

S1C17 Family Application Library

S1C17 Series Steps Calculation Library

Evaluation board/kit and Development tool important notice

- 1. This evaluation board/kit or development tool is designed for use for engineering evaluation, demonstration, or development purposes only. Do not use it for other purposes. It is not intended to meet the requirements of design for finished products.
- 2. This evaluation board/kit or development tool is intended for use by an electronics engineer and is not a consumer product. The user should use it properly and in a safe manner. Seiko Epson dose not assume any responsibility or liability of any kind of damage and/or fire coursed by the use of it. The user should cease to use it when any abnormal issue occurs even during proper and safe use.
- 3. The part used for this evaluation board/kit or development tool may be changed without any notice.

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. When exporting the products or technology described in this material, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You are requested not to use, to resell, to export and/or to otherwise dispose of the products (and any technical information furnished, if any) for the development and/or manufacture of weapon of mass destruction or for other military purposes.

All brands or product names mentioned herein are trademarks and/or registered trademarks of their respective companies.

©SEIKO EPSON CORPORATION 2017, All rights reserved.

Table of Contents

1.	Overview	1
2.	File Configuration	2
3.	Memory Size Requirement	
J.	Welliofy Size Requirement	
4.	API Function List	4
5.	Operation Flow	5
6.	API Function Details	6
F	PEDReset	
	PEDInit	
F	PEDClear	6
F	PEDMeas	7
F	PEDSetParam	8
F	PEDGetWalkStep	8
F	PEDGetWalkDist	9
F	PEDGetWalkTime	9
	PEDGetExercise	
F	PEDGetCalorie	10
F	PEDGetFat	10
F	PEDGetWalkSpeed	10
	PEDGetMETs	
F	PEDGetCadence	11
Re	vision History	12

1. Overview

This manual is intended to describe the specification for Epson's original steps calculation library for S1C17 series that is used to calculate the number of steps, walking distance, consumed calories, and others based on the tri-axis acceleration input. This section describes the features of this library.

1) Steps calculation with wrist mount is supported

In the steps calculation, this library supports not only the mounting on the body trunk, such as the chest and waist, and installation in a bag or pocket but also the wrist mount.

2) False detection due to other than walking vibration is suppressed

The algorithm is adopted that enables stable steps calculation by suppressing the false step detection due to other than walking vibration, such as a car.

3) Walking speed is automatically estimated

The walking distance, exercise, and others are calculated by estimating walking speed based on the user's body height and weight.

The table below lists the I/O data specification of this library.

Table 1-1 I/O data specification

Item	Specification	Remarks	
Input acceleration Accelerometer: Tri-axis x 16 bit Sampling: 25 Hz		The acceleration range is selectable	
	Acceleration range: ±4 G/±8 G/±16 G		
Item calculated Number of steps		The data is updated each time a step	
	Walking distance [1/256 m]	is detected	
Walking speed [1/256 m/s]			
Walking duration [sec]		The data is updated every second	
	Exercise [1/256]		
	Consumed calories [1/256 Kcal]		
	Amount of fat burnt [1/256 g]		
	METs [1/256]		

2. File Configuration

2

2. File Configuration

This section describes the file configuration of the S1C17 series steps calculation library.

Table 2-1 File configuration

rable 2 1 1 lie configuration			
File	Description		
PedoLib/	Steps calculation library folder		
pedo.c	Steps calculation program		
pedo.h	Steps calculation header file		
calo.c	Consumed calories calculation program		
calo.h	Header file for consumed calories calculation		
walkdist.c	Walking distance calculation program		
walkdist.h	Header file for walking distance calculation		
stepcade.c	Cadence calculation program		
stepcade.h	Header file for cadence calculation		
steplib.c	Walking detection program		
steplib.h	Walking detection header file		
steplibdef.h	Header file for internal library variables		

3. Memory Size Requirement

The table below lists the memory sizes required by the S1C17 series steps calculation library.

Table 3-1 Memory size requirement

Section name	Size (Byte)	Description
.bss	80	Variable without initial value
.data	0	Variable with initial value
.rodata 166		Constant table
.text	3868	Program

4. API Function List

The table below lists the API functions supported by the S1C17 series steps calculation library.

Table 4-1 API Function List

Table 4-1 ALT Triction List			
API function	Functional overview		
PEDReset	Initializes all variables.		
PEDInit	Initializes variables except for calculated values, such as the number		
	of steps and consumed calories.		
PEDClear	Initializes calculated values to zero, such as the number of steps and		
	consumed calories.		
PEDMeas	The steps are calculated based on the acceleration data sampled at		
	25 Hz.		
PEDSetParam	Sets the user's body height and weight.		
PEDGetWalkStep	Gets the number of steps calculated.		
PEDGetWalkDist	Gets the walking distance calculated.		
PEDGetWalkTime	Gets the walking duration calculated.		
PEDGetExercise	Gets the walking exercise calculated.		
PEDGetCalorie	Gets the consumed calories by the walking calculated.		
PEDGetFat	Gets the amount of fat burnt by the walking calculated.		
PEDGetWalkSpeed	Gets the walking speed calculated.		
PEDGetMETs	Gets METs of the walking calculated.		
PEDGetCadence	Gets the walking cadence calculated.		

5. Operation Flow

This section describes basic operation flow of the S1C17 series steps calculation library.

Start steps calculation 1) Initialization **PEDInit** 2) Parameter setting PEDSetParam 3) Initializing calculated values to zero **PEDClear** Loop (25 Hz) 4) Calculation process **PEDMeas** 5) Getting calculated values PEDGetWalkStep PEDGetWalkDist **PEDGetWalkTime** PEDGetExercise PEDGetCalorie **PEDGetFat** ... Loop (25 Hz) Stop steps calculation

Figure 5-1 Basic operation flow

- 1) Initialize the steps calculation function upon startup of calculation.
- 2) Set the body height and weight, if needed.
- 3) Initialize the calculated values to zero, if needed.
- 4) Perform the calculation based on the input of acceleration data sampled at 25 Hz.
- 5) Get the calculation result, if needed.

6. API Function Details

PEDReset

Include

#include "pedo.h"

Format void PEDReset(void)

Argument

None

Return Value

None

Description

This function initializes all internal variables. Basically, this function is performed once at system startup. To initialize only the calculated data (number of steps, walking duration, walking distance, exercise amount, consumed calories, and amount of fat burnt) and calculation state, perform the PEDClear and PEDInit functions.

PEDInit

Include

#include "pedo.h"

Format void PEDInit(void)

Argument

None

Return Value

None

Description

This function performs the initialization process required when restarting from stopped state. The calculated data (number of steps, walking duration, walking distance, exercise amount, consumed calories, and amount of fat burnt) is not initialized.

PEDClear

Include

#include "pedo.h"

Format void PEDClear(void)

Argument

None

Return Value

None

Description

The calculated data accumulated (number of steps, walking duration, walking distance, exercise amount, consumed calories, and amount of fat burnt) is cleared by zero. Also, METs is cleared to 1.0.

PEDMeas

Include

#include "pedo.h"

Format int PEDMeas(short ai16XYZ[3], int iRadixPt)

Argument

ai16XYZ[3]

Tri-axis acceleration data sampled at 25 Hz

iRadixPt⁻

Number of bits for fractional part of numeric value corresponding to 1 G of acceleration

data

Specify a number from 11 to 13 according to the table below

Table 6-1 Setting value of argument iRadixPt

Measurement range of accelerometer	Sensor value corresponding to 1 G	iRadixPt value
±4 G	8192	13
±8 G	4096	12
±16 G	2048	11

Return Value

The return value represents whether the calculated information is updated. The value represents whether the number of steps, walking distance, consumed calories, and others are updated. One if the calculated information is updated, and zero otherwise.

Table 6-2 Return value of function PEDMeas

Return Value	Update of steps calculation
0	None
1	Yes

Description

The walking distance, consumed calories, and others are calculated by calculating the number of steps based on the tri-axis acceleration data sampled at 25 Hz. Call this function at the same sampling frequency of 25 Hz as the acceleration data.

The number of steps, walking speed, walking distance, and walking duration are updated each time a step is detected. The exercise amount, consumed calories, amount of fat burnt, and METs are updated every second while detecting steps. Also, the calculated values are updated even when the user stops.

6. API Function Details

PEDSetParam

Include

#include "pedo.h"

Format void PEDSetParam(int iHeight, int iWeight)

Argument

iHeight Body height (cm) (setting range: 120 to 255) *iWeight* Body weight (kg) (setting range: 0 to 255)

Return Value

None

Description

This function sets the user's body height and weight. Here, these setting values are initialized to defaults (body height: 165 cm, body weight: 60 kg) when the PEDReset function is performed. If the setting value is out of range, the value is clipped to upper or lower limit.

PEDGetWalkStep

Include

#include "pedo.h"

Format unsigned long PEDGetWalkStep(void)

Argument

None

Return Value

Returns the number of steps calculated.

Description

Returns the accumulated number of steps calculated from the time initialized by the PEDClear function up to now. This function is executable asynchronously with the interrupt handler.

PEDGetWalkDist

Include

#include "pedo.h"

Format unsigned long PEDGetWalkDist(void)

Argument

None

Return Value

Returns the walking distance. The unit is meter (m) and fractional part is represented in 8 bits (Q8 format).

Description

Returns the accumulated walking distance calculated from the time initialized by the PEDClear function up to now. This function is executable asynchronously with the interrupt handler.

PEDGetWalkTime

Include

#include "pedo.h"

Format unsigned long PEDGetWalkTime(void)

Argument

None

Return Value

Returns the walking duration. The unit is second.

Description

Returns the accumulated walking duration calculated from the time initialized by the PEDClear function up to now. This function is executable asynchronously with the interrupt handler.

PEDGetExercise

Include

#include "pedo.h"

Format unsigned long PEDGetExercise(void)

Argument

None

Return Value

Returns the exercise. The fractional part is represented in 8 bits (Q8 format).

Description

Returns the exercise amount calculated from the time initialized by the PEDClear function up to now. This function is executable asynchronously with the interrupt handler.

PEDGetCalorie

Include

#include "pedo.h"

Format unsigned long PEDGetCalorie(void)

Argument

None

Return Value

Returns the consumed calories. The unit is Kcal and fractional part is represented in 8 bits (Q8 format).

Description

Returns the consumed calories calculated from the time initialized by the PEDClear function up to now. This function is executable asynchronously with the interrupt handler.

PEDGetFat

Include

#include "pedo.h"

Format unsigned long PEDGetFat(void)

Argument

None

Return Value

Returns the amount of fat burnt. The unit is gram (g) and fractional part is represented in 8 bits (Q8 format).

Description

Returns the amount of fat burnt calculated from the time initialized by the PEDClear function up to now. This function is executable asynchronously with the interrupt handler.

PEDGetWalkSpeed

Include

#include "pedo.h"

Format unsigned short PEDGetWalkSpeed(void)

Argument

None

Return Value

Returns current walking speed. The unit is m/sec and fractional part is represented in 8 bits (Q8 format).

Description

Current walking speed is returned. Zero is returned at a stop.

PEDGetMETs

Include

#include "pedo.h"

Format unsigned short PEDGetMETs(void)

Argument

None

Return Value

Returns METs of current walking. The fractional part is represented in 8 bits (Q8 format).

Description

Returns METs of current walking. The number 1.0 (0x100) is returned at a stop.

PEDGetCadence

Include

#include "pedo.h"

Format unsigned char PEDGetCadence(void)

Argument

None

Return Value

Returns the cadence of current walking (steps/minute).

Description

Returns the cadence of current walking. Zero is returned at a stop.

Revision History

Attachment-1

Rev. No.	Date	Page	Category	Contents
Rev. 1.0	2014/10/15	All	New	
Rev. 2.0	2017/09/21	2	Addition	Added cadence calculation program and header files.
		3 to 6	Revision	Changed the chapter numbers.
		3	Revision	Changed the sizes listed in Table 3-1.
		4, 11	Addition	Added the PEDGetCadence function.

EPSON

International Sales Operations

AMERICA

EPSON ELECTRONICS AMERICA, INC.

214 Devcon Drive, San Jose, CA 95112, USA

Phone: +1-800-228-3964 FAX: +1-408-922-0238

EUROPE

EPSON EUROPE ELECTRONICS GmbH

Riesstrasse 15, 80992 Munich, GERMANY

Phone: +49-89-14005-0 FAX: +49-89-14005-110

ASIA

EPSON (CHINA) CO., LTD.

4th Floor, Tower 1 of China Central Place, 81 Jianguo Road, Chaoyang

District, Beijing 100025 China

Phone: +86-10-8522-1199 FAX: +86-10-8522-1120

SHANGHAI BRANCH

Room 1701 & 1704, 17 Floor, Greenland Center II, 562 Dong An Road, Xu Hui District, Shanghai, CHINA Phone: +86-21-5330-4888 FAX: +86-21-5423-4677

SHENZHEN BRANCH

Room 804-805, 8 Floor, Tower 2, Ali Center, No.3331 Keyuan South RD (Shenzhen bay), Nanshan District, Shenzhen 518054, CHINA

Phone: +86-10-3299-0588 FAX: +86-10-3299-0560

EPSON TAIWAN TECHNOLOGY & TRADING LTD.

14F, No. 7, Song Ren Road, Taipei 110, TAIWAN

EPSON SINGAPORE PTE., LTD.

1 HarbourFront Place,

#03-02 HarbourFront Tower One, Singapore 098633 Phone: +65-6586-5500 FAX: +65-6271-3182

SEIKO EPSON CORP. KOREA OFFICE

19F, KLI 63 Bldg., 60 Yoido-dong, Youngdeungpo-Ku, Seoul 150-763, KOREA Phone: +82-2-784-6027 FAX: +82-2-767-3677

SEIKO EPSON CORP. SALES & MARKETING DIVISION

Device Sales & Marketing Department

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-42-587-5816 FAX: +81-42-587-5116