source window in pixels.
- Source (input) image stride (MDCGFXISTRIDE.ISTRIDE[9:0] bits)
  - This is the stride (number of pixels per line) of the source image.

- Source (input) window center of transformation X coordinate (MDCGFXIXCENTER.IXCENTER[9:0] bits)
  - This is the X coordinate, in pixels relative to the top left corner coordinates of (0, 0), of the center of transformation for the source window.
  - This is a positive value which is to the right of the (0, 0) top left corner.
  - The transformation (scale, rotate, shear) is applied relative to this center.
- Source (input) window center of transformation Y coordinate (MDCGFXIYCENTER.IYCENTER[9:0] bits)
  - This is the Y coordinate, in pixels relative to the top left corner coordinates of (0, 0), of the center of transformation for the source window.
  - This is a positive value which is below the (0, 0) top left corner.
  - The transformation (scale, rotate, shear) is applied relative to this center.

## Destination image and window

The destination image can be bigger than the destination window to allow for panning of the destination image. Source pixels, after applying the transformation, that are outside the destination window are not copied (written). The copy engine calculates an output window when the transformation is applied to the source window. (There results of the calculations can be read from the MDCGFXOWLEFT.OWLEFT[9:0], MDCGFXOWRIGHT. OWRIGHT[9:0], MDCGFXOWTOP.OWTOP[9:0], and MDCGFXOWBOT.OWBOT[9:0] bits.) If the output window is within the destination window, then pixels are copied only to the smaller output window within the destination window. If any of the output window edges fall outside the destination window edges, they are clipped to the destination window and pixels are not copied to locations outside the destination window. The destination window and image are defined by the following parameters:

- Destination (output) window base address (MDCGFXOBASEADDR1/0.OBASEADDR[31:0] bits)
  - This points to the memory location of the top left corner of the destination window.
  - The top left corner of the destination window has coordinates of (0, 0).
  - Panning of the destination image is achieved by changing this base address.
- Destination (output) window width (MDCGFXOWIDTH.OWIDTH[9:0] bits)
  - This is the width of the destination window in pixels.
- Destination (output) window height (MDCGFXOHEIGHT.OHEIGHT[9:0] bits)
  - This is the height of the destination window in pixels.
- Destination (output) image stride (MDCGFXOSTRIDE.OSTRIDE[9:0] bits)
  - This is the stride (number of pixels per line) of the destination image.
- Destination (output) window center of transformation X coordinate (MDCGFXOXCENTER.OXCEN-TER[9:0] bits)
  - This is the X coordinate, in pixels relative to the top left corner coordinates of (0, 0), of the center of transformation for the destination window.
  - This is a positive value which is to the right of the (0, 0) top left corner.
  - The transformed image in the destination window is centered at this location.
- Destination (output) window center of transformation Y coordinate (MDCGFXOYCENTER.OYCEN-TER[9:0] bits)
  - This is the Y coordinate, in pixels relative to the top left corner coordinate of (0, 0), of the center of transformation for the destination window.
  - This is a positive value which is below the (0, 0) top left corner.
  - The transformed image in the destination window is centered at this location.

#### Source pixel alpha channel

The source pixels for the SPI 1-bit black-and-white and 3-bit color formats contain a 1-bit alpha channel which specifies whether or not the source pixel should be copied. A 0 in the alpha channel indicates that the pixel should not be copied to the destination and a 1 indicates that it should be copied. Effectively, the alpha channel bit specifies pixel transparency.

The source pixels for the 6-bit color format contain a 2-bit alpha channel. The pixel value copied to the destination location is the alpha-blend of the destination pixel with the source pixel based on the 2-bit alpha channel value of the source pixel. A value of 0b00 (0%) means the source pixel is not copied and a value of 0b11 (100%) means that the destination pixel is over-written with the source pixel. A value of 0b01 means 33% blending ratio for the source pixel and a value of 0b10 means 67% blending ratio.

The MDCGFXCTL.ALPHAOVRRD bit can be used to override the alpha channel value of the source pixels. When the MDCGFXCTL.ALPHAOVRRD bit is 1, the MDCGFXCTL.ALPHAVAL[1:0] bits are used as the alpha value for all the source pixels.

The source pixels for 1/2/4/8 bpp grayscale formats do not contain alpha channel information. Therefore, the copy engine overwrites the destination pixels with the source pixels.

**Note:** In the SPI 3-bit color format, both the 3rd and 7th bit values in each data byte, which represent the alpha channel values of the source pixels, must be the same.

## Source bitmaps

The MDCGFXCTL.BITMAPEN bit is used to specify whether the source is a regular image (0) or a bitmap (1). If the MDCGFXCTL.BITMAPEN bit is 1 which selects bitmap, the MDCGFXCTL.BITMAPFMT bit specifies whether the bitmap format is 1-bit per pixel or 2-bit per pixel.

For the 1-bit format, a value of 0 means the source pixel is transparent (not copied to the destination location), and a value of 1 means the pixel color specified by the MDCGFXCOLOR.COLOR[7:0] bits (dependent on which panel color format is selected) is written to the destination location.

The 2-bit bitmap format is only applicable to the 6-bit color panel. For the 2-bit format, the bitmap value specifies the alpha-blending ratio of the destination pixel with the pixel color specified by the MDCGFXCOLOR. COLOR[5:0] bits. Bitmaps are typically used for fonts or simple icons/shapes and the 2-bit format can be used to provide "smoothing" of edges by giving the edge pixels a 33% or 67% alpha-blending value.

## Fill option

For the copy engine, if the MDCGFXCTL.FILLEN bit is 1, all source pixels are overridden with a fill color specified by the MDCGFXCOLOR.COLOR[7:0] bits, and the destination pixels are filled with the MDCGFX-COLOR.COLOR[7:0] bits having the "shape" of the source image or bitmap.

## Source window horizontal and vertical flip

The MDCGFXCTL.CPYNEGX and MDCGFXCTL.CPYNEGY bits can be used to negate (flip) the X and Y coordinate values of the source window pixels relative to the center of transformation. If the MDCGFXCTL. CPYNEGX bit is 1, the source window image is flipped about the Y-axis that runs through the source window's center of transformation. If the MDCGFXCTL.CPYNEGY bit is 1, the source window image is flipped about the X-axis that runs through the source window's center of transformation.

- **Notes:** When the MDCGFXCTL.CPYNEGX bit = 1, the MDCGFXIXCENTER.IXCENTER[9:0] bits must be set to the horizontal center of the source image.
  - When the MDCGFXCTL.CPYNEGY bit = 1, the MDCGFXIYCENTER.IYCENTER[9:0] bits must be set to the vertical center of the source image.

## Image/bitmap copy with rotation and scaling

The COPYROTSCALE function copies pixels from a source window to a destination window with rotation and scaling transformation. The rotation and scaling transformations are combined when the COPYROTSCALE function is triggered.

The following shows a procedure to execute the COPYROTSCALE function:

#### 23 MEMORY DISPLAY CONTROLLER (MDC)

Window configuration

1.	Set the MDCGFXIBADDR0.IBASEADDR[15:0] and MDCGFXIBADDR1.IBASEADDR[31:16] bits.	(Specify source window base address)
2.	Set the MDCGFXIXCENTER.IXCENTER[9:0] bits.	(Specify X coordinate of center of rotation/scaling in source window)
3.	Set the MDCGFXIYCENTER.IYCENTER[9:0] bits.	(Specify Y coordinate of center of rotation/scaling in source window)
4.	Set the MDCGFXIWIDTH.IWIDTH[9:0] bits.	(Specify width of source window)
5.	Set the MDCGFXIHEIGHT.IHEIGHT[9:0] bits.	(Specify height of source window)
6.	Set the MDCGFXISTRIDE.ISTRIDE[9:0] bits.	(Specify source image stride)
7.	Set the MDCGFXOBADDR0.OBASEADDR[15:0] and MDCGFXOBADDR1.OBASEADDR[31:16] bits.	(Specify destination window base address)
8.	Set the MDCGFXOXCENTER.OXCENTER[9:0] bits.	(Specify X coordinate of center of rotation/scaling in destination window)
9.	Set the MDCGFXOYCENTER.OYCENTER[9:0] bits.	(Specify Y coordinate of center of rotation/scaling in destination window)
10.	Set the MDCGFXOWIDTH.OWIDTH[9:0] bits.	(Specify width of destination window)
11.	Set the MDCGFXOHEIGHT.OHEIGHT[9:0] bits.	(Specify height of destination window)
12.	Set the MDCGFXOSTRIDE.OSTRIDE[9:0] bits.	(Specify destination image stride)
Se	tting for rotation	
13.	Set the MDCGFXROTVAL.ROTVAL[8:0] bits.	(Specify rotation angle)
Se	ttings for scaling	
14.	Set the MDCGFXXLSCALE.XLSCALE[13:0] bits.	(Specify left half scaling factor)
15.	Set the MDCGFXXRSCALE.XRSCALE[13:0] bits.	(Specify right half scaling factor)
16.	Set the MDCGFXYTSCALE.YTSCALE[13:0] bits.	(Specify top half scaling factor)
17.	Set the MDCGFXYBSCALE.YBSCALE[13:0] bits.	(Specify bottom half scaling factor)
Ex	ecuting COPYROTSCALE function	
18.	Set the MDCGFXCOLOR.COLOR[7:0] bits. *1 Specify only when the MDCGFXCTL.BITMAPEN	(Specify fill color/gray level)*1   bit = 1 or the MDCGFXCTL.FILLEN bit = 1.
19.	<ul><li>Set the following bits when using the interrupt:</li><li>Write 1 to the MDCINTCTL.GFXIF bit.</li><li>Set the MDCINTCTL.GFXIE bit to 1.</li></ul>	(Clear interrupt flag) (Enable MDC interrupt)
20.	<ul> <li>Configure the following MDCGFXCTL register bits:</li> <li>Set the MDCGFXCTL.GFXFUNC[2:0] bits to 0x0.</li> <li>MDCGFXCTL.ALPHAOVRRD bit</li> <li>MDCGFXCTL.ALPHAVAL[1:0] bit</li> <li>MDCGFXCTL.BITMAPEN bit</li> <li>MDCGFXCTL.BITMAPFMT bit</li> <li>MDCGFXCTL.FILLEN bit</li> <li>MDCGFXCTL.CPYNEGX bit</li> <li>MDCGFXCTL.CPYNEGY bit</li> </ul>	(Select COPYROTSCALE function) (Enable/disable alpha value override) (Specify override alpha value) (Select image copy or bitmap copy) (Select bitmap format (1-bit or 2-bit)) (Enable/disable fill option) (Enable/disable horizontal flip option) (Enable/disable vertical flip option)
21.	Write 1 to the MDCTRIGCTL.GFXTRIG bit.	(Start copying)

When the copying is finished, the MDCTRIGCTL.GFXTRIG is automatically cleared to 0 and the MD-CINTCTL.GFXIF bit is set to 1.

## **Rotation parameter**

The MDCGFXROTVAL.ROTVAL[8:0] bits specify the counterclockwise angle of rotation of the source image about its center of transformation. The value of the MDCGFXROTLVAL.ROTLVAL[8:0] bits can be calculated from a degree value by the following formula:

$$ROTVAL[8:0] = \frac{\langle angle \ in \ degrees > \times 512}{360}$$
(Eq. 23.1)

## **Scaling Parameters**

There are four scaling parameters corresponding to top half (MDCGFXYTSCALE.YTSCALE[13:0] bits), bottom half (MDCGFXYBSCALE.YBSCALE[13:0] bits), left half (MDCGFXXLSCALE.XLSCALE[13:0] bits), and right half (MDCGFXXRSCALE.XRSCALE[13:0] bits) of the source window relative to the center of transformation. The scaling factor is the value of the parameter divided by 256. For example, if the value is 512, the scaling is × 2 (double the size).

**Note**: Depending on the specified value, an error may occur in the scaling factor. The parameter setting value should be determined using the "imgcpy_calcscaling.exe" included in the "S1C31D01 Sample Program."

The following diagram shows an example of image copy with asymmetric scaling and rotation of 45 degrees counterclockwise:



Figure 23.6.4.2 Image Copy with Scaling and Rotation Example

The following diagram shows an example of image copy with the use of the MDCGFXCTL.FILLEN bit = 1 (solid fill) to perform "erase" function of the output image:



Figure 23.6.4.3 Example of Image Copy with Fill Enabled

The following diagram shows an example of bitmap copy with rotation of 90 degrees counterclockwise:

#### 23 MEMORY DISPLAY CONTROLLER (MDC)



Because of the location of the center of scaling/rotation of the input bitmap, the MDCGFXXLSCALE.XLS-CALE[13:0] and MDCGFXYBSCALE.YBSCALE[13:0] bits have no effect.

## Image/Bitmap Copy with Horizontal/Vertical Shear

The COPYHVSHEAR function copies a source/input image or bitmap to a destination/output location with horizontal and vertical shearing.

The following shows a procedure to execute the COPYHVSHEAR function:

#### Window configuration

1.	Set the MDCGFXIBADDR0.IBASEADDR[15:0]	
	and MDCGFXIBADDR1.IBASEADDR[31:16] bits.	(Specify source window base address)
2.	Set the MDCGFXIXCENTER.IXCENTER[9:0] bits.	(Specify X coordinate of center of shearing in source window)
3.	Set the MDCGFXIYCENTER.IYCENTER[9:0] bits.	(Specify Y coordinate of center of shearing in source window)
4.	Set the MDCGFXIWIDTH.IWIDTH[9:0] bits.	(Specify width of source window)
5.	Set the MDCGFXIHEIGHT.IHEIGHT[9:0] bits.	(Specify height of source window)
6.	Set the MDCGFXISTRIDE.ISTRIDE[9:0] bits.	(Specify source image stride)
7.	Set the MDCGFXOBADDR0.0BASEADDR[15:0]	
	and MDCGFXOBADDR1.OBASEADDR[31:16] bits.	(Specify destination window base address)
8.	Set the MDCGFXOXCENTER.OXCENTER[9:0] bits.	(Specify X coordinate of center of shearing in destination window)
9.	Set the MDCGFXOYCENTER.OYCENTER[9:0] bits.	(Specify Y coordinate of center of shearing in destination window)
10.	Set the MDCGFXOWIDTH.OWIDTH[9:0] bits.	(Specify width of destination window)
11.	Set the MDCGFXOHEIGHT.OHEIGHT[9:0] bits.	(Specify height of destination window)
12.	Set the MDCGFXOSTRIDE.OSTRIDE[9:0] bits.	(Specify destination image stride)
Set	tting for shearing	
13.	Configure the following MDCGFXSHEAR register bits	5:
	- MDCGFXSHEAR.XSHEAR[6:0] bits	(Specify horizontal shearing factor)

- MDCGFXSHEAR.YSHEAR[6:0] bits (Specify vertical shearing factor)

#### Executing COPYHVSHEAR function

14. Set the MDCGFXCOLOR.COLOR[7:0] bits. (Specify fill color/gray level)*1
*1 Specify only when the MDCGFXCTL.BITMAPEN bit = 1 or the MDCGFXCTL.FILLEN bit = 1.

15 Set the following bits when using the interrupt:

15. Set the following bits when using the interrupt.	
- Write 1 to the MDCINTCTL.GFXIF bit.	(Clear interrupt flag)
- Set the MDCINTCTL.GFXIE bit to 1.	(Enable MDC interrupt)
16. Configure the following MDCGFXCTL register bits:	
- Set the MDCGFXCTL.GFXFUNC[2:0] bits to 0x1.	(Select COPYHVSHEAR function)
- MDCGFXCTL.ALPHAOVRRD bit	(Enable/disable alpha value override)
- MDCGFXCTL.ALPHAVAL[1:0] bit	(Specify override alpha value)
- MDCGFXCTL.BITMAPEN bit	(Select image copy or bitmap copy)
- MDCGFXCTL.BITMAPFMT bit	(Select bitmap format (1-bit or 2-bit))
- MDCGFXCTL.FILLEN bit	(Enable/disable fill option)
- MDCGFXCTL.SHEARNEGX bit	(Enable/disable negative horizontal shear)
- MDCGFXCTL.SHEARNEGY bit	(Enable/disable negative vertical shear)
- MDCGFXCTL.CPYNEGX bit	(Enable/disable horizontal flip option)
- MDCGFXCTL.CPYNEGY bit	(Enable/disable vertical flip option)
17. Write 1 to the MDCTRIGCTL.GFXTRIG bit.	(Start copying)

When the copying is finished, the MDCTRIGCTL.GFXTRIG is automatically cleared to 0 and the MD-CINTCTL.GFXIF bit is set to 1.

## **Shear Parameters**

The shearing transformation maps each source pixel coordinate (relative to the center of transformation of the source window) to a new coordinate in the destination window (relative to the center of transformation of the destination window) according to the following formulas:

$$OX = (IX + (XS/32) \times IY)$$
  $OY = (IY + (YS/32) \times IX)$  (Eq. 23.2)

Where

- OX: Destination pixel X coordinate relative to destination window center of transformation
- OY: Destination pixel Y coordinate relative to destination window center of transformation
- IX: Source pixel X coordinate relative to source window center of transformation
- IY: Source pixel Y coordinate relative to source window center of transformation
- XS: Horizontal shearing factor

XS = MDCGFXSHEAR.XSHEAR[6:0] (when the MDCGFXCTL.SHEARNEGX bit = 0)

- XS = -MDCGFXSHEAR.XSHEAR[6:0] (when the MDCGFXCTL.SHEARNEGX bit = 1)
- YS: Vertical shearing factor
  - YS = MDCGFXSHEAR.YSHEAR[6:0] (when the MDCGFXCTL.SHEARNEGY bit = 0) YS = -MDCGFXSHEAR.YSHEAR[6:0] (when the MDCGFXCTL.SHEARNEGY bit = 1)

The following diagram shows an example of image copy with horizontal shear only (MDCGFXSHEAR.XS-HEAR[6:0] bits = 32, MDCGFXSHEAR.YSHEAR[6:0] bits = 0, MDCGFXCTL.SHEARNEGX bit = 0, MDCGFXCTL.SHEARNEGY bit = 0):



The following diagram shows an example of image copy with vertical shear only (MDCGFXSHEAR.XS-HEAR[6:0] bits = 0, MDCGFXSHEAR.YSHEAR[6:0] bits = 32, MDCGFXCTL.SHEARNEGX bit = 0, MD-CGFXCTL.SHEARNEGY bit = 0):



The following diagram shows an example of two bitmap copy operations, one with a horizontal-only shear and the other with a vertical-only shear, and each having different center of shear:



Figure 23.6.4.7 Image Copy with Horizontal and Vertical Shear Examples

- **Notes:** When the MDCGFXCTL.SHEARNEGX bit = 1, the MDCGFXIYCENTER.IYCENTER[9:0] bits must be set to the vertical center of the source image.
  - When the MDCGFXCTL.SHEARNEGY bit = 1, the MDCGFXIXCENTER.IXCENTER[9:0] bits must be set to the horizontal center of the source image.

# 23.7 Host Interface

The host interface allows an external host MCU to access the embedded memory and peripheral circuits in this MCU via the internal bus as well as the MDC. The type of interface can be selected from indirect 8-bit parallel and SPI/QSPI (single, dual, and quad SPI) by setting pins. For the pin configuration and external host MCU connection examples, refer to Section 23.2, "Input/Output Pins and External Connections."

- **Notes:** The internal CPU and the external host MCU access the shared resources such as the embedded memory and peripheral circuit registers. Therefore, make sure the consistency of resources is maintained when creating the programs for this MCU and the external host MCU.
  - The host interface performs 8-bit writes only to the internal bus. Therefore, the sound generator and DMA controller requiring 16-bit or 32-bit writes are unusable through direct access by the host MCU using the host interface.

# 23.7.1 Initialization

To enable the external host MCU to access the internal resources in this MCU, the internal CPU must perform the following settings in advance:

- 1. Assign the host interface input/output function to the ports. (Refer to the "I/O Ports" chapter.)
- 2. Configure the OSC1 clock and SYSCLK. (Refer to "Clock Generator" under the "Power Supply, Reset, and Clocks" chapter.)

The MDCHOSTCTL register is only accessible from the external host MCU and it is used by the external host MCU to control the following:

- 1. Execute a software reset of this MCU.
- 2. INTMDC interrupt output polarity.
- 3. Force OSC1 oscillator to be turned on.
- 4. Force system clock and clock source to be turned on.

The external host MCU may access internal resources even if this MCU is placed into SLEEP mode (clocks are inactive). To enable this, the external host MCU must enable the system clock source by setting the MDCHOSTCTL. SYSOSCEN bit to 1 (this control does not affect the operation of this MCU if the clocks are already active).

# 23.7.2 Indirect 8-bit Parallel Interface

The indirect 8-bit parallel interface is selected by pulling the HIFCNF pin down to low. The external host MCU uses the 8-bit data bus of this interface to send commands and addresses, and to read/write data.

## Write access from external host MCU



The external host MCU asserts the #HIFDE (device enable) signal to start accessing this MCU. The write access sequence consists of a 1-byte command write cycle, a 4-byte address write cycle (the write start address bytes are sent sequentially from the most significant byte (A[31:24]) first), and a data write cycle for one or more data bytes. The write address is automatically incremented every time a data byte is written. When the data write cycle has completed, the external host MCU negates the #HIFDE signal to terminate the write access sequence. The write access sequence can also be terminated by setting the #HIFDE signal to high even if the data write cycle has not completed.

In a write cycle, both the #HIFCS and #HIFWR signals are set to low.

 $= 0 \times 02$ 

#### Write commands

In a write access, the external host MCU sends one of the commands shown below in the command write cycle at the beginning.

- PAGEPROG
- EXTDUALINFASTPROG = 0xd2
- EXTQUADINFASTPROG = 0x12
- DUALINFASTPROG = 0xa2
- QUADINFASTPROG = 0x32

## Read access from external host MCU

Figure 23.7.2.2 shows an example of read access by the external host MCU.



Figure 23.7.2.2 Indirect 8-bit Read Access Example

The external host MCU asserts the #HIFDE (device enable) signal to start accessing this MCU. The read access sequence consists of a 1-byte command write cycle, a 4-byte address write cycle (the read start address bytes are sent sequentially from the most significant byte (A[31:24]) first), a 1-byte dummy read cycle, and a data read cycle for one or more data bytes. The read address is automatically incremented every time a data byte is read. When the data read cycle has completed, the external host MCU negates the #HIFDE signal to terminate the read access sequence. The read access sequence can also be terminated by setting the #HIFDE signal to high even if the data read cycle has not completed.

In a read cycle, both the #HIFCS and #HIFRD signals are set to low.

#### **Read commands**

In a read access, the external host MCU sends one of the commands shown below in the command write cycle at the beginning.

- READ = 0x03
- FASTREAD = 0x0b
- DUALOUTFASTREAD = 0x3b
- DUALIOFASTREAD = 0xbb
- QUADOUTFASTREAD = 0x6b
- QUADIOFASTREAD = 0xeb

# 23.7.3 SPI/QSPI Serial Interface

The SPI/QSPI serial interface is selected by pulling the HIFCNF pin up to high. Furthermore, setting the HSPISEL1 and HSPISEL0 pins selects the protocol from single SPI (HSPISEL[1:0] = 0b1*), dual SPI (HSPISEL[1:0] = 0b10), and quad SPI (HSPISEL[1:0] = 0b11).

## Write access from external host MCU

Figure 23.7.3.1 shows an example of write access by the external host MCU.



Figure 23.7.3.1 SPI/QSPI Write Access Example

The external host MCU asserts the #HSPISS (slave select) signal to start accessing this MCU. The write access sequence consists of a 1-byte command write, a 4-byte address write (the write start address bytes are sent sequentially from the most significant byte (A[31:24]) first), and a burst write for one or more data bytes. The write address is automatically incremented every time a data byte is written. When the data write has completed, the external host MCU negates the #HSPISS signal to terminate the write access sequence. The write access sequence can also be terminated by setting the #HSPISS signal to high even if the data write cycle has not completed.

## Read access from external host MCU

Figure 23.7.3.2 shows an example of read access by the external host MCU.



Figure 23.7.3.2 SPI/QSPI Read Access Example

The external host MCU asserts the #HSPISS (slave select) signal to start accessing this MCU. The read access sequence consists of a 1-byte command write, a 4-byte address write (the read start address bytes are sent sequentially from the most significant byte (A[31:24]) first), a 1-byte dummy read, and a burst read for one or more data bytes. The read address is automatically incremented every time a data byte is read. When the data read has completed, the external host MCU negates the #HSPISS signal to terminate the read access sequence. The read access sequence can also be terminated by setting the #HSPISS signal to high even if the data read has not completed.

## SPI/QSPI protocols

## a. Single/Extended SPI protocol (HSPISEL1 = 0, HSPISEL0 = don't care)

READ/FASTREAD/PAGEPROG commands Command byte: single-bit I/O (8 clocks per byte) Address bytes: single-bit I/O (8 clocks per byte) Data bytes: single-bit I/O (8 clocks per byte)

#### DUALOUTFASTREAD/DUALINFASTPROG commands

Command byte: single-bit I/O (8 clocks per byte) Address bytes: single-bit I/O (8 clocks per byte) Data bytes: dual-bit I/O (4 clocks per byte)

## DUALIOFASTREAD/EXTDUALINFASTPROG commands

Command byte: single-bit I/O (8 clocks per byte)Address bytes:dual-bit I/O (4 clocks per byte)Data bytes:dual-bit I/O (4 clocks per byte)

## QUADOUTFASTREAD/QUADINFASTPROG commands:

Command byte: single-bit I/O (8 clocks per byte) Address bytes: single-bit I/O (8 clocks per byte) Data bytes: quad-bit I/O (2 clocks per byte)

# QUADIOFASTREAD/EXTQUADINFASTPROG commands:

Command byte: single-bit I/O (8 clocks per byte) Address bytes: quad-bit I/O (2 clocks per byte) Data bytes: quad-bit I/O (2 clocks per byte)

#### b. Dual SPI protocol (HSPISEL1 = 1, HSPISEL0 = 0)

#### All commands

Command byte: dual-bit I/O (4 clocks per byte) Address bytes: dual-bit I/O (4 clocks per byte) Data bytes: dual-bit I/O (4 clocks per byte)

### c. Quad SPI protocol (HSPISEL1 = 1, HSPISEL0 = 1)

All commands

Command byte:	quad-bit I/O (2 clocks per byte)
Address bytes:	quad-bit I/O (2 clocks per byte)
Data bytes:	quad-bit I/O (2 clocks per byte)

## Data format

 The host interface supports the following SPI/QSPI data format:

 Data length:
 8 bits

 Input/output permutation:
 MSB first

 Clock phase:
 Mode 0/Mode 3 (data is latched at the rising edge and is shifted at the falling edge)

 Clock polarity:
 Mode 0 (low level at idle)

 Mode 3 (high level at idle)

#### 23 MEMORY DISPLAY CONTROLLER (MDC)



Figure 23.7.3.3 SPI/QSPI Data Format

#### **Read/write Commands**

The SPI/QSPI serial interface uses the same commands as the indirect 8-bit parallel interface.

= 0x03

#### Write commands

- PAGEPROG = 0x02
- EXTDUALINFASTPROG = 0xd2 *
- EXTQUADINFASTPROG = 0x12 *
- DUALINFASTPROG = 0xa2 *
- QUADINFASTPROG = 0x32 *

#### **Read commands**

- READ
- FASTREAD = 0x0b
- DUALOUTFASTREAD = 0x3b *
- DUALIOFASTREAD = 0xbb *
- QUADOUTFASTREAD = 0x6b *
- QUADIOFASTREAD = 0xeb *

#### * Extended SPI mode

If a command indicated with * in the list above is received in single SPI mode, the host interface enters extended SPI mode. In extended SPI mode, the address input and data input/output use the HIFD[1:0] pins (when an EXTDUAL*** or DUAL*** command is received) or the HIFD[3:0] pins (when an EXTQUAD*** or QUAD*** command is received). The same operation as dual SPI or quad SPI is performed in this state.

# 23.8 Interrupt

The MDC has a function to generate the interrupt shown in Table 23.8.1.

Interrupt	Interrupt flag	Set condition	Clear condition						
Display update/drawing/ copy completion	MDCINTCTL.GFXIF	When the triggered operation (display update, line/ rectangle/ellipse/arc drawing, or copy) has com- pleted	Writing 1						

Table 23.8.1 MDC Interrupt Function

The MDC provides an interrupt enable bit corresponding to the interrupt flag. An interrupt request is sent to the CPU only when the interrupt flag, of which interrupt has been enabled by the interrupt enable bit, is set. For more information on interrupt control, refer to the "Interrupt" chapter.

## **INTMDC** signal output

The MDC can output the INTMDC signal to issue an MDC interrupt request to the external host MCU. To use this function, perform the following settings:

- 1. Assign the INTMDC output to the port. (Refer to the "I/O Ports" chapter.)
- 2. Set the MDCHOSTCTL.INTPOL bit. (Select INTMDC signal polarity)

The INTMDC signal is asserted if the interrupt flag is set when the MDC interrupt has been enabled. It is negated by clearing the interrupt flag. Figure 23.8.1 shows the MDC interrupt circuit.



# 23.9 Control Registers

## **MDC Display Control Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCDISPCTL	15–14	_	0x0	-	R	_
	13–12	GSTYPE[1:0]	0x0	H0	R/W	
	11	DISPGS	0	H0	R/W	
	10	RGBORD	0	H0	R/W	
	9	ADDRLSB	0	H0	R/W	
	8	-	0	-	R	
	7	DISPINVERT	0	H0	R/W	
	6	UPDFUNC	0	H0	R/W	
	5	SPITYPE	0	H0	R/W	
	4	DISPSPI	0	H0	R/W	
	3–2	ROTSEL[1:0]	0x0	H0	R/W	
	1	VCOMEN	0	H0	R/W	
	0	-	0	-	R	

## Bits 15–14 Reserved

## Bits 13-12 GSTYPE[1:0]

These bits configure the grayscale panel interface type.

Table 23.9.1 Grayscale Panel Interface Type

MDCDISPCTL.GSTYPE[1:0] bits	Interface type		
0x3	4-wire serial interface		
0x2	3-wire serial interface		
0x1	Parallel interface		
0x0			

## Bit 11 DISPGS

This bit switches the panel interface between the grayscale panel interface and the SPI/6-bit color panel interface.

1 (R/W): Grayscale panel interface

0 (R/W): SPI or 6-bit color interface (Use the MDCDISPCTL.DISPSPI bit to select.)

#### Bit 10 RGBORD

This bit configures the order of the pixel data bits sent (R or B first) for SPI 3-bit color panels. 1 (R/W): BGR (B is sent first) 0 (R/W): RGB (R is sent first)

#### Bit 9 ADDRLSB

This bit configures the order of the Address bits sent (LSB or MSB first) for SPI panels.

1 (R/W): LSB first 0 (R/W): MSB first

## Bit 7 DISPINVERT

This bit enables or disables inversion of pixels sent to the display.

- 1 (R/W): Pixel bits inverted
- 0 (R/W): Normal (no inversion)

## Bit 6 UPDFUNC

This bit selects the function for SPI or grayscale display when display update is triggered.

- 1 (R/W): Command write
- 0 (R/W): Normal, Frame update

When the MDCDISPCTL.UPDFUNC bit = 1

SPI: Send Mode + Dummy only MDCDISPPRM43.TIM3[7:0] bits = Mode bits MDCDISPPRM43.TIM4[7:0] bits = Number of Mode bits to send (LSB first) MDCDISPPRM21.TIM2[7:0] bits = Number of Dummy bits (0) to send

Grayscale: Send Command + Parameter bytes (up to eight bytes)

MDCDISPCLKDIV.TIM0[7:0] bits = Command MDCTRIGCTL.NPARAM[3:0] bits = Number of parameter bytes to send MDCDISPPRM21.TIM1[7:0] to MDCDISPPRM87.TIM8[7:0] bits = Parameter bytes

When the MDCDISPCTL.UPDFUNC bit = 0

SPI: Send Mode + Address + Pixel data + Dummy MDCDISPPRM43.TIM3[7:0] bits = Mode bits MDCDISPPRM43.TIM4[7:0] bits = Number of Mode bits to send (LSB first) MDCDISPPRM65.TIM5[7:0] bits = Number of Address bits to send (The MDCDISPCTL.ADDRLSB bit determines the order of the bits.)

MDCDISPPRM21.TIM2[7:0] bits = Number of Dummy bits (0) to send.

Grayscale: Send WRRAM + Dummy + Pixel data MDCDISPCLKDIV.TIM0[7:0] bits = WRRAM command The MDCDISPPRM21.TIM1[7:0] bits = Dummy byte

## Bit 5 SPITYPE

This bit selects the type of SPI panel. 1 (R/W): 3-bit color 0 (R/W): 1-bit black and white

## Bit 4 DISPSPI

This bit selects the type of panel when the MDCDISPCTL.DISPGS bit = 0. 1 (R/W): SPI 1-bit black-and-white or 3-bit color (Use the MDCDISPCTL.SPITYPE bit to select.) 0 (R/W): 6-bit color

## Bits 3–2 ROTSEL[1:0]

These bits select the rotation of the image from RAM to the SPI panel or 6-bit color panel during a frame update. This setting is ineffective for grayscale panels.

MDCDISPCTL.ROTSEL[1:0] bits	Image rotation angle
0x3	270-degree counterclockwise rotation
0x2	180-degree counterclockwise rotation
0x1	90-degree counterclockwise rotation
0x0	No rotation (0 degrees)

Table 23.9.2 Image Rotation Settings

#### Bit 1 VCOMEN

This bit enables or disables the VCOM and XFRP outputs. 1 (R/W): VCOM/XFRP outputs enabled 0 (R/W): VCOM/XFRP outputs disabled (low)

When enabled, the frequency of the VCOM/XFRP is determined by the MDCDISPVCOMDIV.DIS-PVCOMDIV[15:0] bits.

## Bit 0 Reserved

# **MDC Display Width Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCDISPWIDTH	15–10	-	0x00	-	R	_
	9–0	DISPWIDTH[9:0]	0x0b4	H0	R/W	

## Bits 15–10 Reserved

#### Bits 9–0 DISPWIDTH[9:0]

These bits set the panel display width in pixels.

# **MDC Display Height Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCDISPHEIGHT	15–10	-	0x00	-	R	_
	9–0	DISPHEIGHT[9:0]	0x0b4	H0	R/W	

## Bits 15–10 Reserved

## Bits 9–0 DISPHEIGHT[9:0]

These bits set the panel display height in pixels.

## MDC Display VCOM Clock Divider Register

				<u> </u>		
Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCDISPVCOMDIV	15–0	DISPVCOMDIV[15:0]	0x0222	HO	R/W	-

## Bits 15-0 DISPVCOMDIV[15:0]

These bits set the VCON clock division ratio to determine the VCOM/XFRP period.

VCOM/XFRP period =  $\frac{4 \times (DISPVCOMDIV[15:0] + 1)}{OSC1 \operatorname{clock} \operatorname{frequency} [Hz]} [s]$  (Eq. 23.3)

# MDC Display Clock Divider Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCDISPCLKDIV	15–8	TIM0[7:0]	0x04	HO	R/W	_
	7–0	CLKDIV[7:0]	0x04	H0	R/W	

This register controls the frequency of the output clocking rate during a panel frame update.

## Bits 15-8 TIM0[7:0]

These bits set timing parameter 0.

For 6-bit color panel:

VCK to HST rise and VCK to VST fall = (TIM0[7:0] + 1) panel timing units (T)

For SPI panel:

SCS rise to first SI data = (TIM0[7:0] + 1) SCLK periods (T)

For grayscale panel:

Parameter 0 (Command) byte

## Bits 7-0 CLKDIV[7:0]

These bits set the MDC system clock divider value.

For 6-bit color and grayscale panels:

Setting these bits determines the panel timing unit.

Panel timing unit T = 
$$\frac{\text{CLKDIV}[7:0] + 1}{\text{System clock frequency [Hz]}} [s]$$
(Eq. 23.4)

For SPI panel:

Setting these bits determines the SPI clock frequency.

SPI clock frequency = 
$$\frac{\text{System clock frequency [Hz]}}{\text{CLKDIV}[7:0] + 1}$$
 [Hz] (Eq. 23.5)

Note: When using an SPI panel, the MDCDISPCLKDIV.CLKDIV[7:0] bits should be set to 2 or more.

## **MDC Display Parameters 1 and 2 Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCDISPPRM21	15–8	TIM2[7:0]	0x00	HO	R/W	_
	7–0	TIM1[7:0]	0x04	H0	R/W	

## Bits 15-8 TIM2[7:0]

These bits set timing parameter 2.

For 6-bit color panel:

HST rise to HCK rise = (TIM2[7:0] + 1) panel timing units (T)

For SPI panel:

Number of dummy clocks for "data transfer period" = (TIM2[7:0] + 1) SCLK periods (T)

For grayscale panel: Parameter 2 byte

## Bits 7–0 TIM1[7:0]

These bits set timing parameter 1.

For 6-bit color panel:

VST rise to VCK rise, horizontal end to next VCK edge = (TIM1[7:0] + 1) panel timing units (T)

For SPI panel:

Last SI data to SCS fall = (TIM1[7:0] + 1) SCLK periods (T)

For grayscale panel: Parameter 1 byte

## MDC Display Parameters 3 and 4 Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCDISPPRM43	15–8	TIM4[7:0]	0x04	HO	R/W	_
	7–0	TIM3[7:0]	0x04	HO	R/W	

## Bits 15-8 TIM4[7:0]

These bits set timing parameter 4.

For 6-bit color panel:

VCK to ENB rise = (TIM4[7:0] + 1.5) HCK cycles

For SPI panel:

Number of Mode bits to send minus 1.

For grayscale panel: Parameter 4 byte

#### Bits 7-0 TIM3[7:0]

These bits set timing parameter 3.

For 6-bit color panel:

HCK fall to HST fall, HCK rise/fall to data, data to HCK rise/fall

= (TIM3[7:0] + 1) panel timing units (T)

For SPI panel:

Mode bits values. TIM3[7:0] = M[7:0]. TIM3[1] has no effect on the M[1] bit, as M[1] is always 0.

For grayscale panel: Parameter 3 byte

## **MDC Display Parameters 5 and 6 Register**

				9.010.		
Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCDISPPRM65	15–8	TIM6[7:0]	0x04	H0	R/W	-
	7–0	TIM5[7:0]	0x04	HO	R/W	

## Bits 15-8 TIM6[7:0]

These bits set timing parameter 6.

For 6-bit color panel:

Trigger to XRST rise, XRST rise to VST rise, data transfer end to XRST fall

= (TIM6[7:0] + 1) panel timing units (T)

## For SPI panel:

SCS fall to SCS rise minimum time = (TIM6[7:0] + 2) SCLK periods (T)

For grayscale panel: Parameter 6 byte

#### Bits 7-0 TIM5[7:0]

These bits set timing parameter 5.

For 6-bit color panel: ENB width in HCK cycles.

For SPI panel: Number of Address bits to send minus 1.

For grayscale panel: Parameter 5 byte

## **MDC Display Parameters 7 and 8 Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCDISPPRM87	15–8	TIM8[7:0]	0x00	HO	R/W	-
	7–0	TIM7[7:0]	0x00	HO	R/W	

#### Bits 15-8 TIM8[7:0]

These bits set Parameter 8 to be sent to the grayscale panel.

## Bits 7-0 TIM7[7:0]

These bits set Parameter 7 to be sent to the grayscale panel.

## MDC Display Update Start Line Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCDISPSTARTY	15–10	_	0x00	-	R	-
	9–0	STARTY[9:0]	0x000	H0	R/W	

#### Bits 15–10 Reserved

#### Bits 9–0 STARTY[9:0]

These bits set the starting line of image for display update. These bits and the MDCDISPENDY.ENDY[9:0] bits specify which block of lines to update on the panel. The first image line is line 0.

# MDC Display Update End Line Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCDISPENDY	15–10	-	0x00	_	R	_
	9–0	ENDY[9:0]	0x0b3	H0	R/W	

#### Bits 15–10 Reserved

## Bits 9–0 ENDY[9:0]

These bits set the ending line of image for display update.

These bits and the MDCDISPSTARTY.STARTY[9:0] bits specify which block of lines to update on the panel. The first image line is line 0.

# MDC Display Frame Buffer Stride Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCDISPSTRIDE	15–10	-	0x00	-	R	_
	9–0	DISPSTRIDE[9:0]	0x0b4	H0	R/W	

## Bits 15–10 Reserved

## Bits 9–0 DISPSTRIDE[9:0]

These bits set the display frame buffer stride (number of pixels per line). The stride can be greater than the value set to the MDCDISPWIDTH.DISPWIDTH[9:0] bits to allow for a wider image in RAM and panning.

## MDC Display Frame Buffer Base Address Register 0

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCDISP FRMBUFF0	15–0	FRMBUFFADDR[15:0]	0x0000	H0	R/W	-

## Bits 15–0 FRMBUFFADDR[15:0]

These bits set the lower 16 bits of the display frame buffer base address.

## MDC Display Frame Buffer Base Address Register 1

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCDISP	15–0	FRMBUFFADDR[31:16]	0x0000	HO	R/W	-
FRMBUFF1						

## Bits 15-0 FRMBUFFADDR[31:16]

These bits set the upper 16 bits of the display frame buffer base address.

## **MDC Trigger Control Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCTRIGCTL	15–10	_	0x00	-	R	-
	9–8	DISPBPP[1:0]	0x0	H0	R/W	
	7–4	NPARAM[3:0]	0x0	H0	R/W	
	3–1	-	0x00	-	R	
	0	GFXTRIG	0	H0	R/W	-

### Bits 15–10 Reserved

## Bits 9–8 DISPBPP[1:0]

These bits select the grayscale panel grayscale bits-per-pixel (BPP) format.

MDCTRIGCTL.DISPBPP[1:0] bits	BPP Format				
0x3	8 bpp				
0x2	4 bpp				
0x1	2 bpp				
0x0	1 bpp				

#### Table 23.9.3 Grayscale BPP Format

### Bits 7–4 NPARAM[3:0]

These bits specify the number of parameter bytes to send after the command byte for the command write function of the grayscale panel.

#### Bits 3–1 Reserved

#### Bit 0 GFXTRIG

This bit triggers the graphics acceleration function specified in the MDCGFXCTL.GFXFUNC[2:0] bits.

- 1 (W): Trigger graphics function
- 0 (W): Ineffective
- 1 (R): Running
- 0 (R): Idle

This bit retains 1 until the graphics function is finished. At the end of the graphics function execution, this bit reverts to 0 and the MDCINTCTL.GFXIF bit is set to 1.

## **MDC Interrupt Control Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCINTCTL	15–9	_	0x00	-	R	_
	8	GFXIE	0	H0	R/W	
	7–1	-	0x00	-	R	
	0	GFXIF	0	H0	R/W	Cleared by writing 1.

### Bits 15-1 Reserved

#### Bit 8 GFXIE

This bit enables MDC interrupts.

- 1 (R/W): Enable interrupts
- 0 (R/W): Disable interrupts

#### Bit 0 GFXIF

This bit indicates the MDC interrupt cause occurrence status.

- 1 (R): Cause of interrupt occurred
- 0 (R): No cause of interrupt occurred
- 1 (W): Clear flag
- 0 (W): Ineffective

## **MDC Graphics Control Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCGFXCTL	15	CPYNEGY	0	-	R/W	-
	14	CPYNEGX	0	H0	R/W	
	13	SHEARNEGY	0	H0	R/W	
	12	SHEARNEGX	0	H0	R/W	
	11	FILLEN	0	H0	R/W	
	10	BITMAPFMT	0	H0	R/W	
	9	BITMAPEN	0	H0	R/W	
	8	-	0	-	R	
	7–6	ALPHAVAL[1:0]	0x0	H0	R/W	
	5	ALPHAOVRRD	0	H0	R/W	
	4	-	0	-	R	
	3	(reserved)	0	H0	R/W	
	2–0	GFXFUNC[2:0]	0x0	HO	R/W	

## Bit 15 CPYNEGY

For the copy functions, this bit selects whether or not the Y coordinate value of the source pixel (with respect to the center of transformation of the source window) should be negated (make negative) to create the effect of "flip around the X axis."

- 1 (R/W): Y coordinate of source pixel is negated.
- 0 (R/W): Y coordinate of source pixel is normal.

## Bit 14 CPYNEGX

For the copy functions, this bit selects whether or not the X coordinate value of the source pixel (with respect to the center of transformation of the source window) should be negated (make negative) to create the effect of "flip around the Y axis."

1 (R/W): X coordinate of source pixel is negated.

0 (R/W): X coordinate of source pixel is normal.

## Bit 13 SHEARNEGY

For the copy with shearing function, this bit selects whether or not the vertical shear value is negated (made negative).

1 (R/W): Vertical shear value is negated.

0 (R/W): Vertical shear value is normal (positive).

## Bit 12 SHEARNEGX

For the copy with shearing function, this bit selects whether or not the horizontal shear value is negated (made negative).

1 (R/W): Horizontal shear value is negated.

0 (R/W): Horizontal shear value is normal (positive).

## Bit 11 FILLEN

This bit enables/disables fill option for drawing and copying functions.

- 1 (R/W): Fill enabled
  - 0 (R/W): Fill disabled

Drawing functions

For rectangle and ellipse drawing functions, this bit selects whether the function is filled or unfilled.

Copying functions

For the copying functions, when this bit is enabled, the source image pixels are ignored and the destination image is written with the color specified in the MDCGFXCOLOR.COLOR[5:0] bits.

#### Bit 10 BITMAPFMT

This bit selects 1-bit or 2-bit bitmap format for copying functions. It is only applicable to 6-bit color panel.

1 (R/W): 2-bit bitmap format 0 (R/W): 1-bit bitmap format

_____

#### Bit 9 BITMAPEN

This bit specifies whether the source for copying functions is an image or a bitmap. 1 (R/W): Bitmap source 0 (R/W): Image source

### Bit 8 Reserved

#### Bits 7–6 ALPHAVAL[1:0]

These bits specify the override alpha value to use when alpha value override is enabled (MDCGFXCTL. ALPHAOVRRD bit = 1).

#### Bit 5 ALPHAOVRRD

This bit enables/disables alpha value override for copying functions.

1 (R/W): Alpha value override enabled

0 (R/W): Alpha value override disabled

Normally, the alpha-blending value for copying functions is provide in the source pixel. When alpha value override is enabled, the alpha value set in the MDCGFXCTL.ALPHAVAL[1:0] bits is used for all pixels.

#### Bits 4–3 Reserved
#### Bits 2–0 GFXFUNC[2:0]

These bits specify the graphics accelerator function to execute when the MDCTRIGCTL.GFXTRIG bit is set to 1. The following table shows the functions:

MDCTRIGCTL. GFXFUNC[2:0] bits	Function	Brief description
0x7	ARCDRAW	Arc draw
0x6	DISPUPDATE	Display update
0x5	Reserved	-
0x4	ELLIPDRAW	Ellipse (filled or unfilled) draw
0x3	LINEDRAW	Line draw with thickness
0x2	RECTDRAW	Rectangle (filled or unfilled) draw
0x1	COPYHVSHEAR	Image/bitmap copy with horizontal and vertical shear
0x0	COPYROTSCALE	Image/bitmap copy with rotation and scaling

Table 23.9.4 Graphics Accelerator Functions

# **MDC Input X Coordinate Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCGFXIXCENTER	15–10	-	0x00	-	R	_
	9–0	IXCENTER[9:0]	0x000	H0	R/W	

#### Bits 15–10 Reserved

#### Bits 9–0 IXCENTER[9:0]

These bits specify an X coordinate depending on the graphics accelerator function selected. The following table shows the usage of these bits:

Table 23.9.5	X Coordinate	Specification fo	r Each Gran	hics Accelerator	Function
Table 20.9.0	A GOOIGINALE	specification to	п сасп бгар	TILS ACCEIEI alu	T UNCLION

MDCTRIGCTL. GFXFUNC[2:0] bits	Function	X coordinate specified with MDCGFXIXCENTER.IXCENTER[9:0] bits
0x7	ARCDRAW	X coordinate of center of arc
0x6	DISPUPDATE	-
0x5	Reserved	-
0x4	ELLIPDRAW	X coordinate of center of ellipse
0x3	LINEDRAW	X coordinate of starting point of line
0x2	RECTDRAW	X coordinate of top-left corner of rectangle
0x1	COPYHVSHEAR	X coordinate of center of horizontal/vertical shearing in source window relative to the top left corner of source window
0x0	COPYROTSCALE	X coordinate of center of rotation/scaling of source window relative to the top left corner of source window

# **MDC Input Y Coordinate Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCGFXIYCENTER	15–10	-	0x00	-	R	_
	9–0	IYCENTER[9:0]	0x000	H0	R/W	

#### Bits 15–10 Reserved

### Bits 9-0 IYCENTER[9:0]

These bits specify a Y coordinate depending on the graphics accelerator function selected. The following table shows the usage of these bits:

GFXFUNC[2:0] bits	Function	Y coordinate specified with MDCGFXIYCENTER.IYCENTER[9:0] bits
0x7	ARCDRAW	Y coordinate of center of arc
0x6	DISPUPDATE	-
0x5	Reserved	-
0x4	ELLIPDRAW	Y coordinate of center of ellipse
0x3	LINEDRAW	Y coordinate of starting point of line
0x2	RECTDRAW	Y coordinate of top-left corner of rectangle
0x1	COPYHVSHEAR	Y coordinate of center of horizontal/vertical shearing in source
		window relative to the top left corner of source window
0x0	COPYROTSCALE	Y coordinate of center of rotation/scaling of source window
		relative to the top left corner of source window

Table 23.9.6 Y Coordinate Specification for Each Graphics Accelerator Function

# **MDC Input Width Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCGFXIWIDTH	15–10	-	0x00	-	R	_
	9–0	IWIDTH[9:0]	0x000	H0	R/W	

#### Bits 15–10 Reserved

#### Bits 9–0 IWIDTH[9:0]

These bits specify a width or thickness depending on the graphics accelerator function selected. The following table shows the usage of these bits:

Table 22 0 7	Width/Thickness	Specification for	Each Granh	ice Accelerator Function
14016 20.0.1		opecification for	Lacii Giapii	nus Accelerator i uniction

MDCTRIGCTL. GFXFUNC[2:0] bits	Function	Item specified with MDCGFXIWIDTH.IWIDTH[9:0] bits
0x7	ARCDRAW	X thickness (X-axis crossing) for arc drawing
0x6	DISPUPDATE	-
0x5	Reserved	-
0x4	ELLIPDRAW	X thickness (X-axis crossing) for unfilled ellipse drawing
0x3	LINEDRAW	Line thickness
0x2	RECTDRAW	Vertical line thickness for unfilled rectangle drawing
0x1	COPYHVSHEAR	Width of source window
0x0	COPYROTSCALE	Width of source window

# **MDC Input Height Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCGFXIHEIGHT	15–10	-	0x00	-	R	_
	9–0	IHEIGHT[9:0]	0x000	H0	R/W	

#### Bits 15–10 Reserved

#### Bits 9–0 IHEIGHT[9:0]

These bits specify a height or thickness depending on the graphics accelerator function selected. The following table shows the usage of these bits:

Table 23.9.8	Height/Thickness	Specification fo	r Each Graphics	Accelerator Function

MDCTRIGCTL. GFXFUNC[2:0] bits	Function	Item specified with MDCGFXIHEIGHT.IHEIGHT[9:0] bits
0x7	ARCDRAW	Y thickness (Y-axis crossing) for arc drawing
0x6	DISPUPDATE	-
0x5	Reserved	-
0x4	ELLIPDRAW	Y thickness (Y-axis crossing) for unfilled ellipse drawing
0x3	LINEDRAW	-
0x2	RECTDRAW	Horizontal line thickness for unfilled rectangle drawing
0x1	COPYHVSHEAR	Height of source window
0x0	COPYROTSCALE	Height of source window

# **MDC Output X Coordinate Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCGFX	15–10	-	0x00	-	R	_
OXCENTER	9–0	OXCENTER[9:0]	0x000	H0	R/W	

#### Bits 15–10 Reserved

#### Bits 9–0 OXCENTER[9:0]

These bits specify an X coordinate or radius depending on the graphics accelerator function selected. The following table shows the usage of these bits:

Table 23.9.9 X Coordinate/Radius Specification for Each Graphics Accelerator Function

MDCTRIGCTL. GFXFUNC[2:0] bits	Function	Item specified with MDCGFXOXCENTER.OXCENTER[9:0] bits
0x7	ARCDRAW	X radius of arc
0x6	DISPUPDATE	-
0x5	Reserved	-
0x4	ELLIPDRAW	X radius of ellipse
0x3	LINEDRAW	X coordinate of ending point of line
0x2	RECTDRAW	X coordinate of bottom-right corner of rectangle
0x1	COPYHVSHEAR	X coordinate of center of horizontal/vertical shearing location in destination window relative to the top left corner of destina- tion window
0x0	COPYROTSCALE	X coordinate of center of rotation/scaling location in desti- nation window relative to the top left corner of destination window

# MDC Output Y Coordinate Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCGFX	15–10	-	0x00	-	R	-
OYCENTER	9–0	OYCENTER[9:0]	0x000	HO	R/W	

#### Bits 15–10 Reserved

#### Bits 9–0 OYCENTER[9:0]

These bits specify a Y coordinate or radius depending on the graphics accelerator function selected. The following table shows the usage of these bits:

MDCTRIGCTL. GFXFUNC[2:0] bits	Function	Item specified with MDCGFXOYCENTER.OYCENTER[9:0] bits
0x7	ARCDRAW	Y radius of arc
0x6	DISPUPDATE	-
0x5	Reserved	-
0x4	ELLIPDRAW	Y radius of ellipse
0x3	LINEDRAW	Y coordinate of ending point of line
0x2	RECTDRAW	Y coordinate of bottom-right corner of rectangle
0x1	COPYHVSHEAR	Y coordinate of center of horizontal/vertical shearing location in destination window relative to the top left corner of destina- tion window
0x0	COPYROTSCALE	Y coordinate of center of rotation/scaling location in desti- nation window relative to the top left corner of destination window

# **MDC Output Width Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCGFXOWIDTH	15–10	-	0x00	-	R	-
	9–0	OWIDTH[9:0]	0x000	H0	R/W	

#### Bits 15–10 Reserved

#### Bits 9–0 OWIDTH[9:0]

These bits specify a width depending on the graphics accelerator function selected. The following table shows the usage of these bits:

Table 23.9.11 Width Specification for Each Graphics Accelerator Function

MDCTRIGCTL. GFXFUNC[2:0] bits	Function	Item specified with MDCGFXOWIDTH.OWIDTH[9:0] bits
0x7	ARCDRAW	-
0x6	DISPUPDATE	-
0x5	Reserved	-
0x4	ELLIPDRAW	-
0x3	LINEDRAW	-
0x2	RECTDRAW	-
0x1	COPYHVSHEAR	Width of destination window
0x0	COPYROTSCALE	Width of destination window

# **MDC Output Height Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCGFXOHEIGHT	15–10	-	0x00	-	R	-
	9–0	OHEIGHT[9:0]	0x000	H0	R/W	

#### Bits 15–10 Reserved

#### Bits 9–0 OHEIGHT[9:0]

These bits specify a height depending on the graphics accelerator function selected. The following table shows the usage of these bits:

Table 02 0 10	Unight Chanification	for Each	Crophica	Accolorator	Eunotion
Table 23.9.12	neiuni Specification	IOI Each	Graphics	Accelerator	FUNCTION

MDCTRIGCTL. GFXFUNC[2:0] bits	Function	Item specified with MDCGFXOHEIGHT.OHEIGHT[9:0] bits
0x7	ARCDRAW	-
0x6	DISPUPDATE	-
0x5	Reserved	-
0x4	ELLIPDRAW	-
0x3	LINEDRAW	-
0x2	RECTDRAW	-
0x1	COPYHVSHEAR	Height of destination window
0x0	COPYROTSCALE	Height of destination window

# **MDC X Left Scale Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCGFXXLSCALE	15–14	-	0x0	-	R	-
	13–0	XLSCALE[13:0]	0x0000	H0	R/W	

#### Bits 15–14 Reserved

#### Bits 13–0 XLSCALE[13:0]

These bits are used by the COPYROTSCALE function (image/bitmap copy with rotation and scaling) to specify the scaling factor to be applied to the left half of the source window pixels relative to the center of transformation when copying to the destination window. The scaling ratio is XLSCALE[13:0]/256.

### **MDC X Right Scale Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCGFXXRSCALE	15–14	_	0x0	-	R	-
	13–0	XRSCALE[13:0]	0x0000	H0	R/W	

#### Bits 15–14 Reserved

#### Bits 13-0 XRSCALE[13:0]

These bits are used by the COPYROTSCALE function (image/bitmap copy with rotation and scaling) to specify the scaling factor to be applied to the right half of the source window pixels relative to the center of transformation when copying to the destination window. The scaling ratio is XRSCALE[13:0]/256.

**MDC Y Top Scale Register** 

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCGFXYTSCALE	15–14	-	0x0	-	R	_
	13–0	YTSCALE[13:0]	0x0000	H0	R/W	

#### Bits 15–14 Reserved

#### Bits 13-0 YTSCALE[13:0]

These bits are used by the COPYROTSCALE function (image/bitmap copy with rotation and scaling) to specify the scaling factor to be applied to the top half of the source window pixels relative to the center of transformation when copying to the destination window. The scaling ratio is YTSCALE[13:0]/256.

#### **MDC Y Bottom Scale Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCGFXYBSCALE	15–14	-	0x0	-	R	-
	13–0	YBSCALE[13:0]	0x0000	H0	R/W	

#### Bits 15–14 Reserved

#### Bits 13-0 YBSCALE[13:0]

These bits are used by the COPYROTSCALE function (image/bitmap copy with rotation and scaling) to specify the scaling factor to be applied to the bottom half of the source window pixels relative to the center of transformation when copying to the destination window. The scaling ratio is YBSCALE[13:0]/256.

MDC X/Y Shear Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCGFXSHEAR	15	_	0	-	R	-
	14–8	YSHEAR[6:0]	0x00	H0	R/W	
	7	-	0	-	R	
	6–0	XSHEAR[6:0]	0x00	HO	R/W	

#### Bits 15–14 Reserved

#### Bits 14-8 YSHEAR[6:0]

These bits are used by the COPYHVSHEAR function (image/bitmap copy with horizontal/vertical shear) to specify the vertical shearing factor to be applied to the source window pixels relative to the center of transformation when copying to the destination window.

The shearing ratio is YSHEAR[6:0]/32. A shearing ratio of 0 means no shearing.

#### Bits 6–0 XSHEAR[6:0]

These bits are used by the COPYHVSHEAR function (image/bitmap copy with horizontal/vertical shear) to specify the horizontal shearing factor to be applied to the source window pixels relative to the center of transformation when copying to the destination window.

The shearing ratio is XSHEAR[6:0]/32. A shearing ratio of 0 means no shearing.

# **MDC** Rotation Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCGFXROTVAL	15–9	-	0x00	-	R	-
	8–0	ROTVAL[8:0]	0x000	H0	R/W	

#### Bits 15–9 Reserved

#### Bits 8–0 ROTVAL[8:0]

These bits are used by the COPYROTSCALE function (image/bitmap copy with rotation and scaling) to specify the angle of rotation of the source window pixels about the center of transformation when copying to the destination window. They are also used by the ARCDRAW function to specify the starting angle (from 0 degrees = positive X-axis).

The angle in degrees is  $(ROTVAL[8:0] \times 360) / 512$  in the counterclockwise direction.

### **MDC Color Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCGFXCOLOR	15–8	_	0x00	-	R	-
	7–0	COLOR[7:0]	0x03	HO	R/W	

#### Bits 15–8 Reserved

#### Bits 7–0 COLOR[7:0]

These bits specify fill color for copying functions with fill enabled (MDCGFXCTL.FILLEN bit = 1) or pen color for drawing functions. The following table shows the usage of these bits depending on the panel type selected:

Table 23.9.13	Color Specifications
---------------	----------------------

Panel type	Color specification
SPI 1-bit BW	COLOR0 is the black-and-white pixel color.
SPI 3-bit color	COLOR[2:0] is the RGB pixel color.
6-bit color	COLOR[5:0] is the RRGGBB pixel color.
	COLOR[7:6] is the alpha value for drawing functions to specify the alpha-blending be-
	tween COLOR[5:0] and the background/destination pixel color.
Grayscale	COLOR0 is the black-and-white pixel color for 1 bpp
	COLOR[1:0] is the grayscale pixel color for 2 bpp
	COLOR[3:0] is the grayscale pixel color for 4 bpp
	COLOR[7:0] is the grayscale pixel color for 8 bpp

### MDC Source Window Base Address Register 0

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCGFXIBADDR0	15–0	IBASEADDR[15:0]	0x0000	H0	R/W	-

#### Bits 15-0 IBASEADDR[15:0]

These bits set the lower 16 bits of the source window base address for copying functions.

### MDC Source Window Base Address Register 1

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCGFXIBADDR1	15–0	IBASEADDR[31:16]	0x0000	HO	R/W	-

#### Bits 15-0 IBASEADDR[31:16]

These bits set the upper 16 bits of the source window base address for copying functions.

### MDC Destination Window Base Address Register 0

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCGFXOBADDR0	15–0	OBASEADDR[15:0]	0x0000	H0	R/W	_

#### Bits 15-0 OBASEADDR[15:0]

These bits set the lower 16 bits of the destination window base address for copying and drawing functions.

### **MDC Destination Window Base Address Register 1**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCGFXOBADDR1	15–0	OBASEADDR[31:16]	0x0000	HO	R/W	-

#### Bits 15-0 OBASEADDR[31:16]

These bits set the upper 16 bits of the destination window base address for copying and drawing functions.

### MDC Source Image Stride Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCGFXISTRIDE	15–10	-	0x00	-	R	-
	9–0	ISTRIDE[9:0]	0x000	H0	R/W	

#### Bits 15–10 Reserved

#### Bits 9–0 ISTRIDE[9:0]

These bits are used by the COPYROTSCALE (image/bitmap copy with rotation and scaling) and COPYHVSHEAR (image/bitmap copy with horizontal/vertical shear) functions to specify the source image stride (number of pixels per line). The value set to these bits can be greater than or equal to the MDCGFXIWIDTH.IWIDTH[9:0] bits to support source images which are wider/larger than the source window to support panning.

These bits are also used by the ARCDRAW function to specify the ending angle (from 0 degrees = positive X-axis). The angle in degrees is (ISTRIDE[9:0]  $\times$  360) / 512 in the counterclockwise direction.

### **MDC Destination Image Stride Register**

		_				
Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCGFXOSTRIDE	15–10	-	0x00	-	R	_
	9–0	OSTRIDE[9:0]	0x000	H0	R/W	

#### Bits 15–10 Reserved

#### Bits 9–0 OSTRIDE[9:0]

These bits are used by the drawing and copying functions to specify the destination image stride (number of pixels per line). The value set to these bits can be greater than or equal to the MDCGFXO-WIDTH.OWIDTH[9:0] bits to support destination images which are wider/larger than the destination window to support panning.

### MDC Output Window Left Edge Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCGFXOWLEFT	15–10	-	0x00	-	R	-
	9–0	OWLEFT[9:0]	0x000	H0	R	

#### Bits 15–10 Reserved

#### Bits 9–0 OWLEFT[9:0]

These read-only bits provide the X coordinate, relative to the center of transformation of the destination window, of the left edge of the calculated output window from the last copy function.

### MDC Output Window Right Edge Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCGFX	15–10	-	0x00	-	R	_
OWRIGHT	9–0	OWRIGHT[9:0]	0x000	H0	R	

#### Bits 15–10 Reserved

#### Bits 9–0 OWRIGHT[9:0]

These read-only bits provide the X coordinate, relative to the center of transformation of the destination window, of the right edge of the calculated output window from the last copy function.

# MDC Output Window Top Edge Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCGFXOWTOP	15–10	_	0x00	-	R	_
	9–0	OWTOP[9:0]	0x000	H0	R	

#### Bits 15–10 Reserved

#### Bits 9–0 OWTOP[9:0]

These read-only bits provide the Y coordinate, relative to the center of transformation of the destination window, of the top edge of the calculated output window from the last copy function.

### MDC Output Window Bottom Edge Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCGFXOWBOT	15–10	-	0x00	-	R	-
	9–0	OWBOT[9:0]	0x000	H0	R	

#### Bits 15–10 Reserved

#### Bits 9–0 OWBOT[9:0]

These read-only bits provide the Y coordinate, relative to the center of transformation of the destination window, of the bottom edge of the calculated output window from the last copy function.

# MDC Scratchpad A Register 0

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCSCRATCHA0	15–0	SCRATCHA[15:0]	0x0000	H0	R/W	-

#### Bits 15-0 SCRATCHA[15:0]

These bits are the lower 16 bits of the 32-bit scratchpad A register.

### MDC Scratchpad A Register 1

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCSCRATCHA1	15–0	SCRATCHA[31:16]	0x0000	H0	R/W	_

#### Bits 15–0 SCRATCHA[31:16]

These bits are the upper 16 bits of the 32-bit scratchpad A register.

### MDC Clock Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCCLKCTL	15–10	SCRATCHB1[15:10]	0x00	H0	R/W	_
	9	HCKINV	0	H0	R/W	
	8	CLK32KON	0	H0	R/W	
	7–0	SCRATCHB0[7:0]	0x00	H0	R/W	

#### Bits 15-10 SCRATCHB1[15:10]

These bits are the 6-bit scratchpad B1 register.

#### Bit 9 HCKINV

This bit inverts the logic of the HCK output signal. 1 (R/W): Inverted 0 (R/W): Not inverted

#### Bit 8 CLK32KON

This bit controls the clock gating of the low frequency clock used for the VCOM/XFRP circuits. 1 (R/W): Clock on 0 (R/W): Clock off

#### Bits 7–0 SCRATCHB0[7:0]

These bits are the 8-bit scratchpad B0 register.

### MDC Voltage Booster Clock Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCBSTCLK	15–9	-	0x00	-	R	-
	8	DBRUN	1	H0	R/W	
	7	(reserved)	0	H0	R/W	
	6–4	CLKDIV[2:0]	0x0	H0	R/W	
	3	-	0	-	R	
	2	(reserved)	0	H0	R/W	
	1–0	CLKSRC[1:0]	0x0	H0	R/W	

#### Bits 15–9 Reserved

#### Bit 8 DBRUN

This bit sets whether the MDC voltage booster operating clock is supplied during debugging or not.

1 (R/W): Clock supplied during debugging

0 (R/W): No clock supplied during debugging

#### Bit 7 Reserved

#### Bits 6-4 CLKDIV[2:0]

These bits select the division ratio of the MDC voltage booster operating clock.

#### Bits 3–2 Reserved

#### Bits 1–0 CLKSRC[1:0]

These bits select the clock source of the MDC voltage booster.

MDCRETCLK		MDCBSTCLK.C	LKSRC[1:0] bits	
	0x0	0x1	0x2	0x3
CLKDIV[2:0] bits	IOSC	OSC1	OSC3	EXOSC
0x7	Reserved	1/128	Reserved	1/1
0x6		1/64		
0x5	1/512	1/32	1/512	
0x4	1/256	1/16	1/256	
0x3	1/128	1/8	1/128	
0x2	1/64	1/4	1/64	
0x1	1/32	1/2	1/32	
0x0	1/16	1/1	1/16	

#### Table 23.9.14 Clock Source and Division Ratio Settings

(Note) The oscillation circuits/external input that are not supported in this IC cannot be selected as the clock source.

### **MDC Voltage Booster Power Control Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCBSTPWR	15–8	_	0x00	-	R	_
	7–4	-	0x0	-	R	
	3	VMDBUP	0	H0	R/W	
	2	BSTON	0	H0	R/W	
	1	REGECO	0	H0	R/W	-
	0	REGON	0	H0	R/W	-

#### Bits 15-4 Reserved

#### Bit 3 VMDBUP

This bit select the VMD output response speed. 1 (R/W): Fast 0 (R/W): Normal

#### Bit 2 BSTON

This bit turns the voltage booster on and off. 1 (R/W): On 0 (R/W): Off (Hi-Z)

#### Bit 1 REGECO This bit puts the voltage regulator into economy mode. 1 (R/W): Economy mode 0 (R/W): Normal mode

#### Bit 0 REGON

This bit turns the voltage regulator on and off. 1 (R/W): On 0 (R/W): Off

For more information on the voltage booster control, refer to "VMD Power Supply Circuit."

### MDC Voltage Booster VMD Output Control Register

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCBSTVMD	15	_	0	-	R	-
	14–12	VMDHVOL[2:0]	0x0	H0	R/W	
	11–9	-	0x0	-	R	
	8	VMDHON	0	H0	R/W	
	7	-	0	-	R	
	6–4	VMDLVOL[2:0]	0x0	H0	R/W	
	3–1	-	0x0	-	R	
	0	VMDLON	0	H0	R/W	

#### Bit 15 Reserved

#### Bits 14–12 VMDHVOL[2:0]

These bits set the VMDH output voltage level.

Table 23.9.15	VMDH Outpu	t Voltage Level
---------------	------------	-----------------

MDCBSTVMD.VMDHVOL[2:0] bits	VMDH output voltage level
0x7	5.05 V
0x6	5.0 V
0x5	4.9 V
0x4	4.8 V
0x3	4.7 V
0x2	4.6 V
0x1	4.5 V
0x0	4.4 V

#### Bits 11–9 Reserved

#### Bit 8 VMDHON

This bit controls the VMDH output. 1 (R/W): On 0 (R/W): Off

#### Bit 7 Reserved

### Bits 6–4 VMDLVOL[2:0]

These bits set the VMDL output voltage level.

MDCBSTVMD.VMDLVOL[2:0] bits	VMDL output voltage level
0x7	3.4 V
0x6	3.3 V
0x5	3.2 V
0x4	3.1 V
0x3	3.0 V
0x2	2.9 V
0x1	2.8 V
0x0	2.7 V

Table 23.9.16 VMDL Output Voltage Level

#### Bits 3–1 Reserved

#### Bit 0 VMDLON

This bit controls the VMDL output. 1 (R/W): On 0 (R/W): Off

For more information on the VMDH/VMDL output control, refer to "VMD Power Supply Circuit."

# **MDC Host Control Register**

Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
MDCHOSTCTL	15	SOFTRST	0	HO	R/W	-
	14–8	-	0x00	-	R	
	7–5	-	0x0	-	R	
	4	INTPOL	0	H0	R/W	
	3	SYSCLKSTAT	0	H0	R	
	2	-	0	-	R	
	1	CLK32KOSCEN	0	H0	R/W	
	0	SYSOSCEN	0	HO	R/W	

The MDCHOSTCTL register can be accessed asynchronously with the system clock of this MCU from the external host MCU only.

#### Bit 15 SOFTRST

This bit is used by the external host MCU to issue a software reset to this MCU.

- 1 (W): Issue software reset
- 0 (W): Ineffective
- 1 (R): Software reset is executing.
- 0 (R): Software reset has finished. (During normal operation)

This bit is automatically cleared after the reset processing has finished.

#### Bits 14–5 Reserved

#### Bit 4 INTPOL

This bit is used by the external host MCU to select the INTMDC signal (MDC interrupt output from this MCU) polarity.

- 1 (R/W): Active low
- 0 (R/W): Active high

#### Bit 3 SYSCLKSTAT

This bit indicates the status of the system clock.

- 1 (R): System clock is stable.
- 0 (R): System clock is not stable.

#### Bit 2 Reserved

#### Bit 1 CLK32KOSCEN

This bit is used by the external host MCU to enable the OSC1 oscillator circuit. 1 (R/W): Force the OSC1 oscillator circuit to initiate. 0 (R/W): Controlled by the clock generator.

### Bit 0 SYSOSCEN

This bit is used by the external host MCU to enable the system clock source.

1 (R/W): Force the system clock source to initiate.

0 (R/W): Controlled by the clock generator.

# **24 Electrical Characteristics**

# 24.1 Absolute Maximum Ratings

			(Vss	s = 0 V)
Item	Symbol	Condition	Rated value	Unit
Power supply voltage	Vdd		-0.3 to 7.0	V
VBUS voltage	VBUS		-0.3 to 7.0	V
Flash programming voltage	VPP		-0.3 to 8.0	V
Input voltage	VI	#RESET, TEST, P00-07, P10-13, P16, P20-27, P30-36, P40-47, P50-56, P60-67, PD0-D3	-0.3 to VDD + 0.5	V
		P14, P15	-0.3 to 7.0	V
Output voltage	Vo		-0.3 to VDD + 0.5	V
High level output current	Іон	1 pin	-10	mA
		Total of all pins	-20	mA
Low level output current	lol	1 pin	10	mA
		Total of all pins	20	mA
Operating temperature	Та		-40 to 85	°C
Storage temperature	Tstg		-65 to 125	°C

# 24.2 Recommended Operating Conditions

					(Vss =	U V) *1
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Power supply voltage	Vdd	For normal operation	1.8	-	5.5	V
		V _{D1} voltage mode = mode1	1.8	-	3.6	V
		For Flash When VPP is supplied externally	2.4	-	5.5	V
		programming When VPP is generated internally	2.4	-	5.5	V
		When generating MDC drive voltage	2.0	-	5.5	V
I/O power supply voltage	HIFVDD	For P2 and P3 port groups	1.8	-	5.5	V
	VMDL	For P4 and P5 port groups when MDC is not used	1.8	-	5.5	V
VBUS voltage	VBUS		4.4	5.0	5.25	V
Flash programming voltage	Vpp		7.3	7.5	7.7	V
OSC1 oscillator oscillation frequency	fosc1	Crystal oscillator	-	32.768	-	kHz
OSC3 oscillator oscillation frequency	fosc3	Crystal/ceramic oscillator	0.2	-	20.5	MHz
EXOSC external clock frequency	fexosc	When supplied from an external oscillator	0.016	-	21	MHz
Bypass capacitor between Vss and VDD	CPW1		-	3.3	-	μF
Capacitor between Vss and VD1	CPW2		-	1	1.2	μF
Capacitor between Vss and VMDL	CMDC1	*2	-	1	-	μF
Capacitor between Vss and VMDH	CMDC2	*2, *3	-	1	-	μF
Capacitor between Vss and VMVD1	CMDC3	*3	-	1	-	μF
Capacitors between Vss and VMD2, Vss and VMD3	CMDC4-5	*3	-	1	-	μF
Capacitors between CMD1 and CMD2, CMD1 and CMD3	CMDC6-7	*3	-	1	-	μF
Capacitors between Vss and USB18VOUT, Vss and USB33VOUT	CUSB1-2		-	1	-	μF
Gate capacitor for OSC1 oscillator	C _{G1}	When crystal oscillator is used *4	0	-	25	pF
Drain capacitor for OSC1 oscillator	CD1	When crystal oscillator is used *4	-	0	-	pF
Gate capacitor for OSC3 oscillator	CG3	When crystal/ceramic oscillator is used *4	0	-	100	pF
Drain capacitor for OSC3 oscillator	Срз	When crystal/ceramic oscillator is used *4	0	-	100	pF
Debug pin pull-up resistors	RDBG1-2	*5	-	100	-	kΩ
Capacitor between Vss and VPP	CVPP		-	0.1	-	μF
Capacitor between Vss and VREFA	<b>C</b> VREFA		-	0.1	-	μF

*1 The potential variation of the Vss voltage should be suppressed to within ±0.3 V on the basis of the ground potential of the MCU mounting board while the Flash is being programmed, as it affects the Flash memory characteristics (programming count).

*2 An I/O power voltage should be supplied to the VMDL pin when the memory display controller is not used.

*3 The VMDH, VMVD1, VMD2, VMD3, and CMD1-3 pins can be left open when the memory display controller is not used.

*4 The component values should be determined after performing matching evaluation of the resonator mounted on the printed circuit board actually used.

*5 RDBG1-2 are not required when using the debug pins as general-purpose I/O ports.

*6 The component values should be determined after evaluating operations using an actual mounting board.

# 24.3 Current Consumption

Unless otherwise specified: VDD = 1.8 to 5.5 V, Vss = 0 V, Ta = 25 °C, EXOSC = OFF, PWGACTL.REGMODE[1:0] bits = 0x0 (automatic mode), PWGACTL.REGSEL bit = 1 (mode0), FLASHCWAIT.RDWAIT[1:0] bits = 0x1 (2 cycles)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Current	ISLP1	IOSC = OFF, OSC1 = OFF, OSC3 = OFF	-	0.46	4	μA
consumption in	ISLP2	IOSC = OFF, OSC1 = OFF, OSC3 = OFF, PWGACTL.REGSEL bit = 0 (mode1)	-	0.43	3.5	μA
SLEEP mode	ISLP3	IOSC = OFF, OSC1 = 32.768 kHz*1, OSC3 = OFF, RTCA = ON	-	0.95	6	μA
	ISLP4	$IOSC = OFF$ , $OSC1=32.768 \text{ kHz}^{*1}$ , $OSC3 = OFF$ , $RTCA = ON$ , PWGACTL.REGSEL bit = 0 (mode1)	-	0.85	5.5	μA
Current	HALT1	IOSC = 20 MHz, OSC1 = 32.768 kHz*1, OSC3 = OFF, SYSCLK = IOSC	-	910	1,100	μA
consumption in	HALT2	IOSC = OFF, OSC1 = 32.768 kHz*1, OSC3 = OFF, SYSCLK = OSC1	-	1.7	8	μA
HALT mode		IOSC = OFF, OSC1 = 32 kHz*2, OSC3 = OFF, SYSCLK = OSC1	-	2.7	12	μA
	<b>IHALT3</b>	IOSC = OFF, OSC1 = 32.768 kHz*1, OSC3 = OFF, SYSCLK = OSC1, PWGACTL.REGSEL bit = 0 (mode1)	-	1.4	7.5	μA
	IHALT4	IOSC = OFF, OSC1 = 32.768 kHz*1, OSC3 = 8 MHz (ceramic oscillator)*3, SYSCLK = OSC3	-	390	520	μA
Current consumption in	IRUN1*4	IOSC = 20 MHz, OSC1 = 32.768 kHz ⁺¹ , OSC3 = OFF, SYSCLK = IOSC, FLASHCWAIT.RDWAIT[1:0] bis = 0x2 (3 cycles)	-	4,400	5,000	μA
RUN mode	IRUN2*4	IOSC = 16 MHz, OSC1 = 32.768 kHz*1, OSC3 = OFF, SYSCLK = IOSC	-	4,000	4,500	μA
	IRUN3*4	IOSC = 8 MHz, OSC1 = 32.768 kHz ⁺¹ , OSC3 = OFF, SYSCLK = IOSC, FLASHCWAIT.RDWAIT[1:0] bits = 0x0 (1 cycle )	-	2,400	2,700	μA
	IRUN4*4	IOSC = 2 MHz, OSC1 = 32.768 kHz*1, OSC3 = OFF, SYSCLK = IOSC, PWGACTL.REGSEL bit = 0 (mode1)	-	310	410	μA
	IRUN5*4	IOSC = OFF, OSC1 = 32.768 kHz*1, OSC3 = OFF, SYSCLK = OSC1, FLASHCWAIT.RDWAIT[1:0] bits = 0x0 (1 cycle)	-	9.5	16	μA
		IOSC = OFF, OSC1 = 32 kHz ⁺² , OSC3 = OFF, SYSCLK = OSC1, FLASHCWAIT.RDWAIT[1:0] bits = 0x0 (1 cycle)	-	10	18	μA
	Irun6*4	IOSC = OFF, OSC1 = 32.768 kHz*1, OSC3 = OFF, SYSCLK = OSC1, PWGACTL.REGSEL bit = 0 (mode1), FLASHCWAIT.RDWAIT[1:0] bits = 0x0 (1 cycle)	_	7	12	μA
	RUN7*4	IOSC = OFF, OSC1 = 32.768 kHz*1, OSC3 = 8 MHz (ceramic oscillator)*3, SYSCLK = OSC3, FLASHCWAIT.RDWAIT[1:0] bits = 0x0 (1 cycle)	-	2,300	2,600	μA

*1 OSC1 oscillator: CLGOSC1.OSC1SELCR bit = 0, CLGOSC1.INV1N[1:0] bits = 0x0, CLGOSC1.CGI1[2:0] bits = 0x0, CLGOSC1. OSDEN bit = 0, CG1 = CD1 = 0 pF, Crystal resonator = C-002RX (manufactured by Seiko Epson Corporation, R1 = 50 kΩ (Max.), CL = 7 pF)

*2 OSC1 oscillator: CLGOSC1.OSC1SELCR bit = 1

*3 OSC3 oscillator: CLGOSC3.OSC3INV[1:0] bits = 0x0, CG3 = CD3 = 10 pF

*4 The current consumption values were measured when a test program consisting of 60.5 % ALU instructions, 17 % branch instructions, 12 % RAM read instructions, and 10.5 % RAM write instructions was executed continuously in the Flash memory.

# Current consumption-temperature characteristic in SLEEP mode



# Current consumption-power supply voltage characteristic in SLEEP mode

IOSC = OFF, OSC1 = OFF, OSC3 = OFF, Typ. value



# Current consumption-temperature characteristic in HALT mode (IOSC operation)

IOSC =ON, OSC1 = 32.768 kHz, OSC3 = OFF, Typ. value



# Current consumption-temperature characteristic in RUN mode (IOSC operation)

IOSC = ON, OSC1 = 32.768 kHz, OSC3 = OFFPWGACTL.REGSEL bit = 1 (mode0), Typ. value



# Current consumption-temperature characteristic in RUN mode (OSC1 operation)

IOSC = OFF, OSC1 = 32.768 kHz, OSC3 = OFF, Typ. value



# Current consumption-temperature characteristic in HALT mode (OSC1 operation)

IOSC = OFF, OSC1 = 32.768 kHz, OSC3 = OFF, Typ. value



# Current consumption-temperature characteristic in RUN mode (IOSC operation)

IOSC = ON, OSC1 = 32.768 kHz, OSC3 = OFF PWGACTL.REGSEL bit = 0 (mode1), Typ. value



# Current consumption-frequency characteristic in RUN mode (OSC3 operation)

 $\mathsf{IOSC}=\mathsf{OFF},\mathsf{OSC1}=32.768\ \mathsf{kHz},\mathsf{OSC3}=\mathsf{ON}\ (\mathsf{ceramic\ oscillator}),$  Ta = 25 °C, CLGOSC3.OSC3INV[1:0] bits = 0x3, Typ. value



# 24.4 System Reset Controller (SRC) Characteristics

#### **#RESET** pin characteristics

Unless otherwise specified:  $V_{DD} = 1.8$  to 5.5 V,  $V_{SS} = 0$  V, Ta = -40 to 85 °C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
High level Schmitt input threshold voltage	V _{T+}		$0.5 \times V_{\text{DD}}$	-	$0.8 \times V_{DD}$	V
Low level Schmitt input threshold voltage	VT-		$0.2 \times V_{\text{DD}}$	-	$0.5 \times V_{\text{DD}}$	V
Schmitt input hysteresis voltage	ΔVτ		180	-	-	mV
Input pull-up resistance	Rin		100	270	500	kΩ
Pin capacitance	CIN		-	-	15	pF
Reset Low pulse width	tsr		5	-	-	μs



#### **POR/BOR characteristics**

Unless otherwise specified: V_DD = 1.8 to 5.5 V, V_SS = 0 V, Ta = -40 to 85  $^\circ\text{C}$ 

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
POR/BOR canceling voltage	VRST+		1.41	-	1.75	V
POR/BOR detection voltage	VRST-		1.25	-	1.55	V
POR/BOR hysteresis voltage	$\Delta V$ rst		40	60	-	mV
POR/BOR detection response time	trst		-	-	20	μs
POR/BOR operating limit voltage	VRSTOP		-	0.5	0.95	V
POR/BOR reset request hold time	trrq		0.01	-	4	ms



**Note:** When performing a power-on-reset again after the power is turned off, decrease the VDD voltage to VRSTOP or less.

#### **Reset hold circuit characteristics**

Unless otherwise specified: VDD = 1.8 to 5.5 V, Vss = 0 V, Ta = -40 to 85  $^\circ\text{C}$ 

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Reset hold time*1	trstr		-	-	150	μs

*1 Time until the internal reset signal is negated after the reset request is canceled.

# 24.5 Clock Generator (CLG) Characteristics

Oscillator circuit characteristics including resonators change depending on conditions (board pattern, components used, etc.). Use these characteristic values as a reference and perform matching evaluation using the actual printed circuit board.

#### IOSC oscillator circuit characteristics

Unless otherwise specified: VDD = 1.8 to 5.5 V, Vss = 0 V, Ta = -40 to 85 °C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Oscillation start time	tstal		-	-	3	μs
Oscillation frequency	fiosc	CLGIOSC.IOSCFQ[2:0] bits = 0x7,	18	20	21	MHz
		PWGACTL.REGSEL bit = 1				
		CLGIOSC.IOSCFQ[2:0] bits = 0x6,	14.4	16	16.8	MHz
		PWGACTL.REGSEL bit = 1				
		CLGIOSC.IOSCFQ[2:0] bits = 0x5,	10.8	12	12.6	MHz
		PWGACTL.REGSEL bit = 1				
		CLGIOSC.IOSCFQ[2:0] bits = 0x4,	7.2	8	8.4	MHz
		PWGACTL.REGSEL bit = 1				
		CLGIOSC.IOSCFQ[2:0] bits = 0x1,	1.76	2.2	2.64	MHz
		PWGACTL.REGSEL bit = 1				
		CLGIOSC.IOSCFQ[2:0] bits = 0x0,	0.88	1.1	1.32	MHz
		PWGACTL.REGSEL bit = 1				
		CLGIOSC.IOSCFQ[2:0] bits = 0x1,	1.8	2	2.1	MHz
		PWGACTL.REGSEL bit = 0				
		CLGIOSC.IOSCFQ[2:0] bits = 0x0,	0.9	1	1.05	MHz
		PWGACTL.REGSEL bit = 0				

#### **IOSC** oscillation frequency-temperature characteristic

VDD = 1.8 to 5.5 V, PWGACTL.REGSEL bit = 1, Typ. value VDD = 1.8 to 5.5 V, PWGACTL.REGSEL bit = 0, Typ. value 25 2.5 CLGIOSC.IOSCFQ[2:0] bits = 0x7 20 2.0 0x6 15 1.5 iosc [kHz] iosc [kHz] 0x5 10 1.0 0x4 5 0.5 0x1 .... --- 0x0 0 0 -50 -25 0 25 50 75 100 -50 Ta [°C]



#### 24 ELECTRICAL CHARACTERISTICS

#### **OSC1** oscillator circuit characteristics

Unless otherwise specified: V_DD = 1.8 to 5.5 V, V_SS = 0 V, Ta = 25  $^\circ\text{C}$ 

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Crystal oscillator	tsta1C	CLGOSC1.OSC1SELCR bit = 0,	-	-	3	s
oscillation start time*1		CLGOSC1.INV1N[1:0] bits = 0x1,				
		CLGOSC1.INV1B[1:0] bits = 0x2,				
		CLGOSC1.OSC1BUP bit = 1				
Crystal oscillator	CGI1C	CLGOSC1.OSC1SELCR bit = 0,	-	12	-	pF
internal gate capacitance		CLGOSC1.CGI1[2:0] bits = 0x0				
		CLGOSC1.OSC1SELCR bit = 0,	-	14	-	pF
		CLGOSC1.CGI1[2:0] bits = 0x1				
		CLGOSC1.OSC1SELCR bit = 0,	-	16	-	pF
		CLGOSC1.CGI1[2:0] bits = 0x2				
		CLGOSC1.OSC1SELCR bit = 0,	-	18	-	pF
		CLGOSC1.CGI1[2:0] bits = 0x3				
		CLGOSC1.OSC1SELCR bit = 0,	-	19	-	pF
		CLGOSC1.CGI1[2:0] bits = 0x4				
		CLGOSC1.OSC1SELCR bit = 0,	-	21	-	pF
		CLGOSC1.CGI1[2:0] bits = 0x5				
		CLGOSC1.OSC1SELCR bit = 0,	-	23	-	pF
		CLGOSC1.CGI1[2:0] bits = 0x6				
		CLGOSC1.OSC1SELCR bit = 0,	-	24	-	рF
		CLGOSC1.CGI1[2:0] bits = 0x7				
Crystal oscillator	CDI1C	CLGOSC1.OSC1SELCR bit = 0,	-	6	-	pF
internal drain capacitance						
Crystal oscillator	losc1c	CLGOSC1.OSC1SELCR bit = 0,	-	70	-	%
oscillator circuit		CLGOSC1.INV1N/INV1B[1:0] bits = 0x0				
current - oscillation inverter		CLGOSC1.OSC1SELCR bit = 0,	-	100	-	%
drivability ratio *1		CLGOSC1.INV1N/INV1B[1:0] bits = 0x1 (reference)				
		CLGOSC1.OSC1SELCR bit = 0,	-	130	-	%
		CLGOSC1.INV1N/INV1B[1:0] bits = 0x2				
		CLGOSC1.OSC1SELCR bit = 0,	-	300	-	%
		CLGOSC1.INV1N/INV1B[1:0] bits = 0x3				
Crystal oscillator	losd1C	CLGOSC1.OSC1SELCR bit = 0,	-	0.025	0.1	μA
oscillation stop detector current		CLGOSC1.OSDEN bit = 1				
Internal oscillator	tsta11	CLGOSC1.OSC1SELCR bit = 1	-	-	100	μs
oscillation start time						
Internal oscillator	fosc11	CLGOSC1.OSC1SELCR bit = 1	31.04	32	32.96	kHz
oscillation frequency						

*1 CLGOSC1.CGI1[2:0] bits = 0x0, Crystal resonator = C-002RX (manufactured by Seiko Epson Corporation, R1 = 50 kΩ (Max.), CL = 7 pF)

#### **OSC3** oscillator circuit characteristics

Unless otherwise specified:  $V_{DD} = 1.8$  to 5.5 V,  $V_{SS} = 0$  V, Ta = 25 °C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Oscillation start time	tsta3	Crystal resonator	-	-	20	ms
		Ceramic resonator	-	-	1	ms
Internal gate capacitance	CGI3		-	5	-	pF
Internal drain capacitance	Сыз		-	5	-	pF

#### **EXOSC** external clock input characteristics

Unless otherwise specified: VDD = 1.8 to 5.5 V, Vss = 0 V, Ta = -40 to 85 °C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
EXOSC external clock duty ratio	texosco	texoscd = texosch/texosc	46	-	54	%
High level Schmitt input threshold voltage	VT+		$0.5 \times V_{DD}$	-	$0.8 \times V_{DD}$	V
Low level Schmitt input threshold voltage	VT-		$0.2 \times V_{DD}$	-	$0.5 \times V_{DD}$	V
Schmitt input hysteresis voltage	ΔVτ		180	-	-	mV



# 24.6 Flash Memory Characteristics

Unless otherwise specified: VDD = 2.4 to 5.5 V, Vss = 0 V  *1 , Ta = -40 to 85  $^{\circ}$ C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Programming count *2	CFEP	Programmed data is guaranteed to be retained for	1,000	-	-	times
		10 years.				

*1 The potential variation of the Vss voltage should be suppressed to within ±0.3 V on the basis of the ground potential of the MCU mounting board while the Flash is being programmed, as it affects the Flash memory characteristics (programming count).

*2 Assumed that Erasing + Programming as count of 1. The count includes programming in the factory for shipment with ROM data programmed.

# 24.7 Input/Output Port (PPORT) Characteristics

Unless otherwise specified: VDD = 1.8 to 5.5 V, Vss = 0 V, Ta = -40 to 85  $^\circ$ C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
High level Schmitt input threshold	VT+		$0.5 \times V_{DD}$	-	$0.8 \times V_{DD}$	V
voltage						
Low level Schmitt input threshold	VT-		$0.2 \times V_{\text{DD}}$	-	$0.5 \times V_{\text{DD}}$	V
voltage						
Schmitt input hysteresis voltage	ΔVτ		180	-	-	mV
High level output current	Іон	$VOH = 0.9 \times VDD$	-	-	-0.4	mA
Low level output current	Iol	$VOL = 0.1 \times VDD$	0.4	-	-	mA
Leakage current	ILEAK		-150	-	150	nA
Input pull-up resistance	Rinu		75	150	300	kΩ
Input pull-down resistance	RIND		75	150	300	kΩ
Pin capacitance	CIN		-	-	15	pF



# 24.8 Supply Voltage Detector (SVD3) Characteristics

Unless otherwise specified: V_DD = 1.8 to 5.5 V, V_SS = 0 V, Ta = -40 to 85  $^\circ\text{C}$ 

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
EXSVDn pin input voltage range	VEXSVD		0	-	Vdd	V
EXSVDn input impedance	Rexsvd	SVD3CTL.SVDC[4:0] bits = 0x00	253	279	305	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x01	274	302	330	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x02	317	348	380	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x03	338	371	405	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x04	380	418	456	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x05	421	464	507	KΩ
		SVD3CTL.SVDC[4:0] bits = 0x00	443	407 511	557	k0
		SVD3CTLSVDO[4:0] bits = 0x07 SVD3CTL SVDC[4:0] bits = 0x08	486	534	581	kQ
		SVD3CTL.SVDC[4:0] bits = 0x09	507	557	607	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x0a	528	580	631	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x0b	551	603	655	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x0c	571	626	682	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x0d	593	649	705	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x0e	616	672	727	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x0f	635	695	754	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x10	658	718	004	KΩ
		SVD3CTL.SVDC[4:0] bits = 0x11 SVD3CTL SVDC[4:0] bits = 0x12	698	765	833	kQ
		SVD3CTL SVDC[4:0] bits = 0x12	739	812	885	kQ.
		SVD3CTL.SVDC[4:0] bits = 0x14	761	834	908	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x15	804	880	955	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x16	842	929	1,016	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x17	878	948	1,019	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x18	893	972	1,052	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x19	922	993	1,064	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x1a	963	1,041	1,119	KΩ
		SVD3CTL.SVDC[4:0] bits = 0x1c	1 001	1,003	1,145	kQ
		SVD3CTL.SVDC[4:0] bits = 0x1d	1,001	1,000	1,198	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x1e	1,054	1,129	1,204	kΩ
		SVD3CTL.SVDC[4:0] bits = 0x1f	1,072	1,154	1,237	kΩ
EXSVDn detection voltage	VSVD_EXT	SVD3CTL.SVDC[4:0] bits = 0x00	1.17	1.2	1.23	V
		SVD3CTL.SVDC[4:0] bits = 0x01	1.27	1.3	1.33	V
		SVD3CTL.SVDC[4:0] bits = $0x02$	1.46	1.5	1.54	V
		SVD3CTL.SVDC[4:0] bits = 0x03 SVD3CTL.SVDC[4:0] bits = 0x04	1.30	1.0	1.04	V
		SVD3CTL SVDC[4:0] bits = 0x04	1.95	2.0	2.05	V
		SVD3CTL.SVDC[4:0] bits = 0x06	2.05	2.1	2.15	V
		SVD3CTL.SVDC[4:0] bits = 0x07	2.15	2.2	2.26	V
		SVD3CTL.SVDC[4:0] bits = 0x08	2.24	2.3	2.36	V
		SVD3CTL.SVDC[4:0] bits = 0x09	2.34	2.4	2.46	V
		SVD3CTL.SVDC[4:0] bits = 0x0a	2.44	2.5	2.56	V
		SVD3CTL.SVDC[4:0] bits = 0x0b	2.54	2.6	2.67	V
		SVD3CTLSVDC[4:0] bits = 0x0c	2.03	2.7	2.11	V
		SVD3CTLSVDC[4:0] bits = 0x0e	2.73	2.0	2.07	V
		SVD3CTL.SVDC[4:0] bits = 0x0f	2.93	3.0	3.08	v
		SVD3CTL.SVDC[4:0] bits = 0x10	3.02	3.1	3.18	V
		SVD3CTL.SVDC[4:0] bits = 0x11	3.12	3.2	3.28	V
		SVD3CTL.SVDC[4:0] bits = 0x12	3.22	3.3	3.38	V
		SVD3CTL.SVDC[4:0] bits = 0x13	3.41	3.5	3.59	V
		SVD3CTLSVDC[4:0] bits = 0x14	3.51	3.6	3.69	V
		SVD3CTL SVDC[4:0] DITS = $0x15$	3./1	3.8	3.90	V
		SVD3CTL.SVDC[4:0] bits = 0x17	4,00	4.1	4,20	V
		SVD3CTL.SVDC[4:0] bits = 0x18	4.10	4.2	4.31	V
		SVD3CTL.SVDC[4:0] bits = 0x19	4.19	4.3	4.41	V
		SVD3CTL.SVDC[4:0] bits = 0x1a	4.39	4.5	4.61	V
		SVD3CTL.SVDC[4:0] bits = 0x1b	4.49	4.6	4.72	V
		SVD3CTL.SVDC[4:0] bits = 0x1c	4.58	4.7	4.82	V
		SVD3CTL SVDC[4:0] bits = $0x10$	4.68	4.8	4.92	V
		SVD3CTL.SVDC[4:0] bits = 0x1f	4.88	5.0	5.13	V

Seiko Epson Corporation

#### 24 ELECTRICAL CHARACTERISTICS

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
SVD detection voltage	Vsvd	SVD3CTL.SVDC[4:0] bits = 0x04	1.76	1.8	1.85	V
		SVD3CTL.SVDC[4:0] bits = 0x05	1.95	2.0	2.05	V
		SVD3CTL.SVDC[4:0] bits = 0x06	2.05	2.1	2.15	V
		SVD3CTL.SVDC[4:0] bits = 0x07	2.15	2.2	2.26	V
		SVD3CTL.SVDC[4:0] bits = 0x08	2.24	2.3	2.36	V
		SVD3CTL.SVDC[4:0] bits = 0x09	2.34	2.4	2.46	V
		SVD3CTL.SVDC[4:0] bits = 0x0a	2.44	2.5	2.56	V
		SVD3CTL.SVDC[4:0] bits = 0x0b	2.54	2.6	2.67	V
		SVD3CTL.SVDC[4:0] bits = 0x0c	2.63	2.7	2.77	V
		SVD3CTL.SVDC[4:0] bits = 0x0d	2.73	2.8	2.87	V
		SVD3CTL.SVDC[4:0] bits = 0x0e	2.83	2.9	2.97	V
		SVD3CTL.SVDC[4:0] bits = 0x0f	2.93	3.0	3.08	V
		SVD3CTL.SVDC[4:0] bits = 0x10	3.02	3.1	3.18	V
		SVD3CTL.SVDC[4:0] bits = 0x11	3.12	3.2	3.28	V
		SVD3CTL.SVDC[4:0] bits = 0x12	3.22	3.3	3.38	V
		SVD3CTL.SVDC[4:0] bits = 0x13	3.41	3.5	3.59	V
		SVD3CTL.SVDC[4:0] bits = 0x14	3.51	3.6	3.69	V
		SVD3CTL.SVDC[4:0] bits = 0x15	3.71	3.8	3.90	V
		SVD3CTL.SVDC[4:0] bits = 0x16	3.90	4.0	4.10	V
		SVD3CTL.SVDC[4:0] bits = 0x17	4.00	4.1	4.20	V
		SVD3CTL.SVDC[4:0] bits = 0x18	4.10	4.2	4.31	V
		SVD3CTL.SVDC[4:0] bits = 0x19	4.19	4.3	4.41	V
		SVD3CTL.SVDC[4:0] bits = 0x1a	4.39	4.5	4.61	V
		SVD3CTL.SVDC[4:0] bits = 0x1b	4.49	4.6	4.72	V
		SVD3CTL.SVDC[4:0] bits = 0x1c	4.58	4.7	4.82	V
		SVD3CTL.SVDC[4:0] bits = 0x1d	4.68	4.8	4.92	V
		SVD3CTL.SVDC[4:0] bits = 0x1e	4.78	4.9	5.02	V
		SVD3CTL.SVDC[4:0] bits = 0x1f	4.88	5.0	5.13	V
SVD circuit enable response time	<b>t</b> svden	*1	-	_	500	μs
SVD circuit response time	tsvD		-	-	60	μs
SVD circuit current	Isvd	SVD3CTL.SVDMD[1:0] bits = 0x0,	-	19	35	μA
		SVD3CTL.SVDC[4:0] bits = 0x04				
		CLK_SVD3 = 32 kHz, Ta = 25 °C				
		SVD3CTL.SVDMD[1:0] bits = 0x1,	-	4.7	7.7	μA
		SVD3C1L.SVDC[4:0] bits = 0x04,				
		$CLK_SVD3 = 32 \text{ kHz}, \text{ Ia} = 25 \text{ °C}$		0.5		
		SVD3CTL.SVDMD[1:0] bits = 0x2,	-	2.5	4.1	μΑ
		SVD3CTL.SVDC[4:0] DITS = $UXU4$ ,				
		$ ULN_{3}VD3 = 32 \text{ KHZ}, 1a = 25 ^{-1} ^{-1}$		1.5	0.4	
		SVD3C L.SVDIVID[1:0] DITS = 0x3,	-	1.5	2.4	μΑ
		SVUSC L.SVUC[4:U] DITS = UXU4,				
		$ OLN_{OVD3}  = 32 \text{ KHz}, \text{ Ia} = 25 \text{ °C}$				

*1 If CLK_SVD3 is configured in the neighborhood of 32 kHz, the SVD3INTF.SVDDT bit is masked during the tsvDEN period and it retains the previous value.



#### SVD circuit current - power supply voltage characteristic

Ta = 25 °C, SVD3CTL.SVDC[4:0] bits = 0x04, CLK_SVD3 = 32 kHz, Typ. value



# 24.9 UART (UART3) Characteristics

Unless otherwise specified: V_DD = 1.8 to 5.5 V, V_SS = 0 V, Ta = -40 to 85 $^\circ$ C											
Item	Symbol	Condition	Min.	Тур.	Max.	Unit					
Transfer baud rate	UBRT1	Normal mode	150	-	460,800	bps					
	UBRT2	IrDA mode	150	-	115,200	bps					

# 24.10 Synchronous Serial Interface (SPIA) Characteristics

#### SPIA Ch.0

Unless otherwise specified: Master mode, Vss = 0 V, Ta = -40 to 85  $^\circ\text{C}$ 

Item	Symbol	Condition	VDD	VD1 output	Min.	Тур.	Max.	単位
SPICLK0 cycle time	tscyc		3.0 to 5.5 V	mode0	200	-	-	ns
			1.8 to 3.0 V	mode0	200	-	-	ns
			1.8 to 3.6 V	mode1	480	-	-	ns
SPICLK0 High pulse width	tscкн		3.0 to 5.5 V	mode0	80	-	-	ns
			1.8 to 3.0 V	mode0	80	-	-	ns
			1.8 to 3.6 V	mode1	190	-	-	ns
SPICLK0 Low pulse width	<b>t</b> SCKL		3.0 to 5.5 V	mode0	80	-	-	ns
			1.8 to 3.0 V	mode0	80	-	-	ns
			1.8 to 3.6 V	mode1	190	-	-	ns
SDI0 setup time	tsps		3.0 to 5.5 V	mode0	60	-	-	ns
			1.8 to 3.0 V	mode0	60	-	-	ns
			1.8 to 3.6 V	mode1	160	-	-	ns
SDI0 hold time	tsdн		3.0 to 5.5 V	mode0	10	-	-	ns
			1.8 to 3.0 V	mode0	10	-	-	ns
			1.8 to 3.6 V	mode1	40	-	-	ns
SDO0 output delay time	tspo	C∟ = 15 pF *1	3.0 to 5.5 V	mode0	-	-	20	ns
			1.8 to 3.0 V	mode0	-	-	20	ns
			1.8 to 3.6 V	mode1	-	-	80	ns

*1 CL = Pin load

Unless	otherwise	specified:	Slave	mode,	Vss =	0 V,	Ta =	-40 to 85	°C
--------	-----------	------------	-------	-------	-------	------	------	-----------	----

Item	Symbol	Condition	VDD	VD1 output	Min.	Тур.	Max.	単位
SPICLK0 cycle time	tscyc		3.0 to 5.5 V	mode0	200	-	-	ns
			1.8 to 3.0 V	mode0	200	-	-	ns
			1.8 to 3.6 V	mode1	480	-	-	ns
SPICLK0 High pulse width	tscкн		3.0 to 5.5 V	mode0	80	-	-	ns
			1.8 to 3.0 V	mode0	80	-	-	ns
			1.8 to 3.6 V	mode1	190	-	-	ns
SPICLK0 Low pulse width	tscĸ∟		3.0 to 5.5 V	mode0	80	-	-	ns
			1.8 to 3.0 V	mode0	80	-	-	ns
			1.8 to 3.6 V	mode1	190	-	-	ns
SDI0 setup time	tsds		3.0 to 5.5 V	mode0	10	-	-	ns
			1.8 to 3.0 V	mode0	10	-	-	ns
			1.8 to 3.6 V	mode1	40	-	-	ns
SDI0 hold time	<b>t</b> SDH		3.0 to 5.5 V	mode0	13	-	-	ns
			1.8 to 3.0 V	mode0	13	-	-	ns
			1.8 to 3.6 V	mode1	50	-	-	ns
SDO0 output delay time	tsdo	CL = 15 pF *1	3.0 to 5.5 V	mode0	-	-	60	ns
			1.8 to 3.0 V	mode0	-	-	65	ns
			1.8 to 3.6 V	mode1	-	-	210	ns
#SPISS0 setup time	tsss		3.0 to 5.5 V	mode0	10	-	-	ns
			1.8 to 3.0 V	mode0	10	-	-	ns
			1.8 to 3.6 V	mode1	40	-	-	ns
#SPISS0 High pulse width	tssн		3.0 to 5.5 V	mode0	80	-	-	ns
			1.8 to 3.0 V	mode0	80	-	-	ns
			1.8 to 3.6 V	mode1	190	-	-	ns
SDO0 output start time	tsdd	CL = 15 pF *1	3.0 to 5.5 V	mode0	-	-	60	ns
			1.8 to 3.0 V	mode0	-	-	65	ns
			1.8 to 3.6 V	mode1	-	-	210	ns
SDO0 output stop time	tsdz	CL = 15 pF *1	3.0 to 5.5 V	mode0	-	_	60	ns
			1.8 to 3.0 V	mode0	-	-	65	ns
			1.8 to 3.6 V	mode1	-	-	210	ns

*1 C∟ = Pin load

#### SPIA Ch.1

Unless otherwise specified: Master mode, Vss = 0 V, Ta = -40 to 85  $^\circ\text{C}$ 

Item	Symbol	Condition	VDD	VD1 output	Min.	Тур.	Max.	単位
SPICLK1 cycle time	tscyc		3.0 to 5.5 V	mode0	100	-	-	ns
			1.8 to 3.0 V	mode0	120	-	-	ns
			1.8 to 3.6 V	mode1	480	-	-	ns
SPICLK1 High pulse width	tscкн		3.0 to 5.5 V	mode0	40	-	-	ns
			1.8 to 3.0 V	mode0	48	-	-	ns
			1.8 to 3.6 V	mode1	190	-	-	ns
SPICLK1 Low pulse width	tsckl		3.0 to 5.5 V	mode0	40	-	-	ns
			1.8 to 3.0 V	mode0	48	-	-	ns
			1.8 to 3.6 V	mode1	190	-	-	ns
SDI1 setup time	tsps		3.0 to 5.5 V	mode0	30	-	-	ns
			1.8 to 3.0 V	mode0	40	-	-	ns
			1.8 to 3.6 V	mode1	120	-	-	ns
SDI1 hold time	tsdн		3.0 to 5.5 V	mode0	10	-	-	ns
			1.8 to 3.0 V	mode0	10	-	-	ns
			1.8 to 3.6 V	mode1	40	-	-	ns
SDO1 output delay time	tsdo	C∟ = 15 pF *1	3.0 to 5.5 V	mode0	-	-	20	ns
			1.8 to 3.0 V	mode0	-	-	20	ns
			1.8 to 3.6 V	mode1	-	_	80	ns

*1 CL = Pin load

#### 24 ELECTRICAL CHARACTERISTICS

Unless	otherwise	specified:	Slave	mode	Vss =	οv	Ta =	-40 to	85	°C
01110000	0110110100	opooniou.	oiuvo	moao,	000 -	•••	, iu –	1010	00	

Item	Symbol	Condition	VDD	VD1 output	Min.	Тур.	Max.	単位
SPICLK1 cycle time	tscyc		3.0 to 5.5 V	mode0	100	-	-	ns
			1.8 to 3.0 V	mode0	150	-	-	ns
			1.8 to 3.6 V	mode1	480	-	-	ns
SPICLK1 High pulse width	tscкн		3.0 to 5.5 V	mode0	40	-	-	ns
			1.8 to 3.0 V	mode0	60	-	-	ns
			1.8 to 3.6 V	mode1	190	-	-	ns
SPICLK1 Low pulse width	<b>t</b> SCKL		3.0 to 5.5 V	mode0	40	-	-	ns
			1.8 to 3.0 V	mode0	60	-	-	ns
			1.8 to 3.6 V	mode1	190	-	-	ns
SDI1 setup time	tsps		3.0 to 5.5 V	mode0	10	-	-	ns
			1.8 to 3.0 V	mode0	10	-	-	ns
			1.8 to 3.6 V	mode1	40	-	-	ns
SDI1 hold time	tspн		3.0 to 5.5 V	mode0	10	-	-	ns
			1.8 to 3.0 V	mode0	10	-	-	ns
			1.8 to 3.6 V	mode1	50	-	-	ns
SDO1 output delay time	tspo	C∟ = 15 pF *1	3.0 to 5.5 V	mode0	-	-	42	ns
			1.8 to 3.0 V	mode0	-	-	52	ns
			1.8 to 3.6 V	mode1	-	-	170	ns
#SPISS1 setup time	tsss		3.0 to 5.5 V	mode0	10	-	-	ns
			1.8 to 3.0 V	mode0	10	-	-	ns
			1.8 to 3.6 V	mode1	40	-	-	ns
#SPISS1 High pulse width	tssн		3.0 to 5.5 V	mode0	40	-	-	ns
			1.8 to 3.0 V	mode0	60	-	-	ns
			1.8 to 3.6 V	mode1	190	-	-	ns
SDO1 output start time	tspp	C∟ = 15 pF *1	3.0 to 5.5 V	mode0	-	-	50	ns
			1.8 to 3.0 V	mode0	-	-	60	ns
			1.8 to 3.6 V	mode1	-	-	180	ns
SDO1 output stop time	tspz	CL = 15 pF *1	3.0 to 5.5 V	mode0	-	-	50	ns
			1.8 to 3.0 V	mode0	-	-	60	ns
			1.8 to 3.6 V	mode1	-	-	180	ns

*1 CL = Pin load

#### Master and slave modes



#### Slave mode



# 24.11 Quad Synchronous Serial Interface (QSPI) Characteristics

Item	Symbol	Condition	VDD	VD1 output	Min.	Тур.	Max.	単位
QSPICLKn cycle time	tscyc		3.0 to 5.5 V	mode0	100	-	-	ns
			1.8 to 3.0 V	mode0	120	-	-	ns
			1.8 to 3.6 V	mode1	480	-	-	ns
QSPICLKn High pulse width	tscкн		3.0 to 5.5 V	mode0	40	-	-	ns
			1.8 to 3.0 V	mode0	48	-	-	ns
			1.8 to 3.6 V	mode1	190	-	-	ns
QSPICLKn Low pulse width	tscĸ∟		3.0 to 5.5 V	mode0	40	-	-	ns
			1.8 to 3.0 V	mode0	48	-	-	ns
			1.8 to 3.6 V	mode1	190	-	-	ns
QSDIOn[3:0] setup time	tsds		3.0 to 5.5 V	mode0	30	-	-	ns
			1.8 to 3.0 V	mode0	40	-	-	ns
			1.8 to 3.6 V	mode1	210	-	-	ns
QSDIOn[3:0] hold time	tsdh		3.0 to 5.5 V	mode0	10	-	-	ns
			1.8 to 3.0 V	mode0	10	-	-	ns
			1.8 to 3.6 V	mode1	40	-	-	ns
QSDIOn[3:0] output delay time	tsdo	C∟ = 15 pF *1	3.0 to 5.5 V	mode0	-	-	20	ns
			1.8 to 3.0 V	mode0	-	-	20	ns
			1.8 to 3.6 V	mode1	-	-	80	ns

Unless otherwise specified: Master mode, Vss = 0 V, Ta = -40 to 85 °C

*1  $C_L = Pin load$ 

Unless otherwise specified: Slave mode, Vss = 0 V, Ta = -40 to 85  $^\circ\text{C}$ 

Item	Symbol	Condition	VDD	VD1 output	Min.	Тур.	Max.	単位
QSPICLKn cycle time	tscyc		3.0 to 5.5 V	mode0	120	-	-	ns
			1.8 to 3.0 V	mode0	160	-	-	ns
			1.8 to 3.6 V	mode1	480	-	-	ns
QSPICLKn High pulse width	tscкн		3.0 to 5.5 V	mode0	48	-	-	ns
			1.8 to 3.0 V	mode0	64	-	-	ns
			1.8 to 3.6 V	mode1	190	-	-	ns
QSPICLKn Low pulse width	tscĸ∟		3.0 to 5.5 V	mode0	48	-	-	ns
			1.8 to 3.0 V	mode0	64	-	-	ns
			1.8 to 3.6 V	mode1	190	-	-	ns
QSDIOn[3:0] setup time	tsds		3.0 to 5.5 V	mode0	10	-	-	ns
			1.8 to 3.0 V	mode0	10	-	-	ns
			1.8 to 3.6 V	mode1	40	-	-	ns
QSDIOn[3:0] hold time	<b>t</b> SDH		3.0 to 5.5 V	mode0	10	-	-	ns
			1.8 to 3.0 V	mode0	50	-	-	ns
			1.8 to 3.6 V	mode1	60	-	-	ns
QSDIOn[3:0] output delay time	tsdo	C∟ = 15 pF *1	3.0 to 5.5 V	mode0	-	-	48	ns
			1.8 to 3.0 V	mode0	-	-	56	ns
			1.8 to 3.6 V	mode1	-	-	180	ns
#QSPISSn setup time	tsss		3.0 to 5.5 V	mode0	10	-	-	ns
			1.8 to 3.0 V	mode0	10	-	-	ns
			1.8 to 3.6 V	mode1	40	-	-	ns
#QSPISSn High pulse width	tssн		3.0 to 5.5 V	mode0	48	-	-	ns
			1.8 to 3.0 V	mode0	60	-	-	ns
			1.8 to 3.6 V	mode1	190	-	-	ns
QSDIOn[3:0] output start time	tsdd	C∟ = 15 pF *1	3.0 to 5.5 V	mode0	-	-	50	ns
			1.8 to 3.0 V	mode0	-	-	60	ns
			1.8 to 3.6 V	mode1	-	-	190	ns
QSDIOn[3:0] output stop time	tsdz	CL = 15 pF *1	3.0 to 5.5 V	mode0	-	_	50	ns
			1.8 to 3.0 V	mode0	-	-	60	ns
			1.8 to 3.6 V	mode1	-	-	190	ns

*1 CL = Pin load

# 24.12 I²C (I2C) Characteristics

ltere	Cumb al	Condition	Sta	andard mo	de		Fast mode	•	Unit
Item	Symbol	Condition	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
SCLn frequency	fscl		0	-	100	0	-	400	kHz
Hold time (repeated)	thd:sta		4.0	-	-	0.6	-	-	μs
START condition *									
SCLn Low pulse width	tLOW		4.7	-	-	1.3	-	-	μs
SCLn High pulse width	tнідн		4.0	-	-	0.6	-	-	μs
Repeated START condition	tsu:sta		4.7	-	-	0.6	_	-	μs
setup time									
Data hold time	thd:dat		0	-	-	0	-	-	μs
Data setup time	tsu:dat		250	-	-	100	-	-	ns
SDAn, SCLn rise time	tr		-	-	1,000	-	-	300	ns
SDAn, SCLn fall time	tr		-	-	300	-	-	300	ns
STOP condition setup time	tsu:sto		4.0	_	-	0.6	-	-	μs
Bus free time	tbuf		4.7	-	-	1.3	-	-	μs

Unless otherwise specified: VDD = 1.8 to 5.5 V, Vss = 0 V, Ta = -40 to 85  $^\circ$ C

* After this period, the first clock pulse is generated.



# 24.13 12-bit A/D Converter (ADC12A) Characteristics

Unless otherwise specified:  $V_{DD} = 2.5$  to 5.5 V, VREFAn = 1.8 to 5.5 V, Vss = 0 V, Ta = -40 to 85 °C, ADC12A_nTRG.SMPCLK[2:0] bits = 0x3 (7cycles)

Item	Symbol	Condition	VDD	Min.	Тур.	Max.	Unit
VREFAn voltage range	VREFA			1.8	-	Vdd	V
A/D conversion clock	fclk_adc12A			16	-	2,200	kHz
frequency							
Sampling rate *1	<b>f</b> SMP			-	-	100	ksps
Integral nonlinearity *2	INL	VDD = VREFAn *3		-	-	±3	LSB
Differential nonlinearity	DNL	VDD = VREFAn *3		-	-	±3	LSB
Zero-scale error	ZSE	VDD = VREFAn *3		-	-	±5	LSB
Full-scale error	FSE	VDD = VREFAn *3		-	-	±5	LSB
Analog input resistance	RADIN			-	-	4	kΩ
Analog input capacitance	CADIN			-	-	30	pF
A/D converter circuit	IADC	ADC12A_nCFG.VRANGE[1:0] bits = 0x3,	3.6 V	-	400	700	μA
current		VDD = VREFA, ADIN = VREFA/2, fSMP = 100 ksps,					
		Ta = 25 °C					
		ADC12A_nCFG.VRANGE[1:0] bits = 0x2,	4.8 V	-	230	470	μA
		VDD = VREFA, ADIN = VREFA/2, fSMP = 100 ksps,					
		Ta = 25 °C					
		ADC12A_nCFG.VRANGE[1:0] bits = 0x1,	5.5 V	-	210	390	μA
		VDD = VREFA, ADIN = VREFA/2, fSMP = 100 ksps,					
		Ta = 25 °C					

*1 The Max. value is the value when the A/D conversion clock frequency fcLK_ADC12A = 2,000 kHz.

*2 Integral nonlinearity is measured at the end point line.

*3 The error will be increased according to the potential difference between VDD and VREFAn.



#### A/D converter current consumption-power supply voltage characteristic

# 24.14 Temperature Sensor/Reference Voltage Generator (TSRVR) Characteristics

Jnless otherwise specified: VDD = 1.8 to 5.5 V, Vss = 0 V, Ta = -40 to 85 °C										
Item	Symbol	Condition	Min.	Тур.	Max.	Unit				
VREFA (2.5 V) output voltage	Vvo25	VDD = 2.7 to 5.5 V	2.4	2.5	2.6	V				
VREFA (2.0 V) output voltage	Vvo20	VDD = 2.2 to 5.5 V	1.9	2.0	2.1	V				
VREFA (VDD) output voltage	Vvodd	VDD = 1.8 to 5.5 V	VDD - 0.1	Vdd	VDD + 0.1	V				
VREFA (2.5/2.0 V) operating current	Ivo1	VDD = 5.5 V, Ta = 25 °C	25	40	60	μA				
VREFA (VDD) operating current	Ivo2	VDD = 5.5 V, Ta = 25 °C	-	0.0	0.1	μA				
VREFA output voltage stabilization time	<b>t</b> VREFA	Cvrefa = 0.1 μF	-	1.5	5	ms				
Temperature sensor output voltage	VTEMP	VDD = 2.2 to 5.5 V, Ta = 25 °C	1.04	1.07	1.1	V				
Temperature sensor output voltage	$\Delta V$ temp	VDD = 2.2 to 5.5 V	-	3.6 ± 3%	3.7 ± 6%	mV/°C				
temperature coefficient										
Temperature sensor operating current	IVTEMP	VDD = 5.5 V, Ta = 25 °C	10	16	22	μA				
Temperature sensor output stabilization time	TTEMP		-	-	200	μs				



#### Temperature sensor output voltage-temperature characteristic



# 24.15 USB 2.0 FS Device Controller (USB) Characteristics

Unless otherwise specified: VDD = 1.8 to 5.5 V, VBUS = 4.4 to 5.25 V, VSS = 0 V, Ta = -40 to 85 °C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
High level Schmitt input trigger voltage	VT+(USB)		-	-	2.00	V
Low level Schmitt input trigger voltage	VT-(USB)		0.80	-	-	V
Differential input sensitivity	Vdsu	Common voltage = 0.8 to 2.5 V	0.20	-	-	V
High level output resistance	ROHUF		40.5	-	49.5	Ω
Low level output resistance	ROLUF		40.5	-	49.5	Ω
Input/output pin capacitance	Сви	f = 1 MHz	-	-	15	рF
PLL lock-up time	tlock		-	-	3	ms
1.8 V/3.3 V regulator output stabilization time	<b>t</b> REGOUT	Cuse1-2 = 1 µF, load current = 1 mA	-	500	1,000	μs
USB circuit current	Iusb	Ta = 25 °C *1	-	3	5	mA

*1 Current flowing through the VBUS pin in HID device class (1 transfer per ms)

#### USB circuit current-VBUS voltage characteristic

Ta = 25 °C, Typ. value



# 24.16 Memory Display Controller (MDC) Characteristics

The memory display controller characteristics varies depending on the panel load (panel size, drive duty, number of display pixels and display contents), so evaluate them by connecting to the actually used panel.

Unless otherwise specified: VDD = 2.0 to 5.5 V, Vss = 0 V, Ta = 25 °C, MDCBSTCLK.CLKSRC[1:0] bits = 0x1, MDCBSTCLK.CLK-
DIV[2:0] bits = 0x0 (voltage booster clock = 32 kHz), MDCBSTPWR.REGECO bit = 0, MDCBSTPWR.VMDBUP bit = 0, No panel load

	·					
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Panel drive voltage	VMDH	MDCBSTVMD.VMDHVOL[2:0] bits = 0x0	4.3	4.4	4.5	V
		MDCBSTVMD.VMDHVOL[2:0] bits = 0x1	4.4	4.5	4.6	V
		MDCBSTVMD.VMDHVOL[2:0] bits = 0x2	4.5	4.6	4.7	V
		MDCBSTVMD.VMDHVOL[2:0] bits = 0x3	4.6	4.7	4.8	V
		MDCBSTVMD.VMDHVOL[2:0] bits = 0x4	4.7	4.8	4.9	V
		MDCBSTVMD.VMDHVOL[2:0] bits = 0x5	4.8	4.9	5.0	V
		MDCBSTVMD.VMDHVOL[2:0] bits = 0x6	4.9	5.0	5.1	V
		MDCBSTVMD.VMDHVOL[2:0] bits = 0x7	4.95	5.05	5.15	V
	VMDL	MDCBSTVMD.VMDLVOL[2:0] bits = 0x0	2.6	2.7	2.8	V
		MDCBSTVMD.VMDLVOL[2:0] bits = 0x1	2.7	2.8	2.9	V
		MDCBSTVMD.VMDLVOL[2:0] bits = 0x2	2.8	2.9	3.0	V
		MDCBSTVMD.VMDLVOL[2:0] bits = 0x3	2.9	3.0	3.1	V
		MDCBSTVMD.VMDLVOL[2:0] bits = 0x4	3.0	3.1	3.2	V
		MDCBSTVMD.VMDLVOL[2:0] bits = 0x5	3.1	3.2	3.3	V
		MDCBSTVMD.VMDLVOL[2:0] bits = 0x6	3.2	3.3	3.4	V
		MDCBSTVMD.VMDLVOL[2:0] bits = 0x7	3.3	3.4	3.5	V
VMD load current	LVMDH	MDCBSTVMD.VMDHVOL[2:0] bits = 0x7,	-	-	1	mA
		MDCBSTPWR.VMDBUP bit = 1				
		MDCBSTVMD.VMDHVOL[2:0] bits = 0x7,	-	-	50	μA
		MDCBSTPWR.REGECO bit = 1				
	LVMDL	MDCBSTVMD.VMDLVOL[2:0] bits = 0x7,	-	-	1	mA
		MDCBSTPWR.VMDBUP bit = 1				
		MDCBSTVMD.VMDLVOL[2:0] bits = 0x7,	-	-	50	μA
		MDCBSTPWR.REGECO bit = 1				
Boosted voltage output	tвs⊤	$C_{VMVD1} = 1 \ \mu F$ , $C_{VMD*} = 1 \ \mu F$ , $C_{MD*} = 1 \ \mu F$	-	-	2	ms
stabilization time						
VMD voltage output	tvмd	MDCBSTVMD.VMDHVOL[2:0] bits = $0x7$ ,	-	-	2	ms
stabilization time		MDCBSTVMD.VMDLVOL[2:0] bits = 0x7,				
		CVMDH = 1 $\mu$ F, CVMDL = 1 $\mu$ F				
MDC circuit current	IMDC1 *2	MDCBSTCLK.CLKDIV [2:0] bits = 0x4,	-	2	5	μA
(still image display)		MDCBSTPWR.REGECO bit = 1,				
		VCOM( opposite inversion cycle) = 60 Hz, checkered pattern *1				
MDC circuit current	IMDC2 *2	IOSC = 20 MHz, MDCBSTPWR.VMDBUP bit = 1,	-	2.4	3.2	mA
(display update)		VCOM (opposite inversion cycle) = 60 Hz, checkered pattern *1				

*1 Parallel 6-bit color interface, panel resolution: 205 × 148

*2 The value is added to the current consumption in SLEEP/HALT/RUN mode. Current consumption increases according to the panel resolution, display contents, and panel load.

#### Current consumption-temperature characteristic during displaying still image





# Typ. value



#### Drive voltage-power supply voltage characteristic Drive voltage-temperature characteristic

Typ. value, Lvмpн = 1 mA



Typ. value, LVMDH = 1 mA

### Host interface

#### Indirect 8-bit parallel interface

Unless otherwise specified: Vss = 0 V, Ta = -40 to 85 °C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
#HIFDE setup time	tDES1		0	-	-	ns
#HIFDE hold time (at write)	<b>t</b> DEHW		twrn2, twrn3	-	-	ns
#HIFDE hold time (at read)	<b>t</b> DEHR		trdh2, trdh3	-	-	ns
#HIFDE High period	towн		14	-	-	ns
#HIFCS setup time (at write)	tcsws		0	-	-	ns
#HIFCS hold time (at write)	twcsh		0	-	-	ns
#HIFWR Low pulse width	twRL1		13	-	-	ns
(command/address byte)						
#HIFWR Low pulse width	twRL2		58	-	-	ns
(MDCHOSTCTL register data byte)						
#HIFWR Low pulse width	twRL3		tsysclk + 39	-	-	ns
(memory/register data byte)						
#HIFCS High pulse width (at write)	twRH1		30	-	-	ns
(command/address byte)						
#HIFCS High pulse width (at write)	twrH2		71	-	-	ns
(MDCHOSTCTL register data byte)						
#HIFCS High pulse width (at write)	twRH3		tsysclk ×	-	-	ns
(memory/register write)			$(3 + 2 \times nACTIVE)$			
Write data setup time	twds1		1	-	-	ns
Write data hold time	twdh1		30	-	-	ns
#HIFCS setup time (at read)	tcsrs		0	-	-	ns
#HIFCS hold time (at read)	trcsh		0	-	-	ns
#HIFRD Low pulse width	tRDL2		168	-	-	ns
(MDCHOSTCTL register data byte)						
#HIFRD Low pulse width	trdl3		tsysclk + 22	-	-	ns
(memory/register data byte)						
Valid read data waiting time (at read)	trdo1		-	-	167	ns
Read data hold time	trddh1		5	-	83	ns
#HIFCS High pulse width (at read)	trdH2		83	-	-	ns
(MDCHOSTCTL register data byte)						
#HIFCS High pulse width (at read)	<b>t</b> RDH3		tsysclk ×	-	-	ns
(memory/register data byte)			$(7 + 2 \times nACTIVE)$			

*1 tsysclk: System clock period [ns]

*2 nACTIVE: Number of other active bus masters accessing the same memory/peripheral (0 to 3) The AHB-Lite bus has 3 bus masters: CPU, DMAC, and MDC.

#### 24 ELECTRICAL CHARACTERISTICS



#### SPI/QSPI

Unless otherwise specified: Vss = 0 V, Ta = -40 to 85  $^{\circ}$ C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
#HSPISS setup time	tcss		19	-	-	ns
#HSPISS hold time	tсsн		30	-	-	ns
#HPSISS High pulse width	tcwн		145	-	-	ns
HSPID write data setup time	twos		11	-	-	ns
HSPID write data hold time	twpн		54	-	-	ns
HSPID low impedance waiting time	trloz		12	_	168	ns
HSPID valid data waiting time	trdo		10	-	121	ns
HSPID high impedance waiting time	trhiz		11	-	153	ns
HSPICLK High pulse width	tclkH1		54	-	-	ns
(command/address/MDCHOSTCTL register						
data byte)						
HSPICLK Low pulse width	tclkl1		121	-	-	ns
(command/address/MDCHOSTCTL register						
data byte)						
HSPICLK High pulse width (at write)	tclkH2		tsysclk × 0.25 ×	-	-	ns
(memory/register data byte)			(5 + 2 × nACTIVE)			
HSPICLK Low pulse width (at write)	tclkl2		tsysclk × 0.25 ×	-	-	ns
(memory/register data byte)			$(5 + 2 \times nACTIVE)$			
HSPICLK High pulse width (at read)	tськнз		tsysclk ×	-	-	ns
(memory/register data byte)			(8 + 2 × nACTIVE)			
HSPICLK Low pulse width (at read)	tclkl3		121	-	-	ns
(memory/register data byte)						

*1 tsysclk: System clock period [ns]

*2 nACTIVE: Number of other active bus masters accessing the same memory/peripheral (0 to 3) The AHB-Lite bus has 3 bus masters: CPU, DMAC, and MDC.

#HSPISS (#HIFDE)	tcss				(	(			tсwн	Ĩ
	tcss	tCLKH1, tCLKH2, tCLKH3	tCLKL1, tCLKL2, tCLKL3	۹i			tCLKH1, tCLKH2, tCLKH3	tcsH		
HSPICLK (#HIFWR)										_
WRITE HSPID[3:0] (HIFD[3:0])	twos	twon	χ			_x	twork			
READ HSPID[3:0] (HIFD[3:0])										-

# **25 Basic External Connection Diagram**



*1: For Flash programming

*2: When the memory display controller is not used

*3: When OSC1 crystal oscillator is selected

*4: The pin configuration depends on the panel to be used.

(): Do not mount components if unnecessary.

#### 25 BASIC EXTERNAL CONNECTION DIAGRAM

#### Sample external components

Symbol	Name	Recommended components
X'tal1	32 kHz crystal resonator	C-002RX (R1 = 50 k $\Omega$ (Max.), CL = 7 pF) manufactured by Seiko Epson Corporation
C _{G1}	OSC1 gate capacitor	Trimmer capacitor or ceramic capacitor
CD1	OSC1 drain capacitor	Ceramic capacitor
X'tal3	Crystal resonator	CA-301 (4 MHz) manufactured by Seiko Epson Corporation
Ceramic	Ceramic resonator	CSBLA_J (1 MHz) manufactured by Murata Manufacturing Co., Ltd.
CG3	OSC3 gate capacitor	Ceramic capacitor
Срз	OSC3 drain capacitor	Ceramic capacitor
CPW1	Bypass capacitor between Vss and VDD	Ceramic capacitor or electrolytic capacitor
CPW2	Capacitor between Vss and VD1	Ceramic capacitor
CMDC1	Capacitor between Vss and VMDL	Ceramic capacitor
CMDC2	Capacitor between Vss and VMDH	Ceramic capacitor
CMDC3	Capacitor between Vss and VMVD1	Ceramic capacitor
CMDC4-5	Capacitors between Vss and VMD2, Vss	Ceramic capacitor
	and VMD3	
CMDC6-7	Capacitors between CMD1 and CMD2,	Ceramic capacitor
	CMD1 and CMD3	
CUSB1-2	Capacitors between Vss and	Ceramic capacitor
	USB18VOUT, Vss and USB33VOUT	
BZ	Piezoelectric buzzer	PS1240P02 manufactured by TDK Corporation
RDBG1-2	Debug pin pull-up resistor	Thick film chip resistor
CVREFA	Capacitor between Vss and VREFA	Ceramic capacitor
CVPP	Capacitor between Vss and VPP	Ceramic capacitor

* For recommended component values, refer to "Recommended Operating Conditions" in the "Electrical Characteristics" chapter.

# 26 Package

### VFBGA5H-81 (P-VFBGA-081-0505-0.50)

# **Top View**



# **Bottom View**



Symbol	Dimension in Millimeters				
Symbol	Min.	Nom.	Max.		
D	4.90	5.00	5.10		
E	4.90	5.00	5.10		
Α	-	-	1.00		
A1	0.18	0.23	0.28		
е	-	0.50	-		
b	0.26	0.31	0.36		
х	-	-	0.08		
У	-	-	0.10		
ZD	0.40	0.50	0.60		
ZE	0.40	0.50	0.60		

Figure 26.1 VFBGA5H-81 Package Dimensions

### WCSP96

**Top View** 



# **Bottom View**



Symbol	Dimension in Millimeters				
Symbol	Min.	Nom.	Max.		
D	4.39	-	4.44		
E	4.39	-	4.44		
Α	-	-	0.69		
A1	0.20	0.23	0.26		
e 1	-	0.40	-		
e 2	-	0.40	-		
b	0.23	0.26	0.29		
х	-	-	0.08		
у	-	-	0.05		
SD	-	0.20	-		
SE	-	0.20	-		
ZD	_	0.425	_		
ZE	-	0.425	-		

Figure 26.2 WCSP96 Package Dimensions

QFP14-80PIN (P-LQFP080-1212-0.50)


# Appendix A List of Peripheral Circuit Control Registers

0x400	0 0000					S	ystem Register (SYS)
Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	SYSPROT	15–0	PROT[15:0]	0x0000	HO	R/W	-
0000	(System						
	Protect Register)						

0x400	0 0020					Pow	er Generator (PWGA)
Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	PWGACTL	15–8	-	0x00	-	R	_
0020	(PWGA Control	7–6	-	0x0	-	R	
	Register)	5	REGDIS	0	H0	R/WP	
		4	REGSEL	1	H0	R/WP	
		3–2	-	0x0	-	R	
		1–0	REGMODE[1:0]	0x0	HO	R/WP	

#### 0x4000 0040-0x4000 0054

#### Address Register name Bit Bit name Initial Reset R/W Remarks 0x4000 WUPMD R/WP CLGSCLK 15 0 H0 0040 (CLG System Clock 14 0 _ R Control Register) 13-12 WUPDIV[1:0] HO R/WP 0x0 11-10 0x0 R WUPSRC[1:0] HO R/WP 9-8 0x0 7–6 0x0 R 5-4 HO R/WP CLKDIV[1:0] 0x0 3–2 0x0 R HO R/WP 1–0 CLKSRC[1:0] 0x0 0x4000 CLGOSC 15-12 0x0 _ R 0042 (CLG Oscillation EXOSCSLPC HO R/W 11 1 Control Register) OSC3SLPC H0 R/W 10 1 9 OSC1SLPC 1 HO R/W IOSCSLPC 1 R/W 8 H0 7-4 0x0 R HO R/W 3 EXOSCEN 0 2 OSC3EN 0 R/W H0 1 OSC1EN 0 HO R/W 0 IOSCEN 1 H0 R/W CLGIOSC 0x4000 0x00 R 15-8 _ 0044 (CLG IOSC Control 7-5 0x0 R _ Register) R/WP 4 IOSCSTM 0 HO 3 0 R R/WP 2–0 0x4 HO IOSCFQ[2:0] 0x4000 CLGOSC1 15 0 R _ 0046 (CLG OSC1 Control 14 OSDRB 1 HO R/WP Register) 13 OSDEN 0 H0 R/WP 12 OSC1BUP 1 HO R/WP HO R/WP 11 OSC1SELCR 0 10-8 CGI1[2:0] 0x0 H0 R/WP 7–6 INV1B[1:0] 0x2 HO R/WP 5-4 INV1N[1:0] H0 R/WP 0x1 3-2 0x0 R

1–0

OSC1WT[1:0]

0x2

H0

R/WP

#### **Clock Generator (CLG)**

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	CLGOSC3	15–8	-	0x00	_	R	-
0048	(CLG OSC3 Control	7–6	-	0x0	-	R	-
	Register)	5–4	OSC3INV[1:0]	0x3	HO	R/WP	-
		3	-	0	-	R	-
		2–0	OSC3WT[2:0]	0x6	HO	R/WP	-
0x4000	CLGINTF	15–9	-	0x00	_	R	-
004c	(CLG Interrupt Flag	8	IOSCTERIF	0	HO	R/W	Cleared by writing 1.
	Register)	7	-	0	-	R	-
		6	(reserved)	0	HO	R	-
		5	OSC1STPIF	0	HO	R/W	Cleared by writing 1.
		4	IOSCTEDIF	0	HO	R/W	
		3	-	0	-	R	-
		2	OSC3STAIF	0	HO	R/W	Cleared by writing 1.
		1	OSC1STAIF	0	HO	R/W	
		0	IOSCSTAIF	0	HO	R/W	-
0x4000	CLGINTE	15–9	-	0x00	_	R	-
004e	(CLG Interrupt Enable	8	IOSCTERIE	0	HO	R/W	-
	Register)	7	-	0	-	R	-
		6	(reserved)	0	HO	R/W	-
		5	OSC1STPIE	0	HO	R/W	-
		4	IOSCTEDIE	0	HO	R/W	-
		3	-	0	-	R	-
		2	OSC3STAIE	0	HO	R/W	-
		1	OSC1STAIE	0	HO	R/W	-
		0	IOSCSTAIE	0	HO	R/W	-
0x4000	CLGFOUT	15–8	-	0x00	-	R	-
0050	(CLG FOUT Control	7	-	0	-	R	-
	Register)	6–4	FOUTDIV[2:0]	0x0	H0	R/W	-
		3–2	FOUTSRC[1:0]	0x0	H0	R/W	
		1	-	0	-	R	
		0	FOUTEN	0	H0	R/W	
0x4000	CLGTRIM1	15–14	-	0x0	-	R	-
0052	(CLG Oscillation Frequency Trimming	13–8	IOSCLSAJ[5:0]	*	H0	R/WP	* Determined by factory adjustment.
	Register 1)	7–6	-	0x0	-	R	-
		5–0	IOSCHSAJ[5:0]	*	H0	R/WP	* Determined by factory adjustment.
0x4000	CLGTRIM2	15–8	-	0x00	-	R	-
0054	(CLG Oscillation	7–6	-	0x0	-	R	1
	Frequency Trimming Register 2)	5–0	OSC1SAJ[5:0]	*	H0	R/WP	* Determined by factory adjustment.

0x4000 0080						Cach	e Controller (CACHE)
Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	CACHECTL	15–8	-	0x00	-	R	_
0080	(CACHE Control	7–2	-	0x00	-	R	
	Register)	1	-	1	-	R	
		0	CACHEEN	0	H0	R/W	

### 0x4000 00a0-0x4000 00a4

### Watchdog Timer (WDT2)

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	WDT2CLK	15–9	-	0x00	-	R	-
00a0	(WDT2 Clock Control	8	DBRUN	0	HO	R/WP	
	Register)	7–6	-	0x0	-	R	
		5–4	CLKDIV[1:0]	0x0	H0	R/WP	
		3–2	-	0x0	-	R	
		1–0	CLKSRC[1:0]	0x0	H0	R/WP	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	WDT2CTL	15–11	-	0x00	-	R	-
00a2	(WDT2 Control	10–9	MOD[1:0]	0x0	H0	R/WP	
	Register)	8	STATNMI	0	H0	R	
		7–5	-	0x0	-	R	
		4	WDTCNTRST	0	H0	WP	Always read as 0.
		3–0	WDTRUN[3:0]	0xa	HO	R/WP	-
0x4000	WDT2CMP	15–10	-	0x00	-	R	-
00a4	(WDT2 Counter Com- pare Match Register)	9–0	CMP[9:0]	0x3ff	H0	R/WP	

### 0x4000 00c0-0x4000 00d2

### Real-time Clock (RTCA)

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	RTCACTLL	7	-	0	-	R	-
00c0	(RTCA Control	6	RTCBSY	0	HO	R	]
	Register (Low Byte))	5	RTCHLD	0	H0	R/W	Cleared by setting the RTCACTLL.RTCRST bit to 1.
		4	RTC24H	0	HO	R/W	_
		3	-	0	_	R	1
		2	RTCADJ	0	H0	R/W	Cleared by setting the RTCACTLL.RTCRST bit to 1.
		1	RTCRST	0	HO	R/W	-
		0	RTCRUN	0	HO	R/W	]
0x4000	RTCACTLH	7	RTCTRMBSY	0	HO	R	-
00c1	(RTCA Control Register (High Byte))	6–0	RTCTRM[6:0]	0x00	H0	W	Read as 0x00.
0x4000	RTCAALM1	15	-	0	-	R	-
00c2	(RTCA Second Alarm	14-12	RTCSHA[2:0]	0x0	HO	R/W	1
	Register)	11–8	RTCSLA[3:0]	0x0	HO	R/W	1
		7–0	-	0x00	_	R	
0x4000	RTCAALM2	15	-	0	_	R	-
00c4	(RTCA Hour/Minute	14	RTCAPA	0	HO	R/W	1
	Alarm Register)	13-12	RTCHHA[1:0]	0x0	HO	R/W	1
		11–8	RTCHLA[3:0]	0x0	HO	R/W	1
		7	-	0	_	R	]
		6–4	RTCMIHA[2:0]	0x0	HO	R/W	
		3–0	RTCMILA[3:0]	0x0	HO	R/W	]
0x4000	RTCASWCTL	15–12	BCD10[3:0]	0x0	H0	R	-
00c6	(RTCA Stopwatch	11–8	BCD100[3:0]	0x0	H0	R	
	Control Register)	7–5	-	0x0	-	R	
		4	SWRST	0	HO	W	Read as 0.
		3–1	-	0x0	-	R	-
		0	SWRUN	0	H0	R/W	
0x4000	RTCASEC	15	-	0	-	R	-
00c8	(RTCA Second/1Hz	14–12	RTCSH[2:0]	0x0	H0	R/W	
	Register)	11–8	RTCSL[3:0]	0x0	H0	R/W	
		7	RTC1HZ	0	H0	R	Cleared by setting the
		6	RTC2HZ	0	H0	R	RTCACTLL.RTCRST bit to 1.
		5	RTC4HZ	0	H0	R	
		4	RTC8HZ	0	H0	R	
		3	RTC16HZ	0	HO	R	]
		2	RTC32HZ	0	HO	R	]
		1	RTC64HZ	0	HO	R	
		0	RTC128HZ	0	HO	R	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	RTCAHUR	15	-	0	-	R	-
00ca	(RTCA Hour/Minute	14	RTCAP	0	HO	R/W	-
	Register)	13-12	RTCHH[1:0]	0x1	H0	R/W	-
		11-8	RTCHL[3:0]	0x2	HO	R/W	-
		7	-	0	-	R	-
		6–4	RTCMIH[2:0]	0x0	H0	R/W	-
		3–0	RTCMIL[3:0]	0x0	HO	R/W	-
0x4000	RTCAMON	15-13	-	0x0	-	R	-
00cc	(RTCA Month/Day	12	RTCMOH	0	HO	R/W	-
	Register)	11-8	RTCMOL[3:0]	0x1	H0	R/W	-
		7–6	-	0x0	-	R	-
		5–4	RTCDH[1:0]	0x0	HO	R/W	-
		3–0	RTCDL[3:0]	0x1	H0	R/W	-
0x4000	RTCAYAR	15-11	-	0x00	-	R	-
00ce	(RTCA Year/Week	10-8	RTCWK[2:0]	0x0	H0	R/W	-
	Register)	7–4	RTCYH[3:0]	0x0	H0	R/W	-
		3–0	RTCYL[3:0]	0x0	HO	R/W	-
0x4000	RTCAINTF	15	RTCTRMIF	0	H0	R/W	Cleared by writing 1.
00d0	(RTCA Interrupt Flag	14	SW1IF	0	HO	R/W	
	Register)	13	SW10IF	0	H0	R/W	-
		12	SW100IF	0	HO	R/W	-
		11-9	-	0x0	-	R	-
		8	ALARMIF	0	HO	R/W	Cleared by writing 1.
		7	T1DAYIF	0	HO	R/W	
		6	T1HURIF	0	H0	R/W	-
		5	T1MINIF	0	HO	R/W	-
		4	T1SECIF	0	HO	R/W	-
		3	T1_2SECIF	0	H0	R/W	-
		2	T1_4SECIF	0	HO	R/W	-
		1	T1_8SECIF	0	H0	R/W	-
		0	T1_32SECIF	0	HO	R/W	-
0x4000	RTCAINTE	15	RTCTRMIE	0	HO	R/W	-
00d2	(RTCA Interrupt En-	14	SW1IE	0	HO	R/W	-
	able Register)	13	SW10IE	0	HO	R/W	-
		12	SW100IE	0	H0	R/W	-
		11–9	-	0x0	_	R	-
		8	ALARMIE	0	HO	R/W	-
		7	T1DAYIE	0	HO	R/W	-
		6	T1HURIE	0	HO	R/W	1
		5	T1MINIE	0	HO	R/W	1
		4	T1SECIE	0	H0	R/W	1
		3	T1_2SECIE	0	HO	R/W	1
		2	T1_4SECIE	0	HO	R/W	1
		1	T1_8SECIE	0	HO	R/W	1
		0	T1_32SECIE	0	H0	R/W	1

### 0x4000 0100-0x4000 0106

Supply Voltage Detector (SVD3)

	1				1		I
Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	SVD3CLK	15–9	-	0x00	-	R	_
0100	(SVD3 Clock Control	8	DBRUN	1	H0	R/WP	
	Register)	7	-	0	-	R	
		6–4	CLKDIV[2:0]	0x0	H0	R/WP	
		3–2	-	0x0	-	R	
		1–0	CLKSRC[1:0]	0x0	H0	R/WP	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	SVD3CTL	15	VDSEL	0	H1	R/WP	-
0102	(SVD3 Control	14–13	SVDSC[1:0]	0x0	H0	R/WP	Writing takes effect when the
	Register)						SVD3CTL.SVDMD[1:0] bits
							are not 0x0.
		12–8	SVDC[4:0]	0x1e	H1	R/WP	-
		7–4	SVDRE[3:0]	0x0	H1	R/WP	
		3	EXSEL	0	H1	R/WP	
		2–1	SVDMD[1:0]	0x0	H0	R/WP	
		0	MODEN	0	H1	R/WP	
0x4000	SVD3INTF	15–9	-	0x00	-	R	-
0104	(SVD3 Status and In-	8	SVDDT	х	-	R	
	terrupt Flag Register)	7–1	-	0x00	-	R	
		0	SVDIF	0	H1	R/W	Cleared by writing 1.
0x4000	SVD3INTE	15–8	-	0x00	-	R	-
0106	(SVD3 Interrupt En-	7–1	-	0x00	-	R	1
	able Register)	0	SVDIE	0	H0	R/W	

### 0x4000 0160-0x4000 016c

16-bit Timer (T16) Ch.0

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	T16_0CLK	15–9	-	0x00	-	R	-
0160	(T16 Ch.0 Clock	8	DBRUN	0	H0	R/W	
	Control Register)	7–4	CLKDIV[3:0]	0x0	H0	R/W	
		3–2	-	0x0	-	R	
		1–0	CLKSRC[1:0]	0x0	H0	R/W	
0x4000	T16_0MOD	15–8	-	0x00	-	R	-
0162	(T16 Ch.0 Mode	7–1	-	0x00	-	R	
	Register)	0	TRMD	0	H0	R/W	
0x4000	T16_0CTL	15–9	-	0x00	-	R	-
0164	(T16 Ch.0 Control	8	PRUN	0	H0	R/W	
	Register)	7–2	-	0x00	-	R	
		1	PRESET	0	H0	R/W	
		0	MODEN	0	H0	R/W	
0x4000 0166	T16_0TR (T16 Ch.0 Reload	15–0	TR[15:0]	0xffff	H0	R/W	-
	Data Register)						
0x4000 0168	T16_0TC (T16 Ch.0 Counter Data Register)	15–0	TC[15:0]	Oxffff	H0	R	-
0x4000	T16_0INTF	15–8	-	0x00	-	R	_
016a	(T16 Ch.0 Interrupt	7–1	-	0x00	-	R	
	Flag Register)	0	UFIF	0	H0	R/W	Cleared by writing 1.
0x4000	T16_0INTE	15–8	-	0x00	-	R	-
016c	(T16 Ch.0 Interrupt	7–1	-	0x00	-	R	
	Enable Register)	0	UFIE	0	H0	R/W	

### 0x4000 01b0

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	FLASHCWAIT	15–9	-	0x00	-	R	_
01b0	(FLASHC Flash Read	8	(reserved)	0	H0	R/WP	
	Cycle Register)	7–2	-	0x00	-	R	
		1–0	RDWAIT[1:0]	0x1	H0	R/WP	

### 0x4000 0200-0x4000 02e2

1/0	DIAL		i.
1/0	Ports	(PPORI)	L

Flash Controller (FLASHC)

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	PPORTPODAT	15–8	P0OUT[7:0]	0x00	H0	R/W	-
0200	(P0 Port Data Register)	7–0	P0IN[7:0]	0x00	H0	R	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	PPORTPOIOEN	15–8	P0IEN[7:0]	0x00	H0	R/W	_
0202	(P0 Port Enable Register)	7–0	P00EN[7:0]	0x00	H0	R/W	
0x4000	PPORTPORCTL	15–8	P0PDPU[7:0]	0x00	HO	R/W	_
0204	(P0 Port Pull-up/down	7–0	P0REN[7:0]	0x00	HO	R/W	
0x4000	PPORTPOINTF	15–8	_	0x00	_	R	_
0206	(P0 Port Interrupt	7–0	P0IF[7:0]	0x00	H0	R/W	Cleared by writing 1.
0x4000		15_8		0×00	НО	R/W	_
0208	(P0 Port Interrupt	7.0		0,00	110		
	Control Register)	7-0	P0IE[7:0]	0x00	HO	R/W	
0x4000	PPORTP0CHATEN	15–8	-	0x00	-	R	-
020a	(P0 Port Chattering Filter Enable Register)	7–0	P0CHATEN[7:0]	0x00	H0	R/W	
0x4000	PPORTPOMODSEL	15–8	-	0x00	-	R	-
020c	(P0 Port Mode Select	7–0	P0SEL[7:0]	0x00	HO	R/W	
0x4000	PPORTPOENCSEL	15-14	P07MUX[1:0]	0x0	НО	R/W	_
020e	(P0 Port Function	13-12	P06MUX[1:0]	0x0	НО	R/W	
	Select Register)	11-10	P05MUX[1:0]	0x0	HO	R/W	
		9–8	P04MUX[1:0]	0x0	HO	R/W	
		7–6	P03MUX[1:0]	0x0	HO	R/W	
		5–4	P02MUX[1:0]	0x0	HO	R/W	
		3–2	P01MUX[1:0]	0x0	HO	R/W	
		1–0	P00MUX[1:0]	0x0	HO	R/W	
0x4000	PPORTP1DAT	15	-	0	-	R	_
0210	(P1 Port Data	14–8	P1OUT[6:0]	0x00	HO	R/W	
	Register)	7	-	0	_	R	
		6–0	P1IN[6:0]	0x00	H0	R	
0x4000	PPORTP1IOEN	15	-	0	-	R	_
0212	(P1 Port Enable	14–8	P1IEN[6:0]	0x00	H0	R/W	
	Register)	7	-	0	-	R	
		6–0	P10EN[6:0]	0x00	HO	R/W	
0x4000	PPORTP1RCTL	15	-	0	-	R	-
0214	(P1 Port Pull-up/down	14-8	P1PDPU[6:0]	0x00	HO	R/W	
		7		0	-	R	
0. 4000		6-0	P1REN[6:0]	0x00	HO	R/W	
0x4000	PPORIP1INIF	15-8	-	0x00	_	R	
0210	(FT Fort Interrupt	/		0	-	R	
0×4000		15		0000	HU		Cleared by writing 1.
0218	(P1 Port Interrupt	1/_8		0×00	- H0		
0210	Control Register)	7		0,000	110	R	
		6-0	P1IF[6:0]	0x00	НО	R/W	
0x4000	PPORTP1CHATEN	15-8	_	0x00	_	B	_
021a	(P1 Port Chattering	7	_	0	_	R	
	Filter Enable Register)	6-0	P1CHATEN[6:0]	0x00	НО	R/W	
0x4000	PPORTP1MODSEL	15–8	-	0x00	_	R	_
021c	(P1 Port Mode Select	7	_	0	-	R	
	Register)	6–0	P1SEL[6:0]	0x00	HO	R/W	
0x4000	PPORTP1FNCSEL	15–14	-	0x0	-	R	_
021e	(P1 Port Function	13–12	P16MUX[1:0]	0x0	HO	R/W	
	Select Register)	11–10	P15MUX[1:0]	0x0	HO	R/W	
		9–8	P14MUX[1:0]	0x0	HO	R/W	
		7–6	P13MUX[1:0]	0x0	HO	R/W	
		5–4	P12MUX[1:0]	0x0	HO	R/W	
		3–2	P11MUX[1:0]	0x0	HO	R/W	
		1–0	P10MUX[1:0]	0x0	H0	R/W	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	PPORTP2DAT	15–8	P2OUT[7:0]	0x00	H0	R/W	_
0220	(P2 Port Data Begister)	7–0	P2IN[7:0]	0x00	H0	R	
0x4000	PPORTP2IOEN	15–8	P2IEN[7:0]	0x00	НО	R/W	_
0222	(P2 Port Enable Begister)	7–0	P2OEN[7:0]	0x00	HO	R/W	-
0x4000	PPORTP2RCTL	15–8	P2PDPU[7:0]	0x00	НО	R/W	_
0224	(P2 Port Pull-up/down	7–0	P2REN[7:0]	0x00	H0	R/W	-
0×4000		15_8	_	0×00	_	R	
0226	(P2 Port Interrupt	15-0	-	0,00		n	-
0220	Flag Register)	7–0	P2IF[7:0]	0x00	HO	R/W	Cleared by writing 1.
0x4000	PPORTP2INTCTL	15–8	P2EDGE[7:0]	0x00	HO	R/W	-
0228	(P2 Port Interrupt Control Register)	7–0	P2IE[7:0]	0x00	H0	R/W	
0x4000	PPORTP2CHATEN	15–8	-	0x00	-	R	-
022a	(P2 Port Chattering Filter Enable Register)	7–0	P2CHATEN[7:0]	0x00	H0	R/W	
0x4000	PPORTP2MODSEL	15–8	-	0x00	-	R	-
022c	(P2 Port Mode Select Begister)	7–0	P2SEL[7:0]	0x00	H0	R/W	-
0x4000	PPORTP2FNCSEL	15–14	P27MUX[1:0]	0x0	HO	R/W	_
022e	(P2 Port Function	13-12	P26MUX[1:0]	0x0	HO	R/W	
	Select Register)	11–10	P25MUX[1:0]	0x0	H0	R/W	
		9–8	P24MUX[1:0]	0x0	H0	R/W	
		7–6	P23MUX[1:0]	0x0	H0	R/W	
		5–4	P22MUX[1:0]	0x0	H0	R/W	
		3–2	P21MUX[1:0]	0x0	HO	R/W	
		1–0	P20MUX[1:0]	0x0	H0	R/W	
0x4000	PPORTP3DAT	15	-	0	-	R	-
0230	(P3 Port Data	14–8	P3OUT[6:0]	0x00	HO	R/W	
	Register)	7	-	0	-	R	
		6–0	P3IN[6:0]	0x00	HO	R	
0x4000	PPORTP3IOEN	15	-	0	-	R	-
0232	(P3 Port Enable	14–8	P3IEN[6:0]	0x00	HO	R/W	
	Register)	7	-	0	-	R	
		6–0	P3OEN[6:0]	0x00	H0	R/W	
0x4000	PPORTP3RCTL	15	-	0	-	R	-
0234	(P3 Port Pull-up/down	14–8	P3PDPU[6:0]	0x00	HO	R/W	
	Control Register)	7	-	0	-	R	_
		6–0	P3REN[6:0]	0x00	HO	R/W	
0x4000	PPORTP3INTF	15–8	-	0x00	-	R	_
0236	(P3 Port Interrupt	7	-	0	-	R	
	Flag Register)	6–0	P3IF[6:0]	0x00	H0	R/W	Cleared by writing 1.
0x4000	PPORTP3INTCTL	15	-	0	-	R	
0238	(P3 Port Interrupt	14–8	P3EDGE[6:0]	0x00	H0	R/W	_
	Control Register)	7	-	0	-	R	_
		6–0	P3IE[6:0]	0x00	HO	R/W	
0x4000	PPORTP3CHATEN	15–8	-	0x00	-	R	
023a	(P3 Port Chattering	7	-	0	-	R	-
L	Filter Enable Register)	6–0	P3CHATEN[6:0]	0x00	HO	R/W	
0x4000	PPORTP3MODSEL	15–8	-	0x00	-	R	
023c	(P3 Port Mode Select	7	-	0	-	R	
	Register)	6–0	P3SEL[6:0]	0x00	H0	R/W	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	PPORTP3FNCSEL	15–14	_	0x0	-	R	_
023e	(P3 Port Function	13–12	P36MUX[1:0]	0x0	H0	R/W	
	Select Register)	11–10	P35MUX[1:0]	0x0	H0	R/W	
		9–8	P34MUX[1:0]	0x0	HO	R/W	-
		7–6	P33MUX[1:0]	0x0	H0	R/W	
		5–4	P32MUX[1:0]	0x0	H0	R/W	
		3–2	P31MUX[1:0]	0x0	HO	R/W	
		1–0	P30MUX[1:0]	0x0	HO	R/W	
0x4000	PPORTP4DAT	15–8	P4OUT[7:0]	0x00	HO	R/W	-
0240	(P4 Port Data Register)	7–0	P4IN[7:0]	0x00	H0	R	
0x4000	PPORTP4IOEN	15–8	P4IEN[7:0]	0x00	HO	R/W	-
0242	(P4 Port Enable Register)	7–0	P40EN[7:0]	0x00	H0	R/W	
0x4000	PPORTP4RCTL	15–8	P4PDPU[7:0]	0x00	HO	R/W	_
0244	(P4 Port Pull-up/down	7–0	P4REN[7:0]	0x00	HO	R/W	
0x4000	PPORTP4INTF	15–8	_	0x00	_	R	_
0246	(P4 Port Interrupt	7–0	P4IF[7:0]	0x00	HO	R/W	Cleared by writing 1.
0x4000	PPORTP4INTCTI	15-8	P4FDGF[7:0]	0x00	НО	R/W	_
0248	(P4 Port Interrupt	7_0	P4IF[7:0]	0x00	НО	B/W	
0×4000	Control Register)	15.0		0,000	110		
0x4000 024a	(P4 Port Chattering	10-6		0,00	-	R	-
	Filter Enable Register)	7-0	P4CHAIEN[7:0]	0x00	HU	R/W	
0x4000	PPORTP4MODSEL	15–8	-	0x00	-	R	-
0240	Register)	7–0	P4SEL[7:0]	0x00	HO	R/W	
0x4000	PPORTP4FNCSEL	15–14	P47MUX[1:0]	0x0	H0	R/W	_
024e	(P4 Port Function	13–12	P46MUX[1:0]	0x0	HO	R/W	
	Select Register)	11–10	P45MUX[1:0]	0x0	H0	R/W	
		9–8	P44MUX[1:0]	0x0	H0	R/W	
		7–6	P43MUX[1:0]	0x0	H0	R/W	
		5–4	P42MUX[1:0]	0x0	HO	R/W	
		3–2	P41MUX[1:0]	0x0	HO	R/W	
		1–0	P40MUX[1:0]	0x0	HO	R/W	
0x4000	PPORTP5DAT	15	_	0	-	R	
0250	(P5 Port Data	14-8	P5OUT[6:0]	0x00	HO	R/W	
	Register)	7	-	0	-	R	
0. 4000	DDODTDELOEN	6-0	P5IN[6:0]	0x00	HO	R	
0x4000	PPORTP5IOEN	15		0	-	R	
0252	(F5 FUIL Ellable Register)	14-8	P5IEN[6:0]	0x00	HU	R/W	
				0	-	R	
0.4000	DDODTDEDOTI	6-0	P50EN[6:0]	0x00	HU	R/W	
0254	PPORTPSRCTL (P5 Port Pull-up/down	10		0.00	-		.—
0234	Control Register)	14-0		0000	ΠU		
		6_0			— Н0	n B/W	
0x4000		15_8		0x00		B	_
0256	(P5 Port Interrupt	7	_	0	_	R	
-	Flag Register)	6-0	P5IF[6:0]	0x00	HO	R/W	Cleared by writing 1.
0x4000	PPORTP5INTCTL	15	-	0	_	R	-
0258	(P5 Port Interrupt	14-8	P5EDGE[6:0]	0x00	HO	R/W	
	Control Register)	7	-	0	_	R	1
		6-0	P5IE[6:0]	0x00	HO	R/W	
0x4000	PPORTP5CHATEN	15-8	-	0x00	_	R	_
025a	(P5 Port Chattering	7	_	0	_	R	
	Filter Enable Register)	6–0	P5CHATEN[6:0]	0x00	HO	R/W	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	PPORTP5MODSEL	15–8	-	0x00	-	R	_
025c	(P5 Port Mode Select	7	-	0	-	R	
	Register)	6–0	P5SEL[6:0]	0x00	H0	R/W	
0x4000	PPORTP5FNCSEL	15–14	-	0x0	-	R	_
025e	(P5 Port Function	13–12	P56MUX[1:0]	0x3	HO	R	
	Select Register)	11–10	P55MUX[1:0]	0x3	HO	R	
		9–8	P54MUX[1:0]	0x3	HO	R	
		7–6	P53MUX[1:0]	0x3	HO	R	
		5-4	P52MUX[1:0]	0x3	HO	R	
		3-2	P51MUX[1:0]	0x3	HO	<u> </u>	
0.4000		1-0		0x3	HU	R R	
0X4000	PPORTP6DAT	15-8	P6001[7:0]	000	HU	R/W	-
0260	Register)	7–0	P6IN[7:0]	0x00	H0	R	
0x4000	PPORTP6IOEN	15–8	P6IEN[7:0]	0x00	HO	R/W	-
0262	(P6 Port Enable Begister)	7–0	P60EN[7:0]	0x00	HO	R/W	
0x4000	PPORTP6RCTL	15–8	P6PDPU[7:0]	0x00	HO	R/W	-
0264	(P6 Port Pull-up/down Control Register)	7–0	P6REN[7:0]	0x00	HO	R/W	
0x4000	PPORTP6INTF	15–8	-	0x00	-	R	-
0266	(P6 Port Interrupt Flag Register)	7–0	P6IF[7:0]	0x00	HO	R/W	Cleared by writing 1.
0x4000	PPORTP6INTCTL	15–8	P6EDGE[7:0]	0x00	HO	R/W	-
0268	(P6 Port Interrupt Control Register)	7–0	P6IE[7:0]	0x00	HO	R/W	
0x4000 026a	PPORTP6CHATEN (P6 Port Chattering	15–8	-	0x00	-	R	-
	Filter Enable Register)	7–0	P6CHATEN[7:0]	0x00	H0	R/W	
0x4000	PPORTP6MODSEL	15–8	_	0x00	-	R	-
026c	(P6 Port Mode Select Register)	7–0	P6SEL[7:0]	0x00	H0	R/W	
0x4000	PPORTP6FNCSEL	15–14	P67MUX[1:0]	0x0	H0	R/W	_
026e	(P6 Port Function	13–12	P66MUX[1:0]	0x0	HO	R/W	
	Select Register)	11–10	P65MUX[1:0]	0x0	HO	R/W	
		9–8	P64MUX[1:0]	0x0	H0	R/W	
		7–6	P63MUX[1:0]	0x0	H0	R/W	
		5–4	P62MUX[1:0]	0x0	H0	R/W	
		3–2	P61MUX[1:0]	0x0	H0	R/W	
		1–0	P60MUX[1:0]	0x0	HO	R/W	
0x4000	PPORTPDDAT	15–12	-	0x0	-	R	_
02d0	(Pd Port Data	11–8	PDOUT[3:0]	0x0	H0	R/W	
	Register)	7–4	-	0x0	-	R	
		3–0	PDIN[3:0]	х	H0	R	
0x4000	PPORTPDIOEN	15–12	-	0x0	-	R	
02d2	(Pd Port Enable	11–8	PDIEN[3:0]	0x0	HO	R/W	
	Register)	7–4	-	0x0	-	R	
		3–0	PDOEN[3:0]	0x0	H0	R/W	
0x4000	PPORTPDRCTL	15–12	-	0x0	-	R	-
02d4	Control Posister	11-8	PDPDPU[3:0]	0x0	H0	R/W	
		7-4		0x0	-	R	
0.4000		3-0	PDREN[3:0]	0x0	HO	K/W	
02dc	PPUKI PDIVIODSEL	15-8	-	UXUU	-	K P	-
0200	Register)	7-4		UXU Ox2	-		
		<u> </u>	FUSEL[3:0]	UX3	ΠU	H/ VV	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	PPORTPDFNCSEL	15–8	-	0x00	-	R	_
02de	(Pd Port Function	7–6	PD3MUX[1:0]	0x0	H0	R/W	
	Select Register)	5–4	PD2MUX[1:0]	0x0	H0	R/W	
		3–2	PD1MUX[1:0]	0x0	H0	R/W	
		1–0	PD0MUX[1:0]	0x0	H0	R/W	
0x4000	PPORTCLK	15–9	-	0x00	-	R	_
02e0	(P Port Clock Control	8	DBRUN	0	H0	R/WP	
	Register)	7–4	CLKDIV[3:0]	0x0	H0	R/WP	
		3–2	KRSTCFG[1:0]	0x0	H0	R/WP	
		1–0	CLKSRC[1:0]	0x0	H0	R/WP	
0x4000	PPORTINTFGRP	15–8	-	0x00	-	R	_
02e2	(P Port Interrupt Flag	7	-	0	-	R	
	Group Register)	6	P6INT	0	H0	R	
		5	P5INT	0	H0	R	
		4	P4INT	0	H0	R	
		3	P3INT	0	H0	R	
		2	P2INT	0	H0	R	
		1	P1INT	0	HO	R	]
		0	POINT	0	H0	R	

### 0x4000 0300-0x4000 031e

### Universal Port Multiplexer (UPMUX)

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	UPMUXP0MUX0	15–13	P01PPFNC[2:0]	0x0	HO	R/W	_
0300	(P00–01 Universal	12-11	P01PERICH[1:0]	0x0	HO	R/W	
	Port Multiplexer	10-8	P01PERISEL[2:0]	0x0	HO	R/W	
	Setting Register)	7–5	P00PPFNC[2:0]	0x0	HO	R/W	
		4–3	P00PERICH[1:0]	0x0	HO	R/W	
		2–0	P00PERISEL[2:0]	0x0	HO	R/W	
0x4000	UPMUXP0MUX1	15-13	P03PPFNC[2:0]	0x0	HO	R/W	_
0302	(P02–03 Universal	12-11	P03PERICH[1:0]	0x0	HO	R/W	
	Port Multiplexer	10-8	P03PERISEL[2:0]	0x0	HO	R/W	
	Setting Register)	7–5	P02PPFNC[2:0]	0x0	HO	R/W	
		4–3	P02PERICH[1:0]	0x0	H0	R/W	
		2–0	P02PERISEL[2:0]	0x0	H0	R/W	
0x4000	UPMUXP0MUX2	15–13	P05PPFNC[2:0]	0x0	H0	R/W	_
0304	(P04–05 Universal	12-11	P05PERICH[1:0]	0x0	HO	R/W	
	Port Multiplexer	10-8	P05PERISEL[2:0]	0x0	HO	R/W	
	Setting Register)	7–5	P04PPFNC[2:0]	0x0	HO	R/W	
		4–3	P04PERICH[1:0]	0x0	HO	R/W	
		2–0	P04PERISEL[2:0]	0x0	HO	R/W	
0x4000	UPMUXP0MUX3	15-13	P07PPFNC[2:0]	0x0	HO	R/W	-
0306	(P06–07 Universal	12-11	P07PERICH[1:0]	0x0	HO	R/W	
	Port Multiplexer	10-8	P07PERISEL[2:0]	0x0	H0	R/W	
	Setting Register)	7–5	P06PPFNC[2:0]	0x0	H0	R/W	
		4–3	P06PERICH[1:0]	0x0	H0	R/W	
		2–0	P06PERISEL[2:0]	0x0	HO	R/W	
0x4000	UPMUXP1MUX0	15–13	P11PPFNC[2:0]	0x0	H0	R/W	_
0308	(P10-11 Universal	12-11	P11PERICH[1:0]	0x0	H0	R/W	
	Port Multiplexer	10-8	P11PERISEL[2:0]	0x0	H0	R/W	
	Setting Register)	7–5	P10PPFNC[2:0]	0x0	H0	R/W	
		4–3	P10PERICH[1:0]	0x0	H0	R/W	
		2–0	P10PERISEL[2:0]	0x0	H0	R/W	
0x4000	UPMUXP1MUX1	15–13	P13PPFNC[2:0]	0x0	H0	R/W	_
030a	(P12–13 Universal	12-11	P13PERICH[1:0]	0x0	H0	R/W	
	Port Multiplexer	10–8	P13PERISEL[2:0]	0x0	H0	R/W	
	Setting Register)	7–5	P12PPFNC[2:0]	0x0	HO	R/W	
		4–3	P12PERICH[1:0]	0x0	HO	R/W	
		2–0	P12PERISEL[2:0]	0x0	HO	R/W	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	UPMUXP1MUX2	15-13	P15PPFNC[2:0]	0x0	HO	R/W	-
030c	(P14–15 Universal	12-11	P15PERICH[1:0]	0x0	HO	R/W	
	Port Multiplexer	10-8	P15PERISEL[2:0]	0x0	HO	R/W	
	Setting Register)	7–5	P14PPFNC[2:0]	0x0	HO	R/W	
		4–3	P14PERICH[1:0]	0x0	HO	R/W	-
		2–0	P14PERISEL[2:0]	0x0	HO	R/W	
0x4000	UPMUXP1MUX3	15-8	-	0x00	_	R	_
030e	(P16 Universal Port	7–5	P16PPFNC[2:0]	0x0	HO	R/W	
	Multiplexer	4–3	P16PERICH[1:0]	0x0	HO	R/W	
	Setting Register)	2–0	P16PERISEL[2:0]	0x0	HO	R/W	
0x4000	UPMUXP2MUX0	15-13	P21PPFNC[2:0]	0x0	HO	R/W	_
0310	(P20-21 Universal	12-11	P21PERICH[1:0]	0x0	HO	R/W	
	Port Multiplexer	10-8	P21PERISEL[2:0]	0x0	H0	R/W	
	Setting Register)	7–5	P20PPFNC[2:0]	0x0	H0	R/W	
		4–3	P20PERICH[1:0]	0x0	HO	R/W	
		2-0	P20PERISEL[2:0]	0x0	HO	R/W	
0x4000	UPMUXP2MUX1	15-13	P23PPFNC[2:0]	0x0	HO	R/W	-
0312	(P22–23 Universal	12-11	P23PERICH[1:0]	0x0	H0	R/W	
	Port Multiplexer	10-8	P23PERISEL[2:0]	0x0	H0	R/W	
	Setting Register)	7–5	P22PPFNC[2:0]	0x0	H0	R/W	
		4–3	P22PERICH[1:0]	0x0	H0	R/W	
		2–0	P22PERISEL[2:0]	0x0	H0	R/W	
0x4000	UPMUXP2MUX2	15–13	P25PPFNC[2:0]	0x0	H0	R/W	-
0314	(P24–25 Universal	12-11	P25PERICH[1:0]	0x0	H0	R/W	
	Port Multiplexer	10–8	P25PERISEL[2:0]	0x0	H0	R/W	
	Setting Register)	7–5	P24PPFNC[2:0]	0x0	H0	R/W	
		4–3	P24PERICH[1:0]	0x0	HO	R/W	
		2–0	P24PERISEL[2:0]	0x0	H0	R/W	
0x4000	UPMUXP2MUX3	15–13	P27PPFNC[2:0]	0x0	HO	R/W	
0316	(P26–27 Universal	12-11	P27PERICH[1:0]	0x0	H0	R/W	
	Port Multiplexer	10–8	P27PERISEL[2:0]	0x0	H0	R/W	
	Setting Register)	7–5	P26PPFNC[2:0]	0x0	H0	R/W	
		4–3	P26PERICH[1:0]	0x0	HO	R/W	_
		2–0	P26PERISEL[2:0]	0x0	HO	R/W	
0x4000	UPMUXP3MUX0	15-13	P31PPFNC[2:0]	0x0	HO	R/W	_
0318	(P30–31 Universal	12-11	P31PERICH[1:0]	0x0	HO	R/W	-
	Port Multiplexer	10-8	P31PERISEL[2:0]	0x0	HO	R/W	-
	Setting negister)	7–5	P30PPFNC[2:0]	0x0	HO	R/W	-
		4–3	P30PERICH[1:0]	0x0	HO	R/W	-
		2–0	P30PERISEL[2:0]	0x0	HO	R/W	
0x4000	UPMUXP3MUX1	15-13	P33PPFNC[2:0]	0x0	HO	R/W	-
031a	(P32–33 Universal	12-11	P33PERICH[1:0]	0x0	HO	R/W	-
	Port Multiplexer	10-8	P33PERISEL[2:0]	0x0	HO	R/W	-
	Setting Register)	7–5	P32PPFNC[2:0]	0x0	HO	R/W	-
		4–3	P32PERICH[1:0]	0x0	HO	R/W	-
		2–0	P32PERISEL[2:0]	0x0	HO	R/W	
0x4000	UPMUXP3MUX2	15-13	P35PPFNC[2:0]	0x0	HO	R/W	-
0310	Port Multiployor	12-11	P35PERICH[1:0]	0x0	HO	R/W	-
	Setting Register)	10-8	P35PERISEL[2:0]	0x0	HO	R/W	
	Conting ricgister)	/-5	P34PPENC[2:0]	0x0	HO	R/W	
		4-3	P34PERICH[1:0]	0x0	HO	R/W	
		2-0	P34PERISEL[2:0]	0x0	H0	R/W	
UX4000		15-8		0x00	-	R	
0316	Multiplexer	/-5	P36PPENC[2:0]	UXU	HO	R/W	-
	Setting Register)	4-3	P36PERICH[1:0]	UXU	HU	H/W	1
		2-0	P36PERISEL[2:0]	Ux0	HU	K/W	

0x400	0 0380–0x4000	0394					UART (UART3) Ch.0
Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	UART3_0CLK	15–9	-	0x00	_	R	_
0380	(UART3 Ch.0 Clock	8	DBRUN	0	HO	R/W	
	Control Register)	7–6	_	0x0	-	R	
		5–4	CLKDIV[1:0]	0x0	HO	R/W	
		3–2	-	0x0	_	R	
		1–0	CLKSRC[1:0]	0x0	HO	R/W	
0x4000	UART3_0MOD	15–13	-	0x00	-	R	-
0382	(UART3 Ch.0 Mode	12	PECAR	0	H0	R/W	
	Register)	11	CAREN	0	H0	R/W	
		10	BRDIV	0	HO	R/W	
		9	INVRX	0	HO	R/W	-
		8	INVTX	0	HO	R/W	-
		7	-	0	_	R	
		6	PUEN	0	H0	R/W	
		5	OUTMD	0	HO	R/W	_
		4	IRMD	0	HO	R/W	_
		3	CHLN	0	HO	R/W	_
		2	PREN	0	HO	R/W	_
		1	PRMD	0	HO	R/W	_
		0	STPB	0	HO	R/W	
0x4000	UART3_0BR	15–12	-	0x0	-	R	-
0384	(UAR13 Ch.0 Baud-	11–8	FMD[3:0]	0x0	HO	R/W	-
	Rate Register)	7–0	BRT[7:0]	0x00	HO	R/W	
0x4000	UART3_0CTL	15-8	-	0x00	-	R	-
0386	(UAR13 Ch.0 Control	7–2	-	0x00	-	R	
	Register)	1	SFTRST	0	HO	R/W	-
		0	MODEN	0	HO	R/W	
0x4000 0388	UART3_0TXD (UART3 Ch.0 Trans-	15-8	-	0x00	-	R	-
	mit Data Register)	7–0	TXD[7:0]	0x00	НО	R/W	
0x4000	UART3_0RXD	15–8	-	0x00	-	R	-
030a	Data Register)	7–0	RXD[7:0]	0x00	HO	R	
0x4000	UART3_0INTF	15–10	-	0x00	-	R	_
038c	(UART3 Ch.0 Status	9	RBSY	0	H0/S0	R	
	and Interrupt Flag	8	TBSY	0	H0/S0	R	
	Register)	7	-	0	-	R	
		6	TENDIF	0	H0/S0	R/W	Cleared by writing 1.
		5	FEIF	0	H0/S0	R/W	Cleared by writing 1 or read-
		4	PEIF	0	H0/S0	R/W	ing the UART3_0RXD register.
		3	OEIF	0	H0/S0	R/W	Cleared by writing 1.
		2	RB2FIF	0	H0/S0	R	Cleared by reading the
		1	RB1FIF	0	H0/S0	R	UARI3_0RXD register.
		0	TBEIF	1	H0/S0	R	Cleared by writing to the UART3_0TXD register.
0x4000	UART3_0INTE	15–8	-	0x00	_	R	_
038e	(UART3 Ch.0	7	-	0	-	R	
	Interrupt Enable	6	TENDIE	0	HO	R/W	
	Register)	5	FEIE	0	HO	R/W	
		4	PEIE	0	HO	R/W	
		3	OEIE	0	HO	R/W	
		2	RB2FIE	0	HO	R/W	
		1	RB1FIE	0	HO	R/W	
		0	TBEIE	0	H0	R/W	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	UART3_0	15–8	-	0x00	-	R	_
0390	TBEDMAEN						
	(UART3 Ch.0	7–4	-	0x0	-	R	
	Transmit Buffer						
	Empty DMA Request	3–0	TBEDMAEN[3:0]	0x0	H0	R/W	
	Enable Register)						
0x4000	UART3_0	15–8	-	0x00	-	R	_
0392	RB1FDMAEN						
	(UART3 Ch.0 Receive	7–4	-	0x0	-	R	
	Buffer One Byte Full						
	DMA Request Enable	3–0	RB1FDMAEN[3:0]	0x0	HO	R/W	
	Register)						
0x4000	UART3_0CAWF	15–8	-	0x00	-	R	_
0394	(UART3 Ch.0 Carrier	7_0	CBPER[7:0]	0×00	HO	R/W	
	Waveform Register)	, -0		0,00	110	1.7 V V	

### 0x4000 03a0-0x4000 03ac

### 16-bit Timer (T16) Ch.1

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	T16_1CLK	15–9	-	0x00	-	R	-
03a0	0 (T16 Ch.1 Clock	8	DBRUN	0	H0	R/W	
	Control Register)	7–4	CLKDIV[3:0]	0x0	H0	R/W	
		3–2	-	0x0	-	R	
		1–0	CLKSRC[1:0]	0x0	H0	R/W	
0x4000	T16_1MOD	15–8	-	0x00	-	R	-
03a2	(T16 Ch.1 Mode	7–1	-	0x00	-	R	
	Register)	0	TRMD	0	H0	R/W	
0x4000	T16_1CTL	15–9	-	0x00	-	R	-
03a4	(T16 Ch.1 Control	8	PRUN	0	H0	R/W	
	Register)	7–2	-	0x00	-	R	
		1	PRESET	0	H0	R/W	
		0	MODEN	0	H0	R/W	
0x4000 03a6	T16_1TR (T16 Ch.1 Reload Data Register)	15–0	TR[15:0]	0xffff	H0	R/W	-
0x4000 03a8	T16_1TC (T16 Ch.1 Counter Data Register)	15–0	TC[15:0]	0xffff	H0	R	-
0x4000	T16_1INTF	15–8	-	0x00	-	R	-
03aa	(T16 Ch.1 Interrupt	7–1	-	0x00	-	R	
	Flag Register)	0	UFIF	0	H0	R/W	Cleared by writing 1.
0x4000	T16_1INTE	15–8	-	0x00	_	R	-
03ac	(T16 Ch.1 Interrupt	7–1	-	0x00	-	R	]
	Enable Register)	0	UFIE	0	HO	R/W	

### 0x4000 03b0-0x4000 03be

### Synchronous Serial Interface (SPIA) Ch.0

				-			( <i>i</i>
Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	SPIA_0MOD	15–12	-	0x0	-	R	_
03b0	(SPIA Ch.0 Mode	11–8	CHLN[3:0]	0x7	HO	R/W	
	Register)	7–6	-	0x0	-	R	
		5	PUEN	0	HO	R/W	
		4	NOCLKDIV	0	HO	R/W	
		3	LSBFST	0	HO	R/W	
		2	CPHA	0	HO	R/W	
		1	CPOL	0	HO	R/W	
		0	MST	0	HO	R/W	
0x4000	SPIA_0CTL	15-8	-	0x00	-	R	-
03b2	(SPIA Ch.0 Control	7–2	-	0x00	_	R	
	Register)	1	SFTRST	0	H0	R/W	
		0	MODEN	0	HO	R/W	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000 03b4	SPIA_0TXD (SPIA Ch.0 Transmit Data Register)	15–0	TXD[15:0]	0x0000	HO	R/W	-
0x4000 03b6	SPIA_0RXD (SPIA Ch.0 Receive Data Register)	15–0	RXD[15:0]	0x0000	HO	R	-
0x4000	SPIA_0INTF	15–8	-	0x00	-	R	
03b8	(SPIA Ch.0 Interrupt	7	BSY	0	H0	R	
	Flag Register)	6–4	-	0x0	-	R	
		3	OEIF	0	H0/S0	R/W	Cleared by writing 1.
		2	TENDIF	0	H0/S0	R/W	
		1	RBFIF	0	H0/S0	R	Cleared by reading the SPIA_0RXD register.
		0	TBEIF	1	H0/S0	R	Cleared by writing to the SPIA_0TXD register.
0x4000	SPIA_0INTE	15–8	-	0x00	-	R	-
03ba	(SPIA Ch.0 Interrupt	7–4	-	0x0	-	R	
	Enable Register)	3	OEIE	0	H0	R/W	
		2	TENDIE	0	H0	R/W	
		1	RBFIE	0	H0	R/W	
		0	TBEIE	0	H0	R/W	
0x4000 03bc	SPIA_0TBEDMAEN (SPIA Ch.0 Transmit	15–8	-	0x00	-	R	-
	Buffer Empty DMA	7–4	-	0x0	-	R	
Request Enable Register)	3–0	TBEDMAEN[3:0]	0x0	H0	R/W		
0x4000 03be	SPIA_0RBFDMAEN (SPIA Ch.0 Receive	15–8	_	0x00	-	R	
	Buffer Full DMA	7–4	-	0x0	_	R	
	Request Enable Register)	3–0	RBFDMAEN[3:0]	0x0	H0	R/W	

### 0x4000 03c0-0x4000 03d6

### I²C (I2C) Ch.0

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	I2C_0CLK	15–9	-	0x00	-	R	-
03c0	3c0 (l2C Ch.0 Clock	8	DBRUN	0	H0	R/W	]
	Control Register)	7–6	-	0x0	-	R	]
		5–4	CLKDIV[1:0]	0x0	H0	R/W	]
		3–2	-	0x0	-	R	]
		1–0	CLKSRC[1:0]	0x0	H0	R/W	
0x4000	I2C_0MOD	15–8	-	0x00	-	R	_
03c2	(I2C Ch.0 Mode	7–3	-	0x00	-	R	]
	Register)	2	OADR10	0	H0	R/W	]
		1	GCEN	0	H0	R/W	]
		0	-	0	-	R	
0x4000	I2C_0BR	15–8	-	0x00	-	R	_
03c4	(I2C Ch.0 Baud-Rate	7	-	0	-	R	]
	Register)	6–0	BRT[6:0]	0x7f	H0	R/W	
0x4000	I2C_0OADR	15–10	-	0x00	-	R	-
0308	Address Register)	9–0	OADR[9:0]	0x000	HO	R/W	
0x4000	I2C_0CTL	15–8	-	0x00	-	R	_
03ca	(I2C Ch.0 Control	7–6	-	0x0	-	R	]
	Register)	5	MST	0	H0	R/W	]
		4	TXNACK	0	H0/S0	R/W	]
		3	TXSTOP	0	H0/S0	R/W	]
		2	TXSTART	0	H0/S0	R/W	
		1	SFTRST	0	H0	R/W	]
		0	MODEN	0	HO	R/W	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	I2C_0TXD	15–8	-	0x00	-	R	-
03cc	(I2C Ch.0 Transmit Data Register)	7–0	TXD[7:0]	0x00	H0	R/W	
0x4000	I2C_0RXD	15–8	-	0x00	-	R	-
03ce	Data Register)	7–0	RXD[7:0]	0x00	HO	R	
0x4000	I2C_0INTF	15–13	-	0x0	-	R	-
03d0	(I2C Ch.0 Status	12	SDALOW	0	HO	R	
	and Interrupt Flag	11	SCLLOW	0	H0	R	
	Register)	10	BSY	0	H0/S0	R	
		9	TR	0	H0	R	
		8	-	0	-	R	
		7	BYTEENDIF	0	H0/S0	R/W	Cleared by writing 1.
		6	GCIF	0	H0/S0	R/W	
		5	NACKIF	0	H0/S0	R/W	
		4	STOPIF	0	H0/S0	R/W	
		3	STARTIF	0	H0/S0	R/W	
		2	ERRIF	0	H0/S0	R/W	
		1	RBFIF	0	H0/S0	R	Cleared by reading the I2C_0RXD register.
		0	TBEIF	0	H0/S0	R	Cleared by writing to the I2C_0TXD register.
0x4000	I2C_0INTE	15–8	-	0x00	-	R	-
03d2	(I2C Ch.0 Interrupt	7	BYTEENDIE	0	H0	R/W	
	Enable Register)	6	GCIE	0	H0	R/W	
		5	NACKIE	0	H0	R/W	
		4	STOPIE	0	H0	R/W	
		3	STARTIE	0	H0	R/W	
		2	ERRIE	0	H0	R/W	
		1	RBFIE	0	H0	R/W	
		0	TBEIE	0	H0	R/W	
0x4000	I2C_0TBEDMAEN	15–8	-	0x00	-	R	_
0004	Buffer Empty DMA	7–4	-	0x0	-	R	-
	Request Enable Register)	3–0	TBEDMAEN[3:0]	0x0	H0	R/W	
0x4000	I2C_0RBFDMAEN	15–8	-	0x00	-	R	_
0300	Buffer Full DMA	7–4	-	0x0	-	R	
	Request Enable Register)	3–0	RBFDMAEN[3:0]	0x0	H0	R/W	

### 0x4000 0400-0x4000 043c

## 16-bit PWM Timer (T16B) Ch.0

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	T16B_0CLK	15–9	-	0x00	-	R	-
0400	(T16B Ch.0 Clock	8	DBRUN	0	H0	R/W	
	Control Register)	7–4	CLKDIV[3:0]	0x0	H0	R/W	
		3	-	0	-	R	
		2–0	CLKSRC[2:0]	0x0	H0	R/W	
0x4000	T16B_0CTL	15–9	-	0x00	-	R	-
0402	(T16B Ch.0 Counter	8	MAXBSY	0	H0	R	
	Control Register)	7–6	-	0x0	-	R	
		5–4	CNTMD[1:0]	0x0	H0	R/W	
		3	ONEST	0	H0	R/W	
		2	RUN	0	H0	R/W	
		1	PRESET	0	H0	R/W	
		0	MODEN	0	H0	R/W	
0x4000	T16B_0MC	15–0	MC[15:0]	0xffff	H0	R/W	-
0404	(T16B Ch.0 Max						
	Counter Data Register)						

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	T16B 0TC	15-0	TC[15:0]	0x0000	HO	R	-
0406	(T16B Ch.0 Timer		[]				
	Counter Data Register)						
0x4000	T16B_0CS	15–8	-	0x00	-	R	-
0408	(T16B Ch.0 Counter	7	CAPI5	0	HO	R	
	Status Register)	6	CAPI4	0	H0	R	
		5	CAPI3	0	H0	R	1
		4	CAPI2	0	HO	R	1
		3	CAPI1	0	HO	R	1
		2	CAPIO	0	HO	B	-
		1		1	HO	B	-
		0	BSY	0	НО	R	-
0×4000	TIGE OINTE	15_14	_			B	
0402	(T16B Ch 0 Interrupt	12		0,0			Cleared by writing 1
040a	Flag Register)	10		0			Cleared by writing 1.
		12		0			-
		10		0	HU	R/W	-
		10		0	HU	R/W	-
		9	CAPOW3IF	0	HO	R/W	-
		8	CMPCAP3IF	0	H0	R/W	-
		7	CAPOW2IF	0	H0	R/W	_
		6	CMPCAP2IF	0	HO	R/W	_
		5	CAPOW1IF	0	H0	R/W	_
		4	CMPCAP1IF	0	H0	R/W	_
		3	CAPOW0IF	0	H0	R/W	
		2	CMPCAP0IF	0	H0	R/W	
		1	CNTMAXIF	0	H0	R/W	
		0	CNTZEROIF	0	HO	R/W	
0x4000	T16B_0INTE	15–14	-	0x0	-	R	-
040c	(T16B Ch.0 Interrupt	13	CAPOW5IE	0	HO	R/W	1
	Enable Register)	12	CMPCAP5IE	0	HO	R/W	1
		11	CAPOW4IF	0	HO	R/W	1
		10	CMPCAP4IF	0	HO	R/W	-
		9		0	НО	R/W	-
		8		0	НО	R/M	-
		7		0			-
		6		0			-
		5		0	110		-
		5		0	HU		-
		4		0	HU	R/W	-
		3	CAPOWUE	0	HU	R/W	-
		2	CMPCAPULE	0	HU	R/W	-
		1	CNTMAXIE	0	HO	R/W	-
		0	CNTZEROIE	0	H0	R/W	
0x4000	T16B_0MZDMAEN	15–8	-	0x00	-	R	-
040e	(T16B Ch.0 Counter	7_4	_	0×0	_	R	-
	Max/Zero DMA	, ,		0.00			
	Request Enable	3–0	MZDMAEN[3:0]	0x0	H0	R/W	
0		45	000	0	110		
0x4000	TIGE_UCCCILU	15	SUS	0	HU	H/W	
0410	Capture 0 Capture	14-12	CBUFMD[2:0]	0x0	HO	R/W	4
		11-10	CAPIS[1:0]	0x0	H0	R/W	4
	negister)	9–8	CAPTRG[1:0]	0x0	HO	R/W	4
		7	-	0	-	R	4
		6	ТОИТМТ	0	HO	R/W	
		5	TOUTO	0	H0	R/W	
		4–2	TOUTMD[2:0]	0x0	H0	R/W	]
		1	TOUTINV	0	H0	R/W	]
		0	CCMD	0	HO	R/W	1

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	T16B_0CCR0	15–0	CC[15:0]	0x0000	H0	R/W	_
0412	(T16B Ch.0 Compare/						
	Capture 0 Data						
	Register)						
0x4000	T16B_0CC0DMAEN	15–8	-	0x00	-	R	-
0414	(116B Ch.0 Compare/	7_4	_	0x0	_	R	
	Capture U DIVIA			0.00			
	Register)	3–0	CC0DMAEN[3:0]	0x0	HO	R/W	
0x4000	T16B 0CCCTI 1	15	SCS	0	HO	R/W	_
0418	(T16B Ch.0 Compare/	14-12	CBUEMD[2:0]	0x0	HO	R/W	
	Capture 1 Control	11-10	CAPIS[1:0]	0x0	HO	R/W	
	Register)	9–8	CAPTRG[1:0]	0x0	HO	R/W	
		7	-	0	_	R	
		6	TOUTMT	0	HO	R/W	
		5	ΤΟυτο	0	HO	R/W	
		4–2	TOUTMD[2:0]	0x0	HO	R/W	
		1	TOUTINV	0	HO	R/W	
		0	CCMD	0	HO	R/W	
0x4000	T16B 0CCR1	15-0	CC[15:0]	0x0000	HO	R/W	_
041a	(T16B Ch.0 Compare/						
	Capture 1 Data						
	Register)						
0x4000	T16B_0CC1DMAEN	15–8	-	0x00	-	R	_
041c	(T16B Ch.0 Compare/	7_1		0×0		B	
	Capture 1 DMA	7-4	-	0.00	_	п	
	Request Enable	3–0	CC1DMAEN[3:0]	0x0	H0	R/W	
0.,4000		15	808	0	110		
0/20	TIOB_UCCCTL2	10		0			
0420	Capture 2 Control	14-12		0x0	HU		
	Register)	11-10		0x0	HU	R/W	
		9-8		UXU	HU	R/W	
		1		0	-	R DAA	
		6		0	HU	R/W	
		5		0	HU	R/W	
		4-2		UXU O	HU	R/W	
		1		0	HU		
01000		15.0		0	HU	R/W	
0/22	TIGE_UCCR2	15-0		00000	ΠU	F7/ VV	-
0422	Capture 2 Data						
	Register)						
0x4000	T16B_0CC2DMAEN	15–8	-	0x00	-	R	_
0424	(T16B Ch.0 Compare/						
	Capture 2 DMA	7–4	-	0x0	-	R	
	Request Enable	3–0	CC2DMAEN[3:0]	0x0	HO	R/W	
	Register)						
0x4000	T16B_0CCCTL3	15	SCS	0	HO	R/W	_
0428	(116B Ch.0 Compare/	14–12	CBUFMD[2:0]	0x0	HO	R/W	
	Capture 3 Control	11–10	CAPIS[1:0]	0x0	HO	R/W	
		9–8	CAPTRG[1:0]	0x0	H0	R/W	
		7	-	0	-	R	
		6	TOUTMT	0	HO	R/W	
		5	ΤΟυτο	0	HO	R/W	
		4–2	TOUTMD[2:0]	0x0	HO	R/W	
		1	TOUTINV	0	HO	R/W	
L		0	CCMD	0	HO	R/W	
0x4000	T16B_0CCR3	15–0	CC[15:0]	0x0000	HO	R/W	-
042a	(116B Ch.0 Compare/						
	Capture 3 Data						
	negister)						

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	T16B_0CC3DMAEN	15–8	-	0x00	_	R	-
042c	(T16B Ch.0 Compare/	7–4	_	0x0	_	R	-
	Bequest Enable						-
	Register)	3–0	CC3DMAEN[3:0]	0x0	HO	R/W	
0x4000	T16B_0CCCTL4	15	SCS	0	HO	R/W	-
0430	(T16B Ch.0 Compare/	14–12	CBUFMD[2:0]	0x0	HO	R/W	
	Capture 4 Control	11–10	CAPIS[1:0]	0x0	HO	R/W	
	Register)	9–8	CAPTRG[1:0]	0x0	HO	R/W	
		7	-	0	-	R	
		6	TOUTMT	0	HO	R/W	
		5	ΤΟυτο	0	HO	R/W	-
		4–2	TOUTMD[2:0]	0x0	HO	R/W	
		1	TOUTINV	0	H0	R/W	
		0	CCMD	0	HO	R/W	
0x4000	T16B_0CCR4	15–0	CC[15:0]	0x0000	HO	R/W	-
0432	(T16B Ch.0 Compare/						
	Capture 4 Data						
	Register)						
0x4000	T16B_0CC4DMAEN	15–8	-	0x00	-	R	-
0404	Capture 4 DMA	7–4	-	0x0	-	R	
	Request Enable Register)	3–0	CC4DMAEN[3:0]	0x0	H0	R/W	
0x4000	T16B_0CCCTL5	15	SCS	0	HO	R/W	-
0438	(T16B Ch.0 Compare/	14–12	CBUFMD[2:0]	0x0	HO	R/W	
	Capture 5 Control	11–10	CAPIS[1:0]	0x0	HO	R/W	
	Register)	9–8	CAPTRG[1:0]	0x0	HO	R/W	
		7	-	0	-	R	
		6	TOUTMT	0	HO	R/W	
		5	ΤΟυτο	0	H0	R/W	
		4–2	TOUTMD[2:0]	0x0	HO	R/W	
		1	TOUTINV	0	HO	R/W	
		0	CCMD	0	HO	R/W	
0x4000	T16B_0CCR5	15–0	CC[15:0]	0x0000	HO	R/W	-
043a	(T16B Ch.0 Compare/						
	Capture 5 Data						
0×4000		15_9		0×00	_	R	
0430	(T16B Ch.0 Compare/	10-0					
	Capture 5 DMA	7–4	-	0x0	-	R	
	Request Enable Register)	3–0	CC5DMAEN[3:0]	0x0	H0	R/W	1

### 0x4000 0440-0x4000 047c

16-bit	<b>PWM</b>	Timer	(T16B)	) Ch.1

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	T16B_1CLK	15–9	-	0x00	-	R	_
0440	(T16B Ch.1 Clock	8	DBRUN	0	H0	R/W	
	Control Register)	7–4	CLKDIV[3:0]	0x0	H0	R/W	-
		3	-	0	-	R	
		2–0	CLKSRC[2:0]	0x0	H0	R/W	
0x4000	T16B_1CTL	15–9	-	0x00	-	R	_
0442	(T16B Ch.1 Counter	8	MAXBSY	0	HO	R	
	Control Register)	7–6	-	0x0	-	R	
		5–4	CNTMD[1:0]	0x0	H0	R/W	
		3	ONEST	0	H0	R/W	
		2	RUN	0	H0	R/W	
		1	PRESET	0	H0	R/W	
		0	MODEN	0	H0	R/W	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	T16B_1MC	15–0	MC[15:0]	0xffff	HO	R/W	_
0444	(T16B Ch.1 Max						
	Counter Data Register)						
0x4000	T16B_1TC	15–0	TC[15:0]	0x0000	H0	R	-
0446	(T16B Ch.1 Timer						
0.4000	Counter Data Register)	45.0		0.00			
0X4000	TIGE Ch 1 Counter	15-8		0000	-	R	-
0440	Status Register)	1		0	HU	R	
		6	CAPI4	0	HU	R	
		5	CAPI3	0	HU	R	
		4		0	HU	R	
		3		0	HU	R	
		2		0	HU	R	
			UP_DOWN	1	HU	R	
0.4000		0	BSY	0	HU	R	
0X4000	TICE Ch 1 Interrupt	15-14		UXU	-	R	-
044a	Flag Register)	13	CAPOW5IF	0	HO	R/W	Cleared by writing 1.
	ridg riegister)	12	CMPCAP5IF	0	HO	R/W	
		11	CAPOW4IF	0	HO	R/W	
		10		0	HO	R/W	
		9	CAPOW3IF	0	HO	R/W	
		8	CMPCAP3IF	0	HO	R/W	
		7	CAPOW2IF	0	HO	R/W	
		6	CMPCAP2IF	0	HO	R/W	
		5	CAPOW1IF	0	HO	R/W	
		4	CMPCAP1IF	0	HO	R/W	
		3	CAPOW0IF	0	HO	R/W	
		2	CMPCAP0IF	0	HO	R/W	
		1	CNTMAXIF	0	HO	R/W	
		0	CNTZEROIF	0	HO	R/W	
0x4000	T16B_1INTE	15–14	-	0x0	-	R	-
044c	(116B Ch.1 Interrupt	13	CAPOW5IE	0	HO	R/W	
	Enable Register)	12	CMPCAP5IE	0	HO	R/W	
		11	CAPOW4IE	0	HO	R/W	
		10	CMPCAP4IE	0	HO	R/W	
		9	CAPOW3IE	0	HO	R/W	
		8	CMPCAP3IE	0	HO	R/W	
		7	CAPOW2IE	0	HO	R/W	
		6	CMPCAP2IE	0	HO	R/W	
		5	CAPOW1IE	0	H0	R/W	
		4	CMPCAP1IE	0	H0	R/W	
		3	CAPOW0IE	0	H0	R/W	
		2	CMPCAP0IE	0	HO	R/W	
		1	CNTMAXIE	0	HO	R/W	
		0	CNTZEROIE	0	H0	R/W	
0x4000 044e	T16B_1MZDMAEN	15–8	-	0x00	-	R	
0770	Max/Zero DMA	7–4	_	0x0	-	R	
	Request Enable Register)	3–0	MZDMAEN[3:0]	0x0	H0	R/W	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	T16B_1CCCTL0	15	SCS	0	HO	R/W	_
0450	(T16B Ch.1 Compare/	14–12	CBUFMD[2:0]	0x0	H0	R/W	
	Capture 0 Control	11–10	CAPIS[1:0]	0x0	H0	R/W	
	Register)	9–8	CAPTRG[1:0]	0x0	HO	R/W	
		7	-	0	-	R	
		6	TOUTMT	0	HO	R/W	
		5	ΤΟυτο	0	HO	R/W	
		4–2	TOUTMD[2:0]	0x0	H0	R/W	
		1	TOUTINV	0	H0	R/W	
		0	CCMD	0	H0	R/W	
0x4000 0452	T16B_1CCR0 (T16B Ch.1 Compare/ Capture 0 Data Register)	15–0	CC[15:0]	0x0000	HO	R/W	_
0x4000 0454	T16B_1CC0DMAEN	15–8	-	0x00	-	R	_
0-10-1	Capture 0 DMA	7–4	_	0x0	-	R	
	Request Enable Register)	3–0	CC0DMAEN[3:0]	0x0	H0	R/W	
0x4000	T16B_1CCCTL1	15	SCS	0	HO	R/W	_
0458	(T16B Ch.1 Compare/	14–12	CBUFMD[2:0]	0x0	HO	R/W	
	Capture 1 Control	11–10	CAPIS[1:0]	0x0	HO	R/W	
	Register)	9–8	CAPTRG[1:0]	0x0	HO	R/W	
		7	-	0	-	R	
		6	TOUTMT	0	H0	R/W	
		5	TOUTO	0	HO	R/W	
		4–2	TOUTMD[2:0]	0x0	HO	R/W	
		1	TOUTINV	0	HO	R/W	
		0	CCMD	0	HO	R/W	
0x4000 045a	T16B_1CCR1 (T16B Ch.1 Compare/ Capture 1 Data Register)	15–0	CC[15:0]	0x0000	HO	R/W	-
0x4000 045c	T16B_1CC1DMAEN	15–8	_	0x00	-	R	_
0400	Capture 1 DMA	7–4	_	0x0	-	R	
	Request Enable Register)	3–0	CC1DMAEN[3:0]	0x0	H0	R/W	
0x4000	T16B_1CCCTL2	15	SCS	0	HO	R/W	_
0460	(T16B Ch.1 Compare/	14–12	CBUFMD[2:0]	0x0	HO	R/W	
	Capture 2 Control	11–10	CAPIS[1:0]	0x0	HO	R/W	
	Register)	9–8	CAPTRG[1:0]	0x0	H0	R/W	
		7	-	0	-	R	
		6	TOUTMT	0	H0	R/W	
		5	TOUTO	0	H0	R/W	
		4–2	TOUTMD[2:0]	0x0	H0	R/W	
		1	TOUTINV	0	H0	R/W	
		0	CCMD	0	H0	R/W	
0x4000 0462	T16B_1CCR2 (T16B Ch.1 Compare/ Capture 2 Data Register)	15–0	CC[15:0]	0x0000	HO	R/W	-
0x4000	T16B_1CC2DMAEN	15–8	_	0x00	_	R	_
0404	Capture 2 DMA	7–4	-	0x0	-	R	
	Request Enable Register)	3–0	CC2DMAEN[3:0]	0x0	H0	R/W	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	T16B_1CCCTL3	15	SCS	0	H0	R/W	_
0468	(T16B Ch.1 Compare/	14–12	CBUFMD[2:0]	0x0	H0	R/W	
	Capture 3 Control	11–10	CAPIS[1:0]	0x0	H0	R/W	
	Register)	9–8	CAPTRG[1:0]	0x0	H0	R/W	
		7	-	0	_	R	
		6	TOUTMT	0	H0	R/W	
		5	ΤΟυτο	0	H0	R/W	
		4–2	TOUTMD[2:0]	0x0	H0	R/W	
		1	TOUTINV	0	H0	R/W	
		0	CCMD	0	H0	R/W	
0x4000	T16B_1CCR3	15–0	CC[15:0]	0x0000	H0	R/W	_
046a	(T16B Ch.1 Compare/ Capture 3 Data						
0x4000	T16B 1CC3DMAEN	15–8	_	0x00	_	R	_
046c	(T16B Ch.1 Compare/	7.4		00			
	Capture 3 DMA	7-4	-	UXU	_	К	
	Register)	3–0	CC3DMAEN[3:0]	0x0	HO	R/W	
0x4000	T16B_1CCCTL4	15	SCS	0	H0	R/W	_
0470	(T16B Ch.1 Compare/	14–12	CBUFMD[2:0]	0x0	H0	R/W	
	Capture 4 Control	11–10	CAPIS[1:0]	0x0	H0	R/W	
	Register)	9–8	CAPTRG[1:0]	0x0	H0	R/W	
		7	-	0	-	R	
		6	TOUTMT	0	H0	R/W	
		5	ΤΟυτο	0	H0	R/W	
		4–2	TOUTMD[2:0]	0x0	HO	R/W	
		1	ΤΟυτιΝΥ	0	HO	R/W	
		0	ССМД	0	HO	R/W	
0x4000	T16B 1CCR4	15–0	CC[15:0]	0x0000	HO	R/W	_
0472	(T16B Ch.1 Compare/ Capture 4 Data Register)						
0x4000	T16B_1CC4DMAEN	15–8	-	0x00	-	R	-
0474	Capture 4 DMA	7–4	_	0x0	-	R	
	Request Enable	3–0	CC4DMAEN[3:0]	0x0	H0	R/W	
0x4000	T16B 1CCCTI 5	15	SCS	0	HО	R/W	_
0478	(T16B Ch.1 Compare/	14_12		0x0		R/W	
00	Capture 5 Control	11_10		0x0	но	R/W	
	Register)	9_8		0x0	HO	R/W	
		7	_	0	_	B	
		6	тоџтмт	0	HO	R/W	
		5	τομτο	0	HO	R/W	
		4_2		0x0	HO	R/W	
		1		0	HO	R/W	
		0	CCMD	0	HO	R/W	
0x4000 047a	T16B_1CCR5 (T16B Ch.1 Compare/	15–0	CC[15:0]	0x0000	HO	R/W	_
	Capture 5 Data Register)						
0x4000	T16B_1CC5DMAEN	15–8	-	0x00	-	R	-
047c	Capture 5 DMA	7–4	_	0x0	-	R	
	Request Enable Register)	3–0	CC5DMAEN[3:0]	0x0	HO	R/W	
			1				L

0x400	0 0480–0x4000	048c			10	16-bit Timer (T16) Ch.3		
Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks	
0x4000	T16_3CLK	15–9	-	0x00	-	R	-	
0480	(T16 Ch.3 Clock	8	DBRUN	0	H0	R/W		
	Control Register)	7–4	CLKDIV[3:0]	0x0	HO	R/W		
		3–2	-	0x0	-	R	]	
		1-0	CLKSRC[1:0]	0x0	H0	R/W	]	
0x4000	T16_3MOD	15–8	-	0x00	-	R	-	
0482	(T16 Ch.3 Mode	7–1	-	0x00	-	R	1	
	Register)	0	TRMD	0	HO	R/W	1	
0x4000	T16_3CTL	15–9	-	0x00	-	R	-	
0484	0484 (T16 Ch.3 Control Register)	8	PRUN	0	HO	R/W		
		7–2	-	0x00	_	R		
		1	PRESET	0	H0	R/W		
		0	MODEN	0	HO	R/W	]	
0x4000	T16_3TR	15–0	TR[15:0]	0xffff	HO	R/W	-	
0486	(T16 Ch.3 Reload							
	Data Register)							
0x4000	T16_3TC	15–0	TC[15:0]	Oxffff	HO	R	-	
0488	(110 Ch.3 Counter							
0x4000	T16 3INTE	15-8	_	0x00	_	B		
048a	(T16 Ch.3 Interrupt	7-1	_	0x00	_	R	1	
	Flag Register)	0	UFIF	0	HO	R/W	Cleared by writing 1.	
0x4000	T16_3INTE	15–8	-	0x00	-	R	-	
048c	(T16 Ch.3 Interrupt	7–1	_	0x00	-	R	1	
	Enable Register)	0	UFIE	0	HO	R/W	1	

## 0x4000 04a0-0x4000 04ac

## 16-bit Timer (T16) Ch.4

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	T16_4CLK	15–9	-	0x00	-	R	-
04a0	(T16 Ch.4 Clock	8	DBRUN	0	H0	R/W	
	Control Register)	7–4	CLKDIV[3:0]	0x0	H0	R/W	
		3–2	-	0x0	-	R	
		1–0	CLKSRC[1:0]	0x0	H0	R/W	
0x4000	T16_4MOD	15–8	-	0x00	-	R	-
04a2	(T16 Ch.4 Mode	7–1	-	0x00	-	R	
	Register)	0	TRMD	0	HO	R/W	
0x4000	T16_4CTL	15–9	-	0x00	-	R	-
04a4	(T16 Ch.4 Control	8	PRUN	0	H0	R/W	
	Register)	7–2	-	0x00	-	R	
		1	PRESET	0	H0	R/W	
		0	MODEN	0	H0	R/W	
0x4000	T16_4TR	15–0	TR[15:0]	0xffff	HO	R/W	-
04a6	(T16 Ch.4 Reload						
0×4000		15.0	TC[15:0]	Ovffff	ЦO	D	
0/28	(T16 Ch 4 Counter	15-0	10[13.0]	UXIIII	110	n	-
0440	Data Register)						
0x4000	T16_4INTF	15–8	-	0x00	_	R	-
04aa	(T16 Ch.4 Interrupt	7–1	-	0x00	-	R	
	Flag Register)	0	UFIF	0	HO	R/W	Cleared by writing 1.
0x4000	T16_4INTE	15–8	-	0x00	-	R	-
04ac	(T16 Ch.4 Interrupt	7–1	-	0x00	-	R	
	Enable Register)	0	UFIE	0	HO	R/W	]

AP-A-22

0x400	0 04c0-0x4000	04cc	16-bit Timer (T16) C					
Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks	
0x4000	T16_5CLK	15–9	-	0x00	-	R	-	
04c0	(T16 Ch.5 Clock	8	DBRUN	0	H0	R/W	_	
	Control Register)	7–4	CLKDIV[3:0]	0x0	HO	R/W	-	
		3–2	-	0x0	-	R		
		1–0	CLKSRC[1:0]	0x0	H0	R/W		
0x4000	T16_5MOD	15–8	-	0x00	-	R	-	
04c2	(T16 Ch.5 Mode	7–1	-	0x00	-	R		
	Register)	0	TRMD	0	H0	R/W		
0x4000	T16_5CTL	15–9	-	0x00	-	R	-	
04c4	(T16 Ch.5 Control Register)	8	PRUN	0	H0	R/W		
		7–2	-	0x00	-	R	_	
		1	PRESET	0	H0	R/W	_	
		0	MODEN	0	H0	R/W		
0x4000	T16_5TR	15–0	TR[15:0]	0xffff	H0	R/W	-	
04c6	(T16 Ch.5 Reload Data Register)							
0x4000	T16_5TC	15–0	TC[15:0]	0xffff	H0	R	-	
04c8	(T16 Ch.5 Counter							
	Data Register)							
0x4000	T16_5INTF	15-8	-	0x00	-	R	-	
04ca	(116 Ch.5 Interrupt	7–1	-	0x00	-	R		
	Flag Register)	0	UFIF	0	HO	R/W	Cleared by writing 1.	
0x4000	T16_5INTE	15–8	-	0x00	-	R		
04cc	(T16 Ch.5 Interrupt	7–1	-	0x00	-	R		
	Enable Register)	0	UFIE	0	H0	R/W		

## 0x4000 0600-0x4000 0614

### UART (UART3) Ch.1

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	UART3_1CLK	15–9	-	0x00	-	R	_
0600	(UART3 Ch.1 Clock	8	DBRUN	0	H0	R/W	
Control Register)	7–6	-	0x0	-	R		
		5–4	CLKDIV[1:0]	0x0	H0	R/W	
		3–2	-	0x0	-	R	
		1–0	CLKSRC[1:0]	0x0	H0	R/W	
0x4000	UART3_1MOD	15–13	-	0x00	-	R	_
0602	(UART3 Ch.1 Mode	12	PECAR	0	H0	R/W	
	Register)	11	CAREN	0	H0	R/W	
		10	BRDIV	0	H0	R/W	
		9	INVRX	0	H0	R/W	
		8	INVTX	0	H0	R/W	
		7	-	0	-	R	
		6	PUEN	0	H0	R/W	
		5	OUTMD	0	H0	R/W	
		4	IRMD	0	H0	R/W	
		3	CHLN	0	H0	R/W	
		2	PREN	0	H0	R/W	
		1	PRMD	0	H0	R/W	
		0	STPB	0	H0	R/W	
0x4000	UART3_1BR	15–12	-	0x0	-	R	-
0604	(UART3 Ch.1 Baud-	11–8	FMD[3:0]	0x0	H0	R/W	
	Rate Register)	7–0	BRT[7:0]	0x00	H0	R/W	
0x4000	UART3_1CTL	15–8	-	0x00	-	R	-
0606	(UART3 Ch.1 Control	7–2	-	0x00	-	R	
	Register)	1	SFTRST	0	HO	R/W	
		0	MODEN	0	HO	R/W	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	UART3_1TXD	15–8	-	0x00	-	R	-
0608	(UART3 Ch.1 Trans- mit Data Register)	7–0	TXD[7:0]	0x00	H0	R/W	
0x4000	UART3_1RXD	15–8	_	0x00	-	R	-
060a	(UAR13 Ch.1 Receive Data Register)	7–0	RXD[7:0]	0x00	HO	R	
0x4000	UART3_1INTF	15-10	-	0x00	-	R	-
060c	(UART3 Ch.1 Status	9	RBSY	0	H0/S0	R	
	and Interrupt Flag	8	TBSY	0	H0/S0	R	
	Register)	7	-	0	-	R	-
		6	TENDIF	0	H0/S0	R/W	Cleared by writing 1.
		5	FEIF	0	H0/S0	R/W	Cleared by writing 1 or read-
		4	PEIF	0	H0/S0	R/W	ing the UART3_1RXD register.
		3	OEIF	0	H0/S0	R/W	Cleared by writing 1.
		2	RB2FIF	0	H0/S0	R	Cleared by reading the
		1	RB1FIF	0	H0/S0	R	UART3_1RXD register.
		0	TBEIF	1	H0/S0	R	Cleared by writing to the UART3_1TXD register.
0x4000	UART3_1INTE	15–8	-	0x00	-	R	-
060e	(UART3 Ch.1	7	-	0	-	R	-
	Interrupt Enable	6	TENDIE	0	HO	R/W	-
	Register)	5	FEIE	0	HO	R/W	-
		4	PEIE	0	HO	R/W	
		3	OEIE	0	HO	R/W	
		2	RB2FIE	0	H0	R/W	
		1	RB1FIE	0	H0	R/W	
		0	TBEIE	0	HO	R/W	-
0x4000 0610	UART3_1 TBEDMAEN	15–8	_	0x00	-	R	-
	(UART3 Ch.1 Transmit Buffer	7–4	_	0x0	-	R	
	Empty DMA Request Enable Register)	3–0	TBEDMAEN[3:0]	0x0	H0	R/W	
0x4000 0612	UART3_1 RB1FDMAEN	15–8	-	0x00	-	R	-
	(UART3 Ch.1 Receive Buffer One Byte Full	7–4	-	0x0	-	R	
	DMA Request Enable Register)	3–0	RB1FDMAEN[3:0]	0x0	H0	R/W	
0x4000	UART3_1CAWF	15–8	-	0x00	-	R	-
0614	(UART3 Ch.1 Carrier Waveform Register)	7–0	CRPER[7:0]	0x00	H0	R/W	

### 0x4000 0620-0x4000 0634

### UART (UART3) Ch.2

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	UART3_2CLK	15–9	-	0x00	-	R	-
0620	(UART3 Ch.2 Clock	8	DBRUN	0	H0	R/W	
	Control Register)	7–6	-	0x0	-	R	
		5–4	CLKDIV[1:0]	0x0	H0	R/W	
		3–2	-	0x0	-	R	
		1–0	CLKSRC[1:0]	0x0	HO	R/W	]

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	UART3_2MOD	15–13	-	0x00	_	R	-
0622	(UART3 Ch.2 Mode	12	PECAR	0	H0	R/W	
	Register)	11	CAREN	0	H0	R/W	
		10	BRDIV	0	H0	R/W	
		9	INVRX	0	H0	R/W	-
		8	INVTX	0	H0	R/W	
		7	-	0	-	R	
		6	PUEN	0	H0	R/W	
		5	OUTMD	0	H0	R/W	
		4	IRMD	0	H0	R/W	
		3	CHLN	0	H0	R/W	
		2	PREN	0	H0	R/W	
		1	PRMD	0	H0	R/W	
		0	STPB	0	H0	R/W	
0x4000	UART3_2BR	15–12	-	0x0	-	R	_
0624	(UART3 Ch.2 Baud-	11–8	FMD[3:0]	0x0	HO	R/W	
	Rate Register)	7–0	BRT[7:0]	0x00	HO	R/W	
0x4000	UART3_2CTL	15–8	-	0x00	-	R	_
0626	(UART3 Ch.2 Control	7–2	_	0x00	-	R	
	Register)	1	SFTRST	0	HO	R/W	
		0	MODEN	0	HO	R/W	
0x4000	UART3 2TXD	15–8	_	0x00	_	R	_
0628	(UART3 Ch.2 Trans-	7–0	TXD[7:0]	0x00	HO	R/W	
0x4000	UART3_2RXD	15–8	-	0x00	_	R	-
062a	(UART3 Ch.2 Receive	7–0	RXD[7:0]	0x00	H0	R	
0×4000		15 10		0,00		D	
0820	UARIS_ZINTE	15-10		0000	-	R	-
0020	and Interrupt Flag	9		0	HU/SU	R	
	Register)	8	IBSY	0	HU/50	R	
		1		0	-	R DAA	
		6		0	H0/S0	R/W	Cleared by writing 1.
		5		0	H0/S0	R/W	Cleared by writing 1 or read-
		4		0	H0/S0	R/W	Cleared buy writing 1
		3	DEIF	0	H0/S0	R/W	Cleared by writing 1.
		2	RB2FIF	0	H0/S0	R	Cleared by reading the
				0	H0/S0	R	OART3_2RAD register.
		0	IBEIF		HU/50	К	UART3_2TXD register.
0x4000	UART3_2INTE	15–8	-	0x00	-	R	_
062e	(UART3 Ch.2	7	-	0	-	R	
	Interrupt Enable	6	TENDIE	0	H0	R/W	
	Register)	5	FEIE	0	H0	R/W	
		4	PEIE	0	HO	R/W	
		3	OEIE	0	H0	R/W	
		2	RB2FIE	0	H0	R/W	
		1	RB1FIE	0	H0	R/W	
		0	TBEIE	0	H0	R/W	
0x4000	UART3_2	15–8	-	0x00	-	R	-
0630	I BEDMAEN (UART3 Ch.2 Transmit Buffer	7–4	_	0x0	-	R	
	Empty DMA Request Enable Register)	3–0	TBEDMAEN[3:0]	0x0	HO	R/W	
0x4000 0632	UART3_2 BB1EDMAEN	15–8	-	0x00	-	R	_
	(UART3 Ch.2 Receive Buffer One Byte Full	7–4	-	0x0	-	R	
	DMA Request Enable Register)	3–0	RB1FDMAEN[3:0]	0x0	HO	R/W	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	UART3_2CAWF	15–8	-	0x00	-	R	-
0634	(UART3 Ch.2 Carrier Waveform Register)	7–0	CRPER[7:0]	0x00	H0	R/W	-

### 0x4000 0660-0x4000 066c

## 16-bit Timer (T16) Ch.6

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	T16_6CLK	15–9	-	0x00	-	R	-
0660	(T16 Ch.6 Clock	8	DBRUN	0	H0	R/W	
	Control Register)	7–4	CLKDIV[3:0]	0x0	H0	R/W	
		3–2	-	0x0	-	R	
		1–0	CLKSRC[1:0]	0x0	H0	R/W	
0x4000	T16_6MOD	15–8	-	0x00	-	R	-
0662	(T16 Ch.6 Mode	7–1	-	0x00	-	R	]
	Register)	0	TRMD	0	H0	R/W	]
0x4000	T16_6CTL	15–9	-	0x00	-	R	-
0664	(T16 Ch.6 Control	8	PRUN	0	H0	R/W	
	Register)	7–2	-	0x00	-	R	
		1	PRESET	0	H0	R/W	
		0	MODEN	0	HO	R/W	
0x4000	T16_6TR	15–0	TR[15:0]	0xffff	H0	R/W	-
0666	(T16 Ch.6 Reload						
	Data Register)						
0x4000	T16_6TC	15–0	TC[15:0]	Oxffff	HO	R	-
0668	(116 Ch.6 Counter						
0×4000		15 0		0,00		D	
000	T10_0INTF	7 1	-	0,00	_		-
000a	Flag Register)	/-1	-	0000	-	R R	
		0	UFIF	0	HU	R/W	Cleared by writing 1.
0x4000	116_6IN [E	15-8	-	0x00	-	R	
066c	(116 Ch.6 Interrupt	7–1	-	0x00	-	R	_
	Enable Register)	0	UFIE	0	H0	R/W	

### 0x4000 0670-0x4000 067e

### Synchronous Serial Interface (SPIA) Ch.1

						-	
Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	SPIA_1MOD	15–12	-	0x0	-	R	]–
0670	(SPIA Ch.1 Mode	11–8	CHLN[3:0]	0x7	H0	R/W	
	Register)	7–6	-	0x0	-	R	
		5	PUEN	0	H0	R/W	
		4	NOCLKDIV	0	H0	R/W	
		3	LSBFST	0	H0	R/W	
		2	CPHA	0	H0	R/W	
		1	CPOL	0	H0	R/W	
		0	MST	0	H0	R/W	
0x4000	SPIA_1CTL	15–8	-	0x00	-	R	-
0672	(SPIA Ch.1 Control	7–2	-	0x00	-	R	
	Register)	1	SFTRST	0	H0	R/W	
		0	MODEN	0	H0	R/W	
0x4000	SPIA_1TXD	15–0	TXD[15:0]	0x0000	H0	R/W	-
0674	(SPIA Ch.1 Transmit						
	Data Register)						
0x4000	SPIA_1RXD	15–0	RXD[15:0]	0x0000	H0	R	-
0676	(SPIA Ch.1 Receive						
	Data Register)						

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	SPIA_1INTF	15–8	-	0x00	-	R	-
0678	(SPIA Ch.1 Interrupt	7	BSY	0	H0	R	
	Flag Register)	6–4	-	0x0	-	R	
		3	OEIF	0	H0/S0	R/W	Cleared by writing 1.
		2	TENDIF	0	H0/S0	R/W	
		1	RBFIF	0	H0/S0	R	Cleared by reading the SPIA_1RXD register.
		0	TBEIF	1	H0/S0	R	Cleared by writing to the SPIA_1TXD register.
0x4000	SPIA_1INTE	15–8	-	0x00	-	R	-
067a	(SPIA Ch.1 Interrupt	7–4	-	0x0	-	R	
	Enable Register)	3	OEIE	0	H0	R/W	
		2	TENDIE	0	H0	R/W	
		1	RBFIE	0	HO	R/W	
		0	TBEIE	0	HO	R/W	
0x4000 067c	SPIA_1TBEDMAEN (SPIA Ch.1 Transmit	15–8	-	0x00	-	R	_
	Buffer Empty DMA	7–4	_	0x0	-	R	
	Request Enable Register)	3–0	TBEDMAEN[3:0]	0x0	H0	R/W	
0x4000	SPIA_1RBFDMAEN	15–8	-	0x00	-	R	_
0076	Buffer Full DMA	7–4	-	0x0	-	R	
	Request Enable Register)	3–0	RBFDMAEN[3:0]	0x0	H0	R/W	

### 0x4000 0680-0x4000 068c

### 16-bit Timer (T16) Ch.2

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	T16_2CLK	15–9	-	0x00	_	R	_
0680	(T16 Ch.2 Clock	8	DBRUN	0	HO	R/W	
Control Register)	7–4	CLKDIV[3:0]	0x0	HO	R/W		
		3–2	-	0x0	_	R	
		1–0	CLKSRC[1:0]	0x0	H0	R/W	
0x4000	T16_2MOD	15–8	-	0x00	-	R	-
0682	(T16 Ch.2 Mode	7–1	-	0x00	-	R	
	Register)	0	TRMD	0	H0	R/W	
0x4000	T16_2CTL	15–9	-	0x00	-	R	-
0684	(T16 Ch.2 Control	8	PRUN	0	H0	R/W	
	Register)	7–2	-	0x00	-	R	
		1	PRESET	0	H0	R/W	
		0	MODEN	0	H0	R/W	
0x4000	T16_2TR	15–0	TR[15:0]	0xffff	HO	R/W	-
0686	(T16 Ch.2 Reload						
	Data Register)						
0x4000	T16_2TC	15–0	TC[15:0]	Oxffff	HO	R	-
0688	(116 Ch.2 Counter						
0×4000	T16 2INTE	15_8		0×00	_	R	
068a	(T16 Ch.2 Interrupt	7_1		0x00		R	
looca	Flag Register)	0		0,000	НО	R/W	Cleared by writing 1
0×4000	T16 2INTE	15_8			110	R	
0680	(T16 Ch 2 Interrupt	7 1	- 	0,00			1
	Enable Register)	0		0,00			

0x400	0 0690–0x4000	06a8	Qua	d Synch	nronous	Serial	Interface (QSPI) Ch.0
Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	QSPI_0MOD	15–12	CHDL[3:0]	0x7	H0	R/W	_
0690	(QSPI Ch.0 Mode	11-8	CHLN[3:0]	0x7	HO	R/W	
	Register)	7–6	TMOD[1:0]	0x0	HO	R/W	
		5	PUEN	0	HO	R/W	
		4	NOCLKDIV	0	HO	R/W	
		3	LSBFST	0	HO	R/W	
		2	СРНА	0	HO	R/W	
		1	CPOL	0	HO	R/W	
		0	MST	0	H0	R/W	
0x4000	QSPI_0CTL	15–8	-	0x00	-	R	-
0692	(QSPI Ch.0 Control	7–4	-	0x0	-	R	
	Register)	3	DIR	0	H0	R/W	
		2	MSTSSO	1	H0	R/W	
		1	SFTRST	0	H0	R/W	
		0	MODEN	0	H0	R/W	
0x4000 0694	QSPI_0TXD (QSPI Ch.0 Transmit Data Register)	15–0	TXD[15:0]	0x0000	HO	R/W	-
0x4000 0696	QSPI_0RXD (QSPI Ch.0 Receive Data Register)	15–0	RXD[15:0]	0x0000	HO	R	-
0x4000	QSPI_0INTF	15–8	-	0x00	-	R	_
0698	(QSPI Ch.0 Interrupt	7	BSY	0	H0	R	
	Flag Register)	6	MMABSY	0	H0	R	
		5–4	-	0x0	-	R	
		3	OEIF	0	H0/S0	R/W	Cleared by writing 1.
		2	TENDIF	0	H0/S0	R/W	
		1	RBFIF	0	H0/S0	R	Cleared by reading the QSPI_0RXD register.
		0	TBEIF	1	H0/S0	R	Cleared by writing to the QSPI_0TXD register.
0x4000	QSPI_0INTE	15–8	-	0x00	-	R	_
069a	(QSPI Ch.0 Interrupt	7–4	-	0x0	-	R	
	Enable Register)	3	OEIE	0	HO	R/W	
		2	TENDIE	0	HO	R/W	
		1	RBFIE	0	HO	R/W	
		0	TBEIE	0	HO	R/W	
0x4000 069c	QSPI_0TBEDMAEN (QSPI Ch.0 Transmit	15-8	-	0x00	-	R	-
	Buffer Empty DMA	/-4	-	0.00	-	п	
	Request Enable Register)	3–0	TBEDMAEN[3:0]	0x0	HO	R/W	
0x4000	QSPI_ORBFDMAEN	15-8	-	0x00	-	R	-
0696	Buffer Full DMA	7–4	-	0x0	-	R	
	Request Enable Register)	3–0	RBFDMAEN[3:0]	0x0	H0	R/W	
0x4000	QSPI_0FRLDMAEN	15–8	-	0x00	-	R	
06a0	QSPI Ch.0 FIFO Data	7–4	-	0x0	-	R	
	Enable Register)	3–0	FRLDMAEN[3:0]	0x0	HO	R/W	
0x4000	QSPI_0MMACFG1	15–8	-	0x00		R	_
06a2	(QSPI Ch.0 Memory	7–4	-	0x0	_	R	
	Mapped Access Con- figuration Register 1)	3–0	TCSH[3:0]	0x0	H0	R/W	
0x4000 06a4	QSPI_0RMADRH (QSPI Ch.0 Remap- ping Start Address	15–4	RMADR[31:20]	0x000	HO	R/W	-
	High Register)	3-0	_	0x0		R	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	QSPI_0MMACFG2	15–12	DUMDL[3:0]	0x7	H0	R/W	_
06a6	(QSPI Ch.0 Memory	11–8	DUMLN[3:0]	0x7	H0	R/W	
	Mapped Access Con-	7–6	DATTMOD[1:0]	0x0	H0	R/W	
	figuration Register 2)	5–4	DUMTMOD[1:0]	0x0	H0	R/W	
		3–2	ADRTMOD[1:0]	0x0	H0	R/W	
		1	ADRCYC	0	HO	R/W	
		0	MMAEN	0	HO	R/W	
0x4000	QSPI_0MB	15–8	XIPACT[7:0]	0x00	H0	R/W	_
06a8	(QSPI Ch.0 Mode Byte Register)	7–0	XIPEXT[7:0]	0x00	H0	R/W	

### 0x4000 06c0-0x4000 06d6

### I²C (I2C) Ch.1

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	I2C_1CLK	15–9	-	0x00	-	R	_
06c0	(I2C Ch.1 Clock	8	DBRUN	0	H0	R/W	
	Control Register)	7–6	-	0x0	-	R	
		5–4	CLKDIV[1:0]	0x0	H0	R/W	
		3–2	-	0x0	-	R	
		1–0	CLKSRC[1:0]	0x0	H0	R/W	
0x4000	I2C_1MOD	15–8	-	0x00	-	R	_
06c2	(I2C Ch.1 Mode	7–3	-	0x00	-	R	
	Register)	2	OADR10	0	H0	R/W	
		1	GCEN	0	H0	R/W	
		0	-	0	-	R	
0x4000	I2C_1BR	15–8	-	0x00	-	R	_
06c4	(I2C Ch.1 Baud-Rate	7	-	0	-	R	
	Register)	6–0	BRT[6:0]	0x7f	H0	R/W	
0x4000	I2C_1OADR	15–10	-	0x00	-	R	-
06c8	(I2C Ch.1 Own Address Register)	9–0	OADR[9:0]	0x000	H0	R/W	
0x4000	I2C_1CTL	15–8	-	0x00	-	R	_
06ca	(I2C Ch.1 Control	7–6	-	0x0	-	R	
	Register)	5	MST	0	H0	R/W	
		4	TXNACK	0	H0/S0	R/W	
		3	TXSTOP	0	H0/S0	R/W	
		2	TXSTART	0	H0/S0	R/W	
		1	SFTRST	0	H0	R/W	
		0	MODEN	0	H0	R/W	
0x4000	I2C_1TXD	15–8	_	0x00	-	R	-
0600	Data Register)	7–0	TXD[7:0]	0x00	HO	R/W	
0x4000	I2C_1RXD	15–8	_	0x00	-	R	-
Uoce	Data Register)	7–0	RXD[7:0]	0x00	H0	R	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	I2C_1INTF	15–13	-	0x0	-	R	-
06d0	(I2C Ch.1 Status	12	SDALOW	0	H0	R	
	and Interrupt Flag	11	SCLLOW	0	H0	R	
	Register)	10	BSY	0	H0/S0	R	
		9	TR	0	H0	R	
		8	-	0	-	R	
		7	BYTEENDIF	0	H0/S0	R/W	Cleared by writing 1.
		6	GCIF	0	H0/S0	R/W	
		5	NACKIF	0	H0/S0	R/W	
		4	STOPIF	0	H0/S0	R/W	
		3	STARTIF	0	H0/S0	R/W	
		2	ERRIF	0	H0/S0	R/W	
		1	RBFIF	0	H0/S0	R	Cleared by reading the I2C_1RXD register.
		0	TBEIF	0	H0/S0	R	Cleared by writing to the I2C_1TXD register.
0x4000	I2C_1INTE	15–8	-	0x00	-	R	-
06d2	(I2C Ch.1 Interrupt	7	BYTEENDIE	0	H0	R/W	
	Enable Register)	6	GCIE	0	H0	R/W	
		5	NACKIE	0	H0	R/W	
		4	STOPIE	0	H0	R/W	
		3	STARTIE	0	H0	R/W	
		2	ERRIE	0	HO	R/W	
		1	RBFIE	0	H0	R/W	
		0	TBEIE	0	H0	R/W	
0x4000 06d4	I2C_1TBEDMAEN	15–8	_	0x00	-	R	_
	Buffer Empty DMA	7–4	_	0x0	_	R	
	Request Enable Register)	3–0	TBEDMAEN[3:0]	0x0	H0	R/W	
0x4000 06d6	I2C_1RBFDMAEN	15–8	_	0x00	-	R	_
	Buffer Full DMA	7–4	_	0x0	-	R	
	Request Enable Register)	3–0	RBFDMAEN[3:0]	0x0	H0	R/W	

### 0x4000 0700-0x4000 070c

#### Sound Generator (SNDA)

		D''			<b>.</b> .	DAV	<b></b>
Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	00 SNDACLK	15–9	-	0x00	-	R	_
0700	(SNDA Clock Control	8	DBRUN	0	HO	R/W	
	Register)	7	-	0	-	R	
		6–4	CLKDIV[2:0]	0x0	HO	R/W	
		3–2	-	0x0	-	R	
		1–0	CLKSRC[1:0]	0x0	H0	R/W	
0x4000	SNDASEL	15–12	-	0x0	-	R	_
0702	(SNDA Select	11–8	STIM[3:0]	0x0	H0	R/W	
Register)	Register)	7–3	-	0x00	-	R	
		2	SINV	0	H0	R/W	
		1–0	MOSEL[1:0]	0x0	H0	R/W	
0x4000	SNDACTL	15–9	-	0x00	-	R	_
0704	(SNDA Control	8	SSTP	0	H0	R/W	
	Register)	7–1	-	0x00	-	R	
		0	MODEN	0	H0	R/W	
0x4000	SNDADAT	15	MDTI	0	H0	R/W	_
0706	(SNDA Data	14	MDRS	0	HO	R/W	
	Register)	13–8	SLEN[5:0]	0x00	HO	R/W	
		7–0	SFRQ[7:0]	0xff	HO	R/W	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	SNDAINTF	15–9	-	0x00	-	R	_
0708	(SNDA Interrupt Flag	8	SBSY	0	HO	R	
	Register)	7–2	-	0x00	-	R	
		1	EMIF	1	H0	R	Cleared by writing to the
		0	EDIF	0	H0	R/W	Cleared by writing 1 or writ- ing to the SNDADAT register.
0x4000	SNDAINTE	15–8	-	0x00	_	R	_
070a	(SNDA Interrupt	7–2	-	0x00	-	R	
	Enable Register)	1	EMIE	0	HO	R/W	
		0	EDIE	0	HO	R/W	-
0x4000	SNDAEMDMAEN	15–8	-	0x00	-	R	-
070c	(SNDA Sound Buffer	7–4	-	0x0	-	R	
	Enable Register)	3–0	EMDMAEN[3:0]	0x0	H0	R/W	1

### 0x4000 0720-0x4000 0732

### IR Remote Controller (REMC3)

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	REMC3CLK	15–9	-	0x00	-	R	-
0720	(REMC3 Clock Con-	8	DBRUN	0	HO	R/W	-
	trol Register)	7–4	CLKDIV[3:0]	0x0	HO	R/W	1
		3–2	-	0x0	_	R	
		1-0	CLKSRC[1:0]	0x0	HO	R/W	-
0x4000	REMC3DBCTL	15-10	-	0x00	_	R	_
0722	(REMC3 Data Bit	9	PRESET	0	H0/S0	R/W	Cleared by writing 1 to the
	Counter Control Register)	8	PRUN	0	H0/S0	R/W	REMC3DBCTL.REMCRST
		7–5	-	0x0	-	R	-
		4	REMOINV	0	HO	R/W	_
		3	BUFEN	0	HO	R/W	_
		2	TRMD	0	H0	R/W	_
		1	REMCRST	0	H0	W	_
		0	MODEN	0	H0	R/W	
0x4000 0724	REMC3DBCNT (REMC3 Data Bit Counter Register)	15–0	DBCNT[15:0]	0x0000	H0/S0	R	Cleared by writing 1 to the REMC3DBCTL.REMCRST bit.
0x4000 0726	REMC3APLEN (REMC3 Data Bit Active Pulse Length Register)	15–0	APLEN[15:0]	0x0000	HO	R/W	Writing enabled when REMC3DBCTL.MODEN bit = 1.
0x4000 0728	REMC3DBLEN (REMC3 Data Bit Length Register)	15–0	DBLEN[15:0]	0x0000	HO	R/W	Writing enabled when REMC3DBCTL.MODEN bit = 1.
0x4000	REMC3INTF	15–11	-	0x00	-	R	-
072a	(REMC3 Status and Interrupt Flag Register)	10	DBCNTRUN	0	H0/S0	R	Cleared by writing 1 to the REMC3DBCTL.REMCRST bit.
		9	DBLENBSY	0	H0	R	Effective when the
		8	APLENBSY	0	H0	R	REMC3DBCTL.BUFEN bit = 1.
		7–2	-	0x00	-	R	-
		1	DBIF	0	H0/S0	R/W	Cleared by writing 1 to this bit or the REMC3DBCTL.
		0	APIF	0	H0/S0	R/W	REMCRST bit.
0x4000	REMC3INTE	15–8	-	0x00	-	R	-
072c	(REMC3 Interrupt	7–2	-	0x00	-	R	1
	Enable Register)	1	DBIE	0	H0	R/W	1
		0	APIE	0	H0	R/W	1

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	REMC3CARR	15–8	CRDTY[7:0]	0x00	HO	R/W	-
0730	(REMC3 Carrier Waveform Register)	7–0	CRPER[7:0]	0x00	H0	R/W	
0x4000	REMC3CCTL	15–9	-	0x00	-	R	_
0732	(REMC3 Carrier	8	OUTINVEN	0	H0	R/W	
	Modulation Control	7–1	-	0x00	-	R	
	Register)	0	CARREN	0	H0	R/W	

### 0x4000 0780-0x4000 078c

16-bit Timer (T16) Ch.7

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	T16_7CLK	15–9	-	0x00	-	R	-
0780	(T16 Ch.7 Clock	8	DBRUN	0	H0	R/W	
	Control Register)	7–4	CLKDIV[3:0]	0x0	H0	R/W	
		3–2	-	0x0	-	R	-
		1–0	CLKSRC[1:0]	0x0	H0	R/W	-
0x4000	T16_7MOD	15–8	-	0x00	-	R	-
0782	(T16 Ch.7 Mode	7–1	-	0x00	-	R	_
	Register)	0	TRMD	0	HO	R/W	-
0x4000	T16_7CTL	15–9	-	0x00	-	R	-
0784	(T16 Ch.7 Control	8	PRUN	0	H0	R/W	
	Register)	7–2	-	0x00	-	R	
		1	PRESET	0	HO	R/W	
		0	MODEN	0	H0	R/W	
0x4000	T16_7TR	15–0	TR[15:0]	0xffff	H0	R/W	-
0786	(T16 Ch.7 Reload						
	Data Register)						
0x4000	T16_7TC	15–0	TC[15:0]	Oxffff	HO	R	-
0788	(T16 Ch.7 Counter						
01000	Data Register)	15.0		000			
0790	TI6_/INTF	15-8	-	0000	-	R	-
076a	Elag Bagistor)	/-1	-	000	-	R .	
	riag negisier)	0	UFIF	0	H0	R/W	Cleared by writing 1.
0x4000	T16_7INTE	15-8	-	0x00	-	R	
078c	(T16 Ch.7 Interrupt	7–1	-	0x00	-	R	
	Enable Register)	0	UFIE	0	HO	R/W	

### 0x4000 07a0-0x4000 07bc

12-bit A/D Converter (ADC12A) Ch.0

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	ADC12A_0CTL	15	-	0	-	R	_
07a2	(ADC12A Ch.0	14–12	ADSTAT[2:0]	0x0	HO	R	
	Control Register)	11	-	0	-	R	
		10	BSYSTAT	0	H0	R	
		9–8	-	0x0	-	R	
		7–2	-	0x00	-	R	
		1	ADST	0	H0	R/W	
		0	MODEN	0	H0	R/W	
0x4000	ADC12A_0TRG	15–14	-	0x0	-	R	_
07a4	(ADC12A Ch.0	13–11	ENDAIN[2:0]	0x0	H0	R/W	
	Trigger/Analog Input	10–8	STAAIN[2:0]	0x0	H0	R/W	
	Select Register)	7	STMD	0	H0	R/W	
		6	CNVMD	0	H0	R/W	
		5–4	CNVTRG[1:0]	0x0	H0	R/W	
		3	-	0	-	R	
		2–0	SMPCLK[2:0]	0x7	H0	R/W	
0x4000	ADC12A_0CFG	15–8	-	0x00	-	R	_
07a6	(ADC12A Ch.0 Con-	7–2	-	0x00	_	R	
	figuration Register)	1–0	VRANGE[1:0]	0x0	HO	R/W	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	ADC12A_0INTF	15–9	-	0x00	-	R	-
07a8	(ADC12A Ch.0	8	OVIF	0	H0	R/W	Cleared by writing 1.
	Interrupt Flag	7	AD7CIF	0	H0	R/W	
	Register)	6	AD6CIF	0	H0	R/W	_
		5	AD5CIF	0	H0	R/W	-
		4	AD4CIF	0	HO	R/W	
		3	AD3CIF	0	HO	R/W	
		2	AD2CIF	0	HO	R/W	_
		1	AD1CIF	0	HO	R/W	_
		0	AD0CIF	0	HO	R/W	
0x4000	ADC12A_0INTE	15–9	-	0x00	-	R	
07aa	(ADC12A Ch.0	8	OVIE	0	HO	R/W	-
	Interrupt Enable	7	AD7CIE	0	HO	R/W	-
	negister)	6	AD6CIE	0	HO	R/W	-
		5	AD5CIE	0	HO	R/W	-
		4	AD4CIE	0	HO	R/W	-
		3	AD3CIE	0	HO	R/W	-
		2	AD2CIE	0	HO	R/W	-
		1	AD1CIE	0	HO	R/W	-
		0	ADOCIE	0	HO	R/W	
0x4000	ADC12A_0DMAEN0	15-8	-	0x00	-	R	-
orac	Request Enable	7–4	-	0x0	-	R	
	Register 0)	3–0	ADCDMAEN[3:0]	0x0	HO	R/W	
0x4000	ADC12A_0DMAEN1	15–8	-	0x00	-	R	-
07ae	(ADC12A Ch.0 DMA Bequest Enable	7–4	-	0x0	-	R	
	Register 1)	3–0	ADCDMAEN[3:0]	0x0	H0	R/W	
0x4000	ADC12A_0DMAEN2	15–8	-	0x00	-	R	-
07b0	(ADC12A Ch.0 DMA Bequest Enable	7–4	-	0x0	-	R	
	Register 2)	3–0	ADCDMAEN[3:0]	0x0	H0	R/W	
0x4000	ADC12A_0DMAEN3	15–8	-	0x00	-	R	-
07b2	(ADC12A Ch.0 DMA	7–4	-	0x0	-	R	
	Register 3)	3–0	ADCDMAEN[3:0]	0x0	H0	R/W	
0x4000	ADC12A_0DMAEN4	15–8	-	0x00	-	R	-
07b4	(ADC12A Ch.0 DMA	7–4	-	0x0	-	R	
	Register 4)	3–0	ADCDMAEN[3:0]	0x0	H0	R/W	
0x4000	ADC12A_0DMAEN5	15–8	-	0x00	-	R	-
07b6	(ADC12A Ch.0 DMA	7–4	-	0x0	-	R	
	Register 5)	3–0	ADCDMAEN[3:0]	0x0	H0	R/W	
0x4000	ADC12A_0DMAEN6	15–8	-	0x00	-	R	-
07b8	(ADC12A Ch.0 DMA	7–4	-	0x0	-	R	
	Register 6)	3–0	ADCDMAEN[3:0]	0x0	H0	R/W	1
0x4000	ADC12A_0DMAEN7	15–8	-	0x00	-	R	-
07ba	(ADC12A Ch.0 DMA	7–4	-	0x0	-	R	
	Register 7)	3–0	ADCDMAEN[3:0]	0x0	H0	R/W	
0x4000 07bc	ADC12A_0ADD (ADC12A Ch.0 Result Register)	15–0	ADD[15:0]	0x0000	HO	R	-

#### 0x4000 07c0-0x4000 07c2 Temperature Sensor/Reference Voltage Generator (TSRVR) Ch.0

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000 TSRVR 07c0 (TSRVR Tempera Control	TSRVR_0TCTL	15–8	-	0x00	-	R	_
	(TSRVR Ch.0 Temperature Sensor	7–1	-	0x00	HO	R	
	Control Register)	0	TEMPEN	0	HO	R/W	
0x4000 07c2	TSRVR_0VCTL (TSRVR Ch.0 Reference Voltage Generator Control Register)	15–8	-	0x00	-	R	-
		7–2	-	0x00	H0	R	
		1–0	VREFAMD[1:0]	0x0	H0	R/W	

### 0x2040 0000-0x2040 0104, 0x4000 0970-0x4000 0976 USB 2.0 FS Device Controller (USB, USBMISC)

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x2040	USBCTL	7	BUSDETDIS	0	H0/S0	R/W	-
0002	(USB Control	6	AUTONEGOEN	0	H0/S0	R/W	]
	Register)	5	NONJDETEN	0	H0/S0	R/W	]
		4	JDETEN	0	H0/S0	R/W	
		3	WAKEUP	0	H0/S0	R/W	1
		2–1	-	0x0	_	R	1
		0	USBEN	0	H0/S0	R/W	1
0x2040	USBTRCTL	7	DPPUEN	0	H0/S0	R/W	_
0003	(USB Transceiver	6–2	-	0x00	_	R	1
	Control Register)	1–0	OPMOD[1:0]	0x1	H0/S0	R/W	1
0x2040	USBSTAT	7	VBUSSTAT	Х	-	R	-
0004	(USB Status Register)	6	FSMOD	Х	-	R	1
		5–2	-	Х	-	R	1
		1–0	LINESTAT[1:0]	Х	-	R	1
0x2040	USBEPCTL	7	EPNFNAKSET	0	H0/S0	R/W	_
0008	(USB Endpoint	6	EPMFSTALLSET	0	H0/S0	R/W	1
	Control Register)	5	EPNFIFOCLR	0	H0/S0	R/W	1
		4–1	_	0x0	_	R	1
		0	EP0FIFOCLR	0	H0/S0	R/W	1
0x2040	USBGPEPFIFOCLR	7–3	_	0x00	_	R	_
0009	(USB General-Purpose	2	EPCFIFOCLR	0	H0/S0	R/W	1
	Endpoint FIFO Clear	1	EPBFIFOCLR	0	H0/S0	R/W	1
	Register)	0	EPAFIFOCLR	0	H0/S0	R/W	1
0x2040	USBFIFORDCYC	7-2	_	0x00	_	R	_
000a	(USB FIFO Read	1.0		0.0	110/00	D ///	-
	Cycle Setup Register)	1–0	RDCYC[1:0]	0x3	H0/S0	R/W	
0x2040	USBREV	7–0	REVNUM[7:0]	0x12	H0/S0	R	-
000e	(USB Revision						
0x2040		7 0		0×00		D	
0010	(USB EP0 Setup Data	7-0		0,00	_	п	[ ⁻
0010	Register 0)						
0x2040	USBEP0SETUP1	7–0	BREQ[7:0]	0x00	-	R	_
0011	(USB EP0 Setup Data						
	Register 1)						
0x2040	USBEP0SETUP2	7–0	WVAL[7:0]	0x00	-	R	-
0012	(USB EP0 Setup Data						
	Register 2)						
0x2040	USBEP0SETUP3	7–0	WVAL[15:8]	0x00	-	R	-
0013	(USB EPU Setup Data						
0x2040		7.0		0×00		D	
0014	USB EP0 Setup Data	7-0		0,000	_	п	-
	Register 4)						
0x2040	USBEP0SETUP5	7–0	WINDX[15:8]	0x00	-	R	_
0015	(USB EP0 Setup Data		L J				
	Register 5)						

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x2040	USBEP0SETUP6	7–0	WLEN[7:0]	0x00	_	R	_
0016	(USB EP0 Setup Data						
	Register 6)						
0x2040	USBEP0SETUP7	7–0	WLEN[15:8]	0x00	-	R	-
0017	(USB EP0 Setup Data						
00040	Register 7)			0			
0X2040		1	AIADDR	0	-	R/W	
0018	(USB Address Register)	6–0	USBADDR[6:0]	0x00	H0/S0	R/W	
0x2040	USBEP0CEG	7	DIR	0	H0/S0	R/W	
001a	(USB EP0 Configuration Register)						
o o na		6–0	-	0x00	_	R	-
0x2040	USBEP0SIZE	7	-	0	-	R	-
001b	(USB EP0 Maximum	6–3	MAXSIZE[3:0]	0x1	H0/S0	R/W	
	Packet Size Register)	2–0		0x0	-	R	
0x2040	USBEPOICTL	7	-	0	-	R	
001c	(USB EP0 IN	6	SPKTEN	0	H0/S0	R/W	
	Transaction Control	5	-	0	-	R	
	Register)	4	TGLSTAT	0	H0/S0	R	
		3	TGLSET	0	H0/S0	W	Read as 0.
		2	TGLCLR	0	H0/S0	W	
		1	FNAK	0	H0/S0	R/W	
		0	FSTALL	0	H0/S0	R/W	
0x2040	USBEP0OCTL (USB EP0 OUT Transaction Control Register)	7	AUTOFNAK	0	H0/S0	R/W	
001d		6–5	-	0x0	H0/S0	R/W	
		4	TGLSTAT	0	H0/S0	R	
		3	TGLSET	0	H0/S0	W	Read as 0.
		2	TGLCLR	0	H0/S0	W	
		1	FNAK	0	H0/S0	R/W	
		0	FSTALL	0	H0/S0	R/W	
0x2040	USBEPACTL (USB EPa Control Register)	7	AUTOFNAK	0	H0/S0	R/W	
0020		6	SPKTEN	0	H0/S0	R/W	_
		5	AUTOFNAKDIS	0	H0/S0	R/W	_
		4	TGLSTAT	0	H0/S0	R	
		3	TGLSET	0	H0/S0	W	Read as 0.
		2	TGLCLR	0	H0/S0	W	
		1	FNAK	0	H0/S0	R/W	-
		0	FSTALL	0	H0/S0	R/W	
0x2040	USBEPBCTL (USB EPb Control Register)	7	AUTOFNAK	0	H0/S0	R/W	
0022		6	SPKIEN	0	H0/S0	R/W	-
		5	AUTOFNAKDIS	0	H0/S0	R/W	-
		4	TGLSTAT	0	H0/S0	K	
		3	TGLSET	0	H0/S0	V	Read as 0.
		2	TGLCLR	0	H0/S0	VV	
			FNAK	0	H0/S0	R/W	-
0,0040		- 0		0	HU/SU	H/W	
0x2040 0024	(USBEPCCTL (USB EPc Control Register)	6		0			-
		D F		0			-
		2			H0/S0		-
		4		0	H0/S0	N/	Road as 0
		3		0		VV	
		- 2			H0/S0		
					H0/S0		-
L		0			110/30	E1/ V V	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x2040	USBEPACFG	7	DIR	0	H0/S0	R/W	-
0030	(USB EPa	6	TGLMOD	0	H0/S0	R/W	1
	Configuration	5	EPEN	0	H0/S0	R/W	-
	Register)	4	-	0	_	R	1
		3–0	EPNUM[3:0]	0x0	H0/S0	R/W	
0x2040	USBEPAMAXSZ	7	-	0	_	R	-
0031	(USB EPa Maximum Packet Size Register)	6.0		0,000	110/00		-
		0-0	MAASIZE[0:0]	000	HU/50	H/ W	
0x2040	USBEPBCFG	7	DIR	0	H0/S0	R/W	
0032	(USB EPb Configuration Register)	6	TGLMOD	0	H0/S0	R/W	
		5	EPEN	0	H0/S0	R/W	
		4	-	0	-	R	
		3–0	EPNUM[3:0]	0x0	H0/S0	R/W	
0x2040	USBEPBMAXSZ	7	-	0	-	R	-
0033	Packet Size Register)	6–0	MAXSIZE[6:0]	0x00	H0/S0	R/W	_
0x2040	USBEPCCFG	7	DIR	0	H0/S0	R/W	-
0034	(USB EPc	6	TGLMOD	0	H0/S0	R/W	1
	Configuration	5	EPEN	0	H0/S0	R/W	1
	Register)	4	_	0	_	R	
		3–0	EPNUM[3:0]	0x0	H0/S0	R/W	-
0x2040	USBEPCMAXSZ	7	-	0	-	R	-
0035	(USB EPc Maximum	6–0	MAXSIZE[6:0]	0x00	H0/S0	R/W	-
0x2040		7 2		0×00		D	
0,2040	(USB Read FIFO			0,00			-
0040	Select Register)	- 2		0	H0/S0		-
		0		0	H0/S0		-
0x2040		7.2		0,00	HU/30		
002040	(USB Write FIFO	n-5		0,00	- LI0/S0		-
0041	Select Register)	1		0	H0/S0	R/W	-
		0		0	H0/S0	R/M	-
0x2040		7_2		0x00	-	B	
0042	(USB FIFO Read/	12		0,00			-
0012	Write Enable Register)	1	FIFOWREN	0	H0/S0	R/W	
		0	FIFORDEN	0	H0/S0	R/W	
0x2040	USBREMDATCNT	7	-	0	-	R	-
0046	Data Count Register)	6–0	REMDAT[6:0]	0x00	H0/S0	R	-
0x2040	USBREMSPCCNT	7	-	0	-	R	-
0048	(USB Remaining FIFO	6–0	REMSPC[6:0]	0x08	H0/S0	R	-
0x2040	USBDBGRAMADDR	7–0	DRAMADDR[7:0]	0x00	H0/S0	R/W	_
004a	(USB Debug RAM Address Register)	1 0		UNU UNU	110,00		
0x2040	USBMAININTF	7	SIEIF	0	H0/S0	R	Cleared by writing 1 to the
0050	(USB Main Interrupt Flag Register)						interrupt flag in the USBSIE- INTF register.
		6	GPEPIF	0	H0/S0	R	Cleared by writing 1 to the interrupt flag in the USBEP- <i>m</i> INTF register.
		5–2	-	0x0	-	R	-
		1	EPOIF	0	H0/S0	R	Cleared by writing 1 to the interrupt flag in the US- BEP0INTF register.
		0	EPOSETIF	0	H0/S0	R/W	Cleared by writing 1.
Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
---------	---------------------	-----	------------	---------	-------	------	------------------------------
0x2040	USBSIEINTF	7	-	0	-	R	-
0051	(USB SIE Interrupt	6	NONJIF	0	H0/S0	R/W	Cleared by writing 1.
	Flag Register)	5	RESETIF	0	H0/S0	R/W	1 2 2
		4	SUSPENDIF	0	H0/S0	R/W	-
		3	SOFIF	0	H0/S0	R/W	-
		2	JIF	0	H0/S0	R/W	1
		1	-	0	_	R	_
		0	ATADDRIF	0	H0/S0	R/W	Cleared by writing 1.
0x2040	USBGPEPINTE	7–3	-	0x00	_	R	_
0052	(USB General-			0,100			
	Purpose Endpoint	2	EPCIF	0	H0/S0	R	Cleared by writing 1 to the
	Interrupt Flag	1	EPBIF	0	H0/S0	R	interrupt flag in the USBEP-
	Register)	0	EPAIF	0	H0/S0	R	mINTF register.
0x2040	USBEPOINTF	7–6	_	0x0	_	R	_
0053	(USB EP0 Interrupt	5	INACKIE	0	H0/S0	R/W	Cleared by writing 1.
	Flag Register)	4	OUTACKIF	0	H0/S0	R/W	
		3	INNAKIF	0	H0/S0	R/W	-
		2	OUTNAKIE	0	H0/S0	R/W	-
		1	INFRRIF	0	H0/S0	R/W	-
		0	OUTEBBIE	0	H0/S0	R/W	-
0x2040		7	_	0	_		_
0054	(USB EPa Interrupt	6		0	H0/S0	R/W	Cleared by writing 1
0004	Flag Register)	5		0	H0/S0	R/M	Cleared by writing 1.
		1		0	L0/S0		-
		- 4		0	10/50		-
		2		0	H0/S0		-
		- 2		0	H0/S0		-
		0		0	HU/SU		-
0.0040		7	OUTERRIF	0	HU/SU	R/ W	
0X2040	USBEPBINTF	1		0	-	R	
0055	(USB LFD Interrupt	6	OUTSHACKIE	0	H0/S0	R/W	Cleared by writing 1.
	riag riegister)	5		0	H0/S0	R/W	-
		4		0	H0/S0	R/W	-
		3		0	H0/S0	R/W	-
		2		0	H0/S0	R/W	-
		1		0	H0/S0	R/W	-
		0	OUTERRIF	0	H0/S0	R/W	
0x2040	USBEPCINTE	1	-	0	-	R	-
0056	(USB EPC Interrupt	6	OUTSHACKIF	0	H0/S0	R/W	Cleared by writing 1.
	Flag Register)	5	INACKIF	0	H0/S0	R/W	-
		4	OUTACKIF	0	H0/S0	R/W	-
		3	INNAKIF	0	H0/S0	R/W	-
		2	OUTNAKIF	0	H0/S0	R/W	-
		1	INERRIF	0	H0/S0	R/W	_
		0	OUTERRIF	0	H0/S0	R/W	
0x2040	USBMAININTE	7	SIEIE	0	H0/S0	R/W	
0060	(USB Main Interrupt	6	GPEPIE	0	H0/S0	R/W	_
	Enable Register)	5–2	-	0x0	-	R	_
		1	EPOIE	0	H0/S0	R/W	
		0	EPOSETIE	0	H0/S0	R/W	
0x2040	USBSIEINTE	7	(reserved)	0	H0/S0	R/W	
0061	(USB SIE Interrupt	6	NONJIE	0	H0/S0	R/W	
	Enable Register)	5	RESETIE	0	H0/S0	R/W	
		4	SUSPENDIE	0	H0/S0	R/W	
		3	SOFIE	0	H0/S0	R/W	
		2	JIE	0	H0/S0	R/W	
		1	-	0	-	R	
		0	ATADDRIE	0	H0/S0	R/W	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x2040	USBGPEPINTE	7–3	_	0x00	-	R	-
0062	(USB General-						
	Purpose Endpoint	2	EPCIE	0	H0/S0	R/W	
	Interrupt Enable	1	EPBIE	0	H0/S0	R/W	
	Register)	0	EPAIE	0	H0/S0	R/W	
0x2040	USBEPOINTE	7–6	-	0x0	-	R	-
0063	(USB EP0 Interrupt	5	INACKIE	0	H0/S0	R/W	
	Enable Register)	4	OUTACKIE	0	H0/S0	R/W	
		3	INNAKIE	0	H0/S0	R/W	
		2	OUTNAKIE	0	H0/S0	R/W	
		1	INERRIE	0	H0/S0	R/W	
		0	OUTERRIE	0	H0/S0	R/W	
0x2040	USBEPAINTE	7	-	0	_	R	_
0064	(USB EPa Interrupt	6	OUTSHACKIE	0	H0/S0	R/W	
	Enable Register)	5		0	H0/S0	R/W	
		4		0	H0/S0	R/W	
		3		0	H0/S0	R/W	
		2		0	H0/S0	R/W	
		1	INERRIE	0	H0/S0	R/M	
				0	H0/S0		
0,2040				0	П0/30		
0065	USBEPBINTE	- /		0	-		
0005	Enable Register)	0		0	HU/SU		
		5		0	H0/50	R/W	
		4		0	H0/S0	R/W	
		3		0	H0/S0	R/W	
		2		0	H0/S0	R/W	
		1		0	H0/S0	R/W	
		0	OUTERRIE	0	H0/S0	R/W	
0x2040	USBEPCINTE	7	-	0	-	R	-
0066	(USB EPC Interrupt	6	OUTSHACKIE	0	H0/S0	R/W	
	Enable Register)	5	INACKIE	0	H0/S0	R/W	
		4	OUTACKIE	0	H0/S0	R/W	
		3	INNAKIE	0	H0/S0	R/W	
		2	OUTNAKIE	0	H0/S0	R/W	
		1	INERRIE	0	H0/S0	R/W	
		0	OUTERRIE	0	H0/S0	R/W	
0x2040 0100	USBFIFODAT (USB FIFO Data Register)	7–0	FIFODAT[7:0]	X	_	R/W	-
0x2040 0104	USBDBGRAMDAT (USB Debug RAM Data Register)	7–0	DBRAMDAT[7:0]	X	-	R/W	-
0x4000	USBMISCCTL	15–13	-	0x0	-	R	
0970	(USB Misc Control	12	USBWAIT	1	H0	R/WP	
	Register)	11–9	-	0x0	-	R	
		8	USBSNZ	0	H0	R/WP	
		7	-	0	-	R	
		6	USBPLLEN	0	H0	R/WP	
		5	_	0	_	R	
		4	VBUSDET	0	НО	R/WP	
		3	USBRST	0	HO	R/WP	
		2	-	0	_	R	
		1	BEG18VEN	0	HO	R/WP	
		0	BEG33VEN	0	HO	R/MP	
0x4000		15_8	_	0x00		R	_
0974	(USB FIFO Write	7 4		0,00			
	DMA Request Enable	/-4	-	UXU	-	К	
	Register)	3–0	WRDMAEN[3:0]	0x0	HO	R/W	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	USBMISCRDDMAEN	15–8	-	0x00	-	R	-
0976	(USB FIFO Read	7–4	-	0x0	-	R	
	Register)	3–0	RDDMAEN[3:0]	0x0	HO	R/W	

# 0x4000 1000-0x4000 2014

# DMA Controller (DMAC)

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	DMACSTAT	31–24	-	0x00	-	R	_
1000	(DMAC Status	23–21	-	0x0	-	R	
	Register)	20–16	CHNLS[4:0]	*	H0	R	<ul> <li>Number of channels</li> <li>implemented - 1</li> </ul>
		15–8	-	0x00	-	R	_
		7–4	STATE[3:0]	0x0	HO	R	
		3–1	-	0x0	-	R	
		0	MSTENSTAT	0	HO	R	
0x4000	DMACCFG	31–24	-	0x00	-	R	_
1004	(DMAC Configuration	23–16	-	0x00	-	R	
	Register)	15–8	-	0x00	-	R	
		7–1	-	0x00	-	R	
		0	MSTEN	-	-	W	
0x4000 1008	DMACCPTR (DMAC Control Data	31–7	CPTR[31:7]	0x000 0000	H0	R/W	-
	Base Pointer Register)	6–0	CPTR[6:0]	0x00	HO	R	
0x4000 100c	DMACACPTR (DMAC Alternate Control Data Base Pointer Register)	31–0	ACPTR[31:0]	-	HO	R	-
0x4000	DMACSWREQ	31–24	-	-	-	R	_
1014	(DMAC Software	23–16	-	-	-	R	
Request F	Request Register)	15–8	-	-	-	R	
		7–4	-	-	-	R	
		3–0	SWREQ[3:0]	-	-	W	
0x4000	DMACRMSET	31–24	-	0x00	-	R	_
1020	(DMAC Request	23–16	-	0x00	-	R	
	Mask Set Register)	15–8	-	0x00	-	R	
		7–4	-	0x0	-	R	
		3–0	RMSET[3:0]	0x0	H0	R/W	
0x4000	DMACRMCLR	31–24	-	-	-	R	_
1024	(DMAC Request	23–16	-	-	-	R	
	Mask Clear Register)	15–8	-	-	-	R	
		7–4	-	-	-	R	
		3–0	RMCLR[3:0]	-	-	W	
0x4000	DMACENSET	31–24	-	0x00	-	R	
1028	(DMAC Enable Set	23–16	-	0x00	-	R	
	Register)	15–8	-	0x00	-	R	-
		7–4	-	0x0	-	R	
		3–0	ENSET[3:0]	0x0	HO	R/W	
0x4000	DMACENCLR	31–24	-	-	-	R	-
102c	(DMAC Enable Clear	23–16	-	-	-	R	
	Register)	15–8	-	-	-	R	
		7–4	-	_	-	R	
		3-0	ENCLR[3:0]	_	-	W	
0x4000	DMACPASET	31-24	-	0x00	-	R	_
1030	(UMAC Primary-Alter-	23-16	-	0x00	-	R	
	nale Sel Register)	15-8	-	0x00	-	R	
		7-4	-	0x0	-	R	
		3–0	PASET[3:0]	0x0	H0	R/W	

DMACPALR (DMAC Primary-Neter nate Clear Register)         31-24 -         -         -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -	Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
1034       (DMAC Primary-Alter, and Clear Register)          15-8	0x4000	DMACPACLR	31–24	-	-	-	R	_
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1034	(DMAC Primary-Alter-	23–16	-	-	-	R	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		nate Clear Register)	15–8	-	-	-	R	
-         -         -         W           0x4000         DMACPRSET Register)         31-24         -         0x00         -         R           1038         (DMAC Priority Stept Register)         15-8         -         0x00         -         R           1030         0MACPRCLR         3-0         PRSET[3:0]         0x0         -         R           0x4000         0MACPRCLR         31-24         -         -         R         -           103c         (DMAC Priority Clear Register)         15-8         -         -         R         -           10400         DMACERRIF         31-24         -         -         R         -           104c         MACERRIF         31-24         -         -         R         -           104c         DMACERRIF         31-24         -         0x000         -         R           104c         MACERNIF         23-16         -         0x000         -         R           10400         DMACENDIF         23-16         -         0x00         -         R           15-8         -         0x00         -         R         -         -           16			7–4	-	-	-	R	-
DMACPRSET (DMAC Priority Set Register)         31-24 -23-16 -         Ox00 -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -         R -			3–0	PACLR[3:0]	-	-	W	-
1038         (DMAC Priority Set Register)         23-16         -         0x00         -         R           0x4000         DMACPRCIR (DMAC Priority Clear Register)         31-24         -         -         R           103c         (DMAC Priority Clear Register)         31-24         -         -         R           15-8         -         -         -         R         R         -         R           0x4000         DMACERRIF         31-24         -         -         R         R         -         R         R         -         R         R         -         R         R         -         R         R         -         R         R         -         R         R         -         R         R         -         R         R         -         R         R         -         R         R         -         R         R         -         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R	0x4000	DMACPRSET	31–24	-	0x00	-	R	_
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1038	(DMAC Priority Set	23–16	-	0x00	-	R	
$ \begin{vmatrix} 7-4 & - & 0x0 & - & R \\ 3-0 & PRSET[3:0] & 0x0 & H0 & R/W \\ 0MAC Priority Clear \\ (DMAC Priority Clear \\ Register) & 31-24 - & - & R \\ 15-8 & - & - & - & R \\ 7-4 & - & - & R \\ 3-0 & PRCLR[3:0] & - & - & R \\ 7-4 & - & - & R \\ 3-0 & PRCLR[3:0] & - & - & R \\ 7-4 & - & - & R \\ 7-4 & - & - & R \\ 7-1 & - & 0x00 & - & R \\ 15-8 & - & 0x00 & - & R \\ 15-8 & - & 0x00 & - & R \\ 15-8 & - & 0x00 & - & R \\ 7-1 & - & 0x00 & - & R \\ 7-1 & - & 0x00 & - & R \\ 0MAC Error Interrupt \\ Rangletion Interrupt \\ Rangletio$		Register)	15–8	-	0x00	-	R	
0x4000         DMACPRCLR (DMAC Priority Clear Register)         31-24         -         -         -         R           103c         (DMAC Priority Clear Register)         15-8         -         -         R         -         R           103c         (DMAC Error Interrupt Flag Register)         31-24         -         -         R         -         R           104c         (DMAC Error Interrupt Flag Register)         31-24         -         0x000         -         R         -         -         W           0x4000         DMACENDIF Flag Register)         31-24         -         0x000         -         R         -         -         W         -           0         ERRIF         0         H0         R/W         Cleared by writing 1.         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - </td <td></td> <td></td> <td>7–4</td> <td>-</td> <td>0x0</td> <td>-</td> <td>R</td> <td></td>			7–4	-	0x0	-	R	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			3–0	PRSET[3:0]	0x0	HO	R/W	
103c         (DMAC Priority Clear Register)         23-16         -         -         R           103c         Register)         15-8         -         -         R           0x4000         DMACERRIF         3-0         PRCLR[3:0]         -         -         W           104c         Image: Constraint of the matrix of the	0x4000	DMACPRCLR	31–24	-	-	-	R	_
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	103c	(DMAC Priority Clear	23–16	_	-	-	R	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Register)	15–8	_	-	-	R	
0x4000         DMACERRIF         3-0         PRCLR[3:0]         -         -         W           104c         0MAC Error Interrupt (DMAC Error Interrupt Flag Register)         31-24         -         0x000         -         R           0         23-16         -         0x000         -         R           7-1         -         0x000         -         R           0         ERRIF         0         H0         R/W         Cleared by writing 1.           0x4000         DMACENDIF         23-16         -         0x00         -         R           2000         (DMAC Transfer Completion Interrupt Flag Register)         23-16         -         0x00         -         R           7-4         -         0x00         -         R         -         -         0x00         -         R           2008         DMACENDIESET         31-24         -         0x00         -         R         -         -         -         R         -         -         -         R         -         -         -         R         -         -         -         R         -         -         -         R         -         -         -         -         <			7–4	-	-	_	R	
			3–0	PRCLR[3:0]	-	-	W	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x4000	DMACERRIF	31–24	-	0x00	_	R	_
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	104c	(DMAC Error Interrupt	23–16	_	0x00	_	R	
$ \begin{vmatrix} 7-1 & - & 0 & 0 & - & R \\ 0 & ERIF & 0 & H0 & R/W & Cleared by writing 1. \\ 0 & 0 & 0 & 0 & - & R \\ 2000 & DMACENDIF & 31-24 & - & 0 & 0 & - & R \\ 23-16 & - & 0 & 0 & - & R \\ 15-8 & - & 0 & 0 & - & R \\ 15-8 & - & 0 & 0 & - & R \\ 3-0 & ENDIF[3:0] & 0 & 0 & H0 & R/W & Cleared by writing 1. \\ 0 & 0 & 0 & 0 & - & R \\ 15-8 & - & 0 & 0 & - & R \\ 3-0 & ENDIF[3:0] & 0 & 0 & - & R \\ 23-16 & - & 0 & 0 & - & R \\ 23-16 & - & 0 & 0 & - & R \\ 23-16 & - & 0 & 0 & - & R \\ 23-16 & - & 0 & 0 & - & R \\ 15-8 & - & 0 & 0 & - & R \\ 15-8 & - & 0 & 0 & - & R \\ 15-8 & - & 0 & 0 & - & R \\ 7-4 & - & 0 & 0 & - & R \\ 7-4 & - & 0 & 0 & - & R \\ 7-4 & - & 0 & 0 & - & R \\ 15-8 & - & 0 & 0 & - & R \\ 23-16 & - & - & - & R \\ 23-16 & - & - & - & R \\ 23-16 & - & - & - & R \\ 23-16 & - & - & - & R \\ 15-8 & - & - & - & R \\ 23-16 & - & - & - & R \\ 15-8 & - & - & - & R \\ 15-8 & - & - & - & R \\ 15-8 & - & - & - & R \\ 15-8 & - & - & - & R \\ 15-8 & - & - & - & R \\ 23-16 & - & - & - & R \\ 15-8 & - & 0 & 0 & - & R \\ 15-8 & - & 0 & 0 & - & R \\ 15-8 & - & 0 & 0 & - & R \\ 15-8 & 0 & 0 & 0 & - & R \\ 15-8 & - & 0 & 0 & - & R \\ 15-8 & - & 0 & 0 & - & R \\ 15-8 & - & 0 & 0 & - & R \\ 15-8 & - & 0 & 0 & - & R \\ 15-8 & - & 0 & 0 & - & R \\ 15-8 & - & 0 & 0 & - & R \\ 15-8 & - & 0 & 0 & - & R \\ 15-8 & - & 0 & 0 & 0 & - & R \\ 15-8 & - & 0 & 0 & 0 & - & R \\ 15-8 & - & 0 & 0 & 0 & - & R \\ 15-8 & - & 0 & 0 & 0 & - & R \\ 15-8 & - & 0 & 0 & 0 & - & R \\ 15-8 & - & 0 & 0 & 0 & - & R \\ 15-8 & - & 0 & 0 & 0 & - & R \\ 15-8 & - & 0 & 0 & 0 & - & R \\ 15-8 & - & 0 & 0 & 0 & - & R \\ 15-8 & - & 0 & 0 & 0 & - & R \\ 15-8 & - & 0 & 0 & 0 & - & R \\ 15-8 & - & 0 & 0 & 0 & - & R \\ 15-8 & - & 0 & 0 & 0 & - & R \\ 15-8 & - & 0 & 0 & 0 & - & R \\ 15-8 & - & 0 & 0 & 0 & - & R \\ 15-8 & - & 0 & 0 & 0 & - & R \\ 15-8 & - & 0 & 0 & 0 & - & R \\ 15-8 & - & 0 & 0 & 0 & - & R \\ 15-8 & - & 0 & 0 & 0 & - & R \\ 15-8 & - & 0 & 0 & 0 & - & R \\ 15-8 & - & 0 & 0 & 0 & - & R \\ 15-8 & - & 0 & 0 & 0 & - & R \\ 15-8 & - & 0 & 0 & 0 & - & R \\ 15-8 & - & 0 & 0 & 0 & - & R \\ 15-8 & - & 0 & 0 & 0 & - & R \\ 15-8 & - & 0$		Flag Register)	15–8	_	0x00	-	R	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			7–1	-	0x00	-	R	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0	ERRIF	0	HO	R/W	Cleared by writing 1.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0x4000	DMACENDIF	31–24	_	0x00	_	R	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2000	(DMAC Transfer	23–16	-	0x00	_	R	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Completion Interrupt	15–8	_	0x00	_	R	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Flag Register)	7–4	_	0x0	_	R	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			3–0	ENDIF[3:0]	0x0	HO	R/W	Cleared by writing 1.
$ \begin{array}{c} 2008 \\ 2008 \\ (DMAC Transfer \\ Completion Interrupt \\ Enable Set Register) \end{array} \begin{array}{c} 23-16 \\ - \\ 15-8 \\ - \\ -4 \\ - \\ 0 \end{array} \begin{array}{c} 0x00 \\ - \\ 0x00 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	0x4000	DMACENDIESET	31–24	-	0x00	_	R	_
$ \begin{bmatrix} Completion Interrupt Enable Set Register) \\ Finable Set Register) \\ \hline 15-8 \\ -7-4 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	2008	(DMAC Transfer	23–16	_	0x00	_	R	
$ \begin{bmatrix} \text{Enable Set Register} \\ \text{Enable Set Register} \\ \text{Nethods} \\ \text{DMACENDIECLR} \\ \text{Ox4000} \\ \text{200c} \\ \begin{bmatrix} \text{DMACENDIECLR} \\ \text{DMAC Transfer} \\ \text{Completion Interrupt} \\ \text{Enable Clear Register} \\ \text{Enable Clear Register} \\ \text{Ox4000} \\ \text{DMACERRIESET} \\ \text{2010} \\ \text{DMACERRIESET} \\ \text{DMACERRIESET} \\ \text{DMACERRIESET} \\ \text{15-8} R \\ \hline 15-8 R \\ \hline 15-8 R \\ \hline 3-0 \\ \text{ENDIECLR[3:0]} R \\ \hline W \\ \hline 3-0 \\ \text{ENDIECLR[3:0]} W \\ \hline 3-0 \\ \text{ENDIECLR[3:0]} - R \\ \hline 3-0 \\ \text{ENDIECLR[3:0]} - R \\ \hline 15-8 - 0x00 - R \\ \hline 0 \\ \text{ERRIESET} \\ 0 \\ \text{ERRIESET} \\ 0 \\ \text{ERRIESET} \\ 0 \\ \text{ENDIECLR[3:0]} - R \\ \hline 15-8 - 0x00 - R \\ \hline 15-8 - 0x0$		Completion Interrupt	15–8	_	0x00	_	R	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Enable Set Register)	7–4	_	0x0	_	R	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			3–0	ENDIESET[3:0]	0x0	HO	R/W	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0x4000	DMACENDIECLR	31–24	-	_	_	R	_
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	200c	(DMAC Transfer	23-16	_	-	_	R	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Completion Interrupt	15-8	_	-	_	R	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Enable Clear Register)	7-4	_	_	_	R	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			3-0	ENDIECI B[3:0]	_	_	W	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0x4000	DMACEBBIESET	31-24	_	0x00	_	B	_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2010	(DMAC Error Interrupt	23-16	_	0x00	_	B	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Enable Set Register)	15-8	_	0x00	_	B	
0x4000         DMACERRIECLR         31-24         -         0x000         -         R           2014         (DMAC Error Interrupt Enable Clear Register)         31-24         -         0x00         -         R         -           15-8         -         0x00         -         R         -         -         R           7-1         -         0x00         -         R         -         -         -			7_1	_	0x00	_	B	
0x4000         DMACERRIECLR         31-24         -         0x00         -         R         -           2014         (DMAC Error Interrupt Enable Clear Register)         23-16         -         0x00         -         R           15-8         -         0x00         -         R           7-1         -         0x00         -         R				FBRIESET	0	HO	R/W	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0x4000	DMACEBRIECI R	31_24	_	0x00	_	R	_
Enable Clear Register) $15-8 - 0x00 - R$ 7-1 - 0x00 - R	2014	(DMAC Error Interrupt	23_16	_	0x00	_	R	
7-1 - 0x00 - R		Enable Clear Register)	15_9	_	0x00		R	
			7, 1			_	P	
					0,00	_	 \\//	

0x400	0 3000–0x4000	30e0			Memo	ory Dis	olay Controller (MDC)
Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	MDCDISPCTL	15–14	-	0x0	-	R	-
3000	(MDC Display Control	13–12	GSTYPE[1:0]	0x0	HO	R/W	
	Register)	11	DISPGS	0	HO	R/W	
		10	RGBORD	0	HO	R/W	
		9	ADDRLSB	0	HO	R/W	-
		8	-	0	_	R	
		7	DISPINVERT	0	HO	R/W	
			UPDFUNC	0	HO	R/W	-
		5	SPITYPE	0	HO	R/W	-
		4	DISPSPI	0	HO	R/W	-
		3–2	ROTSEL[1:0]	0x0	HO	R/W	-
		1	VCOMEN	0	HO	R/W	-
0.4000		0	-	0	_	R	
0x4000	MDCDISPWIDTH	15–10	-	0x00	-	К	-
5002	Register)	9–0	DISPWIDTH[9:0]	0x0b4	H0	R/W	
0x4000	MDCDISPHEIGHT	15–10	_	0x00	_	R	_
3004	Register)	9–0	DISPHEIGHT[9:0]	0x0b4	H0	R/W	
0x4000 3006	MDCDISPVCOMDIV (MDC Display VCOM Clock Divider Register)	15–0	DISPVCOMDIV[15:0]	0x0222	HO	R/W	-
0x4000	MDCDISPCLKDIV	15–8	TIM0[7:0]	0x04	H0	R/W	-
3008	(MDC Display Clock Divider Register)	7–0	CLKDIV[7:0]	0x04	H0	R/W	
0x4000	MDCDISPPRM21	15–8	TIM2[7:0]	0x00	H0	R/W	-
300a	(MDC Display Param- eters 1 and 2 Register)	7–0	TIM1[7:0]	0x04	H0	R/W	
0x4000	MDCDISPPRM43	15–8	TIM4[7:0]	0x04	H0	R/W	-
300c	eters 3 and 4 Register)	7–0	TIM3[7:0]	0x04	H0	R/W	
0x4000	MDCDISPPRM65	15–8	TIM6[7:0]	0x04	H0	R/W	-
300e	eters 5 and 6 Register)	7–0	TIM5[7:0]	0x04	H0	R/W	
0x4000	MDCDISPPRM87	15–8	TIM8[7:0]	0x00	H0	R/W	_
3010	eters 7 and 8 Register)	7–0	TIM7[7:0]	0x00	H0	R/W	
0x4000	MDCDISPSTARTY	15–10	_	0x00	-	R	_
5012	Start Line Register)	9–0	STARTY[9:0]	0x000	HO	R/W	
0x4000	MDCDISPENDY	15–10	_	0x00	_	R	_
3014	End Line Register)	9–0	ENDY[9:0]	0x0b3	H0	R/W	
0x4000	MDCDISPSTRIDE	15–10	-	0x00	-	R	_
5010	Buffer Stride Register)	9–0	DISPSTRIDE[9:0]	0x0b4	HO	R/W	
0x4000 3018	MDCDISP FRMBUFF0 (MDC Display Frame Buffer Base Address Register 0)	15–0	FRMBUFFADDR[15:0]	0x0000	HO	R/W	_
0x4000 301a	MDCDISP FRMBUFF1 (MDC Display Frame Buffer Base Address Register 1)	15–0	FRMBUFFADDR[31:16]	0x0000	HO	R/W	-

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	MDCTRIGCTL	15–10	-	0x00	-	R	_
301c	(MDC Trigger Control	9–8	DISPBPP[1:0]	0x0	H0	R/W	
	Register)	7–4	NPARAM[3:0]	0x0	HO	R/W	
		3–1	-	0x00	-	R	
		0	GFXTRIG	0	HO	R/W	
0x4000	MDCINTCTL	15–9	-	0x00	-	R	_
301e	(MDC Interrupt	8	GFXIE	0	H0	R/W	
	Control Register)	7–1	-	0x00	-	R	
		0	GFXIF	0	HO	R/W	Cleared by writing 1.
0x4000	MDCGFXCTL	15	CPYNEGY	0	-	R/W	
3020	(MDC Graphics	14	CPYNEGX	0	HO	R/W	
	Control Register)	13	SHEARNEGY	0	HO	R/W	
		12	SHEARNEGX	0	HO	R/W	
		11	FILLEN	0	HO	R/W	
		10	BITMAPFMT	0	HO	R/W	
		9	BITMAPEN	0	HO	R/W	
		8		0	-	R	
		7-6		0x0	HU	R/W	
		5	ALPHAOVRRD	0	HU	R/W	
		4	_ (////////////////////////////////////	0	-	R	
		3	(reserved)	0	HU	R/W	
0,4000		2-0		0x0	HU	R/W	
3022		15-10	-	0000	_	К	-
5022	Coordinate Register)	9–0	IXCENTER[9:0]	0x000	H0	R/W	
0x4000	MDCGFXIYCENTER	15–10	-	0x00	-	R	-
3024	(MDC Input Y	9–0	IYCENTER[9:0]	0x000	HO	R/W	
0x4000	MDCGFXIWIDTH	15–10	_	0x00	-	R	-
3026	(MDC Input Width Register)	9–0	IWIDTH[9:0]	0x000	HO	R/W	
0x4000	MDCGFXIHEIGHT	15–10	-	0x00	_	R	-
3028	(MDC Input Height Register)	9–0	IHEIGHT[9:0]	0x000	HO	R/W	
0x4000	MDCGFX	15–10	_	0x00	_	R	-
302a	(MDC Output X	9–0	OXCENTER[9:0]	0x000	H0	R/W	
0x4000	MDCGFX	15–10	_	0x00	_	R	_
302c		0.0		0,000	ЦО	DAM	
	Coordinate Register)	9-0		0,000	110		
0x4000	MDCGFXOWIDTH	15–10	-	0x00	-	R	_
5020	Register)	9–0	OWIDTH[9:0]	0x000	HO	R/W	
0x4000	MDCGFXOHEIGHT	15–10	_	0x00	-	R	-
3030	(MDC Output Height Register)	9–0	OHEIGHT[9:0]	0x000	HO	R/W	
0x4000	MDCGFXXLSCALE	15–14	_	0x0	-	R	_
3032	(MDC X Left Scale Register)	13–0	XLSCALE[13:0]	0x0000	HO	R/W	
0x4000	MDCGFXXRSCALE	15–14	-	0x0	_	R	_
3034	(MDC X Right Scale	13–0	XRSCALE[13:0]	0x0000	H0	R/W	
0x4000	MDCGFXYTSCALF	15–14	_	0x0	_	B	_
3036	(MDC Y Top Scale	13_0	YTSCAL F[13:0]	0x0000	HO	R/W	
	Register)	10-0		0,0000	110	17.44	
0x4000 3038	MDCGFXYBSCALE	15–14	-	0x0	-	R	-
0000	Register)	13–0	YBSCALE[13:0]	0x0000	HO	R/W	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	MDCGFXSHEAR	15	_	0	_	R	_
303a	(MDC X/Y Shear	14–8	YSHEAR[6:0]	0x00	HO	R/W	
	Register)	7	-	0	-	R	
		6–0	XSHEAR[6:0]	0x00	H0	R/W	
0x4000	MDCGFXROTVAL	15–9	-	0x00	_	R	-
303c	(MDC Rotation	8–0	ROTVAL[8:0]	0x000	HO	R/W	
01000		15.0		000			
0X4000	MDCGFXCOLOR	15-8		0000	-	R DAA	
0.4000		15.0		0x03			
3040	(MDC Source Window Base Address Register 0)	15-0	IDASEADDR[13.0]	0x0000	по	H/ VV	_
0x4000	MDCGFXIBADDR1	15–0	IBASEADDR[31:16]	0x0000	H0	R/W	_
3042	(MDC Source Window Base Address Register 1)						
0x4000	MDCGFXOBADDR0	15–0	OBASEADDR[15:0]	0x0000	H0	R/W	_
3044	(MDC Destination Window Base Address Register 0)						
0x4000	MDCGFXOBADDR1	15–0	OBASEADDR[31:16]	0x0000	H0	R/W	-
3046	(MDC Destination Window Base Address Register 1)						
0x4000	MDCGFXISTRIDE	15–10	-	0x00	-	R	-
3048	(MDC Source Image Stride Register)	9–0	ISTRIDE[9:0]	0x000	H0	R/W	
0x4000	MDCGFXOSTRIDE	15–10	_	0x00	_	R	_
304a	(MDC Destination	9–0	OSTRIDE[9:0]	0x000	H0	R/W	
0x4000	MDCGFXOWLEFT	15–10	_	0x00	_	R	_
304c	(MDC Output Window	9–0	OWLEFT[9:0]	0x000	HO	R	
0x4000	MDCGFX	15–10	_	0x00		R	_
304e	OWRIGHT						
	(MDC Output Window Right Edge Register)	9–0	OWRIGHT[9:0]	0x000	H0	R	
0x4000	MDCGFXOWTOP	15–10	-	0x00	-	R	-
3050	(MDC Output Window Top Edge Register)	9–0	OWTOP[9:0]	0x000	HO	R	
0x4000	MDCGFXOWBOT	15–10	_	0x00	_	R	-
3052	(MDC Output Window Bottom Edge Register)	9–0	OWBOT[9:0]	0x000	HO	R	
0x4000 3060	MDCSCRATCHA0 (MDC Scratchpad A Register 0)	15–0	SCRATCHA[15:0]	0x0000	HO	R/W	-
0x4000 3062	MDCSCRATCHA1 (MDC Scratchpad A Register 1)	15–0	SCRATCHA[31:16]	0x0000	HO	R/W	-
0x4000	MDCCLKCTL	15–10	SCRATCHB1[15:10]	0x00	HO	R/W	_
3068	(MDC Clock Control	9	HCKINV	0	HO	R/W	
	Register)	8	CLK32KON	0	HO	R/W	
		7–0	SCRATCHB0[7:0]	0x00	H0	R/W	
0x4000	MDCBSTCLK	15–9	-	0x00	_	R	_
3080	(MDC Voltage Booster	8	DBRUN	1	H0	R/W	
		7	(reserved)	0	H0	R/W	
	negisier)	6–4	CLKDIV[2:0]	0x0	H0	R/W	
		3	-	0		R	
		2	(reserved)	0	HO	R/W	
		1-0	UCLKSHC[1:0]	0x0	H0	K/W	

Address	Register name	Bit	Bit name	Initial	Reset	R/W	Remarks
0x4000	MDCBSTPWR	15–8	-	0x00	-	R	_
3084	(MDC Voltage Booster	7–4	-	0x0	-	R	
	Power Control	3	VMDBUP	0	H0	R/W	
	Register)	2	BSTON	0	H0	R/W	-
		1	REGECO	0	HO	R/W	-
		0	REGON	0	HO	R/W	
0x4000	MDCBSTVMD	15	-	0	-	R	_
3088	(MDC Voltage	14–12	VMDHVOL[2:0]	0x0	H0	R/W	
	Booster VMD Output	11–9	-	0x0	-	R	
	Control Register)	8	VMDHON	0	H0	R/W	
		7	-	0	-	R	
		6–4	VMDLVOL[2:0]	0x0	H0	R/W	
		3–1	-	0x0	-	R	-
		0	VMDLON	0	HO	R/W	
0x4000	MDCHOSTCTL	15	SOFTRST	0	HO	R/W	_
30e0	(MDC Host Control	14–8	-	0x00	-	R	
	Register)	7–5	-	0x0	-	R	
		4	INTPOL	0	H0	R/W	
		3	SYSCLKSTAT	0	HO	R	
		2	-	0	-	R	
		1	CLK32KOSCEN	0	HO	R/W	
		0	SYSOSCEN	0	HO	R/W	

# **Appendix B** Power Saving

Current consumption will vary dramatically, depending on CPU operating mode, operation clock frequency, peripheral circuits being operated, and VDI regulator operating mode. Listed below are the control methods for saving power.

# **B.1 Operating Status Configuration Examples for Power Saving**

Table B.1.1 lists typical examples of operating status configuration with consideration given to power saving.

Operating status configuration	Current consumption	<b>V</b> D1	OSC1	IOSC/ OSC3/ EXOSC	RTCA	CPU	Current consumption listed in electrical characteristics
Standby	↑		OFF		OFF	SLEEP	ISLP
Clock counting	Low	Economy		OFF		SLEEP with OSC1SLPC	HALT2
Low-speed processing	_					OSC1 RUN	IRUN5-6
Peripheral circuit operations			ON		ON	SLEEP or HALT	HALT1
High-speed processing	High ↓	Normal		ON		IOSC/OSC3/EXOSC RUN	IRUN1-4, 7

 Table B.1.1 Typical Operating Status Configuration Examples

If the current consumption order by the operating status configuration shown in Table B.1.1 is different from one that is listed in "Electrical Characteristics," check the settings shown below.

# PWGACTL.REGMODE[1:0] bits of the power generator

If the PWGACTL.REGMODE[1:0] bits of the power generator is 0x2 (normal mode) when the CPU enters SLEEP mode, current consumption in SLEEP mode will be larger than IsLP that is listed in "Electrical Characteristics." Set the PWGACTL.REGMODE[1:0] bits to 0x3 (economy mode) or 0x0 (automatic mode) before placing the CPU into SLEEP mode.

# CLGOSC.IOSCSLPC/OSC1SLPC/OSC3SLPC/EXOSCSLPC bits of the clock generator

Setting the CLGOSC.IOSCSLPC, OSC1SLPC, OSC3SLPC, or EXOSCSLPC bit of the clock generator to 0 disables the oscillator circuit stop control when the CPU enters SLEEP mode. To stop the oscillator circuits during SLEEP mode, set these bits to 1.

# MODEN bits of the peripheral circuits

Setting the MODEN bit of each peripheral circuit to 1 starts supplying the operating clock enabling the peripheral circuit to operate. To reduce current consumption, set the MODEN bits of unnecessary peripheral circuits to 0. Note that the real-time clock has no MODEN bit, therefore, current consumption does not vary if it is counting or idle.

# **OSC1** oscillator circuit configurations

The OSC1 oscillator circuit provides some configuration items to support various crystal resonators with ranges from cylinder type through surface-mount type. These configurations trade off current consumption for performance as shown below.

- The lower oscillation inverter gain setting (CLGOSC1.INV1B[1:0]/INV1N[1:0] bits) decreases current consumption.
- The lower OSC1 internal gate capacitance setting (CLGOSC1.CGI1[2:0] bits) decreases current consumption.
- Using lower OSC1 external gate and drain capacitances decreases current consumption.
- Using a crystal resonator with lower CL value decreases current consumption.

However, these configurations may reduce the oscillation margin and increase the frequency error, therefore, be sure to perform matching evaluation using the actual printed circuit board.

# OSC3 (crystal/ceramic) oscillator circuit configurations

The OSC3 (crystal/ceramic) oscillator circuit provides some configuration items to support various crystal and ceramic resonators. These configurations trade off current consumption for performance as shown below.

- The lower oscillation inverter gain setting (CLGOSC3.OSC3INV[1:0] bits) decreases current consumption.
- Using lower OSC3 external gate and drain capacitances decreases current consumption.
- Using a resonator with lower CL value decreases current consumption.

However, these configurations may reduce the oscillation margin and increase the frequency error, therefore, be sure to perform matching evaluation using the actual printed circuit board.

# **B.2 Other Power Saving Methods**

# Supply voltage detector configuration

Continuous operation mode (SVD3CTL.SVDMD[1:0] bits = 0x0) always detects the power supply voltage, therefore, it increases current consumption. Set the supply voltage detector to intermittent operation mode or turn it on only when required.

# **Appendix C** Mounting Precautions

This section describes various precautions for circuit board design and IC mounting.

# OSC1/OSC3 oscillator circuit

- Oscillation characteristics depend on factors such as components used (resonator, CG, CD) and circuit board patterns. In particular, with crystal resonators, select the appropriate capacitors (CG, CD) only after fully evaluating components actually mounted on the circuit board.
- Oscillator clock disturbances caused by noise may cause malfunctions. To prevent such disturbances, consider the following points.
- (1) Components such as a resonator, resistors, and capacitors connected to the OSC1 (OSC3) and OSC2 (OSC4) pins should have the shortest connections possible.
- (2) Wherever possible, avoid locating digital signal lines within 3 mm of the OSC1 (OSC3) and OSC2 (OSC4) pins or related circuit components and wiring. Rapidly-switching signals, in particular, should be kept at a distance from these components. Since the spacing between layers of multi-layer printed circuit boards is a mere 0.1 mm to 0.2 mm, the above precautions also apply when positioning digital signal lines on other layers.

Never place digital signal lines alongside such components or wiring, even if more than 3 mm distance or located on other layers. Avoid crossing wires.

(3) Use Vss to shield the OSC1 (OSC3) and OSC2 (OSC4) pins and related wiring (including wiring for adjacent circuit board layers). Layers wired should be adequately shielded as shown to the right. Fully ground adjacent layers, where possible. At minimum, shield the area at least 5 mm around the above pins and wiring.

Even after implementing these precautions, avoid configuring digital signal lines in parallel, as described in (2) above. Avoid crossing even on discrete layers, except for lines carrying signals with low switching frequencies.



(4) After implementing these precautions, check the FOUT pin output clock waveform by running the actual application program within the product.

For the OSC1 waveform, enlarge the areas before and after the clock rising and falling edges and take special care to confirm that the regions approximately 100 ns to either side are free of clock or spiking noise. For the OSC3 waveform, confirm that the frequency is as designed, is free of noise, and has minimal jitter.

Failure to observe precautions (1) to (3) adequately may lead to noise in OSC1CLK and jitter in OSC3CLK. Noise in the OSC1CLK will destabilize timers that use OSC1CLK as well as CPU Core operations. Jitter in the OSC3 output will reduce operating frequencies.

# #RESET pin

Components such as a switch and resistor connected to the #RESET pin should have the shortest connections possible to prevent noise-induced resets.

### **V**PP **pin**

Connect a capacitor CVPP between the Vss and VPP pins to suppress fluctuations within VPP  $\pm 1$  V. The CVPP should be placed as close to the VPP pin as possible and use a sufficiently thick wiring pattern that allows current of several tens of mA to flow.



### Power supply circuit

Sudden power supply fluctuations due to noise will cause malfunctions. Consider the following issues.

(1) Connections from the power supply to the VDD and Vss pins should be implemented via the shortest, thickest patterns possible. (2) If a bypass capacitor is connected between VDD and Vss, connections between the VDD and Vss pins should be as short as possible.

### Signal line location

- To prevent electromagnetically-induced noise arising from mutual induction, large-current signal lines should not be positioned close to pins susceptible to noise, such as oscillator and analog measurement pins.
- Locating signal lines in parallel over significant distances or crossing signal lines operating at high speed will cause malfunctions due to noise generated by mutual interference.
- The SEG/COM lines and voltage boost/reduce capacitor drive lines are more likely to generate noise, therefore keep a distance between the lines and pins susceptible to noise.

### Handling of light (for bare chip mounting)

The characteristics of semiconductor components can vary when exposed to light. ICs may malfunction or non-volatile memory data may be corrupted if ICs are exposed to light.

Consider the following precautions for circuit boards and products in which this IC is mounted to prevent IC malfunctions attributable to light exposure.

- (1) Design and mount the product so that the IC is shielded from light during use.
- (2) Shield the IC from light during inspection processes.
- (3) Shield the IC on the upper, underside, and side faces of the IC chip.
- (4) Mount the IC chip within one week of opening the package. If the IC chip must be stored before mounting, take measures to ensure light shielding.
- (5) Adequate evaluations are required to assess nonvolatile memory data retention characteristics before product delivery if the product is subjected to heat stress exceeding regular reflow conditions during mounting processes.

# **Unused pins**

- I/O port (P) pins Unused pins should be left open. The control registers should be fixed at the initial status.
- (2) OSC1, OSC2, OSC3, OSC4, and EXOSC pins

If the OSC1 oscillator circuit, OSC3 oscillator circuit or EXOSC input circuit is not used, the OSC1 and OSC2 pins, the OSC3 and OSC4 pins, or the EXOSC pin should be left open. The control registers should be fixed at the initial status (disabled).

(3) Memory display controller pins

If the memory display controller is not used, the memory display controller pins should be left open. However, an external power voltage must be supplied to the VMDL pin. The control registers should be fixed at the initial status. The unused pins that are not required to connect should be left open even if the memory display controller is used.

### Miscellaneous

Minor variations over time may result in electrical damage arising from disturbances in the form of voltages exceeding the absolute maximum rating when mounting the product in addition to physical damage. The following factors can give rise to these variations:

- (1) Electromagnetically-induced noise from industrial power supplies used in mounting reflow, reworking after mounting, and individual characteristic evaluation (testing) processes
- (2) Electromagnetically-induced noise from a solder iron when soldering

In particular, during soldering, take care to ensure that the soldering iron GND (tip potential) has the same potential as the IC GND.





# **Appendix D** Measures Against Noise

To improve noise immunity, take measures against noise as follows:

### Noise Measures for VDD and VSS Power Supply Pins

When noise falling below the rated voltage is input, an IC malfunction may occur. If desired operations cannot be achieved, take measures against noise on the circuit board, such as designing close patterns for circuit board power supply circuits, adding noise-filtering decoupling capacitors, and adding surge/noise prevention components on the power supply line.

For the recommended patterns on the circuit board, see "Mounting Precautions" in Appendix.

### Noise Measures for #RESET Pin

If noise is input to the #RESET pin, the IC may be reset. Therefore, the circuit board must be designed properly taking noise measures into consideration.

For the recommended patterns on the circuit board, see "Mounting Precautions" in Appendix.

### **Noise Measures for Oscillator Pins**

The oscillator input pins must pass a signal of small amplitude, so they are hypersensitive to noise. Therefore, the circuit board must be designed properly taking noise measures into consideration.

For the recommended patterns on the circuit board, see "Mounting Precautions" in Appendix.

### **Noise Measures for Interrupt Input Pins**

This product is able to generate a port input interrupt when the input signal changes. The interrupt is generated when an input signal edge is detected, therefore, an interrupt may occur if the signal changes due to extraneous noise. To prevent occurrence of unexpected interrupts due to extraneous noise, enable the chattering filter circuit when using the port input interrupt.

For details of the port input interrupt and chattering filter circuit, see the "I/O Ports" chapter.

### **Noise Measures for UART Pins**

This product includes a UART for asynchronous communications. The UART starts receive operation when it detects a low level input from the SIN*n* pin. Therefore, a receive operation may be started if the SIN*n* pin is set to low due to extraneous noise. In this case, a receive error will occur or invalid data will be received. To prevent the UART from malfunction caused by extraneous noise, take the following measures:

- Stop the UART operations while asynchronous communication is not performed.
- Execute the resending process via software after executing the receive error handler with a parity check.

For details of the pin functions and the function switch control, see the "I/O Ports" chapter. For the UART control and details of receive errors, see the "UART" chapter.

# Noise Measures for Input Pins Connected to Signal with High Driving Capability Such As Power Supply

There is a possibility of a large current flow into the pins that are directly connected to a power supply or an output of a device with high driving capability if noise is input to those pins. To prevent this, connect a 30  $\Omega$  or more pin protection resistor to the pins in series. The resistance value should be determined by evaluating it on the mounting board.

When connecting a power supply directly to the VREFA pin, insert a 100  $\Omega$  resistor in series. This resistance does not affect the A/D converter characteristics.

# **Revision History**

Code No.	Page	Contents
413520400	All	New establishment
413520401	Whole	Corrected the Cortex®-M0+ register names.
	manual	System control register → Cortex [®] -M0+ System Control Register
		or
		Cortex [®] -M0+ Application Interrupt and Reset Control Register
		Vector table offset register $\rightarrow$ Cortex [®] -M0+ Vector Table Offset Register (VTOR)
		System handler priority registers $\rightarrow$ Cortex [®] -M0+ System Handler Priority Registers
		Interrupt priority registers $\rightarrow$ Cortex [®] -MU+ Interrupt Priority Registers
		Corrected the Cortex®-M0+ manual names
		Cortex [®] -M0+ Technical Beference Manual $\rightarrow$ ABM [®] v6-M Architecture Beference Manual.
		Cortex [®] -M0+Technical Reference Manual
		or
		the documents introduced in Section 3.4, such as
		"Cortex [®] -M0+ Devices Generic User Guide"
		$COU \text{ core} \rightarrow CPU$ $MSCDBOT (register name) \rightarrow SYSDBOT$
	1 2 to 3	1 1 Equiros
	1-2 10 5	Added the following appotations to Table 1.1.1
		12C (12C) *1
		*1 The input filter in I2C (SDA and SCL inputs) does not comply with the standard for removing noise
		spikes less than 50 ns.
		*2 SLEEP mode refers to deep sleep mode in the Cortex®-M0+ processor. The RAM retains data even in
		SLEEP mode.
		Modified Table 1.1.1.
		Power supply voltage: VDD operating voltage for Flash programming (when VPP is generated internally)
		2.7 to 5.5 V $\rightarrow$ 2.4 to 5.5 V Shinning form: A IEITA name was added to the nackage name
	1-4 to 7 10	1 3 Pins
	1 4 10 7, 10	Modified Figures 1.3.1.1 to 1.3.1.3 and 1.3.2.1. and Table 1.3.3.1.
		The ENVPP output function was added to the P16 pin.
	2-15	2.4.2 Transition between Operating Modes
		SLEEP mode
		Added the following description:
		Ine RAM retains data even in SLEEP mode.
	3-2	Added a new section.
	4-2	4.3.1 Flash Memory Pin
		Added (ENVPP) to Table 4.3.1.1.
		Added a note.
		Notes:
		The ENVPP pin outputs a control signal to the Bridge Board (S5U1C31001L) during Flash
		programming. Although this pin can be used as a general-purpose input/output port, take an
	4.0	effect of this signal on external circuits into consideration.
	4-3	4.3.3 Flash Programming
		The Flash memory supports on-board programming, so it can be programmed using a flash loader. The
		VPP voltage can be supplied from either an external power supply or the internal voltage booster.
		Be sure to connect CVPP between the Vss and VPP pins for stabilizing the voltage when the VPP voltage is
		supplied externally or for generating the voltage when the internal power supply is used.
		The VPP pin must be left open except when programming the Flash memory. However, it is not necessary
		to disconnect the wire when using Bridge Board (S5U1C31001L) to supply the VPP voltage, as Bridge
		Board controls the power supply so that it will be supplied during Flash programming only.
		Notes: • The Flash programming requires a 2.4 V or higher VDD voltage.
		Be sure to avoid using the VPP pin output for driving external circuits.
	4-12	4.8 Control Registers
		Added a note to the RDWALT(1-0) bits
		Notes:
		When the FLASHCWAIT.RDWAIT[1:0] bit setting is altered from 0x2 to 0x1. add two NOP
		instructions immediately after that.
		Program example: FLASHC->WAIT_b.RDWAIT = 1;
		asm("NOP"); ("NOP")
		$\frac{\operatorname{asm}("NUP")}{\operatorname{CLC}} = 0$
		$\underline{OLG^{-}OOU_D.IOOULN=0},$

### **REVISION HISTORY**

Code No.	Page	Contents
413520401	10-2	10.3.2 Theoretical Regulation Function
		Corrected Step 1.
		1. <u>Measure fosc1 and calculate the frequency tolerance correction value</u>
		<u>"m [ppm] = -{(tosc1 - 32,768 [Hz]) / 32,768 [Hz]} × 10º."</u>
	10 /	(Eq. 10.1) III. OSCI Trequency tolerance conection value [ppm]
	10-4	Corrective operation when a value out of the effective range is set
		Added a note.
		Note: Do not set the RTCMON.RTCMOL[3:0] bits to 0x0 if the RTCMON.RTCMOH bit = 0.
	10-11	10.6 Control Registers
		RTCA Month/Day Register
		Bit 12 RTCMOH
		Bits 11–8 RTCMOL(3:0] Added a note
		Notes:
		Be sure to avoid setting the RTCAMON.RTCMOH/RTCMOL[3:0] bits to 0x00.
	15-1	15.1 Overview
		Corrected the description.
		- 1M-byte external Flash memory mapped access area that allows programmable re-mapping.
		Added an item to Table 15.1.1.
	15-8, 9	15.4 Data Format
	,.	Figures 15.4.1 and 15.4.2
		Added the following bit setting:
		$QSPI_nMOD.CHDL[3:0] bits = 0x7$
		Figure 15.4.3
		Added the following bit setting:
	15-10, 11	15.5.2 Memory Mapped Access Mode
	,	Figures 15.5.2.1 and 15.5.2.2
		Corrected the description.
		The QSPI treats the dummy cycle as <u>6 cycles including</u> 1 driving cycle.
		(QSPI_ <u>MMACFG2.DUMDL[3:0]</u> bits = 0x0, QSPI_ <u>MMACFG2.DUMLN[3:0]</u> bits = 0x5) The OSPI treats the data cycle as 2 cycles including 2 driving cycles
		(QSP  nMOD.CHDL[3:0]  bits = 0x1, QSP  nMOD.CHLN[3:0]  bits = 0x1)
	15-11	15.5.2 Memory Mapped Access Mode
		Corrected the description.
		The memory mapped access area for external Flash memory in the system memory area is used to map
	15 17	the external Flash memory and to access from the CPU.
	10-17	Data receiving procedure
		Corrected the description.
		4. Read the memory mapped access area for external Flash memory with an 8, 16, or 32-bit memory
		read instruction.
		This operation directly reads data within the 1M-byte <u>external</u> Hash memory area remapped to the
	15-29	15.8 Control Begisters
	10 20	QSPI Ch.n Mode Register
		Deleted the following description of the CHDL[3:0] bits:
		This setting is required to output the XIP confirmation bit to Micron Flash memories or to output the
		mode byte to Spansion Flash memories.
	15-35	15.8 Control Registers
		Modified the register table
		DUMDL[3:0], DUMLN[3:0]: Initial = $0x0 \rightarrow 0x7$
	16-1	16.1 Overview
		Added the following description:
		The input filter for the SDA and SCL inputs does not comply with the standard for removing noise
	16 7 0	Spikes less than 50 lis.
	10-7, 9	Data receiving procedure
		Added Step 1. (The old step numbers were carried down in order.)
		1. When receiving one-byte data, write 1 to the I2C nCTL.TXNACK bit.
	16-9	16.4.3 Data Reception in Master Mode
		Data reception using DMA
		Corrected the description.
		The determined the data receiving procedure oreps of of and to described above.

Code No.	Page	Contents
413520401	24-1	24.2 Recommended Operating Conditions
		Added "(Vss = 0 V) *1" and the following annotations:
		<u>*1</u> The potential variation of the Vss voltage should be suppressed to within ±0.3 V on the basis of the
		ground potential of the MCU mounting board while the Flash is being programmed, as it affects the
		Flash memory characteristics (programming count).
		<u>*6</u> The component values should be determined after evaluating operations using an actual mounting
		board.
		Modified the characteristics table.
		VDD: For Flash programming (When VPP is generated internally) Min. = $2.7 \rightarrow 2.4$ V
		CVPP: *5 was deleted.
		CVREFA: *6 was deleted.
	24-7	24.6 Flash Memory Characteristics
		Added an annotation.
		<u>*1</u> The potential variation of the Vss voltage should be suppressed to within ±0.3 V on the basis of the
		ground potential of the MCU mounting board while the Flash is being programmed, as it affects the
		Flash memory characteristics (programming count).
	25-1	25 Basic External Connection Diagram
		Modified the figure.
		VDD: For Flash programming Min. = $2.7 \rightarrow 2.4 \text{ V}$
		The ENVPP and #RESET signals were connected to the debugging tool connector.
	26-1, 3	26 Package
		A JEITA name was added to the package name.
	AP-A-29	Appendix A List of Peripheral Circuit Control Registers
		QSPI_0MMACFG2 (QSPI Ch.0 Memory Mapped Access Configuration Register 2)
		Modified the register table.
		DUMDL[3:0], DUMLN[3:0]: Initial = $0x0 \rightarrow 0x7$
	AP-C-1	Appendix C Mounting Precautions
		Modified the description.
		VPP pin
		If fluctuations in the Flash programming voltage VPP is large, Connect a capacitor CVPP between the
		Vss and VPP pins to suppress fluctuations within VPP ± 1 V. The CVPP should be placed as close to the
		VPP pin as possible and use a sufficiently thick wiring pattern that allows current of several tens of mA
		to flow.
	AP-D-1	Appendix D Measures Against Noise
		Added a description.
		Noise Measures for Input Pins Connected to Signal with High Driving Capability Such As Power Supply
413520402	Back of	Replaced the NOTICE.
	cover	
	1-3, 1-6,	The <u>TQFP14</u> -80PIN package was changed to the <u>QFP14</u> -80PIN package.
	26-3	TQFP14-80PIN (P-TQFP080-1212-0.50, 12 × 12 mm, t = 1.2 mm, 0.5 mm pitch)
		→ <u>QFP14</u> -80PIN (P- <u>LQFP080</u> -1212-0.50, 12 × 12 mm, <u>t = 1.7</u> mm, 0.5 mm pitch)

# EPSON

# **International Sales Operations**

### America

### Epson America, Inc.

Headquarter: 3131 Katella Ave., Los Alamitos, CA 90720, USA Phone: +1-800-463-7766

San Jose Office: 2860 Zanker Road Suite 204, San Jose, CA 95134, USA Phone: +1-800-463-7766

# Europe

#### **Epson Europe Electronics GmbH**

Riesstrasse 15, 80992 Munich, Germany Phone: +49-89-14005-0 Fax: +49-89-14005-110

### Asia

### Epson (China) Co., Ltd.

4th Floor, Tower 1 of China Central Place, 81 Jianguo Road, Chaoyang District, Beijing 100025, China Phone: +86-10-8522-1199 Fax: +86-10-8522-1120

#### Shanghai Branch

Room 601-603, Building A One East, No. 325 East Longhua Road, Shanghai 200023, China Phone: +86-21-5330-4888 Fax: +86-21-5423-4677

### Shenzhen Branch

Room 804-805, 8 Floor, Tower 2, Ali Center, No. 3331 Keyuan South RD (Shenzhen bay), Nanshan District, Shenzhen 518054, China Phone: +86-755-3299-0588 Fax: +86-755-3299-0560

### Epson Taiwan Technology & Trading Ltd.

15F, No. 100, Songren Rd, Sinyi Dist, Taipei City 110, Taiwan Phone: +886-2-8786-6688

### Epson Singapore Pte., Ltd.

438B Alexandra Road, Block B Alexandra TechnoPark, #04-01/04, Singapore 119968 Phone: +65-6586-5500 Fax: +65-6271-7066

#### Epson Korea Co., Ltd

10F Posco Tower Yeoksam, Teheranro 134 Gangnam-gu, Seoul, 06235, Korea Phone: +82-2-3420-6695

### Seiko Epson Corp. Sales & Marketing Division

#### **MD Sales & Marketing Department**

JR Shinjuku Miraina Tower, 4-1-6 Shinjuku, Shinjuku-ku, Tokyo 160-8801, Japan