

CMOS 16-BIT SINGLE CHIP MICROCONTROLLER S1C17656 Technical Manual

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. When exporting the products or technology described in this material, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You are requested not to use, to resell, to export and/or to otherwise dispose of the products (and any technical information furnished, if any) for the development and/or manufacture of weapon of mass destruction or for other military purposes.

All brands or product names mentioned herein are trademarks and/or registered trademarks of their respective companies.

Configuration of product number

- Contents -

1	Overvi	ew	1-1
	1.1	Features	1-1
	1.2	Block Diagram	1-2
	1.3	Pins	1-3
		1.3.1 Pin Configuration Diagram	1-3
		1.3.2 Pin Descriptions	1-6
2	CPU		2-1
		Features of the S1C17 Core	
		CPU Registers	
		Instruction Set	
		Reading PSR	
		Processor Information	
2		ry Map, Bus Control	
3		Bus Cycle	
	3.1	3.1.1 Restrictions on Access Size	
		3.1.2 Restrictions on Instruction Execution Cycles	
	30	Flash Area	
	0.2	3.2.1 Embedded Flash Memory	
		3.2.2 Flash Programming	
		3.2.3 Flash Memory Read Wait Cycle Setting	
		FLASHC Read Wait Control Register (FLASHC_WAIT)	
	3.3	Internal RAM Area	3-3
		3.3.1 Embedded RAM	
		IRAM Size Register (MISC_IRAMSZ)	
		Display RAM area	
	3.5	Internal Peripheral Area	
		3.5.1 Internal Peripheral Area 1 (0x4000–)	
		3.5.2 Internal Peripheral Area 2 (0x5000–)	
		S1C17 Core I/O Area	
4	Power	Supply	4-1
	4.1	Power Supply Voltage (VDD)	4-1
	4.2	Flash Programming Power Supply Voltage (VPP)	4-1
	4.3	Internal Power Supply Circuit	4-1
		4.3.1 VD1 Regulator	
		4.3.2 LCD Power Supply Circuit	
		4.3.3 Heavy Load Protection Mode	
	4.4	Control Register Details	
		LCD Booster Clock Control Register (LCD_BCLK) LCD Voltage Regulator Control Register (LCD_VREG)	
		V _{D1} Control Register (VD1_CTL)	
5	Initial	Reset	
5		Initial Reset Sources	
	5.1	5.1.1 #RESET Pin	
		5.1.2 P0 Port Key-Entry Reset	
		5.1.3 Resetting by the Watchdog Timer	
		5.1.4 Resetting by the Supply Voltage Detection Circuit	
	5.2	Initial Reset Sequence	
		Initial Settings After an Initial Reset	

6	Inte		pt Controller (ITC)	
		6.1	ITC Module Overview	6-1
		6.2	Vector Table	
			Vector Table Address Low/High Registers (MISC_TTBRL, MISC_TTBRH)	. 6-3
		6.3	Control of Maskable Interrupts	6-3
			6.3.1 Interrupt Control Bits in Peripheral Modules	.6-3
			6.3.2 ITC Interrupt Request Processing	.6-3
			6.3.3 Interrupt Processing by the S1C17 Core	6-4
		6.4	NMI	6-4
		6.5	Software Interrupts	6-4
		6.6	HALT and SLEEP Mode Cancellation	6-5
			Control Register Details	
		•	Interrupt Level Setup Register x (ITC_LVx)	
7	Clo	ock (Generator (CLG)	.7-1
		7.1	CLG Module Overview	7-1
		7.2	CLG Input/Output Pins	7-2
		7.3	Oscillators	7-2
		-	7.3.1 OSC3B Oscillator	
			7.3.2 OSC1A Oscillator	
		7.4	System Clock Switching	7-5
			CPU Core Clock (CCLK) Control	
			Peripheral Module Clock (PCLK) Control	
			Clock External Output (FOUTA, FOUTB)	
		7.8	Control Register Details Clock Source Select Register (CLG_SRC)	
			Oscillation Control Register (CLG_CTL)	
			FOUTA Control Register (CLG_FOUTA)	
			FOUTB Control Register (CLG_FOUTB)	
			Oscillation Stabilization Wait Control Register (CLG_WAIT)	
			PCLK Control Register (CLG_PCLK)	
			CCLK Control Register (CLG_CCLK)	7-13
8	Rea	al-Ti	ime Clock (RTC)	.8-1
		8.1	RTC Module Overview	8-1
		8.2	RTC Counters	8-1
			RTC Control	
		0.0	8.3.1 Operating Clock Control.	
			8.3.2 12-hour/24-hour mode selection	
			8.3.3 RTC Start/Stop	
			8.3.4 Counter Settings	
			8.3.5 Counter Read	
		8.4	RTC Interrupts	
			Control Register Details	
		0.0	RTC Control Register (RTC_CTL)	
			RTC Interrupt Enable Register (RTC_IEN)	
			RTC Interrupt Flag Register (RTC_IFLG)	
			RTC Minute/Second Counter Register (RTC_MS)	. 8-8
			RTC Hour Counter Register (RTC_H)	. 8-9
9	I/O	Por	ts (P)	.9-1
		9.1	P Module Overview	9-1
		9.2	Input/Output Pin Function Selection (Port MUX)	9-2
			Data Input/Output	
ii		-	Seiko Epson Corporation S1C17656 TECHNICAL	MANU

	9.4 I	Pull-up Control	9-3
	9.5 I	Port Input Interrupt	9-3
	9.6 (Chattering Filter Function	9-4
		P0 Port Key-Entry Reset	
		Control Register Details	
	9.0 0	Px Port Input Data Registers (Px_IN)	
		Px Port Output Data Registers (Px_OUT)	
		Px Port Output Enable Registers (Px_OEN)	
		Px Port Pull-up Control Registers (Px_PU)	
		P0 Port Interrupt Mask Register (P0_IMSK)	
		P0 Port Interrupt Edge Select Register (P0_EDGE)	. 9-7
		P0 Port Interrupt Flag Register (P0_IFLG)	
		Px Port Chattering Filter Control Register (Px_CHAT)	
		P0 Port Key-Entry Reset Configuration Register (P0_KRST)	
		Px Port Input Enable Registers (Px_IEN)	
		P0[3:0] Port Function Select Register (P00_03PMUX)	
		P0[7:4] Port Function Select Register (P04_07PMUX) P1[3:0] Port Function Select Register (P10_13PMUX)	
		P1[7:4] Port Function Select Register (P14_17PMUX)	
		P23 Port Function Select Register (P23PMUX)	
4.0	0 L H T		
10		mer (T8)	
		T8 Module Overview	
		Count Clock	
	10.3	Count Mode	.10-2
	10.4	Reload Data Register and Underflow Cycle	.10-2
	10.5	Timer Reset	.10-3
	10.6	Timer RUN/STOP Control	.10-3
		T8 Output Signals	
		T8 Interrupts	
		Control Register Details	
	10.0	T8 Ch.x Count Clock Select Register (T8_CLKx)	
		T8 Ch.x Reload Data Register (T8_TRx)	
		T8 Ch.x Counter Data Register (T8_TCx)	
		T8 Ch.x Control Register (T8_CTLx)	
		T8 Ch.x Interrupt Control Register (T8_INTx)	. 10-7
11	16-bit	PWM Timer (T16A2)	11-1
		T16A2 Module Overview	
		T16A2 Input/Output Pins	
		Count Clock	
		T16A2 Operating Modes	
	11.4	11.4.1 Comparator Mode and Capture Mode	
		11.4.2 Repeat Mode and One-Shot Mode	
		11.4.3 Normal Clock Mode and Half Clock Mode	
	115	Counter Control	
	11.5	11.5.1 Counter Reset	
		11.5.2 Counter RUN/STOP Control	
		11.5.3 Reading Counter Values	
		11.5.4 Counter Operation and Interrupt Timing Charts	
	11.6	Timer Output Control	
		T16A2 Interrupts	
		Control Register Details	
	11.0	T16A Clock Control Register Ch.x (T16A_CLKx)	

CONTENTS

		T16A Counter Ch.x Control Register (T16A_CTLx)	
		T16A Counter Ch.x Data Register (T16A_TCx)	
		T16A Comparator/Capture Ch.x Control Register (T16A_CCCTLx)	
		T16A Comparator/Capture Ch.x A Data Register (T16A_CCAx)	
		T16A Comparator/Capture Ch.x B Data Register (T16A_CCBx)	
		T16A Comparator/Capture Ch.x Interrupt Enable Register (T16A_IENx)	
		T16A Comparator/Capture Ch.x Interrupt Flag Register (T16A_IFLGx)	11-18
12	Clock 7	Гіmer (СТ)	12-1
		CT Module Overview	
		Operation Clock	
		•	
		Timer Reset	
	12.4	Timer RUN/STOP Control	12-2
	12.5	CT Interrupts	12-2
	12.6	Control Register Details	12-3
		Clock Timer Control Register (CT_CTL)	12-3
		Clock Timer Counter Register (CT_CNT)	12-4
		Clock Timer Interrupt Mask Register (CT_IMSK)	12-4
		Clock Timer Interrupt Flag Register (CT_IFLG)	12-4
13	Watch	dog Timer (WDT)	13-1
		WDT Module Overview	
		Operation Clock	
	13.3	WDT Control	
		13.3.1 NMI/Reset Mode Selection	
		13.3.2 WDT Run/Stop Control	
		13.3.3 WDT Reset	
		13.3.4 Operations in HALT and SLEEP Modes	13-2
	13.4	Control Register Details	
		Watchdog Timer Control Register (WDT_CTL)	
		Watchdog Timer Status Register (WDT_ST)	13-3
14	UART.		
		UART Module Overview	
		UART Input/Output Pins	
		Baud Rate Generator	
		Transfer Data Settings	
		Data Transfer Control	
		Receive Errors	
	14.7	UART Interrupts	14-8
	14.8	IrDA Interface	14-9
	14.9	Control Register Details	14-10
		UART Ch.x Status Register (UART_STx)	14-10
		UART Ch.x Transmit Data Register (UART_TXDx)	14-12
		UART Ch.x Receive Data Register (UART_RXDx)	14-12
		UART Ch.x Mode Register (UART_MODx)	
		UART Ch.x Control Register (UART_CTLx)	
		UART Ch.x Expansion Register (UART_EXPx)	
		UART Ch.x Baud Rate Register (UART_BRx)	
		UART Ch.x Fine Mode Register (UART_FMDx)	
		UART Ch.x Clock Control Register (UART_CLKx)	14-15
15	SPI		15-1
	15.1	SPI Module Overview	15-1
		SPI Input/Output Pins	
		· ·	

	15.3 SPI Clock					
	15.4	Data Transfer Condition Settings	.15-2			
	15.5	Data Transfer Control	.15-3			
		SPI Interrupts				
		Control Register Details				
	15.7	SPI Ch.x Status Register (SPI_STx)				
		SPI Ch.x Transmit Data Register (SPI_TXDx)				
		SPI Ch.x Receive Data Register (SPI_RXDx)				
		SPI Ch. <i>x</i> Control Register (SPI_CTL <i>x</i>)				
16		river (LCD)				
		LCD Module Overview				
	16.2	LCD Power Supply	.16-1			
	16.3	LCD Clock	.16-2			
		16.3.1 LCD Operating Clock (LCLK)				
		16.3.2 Frame Signal				
	164	Drive Duty Control				
	10.1	16.4.1 Drive Duty Switching				
		16.4.2 Drive Waveform				
	16 5					
		Display Memory				
	16.6	Display Control				
		16.6.1 Display On/Off				
		16.6.2 Inverted Display				
		LCD Interrupt				
	16.8	Control Register Details				
		LCD Timing Clock Select Register (LCD_TCLK)				
		LCD Display Control Register (LCD_DCTL)				
		LCD Clock Control Register (LCD_CCTL)				
		LCD Voltage Regulator Control Register (LCD_VREG)				
		LCD Interrupt Mask Register (LCD_IMSK)				
		LCD Interrupt Flag Register (LCD_IFLG)	16-12			
17	Sound	Generator (SND)	17-1			
	17.1	SND Module Overview	.17-1			
	172	SND Output Pins	17-1			
		SND Operating Clock				
	17.4	Buzzer Frequency and Volume Settings				
		17.4.1 Buzzer Frequency				
		17.4.2 Volume level				
	17.5	Buzzer Mode and Output Control				
		17.5.1 Buzzer Mode Selection				
		17.5.2 Output Control in Normal Mode				
		17.5.3 Output Control in One-shot Mode				
		17.5.4 Output Control in Envelope Mode	.17-4			
	17.6	Control Register Details				
		SND Clock Control Register (SND_CLK)				
		SND Control Register (SND_CTL)				
		Buzzer Frequency Control Register (SND_BZFQ)				
		Buzzer Duty Ratio Control Register (SND_BZDT)	. 17-7			
18	Supply	Voltage Detection Circuit (SVD)	18-1			
-		SVD Module Overview				
		Voltage to be Detected				
	18.3	Operation Clock	.18-2			

		Comparison Voltage Setting	
	18.5	SVD Control	18-3
	18.6	Intermittent Operation	18-3
		SVD Interrupt and Reset	
		Control Register Details	
	10.0	SVD Clock Control Register (SVD_CLK)	
		SVD Enable Register (SVD_EN)	
		SVD Comparison Voltage Register (SVD_CMP)	
		SVD Detection Result Register (SVD_RSLT)	
		SVD Interrupt Mask Register (SVD_IMSK)	
		SVD Interrupt Flag Register (SVD_IFLG)	18-8
10	B/E Co	nverter (RFC)	10_1
13		RFC Module Overview	
		RFC Input/Output Pins	
		Operation Clock	
	19.4	Operating Modes	
		19.4.1 DC Oscillation Mode for Measuring Resistive Sensors	
		19.4.2 External Clock Input Mode (Event Counter Mode)	
		19.4.3 Functions for Measuring CR Oscillation Clock Frequency	
	19.5	RFC Counters	19-4
	19.6	Conversion Operations	19-5
		19.6.1 Initial Settings	
		19.6.2 Reference Oscillation Control	
		19.6.3 Sensor Oscillation Control	
		19.6.4 Forced Termination	
		19.6.5 Conversion Error	
	19.7	RFC Interrupts	
		Control Register Details	
	10.0	RFC Clock Control Register (RFC_CLK)	
		RFC Control Register (RFC_CTL)	
		RFC Oscillation Trigger Register (RFC_TRG)	
		RFC Measurement Counter Low and High Registers (RFC_MCL, RFC_MCH)	19-10
		RFC Time Base Counter Low and High Registers (RFC_TCL, RFC_TCH)	
		RFC Interrupt Mask Register (RFC_IMSK)	
		RFC Interrupt Flag Register (RFC_IFLG)	19-12
20	On-chi	p Debugger (DBG)	20-1
		Resource Requirements and Debugging Tools	
		Debug Break Operation Status	
		Additional Debugging Function	
		Flash Security Function	
	20.5	Control Register Details	
		Debug Mode Control Register 1 (MISC_DMODE1)	
		Debug Mode Control Register 2 (MISC_DMODE2)	
		IRAM Size Select Register (MISC_IRAMSZ)	
		Debug RAM Base Register (DBRAM) Debug Control Register (DCR)	
		Instruction Break Address Register 2 (IBAR2)	
		Instruction Break Address Register 2 (IBAR3)	
		Instruction Break Address Register 4 (IBAR4)	
~1	N.A 14 ! '		
21	-	lier/Divider (COPRO)	
		Overview	
_	21.2	Operation Mode and Output Mode	21-1

	21.3 Multiplication		21-2
	21.4 Division		21-3
	21.5 MAC		21-4
	21.6 Reading Operation Results		21-6
22	Electrical Characteristics		22-1
	22.1 Absolute Maximum Ratings		
	22.2 Recommended Operating Condition		
	22.3 Current Consumption		
	22.4 Oscillation Characteristics		
	22.5 External Clock Input Characteristics		
	22.6 Input/Output Pin Characteristics		
	22.7 SPI Characteristics		
	22.8 LCD Driver Characteristics		
	22.9 SVD Circuit Characteristics		
	22.10 R/F Converter Characteristics		
	22.11 Flash Memory Characteristics		
	Basic External Connection Diagram		
24	Package		24-1
Арр	endix A List of I/O Registers		
	0x4100–0x4107, 0x506c	UART (with IrDA) Ch.0	
	0x4240-0x4248	8-bit Timer Ch.0	
	0x4306–0x4318	Interrupt Controller	
	0x4320–0x4326 0x5000–0x5003	SPI Ch.0	
	0x5040–0x5041	Watchdog Timer	
	0x5060–0x5081	Clock Generator	
	0x5070–0x5071, 0x50a0–0x50a6	LCD Driver	
	0x5066, 0x5100–0x5104	SVD Circuit	
	0x5120	Power Generator	
	0x506e, 0x5180-0x5182	Sound Generator	
	0x5200-0x52a4	P Port & Port MUX	AP-A-9
	0x4020, 0x5322–0x532c	MISC Registers	AP-A-11
	0x5067, 0x53a0–0x53ae	R/F converter Ch.0	AP-A-12
	0x5068, 0x5400-0x540c	16-bit PWM Timer Ch.0	AP-A-13
	0x54b0	Flash Controller	
	0x56c0-0x56c8	Real-time Clock	
	0xffff84–0xffffd0	S1C17 Core I/O	AP-A-15
Арр	endix B Power Saving		
	B.1 Clock Control Power Saving		AP-B-1
	B.2 Reducing Power Consumption via Po	wer Supply Control	AP-B-3
Арр	endix C Mounting Precautions		AP-C-1
Арр	endix D Measures Against Noise		AP-D-1
Арр	endix E Initialization Routine		AP-E-1
Rev	ision History		

1 Overview

1.1 Features

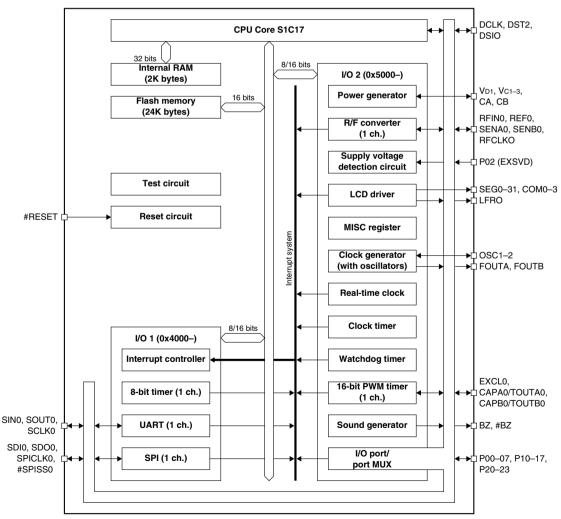
The main features of the S1C17656 are listed below.

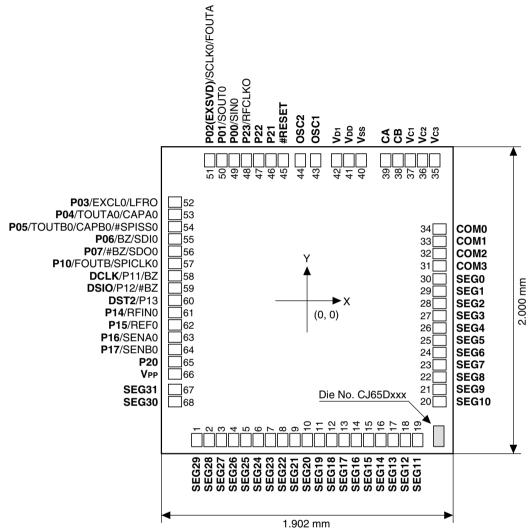
	Table 1.1.1 Features					
Model	S1C17656					
CPU						
CPU core	Seiko Epson original 16-bit RISC CPU core S1C17					
Multiplier/Divider (COPRO)	• 16-bit × 16-bit multiplier					
	16-bit × 16-bit + 32-bit multiply and accumulation unit					
Furthendaled Floods an environment	• 16-bit ÷ 16-bit divider					
Embedded Flash memory	041/ butes (few bath instructions and date)					
Capacity	24K bytes (for both instructions and data)					
Erase/program count Other	50 times (min.) • Security function to protect from reading/programming by the debugging tool ICDmini					
Other	 A programming power supply (VPP) is required. 					
	 A programming power supply (VFF) is required. Allows on-board programming using the debugging tool ICDmini. 					
Embedded RAM						
Capacity	2K bytes					
Clock generator (CLG)						
System clock source	2 sources (OSC3B/OSC1A)					
OSC3B oscillator circuit	4M/2M/1M/500k Hz (typ.) internal oscillator circuit					
OSC1A oscillator circuit	32.768 kHz (typ.) crystal oscillator circuit					
Other	Core clock frequency control					
	Peripheral module clock supply control					
LCD driver (LCD)						
Number of driver outputs	Segment output: 32 pins					
	Common output: 4 pins					
Other	 Includes a power supply voltage booster/reducer. 					
	Includes a display data memory.					
I/O ports (P)						
Number of general-purpose I/O ports	Max. 19 bits (The pins are shared with the peripheral I/O.)					
Number of general-purpose output ports	Max. 1 bit (The pin is shared with the debug signal output.)					
Other	Schmitt input					
	Pull-up control function					
~ · · · · ·	Port input interrupt: 8 bits (P00–P07)					
Serial interfaces						
SPI	1 channel					
UART	1 channel (IrDA1.0 supported)					
Timers/Counters						
8-bit timer (T8)	1 channel (Generates the SPI clock.)					
16-bit PWM timer (T16A2)	1 channel (PWM output, event counter, and count capture functions)					
Watchdog timer (WDT)	1 channel (Generates NMI/reset.)					
Clock functions						
Real-time clock (RTC)	1 channel (Hour, minute, and second counters)					
Clock timer (CT) Sound generator (SND)	1 channel (128 Hz to 1 Hz counters)					
o	9 fraguancias selectable					
Buzzer frequency	8 frequencies selectable					
Volume control	8 steps adjustable					
Other	One-shot buzzer Auto envelope function					
Supply voltage detection circuit (SVD)						
Detection level	13 levels (2.0 V to 3.2 V)					
Other	Intermittent mode					
	 Generates an interrupt or reset according to the detection level evaluation. 					
	 VDD or an external voltage (P02 pin input, up to VDD level) can be detected. 					
R/F converter (RFC)						
Conversion method	CR oscillation type with 24-bit counter					
Number of conversion channels	1 channel (2 sensors can be connected.)					
Sensor supported	DC-bias resistive sensors					
Other	Supports external input for counting pulses.					

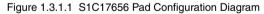
below.

Interrupts							
Reset interrupt	#RESET pin/watchdog timer						
NMI	Watchdog timer						
Programmable interrupts	10 systems (8 levels)						
Power supply voltage							
Operating voltage (VDD)	1.8 V to 3.6 V						
Flash programming/erasing voltage (VPP)	7.5 V						
Operating temperature							
Operating temperature range	-40°C to 85°C						
Current consumption (Typ value, VDD =	1.8 V to 3.6 V)						
SLEEP state	130 nA (OSC1A = Off, RTC = Off, OSC3B = Off)						
	400 nA (OSC1A = 32 kHz, RTC = On, OSC3B = Off)						
HALT state	0.5 μA (OSC1A = 32 kHz, RTC = Off, OSC3B = Off)						
	0.5 μA (OSC1A = 32 kHz, RTC = On, OSC3B = Off)						
Run state	7.3 μA (OSC1A = 32 kHz, RTC = Off, OSC3B = Off)						
	280 μA (OSC1A = Off, RTC = Off, OSC3B = 1 MHz)						
Shipping form							
1	Aluminum pad chip						
2	TQFP14-80pin (14 mm \times 14 mm \times 1 mm, lead pitch: 0.5 mm)						

1.2 Block Diagram




Figure 1.2.1 S1C17656 Block Diagram


Seiko Epson Corporation

1.3 Pins

1.3.1 Pin Configuration Diagram

Chip size	X = 1.902 mm, Y = 2.000 mm					
Pad opening	No. 1–19, 35–51: X = 68 µm, Y = 86 µm					
	No. 20–34, 52–68: X = 86 µm, Y = 68 µm					
Chip thickness	400 μm					

No.	Name	X (µm)	Y (µm)	No.	Name	X (µm)	Y (µm)
1	SEG29	-720.0	-911.5	35	Vc3	831.5	911.5
2	SEG28	-640.0	-911.5	36	Vc2	751.5	911.5
3	SEG27	-560.0	-911.5	37	Vc1	671.5	911.5
4	SEG26	-480.0	-911.5	38	СВ	591.5	911.5
5	SEG25	-400.0	-911.5	39	CA	511.5	911.5
6	SEG24	-320.0	-911.5	40	Vss	351.5	911.5
7	SEG23	-240.0	-911.5	41	VDD	271.5	911.5
8	SEG22	-160.0	-911.5	42	VD1	191.5	911.5
9	SEG21	-80.0	-911.5	43	OSC1	54.6	911.5
10	SEG20	0.0	-911.5	44	OSC2	-45.4	911.5
11	SEG19	80.0	-911.5	45	#RESET	-156.4	911.5
12	SEG18	160.0	-911.5	46	P21	-236.4	911.5
13	SEG17	240.0	-911.5	47	P22	-316.4	911.5
14	SEG16	320.0	-911.5	48	P23/RFCLKO	-396.4	911.5
15	SEG15	400.0	-911.5	49	P00/SIN0	-476.4	911.5
16	SEG14	480.0	-911.5	50	P01/SOUT0	-556.4	911.5
17	SEG13	560.0	-911.5	51	P02(EXSVD)/SCLK0/FOUTA	-636.4	911.5
18	SEG12	640.0	-911.5	52	P03/EXCL0/LFRO	-862.5	639.4
19	SEG11	720.0	-911.5	53	P04/TOUTA0/CAPA0	-862.5	559.4
20	SEG10	862.5	-661.3	54	P05/TOUTB0/CAPB0/#SPISS0	-862.5	479.4
21	SEG9	862.5	-581.3	55	P06/BZ/SDI0	-862.5	399.4
22	SEG8	862.5	-501.3	56	P07/#BZ/SDO0	-862.5	319.4
23	SEG7	862.5	-421.3	57	P10/FOUTB/SPICLK0	-862.5	239.4
24	SEG6	862.5	-341.3	58	DCLK/P11/BZ	-862.5	159.4
25	SEG5	862.5	-261.3	59	DSIO/P12/#BZ	-862.5	79.4
26	SEG4	862.5	-181.3	60	DST2/P13	-862.5	-0.6
27	SEG3	862.5	-101.3	61	P14/RFIN0	-862.5	-80.6
28	SEG2	862.5	-21.3	62	P15/REF0	-862.5	-160.6
29	SEG1	862.5	58.7	63	P16/SENA0	-862.5	-240.6
30	SEG0	862.5	138.7	64	P17/SENB0	-862.5	-320.6
31	СОМЗ	862.5	223.7	65	P20	-862.5	-400.6
32	COM2	862.5	303.7	66	Vpp	-862.5	-480.6
33	COM1	862.5	383.7	67	SEG31	-862.5	-581.3
34	СОМО	862.5	463.7	68	SEG30	-862.5	-661.3

Table 1.3.1.1 S1C17656 Pad Coordinates

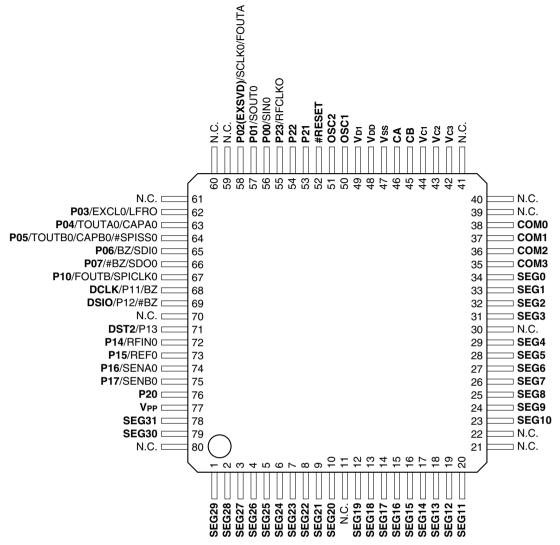


Figure 1.3.1.2 S1C17656 Pin Configuration Diagram (TQFP14-80pin)

1.3.2 Pin Descriptions

Note: The pin names described in boldface type are default settings.

Table 1.3.2.1 Pin Descriptions

F	Pin No.			Initial	
Chip	TQFP14-80	Name	I/O	status	Function
67, 68,	78, 79, 1–10,	SEG31-SEG0	0	O (Hi-Z)	LCD segment output pins
1–30	12-20, 23-29,	32031-3200		0 (11-2)	ECD segment output pins
1-50	31–34				
31–34		СОМЗ-СОМО	0	O (Hi-Z)	LCD common output ning
	35–38 42	Vc3		0 (п-2)	LCD common output pins
35			-	_	LCD system power supply circuit output pin
36	43	Vc2	-	-	LCD system power supply circuit output pin
37	44	Vc1	-	-	LCD system power supply circuit output pin
38	45	СВ	-	-	Voltage boost capacitor connecting pin for LCD system power supply circuit
39	46	CA	-	-	Voltage boost capacitor connecting pin for LCD system power supply circuit
40	47	Vss	_	-	GND pin
41	48	VDD	-	-	Power supply pin (1.8 to 3.6 V)
42	49	VD1	-	-	Internal logic system voltage regulator output pin
43	50	OSC1	Ι		OSC1A oscillation input pin
44	51	OSC2	0	0	OSC1A oscillation output pin
45	52	#RESET	1	I (Pull-up)	Initial reset input pin
66	77	Vpp	-	-	Flash programming/erasing power supply pin (7.5 V)
					(Leave the pin open during normal operation.)
49	56	P00	I/O	I (Pull-up)	I/O port pin (with interrupt function)
		SIN0	I		UART Ch.0 data input pin
50	57	P01	I/O	I (Pull-up)	I/O port pin (with interrupt function)
		SOUTO		,	UART Ch.0 data output pin
51	58	P02 (EXSVD)		l (Pull-up)	I/O port pin (with interrupt function), SVD detection target voltage input pin
		SCLKO		V 177	UART Ch.0 external clock input pin
		FOUTA	-		Clock output pin
52	62	P03		I (Pull-up)	I/O port pin (with interrupt function)
02	02	EXCL0			T16A2 Ch.0 external clock input pin
		LFRO			LCD frame signal output pin
53	63	P04		I (Dull up)	I/O port pin (with interrupt function)
- 55	05	TOUTAO		i (Full-up)	T16A2 Ch.0 TOUT A signal output pin
E 4	64	CAPA0 P05		L (Dull	T16A2 Ch.0 capture A trigger signal input pin
54	64			i (Pull-up)	I/O port pin (with interrupt function)
		TOUTBO			T16A2 Ch.0 TOUT B signal output pin
		CAPB0			T16A2 Ch.0 capture B trigger signal input pin
		#SPISS0			SPI Ch.0 slave select signal input pin
55	65	P06		I (Pull-up)	I/O port pin (with interrupt function)
		BZ			Buzzer output pin
		SDI0			SPI Ch.0 data input pin
56	66	P07		I (Pull-up)	I/O port pin (with interrupt function)
		#BZ			Buzzer inverted output pin
		SDO0			SPI Ch.0 data output pin
57	67	P10	I/O	I (Pull-up)	I/O port pin
		FOUTB	0		Clock output pin
		SPICLK0	I/O		SPI Ch.0 clock input/output pin
58	68	DCLK	0	O (H)	On-chip debugger clock output pin
		P11	0		Output port pin
		BZ	0		Buzzer output pin
59	69	DSIO	Ι	I (Pull-up)	On-chip debugger data input/output pin
		P12	I/O	,	I/O port pin
		#BZ			Buzzer inverted output pin
60	71	DST2	0	O (L)	On-chip debugger status output pin
		P13		(-)	I/O port pin
61	72	P14		l (Pull-up)	I/O port pin
		RFINO		(·	R/F converter Ch.0 RFCLK input and oscillation control pin
62	73	P15	-	l (Pull-un)	I/O port pin
		REF0		. (i un up)	R/F converter Ch.0 reference oscillation control pin
63	74	P16		I (Pull-un)	I/O port pin
	, , ,	SENA0		i (i uii-uµ)	R/F converter Ch.0 sensor A oscillation control pin
64	75	P17		l (Pull un)	I/O port pin
64	15			i (Full-up)	R/F converter Ch.0 sensor B oscillation control pin
65	76	SENB0		1 (Dull)	
65 46	76 53	P20 P21			I/O port pin I/O port pin
47	54	P22	-		I/O port pin
48	55	P23		i (Pull-up)	I/O port pin
		RFCLKO	0		R/F clock monitor output pin
1-6				Calles	Enson Corporation S1C17656 TECHNICAL MANUAL

2 CPU

The S1C17656 contains the S1C17 Core as its core processor.

The S1C17 Core is a Seiko Epson original 16-bit RISC-type processor.

It features low power consumption, high-speed operation, large address space, main instructions executable in one clock cycle, and a small sized design. The S1C17 Core is suitable for embedded applications such as controllers and sequencers for which an eight-bit CPU is commonly used.

For details of the S1C17 Core, refer to the "S1C17 Family S1C17 Core Manual."

2.1 Features of the S1C17 Core

Processor type

- Seiko Epson original 16-bit RISC processor
- 0.35-0.15 µm low power CMOS process technology

Instruction set

- Code length: 16-bit fixed length
- Number of instructions: 111 basic instructions (184 including variations)
- Execution cycle: Main instructions executed in one cycle
- Extended immediate instructions: Immediate extended up to 24 bits
- · Compact and fast instruction set optimized for development in C language

Register set

- · Eight 24-bit general-purpose registers
- · Two 24-bit special registers
- · One 8-bit special register

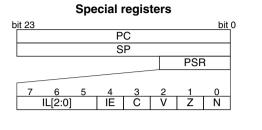
Memory space and bus

- Up to 16M bytes of memory space (24-bit address)
- Harvard architecture using separated instruction bus (16 bits) and data bus (32 bits)

Interrupts

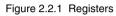
- Reset, NMI, and 32 external interrupts supported
- Address misaligned interrupt
- Debug interrupt
- · Direct branching from vector table to interrupt handler routine
- Programmable software interrupts with a vector number specified (all vector numbers specifiable)

Power saving


- HALT (halt instruction)
- SLEEP (slp instruction)

Coprocessor interface

- 16-bit × 16-bit multiplier
- 16-bit ÷ 16-bit divider
- 16-bit × 16-bit + 32-bit multiply and accumulation unit


2.2 CPU Registers

The S1C17 Core contains eight general-purpose registers and three special registers.

General-purpose registers

bi	t 23 bit 0
7 [R7
6 [R6
5	R5
4	R4
3	R3
2 [R2
1 [R1
0 [R0

7

6

Ę

(

2.3 Instruction Set

The S1C17 Core instruction codes are all fixed to 16 bits in length which, combined with pipelined processing, allows most important instructions to be executed in one cycle. For details, refer to the "S1C17 Family S1C17 Core Manual."

Classification		Mnemonic	Function
Data transfer	ld.b	%rd,%rs	General-purpose register (byte) \rightarrow general-purpose register (sign-extended)
		%rd,[%rb]	Memory (byte) \rightarrow general-purpose register (sign-extended)
		%rd,[%rb]+	Memory address post-increment, post-decrement, and pre-decrement
		%rd,[%rb]-	functions can be used.
		%rd,-[%rb]	
		%rd,[%sp+imm7]	Stack (byte) \rightarrow general-purpose register (sign-extended)
		%rd,[imm7]	Memory (byte) \rightarrow general-purpose register (sign-extended)
		[%rb],%rs	General-purpose register (byte) \rightarrow memory
		[%rb]+,%rs	Memory address post-increment, post-decrement, and pre-decrement
		[%rb]-,%rs	functions can be used.
		-[%rb],%rs	
		[%sp+imm7],%rs	General-purpose register (byte) \rightarrow stack
		[imm7],%rs	General-purpose register (byte) \rightarrow memory
	ld.ub	%rd,%rs	General-purpose register (byte) \rightarrow general-purpose register (zero-extended)
		%rd,[%rb]	Memory (byte) \rightarrow general-purpose register (zero-extended)
		%rd,[%rb]+	Memory address post-increment, post-decrement, and pre-decrement
		%rd,[%rb]-	functions can be used.
		%rd,-[%rb]	
		%rd,[%sp+imm7]	Stack (byte) \rightarrow general-purpose register (zero-extended)
		%rd,[imm7]	Memory (byte) \rightarrow general-purpose register (zero-extended)
	ld	%rd,%rs	General-purpose register (16 bits) \rightarrow general-purpose register
		%rd,sign7	Immediate \rightarrow general-purpose register (sign-extended)
		%rd,[%rb]	Memory (16 bits) \rightarrow general-purpose register
		%rd,[%rb]+	Memory address post-increment, post-decrement, and pre-decrement
		%rd,[%rb]-	functions can be used.
		%rd,-[%rb]	
		%rd,[%sp+imm7]	Stack (16 bits) \rightarrow general-purpose register
		%rd,[imm7]	Memory (16 bits) \rightarrow general-purpose register
		[%rb],%rs	General-purpose register (16 bits) \rightarrow memory
		[%rb]+,%rs	Memory address post-increment, post-decrement, and pre-decrement
		[%rb]-,%rs	functions can be used.
		-[%rb],%rs	
		[%sp+imm7],%rs	General-purpose register (16 bits) \rightarrow stack
		[imm7],%rs	General-purpose register (16 bits) \rightarrow memory
	ld.a	%rd,%rs	General-purpose register (24 bits) \rightarrow general-purpose register
		%rd,imm7	Immediate \rightarrow general-purpose register (zero-extended)

Table 2.3.1	List of S1C17	Core Instructions
-------------	---------------	--------------------------

Classification		Inemonic	Function
Data transfer	ld.a	%rd,[%rb]	Memory (32 bits) \rightarrow general-purpose register (*1)
		%rd,[%rb]+	Memory address post-increment, post-decrement, and pre-decrement
		%rd,[%rb]-	functions can be used.
		%rd,-[%rb]	
		%rd,[%sp+imm7]	Stack (32 bits) \rightarrow general-purpose register (*1)
		%rd,[imm7]	Memory (32 bits) \rightarrow general-purpose register (*1)
		[%rb],%rs	General-purpose register (32 bits, zero-extended) \rightarrow memory (*1)
		[%rb]+,%rs	Memory address post-increment, post-decrement, and pre-decrement
		[%rb]-,%rs	functions can be used.
		-[%rb],%rs	
		[%sp+imm7],%rs	General-purpose register (32 bits, zero-extended) \rightarrow stack (*1)
		[imm7],%rs	General-purpose register (32 bits, zero-extended) \rightarrow memory (*1)
		<i>%rd</i> , %sp	$SP \rightarrow general-purpose register$
		%rd, %pc	$PC \rightarrow general-purpose register$
		%rd, [%sp]	Stack (32 bits) \rightarrow general-purpose register (*1)
		%rd, [%sp]+	Stack pointer post-increment, post-decrement, and pre-decrement functions
		%rd, [%sp]-	can be used.
		%rd,-[%sp]	
		[%sp],%rs	General-purpose register (32 bits, zero-extended) \rightarrow stack (*1)
		[%sp]+,%rs	Stack pointer post-increment, post-decrement, and pre-decrement functions
		[%sp]-,%rs	can be used.
		-[%sp],%rs	
		%sp, %rs	General-purpose register (24 bits) \rightarrow SP
		%sp,imm7	Immediate \rightarrow SP
nteger arithmetic	add	%sp,11017 %rd,%rs	16-bit addition between general-purpose registers
-	add/c	1010,015	
peration	add/c add/nc	_	Supports conditional execution (/c: executed if $C = 1$, /nc: executed if $C = 0$).
		Que d' imm 7	10 bit addition of general numbers register and immediate
	add	%rd,imm7	16-bit addition of general-purpose register and immediate
	add.a	%rd,%rs	24-bit addition between general-purpose registers
	add.a/c	_	Supports conditional execution (/c: executed if $C = 1$, /nc: executed if $C = 0$).
	add.a/nc	0	
	add.a	%sp,%rs	24-bit addition of SP and general-purpose register
		%rd,imm7	24-bit addition of general-purpose register and immediate
		%sp,imm7	24-bit addition of SP and immediate
	adc	%rd,%rs	16-bit addition with carry between general-purpose registers
	adc/c	_	Supports conditional execution (/c: executed if $C = 1$, /nc: executed if $C = 0$).
	adc/nc		
	adc	%rd,imm7	16-bit addition of general-purpose register and immediate with carry
	sub	%rd,%rs	16-bit subtraction between general-purpose registers
	sub/c		Supports conditional execution (/c: executed if $C = 1$, /nc: executed if $C = 0$).
	sub/nc		
	sub	%rd,imm7	16-bit subtraction of general-purpose register and immediate
	sub.a	\$rd, \$rs	24-bit subtraction between general-purpose registers
	sub.a/c		Supports conditional execution (/c: executed if $C = 1$, /nc: executed if $C = 0$).
	sub.a/nc		
	sub.a	%sp,% <i>rs</i>	24-bit subtraction of SP and general-purpose register
		%rd,imm7	24-bit subtraction of general-purpose register and immediate
		%sp,imm7	24-bit subtraction of SP and immediate
	sbc	%rd,%rs	16-bit subtraction with carry between general-purpose registers
	sbc/c]	Supports conditional execution (/c: executed if $C = 1$, /nc: executed if $C = 0$).
	sbc/nc	1	
	sbc	%rd,imm7	16-bit subtraction of general-purpose register and immediate with carry
	cmp	%rd, %rs	16-bit comparison between general-purpose registers
	cmp/c	1	Supports conditional execution (/c: executed if $C = 1$, /nc: executed if $C = 0$).
	cmp/c	1	
	cmp/iic	%rd,sign7	16-bit comparison of general-purpose register and immediate
		%rd, %rs	
	cmp.a	- UL 01 S	24-bit comparison between general-purpose registers
	cmp.a/c	4	Supports conditional execution (/c: executed if $C = 1$, /nc: executed if $C = 0$).
	cmp.a/nc		
	cmp.a	%rd,imm7	24-bit comparison of general-purpose register and immediate
	cmc	%rd,%rs	16-bit comparison with carry between general-purpose registers
	cmc/c	_	Supports conditional execution (/c: executed if $C = 1$, /nc: executed if $C = 0$).
	cmc/nc		

Classification		Mnemonic	Function
Logical operation	and	%rd,%rs	Logical AND between general-purpose registers
	and/c		Supports conditional execution (/c: executed if $C = 1$, /nc: executed if $C = 0$).
	and/nc		
	and	%rd,sign7	Logical AND of general-purpose register and immediate
	or	%rd,%rs	Logical OR between general-purpose registers
	or/c		Supports conditional execution (/c: executed if C = 1, /nc: executed if C = 0).
	or/nc		
	or	%rd,sign7	Logical OR of general-purpose register and immediate
	xor	%rd,%rs	Exclusive OR between general-purpose registers
	xor/c		Supports conditional execution (/c: executed if C = 1, /nc: executed if C = 0).
	xor/nc		
	xor	%rd,sign7	Exclusive OR of general-purpose register and immediate
	not	%rd,%rs	Logical inversion between general-purpose registers (1's complement)
	not/c		Supports conditional execution (/c: executed if C = 1, /nc: executed if C = 0).
	not/nc		
	not	%rd,sign7	Logical inversion of general-purpose register and immediate (1's complement)
Shift and swap	sr	%rd,%rs	Logical shift to the right with the number of bits specified by the register
·		%rd,imm7	Logical shift to the right with the number of bits specified by immediate
	sa	%rd,%rs	Arithmetic shift to the right with the number of bits specified by the register
		%rd,imm7	Arithmetic shift to the right with the number of bits specified by immediate
	sl	%rd,%rs	Logical shift to the left with the number of bits specified by the register
		%rd,imm7	Logical shift to the left with the number of bits specified by immediate
	swap	%rd,%rs	Bytewise swap on byte boundary in 16 bits
Immediate extension	-	imm13	Extend operand in the following instruction
Conversion	cv.ab	%rd,%rs	Converts signed 8-bit data into 24 bits
	cv.as	%rd, %rs	Converts signed 16-bit data into 24 bits
	cv.al	%rd, %rs	Converts 32-bit data into 24 bits
	cv.la	%rd, %rs	Converts 24-bit data into 32 bits
	cv.ls	%rd, %rs	Converts 16-bit data into 32 bits
Branch	jpr	sign10	PC relative jump
Dianon	jpr.d	8rb	Delayed branching possible
	jpi.u jpa	imm7	
		srb	Absolute jump
	jpa.d		Delayed branching possible PC relative conditional impression Prench conditions (7.8 (/() 4.)/)
	jrgt	sign7	PC relative conditional jump Branch condition: !Z & !(N ^ V)
	jrgt.d	a i ana 7	Delayed branching possible
	jrge	sign7	PC relative conditional jump Branch condition: !(N ^ V)
	jrge.d		Delayed branching possible
	jrlt	sign7	PC relative conditional jump Branch condition: N ^ V
	jrlt.d		Delayed branching possible
	jrle	sign7	PC relative conditional jump Branch condition: Z N ^ V
	jrle.d		Delayed branching possible
	jrugt	sign7	PC relative conditional jump Branch condition: !Z & !C
	jrugt.d		Delayed branching possible
	jruge	sign7	PC relative conditional jump Branch condition: !C
	jruge.d		Delayed branching possible
	jrult	sign7	PC relative conditional jump Branch condition: C
	jrult.d	_	Delayed branching possible
	jrule	sign7	PC relative conditional jump Branch condition: Z C
	jrule.d		Delayed branching possible
	jreq	sign7	PC relative conditional jump Branch condition: Z
	jreq.d		Delayed branching possible
	jrne	sign7	PC relative conditional jump Branch condition: !Z
	jrne.d		Delayed branching possible
	call	sign10	PC relative subroutine call
	call.d	%rb	Delayed call possible
	calla	imm7	Absolute subroutine call
	calla.d	%rb	Delayed call possible
	ret		Return from subroutine
	ret.d		Delayed return possible
	int	imm5	Software interrupt
	intl	imm5, imm3	Software interrupt with interrupt level setting
	reti	כוועוד , כוועוד	
			Return from interrupt handling
	reti.d		Delayed call possible
	brk		Debug interrupt

Classification	Mnemonic		Function			
Branch	retd		Return from debug processing			
System control	nop		No operation			
	halt		HALT mode			
	slp		SLEEP mode			
	ei		Enable interrupts			
	di		Disable interrupts			
Coprocessor control	control ld.cw %rd,%rs		Transfer data to coprocessor			
		%rd,imm7				
	ld.ca	%rd,%rs	Transfer data to coprocessor and get results and flag statuses			
		%rd,imm7				
	ld.cf	%rd,%rs	Transfer data to coprocessor and get flag statuses			
		%rd,imm7				

*1 The ld.a instruction accesses memories in 32-bit length. During data transfer from a register to a memory, the 32-bit data in which the eight high-order bits are set to 0 is written to the memory. During reading from a memory, the eight high-order bits of the read data are ignored.

The symbols in the above table each have the meanings specified below.

Symbol	Description
%rs	General-purpose register, source
%rd	General-purpose register, destination
[%rb]	Memory addressed by general-purpose register
[%rb]+	Memory addressed by general-purpose register with address post-incremented
[%rb]-	Memory addressed by general-purpose register with address post-decremented
-[%rb]	Memory addressed by general-purpose register with address pre-decremented
%sp	Stack pointer
[%sp],[%sp+ <i>imm</i> 7]	Stack
[%sp]+	Stack with address post-incremented
[%sp]-	Stack with address post-decremented
-[%sp]	Stack with address pre-decremented
imm3,imm5,imm7,imm13	Unsigned immediate (numerals indicating bit length)
sign7,sign10	Signed immediate (numerals indicating bit length)

Table 2.3.2	Symbol I	Meanings
-------------	----------	----------

2.4 Reading PSR

The S1C17656 includes the MISC_PSR register for reading the contents of the PSR (Processor Status Register) in the S1C17 Core. Reading the contents of this register makes it possible to check the contents of the PSR using the application software. Note that data cannot be written to the PSR.

PSR Register (MISC_PSR)

Register name	Address	Bit	Name	Function		Sett	ting)	Init.	R/W	Remarks
PSR Register	0x532c	D15-8	-	reserved		-	-		-	-	0 when being read.
(MISC_PSR)	(16 bits)	D7–5	PSRIL[2:0]	PSR interrupt level (IL) bits		0x0 to	o 0	x7	0x0	R	
		D4	PSRIE	PSR interrupt enable (IE) bit	1	1 (enable)	0	0 (disable)	0	R	
		D3	PSRC	PSR carry (C) flag	1	1 (set)	0	0 (cleared)	0	R	
		D2	PSRV	PSR overflow (V) flag	1	1 (set)	0	0 (cleared)	0	R	
		D1	PSRZ	PSR zero (Z) flag	1	1 (set)	0	0 (cleared)	0	R	
		D0	PSRN	PSR negative (N) flag	1	1 (set)	0	0 (cleared)	0	R	

D[15:8] Reserved

D[7:5] PSRIL[2:0]: PSR Interrupt Level (IL) Bits

The value of the PSR IL (interrupt level) bits can be read out. (Default: 0x0)

D4 PSRIE: PSR Interrupt Enable (IE) Bit

The value of the PSR IE (interrupt enable) bit can be read out.

- 1 (R): 1 (interrupt enabled)
- 0 (R): 0 (interrupt disabled) (default)

D3 PSRC: PSR Carry (C) Flag Bit The value of the PSR C (carry) flag can be read out. 1 (R): 1 0 (R): 0 (default) D2 PSRV: PSR Overflow (V) Flag Bit The value of the PSR V (overflow) flag can be read out. 1 (R): 1 0 (R): 0 (default) D1 PSRZ: PSR Zero (Z) Flag Bit The value of the PSR Z (zero) flag can be read out. 1 (R): 1 0 (R): 0 (default) D0 **PSRN: PSR Negative (N) Flag Bit** The value of the PSR N (negative) flag can be read out. 1 (R): 1 0 (R): 0 (default)

2.5 Processor Information

The S1C17656 has the IDIR register shown below that allows the application software to identify CPU core type.

Processor ID Register (IDIR)

Register name	Address	Bit	Name	Function	Setting	Init.	R/W	Remarks
Processor ID Register	0xffff84 (8 bits)	D7–0		Processor ID 0x10: S1C17 Core	0x10	0x10	R	
(IDIR)	. ,							

This is a read-only register that contains the ID code to represent a processor model. The S1C17 Core's ID code is 0x10.

3 Memory Map, Bus Control

Figure 3.1 shows the S1C17656 memory map.

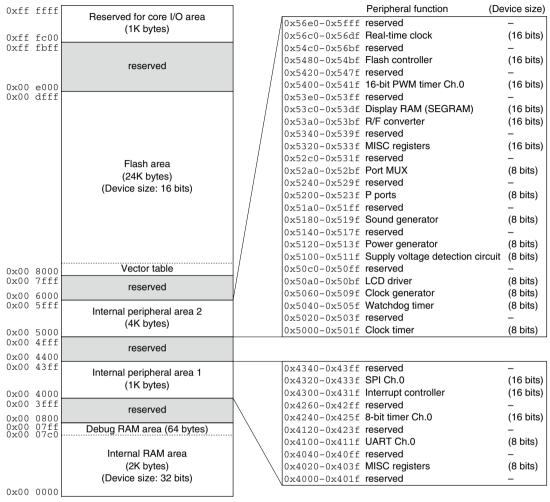


Figure 3.1 S1C17656 Memory Map

3.1 Bus Cycle

The CPU uses the system clock for bus access operations. For more information on the system clock, see "System Clock Switching" in the "Clock Generator (CLG)" chapter.

Accessing in one bus cycle requires one system clock in all areas.

Furthermore, the number of bus accesses depends on the CPU instruction (access size) and device size.

145		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Device size	CPU access size	Number of bus accesses
8 bits	8 bits	1
	16 bits	2
	32 bits*	4
16 bits	8 bits	1
	16 bits	1
	32 bits*	2
32 bits	8 bits	1
	16 bits	1
	32 bits*	1

Table 3.1.1	Number of	Bus Accesses

3 MEMORY MAP, BUS CONTROL

* Handling the eight high-order bits during 32-bit accesses

The size of the S1C17 Core general-purpose registers is 24 bits.

During writing, the eight high-order bits are written as 0. During reading from a memory, the eight high-order bits are ignored. However, the stack operation in an interrupt handling reads/writes 32-bit data that consists of the PSR value as the high-order 8 bits and the return address as the low order 24 bits.

For more information, refer to the "S1C17 Core Manual."

3.1.1 Restrictions on Access Size

The peripheral modules can be accessed with an 8-bit, 16-bit, or 32-bit instruction. However, reading for an unnecessary register may change the peripheral module status and it may cause a problem. Therefore, use the appropriate instructions according to the device size.

3.1.2 Restrictions on Instruction Execution Cycles

An instruction fetch and a data access are not performed simultaneously under one of the conditions listed below. This prolongs the instruction fetch cycle for the number of data area bus cycles.

- When the S1C17656 executes the instruction stored in the Flash area and accesses data in the Flash area
- When the S1C17656 executes the instruction stored in the internal RAM area and accesses data in the internal RAM area

3.2 Flash Area

3.2.1 Embedded Flash Memory

The 24K-byte area from address 0x8000 to address 0xdfff contains a Flash memory (2K bytes \times 12 sectors) for storing application programs and data. Address 0x8000 is defined as the vector table base address, therefore a vector table (see "Vector Table" in the "Interrupt Controller (ITC)" chapter) must be placed from the beginning of the area. The vector table base address can be modified with the MISC_TTBRL/MISC_TTBRH registers.

3.2.2 Flash Programming

The S1C17656 supports on-board programming of the Flash memory, it makes it possible to program the Flash memory with the application programs/data by using the debugger through an ICDmini.

3.2.3 Flash Memory Read Wait Cycle Setting

In order to read data from the Flash memory properly, set the appropriate number of wait cycles according to the system clock frequency using the RDWAIT[1:0]/FLASHC_WAIT register.

FLASHC Read Wait Control Register (FLASHC_WAIT)

Register name	Address	Bit	Name	Function	Setting		Init.	R/W	Remarks
FLASHC Read	0x54b0	D15-8	-	reserved	-		-	-	0 when being read.
Wait Control	(16 bits)	D7	-	reserved	-	-	Х	-	X when being read.
Register		D6–2	-	reserved	-		-	-	0 when being read.
(FLASHC_		D1–0	RDWAIT	Flash read wait cycle	RDWAIT[1:0]	Wait	0x1	R/W	
WAIT)			[1:0]		0x3	3 wait			
					0x2	2 wait			
					0x1	1 wait			
					0x0	No wait			

D[1:0] RDWAIT[1:0]: Flash Read Wait Cycle Bits

Sets the number of wait cycles for reading from the Flash memory. One wait insertion prolongs bus cycles by one system clock cycle.

- Notes: Set RDWAIT[1:0] to 0x0 to achieve the best performance.
 - The FLASHC_WAIT register is write-protected. The write-protection must be overridden by writing 0x96 to the MISC_PROT register. To avoid unexpected writing to the FLASHC_WAIT register, the MISC_PROT register should normally be set to a value other than 0x96 to set write-protection, except when writing.

3.3 Internal RAM Area

3.3.1 Embedded RAM

The S1C17656 contains a RAM in the 2K-byte area from address 0x0 to address 0x7ff. The RAM allows high-speed execution of the instruction codes copied into it as well as storing variables and other data.

Note: The 64-byte area at the end of the RAM (0x7c0–0x7ff) is reserved for the on-chip debugger. When using the debug functions under application development, do not access this area from the application program.

This area can be used for applications of mass-produced devices that do not need debugging.

The S1C17656 enables the RAM size used to apply restrictions to 2KB, 1KB, or 512B. For example, when using the S1C17656 to develop an application for a built-in ROM model, you can set the RAM size to match that of the target model, preventing creating programs that seek to access areas outside the RAM areas of the target product. The RAM size is selected using IRAMSZ[2:0]/MISC_IRAMSZ register.

IRAM Size Register (MISC_IRAMSZ)

		<u> </u>	•	•					
Register name	Address	Bit	Name	Function	Setting		Init.	R/W	Remarks
IRAM Size	0x5326	D15–9	-	reserved	-	_	-	-	0 when being read.
Register	(16 bits)	D8	DBADR	Debug base address select	1 0x0	0 0xfffc00	0	R/W	
(MISC_IRAMSZ)		D7	-	reserved	-	-	-	-	0 when being read.
		D6-4	IRAMACTSZ	IRAM actual size	0x3 (= 2KB)		0x3	R	
			[2:0]						
		D3	-	reserved	-	-	-	-	0 when being read.
		D2-0	IRAMSZ[2:0]	IRAM size select	IRAMSZ[2:0]	Size	0x3	R/W	
					0x5	512B			
					0x4	1KB			
					0x3	2KB			
					Other	reserved			

D[6:4] IRAMACTSZ[2:0]: IRAM Actual Size Bits

Indicates the actual internal RAM size embedded. (Default: 0x3)

D[2:0] IRAMSZ[2:0]: IRAM Size Select Bits

Selects the internal RAM size used.

IRAMSZ[2:0]	Internal RAM size
0x5	512B
0x4	1KB
0x3	2KB
Other	Reserved

Table 3.3.1.1 Selecting Internal RAM Size

(Default: 0x3)

Note: The MISC_IRAMSZ register is write-protected. The write-protection must be overridden by writing 0x96 to the MISC_PROT register. Note that the MISC_PROT register should normally be set to a value other than 0x96, except when writing to the MISC_IRAMSZ register. Unnecessary programs may result in system malfunctions.

3.4 Display RAM area

The display RAM for the on-chip LCD driver is located in the 32-byte area beginning with address 0x53c0 in the internal peripheral area. The display RAM is accessed in one cycle as a 16-bit device. See the "Display Memory" section in the "LCD Driver (LCD)" chapter for specific information on the display memory.

3.5 Internal Peripheral Area

The I/O and control registers for the internal peripheral modules are located in the 1K-byte area beginning with address 0x4000 and the 4K-byte area beginning with address 0x5000.

For details of each control register, see the I/O register list in Appendix or description for each peripheral module.

3.5.1 Internal Peripheral Area 1 (0x4000-)

The internal peripheral area 1 beginning with address 0x4000 contains the I/O memory for the peripheral functions listed below.

- MISC register (MISC, 8-bit device)
- UART (UART, 8-bit device)
- 8-bit timer (T8, 16-bit device)
- Interrupt controller (ITC, 16-bit device)
- SPI (SPI, 16-bit device)

3.5.2 Internal Peripheral Area 2 (0x5000-)

The internal peripheral area 2 beginning with address 0x5000 contains the I/O memory for the peripheral functions listed below.

- Clock timer (CT, 8-bit device)
- Watchdog timer (WDT, 8-bit device)
- Clock generator (CLG, 8-bit device)
- LCD driver (LCD, 8-bit device)
- Supply voltage detection circuit (SVD, 8-bit device)
- Power generator (VD1, 8-bit device)
- Sound generator (SND, 8-bit device)
- I/O port & port MUX (P, 8-bit device)
- MISC register (MISC, 16-bit device)
- R/F converter (RFC, 16-bit device)
- Display RAM (SEGRAM, 16-bit device)
- 16-bit PWM timer (T16A2, 16-bit device)
- Flash controller (FLASHC, 16-bit device)
- Real-time clock (RTC, 16-bit device)

3.6 S1C17 Core I/O Area

The 1K-byte area from address 0xfffc00 to address 0xffffff is the I/O area for the CPU core in which the I/O registers listed in the table below are located.

Table 3.6.1 I/O Map (S1C17 Core I/O Area)

Peripheral	Address		Register name	Function
S1C17 Core I/O	0xffff84	IDIR	Processor ID Register	Indicates the processor ID.

See "Processor Information" in the "CPU" chapter for more information on IDIR.

This area includes the S1C17 Core registers, in addition to those described above. For more information on these registers, refer to the "S1C17 Core Manual."

4 Power Supply

4.1 Power Supply Voltage (VDD)

The S1C17656 operates with a voltage supplied between the VDD and Vss pins. Supply a voltage within the range shown below to the VDD pins with the Vss pins as the GND level.

 $V_{DD} = 1.8 V$ to 3.6 V (Vss = GND)

4.2 Flash Programming Power Supply Voltage (VPP)

The VPP voltage is used for programming the embedded Flash memory. Supply a voltage shown below to the VPP pin with the Vss pins as the GND level to program/erase the Flash memory.

 $V_{PP} = 7.5 V (V_{SS} = GND)$

Note: Leave the VPP pin open during normal operation.

4.3 Internal Power Supply Circuit

The S1C17656 has a built-in power supply circuit shown in Figure 4.3.1 to generate the operating voltages required for the internal circuits.

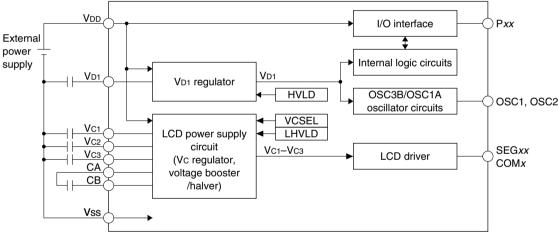


Figure 4.3.1 Configuration of Internal Power Supply Circuit

The internal power supply circuit consists of a VDI regulator and an LCD power supply circuit.

Note: Be sure to avoid using the outputs of the internal power supply circuit for drive external devices.

4.3.1 VD1 Regulator

The VDI regulator generates the operating voltage for the internal logic and oscillator circuits. This regulator always operates.

4.3.2 LCD Power Supply Circuit

The LCD power supply circuit generates the LCD drive voltages Vc1 to Vc3. These voltages are supplied to the LCD driver to generate LCD drive waveforms. The LCD power supply circuit consists of a Vc regulator and voltage booster/halver.

See the "Electrical Characteristics" chapter for the VC1 to VC3 values.

Vc regulator

The Vc regulator generates the reference voltage for boosting/halving (Vc1 or Vc2) from VDD. Either Vc1 or Vc2 can be generated and one of them should be selected according to the VDD value using VCSEL/LCD_VREG register.

Power supply voltage VDD	VCSEL setting	Reference voltage							
1.8 to 2.2 (3.6) V	0	Vc1							
2.2 to 3.6 V	1	Vc2							
		(Default: 0)							

Table 4.3.2.1 Vc Regulator Output Selection

- Notes: The Vc1 to Vc3 voltages cannot be obtained correctly if VCSEL is set to 1 when Vbb is 2.2 V or less.
 - Although the reference voltage can be set to Vc1 even if VDD is 2.2 V or higher, current consumption will be increased in comparison with Vc2.

Voltage booster/halver

When Vc1 is selected for the boosting/halving reference voltage, the voltage booster/halver generates Vc2 and Vc3 by boosting Vc1 output from the Vc regulator. When Vc2 is selected for the reference voltage, the voltage booster/halver generates Vc1 by halving Vc2 and Vc3 by boosting Vc2. The boosting operation uses a clock, so it must be supplied to the LCD power supply circuit before LCD can start display.

Booster clock source selection

Select the clock source for the voltage booster/halver from OSC3B and OSC1A using LCDBCLKSRC[1:0]/ LCD_BCLK register.

Table 4.3.2.2 Clock Source Selection

LCDBCLKSRC[1:0]	Clock source
0x3, 0x2	Reserved
0x1	OSC1A
0x0	OSC3B
	(D - ())

(Default: 0x0)

Booster clock division ratio selection

Select the division ratio using LCDBCLKD[2:0]/LCD_BCLK register. Set it so that the clock frequency will be within the range from 512 Hz to 4 kHz.

	Division ratio			
LCDBCLKD[2:0]	Clock source = OSC3B	Clock source = OSC1A		
0x7	Reserved			
0x6	1/4096	Decerved		
0x5	1/2048	Reserved		
0x4	1/1024			
0x3	1/512	1/64		
0x2	1/256	1/32		
0x1	1/128	1/16		
0x0	1/64	1/8		

Table 4.3.2.3 Clock Division Ratio Selection

(Default: 0x0)

Booster clock enable

The booster clock supply is enabled with LCDBCLKE/LCD_BCLK register. The LCDBCLKE default setting is 0, which stops the clock. Setting LCDBCLKE to 1 feeds the clock generated as above to the LCD power supply circuit. If no LCD display is required, stop the clock to reduce current consumption.

4.3.3 Heavy Load Protection Mode

In order to ensure a stable circuit behavior and LCD display quality even if the power supply voltage fluctuates due to driving an external load, the regulators have a heavy load protection function.

The table below lists the control bits used for setting heavy load protection mode.

Regulator	Control bit
VD1 regulator	HVLD/VD1_CTL register
Vc regulator	LHVLD/LCD _VREG register

Table 4.3.3.1 Heavy Load Protection Mode Control Bits

When the control bit is set to 1, the regulator ensures stable output.

The VDI regulator should be placed into heavy load protection mode before driving a heavy load such as a lamp or buzzer with a port output. The VC regulator should be placed into heavy load protection mode when the display has inconsistencies in density.

Note: Current consumption increases in heavy load protection mode, therefore do not set heavy load protection mode with software if unnecessary.

4.4 Control Register Details

Address		Register name	Function
0x5071	LCD_BCLK	LCD Booster Clock Control Register	Controls the LCD booster clock.
0x50a3	LCD_VREG	LCD Voltage Regulator Control Register	Controls the Vc regulator.
0x5120	VD1_CTL	VD1 Control Register	Controls the VD1 regulator.

The power control registers are described in detail below.

Note: When data is written to the registers, the "Reserved" bits must always be written as 0 and not 1.

LCD Booster Clock Control Register (LCD_BCLK)

Register name	Address	Bit	Name	Function		Set	ting		Init.	R/W	Remarks
LCD Booster	0x5071	D7	-	reserved		-	_		-	-	0 when being read.
Clock Control	(8 bits)	D6–4	LCDBCLKD	LCD booster clock division ratio	LCDBCLK		Divisio	on ratio	0x0	R/W	
Register			[2:0]	select	D[2:0]	OS	C3B	OSC1A			
(LCD_BCLK)					0x7		-	-			
					0x6		096	-			
					0x5		2048	-			
					0x4		024	-			
					0x3		512	1/64			
					0x2 0x1		256 128	1/32 1/16			
					0x0		/64	1/8			
		D3–2	LCDBCLK SRC[1:0]	LCD Booster clock source select	LCDBC SRC[1	LK		ck source	0x0	R/W	
					0x3, 0	x2	re	served			
					0x1 0x0			SC1A SC3B			
		D1	-	reserved		-	_		-	-	0 when being read.
		D0	LCDBCLKE	LCD Booster clock enable	1 Enab	le	0	Disable	0	R/W	

D7 Reserved

D[6:4] LCDBCLKD[2:0]: LCD Booster Clock Division Ratio Select Bits

Selects the division ratio for generating the booster clock.

Table 4.4.2 Clock Division hallo Selection								
LCDBCLKD[2:0]	Divisio	on ratio						
LCDBCLKD[2:0]	Clock source = OSC3B	Clock source = OSC1A						
0x7	Reserved							
0x6	1/4096	Deserved						
0x5	1/2048	Reserved						
0x4	1/1024							
0x3	1/512	1/64						
0x2	1/256	1/32						
0x1	1/128	1/16						
0x0	1/64	1/8						

Table 4.4.2	Clock Division F	Ratio Selection
10010 4.4.2		

(Default: 0x0)

4 POWER SUPPLY

D[3:2] LCDBCLKSRC[1:0]: LCD Booster Clock Source Select Bits

0x0

Selects the booster clock source.

Table 4.4.3 Clock	Source Selection
LCDBCLKSRC[1:0]	Clock source
0x3, 0x2	Reserved
0x1	OSC1A

Table 4.4.3	Clock Source Selection	

(Default: 0x0)

OSC3B

D1 Reserved

D0 LCDBCLKE: LCD Booster Clock Enable Bit

Enables or disables the booster clock supply to the LCD power supply circuit.

1 (R/W): Enabled (on)

0 (R/W): Disabled (off) (default)

The LCDBCLKE default setting is 0, which disables the clock supply. Setting LCDBCLKE to 1 sends the clock to the LCD power supply circuit. If LCD display is not required, disable the clock supply to reduce current consumption.

LCD Voltage Regulator Control Register (LCD_VREG)

Register name	Address	Bit	Name	Function	Setting		Init.	R/W	Remarks
LCD Voltage	0x50a3	D7–5	-	reserved		_	-	-	0 when being read.
Regulator	(8 bits)	D4	LHVLD	Vc heavy load protection mode	1 On	0 Off	0	R/W	
Control Register		D3–1	-	reserved		_	-	-	0 when being read.
(LCD_VREG)		D0	VCSEL	Reference voltage select	1 Vc2	0 Vc1	0	R/W	

D[7:5] Reserved

D4 LHVLD: Vc Heavy Load Protection Mode Bit

Sets the Vc regulator into heavy load protection mode.

1 (R/W): Heavy load protection On

0 (R/W): Heavy load protection Off (default)

The Vc regulator enters heavy load protection mode by writing 1 to LHVLD and it ensures stable output. Use the heavy load protection function when the display has inconsistencies in density. Current consumption increases in heavy load protection mode, therefore do not set if unnecessary.

D[3:1] Reserved

D0 VCSEL: Reference Voltage Select Bit

Selects the Vc regulator output voltage (reference voltage for boosting/halving). 1 (R/W): Vc2 0 (R/W): Vc1 (default)

Select either VC1 or VC2 to be generated by the VC regulator according to the VDD value.

Power supply voltage VDD	VCSEL setting	Reference voltage						
1.8 to 2.2 (3.6) V	0	Vc1						
2.2 to 3.6 V	1	Vc2						
		(Default: 0)						

Table 4.4.4 Vc Regulator Output Selection

Notes: • The Vc1 to Vc3 voltages cannot be obtained correctly if VCSEL is set to 1 when Vbb is 2.2 V or less.

• Although the reference voltage can be set to Vc1 even if VDD is 2.2 V or higher, current consumption will be increased in comparison with Vc2.

VD1 Control Register (VD1_CTL)

Register name	Address	Bit	Name	Function	Setting		Init.	R/W	Remarks	
VD1 Control	0x5120	D7–6	-	reserved	_		-	-	0 when being read.	
Register	(8 bits)	D5	HVLD	VD1 heavy load protection mode	1	On	0 Off	0	R/W	
(VD1_CTL)		D4–0	-	reserved				-	-	0 when being read.

D[7:6] Reserved

D5 HVLD: VD1 Heavy Load Protection Mode Bit

Sets the VDI regulator into heavy load protection mode.

1 (R/W): Heavy load protection On

0 (R/W): Heavy load protection Off (default)

The VD1 regulator enters heavy load protection mode by writing 1 to HVLD and it ensures stable output. Use the heavy load protection function when a heavy load such as a lamp or buzzer is driven with a port output. Current consumption increases in heavy load protection mode, therefore do not set if unnecessary.

D[4:0] Reserved

5 Initial Reset

5.1 Initial Reset Sources

The S1C17656 has four initial reset sources that initialize the internal circuits.

- (1) #RESET pin (external initial reset)
- (2) Key-entry reset using the P0 ports (P00-P03 pins) (software selectable external initial reset)
- (3) Watchdog timer (software selectable internal initial reset)
- (4) Supply voltage detection circuit (software selectable internal initial reset)

Figure 5.1.1 shows the configuration of the initial reset circuit.

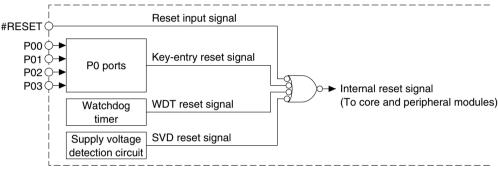


Figure 5.1.1 Configuration of Initial Reset Circuit

The CPU and peripheral circuits are initialized by the active signal from an initial reset source. When the reset signal is negated, the CPU starts reset handling. The reset handling reads the reset vector (reset handler start address) from the beginning of the vector table and starts executing the program (initial routine) beginning with the read address.

5.1.1 #RESET Pin

By setting the #RESET pin to low level, the S1C17656 enters initial reset state. In order to initialize the S1C17656 for sure, the #RESET pin must be held at low for more than the prescribed time (see "Input/Output Pin Characteristics" in the "Electrical Characteristics" chapter) after the power supply voltage is supplied.

When the #RESET pin at low level is set to high level, the CPU starts executing the initial reset sequence. The #RESET pin is equipped with a pull-up resistor.

5.1.2 P0 Port Key-Entry Reset

Entering low level simultaneously to the ports (P00–P03) selected with software triggers an initial reset. For details of the key-entry reset function, see the "I/O Ports (P)" chapter.

Note: The P0 port key-entry reset function cannot be used for power-on reset as it must be enabled with software.

5.1.3 Resetting by the Watchdog Timer

The S1C17656 has a built-in watchdog timer to detect runaway of the CPU. The watchdog timer overflows if it is not reset with software (due to CPU runaway) in four-second cycles. The overflow signal can generate either NMI or reset. Write 1 to the WDTMD/WDT_ST register to generate reset (NMI occurs when WDTMD = 0). For details of the watchdog timer, see the "Watchdog Timer (WDT)" chapter.

- **Notes:** When using the reset function of the watchdog timer, program the watchdog timer so that it will be reset within four-second cycles to avoid occurrence of an unnecessary reset.
 - The reset function of the watchdog timer cannot be used for power-on reset as it must be enabled with software.

5.1.4 Resetting by the Supply Voltage Detection Circuit

The S1C17656 has a built-in supply voltage detection circuit that generates a reset when it detects a drop in the power supply voltage.

For details of the supply voltage detection circuit, see the "Supply Voltage Detection Circuit (SVD)" chapter.

- **Notes:** The reset function of the supply voltage detection circuit cannot be used for power-on reset as it must be enabled with software.
 - The reset generated by the supply voltage detection circuit does not initialize the control registers of the supply voltage detection circuit. They are initialized by other types of reset.

5.2 Initial Reset Sequence

Even if the #RESET pin input negates the reset signal after power is turned on, the CPU cannot boot up until the oscillation stabilization waiting time (64/OSC3B clock frequency) and the internal reset hold period (1040/OSC3B clock frequency) have elapsed.

Figure 5.2.1 shows the operating sequence following cancellation of initial reset.

The CPU starts operating in synchronization with the OSC3B (internal oscillator) clock after reset state is canceled.

Note: The oscillation stabilization time described in this section does not include oscillation start time. Therefore the time interval until the CPU starts executing instructions after power is turned on or SLEEP mode is canceled may be longer than that indicated in the figure below.

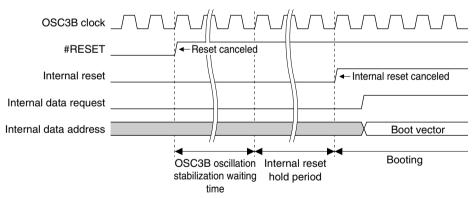


Figure 5.2.1 Operation Sequence Following Cancellation of Initial Reset

5.3 Initial Settings After an Initial Reset

The CPU internal registers are initialized as follows at initial reset.

R0–R7: 0x0

PSR: 0x0 (interrupt level = 0, interrupt disabled)

SP: 0x0

PC: Reset vector stored at the beginning of the vector table is loaded by the reset handling.

The internal peripheral modules are initialized to the default values (except some undefined registers). Change the settings with software if necessary. For the default values set at initial reset, see the list of I/O registers in Appendix or descriptions for each peripheral module.

6 Interrupt Controller (ITC)

6.1 ITC Module Overview

The interrupt controller (ITC) honors interrupt requests from the peripheral modules and outputs the interrupt request, interrupt level and vector number signals to the S1C17 Core according to the priority and interrupt levels. The features of the ITC module are listed below.

- Supports 10 maskable interrupt systems.
 - 1. P00–P07 input interrupt (8 types)
 - 2. Clock timer interrupt (4 types)
 - 3. RTC interrupt (10 types)
 - 4. LCD interrupt (1 type)
 - 5. 16-bit PWM timer Ch.0 interrupt (6 types)
 - 6. 8-bit timer Ch.0 interrupt (1 type)
 - 7. UART Ch.0 interrupt (4 types)
 - 8. SPI Ch.0 interrupt (2 types)
 - 9. R/F converter Ch.0 interrupt (5 types)
 - 10. Supply voltage detection circuit interrupt (1 type)
- Supports eight interrupt levels to prioritize the interrupt sources.

The ITC enables the interrupt level (priority) for determining the processing sequence when multiple interrupts occur simultaneously to be set for each interrupt system separately.

Each interrupt system includes the number of interrupt causes indicated in parentheses above. Settings to enable or disable interrupt for different causes are set by the respective peripheral module registers.

For specific information on interrupt causes and their control, refer to the peripheral module explanations.

Figure 6.1.1 shows the structure of the interrupt system.

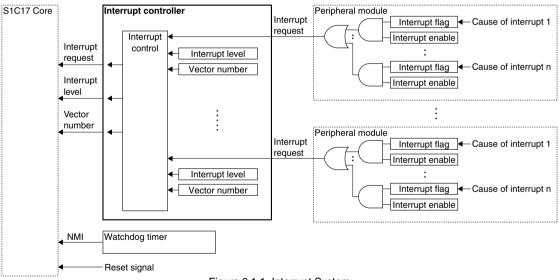


Figure 6.1.1 Interrupt System

6.2 Vector Table

The vector table contains the vectors to the interrupt handler routines (handler routine start address) that will be read by the S1C17 Core to execute the handler when an interrupt occurs. Table 6.2.1 shows the vector table of the S1C17656.

Vector No. Software interrupt No.	Vector address	Hardware interrupt name	Cause of hardware interrupt	Priority
0 (0x00)	TTBR + 0x00	Reset	 Low input to the #RESET pin Watchdog timer overflow *2 	1
1 (0x01)	TTBR + 0x04	Address misaligned interrupt	Memory access instruction	2
_	(0xfffc00)	Debugging interrupt	brk instruction, etc.	3
2 (0x02)	TTBR + 0x08	NMI	Watchdog timer overflow *2	4
3 (0x03)	TTBR + 0x0c	Reserved for C compiler	_	_
4 (0x04)	TTBR + 0x10	P0 port interrupt	P00–P07 port inputs	High *
5 (0x05)	TTBR + 0x14			1
6 (0x06)	TTBR + 0x18	reserved	-	
7 (0x07)	TTBR + 0x1c	Clock timer interrupt	 32 Hz timer signal 8 Hz timer signal 2 Hz timer signal 1 Hz timer signal 	
8 (0x08)	TTBR + 0x20	RTC interrupt	• 32 Hz, 8 Hz, 4 Hz, 1 Hz • 10 s, 1 m, 10 m, 1 h • Half-day, one day	
9 (0x09)	TTBR + 0x24	reserved	-	
10 (0x0a)	TTBR + 0x28	LCD interrupt	Frame signal	
11 (0x0b)	TTBR + 0x2c	16-bit PWM timer Ch.0 interrupt	 Compare A/B Capture A/B Capture A/B overwrite 	
12 (0x0c)	TTBR + 0x30	reserved		
13 (0x0d)	TTBR + 0x34	leselved	_	
14 (0x0e)	TTBR + 0x38	8-bit timer Ch. 0 interrupt	Timer underflow	
15 (0x0f)	TTBR + 0x3c	reserved	_	
16 (0x10)	TTBR + 0x40	UART Ch.0 interrupt	 Transmit buffer empty End of transmission Receive buffer full Receive error 	
17 (0x11)	TTBR + 0x44	reserved	_	
18 (0x12)	TTBR + 0x48	SPI Ch.0 interrupt	Transmit buffer empty Receive buffer full	
19 (0x13)	TTBR + 0x4c	record		
20 (0x14)	TTBR + 0x50	reserved		
21 (0x15)	TTBR + 0x54	R/F converter Ch.0 interrupt	Reference oscillation completion Sensor A oscillation completion Sensor B oscillation completion Time base counter overflow error Measurement counter overflow error	
22 (0x16)	TTBR + 0x58	Supply voltage detection circuit interrupt	Low voltage detection	1
23 (0x17)	TTBR + 0x5c	reserved :	-] ↓
31 (0x1f)	TTBR + 0x7c	reserved	-	Low *1

Table 6.2.1 Vector Table

*1 When the same interrupt level is set

*2 Either reset or NMI can be selected as the watchdog timer interrupt with software.

Vector numbers 4, 7, 8, 10, 11, 14, 16, 18, 21, and 22 are assigned to the maskable interrupts supported by the S1C17656.

Vector table base address

The S1C17656 allows the base (starting) address of the vector table to be set using the MISC_TTBRL and MISC_TTBRH registers. "TTBR" described in Table 6.2.1 means the value set to these registers. After an initial reset, the MISC_TTBRL and MISC_TTBRH registers are set to 0x8000. Therefore, even when the vector table location is changed, it is necessary that at least the reset vector be written to the above address. Bits 7 to 0 in the MISC_TTBRL register are fixed at 0, so the vector table starting address always begins with a 256-byte boundary address.

Register name	Address	Bit	Name	Function	Setting	Init.	R/W	Remarks	
Vector Table	0x5328	D15-8	TTBR[15:8]	Vector table base address A[15:8]	0x0–0xff	0x80	R/W		
Address Low	(16 bits)	D7–0	TTBR[7:0]	Vector table base address A[7:0]	0x0	0x0	R		
Register				(fixed at 0)					
(MISC_TTBRL)									
Vector Table	0x532a	D15–8	-	reserved	-	-	-	0 when being read.	
Address High	(16 bits)	D7–0	TTBR[23:16]	Vector table base address	0x0–0xff	0x0	R/W		
Register				A[23:16]					
(MISC_TTBRH)									

Vector Table Address Low/High Registers (MISC_TTBRL, MISC_TTBRH)

Note: The MISC_TTBRL and MISC_TTBRH registers are write-protected. Before these registers can be rewritten, write protection must be removed by writing data 0x96 to the MISC_PROT register. Note that since unnecessary rewrites to the MISC_TTBRL and MISC_TTBRH registers could lead to erratic system operation, the MISC_PROT register should be set to other than 0x96 unless the Vector Table Base Registers must be rewritten.

6.3 Control of Maskable Interrupts

6.3.1 Interrupt Control Bits in Peripheral Modules

The peripheral module that generates interrupts includes an interrupt enable bit and an interrupt flag for each interrupt cause. The interrupt flag is set to 1 when the cause of interrupt occurs. By setting the interrupt enable bit to 1 (interrupt enabled), the flag state will be sent to the ITC as an interrupt request signal, generating an interrupt request to the S1C17 Core.

The corresponding interrupt enable bits should be set to 0 for those causes for which interrupts are not desired. In this case, although the interrupt flag is set to 1 if the interrupt cause occurs, the interrupt request signal sent to the ITC will not be asserted.

For specific information on causes of interrupts, interrupt flags, and interrupt enable bits, refer to the respective peripheral module descriptions.

Note: To prevent recurrence of the interrupt due to the same cause of interrupt, always reset the interrupt flag in the peripheral module before enabling the interrupt, resetting the PSR, or executing the reti instruction.

6.3.2 ITC Interrupt Request Processing

On receiving an interrupt signal from a peripheral module, the ITC sends the interrupt request, interrupt level, and vector number signals to the S1C17 Core.

Vector numbers are determined by the ITC internal hardware for each interrupt cause, as shown in Table 6.2.1.

The interrupt level is a value used by the S1C17 Core to compare with the IL bits (PSR). This interrupt level is used in the S1C17 Core to disable subsequently occurring interrupts with the same or lower level. (See Section 6.3.3.)

The default ITC settings are level 0 for all maskable interrupts. Interrupt requests are not accepted by the S1C17 Core if the level is 0.

The ITC includes control bits for selecting the interrupt level, and the level can be set to between 0 (low) and 7 (high) interrupt levels for each interrupt type.

If interrupt requests are input to the ITC simultaneously from two or more peripheral modules, the ITC outputs the interrupt request with the highest priority to the S1C17 Core in accordance with the following conditions.

- 1. The interrupt with the highest interrupt level takes precedence.
- 2. If multiple interrupt requests are input with the same interrupt level, the interrupt with the lowest vector number takes precedence.

The other interrupts occurring at the same time are held until all interrupts with higher priority levels have been accepted by the S1C17 Core.

If an interrupt cause with higher priority occurs while the ITC is outputting an interrupt request signal to the S1C17 Core (before being accepted by the S1C17 Core), the ITC alters the vector number and interrupt level signals to the setting information on the more recent interrupt. The previously occurring interrupt is held. The held interrupt is canceled and no interrupt is generated if the interrupt flag in the peripheral module is reset with software.

6 INTERRUPT CONTROLLER (ITC)

Hardware interrupt	Interrupt level setting bits	Register address
P0 port interrupt	ILV0[2:0] (D[2:0]/ITC_LV0 register)	0x4306
Clock timer interrupt	ILV3[2:0] (D[10:8]/ITC_LV1 register)	0x4308
RTC interrupt	ILV4[2:0] (D[2:0]/ITC_LV2 register)	0x430a
LCD interrupt	ILV6[2:0] (D[2:0]/ITC_LV3 register)	0x430c
16-bit PWM timer Ch.0 interrupt	ILV7[2:0] (D[10:8]/ITC_LV3 register)	0x430c
8-bit timer Ch.0 interrupt	ILV10[2:0] (D[2:0]/ITC_LV5 register)	0x4310
UART Ch.0 interrupt	ILV12[2:0] (D[2:0]/ITC_LV6 register)	0x4312
SPI Ch.0 interrupt	ILV14[2:0] (D[2:0]/ITC_LV7 register)	0x4314
R/F converter Ch.0 interrupt	ILV17[2:0] (D[10:8]/ITC_LV8 register)	0x4316
Supply voltage detection circuit interrupt	ILV18[2:0] (D[2:0]/ITC_LV9 register)	0x4318

Table 6.3.2.1 Interrupt Level Setting Bits

6.3.3 Interrupt Processing by the S1C17 Core

A maskable interrupt to the S1C17 Core occurs when all of the following conditions are met:

- The interrupt is enabled by the interrupt control bit inside the peripheral module.
- The IE (Interrupt Enable) bit of the PSR (Processor Status Register) in the S1C17 Core has been set to 1.
- The cause of interrupt that has occurred has a higher interrupt level than the value set in the IL field of the PSR.
- No other cause of interrupt having higher priority, such as NMI, has occurred.

If an interrupt cause that has been enabled in the peripheral module occurs, the corresponding interrupt flag is set to 1, and this state is maintained until it is reset by the program. This means that the interrupt cause is not cleared even if the conditions listed above are not met when the interrupt cause occurs. An interrupt occurs if the above conditions are met.

If multiple maskable interrupt causes occurs simultaneously, the interrupt cause with the highest interrupt level and lowest vector number becomes the subject of the interrupt request to the S1C17 Core. Interrupts with lower levels are held until the above conditions are subsequently met.

The S1C17 Core samples interrupt requests for each cycle. On accepting an interrupt request, the S1C17 Core switches to interrupt processing immediately after execution of the current instruction has been completed. Interrupt processing involves the following steps:

- (1) The PSR and current program counter (PC) values are saved to the stack.
- (2) The PSR IE bit is reset to 0 (disabling subsequent maskable interrupts).
- (3) The PSR IL bits are set to the received interrupt level. (The NMI does not affect the IL bits.)
- (4) The vector for the interrupt occurred is loaded to the PC to execute the interrupt handler routine.

When an interrupt is accepted, (2) prevents subsequent maskable interrupts. Setting the IE bit to 1 in the interrupt handler routine allows handling of multiple interrupts. In this case, since IL is changed by (3), only an interrupt with a higher level than that of the currently processed interrupt will be accepted.

Ending interrupt handler routines using the reti instruction returns the PSR to the state before the interrupt has occurred. The program resumes processing following the instruction being executed at the time the interrupt occurred.

6.4 NMI

In the S1C17656, the watchdog timer can generate a non-maskable interrupt (NMI). The vector number for NMI is 2, with the vector address set to the vector table's starting address + 8 bytes.

This interrupt takes precedence over other interrupts and is unconditionally accepted by the S1C17 Core. For detailed information on generating NMI, see the "Watchdog Timer (WDT)" chapter.

6.5 Software Interrupts

The S1C17 Core provides the "int *imm5*" and "intl *imm5*, *imm3*" instructions allowing the software to generate any interrupts. The operand *imm5* specifies a vector number (0-31) in the vector table. In addition to this, the intl instruction has the operand *imm3* to specify the interrupt level (0-7) to be set to the IL field in the PSR.

The processor performs the same interrupt processing as that of the hardware interrupt.

6.6 HALT and SLEEP Mode Cancellation

HALT and SLEEP modes are cleared by the following signals, which start the CPU.

- Interrupt request signal sent to the CPU from the ITC
- NMI signal output by the watchdog timer
- Reset signal
- **Notes:** If the CPU is able to receive interrupts when HALT or SLEEP mode has been cleared by an interrupt request for the CPU from the ITC, processing branches to the interrupt handler routine immediately after cancellation. In all other cases, the program is executed following the halt or slp instruction.
 - HALT or SLEEP mode clearing due to interrupt requests cannot be masked (prohibited) using ITC interrupt level settings.

For more information, see "Power Saving by Clock Control" in the appendix chapter. For the oscillator circuit and system clock statuses after HALT or SLEEP mode is canceled, see the "Clock Generator (CLG)" chapter.

6.7 Control Register Details

Address		Register name	Function		
0x4306	ITC_LV0	Interrupt Level Setup Register 0	Sets the P0 interrupt level.		
0x4308	ITC_LV1	Interrupt Level Setup Register 1	Sets the CT interrupt level.		
0x430a	ITC_LV2	Interrupt Level Setup Register 2	Sets the RTC interrupt level.		
0x430c	ITC_LV3	Interrupt Level Setup Register 3	Sets the LCD and T16A2 Ch.0 interrupt levels.		
0x4310	ITC_LV5	Interrupt Level Setup Register 5	Sets the T8 Ch.0 interrupt level.		
0x4312	ITC_LV6	Interrupt Level Setup Register 6	Sets the UART Ch.0 interrupt level.		
0x4314	ITC_LV7	Interrupt Level Setup Register 7	Sets the SPI Ch.0 interrupt level.		
0x4316	ITC_LV8	Interrupt Level Setup Register 8	Sets the RFC Ch.0 interrupt level.		
0x4318	ITC_LV9	Interrupt Level Setup Register 9	Sets the SVD interrupt level.		

Table 6.7.1 List of ITC Registers

Note: When data is written to the registers, the "Reserved" bits must always be written as 0 and not 1.

Interrupt Level Setup Register x (ITC_LVx)

Register name	Address	Bit	Name	Function	Setting	Init.	R/W	Remarks
Interrupt Level	0x4306	D15-11	-	reserved	_	-	-	0 when being read.
Setup Register x		D10-8	ILV <i>n</i> [2:0]	INTn (3, 7, 17) interrupt level	0 to 7	0x0	R/W	
(ITC_LV <i>x</i>)	0x4318	D7–3	-	reserved	_	-	-	0 when being read.
	(16 bits)	D2–0	ILV <i>n</i> [2:0]	INTn (0, 4, 18) interrupt level	0 to 7	0x0	R/W	

D[15:11], D[7:3]

Reserved

D[10:8], D[2:0]

ILVn[2:0]: INTn Interrupt Level Bits (n = 0-18)

Sets the interrupt level (0 to 7) of each interrupt. (Default: 0x0)

The S1C17 Core does not accept interrupts with a level set lower than the PSR IL value.

The ITC uses the interrupt level when multiple interrupt requests occur simultaneously.

If multiple interrupt requests enabled by the interrupt enable bit occur simultaneously, the ITC sends the interrupt request with the highest level set by the ITC_LVx registers (0x4306 to 0x4318) to the S1C17 Core.

If multiple interrupt requests with the same interrupt level occur simultaneously, the interrupt with the lowest vector number is processed first.

The other interrupts are held until all interrupts of higher priority have been accepted by the S1C17 Core.

If an interrupt requests of higher priority occurs while the ITC outputs an interrupt request signal to the S1C17 Core (before acceptance by the S1C17 Core), the ITC alters the vector number and interrupt level signals to the setting details of the most recent interrupt. The immediately preceding interrupt is held.

Register	Bit	Interrupt
ITC_LV0 (0x4306)	ILV0[2:0] (D[2:0])	P0 port interrupt
	(ILV1[2:0] (D[10:8]))	Reserved
ITC_LV1 (0x4308)	(ILV2[2:0] (D[2:0]))	Reserved
	ILV3[2:0] (D[10:8])	Clock timer interrupt
ITC_LV2 (0x430a)	ILV4[2:0] (D[2:0])	RTC interrupt
	(ILV5[2:0] (D[10:8]))	Reserved
ITC_LV3 (0x430c)	ILV6[2:0] (D[2:0])	LCD interrupt
	ILV7[2:0] (D[10:8])	16-bit PWM timer Ch.0 interrupt
ITC_LV5 (0x4310)	ILV10[2:0] (D[2:0])	8-bit timer Ch.0 interrupt
	(ILV11[2:0] (D[10:8]))	Reserved
ITC_LV6 (0x4312)	ILV12[2:0] (D[2:0])	UART Ch.0 interrupt
	(ILV13[2:0] (D[10:8]))	Reserved
ITC_LV7 (0x4314)	ILV14[2:0] (D[2:0])	SPI Ch.0 interrupt
	(ILV15[2:0] (D[10:8]))	Reserved
ITC_LV8 (0x4316)	(ILV16[2:0] (D[2:0]))	Reserved
	ILV17[2:0] (D[10:8])	R/F converter Ch.0 interrupt
ITC_LV9 (0x4318)	ILV18[2:0] (D[2:0])	Supply voltage detection circuit interrupt
	(ILV19[2:0] (D[10:8]))	Reserved

Table 6.7.2 Interrupt Level Bits

7 Clock Generator (CLG)

7.1 CLG Module Overview

The clock generator (CLG) controls the internal oscillators and the system clocks to be supplied to the S1C17 Core, on-chip peripheral modules, and external devices.

The features of the CLG module are listed below.

- Generates the operating clocks with the built-in oscillators.
 - OSC3B oscillator circuit: 4 MHz/2 MHz/1 MHz/500 kHz (typ.) internal oscillator circuit
 - OSC1A oscillator circuit: 32.768 kHz (typ.) crystal oscillator circuit
- Switches the system clock. The system clock source can be selected from OSC3B and OSC1A via software.
- Generates the CPU core clock (CCLK) and controls the clock supply to the core block. The CCLK frequency can be selected from system clock × 1/1, 1/2, 1/4, and 1/8.
- Controls the clock supply to the peripheral modules.
- Turns the clocks on and off according to the CPU operating status (RUN, HALT, or SLEEP).
- Supports quick-restart processing from SLEEP mode. Turns OSC3B on forcibly and switches the system clock to OSC3B when SLEEP mode is canceled.
- · Controls two clock outputs to external devices.

Figure 7.1.1 shows the clock system and CLG module configuration.

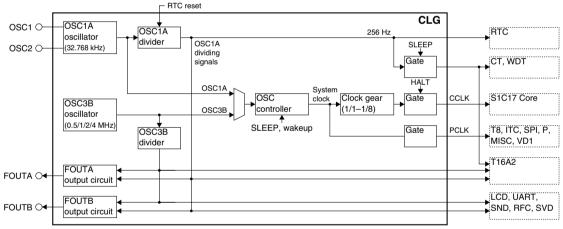


Figure 7.1.1 CLG Module Configuration

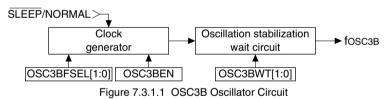
To reduce current consumption, control the clock in conjunction with processing and use HALT and SLEEP modes. For more information on reducing current consumption, see "Power Saving" in the appendix chapter.

7.2 CLG Input/Output Pins

Table 7.2.1 lists the input/output pins for the CLG module.

Pin name	I/O	Qty	Function
OSC1	1	1	OSC1A oscillator input pin
			Connect a crystal resonator (32.768 kHz) and a gate capacitor.
OSC2	0	1	OSC1A oscillator output pin
			Connect a crystal resonator (32.768 kHz) and a drain capacitor.
FOUTA	0	1	FOUTA clock output pin
			Outputs a divided OSC3B or OSC1A clock.
FOUTB	0	1	FOUTB clock output pin
			Outputs a divided OSC3B or OSC1A clock.

Table 7.2.1 List of CLG Pins


The CLG output pins (FOUTA, FOUTB) are shared with I/O ports and are initially set as general purpose I/O port pins. The pin functions must be switched using the port function select bits to use the general purpose I/O port pins as the CLG output pins. For detailed information on pin function switching, see the "I/O Ports (P)" chapter.

7.3 Oscillators

The CLG module contains two internal oscillator circuits (OSC3B and OSC1A). The OSC3B oscillator generates the main clock for high-speed operation of the S1C17 Core and peripheral circuits. The OSC1A oscillator generates a sub-clock for timers and low-power operations. The OSC3B clock is selected as the system clock after an initial reset. Oscillator on/off switching and system clock selection (from OSC3B and OSC1A) are controlled with software.

7.3.1 OSC3B Oscillator

The OSC3B oscillator initiates high-speed oscillation without external components. It initiates oscillation when power is turned on. The S1C17 Core and peripheral circuits operate with this oscillation clock after an initial reset.

OSC3B oscillation frequency selection

The OSC3B oscillation frequency can be selected from four types shown below using OSC3BFSEL[1:0]/CLG_SRC register.

OSC3BFSEL[1:0]	OSC3B oscillation frequency (typ.)	
0x3	4 MHz	
0x2	500 kHz	
0x1	1 MHz	
0x0	2 MHz	
0x1	1 MHz	

(Default: 0x0)

OSC3B oscillation on/off

The OSC3B oscillator stops oscillating when OSC3BEN/CLG_CTL register is set to 0 and starts oscillating when set to 1. The OSC3B oscillator stops oscillating in SLEEP mode.

After an initial reset, OSC3BEN is set to 1, and the OSC3B oscillator goes on. Since the OSC3B clock is used as the system clock, the S1C17 Core starts operating using the OSC3B clock.

Stabilization wait time at start of OSC3B oscillation

The OSC3B oscillator circuit includes an oscillation stabilization wait circuit to prevent malfunctions due to unstable clock operations at the start of OSC3B oscillation—e.g., when the OSC3B oscillator is turned on with software. Figure 7.3.1.2 shows the relationship between the oscillation start time and the oscillation stabilization wait time.

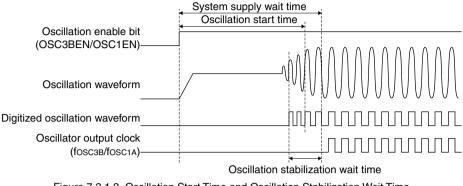


Figure 7.3.1.2 Oscillation Start Time and Oscillation Stabilization Wait Time

The OSC3B clock is not supplied to the system until the time set for this circuit has elapsed. Use OSC3BWT[1:0]/CLG_WAIT register to select one of four oscillation stabilization wait times.

Table 7.3.1.2 USC3B Uscillation Stabilization Wait Time Settings		
OSC3BWT[1:0]	Oscillation stabilization wait time	
0x3	8 cycles	
0x2	16 cycles	
0x1	32 cycles	
0x0	64 cycles	
	(Default: 0x0)	

Table 7.3.1.2 OSC3B Oscillation Stabilization Wait Time Settings

This is set to 64 cycles (OSC3B clock) after an initial reset. This means the CPU can start operating when the CPU operation start time at initial reset indicated below (at a maximum) has elapsed after the reset state is canceled. For the oscillation start time, see the "Electrical Characteristics" chapter.

CPU operation start time at initial reset \leq OSC3B oscillation start time (max.) + OSC3B oscillation stabilization wait time (64 cycles) + internal reset hold period (1040 cycles)

When the system clock is switched to OSC3B immediately after turning the OSC3B oscillator on, the OSC3B clock is supplied to the system after the OSC3B clock system supply wait time indicated below (at a maximum) has elapsed. If the power supply voltage VDD has stabilized sufficiently, OSC3BWT[1:0] can be set to 0x3 to reduce the oscillation stabilization wait time.

OSC3B clock system supply wait time \leq OSC3B oscillation start time (max.) + OSC3B oscillation stabilization wait time

7.3.2 OSC1A Oscillator

The OSC1A oscillator is a high-precision, low-speed oscillator circuit that uses a 32.768 kHz crystal resonator. The OSC1A clock is generally used as the timer operation clock (for the real-time clock, clock timer, watchdog timer, and 16-bit PWM timer) and an operation clock for the UART, sound generator, LCD driver, R/F converter, and supply voltage detection circuit. It can be used as the system clock instead of the OSC3B clock to reduce power consumption when no high-speed processing is required.

Figure 7.3.2.1 shows the OSC1A oscillator configuration.

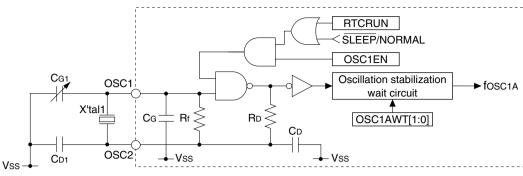


Figure 7.3.2.1 OSC1A Oscillator Circuit

A crystal resonator (X'tal1, typ. 32.768 kHz) should be connected between the OSC1 and OSC2 pins. Additionally, two capacitors (CG1 and CD1) should be connected between the OSC1/OSC2 pins and Vss.

Note: The OSC1A divider is reset by starting the RTC. This operation modifies the 256 Hz output clock cycle at that point, and this affects the count cycle of the timers that use the 256 Hz clock (CT, WDT, T16A2).

OSC1A oscillation on/off

The OSC1A oscillator starts oscillating when OSC1EN/CLG_CTL register is set to 1 and stops oscillating when set to 0.

When RTCRUN and OSC1EN are both set to 1, the OSC1A oscillator continues operating if the system enters SLEEP mode.

When RTCRUN = 0, the OSC1A stops in SLEEP mode regardless of how OSC1EN is set.

After an initial reset, OSC1EN and RTCRUN are both set to 0, and the OSC1A oscillator circuit is halted.

Table 7.0.2.1 Obo TA Oscillator Operating Status (normal operation)				
OSC1EN	RTCRUN	OSC1A oscillator		
1	1	On		
1	0	On		
0	1	Off		
0	0	Off		

 Table 7.3.2.1
 OSC1A Oscillator Operating Status (normal operation)

Table 7.3.2.2 OSC1A Oscillator Operating Status (SLEEP mode)

	, ,
RTCRUN	OSC1A oscillator
1	On
0	Off
1	Off
0	Off
	RTCRUN 1 0 1 0

Stabilization wait time at start of OSC1A oscillation

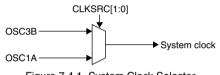
The OSC1A oscillator circuit includes an oscillation stabilization wait circuit to prevent malfunctions due to unstable clock operations at the start of OSC1A oscillation—e.g., when the OSC1A oscillator is turned on with software. The OSC1A clock is not supplied to the system until the time set for this circuit has elapsed. Use OS-C1AWT[1:0]/CLG_WAIT register to select one of two OSC1A oscillation stabilization wait times.

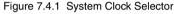
-
ation stabilization wait time

OSC1AWT[1:0]	Oscillation stabilization wait time
0x3	Reserved
0x2	4096 cycles
0x1	Reserved
0x0	16384 cycles

(Default: 0x0)

This is set to 16384 cycles (OSC1A clock) after an initial reset.


When the system clock is switched to OSC1A immediately after the OSC1A oscillator circuit is turned on, the OSC1A clock is supplied to the system after the OSC1A clock system supply wait time indicated below (at a maximum) has elapsed. For the oscillation start time, see the "Electrical Characteristics" chapter.


OSC1A clock system supply wait time \leq OSC1A oscillation start time (max.) + OSC1A oscillation stabilization wait time

- **Notes:** Oscillation stability will vary, depending on the resonator and other external components. Carefully consider the OSC1A oscillation stabilization wait time before reducing the time.
 - Be sure to avoid turning the OSC1A oscillator off for at least four seconds from start of oscillation after the oscillator is turned on. For the oscillation start time, see the "Electrical Characteristics" chapter.

7.4 System Clock Switching

The figure below shows the system clock selector.

The S1C17656 has two system clock sources (OSC3B and OSC1A) and it start operating with the OSC3B clock after an initial reset. The system clock can be switched to the OSC3B clock when a high-speed clock is required for the processing, or to the OSC1A clock for power saving. Use CLKSRC[1:0]/CLG_SRC register for this switching. The oscillator circuit that is not selected as the system clock source and is not used for running peripheral circuits can be shut down to reduce current consumption.

System clock source					
Reserved					
OSC1A					
OSC3B					

Table 7.4.1 System Clock Selection

(Default: 0x0)

The following shows system clock switching procedures:

Switching the system clock to OSC1A from OSC3B

- 1. Set the OSC1A oscillation stabilization wait time if necessary. (OSC1AWT[1:0])
- 2. Turn the OSC1A oscillator on if it is off. (OSC1EN = 1)
- 3. Select the OSC1A clock as the system clock. (CLKSRC[1:0] = 0x1)
- Turn the OSC3B oscillator off if peripheral modules and FOUTA/B output circuits have not used the OS-C3B clock.

Switching the system clock to OSC3B from OSC1A

- 1. Set the OSC3B oscillation stabilization wait time if necessary. (OSC3BWT[1:0])
- 2. Turn the OSC3B oscillator on if it is off. (OSC3BEN = 1)
- 3. Select the OSC3B clock as the system clock. (CLKSRC[1:0] = 0x0)
- Turn the OSC1A oscillator off if peripheral modules and FOUTA/B output circuits have not used the OS-C1A clock.
- Notes: The oscillator to be used as the system clock source must be operated before switching the system clock (OSC3BEN = OSC1EN = 1). Otherwise, the CLG will not switch the system clock source, even if CLKSRC[1:0] is written to, and the CLKSRC[1:0] value will remain unchanged.
 - The oscillator circuit selected as the system clock source cannot be turned off.
 - Continuous write/read access to CLKSRC[1:0] is prohibited. At least one instruction unrelated to CLKSRC[1:0] access must be inserted between the write and read instructions.

 When SLEEP mode is canceled, the OSC3B oscillator circuit is turned on (OSC3BEN = 1) and is used as the system clock source (CLKSRC[1:0] = 0x0) regardless of the system clock configured before the chip entered SLEEP mode.

Canceling HALT mode does not change the clock status configured before the chip entered HALT mode.

7.5 CPU Core Clock (CCLK) Control

The CLG module includes a clock gear to slow down the system clock to send to the S1C17 Core. To reduce current consumption, operate the S1C17 Core with the slowest possible clock speed. The halt instruction can be executed to stop the clock supply from the CLG to the S1C17 Core for power savings.

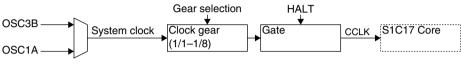


Figure 7.5.1 CCLK Supply System

Clock gear settings

CCLKGR[1:0]/CLG_CCLK register is used to select the gear ratio to reduce system clock speeds.

Table 7.5.1 OCEN deal Hallo Selection				
CCLKGR[1:0]	Gear ratio			
0x3	1/8			
0x2	1/4			
0x1 1/2				
0x0	1/1			

Table 7.5.1	CCLK	Gear	Ratio	Selection
	OOLIN	ueai	rialio	Selection

(Default: 0x0)

Clock supply control

The CCLK clock supply is stopped by executing the halt instruction. Since this does not stop the system clock, peripheral modules will continue to operate.

HALT mode is cleared by resetting, NMI, or other interrupts. The CCLK supply resumes when HALT mode is cleared.

Executing the slp instruction suspends system clock supply to the CLG, thereby halting the CCLK supply as well. Clearing SLEEP mode with an external interrupt restarts the system clock supply and the CCLK supply.

7.6 Peripheral Module Clock (PCLK) Control

The CLG module also controls the clock supply to peripheral modules.

The system clock is used unmodified for the peripheral module clock (PCLK).

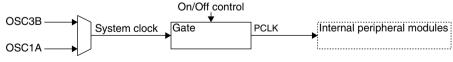


Figure 7.6.1 Peripheral Module Clock Control Circuit

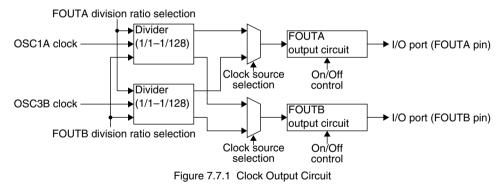
Clock supply control

PCLK supply is controlled by PCKEN[1:0]/CLG_PCLK register.

Table 7.6.1 PCLK Control				
PCKEN[1:0]	PCLK supply			
0x3	Enabled (on)			
0x2	Setting prohibited			
0x1	Setting prohibited			
0x0 Disabled (off)				

(Default: 0x3)

The default setting is 0x3, which enables the clock supply. Stop the clock supply to reduce current consumption unless all peripheral modules (modules listed below) within the internal peripheral circuit area need to be running.


Note: Do not set PCKEN[1:0]/CLG_PCLK register to 0x2 or 0x1, since doing so will stop the operation of certain peripheral modules.

Peripheral modules	Operating clock	Remarks
Interrupt controller	PCLK	The PCLK supply cannot be disabled if one or more
8-bit timer		peripheral modules in these list must be operated.
SPI		The PCLK supply can be disabled if all the periph-
Power generator		eral circuits in these list can be stopped.
P port & port MUX		
MISC registers		
Real-time clock	Divided OSC1A clock	The OSC1A oscillator circuit cannot be disabled if
Clock timer		one or more peripheral modules in these list must
Watchdog timer		be operated. The PCLK supply can be disabled.
LCD driver	Clock selected by software	The oscillator circuit used as the clock source can-
Sound generator	(divided OSC3B/OSC1A	not be disabled (see Section 7.7 or each peripheral
16-bit PWM timer	clock)	module chapter). The PCLK supply can be disabled.
UART		
R/F converter		
Supply voltage detection circuit		
FOUTA/FOUTB outputs		

Table 7.6.2	Peripheral Modules and Operating Clocks	
-------------	---	--

7.7 Clock External Output (FOUTA, FOUTB)

Divided OSC3B or OSC1A clocks can be output to external devices.

There are two output systems available: FOUTA and FOUTB. The FOUTA and FOUTB output circuits have the same functions.

Output pin setting

The FOUTA and FOUTB output pins are shared with I/O ports. The pin is configured for the I/O port by default, so the pin function should be changed using the port function select bit before the clock output can be used. See the "I/O Ports (P)" chapter for the FOUTA/FOUTB pins and selecting pin functions.

Clock source selection

The clock source can be selected from OSC3B and OSC1A using FOUTASRC[1:0]/CLG_FOUTA register or FOUTBSRC[1:0]/CLG_FOUTB register.

FOUTASRC[1:0]/FOUTBSRC[1:0]	Clock source
0x3, 0x2	Reserved
0x1	OSC1A
0x0	OSC3B

Table 7.7.1 Clock Source Selection

(Default: 0x0)

7 CLOCK GENERATOR (CLG)

Clock frequency selection

Eight different clock output frequencies can be selected. Select the division ratio for the source clock using FOUTAD[2:0]/CLG_FOUTA register or FOUTBD[2:0]/CLG_FOUTB register.

FOUTAD[2:0]/FOUTBD[2:0]	Division ratio
0x7	1/128
0x6	1/64
0x5	1/32
0x4	1/16
0x3	1/8
0x2	1/4
0x1	1/2
0x0	1/1

Table 772	Clock Division	Ratio	Selection
	CIUCK DIVISION	1 Ialio	Selection

(Default: 0x0)

Clock output control

The clock output is controlled using FOUTAE/CLG_FOUTA register or FOUTBE/CLG_FOUTB register. Setting FOUTAE/FOUTBE to 1 outputs the FOUTA/FOUTB clock from the FOUTA/FOUTB pin. Setting it to 0 disables output.

FOUTAE (FOUTBE)	0	1	0
FOUTA (FOUTB) output	:][

- **Notes:** Since the FOUTA/FOUTB signal is not synchronized with FOUTAE/FOUTBE writing, switching output on or off will generate certain hazards.
 - There may be a time lag between setting FOUTAE/FOUTBE to 1 and start of FOUTA/FOUTB signal output due to the oscillation stabilization wait time and other conditions.

7.8 Control Register Details

Address		Register name	Function				
0x5060	CLG_SRC	Clock Source Select Register	Selects the clock source.				
0x5061	CLG_CTL	Oscillation Control Register	Controls oscillation.				
0x5064	CLG_FOUTA	FOUTA Control Register	Controls FOUTA clock output.				
0x5065	CLG_FOUTB FOUTB Control Register		Controls FOUTB clock output.				
0x507d	CLG_WAIT	Oscillation Stabilization Wait Control Register	Controls oscillation stabilization waiting time.				
0x5080	CLG_PCLK	PCLK Control Register	Controls the PCLK supply.				
0x5081	CLG_CCLK	CCLK Control Register	Configures the CCLK division ratio.				

Table 7.8.1 List of CLG Registers

The CLG module registers are described in detail below.

Note: When data is written to the registers, the "Reserved" bits must always be written as 0 and not 1.

Clock Source Select Register (CLG_SRC)

Register name	Address	Bit	Name	Function	Set	ing	Init.	R/W	Remarks
Clock Source	0x5060	D7–6	OSC3B	OSC3B frequency select	OSC3BFSEL[1:0]	Frequency	0x0	R/W	
Select Register	(8 bits)		FSEL[1:0]		0x3	4 MHz			
(CLG_SRC)					0x2	500 kHz			
					0x1	1 MHz			
					0x0	2 MHz			
		D5–2	-	reserved	-	-	-	-	0 when being read.
		D1–0	CLKSRC[1:0]	System clock source select	CLKSRC[1:0]	Clock source	0x0	R/W	
					0x3, 0x2	reserved			
					0x1	OSC1A			
					0x0	OSC3B			

D[7:6] OSC3BFSEL[1:0]: OSC3B Frequency Select Bits

Selects the OSC3B oscillation frequency.

Table 7.8.2	OSC3B	Oscillation	Frequency	/ Setting
10010 1.0.2	00000	Coomation	rioquono	ootang

	1 , 3
OSC3BFSEL[1:0]	OSC3B oscillation frequency (typ.)
0x3	4 MHz
0x2	500 kHz
0x1	1 MHz
0x0	2 MHz

(Default: 0x0)

D[5:2] Reserved

D[1:0] CLKSRC[1:0]: System Clock Source Select Bits

Selects the system clock source.

Table 7.8.3	System	Clock	Selection
10010 1.0.0	Oyotonn	CICOR	0010011011

CLKSRC[1:0]	System clock source
0x3, 0x2	Reserved
0x1	OSC1A
0x0	OSC3B

(Default: 0x0)

Select OSC3B for normal (high-speed) operations. If no high-speed clock is required, select OSC1A as the system clock and stop OSC3B to reduce current consumption.

- Notes: The oscillator to be used as the system clock source must be operated before switching the system clock (OSC3BEN = OSC1EN = 1). Otherwise, the CLG will not switch the system clock source, even if CLKSRC[1:0] is written to, and the CLKSRC[1:0] value will remain unchanged.
 - The oscillator circuit selected as the system clock source cannot be turned off.
 - Continuous write/read access to CLKSRC[1:0] is prohibited. At least one instruction unrelated to CLKSRC[1:0] access must be inserted between the write and read instructions.
 - When SLEEP mode is canceled, the OSC3B oscillator circuit is turned on (OSC3BEN = 1) and is used as the system clock source (CLKSRC[1:0] = 0x0) regardless of the system clock configured before the chip entered SLEEP mode.

Canceling HALT mode does not change the clock status configured before the chip entered HALT mode.

Oscillation Control Register (CLG_CTL)

Register name	Address	Bit	Name	Function	Setting		Init.	R/W	Remarks		
Oscillation	0x5061	D7–3	-	reserved	-		-	-	0 when being read.		
Control Register	(8 bits)	D2	OSC3BEN	OSC3B enable	1	Enable	0	Disable	1	R/W	
(CLG_CTL)	Í	D1	OSC1EN	OSC1A enable	1	Enable	0	Disable	0	R/W	
		D0	-	reserved		-	-		-	-	0 when being read.

D[7:3] Reserved

D2 OSC3BEN: OSC3B Enable Bit

Enables or disables OSC3B oscillator operations. 1 (R/W): Enabled (on) (default)

0 (R/W): Disabled (off)

Note: The OSC3B oscillator cannot be stopped if the OSC3B clock is being used as the system clock.

D1 OSC1EN: OSC1A Enable Bit

Enables or disables OSC1A oscillator operations. 1 (R/W): Enabled (on) 0 (R/W): Disabled (off) (default)

7 CLOCK GENERATOR (CLG)

Note: The OSC1A oscillator cannot be stopped if the OSC1A clock is being used as the system clock.

D0 Reserved

FOUTA Control Register (CLG_FOUTA)

Register name	Address	Bit	Name	Function	Set	ting	Init.	R/W	Remarks
FOUTA Control	0x5064	D7	-	reserved	-	_	-	-	0 when being read.
Register	(8 bits)	D6–4	FOUTAD	FOUTA clock division ratio select	FOUTAD[2:0]	Division ratio	0x0	R/W	
(CLG_FOUTA)			[2:0]		0x7	1/128]		
					0x6	1/64			
					0x5	1/32			
					0x4	1/16			
					0x3	1/8			
					0x2	1/4			
					0x1	1/2			
					0x0	1/1			
		D3–2	FOUTASRC	FOUTA clock source select	FOUTASRC[1:0]	Clock source	0x0	R/W	
			[1:0]		0x3, 0x2	reserved			
					0x1	OSC1A			
					0x0	OSC3B			
		D1	-	reserved	-	-	-	-	0 when being read.
		D0	FOUTAE	FOUTA output enable	1 Enable	0 Disable	0	R/W	

D7 Reserved

D[6:4] FOUTAD[2:0]: FOUTA Clock Division Ratio Select Bits

Selects the source clock division ratio to set the FOUTA clock frequency.

FOUTAD[2:0]	Division ratio						
0x7	1/128						
0x6	1/64						
0x5	1/32						
0x4	1/16						
0x3	1/8						
0x2	1/4						
0x1	1/2						
0x0	1/1						

Table 7.8.4 Clock Division Ratio Selection

(Default: 0x0)

D[3:2] FOUTASRC[1:0]: FOUTA Clock Source Select Bits

Selects the FOUTA clock source.

Table 7.8.5	FOUTA	Clock	Source	Selection
10010 7.0.0	1000	01001	Course	0010011011

FOUTASRC[1:0]	Clock source
0x3, 0x2	Reserved
0x1	OSC1A
0x0	OSC3B

(Default: 0x0)

D1 Reserved

D0 FOUTAE: FOUTA Output Enable Bit

Enables or disables FOUTA clock external output. 1 (R/W): Enabled (on)

0 (R/W): Disabled (off) (default)

Setting FOUTAE to 1 outputs the FOUTA clock from the FOUTA pin. Setting it to 0 stops the output.

Register name	Address	Bit	Name	Function	Set	ting	Init.	R/W	Remarks
FOUTB Control	0x5065	D7	-	reserved	-	-	-	-	0 when being read.
Register	(8 bits)	D6-4	FOUTBD	FOUTB clock division ratio select	FOUTBD[2:0]	Division ratio	0x0	R/W	
(CLG_FOUTB)			[2:0]		0x7	1/128			
					0x6	1/64			
					0x5	1/32			
					0x4	1/16			
					0x3	1/8			
					0x2	1/4			
					0x1	1/2			
					0x0	1/1			
		D3–2	FOUTBSRC	FOUTB clock source select	FOUTBSRC[1:0]	Clock source	0x0	R/W	
			[1:0]		0x3, 0x2	reserved			
					0x1	OSC1A			
					0x0	OSC3B			
		D1	-	reserved	-	-	-	-	0 when being read.
		D0	FOUTBE	FOUTB output enable	1 Enable	0 Disable	0	R/W	

FOUTB Control Register (CLG_FOUTB)

D7 Reserved

D[6:4] FOUTBD[2:0]: FOUTB Clock Division Ratio Select Bits

Selects the source clock division ratio to set the FOUTB clock frequency.

FOUTBD[2:0]	Division ratio
0x7	1/128
0x6	1/64
0x5	1/32
0x4	1/16
0x3	1/8
0x2	1/4
0x1	1/2
0x0	1/1

Table 7.8.6	Clock	Division	Ratio	Selection
Table 7.0.0	CIUCK	DIVISION	naliu	Selection

(Default: 0x0)

D[3:2] FOUTBSRC[1:0]: FOUTB Clock Source Select Bits

Selects the FOUTB clock source.

Table 7.8.7	FOUTB	Clock Source	Selection

FOUTBSRC[1:0]	Clock source
0x3, 0x2	Reserved
0x1	OSC1A
0x0	OSC3B

(Default: 0x0)

D1 Reserved

D0 FOUTBE: FOUTB Output Enable Bit

Enables or disables FOUTB clock external output.

1 (R/W): Enabled (on)

0 (R/W): Disabled (off) (default)

Setting FOUTBE to 1 outputs the FOUTB clock from the FOUTB pin. Setting it to 0 stops the output.

Oscillation Stabilization Wait Control Register (CLG_WAIT)

Register name	Address	Bit	Name	Function	Sett	ing	Init.	R/W	Remarks
Oscillation	0x507d	D7–6	OSC3BWT	OSC3B stabilization wait cycle	OSC3BWT[1:0]	Wait cycle	0x0	R/W	
Stabilization	(8 bits)		[1:0]	select	0x3	8 cycles			
Wait Control					0x2	16 cycles			
Register					0x1	32 cycles			
(CLG_WAIT)					0x0	64 cycles			
		D5–2	_	reserved	-	-	-	-	0 when being read.
		D1–0	OSC1AWT	OSC1A stabilization wait cycle	OSC1AWT[1:0]	Wait cycle	0x0	R/W	
			[1:0]	select	0x3	reserved			
					0x2	4096 cycles			
					0x1	reserved			
					0x0	16384 cycles			

7 CLOCK GENERATOR (CLG)

D[7:6] OSC3BWT[1:0]: OSC3B Stabilization Wait Cycle Select Bits

An oscillation stabilization wait time is set to prevent malfunctions due to unstable clock operations at the start of OSC3B oscillation. The OSC3B clock is not supplied to the system immediately after OSC3B oscillation starts until the time set here has elapsed.

Table 7.8.8 USU3D Uschlation Stabilization wait Time Settings					
OSC3BWT[1:0]	Oscillation stabilization wait time				
0x3	8 cycles				
0x2	16 cycles				
0x1	32 cycles				
0x0	64 cycles				
	(Default: 0x0)				

Table 7.8.8 OSC3B Oscillation Stabilization Wait Time Settings

This is set to 64 cycles (OSC3B clock) after an initial reset. This means the CPU can start operating when the CPU operation start time at initial reset indicated below (at a maximum) has elapsed after the reset state is canceled.

CPU operation start time at initial reset \leq OSC3B oscillation start time (max.) + OSC3B oscillation stabilization wait time (64 cycles)

When the system clock is switched to OSC3B immediately after turning the OSC3B oscillator on, the OSC3B clock is supplied to the system after the OSC3B clock system supply wait time indicated below (at a maximum) has elapsed. If the power supply voltage VDD has stabilized sufficiently, OSC3B-WT[1:0] can be set to 0x3 to reduce the oscillation stabilization wait time.

OSC3B clock system supply wait time \leq OSC3B oscillation start time (max.) + OSC3B oscillation stabilization wait time

D[5:2] Reserved

D[1:0] OSC1AWT[1:0]: OSC1A Stabilization Wait Cycle Select Bits

An oscillation stabilization wait time is set to prevent malfunctions due to unstable clock operation at the start of OSC1A oscillation. The OSC1A clock is not supplied to the system immediately after OSC1A oscillation starts until the time set here has elapsed.

OSC1AWT[1:0]	Oscillation stabilization wait time				
0x3	Reserved				
0x2	4096 cycles				
0x1	Reserved				
0x0	16384 cycles				
	(Defeuilti Our)				

(Default: 0x0)

This is set to 16384 cycles (OSC1A clock) after an initial reset.

When the system clock is switched to OSC1A immediately after the OSC1A oscillator circuit is turned on, the OSC1A clock is supplied to the system after the OSC1A clock system supply wait time indicated below (at a maximum) has elapsed.

OSC1A clock system supply wait time \leq OSC1A oscillation start time (max.) + OSC1A oscillation stabilization wait time

Note: Oscillation stability will vary, depending on the resonator and other external components. Carefully consider the OSC1A oscillation stabilization wait time before reducing the time.

PCLK Control Register (CLG_PCLK)

Register name	Address	Bit	Name	Function	Set	ting	Init.	R/W	Remarks
PCLK Control	0x5080	D7–2	-	reserved	-	-	-	-	0 when being read.
Register	(8 bits)	D1–0	PCKEN[1:0]	PCLK enable	PCKEN[1:0]	PCLK supply	0x3	R/W	
(CLG_PCLK)					0x3	Enable			
					0x2	Not allowed			
					0x1	Not allowed			
					0x0	Disable			

D[7:2] Reserved

D[1:0] PCKEN[1:0]: PCLK Enable Bits

Enables or disables clock (PCLK) supply to the internal peripheral modules.

PCKEN[1:0]	PCLK supply				
0x3	Enabled (on)				
0x2	Setting prohibited				
0x1	Setting prohibited				
0x0	Disabled (off)				

T		DOLIC	<u> </u>
lable	7.8.10	PCLK	Control

(Default: 0x3)

The PCKEN[1:0] default setting is 0x3, which enables clock supply.

Peripheral modules that use PCLK

- Interrupt controller
- 8-bit timer Ch.0
- SPI Ch.0
- Power generator
- P port & port MUX
- MISC registers

The PCLK supply cannot be disabled if one or more peripheral modules in these list must be operated. The PCLK supply can be disabled if all the peripheral circuits in these list can be stopped. Stop the PCLK supply to reduce current consumption if all the peripheral modules listed above are not required.

Peripheral modules/functions that do not use PCLK

- Real-time clock
- Clock timer
- Watchdog timer
- LCD driver
- Sound generator
- R/F converter
- Supply voltage detection circuit
- 16-bit PWM timer Ch.0
- UART Ch.0
- FOUTA/FOUTB outputs

These peripheral modules/functions can operate even if PCLK is stopped.

Note: Do not set PCKEN[1:0] to 0x2 or 0x1, since doing so will stop the operation of certain peripheral modules.

CCLK Control Register (CLG_CCLK)

Register name	Address	Bit	Name	Function	Sett	ing	Init.	R/W	Remarks
CCLK Control	0x5081	D7–2	-	reserved	-	-	-	_	0 when being read.
Register	(8 bits)	D1–0	CCLKGR[1:0]	CCLK clock gear ratio select	CCLKGR[1:0]	Gear ratio	0x0	R/W	
(CLG_CCLK)					0x3	1/8			
					0x2	1/4			
					0x1	1/2			
					0x0	1/1			

D[7:2] Reserved

D[1:0] CCLKGR[1:0]: CCLK Clock Gear Ratio Select Bits

Selects the gear ratio for reducing system clock speed and sets the CCLK clock speed for operating the S1C17 Core. To reduce current consumption, operate the S1C17 Core using the slowest possible clock speed.

7 CLOCK GENERATOR (CLG)

CCLKGR[1:0]	Gear ratio
0x3	1/8
0x2	1/4
0x1	1/2
0x0	1/1

Table 7.8.11 CCLK Gear Ratio Selection

(Default: 0x0)

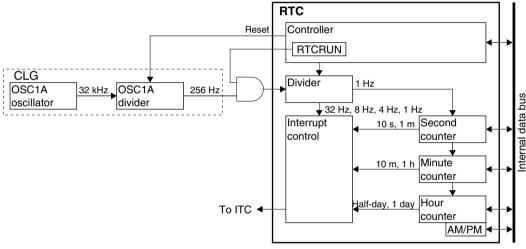
8 Real-Time Clock (RTC)

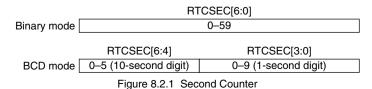
8.1 RTC Module Overview

The S1C17656 incorporates a real-time clock (RTC). The main features of the RTC are outlined below.

- Contains time counters (seconds, minutes, and hours).
- The RTC operates with the OSC1A oscillator circuit even in SLEEP mode.
- Either binary or BCD data can be read from and written to the counters.
- Capable of controlling the starting and stopping of time clocks.
- 24-hour or 12-hour mode can be selected.
- Periodic interrupts (32 Hz, 8 Hz, 4 Hz, 1 Hz, 10 second, 1 minute, 10 minutes, 1 hour, 10 hours, half-day, and 1 day) are possible.

Figure 8.1.1 shows a block diagram of the RTC.




Figure 8.1.1 RTC Block Diagram

8.2 RTC Counters

The RTC contains the following three counters, whose count values can be read out as either binary or BCD data from the respective registers. Each counter can also be set to any desired time by writing data to the respective register.

Second counter

This 7-bit binary counter counts from 0 to 59 seconds synchronously with the 1 Hz signal derived from the divider. This counter is also used as a 3-bit (0 to 5) + 4-bit (0 to 9) BCD counter by setting BCDMD/RTC_CTL register to 1. The counter data can be read/written using RTCSEC[6:0]/RTC_MS register. The counter is reset to 0 when it reaches 60 seconds and outputs a carry over of 1 to the minute counter.

8 REAL-TIME CLOCK (RTC)

Minute counter

This 7-bit binary counter counts from 0 to 59 minutes with 1 carried over from the second counter. This counter is also used as a 3-bit (0 to 5) + 4-bit (0 to 9) BCD counter by setting BCDMD/RTC_CTL register to 1. The counter data can be read/written using RTCMIN[6:0]/RTC_MS register. The counter is reset to 0 when it reaches 60 minutes and outputs a carry over of 1 to the hour counter.

RTCMIN[6:0]						
Binary mode	e 0–59					
	RTCMIN[6:4]	RTCMIN[3:0]				
BCD mode	0–5 (10-minute digit)	0–9 (1-minute digit)				
	Financia a a a Min					

Figure 8.2.2 Minute Counter

Hour counter

This 6-bit binary counter counts from 0 to 23 o'clock (24-hour mode) or from 1 to 12 o'clock (12-hour mode) with 1 carried over from the minute counter. This counter is also used as a 2-bit (0 to 2 or 0 to 1) + 4-bit (0 to 9) BCD counter by setting BCDMD/RTC_CTL register to 1. The counter data can be read/written using RTCHOUR[5:0]/RTC_H register.

		24-hour mode TCHOUR[5:0]		2-hour mode TCHOUR[5:0]	AMPM
Binary mode		0–23		1–12	0/1
	RTCHOUR[5:4]	RTCHOUR[3:0]	RTCHOUR[5:4]	RTCHOUR[3:0]	AMPM
BCD mode	0–2 (10-hour digit)	0–9 (1-hour digit)	0–1 (10-hour digit)	0–9 (1-hour digit)	0/1
					0 (AM)/1 (PM)

Figure 8.2.3 Hour Counter

	24-hou	r mode		12-hour mode	
Time	RTCHOUR[5:0]	RTCHOUR[5:0]	RTCHOUR[5:0]	RTCHOUR[5:0]	
	(binary)	(BCD)	(binary)	(BCD)	AMPM
0 o'clock (12am)	0x0	0x00	0xc	0x12	0
1 o'clock (1am)	0x1	0x01	0x1	0x01	0
2 o'clock (2am)	0x2	0x02	0x2	0x02	0
3 o'clock (3am)	0x3	0x03	0x3	0x03	0
4 o'clock (4am)	0x4	0x04	0x4	0x04	0
5 o'clock (5am)	0x5	0x05	0x5	0x05	0
6 o'clock (6am)	0x6	0x06	0x6	0x06	0
7 o'clock (7am)	0x7	0x07	0x7	0x07	0
8 o'clock (8am)	0x8	0x08	0x8	0x08	0
9 o'clock (9am)	0x9	0x09	0x9	0x09	0
10 o'clock (10am)	0xa	0x10	0xa	0x10	0
11 o'clock (11am)	0xb	0x11	0xb	0x11	0
12 o'clock (12pm)	0xc	0x12	0xc	0x12	1
13 o'clock (1pm)	0xd	0x13	0x1	0x01	1
14 o'clock (2pm)	0xe	0x14	0x2	0x02	1
15 o'clock (3pm)	0xf	0x15	0x3	0x03	1
16 o'clock (4pm)	0x10	0x16	0x4	0x04	1
17 o'clock (5pm)	0x11	0x17	0x5	0x05	1
18 o'clock (6pm)	0x12	0x18	0x6	0x06	1
19 o'clock (7pm)	0x13	0x19	0x7	0x07	1
20 o'clock (8pm)	0x14	0x20	0x8	0x08	1
21 o'clock (9pm)	0x15	0x21	0x9	0x09	1
22 o'clock (10pm)	0x16	0x22	0xa	0x10	1
23 o'clock (11pm)	0x17	0x23	0xb	0x11	1

Table 8.2.1 Hour Counter Values

Initial counter values

An initial reset does not initialize the counter values. Be sure to initialize the counters via software.

8.3 RTC Control

8.3.1 Operating Clock Control

The RTC module uses the 256 Hz clock output by the CLG module (256 Hz clock derived from the OSC1A divider) as the operation clock. Therefore, the OSC1A oscillator must be turned on before starting the RTC. However, the clock is not supplied to the RTC module while RTC is stopped even if the OSC1A oscillator is on. For detailed information on clock control, see the "Clock Generator (CLG)" chapter.

- **Notes:** The RTC module input clock frequency is 256 Hz only when the OSC1A clock frequency is 32.768 kHz. The frequency described in this chapter will vary accordingly for other OSC1A clock frequencies.
 - The OSC1A divider is reset when the RTC starts running (when 1 is written to RTCRUN/RTC_ CTL register). This affects the count operations of the timer modules (CT, WDT, and T16A2), as new 256 Hz clock cycle begins from that point.
 - After an initial reset, RTCRUN is set to 0 and the RTC idles. The OSC1A oscillator circuit is also idle. Therefore, resetting the IC suspends the RTC operation for the period shown below.

RTC idle time = [#REST = low period] + [OSC3B oscillation stabilization time] + [Time until OSC1A is started] + [OSC1A oscillation stabilization time] + [Time until RTC is restarted]

8.3.2 12-hour/24-hour mode selection

Whether to use the clock in 12-hour or 24-hour mode can be selected using RTC24H/RTC_CTL register.

RTC24H = 1: 12-hour mode

RTC24H = 0: 24-hour mode

The count range of the hour counter changes with this selection.

Basically, this setting should be changed while the counters are idle. RTC24H is allocated to the same address as the control bits that start the counters. Therefore, 12-hour mode or 24-hour mode can be selected at the same time the counters are started.

Checking A.M./P.M. with 12-hour mode selected

When 12-hour mode is selected, AMPM/RTC_H register that indicates A.M. or P.M. is enabled. AMPM = 0: A.M. AMPM = 1: P.M.

For 24-hour mode, AMPM is fixed to 0.

When setting the time of day, write either of the values above to this bit to specify A.M. or P.M.

8.3.3 RTC Start/Stop

The RTC starts counting when RTCRUN/RTC_CTL register is set to 1, and stops counting when this bit is set to 0. The OSC1A divider in the CLG module is reset by writing 1 to RTCRUN and it starts division of the OSC1A clock.

8.3.4 Counter Settings

Counter values should be set in the procedure shown below.

- 1. Stop the RTC by writing 0 to RTCRUN/RTC_CTL register.
- 2. Wait until RTCST/RTC_CTL register is reset to 0 (the RTC actually stops operating).
- 3. Write the counter values to the RTC_MS and RTC_H registers.
- 4. Start the RTC by writing 1 to RTCRUN/RTC_CTL register.

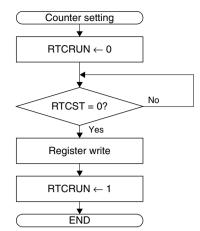


Figure 8.3.4.1 Procedure for Setting Counters

- **Notes:** Do not set the counters while the RTC is running, as proper settings to the counters cannot be guaranteed.
 - Counter values to be set must be within the effective range according to binary/BCD mode. The counter will be undefined if a value out of the range is written.
 - Depending on the value set, an interrupt may occur immediately after starting the RTC.

8.3.5 Counter Read

If 1 is being carried over while the counters are being read, correct time may not be read. Counter values should be read in the procedure shown below.

Read procedure 1

- 1. Read the RTC_MS and RTC_H registers.
- 2. Read the RTC_MS and RTC_H registers again.
- 3. If the same value is read out in Steps 1 and 2, use it as the correct time. If different values are read out, try again from Step 1.

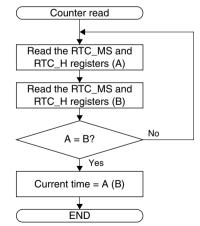


Figure 8.3.5.1 Procedure for Reading Counters

Read procedure 2

After a 1 Hz interrupt (or 10-second to 1 day interrupt) occurs, read the RTC_MS and RTC_H registers within one second.

8.4 RTC Interrupts

The RTC can generate interrupts in 10 different cycles listed in Table 8.4.1. To generate interrupts, set the interrupt enable bits for the interrupt cycles to 1. If an interrupt enable bit is set to 0 (default), interrupt requests for the cause will not be sent to the ITC.

Interrupt cycle	Interrupt timing	Interrupt flag (RTC_IFLG register)	Interrupt enable bit (RTC_IEN register)
One day	Hour counter = $23 \rightarrow 0$ (24-hour mode)	INT1D	INT1DEN
	Hour counter = 11pm \rightarrow 12am (12-hour mode)		
Half-day	Hour counter = $11 \rightarrow 12$, $23 \rightarrow 0$ (24-hour mode)	INTHD	INTHDEN
	Hour counter = $11am \rightarrow 12pm$, $11pm \rightarrow 12am$ (12-hour mode)		
1 hour	Minute counter = $59 \rightarrow 0$	INT1H	INT1HEN
10 minutes	Minute counter = $9 \rightarrow 10$, $19 \rightarrow 20$, $29 \rightarrow 30$, $39 \rightarrow 40$, $49 \rightarrow 50$,	INT10M	INT10MEN
	59→0		
1 minute	Second counter = $59 \rightarrow 0$	INT1M	INT1MEN
10 seconds	Second counter = $9 \rightarrow 10$, $19 \rightarrow 20$, $29 \rightarrow 30$, $39 \rightarrow 40$, $49 \rightarrow 50$,	INT10S	INT10SEN
	59→0		
1 Hz	Divider 1 Hz signal cycles	INT1HZ	INT1HZEN
4 Hz	Divider 4 Hz signal cycles	INT4HZ	INT4HZEN
8 Hz	Divider 8 Hz signal cycles	INT8HZ	INT8HZEN
32 Hz	Divider 32 Hz signal cycles	INT32HZ	INT32HZEN

Table 8.4.1 Inte	rrupt Cycles and Interrupt Control Bits
------------------	---

When the interrupt enable bit is set to 1, the corresponding interrupt flag will be set to 1 in the timing shown above and the interrupt request will be sent to the ITC.

Since the RTC is active even in SLEEP mode, RTC interrupt requests may be used to cancel SLEEP mode. For more information on interrupt processing, see the "Interrupt Controller (ITC)" chapter.

- **Notes:** To prevent interrupt recurrences, the interrupt flag must be reset in the interrupt handler routine after an RTC interrupt has occurred. The interrupt flag is reset by writing 1.
 - To prevent unwanted interrupts, reset the interrupt flags before enabling interrupts with the interrupt enable bits.

8.5 Control Register Details

	Table 8.5.1 List of RTC Registers										
Address		Register name	Function								
0x56c0	RTC_CTL	RTC Control Register	Controls the RTC.								
0x56c2	RTC_IEN	RTC Interrupt Enable Register	Enables/disables interrupts.								
0x56c4	RTC_IFLG	RTC Interrupt Flag Register	Displays/sets interrupt occurrence status.								
0x56c6	RTC_MS	RTC Minute/Second Counter Register	Minute/second counter data								
0x56c8	RTC_H	RTC Hour Counter Register	Hour counter data								

The following describes each RTC register.

Note: When data is written to the register, the "Reserved" bits must always be written as 0 and not 1.

RTC Control Register (RTC_CTL)

Register name	Address	Bit	Name	Function		Setting		Init.	R/W	Remarks	
RTC Control	0x56c0	D15–9	-	reserved	-				-	-	0 when being read.
Register	(16 bits)	D8	RTCST	RTC run/stop status	1	Running	0	Stop	0	R	
(RTC_CTL)		D7–6	-	reserved	_				-	-	0 when being read.
		D5	BCDMD	BCD mode select	1	BCD mode	0	Binary mode	0	R/W	
		D4	RTC24H	24H/12H mode select	1	12H	0	24H	0	R/W	
		D3–1	-	reserved	_			-	-	0 when being read.	
		D0	RTCRUN	RTC run/stop control	1	Run	0	Stop	0	R/W	

D[15:9] Reserved

D8 RTCST: RTC Run/Stop Status Bit

Indicates the RTC operating status.

1 (R): Running

0 (R): Stop (default)

RTCST goes 1 when the RTC starts running by writing 1 to RTCRUN. RTCST reverts to 0 when the count operation is actually stopped after 0 is written to RTCRUN. When setting counter values, write 0 to RTCRUN and make sure that RTCST is reset to 0 before writing data.

D[7:6] Reserved

D5 BCDMD: BCD Mode Select Bit

Sets the second, minute, and hour counters into BCD mode. 1 (R/W): BCD mode 0 (R/W): Binary mode (default)

By default, each counter operates as a binary counter and a binary value is read or written as counter data. Setting BCDMD to 1 configures the counter so that two-digit BCD value can be read or written. See Section 8.2 for the configuration of the counter in each mode.

D4 RTC24H: 24H/12H Mode Select Bit

Selects whether to use the hour counter in 24-hour or 12-hour mode.

1 (R/W): 24-hour mode

0 (R/W): 12-hour mode (default)

The count range of the hour counter changes with this selection. Basically, this setting should be changed while the counters are idle. Since this register is assigned a control bit (D0) to start the counters, 12-hour or 24-hour mode may be selected when starting the counters.

D[3:1] Reserved

D0 RTCRUN: RTC Run/Stop Control Bit

Starts or stops the RTC. 1 (R/W): Start 0 (R/W): Stop (default)

The RTCRUN default setting is 0, which stops the RTC. Setting RTCRUN to 1 enables the CLG to send the clock to the RTC. When RTCRUN is set to 1, the OSC1A oscillator circuit does not stop even if the IC enters SLEEP mode (the OSC1A clock will be supplied to the RTC only). Writing 1 to RTCRUN resets the OSC1A divider in the CLG module.

RTC Interrupt Enable Register (RTC_IEN)

Register name	Address	Bit	Name	Function	Setting			g	Init.	R/W	Remarks
RTC Interrupt	0x56c2	D15-10	-	reserved		-	-		-	-	0 when being read.
Enable Register	(16 bits)	D9	INT1DEN	1-day interrupt enable	1	Enable	0	Disable	0	R/W	
(RTC_IEN)		D8	INTHDEN	Half-day interrupt enable	1	Enable	0	Disable	0	R/W	1
		D7	INT1HEN	1-hour interrupt enable	1	Enable	0	Disable	0	R/W	1
		D6	INT10MEN	10-minute interrupt enable	1	Enable	0	Disable	0	R/W	1
		D5	INT1MEN	1-minute interrupt enable	1	Enable	0	Disable	0	R/W	
		D4	INT10SEN	10-second interrupt enable	1	Enable	0	Disable	0	R/W	1
		D3	INT1HZEN	1 Hz interrupt enable	1	Enable	0	Disable	0	R/W	1
		D2	INT4HZEN	4 Hz interrupt enable	1	Enable	0	Disable	0	R/W	
		D1	INT8HZEN	8 Hz interrupt enable	1	Enable	0	Disable	0	R/W	1
		D0	INT32HZEN	32 Hz interrupt enable	1	Enable	0	Disable	0	R/W	

This register is used to enable/disable RTC interrupts. When the interrupt enable bit for an interrupt cycle is set to 1, the corresponding interrupt flag will be set to 1 in the interrupt cycles and the interrupt request will be sent to the ITC. If an interrupt enable bit is set to 0, the interrupt request will not be sent to the ITC.

- 1 (R/W): Interrupt enabled
- 0 (R/W): Interrupt disabled (default)

D[15:10] Reserved

D9	INT1DEN: 1-Day Interrupt Enable Bit Enables or disables 1-day interrupt requests to the ITC.
D8	INTHDEN: Half-Day Interrupt Enable Bit Enables or disables half-day interrupt requests to the ITC.
D7	INT1HEN: 1-Hour Interrupt Enable Bit Enables or disables 1-hour interrupt requests to the ITC.
D6	INT10MEN: 10-Minute Interrupt Enable Bit Enables or disables 10-minute interrupt requests to the ITC.
D5	INT1MEN: 1-Minute Interrupt Enable Bit Enables or disables 1-minute interrupt requests to the ITC.
D4	INT10SEN: 10-Second Interrupt Enable Bit Enables or disables 10-second interrupt requests to the ITC.
D3	INT1HZEN: 1 Hz Interrupt Enable Bit Enables or disables 1 Hz interrupt requests to the ITC.
D2	INT4HZEN: 4 Hz Interrupt Enable Bit Enables or disables 4 Hz interrupt requests to the ITC.
D1	INT8HZEN: 8 Hz Interrupt Enable Bit Enables or disables 8 Hz interrupt requests to the ITC.

D0 INT32HZEN: 32 Hz Interrupt Enable Bit Enables or disables 32 Hz interrupt requests to the ITC.

RTC Interrupt Flag Register (RTC_IFLG)

Register name	Address	Bit	Name	Function		Setting		g	Init.	R/W	Remarks
RTC Interrupt	0x56c4	D15-10	-	reserved		_		-	-	0 when being read.	
Flag Register	(16 bits)	D9	INT1D	1-day interrupt flag	1	Cause of	0	Cause of	0	R/W	Reset by writing 1.
(RTC_IFLG)		D8	INTHD	Half-day interrupt flag	1	interrupt		interrupt not	0	R/W	1
		D7	INT1H	1-hour interrupt flag	1	occurred	occurred 0 R/W	occurred			
		D6	INT10M	10-minute interrupt flag	1				0	R/W	
		D5	INT1M	1-minute interrupt flag	1				0	R/W	
		D4	INT10S	10-second interrupt flag	1				0	R/W	1
		D3	INT1HZ	1 Hz interrupt flag	1				0	R/W	
		D2	INT4HZ	4 Hz interrupt flag	1				0	R/W	
		D1	INT8HZ	8 Hz interrupt flag	1				0	R/W	1
		D0	INT32HZ	32 Hz interrupt flag	1				0	R/W	

This register indicates RTC interrupt cause occurrence status. When the corresponding interrupt enable bit is set to 1, the interrupt flag will be set to 1 in the interrupt cycles and the interrupt request will be sent to the ITC. The interrupt flags are reset to 0 by writing 1.

- 1 (R): Cause of interrupt has occurred
- 0 (R): No cause of interrupt has occurred (default)
- 1 (W): Flag is reset
- 0 (W): Ignored

D[15:10] Reserved

D9 INT1D: 1-Day Interrupt Flag Bit

Indicates 1-day interrupt cause occurrence status. INT1D is set to 1 at the same time the hour counter changes from 23 to 0 (in 24-hour mode) or 11pm to 12am (in 12-hour mode).

D8 INTHD: Half-Day Interrupt Flag Bit

Indicates half-day interrupt cause occurrence status. INTHD is set to 1 at the same time the hour counter changes from 11 to 12, 23 to 0 (in 24-hour mode), or 11am to 12pm, 11pm to 12am (in 12-hour mode).

D7 INT1H: 1-Hour Interrupt Flag Bit

Indicates 1-hour interrupt cause occurrence status. INT1H is set to 1 at the same time the minute counter changes from 59 to 0.

D6 INT10M: 10-Minute Interrupt Flag Bit

Indicates 10-minute interrupt cause occurrence status. INT10M is set to 1 at the same time the minute counter changes from 9 to 10, 19 to 20, 29 to 30, 39 to 40, 49 to 50, or 59 to 0.

D5 INT1M: 1-Minute Interrupt Flag Bit

Indicates 1-minute interrupt cause occurrence status. INT1M is set to 1 at the same time the second counter changes from 59 to 0.

D4 INT10S: 10-Second Interrupt Flag Bit

Indicates 10-second interrupt cause occurrence status. INT10S is set to 1 at the same time the second counter changes from 9 to 10, 19 to 20, 29 to 30, 39 to 40, 49 to 50, or 59 to 0.

D3 INT1HZ: 1 Hz Interrupt Flag Bit

Indicates 1 Hz interrupt cause occurrence status. INT1HZ is set to 1 in the divider 1 Hz signal cycles.

D2 INT4HZ: 4 Hz Interrupt Flag Bit

Indicates 4 Hz interrupt cause occurrence status. INT4HZ is set to 1 in the divider 4 Hz signal cycles.

D1 INT8HZ: 8 Hz Interrupt Flag Bit

Indicates 8 Hz interrupt cause occurrence status. INT8HZ is set to 1 in the divider 8 Hz signal cycles.

D0 INT32HZ: 32 Hz Interrupt Flag Bit

Indicates 32 Hz interrupt cause occurrence status. INT32HZ is set to 1 in the divider 32 Hz signal cycles.

RTC Minute/Second Counter Register (RTC_MS)

Register name	Address	Bit	Name	Function	Setting	Init.	R/W	Remarks
RTC	0x56c6	D15	-	reserved	_	-	-	0 when being read.
Minute/Second	(16 bits)	D14-8	RTCMIN	Minute counter	0x0 to 0x3b (binary mode)	Х	R/W	
Counter			[6:0]		0x00 to 0x59 (BCD mode)			
Register		D7	-	reserved	-	-	-	0 when being read.
(RTC_MS)		D6-0	RTCSEC	Second counter	0x0 to 0x3b (binary mode)	Х	R/W	
			[6:0]		0x00 to 0x59 (BCD mode)			

D15 Reserved

D[14:8] RTCMIN[6:0]: Minute Counter Bits

These bits are used to read and write data from/to the minute counter. (Default: undefined) The effective range of the read/setting values are as follows:

- RTCMIN[6:0] = 0x0 to 0x3b (0 to 59 minutes) in binary mode (BCDMD = 0)
- RTCMIN[6:4] = 0x0 to 0x5 (10-minute digit) and RTCMIN[3:0] = 0x0 to 0x9 (1-minute digit) in BCD mode (BCDMD = 1)

D7 Reserved

D[6:0] RTCSEC[6:0]: Second Counter Bits

These bits are used to read and write data from/to the second counter. (Default: undefined) The effective range of the read/setting values are as follows:

- RTCSEC[6:0] = 0x0 to 0x3b (0 to 59 seconds) in binary mode (BCDMD = 0)
- RTCSEC[6:4] = 0x0 to 0x5 (10-second digit) and RTCSEC[3:0] = 0x0 to 0x9 (1-second digit) in BCD mode (BCDMD = 1)
- Notes: For the counter read and write procedures, see Section 8.3.5, "Counter Read," and Section 8.3.4, "Counter Settings."
 - Do not set the counters while the RTC is running, as proper settings to the counters cannot be guaranteed.

- Counter values to be set must be within the effective range according to binary/BCD mode. The counter will be undefined if a value out of the range is written.
- Depending on the value set, an interrupt may occur immediately after starting the RTC.

RTC Hour Counter Register (RTC_H)

Register name	Address	Bit	Name	Function	Setting			Init.	R/W	Remarks	
RTC	0x56c8	D15–8	-	reserved	_		-	-	0 when being read.		
Hour Counter	(16 bits)	D7	АМРМ	AM/PM	1	PM	0	AM	Х	R/W	
Register		D6	-	reserved		-	-		-	-	0 when being read.
(RTC_H)		D5–0	RTCHOUR	Hour counter		0x0 to 0x17 (bin	ary mode)	Х	R/W	
			[5:0]			0x00 to 0x23	(B	CD mode)			

D[15:8] Reserved

D7 AMPM: AM/PM Bit

Indicates A.M. or P.M. when 12-hour mode is selected. (Default: undefined) 1 (R/W): P.M. 0 (R/W): A.M.

This bit is only effective when RTC24H/RTC_CTL register is set to 1 (12-hour mode). When 24-hour mode is selected, this bit is fixed to 0. In this case, do not write 1 to AMPM.

Note: The AMPM bit will be fixed at 0 immediately after RTC24H/RTC_CTL register is changed from 12-hour mode to 24-hour mode.

D6 Reserved

D[5:0] RTCHOUR[5:0]: Hour Counter Bits

These bits are used to read and write data from/to the hour counter. (Default: undefined)

The effective range of the read/setting values in binary mode (BCDMD = 0) are as follows:

- RTCHOUR[5:0] = 0x0 to 0x17 (0 to 23 o'clock) in 24-hour mode
- RTCHOUR[5:0] = 0x1 to 0xc (1 to 12 o'clock) in 12-hour mode

The effective range of the read/setting values in BCD mode (BCDMD = 1) are as follows:

- RTCHOUR[5:4] = 0x0 to 0x2 (10-hour digit) and RTCHOUR[3:0] = 0x0 to 0x9 (1-hour digit) in 24-hour mode
- RTCHOUR[5:4] = 0x0 to 0x1 (10-hour digit) and RTCHOUR[3:0] = 0x0 to 0x9 (1-hour digit) in 12-hour mode
- **Notes:** For the counter read and write procedures, see Section 8.3.5, "Counter Read," and Section 8.3.4, "Counter Settings."
 - Do not set the counters while the RTC is running, as proper settings to the counters cannot be guaranteed.
 - Counter values to be set must be within the effective range according to binary/BCD mode. The counter will be undefined if a value out of the range is written.
 - Depending on the value set, an interrupt may occur immediately after starting the RTC.

9 I/O Ports (P)

9.1 P Module Overview

The P ports are general-purpose digital inputs/outputs that allow software to control the input/output direction and pull-up resistor. These ports are shared with internal peripheral module inputs/outputs, and the pin functions can be switched by setting the registers. A number of port groups can generate interrupts caused by a transition of the input signal.

The following shows the features of the P module:

- Maximum 12 I/O ports (P0[7:0], P10, P1[7:2], P2[3:0]) and 1 output port (P11) are available. *The number of ports for general-purpose use depends on the peripheral functions used.
- Each port has a pull-up resistor that can be enabled with software.
- Input interface level: CMOS Schmitt
- The P0 ports can generate input interrupts at the signal edge selected with software.
- The P0 ports include a chattering filter.
- Can generate an initial reset by entering low level simultaneously to the P0 ports selected with software.
- All port provide a port function select bit to configure the pin function (for GPIO or peripheral functions).

Figure 9.1.1 shows the I/O port configuration.

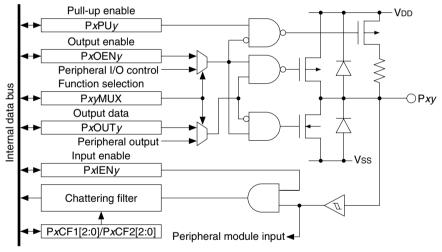


Figure 9.1.1 I/O Port Configuration

- **Notes:** The PCLK clock must be supplied from the clock generator to access the I/O port. The PCLK clock is also needed to operate the P0 chattering filter.
 - The "xy" in the register and bit names refers to the port number (Pxy, x = 0 to 2, y = 0 to 7). Example: PxINy/Px_IN register
 P00: P0IN0/P0_IN register

P13: P1IN3/P1_IN register

9.2 Input/Output Pin Function Selection (Port MUX)

The I/O port pins share peripheral module input/output pins. Each pin can be configured for use as an I/O port or for a peripheral module function via the corresponding port function-select bits. Pins not used for peripheral modules can be used as general-purpose I/O ports.

Pin function 1	Pin function 2	Pin function 3	Pin function 4	
			PxyMUX[1:0] = 0x3	Port function select bits
PxyMUX[1:0] = 0x0		PxyWUX[1:0] = 0x2	PXyWUX[1:0] = 0x3	
P00	SIN0 (UART)	-	-	P00MUX[1:0]/P00_03PMUX register
P01	SOUT0 (UART)	-	-	P01MUX[1:0]/P00_03PMUX register
P02	SCLK0 (UART)	FOUTA (CLG)	-	P02MUX[1:0]/P00_03PMUX register
P03	EXCL0 (T16A2)	-	LFRO (LCD)	P03MUX[1:0]/P00_03PMUX register
P04	TOUTA0/CAPA0 (T16A2)	-	-	P04MUX[1:0]/P04_07PMUX register
P05	TOUTB0/CAPB0 (T16A2)	#SPISS0 (SPI)	-	P05MUX[1:0]/P04_07PMUX register
P06	BZ (SND)	SDI0 (SPI)	-	P06MUX[1:0]/P04_07PMUX register
P07	#BZ (SND)	SDO0 (SPI)	-	P07MUX[1:0]/P04_07PMUX register
P10	FOUTB (CLG)	SPICLK0 (SPI)	-	P10MUX[1:0]/P10_13PMUX register
DCLK (DBG)	P11	BZ (SND)	-	P11MUX[1:0]/P10_13PMUX register
DSIO (DBG)	P12	#BZ (SND)	-	P12MUX[1:0]/P10_13PMUX register
DST2 (DBG)	P13	-	-	P13MUX[1:0]/P10_13PMUX register
P14	RFIN0 (RFC)	-	-	P14MUX[1:0]/P14_17PMUX register
P15	REF0 (RFC)	-	-	P15MUX[1:0]/P14_17PMUX register
P16	SENA0 (RFC)	-	-	P16MUX[1:0]/P14_17PMUX register
P17	SENB0 (RFC)	-	-	P17MUX[1:0]/P14_17PMUX register
P20	-	-	-	-
P21	-	-	-	_
P22	-	-	-	-
P23	RFCLKO (RFC)	-	-	P23MUX[1:0]/P23PMUX register

Table 9.2.1 Input/Output Pin Function Selection

At initial reset, each I/O port pin (Pxy) is initialized for the default function ("Pin function 1" in Table 9.2.1).

For information on functions other than the I/O ports, see the descriptions of the peripheral modules indicated in parentheses. The sections below describe port functions with the pins set as general-purpose I/O ports.

9.3 Data Input/Output

Data input/output control

The I/O ports allow selection of the data input/output direction for each bit using PxOENy/Px_OEN register and PxIENy/Px_IEN register. PxOENy enables and disables data output, while PxIENy enables and disables data input.

P <i>x</i> OEN <i>y</i>	P <i>x</i> IEN <i>y</i>	P <i>x</i> PU <i>y</i>	Port status
output control	input control	pull-up control	T OT Status
0	1	0	Functions as an input port (pull-up off).
			The port pin (external input signal) value can be read out from
			PxINy (input data). Output is disabled.
0	1	1	Functions as an input port (pull-up on). (Default)
			The port pin (external input signal) value can be read out from
			PxINy (input data). Output is disabled.
1	0	1 or 0	Functions as an output port (pull-up off).
			Input is disabled. The value read from PxINy (input data) is 0.
1	1	1 or 0	Functions as an output port (pull-up off).
			Input is also enabled. The port pin value (output value) can be
			read out from PxINy (input data).
0	0	0	The pin is placed into high-impedance status (pull-up off).
			Output and input are both disabled. The value read from $PxINy$
			(input data) is 0.
0	0 0 1 The pin is placed		The pin is placed into high-impedance status (pull-up on).
			Output and input are both disabled. The value read from $PxINy$
			(input data) is 0.

Table 9.3.1 Data Input/Output Status

The input/output direction of ports with a peripheral module function selected is controlled by the peripheral module. PxOENy and PxIENy settings are ignored.

Data input

To input the port pin status and read out the value, enable input by setting PxIENy to 1 (default).

To input an external signal, PxOENy should also be set to 0 (default). The I/O port is placed into high-impedance status and it functions as an input port (input mode). The port is pulled up if pull-up is enabled by $PxPUy/Px_PU$ register.

In input mode, the input pin status can be read out directly from $PxINy/Px_IN$ register. The value read will be 1 when the input pin is at High (VDD) level and 0 when it is at Low (Vss) level.

The port pin status is always input when PxIENy is 1, even if output is enabled (PxOENy = 1) (output mode). In this case, the value actually output from the port can be read out from PxINy.

When PxIENy is set to 0, input is disabled, and 0 will be read out from PxINy.

Data output

To output data from the port pin, enable output by setting PxOENy to 1 (set to output mode). The I/O port then functions as an output port, and the value set in the $PxOUTy/Px_OUT$ register is output from the port pin. The port pin outputs High (VDD) level when PxOUTy is set to 1 and Low (Vss) level when set to 0. Note that the port will not be pulled up in output mode, even if pull-up is enabled by PxPUy.

Writing to PxOUTy is possible without affecting pin status, even in input mode.

9.4 Pull-up Control

The I/O port contains a pull-up resistor that can be enabled or disabled individually for each bit using $PxPUy/Px_PU$ register. Setting PxPUy to 1 (default) enables the pull-up resistor and pulls up the port pin in input mode. It will not be pulled up if set to 0. The PxPUy setting is ignored and not pulled up in output mode, regardless of how the PxIENy is set.

I/O ports that are not used should be set with pull-up enabled.

The PxPUy setting is also ignored if a pin function other than Pxy I/O port is selected. In this case, the pull-up resistor is automatically enabled/disabled according to the pin function selected.

A delay will occur in the waveform rising edge depending on time constants such as pull-up resistance and pin load capacitance if the port pin is switched from Low level to High level through the internal pull-up resistor. An appropriate wait time must be set for the I/O port loading. The wait time set should be a value not less than that calculated from the following equation.

Wait time = $R_{IN} \times (C_{IN} + \text{load capacitance on board}) \times 1.6 [s]$

RIN: pull-up resistance maximum value, CIN: pin capacitance maximum value

9.5 Port Input Interrupt

The P0 ports include input interrupt functions.

Select which of the 8 ports are to be used for interrupts based on requirements. You can also select whether interrupts are generated for either the rising edge or falling edge of the input signals.

Figure 9.5.1 shows the port input interrupt circuit configuration.

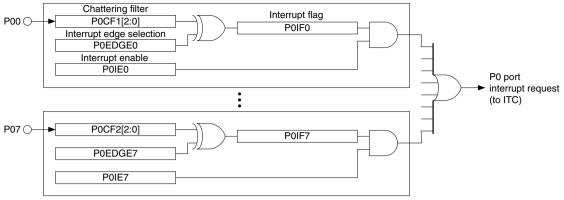


Figure 9.5.1 Port Input Interrupt Circuit Configuration

Interrupt port selection

Select the port generating an interrupt using P0IEy/P0_IMSK register. Setting P0IEy to 1 enables interrupt generation by the corresponding port. Setting to 0 (default) disables interrupt generation.

Interrupt edge selection

Port input interrupts can be generated at either the rising edge or falling edge of the input signal. Select the edge used to generate interrupts using P0EDGEy/P0_EDGE register.

Setting POEDGEy to 1 generates port input interrupts at the input signal falling edge. Setting it to 0 (default) generates interrupts at the rising edge.

Interrupt flags

The ITC is able to accept one interrupt request from the P0 ports, and the P port module contains interrupt flags P0IFy/P0_IFLG register corresponding to the individual eight ports to enable individual control of the eight P0[7:0] port interrupts. P0IFy is set to 1 at the specified edge (rising or falling edge) of the input signal. If the corresponding P0IEy has been set to 1, an interrupt request signal is also output to the ITC at the same time. An interrupt is generated if the ITC and S1C17 Core interrupt conditions are satisfied. P0IFy is reset by writing 1.

For specific information on interrupt processing, see the "Interrupt Controller (ITC)" chapter.

- **Notes:** The P port module interrupt flag P0IFy must be reset in the interrupt handler routine after a port interrupt has occurred to prevent recurring interrupts.
 - To prevent generating unnecessary interrupts, reset the relevant P0IFy before enabling interrupts for the required port using P0IEy.

9.6 Chattering Filter Function

The P0–P2 ports include a chattering filter circuit for key entry that can be disabled or enabled with a check time specified individually for the four Px[3:0] and Px[7:4] ports using $PxCF1[2:0]/Px_CHAT$ register and $PxCF2[2:0]/Px_CHAT$ register, respectively.

Table 9.0.1 Chattering Filter Function Octaings									
PxCF1[2:0]/PxCF2[2:0]	Check time *								
0x7	16384/fpclk (8 ms)								
0x6	8192/fpclk (4 ms)								
0x5	4096/fpclk (2 ms)								
0x4	2048/fpclk (1 ms)								
0x3	1024/fpclk (512 μs)								
0x2	512/fpclk (256 µs)								
0x1	256/fpclκ (128 μs)								
0x0	No check time (off)								

Table 9.6.1	Chattering	Filter Function	Settings
-------------	------------	-----------------	----------

⁽Default: 0x0, * when PCLK = 2 MHz)

- **Notes:** An unexpected interrupt may occur after SLEEP status is canceled if the slp instruction is executed while the chattering filter function of the P0 port is enabled. The chattering filter must be disabled before placing the CPU into SLEEP status.
 - The chattering filter check time refers to the maximum pulse width that can be filtered. Generating a P0 port input interrupt requires an input time of twice the check time.
 - The P0 port interrupt must be disabled before setting the P0_CHAT register. Setting the register while the interrupt is enabled may generate inadvertent P0 port interrupt. Also the chattering filter circuit requires a maximum of twice the check time for stabilizing the operation status. Before enabling the interrupt, make sure that the stabilization time has elapsed.

9.7 P0 Port Key-Entry Reset

Entering low level simultaneously to the ports (P00–P03) selected with software triggers an initial reset. The ports used for the reset function can be selected with the P0KRST[1:0]/P0_KRST register.

5	, ,
P0KRST[1:0]	Port used for resetting
0x3	P00, P01, P02, P03
0x2	P00, P01, P02
0x1	P00, P01
0x0	Not used
	(Default: 0x0)

Table 9.7.1 Configuration of P0 Port Key-Entry Reset

For example, if P0KRST[1:0] is set to 0x3, an initial reset will take place when the four ports P00–P03 are set to low level at the same time.

- **Notes:** The P0 port key-entry reset function cannot be used for power-on reset as it must be enabled with software.
 - When using the P0 port key-entry reset function, make sure that the designated input ports will not be simultaneously set to low level while the application program is running.

9.8 Control Register Details

		Table 9.8.1 List of I/O Port	, č			
Address		Register name	Function			
0x5200	P0_IN	P0 Port Input Data Register	P0 port input data			
0x5201	P0_OUT	P0 Port Output Data Register	P0 port output data			
0x5202	P0_OEN	P0 Port Output Enable Register	Enables P0 port outputs.			
0x5203	P0_PU	P0 Port Pull-up Control Register	Controls the P0 port pull-up resistor.			
0x5205	P0_IMSK	P0 Port Interrupt Mask Register	Enables P0 port interrupts.			
0x5206	P0_EDGE	P0_EDGE P0 Port Interrupt Edge Select Register Selects the signal edge for generating P0 port interrupt				
0x5207	P0_IFLG	P0 Port Interrupt Flag Register	Indicates/resets the P0 port interrupt occurrence status.			
0x5208	P0_CHAT	P0 Port Chattering Filter Control Register	Controls the P0 port chattering filter.			
0x5209	P0_KRST	P0 Port Key-Entry Reset Configuration Register	Configures the P0 port key-entry reset function.			
0x520a	P0_IEN	P0 Port Input Enable Register	Enables P0 port inputs.			
0x5210	P1_IN	P1 Port Input Data Register	P1 port input data			
0x5211	P1_OUT	P1 Port Output Data Register	P1 port output data			
0x5212	P1_OEN	P1 Port Output Enable Register	Enables P1 port outputs.			
0x5213	P1_PU	P1 Port Pull-up Control Register	Controls the P1 port pull-up resistor.			
0x5218	P1_CHAT	P1 Port Chattering Filter Control Register	Controls the P1 port chattering filter.			
0x521a	P1_IEN	P1 Port Input Enable Register	Enables P1 port inputs.			
0x5220	P2_IN	P2 Port Input Data Register	P2 port input data			
0x5221	P2_OUT	P2 Port Output Data Register	P2 port output data			
0x5222	P2_OEN	P2 Port Output Enable Register	Enables P2 port outputs.			
0x5223	P2_PU	P2 Port Pull-up Control Register	Controls the P2 port pull-up resistor.			
0x5228	P2_CHAT	P2 Port Chattering Filter Control Register	Controls the P2 port chattering filter.			
0x522a	P2_IEN	P2 Port Input Enable Register	Enables P2 port inputs.			
0x52a0	P00_03PMUX	P0[3:0] Port Function Select Register	Selects the P0[3:0] port functions.			
0x52a1	P04_07PMUX	P0[7:4] Port Function Select Register	Selects the P0[7:4] port functions.			
0x52a2	P10_13PMUX	P1[3:0] Port Function Select Register	Selects the P1[3:0] port functions.			

Table 9.8.1 List of I/O Port Control Registers

S1C17656 TECHNICAL MANUAL (Rev. 1.0) Seiko Epson Corporation

Address		Register name	Function					
0x52a3	P14_17PMUX	P1[7:4] Port Function Select Register	Selects the P1[7:4] port functions.					
0x52a4	P23PMUX	P23 Port Function Select Register	Selects the P23 port function.					

The I/O port registers are described in detail below.

Note: When data is written to the registers, the "Reserved" bits must always be written as 0 and not 1.

Px Port Input Data Registers (Px_IN)

Register name	Address	Bit	Name	Function	Setting	Init.	R/W	Remarks
P <i>x</i> Port Input Data Register (P <i>x</i> _IN)	0x5200 0x5210 0x5220 (8 bits)	D7–0	P <i>x</i> IN[7:0]	P <i>x</i> [7:0] port input data	1 1 (H) 0 0 (L)	×	R	

Note: The P1IN1 and P2IN[7:4] bits are reserved and always read as 0.

D[7:0] PxIN[7:0]: Px[7:0] Port Input Data Bits

The port pin status can be read out. (Default: external input status)

- 1 (R): High level
- 0 (R): Low level

PxINy corresponds directly to the Pxy pin. The pin voltage level can be read out when input is enabled (PxIENy = 1) (even if output is also enabled (PxOENy = 1)). The value read out will be 1 when the pin voltage is High and 0 when Low.

The value read out is 0 when input is disabled (PxIENy = 0). Writing operations to the read-only PxINy is disabled.

Px Port Output Data Registers (Px_OUT)

Register name	Address	Bit	Name	Function	Setting			R/W	Remarks
P <i>x</i> Port Output Data Register (P <i>x</i> _OUT)	0x5201 0x5211 0x5221 (8 bits)	D7–0	P <i>x</i> OUT[7:0]	Px[7:0] port output data	1 1 (H)	0 0 (L)	0	R/W	

Note: The P2OUT[7:4] bits are reserved and always read as 0.

D[7:0] PxOUT[7:0]: Px[7:0] Port Output Data Bits

Sets the data to be output from the port pin.

1 (R/W): High level

0 (R/W): Low level (default)

PxOUTy corresponds directly to the Pxy pins. The data written will be output unchanged from the port pins when output is enabled (PxOENy = 1). The port pin will be High when the data bit is set to 1 and Low when set to 0.

Port data can also be written when output is disabled (PxOENy = 0) (the pin status is unaffected).

Px Port Output Enable Registers (Px_OEN)

Register name	Address	Bit	Name	Function		Setting			Init.	R/W	Remarks
Px Port	0x5202	D7–0	PxOEN[7:0]	Px[7:0] port output enable	1	Enable	0	Disable	0	R/W	
Output Enable	0x5212										
Register	0x5222										
(Px_OEN)	(8 bits)										

Note: The P2OEN[7:4] bits are reserved and always read as 0.

D[7:0] PxOEN[7:0]: Px[7:0] Port Output Enable Bits

- Enables or disables port outputs. 1 (R/W): Enabled
- 0 (R/W): Disabled (default)

PxOENy is the output enable bit that corresponds directly to Pxy port. Setting to 1 enables output and the data set in PxOUTy is output from the port pin. Output is disabled when PxOENy is set to 0, and the port pin is set into high-impedance status. The peripheral module determines whether output is enabled or disabled when the port is used for a peripheral module function.

Refer to Table 9.3.1 for more information on input/output status for ports, including settings other than for the PxOEN register.

Px Port Pull-up Control Registers (Px_PU)

Register name	Address	Bit	Name	Function		Setti	ng	Init.	R/W	Remarks
Px Port Pull-up Control Register (Px_PU)		D7–0	P <i>x</i> PU[7:0]	P <i>x</i> [7:0] port pull-up enable	1	Enable (Disable	1 (0xff)	R/W	
	(8 bits)									

Note: The P2PU[7:4] bits are reserved and always read as 0.

D[7:0] PxPU[7:0]: Px[7:0] Port Pull-up Enable Bits

Enables or disables the pull-up resistor included in each port.

- 1 (R/W): Enabled (default)
- 0 (R/W): Disabled

PxPUy is the pull-up control bit that corresponds directly to the Pxy port. Setting to 1 enables the pullup resistor and the port pin will be pulled up when output is disabled (PxOENy = 0). When PxPUy is set to 0, the pin will not be pulled up. When output is enabled (PxOENy = 1), the PxPUy setting is ignored, and the pin is not pulled up. I/O ports that are not used should be set with pull-up enabled. The PxPUy setting is also ignored if a pin function other than Pxy I/O port is selected. In this case, the pull-up resistor is automatically enabled/disabled according to the pin function selected.

P0 Port Interrupt Mask Register (P0_IMSK)

Register name	Address	Bit	Name	Function		Setting			Init.	R/W	Remarks
P0 Port	0x5205	D7–0	P0IE[7:0]	P0[7:0] port interrupt enable	1	Enable	0	Disable	0	R/W	
Interrupt Mask	(8 bits)										
Register											
(P0_IMSK)											

Note: This register is available for the P0 ports.

D[7:0] P0IE[7:0]: P0[7:0] Port Interrupt Enable Bits

Enables or disables each port interrupt.

1 (R/W): Interrupt enabled

0 (R/W): Interrupt disabled (default)

Setting POIEy to 1 enables the corresponding POy port input interrupt, while setting to 0 disables the interrupt. Status changes for the input pins with interrupt disabled do not affect interrupt occurrence.

P0 Port Interrupt Edge Select Register (P0_EDGE)

Register name	Address	Bit	Name	Function	Setting			Init.	R/W	Remarks
P0 Port	0x5206	D7–0	P0EDGE[7:0]	P0[7:0] port interrupt edge select	1	Falling edge 0 Rising ed	ge	0	R/W	
Interrupt Edge	(8 bits)						-			
Select Register										
(P0_EDGE)										

Note: This register is available for the P0 ports.

D[7:0] P0EDGE[7:0]: P0[7:0] Port Interrupt Edge Select Bits

Selects the input signal edge for generating each port interrupt.

1 (R/W): Falling edge

0 (R/W): Rising edge (default)

Port interrupts are generated at the input signal falling edge when P0EDGEy is set to 1 and at the rising edge when set to 0.

P0 Port Interrupt Flag Register (P0_IFLG)

Register name	Address	Bit	Name	Function	Setting		Init.	R/W	Remarks		
P0 Port Interrupt Flag	0x5207 (8 bits)	D7–0	P0IF[7:0]	P0[7:0] port interrupt flag		Cause of interrupt	-	Cause of interrupt not		R/W	Reset by writing 1.
Register (P0_IFLG)						occurred		occurred			

Note: This register is available for the P0 ports.

D[7:0] P0IF[7:0]: P0[7:0] Port Interrupt Flag Bits

These are interrupt flags indicating the interrupt cause occurrence status.

- 1 (R): Interrupt cause occurred
- 0 (R): No interrupt cause occurred (default)
- 1 (W): Reset flag
- 0 (W): Ignored

POIFy is the interrupt flag corresponding to the individual eight P0 ports. It is set to 1 at the specified edge (rising or falling edge) of the input signal. When the corresponding POIEy/P0_IMSK register has been set to 1, a port interrupt request signal is also output to the ITC at the same time. An interrupt is generated if the ITC and S1C17 Core interrupt conditions are satisfied. POIFy is reset by writing 1.

- **Notes:** The P port module interrupt flag P0IF*y* must be reset in the interrupt handler routine after a port interrupt has occurred to prevent recurring interrupts.
 - To prevent generating unnecessary interrupts, reset the relevant P0IFy before enabling interrupts for the required port using P0IEy/P0_IMSK register.

Register name	Address	Bit	Name	Function	Set	ting	Init.	R/W	Remarks
Px Port	0x5208	D7	-	reserved	-	_	-	-	0 when being read.
Chattering	0x5218	D6–4	PxCF2[2:0]	Px[7:4] chattering filter time select	PxCF2[2:0]	Filter time	0x0	R/W	
Filter Control	0x5228				0x7	16384/fpclk	1		
Register	(8 bits)				0x6	8192/fpclk			
(P <i>x</i> _CHAT)					0x5	4096/fpclk			
					0x4	2048/fpclk			
					0x3	1024/fpclk			
					0x2	512/fpclk			
					0x1	256/fpclk			
					0x0	None			
		D3	-	reserved	-	-	-	-	0 when being read.
		D2-0	PxCF1[2:0]	Px[3:0] chattering filter time select	PxCF1[2:0]	Filter time	0x0	R/W	
					0x7	16384/fpclk	1		
					0x6	8192/fpclk			
					0x5	4096/fpclk			
					0x4	2048/fpclk			
					0x3	1024/fpclk			
					0x2	512/fpclk			
					0x1	256/fpclk			
					0x0	None			

Px Port Chattering Filter Control Register (Px_CHAT)

Note: The P2CF2[2:0] bits are reserved and always read as 0.

D7 Reserved

D[6:4] PxCF2[2:0]: Px[7:4] Chattering Filter Time Select Bits

Configures the chattering filter circuit for the Px[7:4] ports.

D3 Reserved

D[2:0] PxCF1[2:0]: Px[3:0] Chattering Filter Time Select Bits

Configures the chattering filter circuit for the Px[3:0] ports.

The P0–P2 ports include a chattering filter circuit for key entry that can be disabled or enabled with a check time specified individually for the four Px[3:0] and Px[7:4] ports using PxCF1[2:0] and PxCF2[2:0], respectively.

PxCF1[2:0]/PxCF2[2:0]	Check time *
0x7	16384/fpclk (8 ms)
0x6	8192/fpclк (4 ms)
0x5	4096/fpclk (2 ms)
0x4	2048/fpclk (1 ms)
0x3	1024/fpclk (512 µs)
0x2	512/fpclk (256 µs)
0x1	256/fpclk (128 µs)
0x0	No check time (off)

Table 9.8.2 Chattering Filter Function Settings

- **Notes:** An unexpected interrupt may occur after SLEEP status is canceled if the slp instruction is executed while the chattering filter function of the P0 port is enabled. The chattering filter must be disabled before placing the CPU into SLEEP status.
 - The chattering filter check time refers to the maximum pulse width that can be filtered. Generating a P0 port input interrupt requires an input time of twice the check time.
 - The P0 port interrupt must be disabled before setting the P0_CHAT register. Setting the register while the interrupt is enabled may generate inadvertent P0 interrupt. Also the chattering filter circuit requires a maximum of twice the check time for stabilizing the operation status. Before enabling the interrupt, make sure that the stabilization time has elapsed.

P0 Port Key-Entry Reset Configuration Register (P0_KRST)

	-	-		-	•				
Register name	Address	Bit	Name	Function	Setting		Init.	R/W	Remarks
P0 Port Key-	0x5209	D7–2	-	reserved	-		-	-	0 when being read.
Entry Reset	(8 bits)	D1–0	P0KRST[1:0]	P0 port key-entry reset	P0KRST[1:0]	Configuration	0x0	R/W	
Configuration				configuration	0x3	P0[3:0]			
Register					0x2	P0[2:0]			
(P0_KRST)					0x1	P0[1:0]			
					0x0	Disable			

D[7:2] Reserved

D[1:0] P0KRST[1:0]: P0 Port Key-Entry Reset Configuration Bits

Selects the port combination used for P0 port key-entry reset.

······································								
P0KRST[1:0]	Ports used for resetting							
0x3	P00, P01, P02, P03							
0x2	P00, P01, P02							
0x1	P00, P01							
0x0	Not used							
	(Default: 0x0)							

Table 0.8.3	P0 Port Key-Entry	Recot Sottings
14018 9.0.3	FU FUIL Rey-EIIIIY	nesel Sellings

The key-entry reset function performs an initial reset by inputting Low level simultaneously to the ports selected here. For example, if P0KRST[1:0] is set to 0x3, an initial reset is performed when the four ports P00 to P03 are simultaneously set to Low level.

Set P0KRST[1:0] to 0x0 when this reset function is not used.

- **Notes:** The P0 port key-entry reset function is disabled at initial reset and cannot be used for power-on reset.
 - When using the P0 port key-entry reset function, make sure that the designated input ports will not be simultaneously set to low level while the application program is running.

⁽Default: 0x0, * when PCLK = 2 MHz)

Px Port Input Enable Registers (Px_IEN)

Register name	Address	Bit	Name	Function	Setting		Init.	R/W	Remarks
Px Port Input	0x520a	D7–0	PxIEN[7:0]	Px[7:0] port input enable	1 Enable	0 Disable	1	R/W	
Enable Register	0x521a						(0xff)		
(P <i>x</i> _IEN)	0x522a								
	(8 bits)								

Note: The P1IEN1 and P2IEN[7:4] bits are reserved and always read as 0.

D[7:0] PxIEN[7:0]: Px[7:0] Port Input Enable Bits

Enables or disables port inputs.

1 (R/W): Enable (default)

0 (R/W): disable

PxIENy is the input enable bit that corresponds directly to the Pxy port. Setting to 1 enables input and the corresponding port pin input or output signal level can be read out from the Px_IN register. Setting to 0 disables input.

Refer to Table 9.3.1 for more information on port input/output status, including settings other than for the Px_IEN register.

P0[3:0] Port Function Select Register (P00_03PMUX)

Register name	Address	Bit	Name	Function	Set	ting	Init.	R/W	Remarks
P0[3:0] Port	0x52a0	D7–6	P03MUX[1:0]	P03 port function select	P03MUX[1:0]	Function	0x0	R/W	
Function Select	(8 bits)				0x3	LFRO			
Register					0x2	reserved			
(P00_03PMUX)					0x1	EXCL0			
					0x0	P03			
		D5–4	P02MUX[1:0]	P02 port function select	P02MUX[1:0]	Function	0x0	R/W	
					0x3	reserved			
					0x2	FOUTA			
					0x1	SCLK0			
					0x0	P02			
		D3–2	P01MUX[1:0]	P01 port function select	P01MUX[1:0]	Function	0x0	R/W	
					0x3	reserved			
					0x2	reserved			
					0x1	SOUT0			
					0x0	P01			
		D1–0	P00MUX[1:0]	P00 port function select	P00MUX[1:0]	Function	0x0	R/W	
					0x3	reserved			
					0x2	reserved			
					0x1	SIN0			
					0x0	P00			

The P00 to P03 port pins are shared with the peripheral module pins. This register is used to select how the pins are used.

D[7:6] P03MUX[1:0]: P03 Port Function Select Bits

0x3 (R/W): LFRO (LCD) 0x2 (R/W): Reserved 0x1 (R/W): EXCL0 (T16A2 Ch.0) 0x0 (R/W): P03 port (default)

D[5:4] P02MUX[1:0]: P02 Port Function Select Bits 0x3 (R/W): Reserved 0x2 (R/W): FOUTA (CLG) 0x1 (R/W): SCLK0 (UART) 0x0 (R/W): P02 port (default)

D[3:2] P01MUX[1:0]: P01 Port Function Select Bits 0x3 (R/W): Reserved 0x2 (R/W): Reserved 0x1 (R/W): SOUT0 (UART) 0x0 (R/W): P01 port (default)

Seiko Epson Corporation

D[1:0] P00MUX[1:0]: P00 Port Function Select Bits

0x3 (R/W): Reserved 0x2 (R/W): Reserved 0x1 (R/W): SIN0 (UART) 0x0 (R/W): P00 port (default)

P0[7:4] Port Function Select Register (P04_07PMUX)

Register name	Address	Bit	Name	Function	Set	ting	Init.	R/W	Remarks
P0[7:4] Port	0x52a1	D7–6	P07MUX[1:0]	P07 port function select	P07MUX[1:0]	Function	0x0	R/W	
Function Select	(8 bits)				0x3	reserved			
Register					0x2	SDO0			
(P04_07PMUX)					0x1	#BZ			
					0x0	P07			
		D5–4	P06MUX[1:0]	P06 port function select	P06MUX[1:0]	Function	0x0	R/W	
					0x3	reserved			
					0x2	SDI0			
					0x1	BZ			
					0x0	P06			
		D3–2	P05MUX[1:0]	P05 port function select	P05MUX[1:0]	Function	0x0	R/W	
					0x3	reserved			
					0x2	#SPISS0			
					0x1	TOUTB0/CAPB0			
					0x0	P05			
		D1–0	P04MUX[1:0]	P04 port function select	P04MUX[1:0]	Function	0x0	R/W	
					0x3	reserved			
			[0x2	reserved			
					0x1	TOUTA0/CAPA0			
					0x0	P04			

The P04 to P07 port pins are shared with the peripheral module pins. This register is used to select how the pins are used.

D[7:6] P07MUX[1:0]: P07 Port Function Select Bits

0x3 (R/W): Reserved 0x2 (R/W): SDO0 (SPI Ch.0) 0x1 (R/W): #BZ (SND) 0x0 (R/W): P07 port (default)

D[5:4] P06MUX[1:0]: P06 Port Function Select Bits

0x3 (R/W): Reserved 0x2 (R/W): SDI0 (SPI Ch.0) 0x1 (R/W): BZ (SND) 0x0 (R/W): P06 port (default)

D[3:2] P05MUX[1:0]: P05 Port Function Select Bits

0x3 (R/W): Reserved 0x2 (R/W): #SPISS0 (SPI Ch.0) 0x1 (R/W): TOUTB0 (T16A2 Ch.0 comparator mode) or CAPB0 (T16A2 Ch.0 capture mode) 0x0 (R/W): P05 port (default)

D[1:0] P04MUX[1:0]: P04 Port Function Select Bits

0x3 (R/W): Reserved

- 0x2 (R/W): Reserved
- 0x1 (R/W): TOUTA0 (T16A2 Ch.0 comparator mode) or CAPA0 (T16A2 Ch.0 capture mode)
- 0x0 (R/W): P04 port (default)

P1[3:0] Port Function Select Register (P10_13PMUX)

				<u> </u>		,			
Register name	Address	Bit	Name	Function	Set	ing	Init.	R/W	Remarks
P1[3:0] Port	0x52a2	D7–6	P13MUX[1:0]	P13 port function select	P13MUX[1:0]	Function	0x0	R/W	
Function Select	(8 bits)				0x3	reserved			
Register					0x2	reserved			
(P10_13PMUX)					0x1	P13			
					0x0	DST2			
		D5–4	P12MUX[1:0]	P12 port function select	P12MUX[1:0]	Function	0x0	R/W	
					0x3	reserved			
					0x2	#BZ			
					0x1	P12			
					0x0	DSIO			
		D3–2	P11MUX[1:0]	P11 port function select	P11MUX[1:0]	Function	0x0	R/W	
					0x3	reserved			
					0x2	BZ			
					0x1	P11			
					0x0	DCLK			
		D1–0	P10MUX[1:0]	P10 port function select	P10MUX[1:0]	Function	0x0	R/W	
					0x3	reserved			
					0x2	SPICLK0			
					0x1	FOUTB			
					0x0	P10			

The P10 to P13 port pins are shared with the peripheral module pins. This register is used to select how the pins are used.

D[7:6] P13MUX[1:0]: P13 Port Function Select Bits

0x3 (R/W): Reserved 0x2 (R/W): Reserved 0x1 (R/W): P13 port 0x0 (R/W): DST2 (DBG) (default)

D[5:4] P12MUX[1:0]: P12 Port Function Select Bits 0x3 (R/W): Reserved 0x2 (R/W): #BZ (SND) 0x1 (R/W): P12 port 0x0 (R/W): DSIO (DBG) (default)

D[3:2] P11MUX[1:0]: P11 Port Function Select Bits 0x3 (R/W): Reserved 0x2 (R/W): BZ (SND) 0x1 (R/W): P11 port 0x0 (R/W): DCLK (DBG) (default)

D[1:0] P10MUX[1:0]: P10 Port Function Select Bits 0x3 (R/W): Reserved 0x2 (R/W): SPICLK0 (SPI Ch.0) 0x1 (R/W): FOUTB (CLG) 0x0 (R/W): P10 port (default)

Register name	Address	Bit	Name	Function	Sett	ting	Init.	R/W	Remarks
P1[7:4] Port	0x52a3	D7–6	P17MUX[1:0]	P17 port function select	P17MUX[1:0]	Function	0x0	R/W	
Function Select	(8 bits)				0x3	reserved			
Register					0x2	reserved			
(P14_17PMUX)					0x1	SENB0			
					0x0	P17			
		D5–4	P16MUX[1:0]	P16 port function select	P16MUX[1:0]	Function	0x0	R/W	
					0x3	reserved			
					0x2	reserved			
					0x1	SENA0			
					0x0	P16			
	[D3–2	P15MUX[1:0]	P15 port function select	P15MUX[1:0]	Function	0x0	R/W	
					0x3	reserved			
					0x2	reserved			
					0x1	REF0			
					0x0	P15			
		D1–0	P14MUX[1:0]	P14 port function select	P14MUX[1:0]	Function	0x0	R/W	
					0x3	reserved			
					0x2	reserved			
					0x1	RFIN0			
					0x0	P14			

P1[7:4] Port Function Select Register (P14_17PMUX)

The P14 to P17 port pins are shared with the peripheral module pins. This register is used to select how the pins are used.

D[7:6] P17MUX[1:0]: P17 Port Function Select Bits

0x3 (R/W): Reserved 0x2 (R/W): Reserved 0x1 (R/W): SENB0 (RFC) 0x0 (R/W): P17 port (default)

D[5:4] P16MUX[1:0]: P16 Port Function Select Bits 0x3 (R/W): Reserved 0x2 (R/W): Reserved

0x1 (R/W): SENA0 (RFC) 0x0 (R/W): P16 port (default)

D[3:2] P15MUX[1:0]: P15 Port Function Select Bits 0x3 (R/W): Reserved

0x2 (R/W): Reserved 0x1 (R/W): REF0 (RFC) 0x0 (R/W): P15 port (default)

D[1:0] P14MUX[1:0]: P14 Port Function Select Bits

0x3 (R/W): Reserved 0x2 (R/W): Reserved 0x1 (R/W): RFIN0 (RFC) 0x0 (R/W): P14 port (default)

P23 Port Function Select Register (P23PMUX)

				V	,				
Register name	Address	Bit	Name	Function	Setting		Init.	R/W	Remarks
P23 Port	0x52a4	D7–6	P23MUX[1:0]	P23 port function select	P23MUX[1:0]	Function	0x0	R/W	
Function Select	(8 bits)			-	0x3	reserved			
Register					0x2	reserved			
(P23PMUX)					0x1	RFCLKO			
					0x0	P23			
		D5–0	-	reserved	-	-	-	-	0 when being read.

The P23 port pin is shared with the peripheral module pin. This register is used to select how the pin is used.

D[7:6] P23MUX[1:0]: P23 Port Function Select Bits

0x3 (R/W): Reserved 0x2 (R/W): Reserved 0x1 (R/W): RFCLKO (RFC) 0x0 (R/W): P23 port (default)

D[5:0] Reserved

10 8-bit Timer (T8)

10.1 T8 Module Overview

The S1C17656 includes an 8-bit timer module (T8). The features of the T8 module are listed below.

- Consists of one timer channel (T8 Ch.0).
- 8-bit presettable down counter with an 8-bit reload data register for setting the preset value
- Generates the SPI operating clock from the counter underflow signals.
- Generates underflow interrupt signals to the interrupt controller (ITC).
- Any desired time intervals and serial transfer rates can be programmed by selecting an appropriate count clock and preset value.

Figure 10.1.1 shows the T8 configuration.

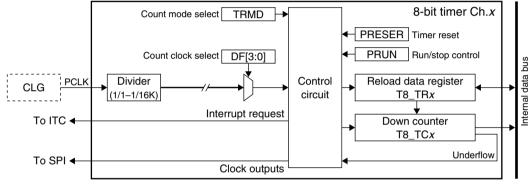


Figure 10.1.1 T8 Configuration

The T8 module consists of an 8-bit presettable down counter and an 8-bit reload data register holding the preset value. The timer counts down from the initial value set in the reload data register and outputs an underflow signal when the counter underflows. The underflow signal is used to generate an interrupt and an internal serial interface clock. The underflow cycle can be programmed by selecting the count clock and reload data, enabling the application program to obtain time intervals and serial transfer rates as required.

Note: The letter '*x*' in register names refers to a channel number (0). Example: T8_CTL*x* register

Ch.0: T8_CTL0 register

10.2 Count Clock

The count clock is generated by dividing the PCLK clock into 1/1 to 1/16K. The division ratio can be selected from the 15 types shown below using DF[3:0]/T8_CLKx register.

DF[3:0]	Division ratio	DF[3:0]	Division ratio
Oxf	Reserved	0x7	1/128
0xe	1/16384	0x6	1/64
0xd	1/8192	0x5	1/32
Охс	1/4096	0x4	1/16
0xb	1/2048	0x3	1/8
0xa	1/1024	0x2	1/4
0x9	1/512	0x1	1/2
0x8	1/256	0x0	1/1

Table 10.2.1 PCLK Division Ratio Selection

(Default: 0x0)

- **Notes:** The clock generator (CLG) must be configured to supply PCLK to the peripheral modules before running the timer.
 - Make sure the counter is halted before setting the count clock.

For detailed information on the CLG control, see the "Clock Generator (CLG)" chapter.

10.3 Count Mode

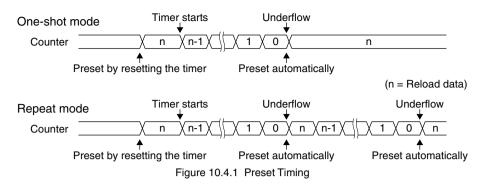
The T8 module features two count modes: repeat mode and one-shot mode. These modes are selected using TRMD/T8_CTLx register.

Repeat mode (TRMD = 0, default)

Setting TRMD to 0 sets T8 to repeat mode.

In this mode, once the count starts, the timer continues running until stopped by the application program. When the counter underflows, the timer presets the reload data register value into the counter and continues the count. Thus, the timer periodically outputs an underflow pulse. T8 should be set to this mode to generate periodic interrupts at desired intervals or to generate a serial transfer clock.

One-shot mode (TRMD = 1)


Setting TRMD to 1 sets T8 to one-shot mode.

In this mode, the timer stops automatically as soon as the counter underflows. This means only one interrupt can be generated after the timer starts. Note that the timer presets the reload data register value to the counter, then stops after an underflow has occurred. T8 should be set to this mode to set a specific wait time.

10.4 Reload Data Register and Underflow Cycle

The reload data register $T8_TRx$ is used to set the initial value for the down counter.

The initial counter value set in the reload data register is preset to the down counter if the timer is reset or the counter underflows. If the timer is started after resetting, it counts down from the reload value (initial value). This means that the reload value and the input clock frequency determine the time elapsed from the point at which the timer starts until the underflow occurs (or between underflows). The time determined is used to obtain the specified wait time, the intervals between periodic interrupts, and the programmable serial interface transfer clock.

The underflow cycle can be calculated as follows:

 $\begin{array}{ll} TR + 1 \\ Underflow interval = ----- [s] \\ ct_clk \\ ct_clk$

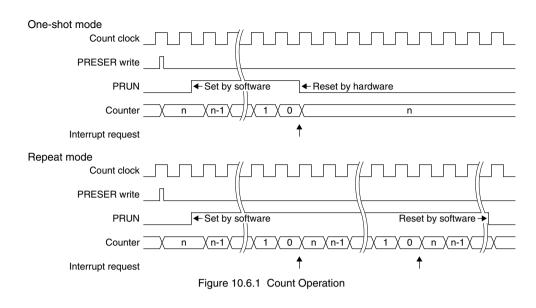
10.5 Timer Reset

The timer is reset by writing 1 to PRESER/T8_CTLx register. The reload data is preset and the counter is initialized.

10.6 Timer RUN/STOP Control

Make the following settings before starting the timer.

- (1) Select the count clock. See Section 10.2.
- (2) Set the count mode (one-shot or repeat). See Section 10.3.
- (3) Calculate the initial counter value and set it to the reload data register. See Section 10.4.
- (4) Reset the timer to preset the counter to the initial value. See Section 10.5.
- (5) When using timer interrupts, set the interrupt level and enable interrupts for the relevant timer channel. See Section 10.8.


To start the timer, write 1 to PRUN/T8_CTLx register.

The timer starts counting down from the initial value or from the current counter value if no initial value was preset. When the counter underflows, the timer outputs an underflow pulse and presets the counter to the initial value. An interrupt request is sent simultaneously to the interrupt controller (ITC).

In one-shot mode, the timer stops counting.

In repeat mode, the timer continues counting from the reloaded initial value.

Write 0 to PRUN to stop the timer via the application program. The counter stops counting and retains the current counter value until either the timer is reset or restarted. To restart the count from the initial value, the timer should be reset before writing 1 to PRUN.

10.7 T8 Output Signals

The T8 module outputs underflow pulses when the counter underflows.

These pulses are used for timer interrupt requests.

These pulses are also used to generate the serial transfer clock for the internal serial interface.

The clock generated is sent to the SPI module.

Use the following equations to calculate the reload data register value for obtaining the desired transfer rate:

SPI clock $TR = \frac{ct_clk}{bps \times 2} - 1$

ct_clk: Count clock frequency (Hz)

TR: Reload data (0–255)

bps: Transfer rate (bits/s)

10.8 T8 Interrupts

The T8 module outputs an interrupt request to the interrupt controller (ITC) when the counter underflows.

Underflow interrupt

When the counter underflows, the interrupt flag T8IF/T8_INTx register, which is provided for the T8 module, is set to 1. At the same time, an interrupt request is sent to the ITC if T8IE/T8_INTx register has been set to 1 (interrupt enabled). An interrupt is generated if the ITC and S1C17 Core interrupt conditions are satisfied. If T8IE is set to 0 (interrupt disabled, default), no interrupt request will be sent to the ITC.

For specific information on interrupt processing, see the "Interrupt Controller (ITC)" chapter.

- **Notes:** The T8 module interrupt flag T8IF must be reset in the interrupt handler routine after a T8 interrupt has occurred to prevent recurring interrupts.
 - Reset T8IF before enabling T8 interrupts with T8IE to prevent occurrence of unwanted interrupt. T8IF is reset by writing 1.

10.9 Control Register Details

			riegiotoro
Address		Register name	Function
0x4240	T8_CLK0	T8 Ch.0 Count Clock Select Register	Selects a count clock.
0x4242	T8_TR0	T8 Ch.0 Reload Data Register	Sets reload data.
0x4244	T8_TC0	T8 Ch.0 Counter Data Register	Counter data
0x4246	T8_CTL0	T8 Ch.0 Control Register	Sets the timer mode and starts/stops the timer.
0x4248	T8_INT0	T8 Ch.0 Interrupt Control Register	Controls the interrupt.

Table 10.9.1 List of T8 Registers

The T8 registers are described in detail below.

Note: When data is written to the registers, the "Reserved" bits must always be written as 0 and not 1.

T8 Ch.x Count Clock Select Register (T8_CLKx)

Register name	Address	Bit	Name	Function	Se	etting	Init.	R/W	Remarks
T8 Ch.x Count	0x4240	D15–4	-	reserved		-	-	-	0 when being read.
Clock Select	(16 bits)	D3–0	DF[3:0]	Count clock division ratio select	DF[3:0]	Division ratio	0x0	R/W	Source clock = PCLK
Register					0xf	reserved	1		
(T8_CLK <i>x</i>)					0xe	1/16384			
					0xd	1/8192			
					0xc	1/4096			
					0xb	1/2048			
					0xa	1/1024			
					0x9	1/512			
					0x8	1/256			
					0x7	1/128			
					0x6	1/64			
					0x5	1/32			
					0x4	1/16			
					0x3	1/8			
					0x2	1/4			
					0x1	1/2			
					0x0	1/1			

D[15:4] Reserved

D[3:0] DF[3:0]: Count Clock Division Ratio Select Bits

Selects a PCLK division ratio to generate the count clock.

Table 10.9.2 PCLK Division Ratio Selection
--

DF[3:0]	Division ratio	DF[3:0]	Division ratio
Oxf	Reserved	0x7	1/128
0xe	1/16384	0x6	1/64
0xd	1/8192	0x5	1/32
0xc	1/4096	0x4	1/16
0xb	1/2048	0x3	1/8
0xa	1/1024	0x2	1/4
0x9	1/512	0x1	1/2
0x8	1/256	0x0	1/1

(Default: 0x0)

Note: Make sure the counter is halted before setting the count clock.

T8 Ch.x Reload Data Register (T8_TRx)

Register name	Address	Bit	Name	Function	Setting	Init.	R/W	Remarks
T8 Ch.x Reload	0x4242	D15–8	-	reserved	_	-	-	0 when being read.
Data Register	(16 bits)	D7–0	TR[7:0]	Reload data	0x0 to 0xff	0x0	R/W	
(T8_TR <i>x</i>)				TR7 = MSB				
				TR0 = LSB				

D[15:8] Reserved

D[7:0] TR[7:0]: Reload Data Bits

Sets the counter initial value. (Default: 0x0)

The reload data set in this register is preset to the counter when the timer is reset or the counter underflows. If the timer is started after resetting, it counts down from the reload value (initial value). This means that the reload value and the input clock frequency determine the time elapsed from the point at which the timer starts until the underflow occurs (or between underflows). The time determined is used to obtain the desired wait time, the intervals between periodic interrupts, and the programmable serial interface transfer clock.

T8 Ch.x Counter Data Register (T8_TCx)

Register name	Address	Bit	Name	Function	Setting	Init.	R/W	Remarks
T8 Ch.x	0x4244	D15-8	-	reserved	-	-	-	0 when being read.
Counter Data	(16 bits)	D7–0	TC[7:0]	Counter data	0x0 to 0xff	0xff	R	
Register				TC7 = MSB				
(T8_TC <i>x</i>)				TC0 = LSB				

D[15:8] Reserved

D[7:0] TC[7:0]: Counter Data Bits

The counter data can be read out. (Default: 0xff) This register is read-only and cannot be written to.

T8 Ch.x Control Register (T8_CTLx)

Register name	Address	Bit	Name	Function	Set	Init.	R/W	Remarks	
T8 Ch.x	0x4246	D15–5	-	reserved	-		-	-	Do not write 1.
Control Register	(16 bits)								
(T8_CTLx)		D4	TRMD	Count mode select	1 One shot	0 Repeat	0	R/W	
		D3–2	-	reserved	_		-	-	0 when being read.
		D1	PRESER	Timer reset	1 Reset	0 Ignored	0	W	1
		D0	PRUN	Timer run/stop control	1 Run	0 Stop	0	R/W	

D[15:5] Reserved (Do not write 1.)

D4 TRMD: Count Mode Select Bit

Selects the count mode.

1 (R/W): One-shot mode

0 (R/W): Repeat mode (default)

Setting TRMD to 0 sets the timer to repeat mode. In this mode, once the count starts, the timer continues to run until stopped by the application program. When the counter underflows, the timer presets the counter to the reload data register value and continues the count. Thus, the timer periodically outputs an underflow pulse. Set the timer to this mode to generate periodic interrupts or to generate a serial transfer clock.

Setting TRMD to 1 sets the timer to one-shot mode. In this mode, the 8-bit timer stops automatically as soon as the counter underflows. This means only one interrupt can be generated after the timer starts. Note that the timer presets the counter to the reload data register value, then stops when an underflow occurs. Set the timer to this mode to set a specific wait time.

D[3:2] Reserved

D1 PRESER: Timer Reset Bit

Resets the timer.

- 1 (W): Reset
- 0 (W): Ignored
- 0 (R): Always 0 when read (default)

Writing 1 to this bit presets the counter to the reload data value.

D0 PRUN: Timer Run/Stop Control Bit

Controls the timer RUN/STOP. 1 (R/W): Run 0 (R/W): Stop (default)

The timer starts counting when PRUN is written as 1 and stops when written as 0. When the timer is stopped, the counter data is retained until reset or until the next RUN state.

T8 Ch.*x* Interrupt Control Register (T8_INT*x*)

Register name	Address	Bit	Name	Function		Sett	ing	Init.	R/W	Remarks
T8 Ch.x Inter-	0x4248	D15–9	-	reserved		_	-	-	-	0 when being read.
rupt Control	(16 bits)	D8	T8IE	T8 interrupt enable	1	Enable	0 Disable	0	R/W	
Register		D7–1	-	reserved		-	-	-	-	0 when being read.
(T8_INT <i>x</i>)		D0	T8IF	T8 interrupt flag	1	Cause of	0 Cause of	0	R/W	Reset by writing 1.
						interrupt	interrupt not			
						occurred	occurred			

D[15:9] Reserved

D8 T8IE: T8 Interrupt Enable Bit

Enables or disables interrupts caused by counter underflows. 1 (R/W): Interrupt enabled

0 (R/W): Interrupt disabled (default)

Setting T8IE to 1 enables T8 interrupt requests to the ITC; setting to 0 disables interrupts.

D[7:1] Reserved

D0 T8IF: T8 Interrupt Flag Bit

Indicates whether the cause of counter underflow interrupt has occurred or not.

- 1 (R): Cause of interrupt has occurred
- 0 (R): No cause of interrupt has occurred (default)
- 1 (W): Flag is reset
- 0 (W): Ignored

T8IF is the T8 module interrupt flag that is set to 1 when the counter underflows. T8IF is reset by writing 1.

11 16-bit PWM Timer (T16A2)

11.1 T16A2 Module Overview

The S1C17656 includes a 16-bit PWM timer (T16A2) module that consists of counter blocks and comparator/ capture blocks. This timer can be used as an interval timer, PWM waveform generator, external event counter and a count capture unit to measure external event periods.

The features of T16A2 are listed below.

- One channel of 16-bit up counter block
- One channel of comparator/capture block
- Allows selection of a count clock asynchronously with the CPU clock.
- Supports event counter function using an external clock.
- The comparator compares the counter value with two specified comparison values to generate interrupts and a PWM waveform.
- The capture unit captures counter values using two external trigger signals and generates interrupts.

Figure 11.1.1 shows the T16A2 configuration.

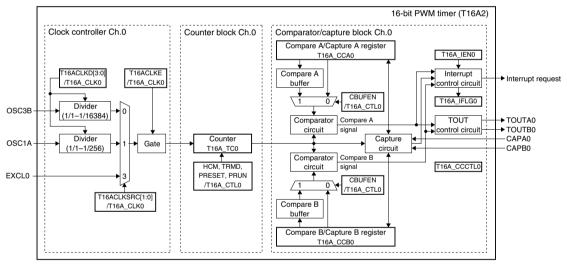


Figure 11.1.1 T16A2 Configuration

Clock controller

T16A2 includes a clock controller that generates the count clock for the counter. The clock source and division ratio can be selected with software.

Counter block

The counter block includes a 16-bit up-counter that operates with an OSC3B or OSC1A division clock, or the external count clock input from outside the IC. The T16A2 module allows software to run and stop the counter, and to reset the counter value (cleared to 0) as well as selection of the count clock. The counter can also be reset by the compare B signal output from the comparator/capture block.

11 16-BIT PWM TIMER (T16A2)

Comparator/capture block

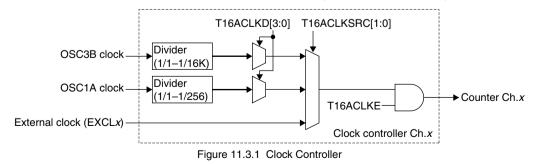
The comparator/capture block provides a counter comparison function (comparator mode) and a count capture function (capture mode). When comparator mode is selected via software, the comparator/capture block can be used as a PWM waveform or clock generator. When capture mode is selected, this block can be used as a count capture unit for measuring external event periods/cycles. The comparator circuit generates the compare A and B signals that represent matching between compare A/B register values (set via software) and the counter value, and outputs the signals to the TOUT control circuit and the interrupt control circuit. The TOUT control circuit generates a PWM or other signal from the compare A and B signals and outputs it to the external TOUTA*x* and TOUTB*x* pins. The capture circuit loads the counter value to the capture A or B register using the CAPA*x* or CAPB*x* input signal that represents external events issued as a trigger. The interrupt control circuit outputs an interrupt signal to the interrupt controller (ITC) module according to the interrupt condition that has been set. Comparator mode and capture mode cannot be used simultaneously in the same channel.

Note: The letter '*x*' in register and pin names refers to a channel number (0). Example: T16A_CTL*x* register, TOUTA*x* pin Ch.0: T16A_CTL0 register, TOUTA0

11.2 T16A2 Input/Output Pins

Table 11.2.1 lists the input/output pins for the T16A2 module.

Pin name		I/O	Qty	Function
EXCL0	(for Ch.0)	I	1	External clock input pins Inputs an external clock for the event counter function.
CAPA0, CAPI	30 (for Ch.0)	I	2	Counter-capture trigger signal input pins (effective in capture mode) The specified edge (falling edge, rising edge, or both) of the signal input to the CAPAx pin captures the counter data into the capture A register. The CAPBx pin input signal captures the counter data into the capture B register.
TOUTA0, TOU	JTB0 (for Ch.0)	0	2	Timer generating signal output pins (effective in comparator mode) T16A2 has two output pins and the signals generated in different condi- tions can be output.


Table 11.2.1 List of T16A2 Pins	
---------------------------------	--

The T16A2 input/output pins (EXCL*x*, CAPA*x*, CAPB*x*, TOUTA*x*, and TOUTB*x*) are shared with I/O ports and are initially set as general purpose I/O port pins. The pin functions must be switched using the port function select bits to use the general purpose I/O port pins as T16A2 input/output pins.

For detailed information on pin function switching, see the "I/O Ports (P)" chapter.

11.3 Count Clock

The clock controller includes a clock source selector, dividers, and a gate circuit for controlling the count clock.

Clock source selection

The clock source can be selected from OSC3B, OSC1A, or external clock using T16ACLKSRC[1:0]/T16A_CLK*x* register.

T16ACLKSRC[1:0]	Clock source			
0x3	External clock (EXCLx)			
0x2	Reserved			
0x1	OSC1A			
0x0	OSC3B			
	(Default: 0x0)			

Table 11.3.1 Clock Source Selection

When external clock is selected, the timer can be used as an event counter or for measuring pulse widths by inputting an external clock or pulses. The table below lists the external clock input pins. It is not necessary to switch their pin functions from general-purpose I/O port. However, do not set the I/O port to output mode.

	-
Channel	External clock input pin
T16A2 Ch.0	EXCL0

Internal clock division ratio selection

When an internal clock (OSC3B or OSC1A) is selected, use T16ACLKD[3:0]/T16A_CLKx register to select the division ratio.

	Division ratio				
T16ACLKD[3:0]	Clock source = OSC3B	Clock source = OSC1A			
Oxf	Res	served			
0xe	1/16384	Reserved			
0xd	1/8192	Reserved			
0xc	1/4096	Reserved			
0xb	1/2048	Reserved			
0xa	1/1024	Reserved			
0x9	1/512	Reserved			
0x8	1/	256			
0x7	1/	(128			
0x6	1	/64			
0x5	1	/32			
0x4	1	/16			
0x3		1/8			
0x2		1/4			
0x1		1/2			
0x0		1/1			

Table 11.3.3 Internal Clock Division Ratio Selection

(Default: 0x0)

Clock enable

Clock supply to the counter is controlled using T16ACLKE/T16A_CLKx register. The T16ACLKE default setting is 0, which disables the clock supply. Setting T16ACLKE to 1 sends the clock generated as above to the counter. If T16A2 is not required, disable the clock supply to reduce current consumption.

Note: Make sure the T16A2 count is stopped before setting the count clock.

11.4 T16A2 Operating Modes

The T16A2 module provides some operating modes to support various usages. This section describes the functions of each operating mode and how to enter the mode.

11.4.1 Comparator Mode and Capture Mode

The T16A_CCAx and T16A_CCBx registers that are embedded in the comparator/capture block can be set to comparator mode or capture mode, individually. The T16A_CCAx register mode is selected using CCAMD/T16A_ CCCTLx register and the T16A_CCBx register mode is selected using CCBMD/T16A_CCCTLx register.

Comparator mode (CCAMD/CCBMD = 0, default)

The comparator mode compares the counter value and the comparison value set via software. It generates an interrupt and toggles the timer output signal level when the values are matched. The T16A_CCAx and T16A_CCBx registers function as the compare A and compare B registers that are used for loading compare values in this mode.

When the counter reaches the value set in the compare A register during counting, the comparator asserts the compare A signal. At the same time the compare A interrupt flag is set and the interrupt signal of the timer channel is output to the ITC if the interrupt has been enabled.

When the counter reaches the value set in the compare B register, the comparator asserts the compare B signal. At the same time the compare B interrupt flag is set and the interrupt signal of the timer channel is output to the ITC if the interrupt is enabled. Furthermore, the counter is reset to 0.

The compare A period (time from start of counting to occurrence of a compare A interrupt) and the compare B period (time from start of counting to occurrence of a compare B interrupt) can be calculated as follows:

Compare A period = $(CCA + 1) / ct_clk$ [second] Compare B period = $(CCB + 1) / ct_clk$ [second]

CCA: Compare A register value set (0 to 65535)

CCB: Compare B register value set (0 to 65535)

ct_clk: Count clock frequency [Hz]

The compare A and compare B signals are also used to generate a timer output waveform (TOUT). See Section 11.6, "Timer Output Control," for more information.

To generate PWM waveform, the T16A_CCA*x* and T16A_CCB*x* registers must be both placed into comparator mode.

Compare buffers

The compare buffer is used to synchronize the comparison data update timings and the counter operation. Setting CBUFEN/T16A_CTLx register to 1 enables the compare buffer. The compare A and B signals will be generated by comparing the counter values with the compare A and B buffer values instead of the compare A and B register values. The compare A and B register values written via software are loaded to the compare A and B buffers when the compare B signal is generated.

Note: When writing data to the T16A_CCA*x* or T16A_CCB*x* register successively, data should be written at intervals of one or more T16A2 count clock cycles.

Capture mode (CCAMD/CCBMD = 1)

The capture mode captures the counter value when an external event such as a key entry occurs (at the specified edge of the external input signal). In this mode, the T16A_CCAx and/or T16A_CCBx registers function as the capture A and/or capture B registers.

The table below lists the input pins of the external trigger signals used for capturing counter values. The pin function of the corresponding ports must be switched for trigger input in advance. See the "I/O Ports (P)" chapter for switching the pin function.

	1 00	, , , , , , , , , , , , , , , , , , , ,			
Channel	Trigger input pins				
Channel	Capture A	Capture B			
T16A2 Ch.0	CAPA0	CAPB0			

Table 11.4.1.1 List of Counter Capture Trigger Signal Input Pins

The trigger edge of the signal can be selected using the CAPATRG[1:0]/T16A_CCCTLx register for capture A and CAPBTRG[1:0]/T16A_CCCTLx register for capture B.

•	
CAPATRG[1:0]/ CAPBTRG[1:0]	Trigger edge
0x3	Falling edge and rising edge
0x2	Falling edge
0x1	Rising edge
0x0	Not triggered
	(Default: 0x0)

Table 11.4.1.2 Capture Trigger Edge Selection

When a specified trigger edge is input during counting, the current counter value is loaded to the capture register. At the same time the capture A or capture B interrupt flag is set and the interrupt signal of the timer channel is output to the ITC if the interrupt has been enabled. This interrupt can be used to read the captured data from the T16A_CCAx or T16A_CCBx register. For example, external event cycles and pulse widths can be measured from the difference between two captured counter values read.

If the captured data is overwritten by the next trigger when the capture A or capture B interrupt flag has already been set, the overwrite interrupt flag will be set. This interrupt can be used to execute an overwrite error handling. To avoid occurrence of unnecessary overwrite interrupt, the capture A or capture B interrupt flag must be reset after the captured data has been read from the T16A_CCAx or T16A_CCBx register.

- **Notes:** The correct captured data may not be obtained if the captured data is read at the same time the next value is being captured. Read the capture register twice to check if the read data is correct as necessary.
 - To capture counter data properly, both the High and Low period of the CAP*x* trigger signal must be longer than the source clock cycle time.

The setting of CAPATRG[1:0] or CAPBTRG[1:0] is ineffective in comparator mode. No counter capturing operation will be performed even if a trigger edge is specified.

The capture mode cannot generate/output the TOUT signal as no compare signal is generated.

11.4.2 Repeat Mode and One-Shot Mode

T16A2 features two count modes: repeat mode and one-shot mode. The count mode is selected using TRMD / T16A_CTLx register.

Repeat mode (TRMD = 0, default)

Setting TRMD to 0 sets the corresponding counter to repeat mode.

In this mode, once the count starts, the counter continues running until stopped by the application program. The counter continues the count even if the counter returns to 0 due to a counter overflow. The counter should be set to this mode to generate periodic interrupts at desired intervals or to generate a timer output waveform.

One-shot mode (TRMD = 1)

Setting TRMD to 1 sets the corresponding counter to one-shot mode.

In this mode, the counter stops automatically as soon as the compare B signal is generated. The counter should be set to this mode to set a specific wait time or for pulse width measurement.

11.4.3 Normal Clock Mode and Half Clock Mode

T16A2 supports half clock mode to control the duty ratio of the PWM output waveform with high accuracy. In half clock mode, T16A2 uses the dual-edge counter, which counts at the rising and falling edges of the count clock, to compare with the compare A register. This makes it possible to control the duty ratio with double accuracy as compared to normal clock mode.

Use HCM/T16A_CTL*x* register to select half clock mode.

Normal clock mode (HCM = 0, default)

In normal clock mode, T16A2 generates a compare A signal when the T16A_TCx register value matches the T16A_CCAx register.

Half clock mode (HCM = 1)

In half clock mode, T16A2 generates a compare A signal when the dual-edge counter value matches the T16A_CCA*x* register.

Notes: • T16A2 must be placed into comparator mode to set half clock mode, as it is effective only when PWM waveform is generated.

Be sure to set T16A2 to normal clock mode (HCM = 0) under a condition shown below.
(1) When T16A2 is placed into capture mode
(2) When TOUTAMD/T16A_CCCTL*x* register is set to 0x2 or 0x3
(3) When TOUTBMD/T16A_CCCTL*x* register is set to 0x2 or 0x3

- The dual-edge counter value cannot be read.
- Do not use the compare A interrupt in half clock mode.
- In half clock mode, the T16A_CCBx register setting value must be less than [T16A_CCAx setting value / 2 + 0x8000].

11.5 Counter Control

11.5.1 Counter Reset

The counter can be reset to 0 by writing 1 to PRESET/T16A_CTL*x* register.

Normally, the counter should be reset by writing 1 to this bit before starting the count. The counter is reset by the hardware if the counter reaches the compare B register value after the count starts.

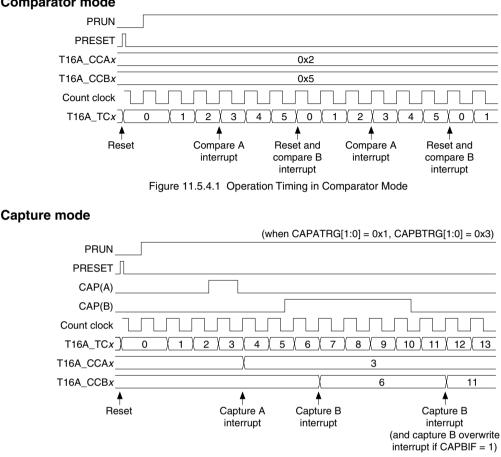
11.5.2 Counter RUN/STOP Control

Make the following settings before starting the count operation.

- (1) Switch the input/output pin functions to be used for T16A2. Refer to the "I/O Ports (P)" chapter.
- (2) Select operating modes. See Section 11.4.
- (3) Select the clock source. See Section 11.3.
- (4) Configure the timer outputs (TOUT). See Section 11.6.
- (5) If using interrupts, set the interrupt level and enable the T16A2 interrupts. See Section 11.7.
- (6) Reset the counter to 0. See Section 11.5.1.
- (7) Set comparison data (in comparator mode). See Section 11.4.1.

T16A2 provides PRUN/T16A_CTLx register to control the counter operation.

The counter starts counting when 1 is written to PRUN. Writing 0 to PRUN disables clock input and stops the count.

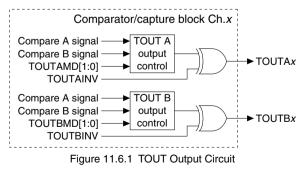

This control does not affect the counter data. The counter data is retained even when the count is halted, allowing resumption of the count from that data.

If PRUN and PRESET are written as 1 simultaneously, the counter starts counting after reset.

11.5.3 Reading Counter Values

The counter value can be read from T16A2TC[15:0]/T16A_TCx register even if the counter is running. However, the counter value should be read at once using a 16-bit transfer instruction. If data is read twice using an 8-bit transfer instruction, the correct value may not be obtained due to occurrence of count up between readings.

11.5.4 Counter Operation and Interrupt Timing Charts



Comparator mode

Figure 11.5.4.2 Operation Timing in Capture Mode

11.6 Timer Output Control

The timer that has been set in comparator mode can generate TOUT signals using the compare A and compare B signals and can output it to external devices. T16A2 provides two TOUT outputs, thus the T16A2 module can output up to four TOUT signals. Figure 11.6.1 shows the TOUT output circuit.

T16A2 includes two TOUT output circuits and their signal generation and output can be controlled individually. Although the output circuit and register names use letters 'A' and 'B' to distinguish two systems, it does not mean that they correspond to compare A and B signals.

11 16-BIT PWM TIMER (T16A2)

TOUT output pins

Table 11.6.1 lists correspondence between the TOUT pins and the timer channels. The pin function of the corresponding ports must be switched for TOUT output in advance. See the "I/O Ports (P)" chapter for switching the pin function.

Table 11.6.1 List of TOUT Output Pins					
Channel	TOUT output pin				
Chainer	System A	System B			
T16A2 Ch.0	TOUTA0	TOUTB0			

TOUT generation mode

TOUTAMD[1:0]/T16A_CCCTL*x* register (for system A) or TOUTBMD[1:0]/T16A_CCCTL*x* register (for system B) is used to set how the TOUT signal is changed by the compare A and compare B signals.

TOUTAMD[1:0]/ TOUTBMD[1:0]	When compare A occurs	When compare B occurs				
0x3	No change	Toggle				
0x2	Toggle	No change				
0x1	Rise	Fall				
0x0	Disable output					

Tahlo	1162	TOUT	Generation	Mode
Table	11.0.2	1001	Generation	INIOUE

(Default: 0x0)

TOUTAMD[1:0] and TOUTBMD[1:0] are also used to turn the TOUT outputs On and Off.

TOUT signal polarity selection

By default, an active High output signal is generated. This logic can be inverted using TOUTAINV/T16A_ CCCTLx register (for system A) or TOUTBINV/T16A_CCCTLx register (for system B). Writing 1 to TOUTAINV/TOUTBINV sets the timer to generate an active Low TOUT signal.

Resetting the counter sets the TOUT signal to the inactive level.

Figure 11.6.2 illustrates the TOUT output waveform.

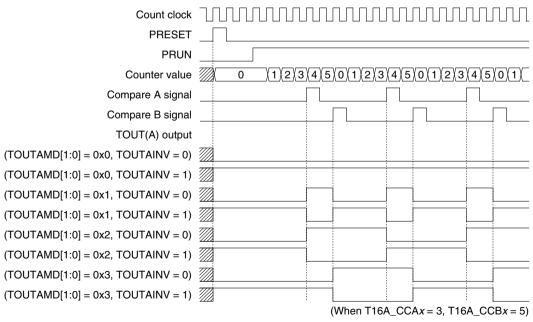


Figure 11.6.2 TOUT Output Waveform

PWM waveform output timings

Normal clock mo	ode (HC	CM = 0	D)													
Count clock				(When		AMD[1	:0] = T		3MD[1:0] = 0x1	and -		INV =		3INV = 0)
T16A_TC <i>x</i>	n	0			1		2		\downarrow	n-	1		n	()	1
TOUTA <i>x</i> /TOUTB <i>x</i>		1	[[[[
T16A_CCA <i>x</i>			↑ 0			↑ 1		↑ 2	ı	↑ n-2	n	► -1		(r	= T16	A_CCB <i>x</i>)
Example: HCM = 0,	T16A_C	CAx=	1, an					.01 T			1 0			15.15.7	TOUT	
Count clock				(wnen			:0] = 1] = UX	and				3INV = 0)
T16A_TC <i>x</i>	5	0			1		2		3	4	1		5	()	1
TOUTA <i>x</i> /TOUTB <i>x</i>]														
	Figure 1	1.6.3	PWN	1 Wa	veforr	n Out	put Ti	mings	in N	ormal	Clock	Mod	е			
Half clock mode	(HCM :	= 1)														
Count clock				(When		AMD[1	:0] = T		3MD[1:0] = 0x1	and		INV =		3INV = 0)
T16A_TC <i>x</i>	n	0			1		2			n-	1		n	()	1
Dual-edge counter	2n	-	0	1	2	3	4			2n-3	2n-2	2n-1	2n	-	0	1
TOUTA <i>x</i> /TOUTB <i>x</i>]	[[[[[[
T16A_CCAx			↑ 0			↑ 2	↑ 3	↑ 4	2	↑ 1 2n-4 2n	-3 2n	∱ 1-2 2r	↑ n-1	(r	= T16	A_CCB <i>x</i>)
Example: HCM = 1,	T16A_C	CAx =	1, an					:0] = T	OUTE	3MD[1:0] = 0x1	I and ⁻	τουτα	INV =	TOUTE	BINV = 0)
Count clock					1		1						1			
T16A_TC <i>x</i>	5	0			1		2		3	4	1		5	()	1
Dual-edge counter	10	-	0	1	2	3	4	5	6	7	8	9	10	-	0	1
TOUTA <i>x</i> /TOUTB <i>x</i>]														
	Figure	11.6.4	4 PW	M W	avefo	rm O	utput [.]	Timing	gs in	Half C	lock N	/lode				

11.7 T16A2 Interrupts

The T16A2 module can generate the following six kinds of interrupts:

- Compare A interrupt (in comparator mode)
- Compare B interrupt (in comparator mode)
- Capture A interrupt (in capture mode)
- Capture B interrupt (in capture mode)
- Capture A overwrite interrupt (in capture mode)
- Capture B overwrite interrupt (in capture mode)

The T16A2 module outputs a single interrupt signal shared by the above interrupt causes to the interrupt controller (ITC). Read the interrupt flags in the T16A2 module to identify the interrupt cause that has been occurred.

11 16-BIT PWM TIMER (T16A2)

Interrupts in comparator mode

Compare A interrupt

This interrupt request is generated when the counter matches the compare A register value during counting in comparator mode. It sets the interrupt flag CAIF/T16A_IFLGx register in the T16A2 module to 1. To use this interrupt, set CAIE/T16A_IENx register to 1. If CAIE is set to 0 (default), interrupt requests for this cause is not sent to the ITC.

Compare B interrupt

This interrupt request is generated when the counter matches the compare B register value during counting in comparator mode. It sets the interrupt flag CBIF/T16A_IFLGx register in the T16A2 module to 1. To use this interrupt, set CBIE/T16A_IENx register to 1. If CBIE is set to 0 (default), interrupt requests for this cause is not sent to the ITC.

Interrupts in capture mode

Capture A interrupt

This interrupt request is generated when the counter value is captured in the capture A register by an external trigger during counting in capture mode. It sets the interrupt flag CAPAIF/T16A_IFLGx register in the T16A2 module to 1.

To use this interrupt, set CAPAIE/T16A_IENx register to 1. If CAPAIE is set to 0 (default), interrupt requests for this cause is not sent to the ITC.

Capture B interrupt

This interrupt request is generated when the counter value is captured in the capture B register by an external trigger during counting in capture mode. It sets the interrupt flag CAPBIF/T16A_IFLGx register in the T16A2 module to 1.

To use this interrupt, set CAPBIE/T16A_IENx register to 1. If CAPBIE is set to 0 (default), interrupt requests for this cause is not sent to the ITC.

Capture A overwrite interrupt

This interrupt request is generated if the capture A register is overwritten by a new external trigger when the capture A interrupt flag CAPAIF has been set (a counter value has already been loaded to the capture A register). It sets the interrupt flag CAPAOWIF/T16A_IFLGx register in the T16A2 module to 1.

To use this interrupt, set CAPAOWIE/T16A_IENx register to 1. If CAPAOWIE is set to 0 (default), interrupt requests for this cause is not sent to the ITC.

CAPAOWIF will be set if the capture A register is overwritten when CAPAIF has been set regardless of whether the capture A register has been read or not. Therefore, be sure to reset CAPAIF immediately after the capture A register is read.

Capture B overwrite interrupt

This interrupt request is generated if the capture B register is overwritten by a new external trigger when the capture B interrupt flag CAPBIF has been set (a counter value has already been loaded to the capture B register). It sets the interrupt flag CAPBOWIF/T16A_IFLGx register in the T16A2 module to 1.

To use this interrupt, set CAPBOWIE/T16A_IENx register to 1. If CAPBOWIE is set to 0 (default), interrupt requests for this cause is not sent to the ITC.

CAPBOWIF will be set if the capture B register is overwritten when CAPBIF has been set regardless of whether the capture B register has been read or not. Therefore, be sure to reset CAPBIF immediately after the capture B register is read.

If the interrupt flag is set to 1 when the interrupt has been enabled, the T16A2 module outputs an interrupt request to the ITC. An interrupt is generated if the ITC and S1C17 core interrupt conditions are satisfied.

For more information on interrupt control registers and the operation when an interrupt occurs, see the "Interrupt Controller (ITC)" chapter.

- **Notes:** Reset the interrupt flag before enabling interrupts with the interrupt enable bit to prevent occurrence of unwanted interrupt. The interrupt flag is reset by writing 1.
 - After an interrupt occurs, the interrupt flag in the T16A2 module must be reset in the interrupt handler routine.

11.8 Control Register Details

Address		Register name	Function						
0x5068	T16A_CLK0	T16A Clock Control Register Ch.0	Controls the T16A2 Ch.0 clock.						
0x5400	T16A_CTL0	T16A Counter Ch.0 Control Register	Controls the counter.						
0x5402	T16A_TC0	T16A Counter Ch.0 Data Register	Counter data						
0x5404	T16A_CCCTL0	T16A Comparator/Capture Ch.0 Control Register	Controls the comparator/capture block and TOUT.						
0x5406	T16A_CCA0	T16A Compare/Capture Ch.0 A Data Register	Compare A/capture A data						
0x5408	T16A_CCB0	T16A Compare/Capture Ch.0 B Data Register	Compare B/capture B data						
0x540a	T16A_IEN0	T16A Compare/Capture Ch.0 Interrupt Enable Register	Enables/disables interrupts.						
0x540c	T16A_IFLG0	T16A Compare/Capture Ch.0 Interrupt Flag Register	Displays/sets interrupt occurrence status.						

Table 11.8.1 List of T16A2 Registers

The T16A2 registers are described in detail below.

Note: When data is written to the registers, the "Reserved" bits must always be written as 0 and not 1.

T16A Clock Control Register Ch.x (T16A_CLKx)

Register name	Address	Bit	Name	Function	S	Setting	Init.	R/W	Remarks
T16A Clock	0x5068	D7–4	T16ACLKD	Clock division ratio select	T16ACLKD	Division ratio	0x0	R/W	
Control Register	(8 bits)		[3:0]		[3:0]	OSC3B OSC1	A		
Ch.x					0xf				
(T16A_CLKx)					0xe	1/16384 –			
. ,					0xd	1/8192 -			
					0xc	1/4096 -			
					0xb 0xa	1/2048 – 1/1024 –			
					0xa 0x9	1/512 -			
					0x8	1/256 1/250	.		
					0x7	1/128 1/128			
					0x6	1/64 1/64			
					0x5	1/32 1/32			
					0x4	1/16 1/16			
					0x3	1/8 1/8			
					0x2				
					0x1 0x0	1/2 1/2 1/1 1/1			
		D0 0	T16ACLK	Ola ale a suma a a la at			0.0	R/W	
		D3–2		Clock source select	T16ACLKSR	Clock sourc	9 0x0	H/W	
			SRC[1:0]		[1:0]	Enternal also	1.		
					0x3 0x2	External cloo reserved	к		
					0x2 0x1	OSC1A			
					0x0	OSC3B			
		D1	-	reserved		_	-	-	0 when being read.
		D0	T16ACLKE	Count clock enable	1 Enable	0 Disable	0	R/W	

D[7:4] T16ACLKD[3:0]: Clock Division Ratio Select Bits

Selects the division ratio for generating the count clock when an internal clock (OSC3B or OSC1A) is used.

	Divisi	on ratio				
T16ACLKD[3:0]	Clock source = OSC3B	Clock source = OSC1A				
Oxf	Res	erved				
0xe	1/16384	Reserved				
0xd	1/8192	Reserved				
0xc	1/4096	Reserved				
0xb	1/2048	Reserved				
0xa	1/1024	Reserved				
0x9	1/512	Reserved				
0x8	1/2	256				
0x7	1/	128				
0x6	1,	/64				
0x5	1,	/32				
0x4	1,	/16				
0x3	1	/8				
0x2	1/4					
0x1	1/2					
0x0	1	/1				

Table 11.8.2 Internal Clock Division Ratio Selection

(Default: 0x0)

D[3:2] T16ACLKSRC[1:0]: Clock Source Select Bits

Selects the count clock source.

Table 11.8.3	Clock Source Selection

T16ACLKSRC[1:0]	Clock source
0x3	External clock (EXCLx)
0x2	Reserved
0x1	OSC1A
0x0	OSC3B
	(Defeult: 0x0)

(Default: 0x0)

When using an external clock as the count clock, supply the clock to the EXCLx pin.

D1 Reserved

D0 T16ACLKE: Count Clock Enable Bit

Enables or disables the count clock supply to the counter.

1 (R/W): Enabled (on)

0 (R/W): Disabled (off) (default)

The T16ACLKE default setting is 0, which disables the clock supply. Setting T16ACLKE to 1 sends the clock selected as above to the counter. If timer operation is not required, disable the clock supply to reduce current consumption.

T16A Counter Ch.x Control Register (T16A_CTLx)

Register name	Address	Bit	Name	Function		Set	tin	g	Init.	R/W	Remarks
T16A Counter	0x5400	D15–7	-	reserved		-	_		-	-	0 when being read.
Ch.x Control	(16 bits)	D6	нсм	Half clock mode enable	1	Enable	0	Disable	0	R/W	
Register		D5–4	-	reserved		-	_		-	-	0 when being read.
(T16A_CTL <i>x</i>)		D3	CBUFEN	Compare buffer enable	1	Enable	0	Disable	0	R/W	
		D2	TRMD	Count mode select	1	One-shot	0	Repeat	0	R/W	
		D1	PRESET	Counter reset	1	Reset	0	Ignored	0	W	0 when being read.
		D0	PRUN	Counter run/stop control	1	Run	0	Stop	0	R/W	

D[15:7] Reserved

D6 HCM: Half Clock Mode Enable Bit

Sets T16A2 to half clock mode.

1 (R/W): Enabled (half clock mode)

0 (R/W): Disabled (normal clock mode) (default)

Setting HCM to 1 places T16A2 into half clock mode. In half clock mode, T16A2 uses the dual-edge counter, which counts at the rising and falling edges of the count clock, to generate a compare A signal when the dual-edge counter value matches the T16A_CCAx register. This makes it possible to control the duty ratio with double accuracy as compared to normal clock mode.

Setting HCM to 0 places T16A2 into normal clock mode. In normal clock mode, T16A2 generates a compare A signal when the T16A_TCx register value matches the T16A_CCAx register.

- Notes: T16A2 must be placed into comparator mode to set half clock mode, as it is effective only when PWM waveform is generated.
 Be sure to set T16A2 to normal clock mode under a condition shown below.
 (1) When T16A2 is placed into capture mode
 (2) When TOUTAMD/T16A_CCCTLx register is set to 0x2 or 0x3
 (3) When TOUTBMD/T16A_CCCTLx register is set to 0x2 or 0x3
 - The dual-edge counter value cannot be read.
 - Do not use the compare A interrupt in half clock mode.
 - In half clock mode, the T16A_CCBx register setting value must be less than [T16A_CCAx setting value / 2 + 0x8000].

D[5:4] Reserved

D3 CBUFEN: Compare Buffer Enable Bit

Enables or disables writing to the compare buffer. 1 (R/W): Enabled 0 (R/W): Disabled (default)

Setting CBUFEN to 1 enables the compare buffer. The compare A and B signals will be generated by comparing the counter values with the compare A and B buffer values instead of the compare A and B register values. The compare A and B register values written via software are loaded to the compare A and B buffers when the compare B signal is generated.

Setting CBUFEN to 0 disables the compare buffer. The compare A and B signals will be generated by comparing the counter values with the compare A and B register values.

Note: Make sure the counter is halted (PRUN = 0) before setting CBUFEN.

D2 TRMD: Count Mode Select Bit

Selects the count mode.

1 (R/W): One-shot mode

0 (R/W): Repeat mode (default)

Setting TRMD to 0 sets the counter to repeat mode. In this mode, once the count starts, the counter continues counting until stopped by the application program.

Setting TRMD to 1 sets the counter to one-shot mode. In this mode, the counter stops counting automatically as soon as the compare B signal is generated.

D1 PRESET: Counter Reset Bit

Resets the counter.

- 1 (W): Reset
- 0 (W): Ignored
- 0 (R): Normally 0 when read out (default)

Writing 1 to this bit resets the counter to 0.

D0 PRUN: Counter Run/Stop Control Bit

Starts/stops the count.

- 1 (W): Run
- 0 (W): Stop
- 1 (R): Counting
- 0 (R): Stopped (default)

The counter starts counting when PRUN is written as 1 and stops when written as 0. The counter data is retained even if the counter is stopped.

T16A Counter Ch.x Data Register (T16A_TCx)

Register name	Address	Bit	Name	Function	Setting	Init.	R/W	Remarks
T16A Counter Ch. <i>x</i> Data Register	0x5402 (16 bits)		[15:0]	Counter data T16A2TC15 = MSB T16A2TC0 = LSB	0x0 to 0xffff	0x0	R	
(T16A_TC <i>x</i>)				110A21C0 = LSB				

D[15:0] T16A2TC[15:0]: Counter Data Bits

Counter data can be read out. (Default: 0x0)

The counter value can be read out even if the counter is running. However, the counter value should be read at once using a 16-bit transfer instruction. If data is read twice using an 8-bit transfer instruction, the correct value may not be obtained due to occurrence of count up between readings.

T16A Comparator/Capture Ch.x Control Register (T16A_CCCTLx)

Register name	Address	Bit	Name	Function	Set	ting	Init.	R/W	Remarks
T16A	0x5404	D15-14	CAPBTRG	Capture B trigger select	CAPBTRG[1:0]	Trigger edge	0x0	R/W	
Comparator/	(16 bits)		[1:0]		0x3	1 ↑ and ↓			
Capture Ch.x					0x2	↓			
Control Register					0x1	↑			
(T16A_CCCTLx)					0x0	None			
		D13–12	TOUTBMD	TOUT B mode select	TOUTBMD[1:0]		0x0	R/W	
			[1:0]		0x3	cmp B: ↑ or ↓			
					0x2	cmp A: ↑ or ↓			
					0x1	cmp A: ↑, B:↓			
					0x0	Off			
		D11-10		reserved	-	-	-	_	0 when being read.
		D9	TOUTBINV	TOUT B invert	1 Invert	0 Normal	0	R/W	
			CCBMD	T16A_CCB register mode select	1 Capture	0 Comparator		R/W	
		D7–6	CAPATRG	Capture A trigger select	CAPATRG[1:0]		0x0	R/W	
			[1:0]		0x3	1 and ↓			
					0x2	↓			
					0x1	↑			
					0x0	None			
		D5–4	TOUTAMD	TOUT A mode select	TOUTAMD[1:0]		0x0	R/W	
			[1:0]		0x3	cmp B: ↑ or ↓			
					0x2	cmp A: ↑ or ↓			
					0x1	cmp A: ↑, B:↓			
					0x0	Off			
		D3-2	-	reserved	-	-	-	-	0 when being read.
		D1	TOUTAINV	TOUT A invert	1 Invert	0 Normal	0	R/W	
		D0	CCAMD	T16A_CCA register mode select	1 Capture	0 Comparator	0	R/W	

D[15:14] CAPBTRG[1:0]: Capture B Trigger Select Bits

Selects the trigger edge(s) of the external signal (CAPB*x*) at which the counter value is captured in the capture B register.

Table 11.8.4	Capture B	Trigger E	Edge Selection
--------------	-----------	-----------	----------------

•	
CAPBTRG[1:0]	Trigger edge
0x3	Falling edge and rising edge
0x2	Falling edge
0x1	Rising edge
0x0	Not triggered
	(Default: 0x0)

(Default: 0x0)

CAPBTRG[1:0] are control bits for capture mode and are ineffective in comparator mode.

D[13:12] TOUTBMD[1:0]: TOUT B Mode Select Bits

Configures how the TOUT B signal waveform (TOUTB*x* output) is changed by the compare A and compare B signals. These bits are also used to turn the TOUT B output On and Off.

When compare A occurs	When compare B occurs							
No change	Toggle							
Toggle	No change							
Rise	Fall							
Disable output								
	When compare A occurs No change Toggle Rise							

Table 11.8.5 TOUT B Generation Mode

(Default: 0x0)

TOUTBMD[1:0] are control bits for comparator mode and are ineffective in capture mode.

D[11:10] Reserved

D9 TOUTBINV: TOUT B Invert Bit

Selects the TOUT B signal (TOUTB*x* output) polarity. 1 (R/W): Inverted (active Low) 0 (R/W): Normal (active High) (default)

Writing 1 to TOUTBINV generates an active Low signal (Off level = High) for the TOUT B output. When TOUTBINV is 0, an active High signal (Off level = Low) is generated. TOUTBINV is a control bit for comparator mode and is ineffective in capture mode.

D8 CCBMD: T16A_CCB Register Mode Select Bit

Selects the T16A_CCBx register function (comparator mode or capture mode).

1 (R/W): Capture mode

0 (R/W): Comparator mode (default)

Writing 1 to CCBMD configures the T16A_CCB*x* register as the capture B register (capture mode) to which the counter data will be loaded by the external trigger signal. When CCBMD is 0, the T16A_CCB*x* register functions as the compare B register (comparator mode) for writing a comparison value to generate the compare B signal.

D[7:6] CAPATRG[1:0]: Capture A Trigger Select Bits

Selects the trigger edge(s) of the external signal (CAPAx) at which the counter value is captured in the capture A register.

	t higger Eage beleation
CAPATRG[1:0]	Trigger edge
0x3	Falling edge and rising edge
0x2	Falling edge
0x1	Rising edge
0x0	Not triggered
	(Default: 0x0)

Table 11.8.6 Capture A Trigger Edge Selection

CAPATRG[1:0] are control bits for capture mode and are ineffective in comparator mode.

D[5:4] TOUTAMD[1:0]: TOUT A Mode Select Bits

Configures how the TOUT A signal waveform (TOUTAx output) is changed by the compare A and compare B signals. These bits are also used to turn the TOUT A output On and Off.

10010 1								
TOUTAMD[1:0]	When compare A occurs	When compare B occurs						
0x3	No change	Toggle						
0x2	Toggle	No change						
0x1	Rise	Fall						
0x0	Disable output							

Table 11.8.7	TOUT A Generation	Mode
--------------	--------------------------	------

(Default: 0x0)

TOUTAMD[1:0] are control bits for comparator mode and are ineffective in capture mode.

D[3:2] Reserved

D1 TOUTAINV: TOUT A Invert Bit

Selects the TOUT A signal (TOUTAx output) polarity.

1 (R/W): Inverted (active Low)

0 (R/W): Normal (active High) (default)

Writing 1 to TOUTAINV generates an active Low signal (Off level = High) for the TOUT A output. When TOUTAINV is 0, an active High signal (Off level = Low) is generated.

TOUTAINV is a control bit for comparator mode and is ineffective in capture mode.

11 16-BIT PWM TIMER (T16A2)

D0 CCAMD: T16A_CCA Register Mode Select Bit

Selects the T16A_CCA*x* register function (comparator mode or capture mode). 1 (R/W): Capture mode 0 (R/W): Comparator mode (default)

Writing 1 to CCAMD configures the T16A_CCA*x* register as the capture A register (capture mode) to which the counter data will be loaded by the external trigger signal. When CCAMD is 0, the T16A_CCA*x* register functions as the compare A register (comparator mode) for writing a comparison value to generate the compare A signal.

T16A Comparator/Capture Ch.x A Data Register (T16A_CCAx)

	-				<u> </u>			
Register name	Address	Bit	Name	Function	Setting	Init.	R/W	Remarks
T16A	0x5406	D15–0	CCA[15:0]	Compare/capture A data	0x0 to 0xffff	0x0	R/W	
Comparator/	(16 bits)			CCA15 = MSB				
Capture Ch.x A				CCA0 = LSB				
Data Register								
(T16A_CCA <i>x</i>)								

D[15:0] CCA[15:0]: Compare/Capture A Data Bits

In comparator mode (CCAMD/ T16A_CCCTLx register = 0)

Sets a compare A data, which will be compared with the counter value, through this register.

When CBUFEN/T16A_CTLx register is set to 0, compare A data will be set to the compare A register after a lapse of two T16A2 count clock cycles from the time when it is written to this register.

When CBUFEN is set to 1, the data written to this register is loaded to the compare A buffer. The buffer contents are loaded into the compare A register when the compare B signal is generated.

The compare A register is always directly accessed when being read regardless of the CBUFEN setting. The data set is compared with the counter data. When the counter reaches the comparison value set, the compare A signal is asserted and a cause of compare A interrupt occurs. Furthermore, the TOUT output waveform changes when TOUTAMD[1:0]/T16A_CCCTLx register or TOUTBMD[1:0]/T16A_CCCTLx register is set to 0x2 or 0x1. These processes do not affect the counter data and the count up operation.

In capture mode (CCAMD = 1)

When the counter value is captured at the external trigger signal (CAPAx) edge selected using CAPATRG[1:0]/T16A_CCCTLx register, the captured value is loaded to this register. At the same time a capture A interrupt can be generated, thus the captured counter value can be read out in the interrupt handler.

T16A Comparator/Capture Ch.x B Data Register (T16A_CCBx)

Register name	Address	Bit	Name	Function	Setting	Init.	R/W	Remarks
T16A	0x5408	D15–0	CCB[15:0]	Compare/capture B data	0x0 to 0xffff	0x0	R/W	
Comparator/	(16 bits)			CCB15 = MSB				
Capture Ch.x B				CCB0 = LSB				
Data Register								
(T16A_CCB <i>x</i>)								

D[15:0] CCB[15:0]: Compare/Capture B Data Bits

Sets a compare B data, which will be compared with the counter value, through this register. When CBUFEN/T16A_CTLx register is set to 0, compare B data will be set to the compare B register after a lapse of two T16A2 count clock cycles from the time when it is written to this register.

When CBUFEN is set to 1, the data written to this register is loaded to the compare B buffer. The buffer contents are loaded into the compare B register when the compare B signal is generated.

The compare B register is always directly accessed when being read regardless of the CBUFEN setting. The data set is compared with the counter data. When the counter reaches the comparison value set, the compare B signal is asserted and a cause of compare B interrupt occurs. The counter is reset to 0. Furthermore, the TOUT output waveform changes when TOUTAMD[1:0]/T16A_CCCTLx register or TOUTBMD[1:0]/T16A_CCCTLx register is set to 0x3 or 0x1.

In capture mode (CCBMD = 1)

When the counter value is captured at the external trigger signal (CAPBx) edge selected using CAPB-TRG[1:0]/T16A_CCCTLx register, the captured value is loaded to this register. At the same time a capture B interrupt can be generated, thus the captured counter value can be read out in the interrupt handler.

T16A Comparator/Capture Ch.x Interrupt Enable Register (T16A_IENx)

	-		-		-			-	-		•
Register name	Address	Bit	Name	Function		Set	tin	g	Init.	R/W	Remarks
T16A	0x540a	D15-6	-	reserved		_			-	-	0 when being read.
Comparator/	(16 bits)	D5	CAPBOWIE	Capture B overwrite interrupt enable	1	Enable	0	Disable	0	R/W	
Capture Ch.x		D4	CAPAOWIE	Capture A overwrite interrupt enable	1	Enable	0	Disable	0	R/W	
Interrupt Enable		D3	CAPBIE	Capture B interrupt enable	1	Enable	0	Disable	0	R/W	
Register		D2	CAPAIE	Capture A interrupt enable	1	Enable	0	Disable	0	R/W	
(T16A_IEN <i>x</i>)		D1	CBIE	Compare B interrupt enable	1	Enable	0	Disable	0	R/W	
		D0	CAIE	Compare A interrupt enable	1	Enable	0	Disable	0	R/W	

D[15:6] Reserved

D5 CAPBOWIE: Capture B Overwrite Interrupt Enable Bit

Enables or disables capture B overwrite interrupts.

1 (R/W): Interrupt enabled

0 (R/W): Interrupt disabled (default)

Setting CAPBOWIE to 1 enables capture B overwrite interrupt requests to the ITC. Setting it to 0 disables interrupts.

D4 CAPAOWIE: Capture A Overwrite Interrupt Enable Bit

Enables or disables capture A overwrite interrupts. 1 (R/W): Interrupt enabled 0 (R/W): Interrupt disabled (default)

Setting CAPAOWIE to 1 enables capture A overwrite interrupt requests to the ITC. Setting it to 0 disables interrupts.

D3 CAPBIE: Capture B Interrupt Enable Bit

Enables or disables capture B interrupts.

1 (R/W): Interrupt enabled

0 (R/W): Interrupt disabled (default)

Setting CAPBIE to 1 enables capture B interrupt requests to the ITC. Setting it to 0 disables interrupts.

D2 CAPAIE: Capture A Interrupt Enable Bit

Enables or disables capture A interrupts. 1 (R/W): Interrupt enabled 0 (R/W): Interrupt disabled (default)

Setting CAPAIE to 1 enables capture A interrupt requests to the ITC. Setting it to 0 disables interrupts.

D1 CBIE: Compare B Interrupt Enable Bit

Enables or disables compare B interrupts. 1 (R/W): Interrupt enabled 0 (R/W): Interrupt disabled (default)

Setting CBIE to 1 enables compare B interrupt requests to the ITC. Setting it to 0 disables interrupts.

D0 CAIE: Compare A Interrupt Enable Bit

Enables or disables compare A interrupts. 1 (R/W): Interrupt enabled

0 (R/W): Interrupt disabled (default)

Setting CAIE to 1 enables compare A interrupt requests to the ITC. Setting it to 0 disables interrupts.

	To A comparator of plure on x interrupt ring negister (TroA_ii Edx)												
Register name	Address	Bit	Name	Function		Set	tin	g	Init.	R/W	Remarks		
T16A	0x540c	D15–6	-	reserved	-			-	-	0 when being read.			
Comparator/	(16 bits)	D5	CAPBOWIF	Capture B overwrite interrupt flag	1	Cause of	0	Cause of	0	R/W	Reset by writing 1.		
Capture Ch.x		D4	CAPAOWIF	Capture A overwrite interrupt flag	1	interrupt		interrupt not	0	R/W			
Interrupt Flag		D3	CAPBIF	Capture B interrupt flag	1	occurred		occurred	0	R/W	1		
Register		D2	CAPAIF	Capture A interrupt flag	1				0	R/W	1		
(T16A_IFLG <i>x</i>)		D1	CBIF	Compare B interrupt flag	1				0	R/W			
		D0	CAIF	Compare A interrupt flag]				0	R/W			

T16A Comparator/Capture Ch.x Interrupt Flag Register (T16A_IFLGx)

D[15:6] Reserved

D5 CAPBOWIF: Capture B Overwrite Interrupt Flag Bit

Indicates whether the cause of capture B overwrite interrupt has occurred or not.

- 1 (R): Cause of interrupt has occurred
- 0 (R): No cause of interrupt has occurred (default)
- 1 (W): Flag is reset
- 0 (W): Ignored

CAPBOWIF is a T16A2 interrupt flag that is set to 1 when the capture B register is overwritten. CAPBOWIF is reset by writing 1.

D4 CAPAOWIF: Capture A Overwrite Interrupt Flag Bit

Indicates whether the cause of capture A overwrite interrupt has occurred or not.

- 1 (R): Cause of interrupt has occurred
- 0 (R): No cause of interrupt has occurred (default)
- 1 (W): Flag is reset
- 0 (W): Ignored

CAPAOWIF is a T16A2 interrupt flag that is set to 1 when the capture A register is overwritten. CAPAOWIF is reset by writing 1.

D3 CAPBIF: Capture B Interrupt Flag Bit

Indicates whether the cause of capture B interrupt has occurred or not.

- 1 (R): Cause of interrupt has occurred
- 0 (R): No cause of interrupt has occurred (default)
- 1 (W): Flag is reset
- 0 (W): Ignored

CAPBIF is a T16A2 interrupt flag that is set to 1 when the counter value is captured in the capture B register.

CAPBIF is reset by writing 1.

D2 CAPAIF: Capture A Interrupt Flag Bit

Indicates whether the cause of capture A interrupt has occurred or not.

- 1 (R): Cause of interrupt has occurred
- 0 (R): No cause of interrupt has occurred (default)
- 1 (W): Flag is reset
- 0 (W): Ignored

CAPAIF is a T16A2 interrupt flag that is set to 1 when the counter value is captured in the capture A register.

CAPAIF is reset by writing 1.

D1 CBIF: Compare B Interrupt Flag Bit

Indicates whether the cause of compare B interrupt has occurred or not.

- 1 (R): Cause of interrupt has occurred
- 0 (R): No cause of interrupt has occurred (default)
- 1 (W): Flag is reset
- 0 (W): Ignored

CBIF is a T16A2 interrupt flag that is set to 1 when the counter reaches the value set in the compare B register.

CBIF is reset by writing 1.

D0 CAIF: Compare A Interrupt Flag Bit

Indicates whether the cause of compare A interrupt has occurred or not.

- 1 (R): Cause of interrupt has occurred
- 0 (R): No cause of interrupt has occurred (default)
- 1 (W): Flag is reset
- 0 (W): Ignored

CAIF is a T16A2 interrupt flag that is set to 1 when the counter reaches the value set in the compare A register.

CAIF is reset by writing 1.

12 Clock Timer (CT)

12.1 CT Module Overview

The S1C17656 includes a clock timer module (CT) that uses the OSC1A oscillator as its clock source. This timer can be used for generating cyclic interrupts to implement a software clock function.

- The features of the CT module are listed below.
- 8-bit binary counter (128 Hz to 1 Hz)
- 32 Hz, 8 Hz, 2 Hz, and 1 Hz interrupts can be generated.

Figure 12.1.1 shows the CT configuration.

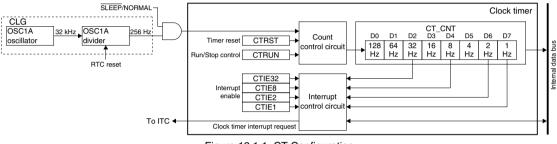


Figure 12.1.1 CT Configuration

The CT module consists of an 8-bit binary counter that uses the 256 Hz signal divided from the OSC1A clock as the input clock and allows data for each bit (128 Hz to 1 Hz) to be read out by software. The clock timer can also generate interrupts using the 32 Hz, 8 Hz, 2 Hz, and 1 Hz signals. This clock timer is normally used for various timing functions, such as a clock.

12.2 Operation Clock

The CT module uses the 256 Hz clock output by the CLG module (256 Hz clock derived from the OSC1A divider) the operation clock. Therefore, the OSC1A oscillator must be turned on before starting the CT module. However, the clock is not supplied to the CT module in SLEEP mode even if the OSC1A oscillator is on. For detailed information on clock control, see the "Clock Generator (CLG)" chapter.

- **Notes:** The CT module input clock frequency is 256 Hz only when the OSC1A clock frequency is 32.768 kHz. The frequency described in this chapter will vary accordingly for other OSC1A clock frequencies.
 - The OSC1A divider is reset when the RTC starts running (when 1 is written to RTCRUN/RTC_ CTL register). This affects the count operations of the CT module, as new 256 Hz clock cycle begins from that point.

12.3 Timer Reset

Reset the timer by writing 1 to CTRST/CT_CTL register. This clears the counter to 0. Apart from this operation, the counter is also cleared by an initial reset.

12.4 Timer RUN/STOP Control

Make the following settings before starting CT.

(1) If using interrupts, set the interrupt level and enable interrupts for the clock timer. See Section 12.5.

(2) Reset the timer. See Section 12.3.

The clock timer includes CTRUN/CT_CTL register for Run/Stop control.

The clock timer starts operating when 1 is written to CTRUN. Writing 0 to CTRUN disables clock input and stops the operation.

This control does not affect the counter (CT_CNT register) data. The counter data is retained even when the count is halted, allowing resumption of the count from that data.

If 1 is written to both CTRUN and CTRST simultaneously, the clock timer starts counting after resetting.

A cause of interrupt occurs during counting at the 32 Hz, 8 Hz, 2 Hz, and 1 Hz signal falling edges. If interrupts are enabled, an interrupt request is sent to the interrupt controller (ITC).

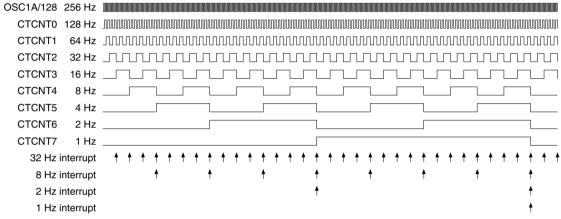
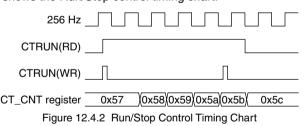



Figure 12.4.1 Clock Timer Timing Chart

Notes: • The clock timer switches to Run/Stop status synchronized with the 256 Hz signal falling edge after data is written to CTRUN. When 0 is written to CTRUN, the timer stops after counting an additional "+1." 1 is retained for CTRUN reading until the timer actually stops. Figure 12.4.2 shows the Run/Stop control timing chart.

 Executing the slp instruction while the timer is running (CTRUN = 1) will destabilize the timer operation during restarting from SLEEP status. When switching to SLEEP status, stop the timer (CTRUN = 0) before executing the slp instruction.

12.5 CT Interrupts

The CT module includes functions for generating the following four kinds of interrupts: 32 Hz, 8 Hz, 2 Hz, and 1 Hz interrupts

The CT module outputs a single interrupt signal shared by the above four interrupt causes to the interrupt controller (ITC). The interrupt flag in the CT module should be read to identify the cause of interrupt that occurred.

32 Hz, 8 Hz, 2 Hz, and 1 Hz interrupts

The 32 Hz, 8 Hz, 2 Hz, and 1 Hz signal falling edges set the corresponding interrupt flag in the CT module to 1. At the same time, an interrupt request is sent to the ITC if the corresponding interrupt enable bit has been set to 1 (interrupt enabled). An interrupt is generated if the ITC and S1C17 Core interrupt conditions are satisfied. If the interrupt enable bit is set to 0 (interrupt disabled, default), no interrupt request will be sent to the ITC.

Cause of interrupt	Interrupt flag	Interrupt enable bit				
32 Hz Interrupt	CTIF32/CT_IFLG register	CTIE32/CT_IMSK register				
8 Hz Interrupt	CTIF8/CT_IFLG register	CTIE8/CT_IMSK register				
2 Hz Interrupt	CTIF2/CT_IFLG register	CTIE2/CT_IMSK register				
1 Hz Interrupt	CTIF1/CT_IFLG register	CTIE1/CT_IMSK register				

Table 12.5.1 CT Interrupt Flags and Interrupt Enable Bits

For specific information on interrupt processing, see the "Interrupt Controller (ITC)" chapter.

- **Notes:** The CT module interrupt flag must be reset in the interrupt handler routine after a CT interrupt has occurred to prevent recurring interrupts.
 - Reset the interrupt flag before enabling CT interrupts with the interrupt enable bit to prevent occurrence of unwanted interrupt. The interrupt flag is reset by writing 1.

12.6 Control Register Details

	Table 12.6.1 List of CT Registers										
Address		Register name	Function								
0x5000	CT_CTL	Clock Timer Control Register	Resets and starts/stops the timer.								
0x5001	CT_CNT	Clock Timer Counter Register	Counter data								
0x5002	CT_IMSK	Clock Timer Interrupt Mask Register	Enables/disables interrupt.								
0x5003	CT_IFLG	Clock Timer Interrupt Flag Register	Indicates/resets interrupt occurrence status.								

The CT registers are described in detail below.

Note: When data is written to the registers, the "Reserved" bits must always be written as 0 and not 1.

Clock Timer Control Register (CT_CTL)

Register name	Address	Bit	Name	Function	Setting			Init.	R/W	Remarks
Clock Timer	0x5000	D7–5	-	reserved	-			-	-	0 when being read.
Control Register	(8 bits)	D4	CTRST	Clock timer reset	1	Reset	0 Ignored	0	W	
(CT_CTL)		D3–1	-	reserved				-	-	
		D0	CTRUN	Clock timer run/stop control	1	Run	0 Stop	0	R/W	

D[7:5] Reserved

D4 CTRST: Clock Timer Reset Bit

Resets the clock timer.

- 1 (W): Reset
- 0 (W): Ignored

0 (R): Always 0 when read (default)

Writing 1 to this bit resets the counter to 0x0. When reset in Run state, the clock timer restarts immediately after resetting. The reset data 0x0 is retained when in Stop state.

D[3:1] Reserved

D0 CTRUN: Clock Timer Run/Stop Control Bit

Controls the clock timer Run/Stop. 1 (R/W): Run 0 (R/W): Stop (default)

The clock timer starts counting when CTRUN is written as 1 and stops when written as 0. The counter data is retained at Stop state until a reset or the next Run state.

Clock Timer Counter Register (CT_CNT)

Register name	Address	Bit	Name	Function	Setting	Init.	R/W	Remarks
Clock Timer	0x5001	D7–0	CTCNT[7:0]	Clock timer counter value	0x0 to 0xff	0x0	R	
Counter Register	(8 bits)							
(CT_CNT)								

D[7:0] CTCNT[7:0]: Clock Timer Counter Value Bits

The counter data can be read out. (Default: 0x0)

This register is read-only and cannot be written to.

The bits correspond to various frequencies, as follows:

D7: 1 Hz, D6: 2 Hz, D5: 4 Hz, D4: 8 Hz, D3: 16 Hz, D2: 32 Hz, D1: 64 Hz, D0: 128 Hz

Note: The correct counter value may not be read out (reading is unstable) if the register is read while counting is underway. Read the counter register twice in succession and treat the value as valid if the values read are identical.

Clock Timer Interrupt Mask Register (CT_IMSK)

Register name	Address	Bit	Name	Function	Setting			Init.	R/W	Remarks	
Clock Timer	0x5002	D7–4	-	reserved		-				-	0 when being read.
Interrupt Mask	(8 bits)	D3	CTIE32	32 Hz interrupt enable	1	Enable	0	Disable	0	R/W	
Register		D2	CTIE8	8 Hz interrupt enable	1	Enable	0	Disable	0	R/W	
(CT_IMSK)		D1	CTIE2	2 Hz interrupt enable	1	Enable	0	Disable	0	R/W	
		D0	CTIE1	1 Hz interrupt enable	1	Enable	0	Disable	0	R/W	

This register enables or disables interrupt requests individually for the 32 Hz, 8 Hz, 2 Hz, and 1 Hz signals. Setting CTIE* to 1 enables CT interrupts for the corresponding frequency signal falling edge, while setting to 0 disables interrupts.

D[7:4]ReservedD3CTIE32: 32 Hz Interrupt Enable Bit
Enables or disables 32 Hz interrupts.
1 (R/W): Interrupt enabled
0 (R/W): Interrupt disabled (default)D2CTIE8: 8 Hz Interrupt Enable Bit
Enables or disables 8 Hz interrupts.

1 (R/W): Interrupt enabled

0 (R/W): Interrupt disabled (default)

D1 CTIE2: 2 Hz Interrupt Enable Bit

Enables or disables 2 Hz interrupts. 1 (R/W): Interrupt enabled 0 (R/W): Interrupt disabled (default)

D0 CTIE1: 1 Hz Interrupt Enable Bit

Enables or disables 1 Hz interrupts.

- 1 (R/W): Interrupt enabled
- 0 (R/W): Interrupt disabled (default)

Clock Timer Interrupt Flag Register (CT_IFLG)

Register name	Address	Bit	Name	Function	Setting			Init.	R/W	Remarks	
Clock Timer	0x5003	D7–4	-	reserved		-			-	-	0 when being read.
Interrupt Flag	(8 bits)	D3	CTIF32	32 Hz interrupt flag	1	Cause of	0	Cause of	0	R/W	Reset by writing 1.
Register		D2	CTIF8	8 Hz interrupt flag	1	interrupt		interrupt not	0	R/W	
(CT_IFLG)		D1	CTIF2	2 Hz interrupt flag	1	occurred		occurred	0	R/W	
		D0	CTIF1	1 Hz interrupt flag	1				0	R/W	

This register indicates the occurrence state of interrupt causes due to 32 Hz, 8 Hz, 2 Hz, and 1 Hz signals. If a CT interrupt occurs, identify the interrupt cause (frequency) by reading the interrupt flag in this register. CTIF* is a CT module interrupt flag that is set to 1 at the falling edge of the corresponding 32 Hz, 8 Hz, 2 Hz, or 1 Hz interrupt. CTIF* is reset by writing 1.

D[7:4] Reserved

D3 CTIF32: 32 Hz Interrupt Flag Bit

Indicates whether the cause of 32 Hz interrupt has occurred or not.

- 1 (R): Cause of interrupt has occurred
- 0 (R): No cause of interrupt has occurred (default)
- 1 (W): Flag is reset
- 0 (W): Ignored

D2 CTIF8: 8 Hz Interrupt Flag Bit

Indicates whether the cause of 8 Hz interrupt has occurred or not.

- 1 (R): Cause of interrupt has occurred
- 0 (R): No cause of interrupt has occurred (default)
- 1 (W): Flag is reset
- 0 (W): Ignored

D1 CTIF2: 2 Hz Interrupt Flag Bit

Indicates whether the cause of 2 Hz interrupt has occurred or not.

- 1 (R): Cause of interrupt has occurred
- 0 (R): No cause of interrupt has occurred (default)
- 1 (W): Flag is reset
- 0 (W): Ignored

D0 CTIF1: 1 Hz Interrupt Flag Bit

- Indicates whether the cause of 1 Hz interrupt has occurred or not.
- 1 (R): Cause of interrupt has occurred
- 0 (R): No cause of interrupt has occurred (default)
- 1 (W): Flag is reset
- 0 (W): Ignored

13 Watchdog Timer (WDT)

13.1 WDT Module Overview

The S1C17656 includes a watchdog timer module (WDT) that uses the OSC1A oscillator as its clock source. This timer is used to detect CPU runaway.

The features of WDT are listed below.

- 10-bit up counter
- Either reset or NMI can be generated if the counter overflows.

Figure 13.1.1 shows the WDT configuration.

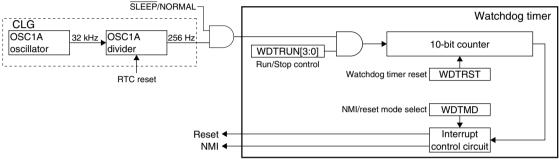


Figure 13.1.1 WDT Configuration

The WDT module generates an NMI or reset (selectable via software) to the CPU if not reset within 131,072/fosc1A seconds (4 seconds when fosc1A = 32.768 kHz).

Reset WDT via software within this cycle to prevent NMI/resets, which in turn enables runaway detection for programs that do not pass through the handler routine.

13.2 Operation Clock

The WDT module uses the 256 Hz clock output by the CLG module (256 Hz clock derived from the OSC1A divider) as the operation clock. Therefore, the OSC1A oscillator must be turned on before starting the WDT module. However, the clock is not supplied to the WDT module in SLEEP mode even if the OSC1A oscillator is on. For detailed information on clock control, see the "Clock Generator (CLG)" chapter.

- **Notes:** The WDT module input clock frequency is 256 Hz only when the OSC1A clock frequency is 32.768 kHz. The frequency and time described in this chapter will vary accordingly for other OSC1A clock frequencies.
 - The OSC1A divider is reset when the RTC starts running (when 1 is written to RTCRUN/RTC_ CTL register). This affects the count operations of the WDT module, as new 256 Hz clock cycle begins from that point.

13.3 WDT Control

13.3.1 NMI/Reset Mode Selection

WDTMD/WDT_ST register is used to select whether an NMI signal or a reset signal is output when WDT has not been reset within the NMI/reset generation cycle.

To generate an NMI, set WDTMD to 0 (default). Set to 1 to generate a reset.

13.3.2 WDT Run/Stop Control

WDT starts counting when a value other than 0b1010 is written to WDTRUN[3:0]/WDT_CTL register and stops when 0b1010 is written.

At initial reset, WDTRUN[3:0] is set to 0b1010 to stop the watchdog timer.

Since an NMI or reset may be generated immediately after running depending on the counter value, WDT should also be reset concurrently (before running the watchdog timer), as explained in the following section.

13.3.3 WDT Reset

To reset WDT, write 1 to WDTRST/WDT_CTL register.

A location should be provided for periodically processing the routine for resetting WDT before an NMI or reset is generated when using WDT. Process this routine within 131,072/foscia second (4 seconds when foscia = 32.768 kHz) cycle.

After resetting, WDT starts counting with a new NMI/Reset generation cycle.

If WDT is not reset within the NMI/Reset generation cycle for any reason, the CPU is switched to interrupt processing by NMI or reset, the interrupt vector is read out, and the interrupt handler routine is executed. The reset and NMI vector addresses are TTBR + 0x0 and TTBR + 0x08.

If the counter overflows and generates an NMI without WDT being reset, WDTST/WDT_ST register is set to 1. This bit is provided to confirm that WDT was the source of the NMI. The WDTST set to 1 is cleared to 0 by resetting WDT.

13.3.4 Operations in HALT and SLEEP Modes

HALT mode

The WDT module operates in HALT mode, as the clock is supplied. HALT mode is therefore cleared by an NMI or reset if it continues for more than the NMI/reset generation cycle. To disable WDT while in HALT mode, stop WDT by writing 0b1010 to WDTRUN[3:0]/WDT_CTL register before executing the halt instruction. Reset WDT before resuming operations after HALT mode is cleared.

SLEEP mode

The clock supplied from the CLG module is stopped in SLEEP mode, which also stops WDT. To prevent generation of an unnecessary NMI or reset after clearing SLEEP mode, reset WDT before executing the slp instruction. WDT should also be stopped as required using WDTRUN[3:0].

13.4 Control Register Details

	Table 13.4.1 List of WDT Registers									
Address		Register name	Function							
0x5040	WDT_CTL	Watchdog Timer Control Register	Resets and starts/stops the timer.							
0x5041	WDT_ST	Watchdog Timer Status Register	Sets the timer mode and indicates NMI status.							

The WDT registers are described in detail below.

Note: When data is written to the registers, the "Reserved" bits must always be written as 0 and not 1.

Watchdog Timer Control Register (WDT_CTL)

Register name	Address	Bit	Name	Function Settir		ting	Init.	R/W	Remarks
Watchdog	0x5040	D7–5	-	reserved	-	_	-	-	0 when being read.
Timer Control	(8 bits)	D4	WDTRST	Watchdog timer reset	1 Reset	0 Ignored	0	W	-
Register		D3–0	WDTRUN[3:0]	Watchdog timer run/stop control	Other than 1010	1010	1010	R/W	
(WDT_CTL)				- '	Run	Stop			

D[7:5] Reserved

D4 WDTRST: Watchdog Timer Reset Bit

Resets WDT.

- 1 (W): Reset
- 0 (W): Ignored
- 0 (R): Always 0 when read (default)
- **Note**: To use WDT, it must be reset by writing 1 to this bit within the NMI/reset generation cycle (4 seconds when fosc1A = 32.768 kHz). This resets the up-counter to 0 and starts counting with a new NMI/reset generation cycle.

D[3:0] WDTRUN[3:0]: Watchdog Timer Run/Stop Control Bits Controls WDT Run/Stop. Values other than 0b1010 (R/W): Run 0b1010 (R/W): Stop (default)

Note: WDT must also be reset to prevent generation of an unnecessary NMI or Reset before starting WDT.

Watchdog Timer Status Register (WDT_ST)

Register name	Address	Bit	Name	Function Setting Ir		Init.	R/W	Remarks			
Watchdog	0x5041	D7–2	–	reserved	-		-	-	0 when being read.		
Timer Status	(8 bits)								-		
Register		D1	WDTMD	NMI/Reset mode select	1	Reset	0	NMI	0	R/W	
(WDT_ST)		D0	WDTST	NMI status	1	NMI occurred	0	Not occurred	0	R	

D[7:2] Reserved

D1 WDTMD: NMI/Reset Mode Select Bit

Selects NMI or reset generation on counter overflow.

1 (R/W): Reset

0 (R/W): NMI (default)

Setting this bit to 1 outputs a reset signal when the counter overflows. Setting to 0 outputs an NMI signal.

D0 WDTST: NMI Status Bit

Indicates a counter overflow and NMI occurrence.

1 (R): NMI occurred (counter overflow)

0 (R): NMI not occurred (default)

This bit confirms that WDT was the source of the NMI. The WDTST set to 1 is cleared to 0 by resetting WDT.

This is also set by a counter overflow if reset output is selected, but is cleared by initial reset and cannot be confirmed.

14 UART

14.1 UART Module Overview

The S1C17656 includes a UART module for asynchronous communication. It includes a 2-byte receive data buffer and 1-byte transmit data buffer allowing successive data transfer. The UART module also includes an RZI modula-tor/demodulator circuit that enables IrDA 1.0-compatible infrared communications simply by adding basic external circuits.

The following shows the main features of the UART:

- Number of channels: 1 channel
- Transfer rate: 150 to 230,400 bps (150 to 115,200 bps in IrDA mode)
- Transfer clock: Internal clock (baud rate generator output) or an external clock (SCLK input) can be selected.
- Character length: 7 or 8 bits (LSB first)
- Parity mode: Even, odd, or no parity
- Stop bit: 1 or 2 bits
- Start bit: 1 bit fixed
- Supports full-duplex communications.
- Includes a 2-byte receive data buffer and a 1-byte transmit data buffer.
- Includes a baud rate generator with fine adjustment function.
- Includes an RZI modulator/demodulator circuit to support IrDA 1.0-compatible infrared communications.
- Can detect parity error, framing error, and overrun error during receiving.
- Can generate receive buffer full, transmit buffer empty, end of transmission and receive error interrupts.

Figure 14.1.1 shows the UART configuration.

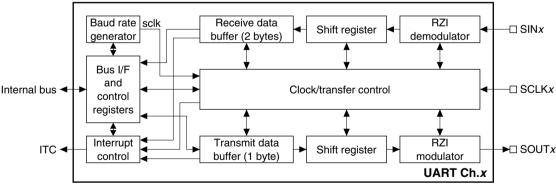


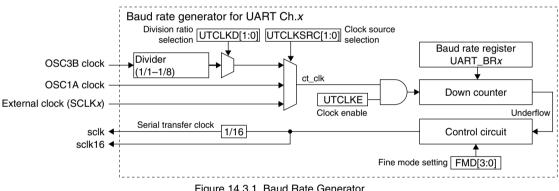
Figure 14.1.1 UART Configuration

Note: The letter '*x*' in register and pin names refers to a channel number (0). Example: UART_CTL*x* register Ch.0: UART_CTL0 register

14.2 UART Input/Output Pins

Table 14.2.1 lists the UART input/output pins.

Pin name	I/O	Qty	Function
SIN0 (Ch.0)	1	1	UART data input pin
			Inputs serial data sent from an external serial device.
SOUT0 (Ch.0)	0	1	UART data output pin
			Outputs serial data sent to an external serial device.
SCLK0 (Ch.0)	1	1	UART clock input pin
. ,			Inputs the transfer clock when an external clock is used.


Table 14.2.1 List of UART Pins

The UART input/output pins (SINx, SOUTx, SCLKx) are shared with I/O ports and are initially set as general purpose I/O port pins. The pin functions must be switched using the port function select bits to use the general purpose I/O port pins as UART input/output pins.

For detailed information on pin function switching, see the "I/O Ports (P)" chapter.

14.3 Baud Rate Generator

The UART module includes a baud rate generator to generate the transfer (sampling) clock. It consists of an 8-bit programmable timer with fine mode. The timer counts down from the initial value set via software and outputs an underflow signal when the counter underflows. The underflow signal is used to generate the transfer clock. The underflow cycle can be programmed by selecting the clock source and initial data, enabling the application program to obtain serial transfer rates as required. Fine mode provides a function that minimizes transfer rate errors.

Figure 14.3.1 Baud Rate Generator

Clock source settings

The clock source can be selected from OSC3B, OSC1A, or external clock using UTCLKSRC[1:0]/UART CLKx register.

UTCLKSRC[1:0]	Clock source									
0x3	External clock (SCLKx)									
0x2	Reserved									
0x1	OSC1A									
0x0	OSC3B									

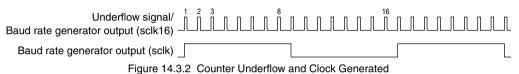
Table 14.3.1	Clock Source Selection
--------------	-------------------------------

(Default: 0x0)

Note: When inputting the external clock via the SCLKx pin, the clock duty ratio must be 50%.

When OSC3B is selected as the clock source, use UTCLKD[1:0]/UART_CLKx register to select the division ratio.

UTCLKD[1:0]	Division ratio
0x3	1/8
0x2	1/4
0x1	1/2
0x0	1/1
	(Default: 0x0)


Table 14.3.2 OSC3B Division Ratio Selection

Clock supply to the counter is controlled using UTCLKE/UART_CLKx register. The UTCLKE default setting is 0, which disables the clock supply. Setting UTCLKE to 1 sends the clock selected to the counter.

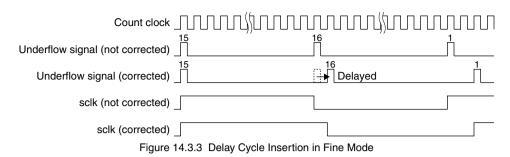
Initial counter value setting

BR[7:0]/UART_BRx register is used to set the initial value for the down counter.

The initial counter value is preset to the down counter if the counter underflows. This means that the initial counter value and the count clock frequency determine the time elapsed between underflows.

Use the following equations to calculate the initial counter value for obtaining the desired transfer rate.

ct_clk $\{(B\overline{R} + 1) \times 16 + FMD\}\$ $B\overline{R} = (----- - FMD - 16) \div 16$ ct_clk: Count clock frequency (Hz) BR: BR[7:0] setting (0 to 255) bps: Transfer rate (bit/s) FMD: FMD[3:0] (fine mode) setting (0 to 15)


Note: The UART transfer rate is capped at 230,400 bps (115,200 bps in IrDA mode). Do not set faster transfer rates.

Fine Mode

Fine mode provides a function that minimizes transfer rate errors. The baud rate generator output clock can be set to the required frequency by selecting the appropriate clock source and initial counter data. Note that errors may occur, depending on the transfer rate. Fine mode extends the output clock cycle by delaying the underflow pulse from the counter. This delay can be specified with the FMD[3:0]/UART_FMD*x* register. FMD[3:0] specifies the delay pattern to be inserted into a 16 underflow period. Inserting one delay extends the output clock cycle by one count clock cycle.

FMD[3:0]	Underflow number															
FIND[3:0]	1 2 3 4 5 6 7 8 9 10 11							12	13	14	15	16				
0x0	-	-	-	-	-	-	-	-	—	-	—	-	—	-	—	
0x1	-	-	-	-	-	-	-	-	-	-	-	-	—	-	—	D
0x2	-	-	-	-	-	-	-	D	-	-	-	-	-	-	-	D
0x3	-	-	-	-	-	-	-	D	-	-	-	D	-	-	-	D
0x4	-	-	-	D	-	-	-	D	-	-	-	D	-	-	-	D
0x5	-	-	-	D	-	-	-	D	-	-	-	D	-	D	-	D
0x6	-	-	-	D	-	D	-	D	-	-	-	D	-	D	-	D
0x7	-	-	-	D	-	D	-	D	-	D	-	D	-	D	-	D
0x8	-	D	-	D	-	D	-	D	-	D	-	D	-	D	-	D
0x9	—	D	-	D	-	D	-	D	-	D	-	D	-	D	D	D
0xa	-	D	-	D	-	D	D	D	-	D	-	D	-	D	D	D
0xb	-	D	-	D	-	D	D	D	-	D	D	D	-	D	D	D
0xc	-	D	D	D	-	D	D	D	-	D	D	D	-	D	D	D
0xd	-	D	D	D	-	D	D	D	_	D	D	D	D	D	D	D
0xe	-	D	D	D	D	D	D	D	-	D	D	D	D	D	D	D
Oxf	-	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D

Table 14.3.3 Delay Patterns Specified by FMD[3:0]

At initial reset, FMD[3:0] is set to 0x0, preventing insertion of delay cycles.

Note: Make sure the UART is halted (RXEN/UART_CTL*x* register = 0) before setting the baud rate generator.

14.4 Transfer Data Settings

Set the following conditions to configure the transfer data format.

- Data length: 7 or 8 bits
- Start bit: Fixed at 1 bit
- Stop bit: 1 or 2 bits
- Parity bit: Even, odd, or no parity
- **Note**: Make sure the UART is halted (RXEN/UART_CTL*x* register = 0) before changing transfer data format settings.

Data length

The data length is selected by CHLN/UART_MODx register. Setting CHLN to 0 (default) configures the data length to 7 bits. Setting CHLN to 1 configures it to 8 bits.

Stop bit

The stop bit length is selected by STPB/UART_MOD*x* register. Setting STPB to 0 (default) configures the stop bit length to 1 bit. Setting STPB to 1 configures it to 2 bits.

Parity bit

Whether the parity function is enabled or disabled is selected by PREN/UART_MOD*x* register. Setting PREN to 0 (default) disables the parity function. In this case, no parity bit is added to the transfer data and the data is not checked for parity when received. Setting PREN to 1 enables the parity function. In this case, a parity bit is added to the transfer data and the data is checked for parity when received. When the parity function is enabled, the parity mode is selected by PMD/UART_MOD*x* register. Setting PMD to 0 (default) adds a parity bit and checks for even parity. Setting PMD to 1 adds a parity bit and checks for odd parity.

Sampling clock (sclk)
CHLN = 0, PREN = 0, STPB = 0 <u>s1 (D0) D1) D2) D3) D4) D5) D6 </u> s2
CHLN = 0, PREN = 1, STPB = 0S1 (_D0) D1 (_D2) D3 (_D4) D5 (_D6) p / s2
CHLN = 0, PREN = 0, STPB = 1
CHLN = 0, PREN = 1, STPB = 1S1 (_D0) D1 (D2) D3 (D4) D5 (D6) p / s2 s3
CHLN = 1, PREN = 0, STPB = 0 <u>s1 (D0) D1) D2) D3) D4) D5) D6) D7 </u> s2
CHLN = 1, PREN = 1, STPB = 0 <u>s1 (D0) D1) D2) D3) D4) D5) D6) D7) p</u> s2
CHLN = 1, PREN = 0, STPB = 1 <u>s1 (D0) D1) D2) D3) D4) D5) D6) D7) s2 s3</u>
CHLN = 1, PREN = 1, STPB = 1
s1: start bit, s2 & s3: stop bit, p: parity bit
Figure 14.4.1 Transfer Data Format

14.5 Data Transfer Control

Make the following settings before starting data transfers.

- (1) Select the input clock. (See Section 14.3.)
- (2) Program the baud rate generator to output the transfer clock. (See Section 14.3.)
- (3) Set the transfer data format. (See Section 14.4.)
- (4) To use the IrDA interface, set IrDA mode. (See Section 14.8.)
- (5) Set interrupt conditions to use UART interrupts. (See Section 14.7.)
- **Note**: Make sure the UART is halted (RXEN/UART_CTL*x* register = 0) before changing the above settings.

Enabling data transfers

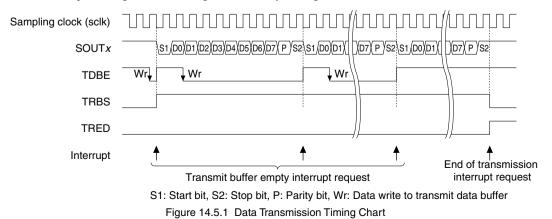
Set RXEN/UART_CTLx register to 1 to enable data transfers. This puts the transmitter/receiver circuit in ready-to-transmit/receive status.

Note: Do not set RXEN to 0 while the UART is sending or receiving data.

Data transmission control

To start data transmission, write the transmit data to TXD[7:0]/UART_TXDx register.

The data is written to the transmit data buffer, and the transmitter circuit starts sending data.


The buffer data is sent to the transmit shift register, and the start bit is output from the SOUTx pin. The data in the shift register is then output from the LSB. The transfer data bit is shifted in sync with the sampling clock rising edge and output in sequence via the SOUTx pin. Following output of MSB, the parity bit (if parity is enabled) and the stop bit are output.

The transmitter circuit includes three status flags: TDBE/UART_STx register, TRBS/UART_STx register, and TRED/UART_STx register.

The TDBE flag indicates the transmit data buffer status. This flag switches to 0 when the application program writes data to the transmit data buffer and reverts to 1 when the buffer data is sent to the transmit shift register. An interrupt can be generated when this flag is set to 1 (see Section 14.7). Subsequent data is sent after confirming that the transmit data buffer is empty either by using this interrupt or by reading the TDBE flag. The transmit data buffer size is 1 byte, but a shift register is provided separately to allow data to be written while the previous data is being sent. Always confirm that the transmit data buffer is empty before writing transmit data. Writing data while the TDBE flag is 0 will overwrite earlier transmit data inside the transmit data buffer.

The TRBS flag indicates the shift register status. This flag switches to 1 when transmit data is loaded from the transmit data buffer to the shift register and reverts to 0 once the data is sent. Read this flag to check whether the transmitter circuit is operating or at standby.

The TRED switches to 1 when the TRBS flag reverts to 0 from 1, indicating that transmit operation has completed. An interrupt can be generated when this flag is set to 1 (see Section 14.7). Use this interrupt for transmission end processing. The TRED flag is reset to 0 by writing 1.

S1C17656 TECHNICAL MANUAL Seik

(Rev. 1.0)

14 UART

Data reception control

The receiver circuit is activated by setting RXEN to 1, enabling data to be received from an external serial device.

When the external serial device sends a start bit, the receiver circuit detects its Low level and starts sampling the following data bits. The data bits are sampled at the sampling clock rising edge, and the lead bit is loaded into the receive shift register as LSB. Once the MSB has been received into the shift register, the received data is loaded into the receive data buffer. If parity checking is enabled, the receiver circuit checks the received data at the same time by checking the parity bit received immediately after the MSB.

The receive data buffer, a 2-byte FIFO, receives data until full.

Received data in the buffer can be read from RXD[7:0]/UART_RXDx register. The oldest data is read out first and data is cleared by reading.

The receiver circuit includes two buffer status flags: RDRY/UART_STx register and RD2B/UART_STx register.

The RDRY flag indicates that the receive data buffer still contains data. The RD2B flag indicates that the receive data buffer is full.

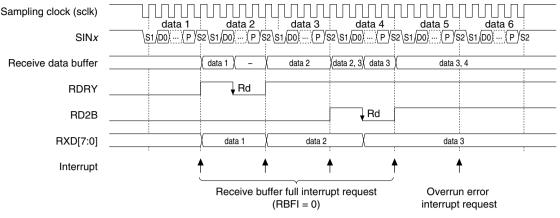
(1)
$$RDRY = 0, RD2B = 0$$

The receive data buffer contents need not be read, since no data has been received.

(2)
$$RDRY = 1, RD2B = 0$$

One 8-bit data has been received. Read the receive data buffer contents once. This resets the RDRY flag. The buffer reverts to state (1) above.

If the receive data buffer contents are read twice, the second data read will be invalid.


(3) RDRY = 1, RD2B = 1

Two 8-bit data have been received. Read the receive data buffer contents twice. The receive data buffer outputs the oldest data first. This resets the RD2B flag. The buffer then reverts to the state in (2) above. The second read outputs the most recent received data, after which the buffer reverts to the state in (1) above. Even when the receive data buffer is full, the shift register can start receiving 8-bit data one more time. An overrun error will occur if receiving is finished before the receive data buffer has been read. In this case, the last received data cannot be read. The contents of the receive data buffer must be read out before an overrun error occurs. For detailed information on overrun errors, refer to Section 14.6.

The volume of data received can be checked by reading these flags.

The UART allows receive buffer full interrupts to be generated once data has been received in the receive data buffer. These interrupts can be used to read the receive data buffer. By default, a receive buffer full interrupt occurs when the receive data buffer receives one 8-bit data (status (2) above). This can be changed by setting RBFI/UART_CTLx register to 1 so that an interrupt occurs when the receive data buffer receives two 8-bit data.

Three error flags are also provided in addition to the flags previously mentioned. See Section 14.6 for detailed information on flags and receive errors.

S1: Start bit, S2: Stop bit, P: Parity bit, Rd: Data read from RXD[7:0]

Figure 14.5.2 Data Receiving Timing Chart

Disabling data transfers

Write 0 to RXEN to disable data transfers. The data being transferred cannot be guaranteed if RXEN is set to 0 while data is being sent or received. Before setting RXEN to 0, check the data transfer status with software in consideration of the communication procedure. The data transmit status can be checked using the TRBS flag.

Note: Setting RXEN to 0 empties the transmit data buffer, clearing any remaining data. The data being transferred cannot be guaranteed if RXEN is set to 0 while data is being sent or received. Make sure that the TDBE flag is 1 and the TRBS and RDRY flags are both 0 before disabling data transfer.

14.6 Receive Errors

Three different receive errors may be detected while receiving data.

Since receive errors are interrupt causes, they can be processed by generating interrupts. For more information on UART interrupt control, see Section 14.7.

Parity error

If PREN/UART_MODx register has been set to 1 (parity enabled), data received is checked for parity.

Data received in the shift register is checked for parity when sent to the receive data buffer. The matching is checked against the PMD/UART_MOD*x* register setting (odd or even parity). If the result is a non-match, a parity error is issued, and the parity error flag PER/UART_ST*x* register is set to 1. Even if this error occurs, the data received is sent to the receive data buffer, and the receiving operation continues. However, the received data cannot be guaranteed if a parity error occurs. The PER flag is reset to 0 by writing 1.

Framing error

A framing error occurs if the stop bit is received as 0 and the UART determines loss of sync. If the stop bit is set to two bits, only the first bit is checked.

The framing error flag FER/UART_ST*x* register is set to 1 if this error occurs. The received data is still transferred to the receive data buffer if this error occurs and the receiving operation continues, but the data cannot be guaranteed, even if no framing error occurs for subsequent data receiving. The FER flag is reset to 0 by writing 1.

Overrun error

Even if the receive data buffer is full (two 8-bit data already received), the third data can be received in the shift register. However, if the receive data buffer is not emptied (by reading out data received) by the time this data has been received, the third data received in the shift register will not be sent to the buffer and generate an overrun error. If an overrun error occurs, the overrun error flag OER/UART_STx register is set to 1. The receiving operation continues even if this error occurs. The OER flag is reset to 0 by writing 1.

14.7 UART Interrupts

The UART includes a function for generating the following four different types of interrupts.

- Transmit buffer empty interrupt
- End of transmission interrupt
- Receive buffer full interrupt
- Receive error interrupt

The UART outputs one interrupt signal shared by the four above interrupt causes to the interrupt controller (ITC). Inspect the status flag and error flag to determine the interrupt cause occurred.

Transmit buffer empty interrupt

To use this interrupt, set TIEN/UART_CTLx register to 1. If TIEN is set to 1 while TDBE/UART_STx register is 1 (transmit data buffer empty) or if TDBE is set to 1 (when the transmit data buffer becomes empty by loading the transmit data written to it to the shift register) while TIEN is 1, an interrupt request is sent to the ITC. An interrupt occurs if other interrupt conditions are met.

If TIEN is set to 0 (default), interrupt requests for this cause will not be sent to the ITC.

You can inspect the TDBE flag in the UART interrupt handler routine to determine whether the UART interrupt is attributable to a transmit buffer empty. If TDBE is 1, the next transmit data can be written to the transmit data buffer by the interrupt handler routine.

End of transmission interrupt

To use this interrupt, set TEIEN/UART_CTLx register to 1. If TEIEN is set to 0 (default), interrupt requests for this cause will not be sent to the ITC.

When the TRBS flag is reset to 0, the UART sets TRED/UART_STx register to 1, indicating that the transmit operation has completed. If end of transmission interrupts are enabled (TEIEN = 1), an interrupt request is sent simultaneously to the ITC.

An interrupt occurs if other interrupt conditions are met. You can inspect the TRED flag in the UART interrupt handler routine to determine whether the UART interrupt is attributable to an end of transmission. If TRED is 1, the transmission processing can be terminated.

Receive buffer full interrupt

To use this interrupt, set RIEN/UART_CTLx register to 1. If RIEN is set to 0 (default), interrupt requests for this cause will not be sent to the ITC.

If the specified volume of received data is loaded into the receive data buffer when a receive buffer full interrupt is enabled (RIEN = 1), the UART outputs an interrupt request to the ITC. If RBFI/UART_CTLx register is 0, an interrupt request is output as soon as one received data is loaded into the receive data buffer (when RDRY/UART_STx register is set to 1). If RBFI is 1, an interrupt request is output as soon as two received data are loaded into the receive data buffer (when RD2B/UART_STx register is set to 1).

An interrupt occurs if other interrupt conditions are met. You can inspect the RDRY and RD2B flags in the UART interrupt handler routine to determine whether the UART interrupt is attributable to a receive buffer full. If RDRY or RD2B is 1, the received data can be read from the receive data buffer by the interrupt handler routine.

Receive error interrupt

To use this interrupt, set REIEN/UART_CTLx register to 1. If REIEN is set to 0 (default), interrupt requests for this cause will not be sent to the ITC.

The UART sets an error flag, PER, FER, or OER/UART_STx register to 1 if a parity error, framing error, or overrun error is detected when receiving data. If receive error interrupts are enabled (REIEN = 1), an interrupt request is sent simultaneously to the ITC.

If other interrupt conditions are satisfied, an interrupt occurs. You can inspect the PER, FER, and OER flags in the UART interrupt handler routine to determine whether the UART interrupt was caused by a receive error. If any of the error flags has the value 1, the interrupt handler routine will proceed with error recovery.

For more information on interrupt processing, see the "Interrupt Controller (ITC)" chapter.

14.8 IrDA Interface

This UART module includes an RZI modulator/demodulator circuit enabling implementation of IrDA 1.0-compatible infrared communication function simply by adding basic external circuits.

The transmit data output from the UART transmit shift register is input to the modulator circuit and output from the SOUTx pin after the Low pulse has been modulated to a $3 \times \text{sclk16}$ cycle.

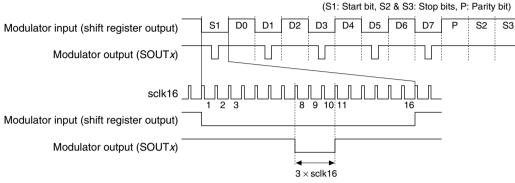
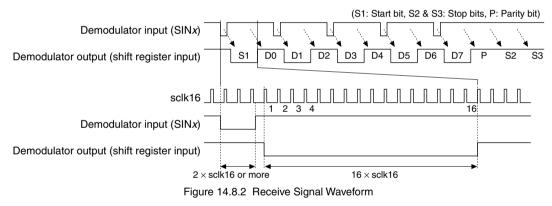



Figure 14.8.1 Transmission Signal Waveform

The received IrDA signal is input to the demodulator circuit and the Low pulse width is converted to $16 \times \text{sclk16}$ cycles before entry to the receive shift register. The demodulator circuit uses the pulse detection clock selected separately from the transfer clock to detect Low pulses input (when minimum pulse width = $1.41 \text{ } \mu \text{s}/115,200 \text{ } \text{bps}$).

IrDA enable

To use the IrDA interface function, set IRMD/UART_EXPx register to 1. This enables the RZI modulator/demodulator circuit.

Note: This setting must be performed before setting other UART conditions.

Serial data transfer control

Data transfer control in IrDA mode is identical to that for normal interfaces. For detailed information on data format settings and data transfer and interrupt control methods, refer to the preceding sections.

14.9 Control Register Details

Address		Register name	Function								
0x4100	UART_ST0 UART Ch.0 Status Register		Indicates transfer, buffer and error statuses.								
0x4101	UART_TXD0	UART Ch.0 Transmit Data Register	Transmit data								
0x4102	UART_RXD0	UART Ch.0 Receive Data Register	Receive data								
0x4103	UART_MOD0	UART Ch.0 Mode Register	Sets transfer data format.								
0x4104	UART_CTL0	UART Ch.0 Control Register	Controls data transfer.								
0x4105	UART_EXP0	UART Ch.0 Expansion Register	Sets IrDA mode.								
0x4106	UART_BR0	UART Ch.0 Baud Rate Register	Sets baud rate.								
0x4107	UART_FMD0	UART Ch.0 Fine Mode Register	Sets fine mode.								
0x506c	UART_CLK0	UART Ch.0 Clock Control Register	Selects the baud rate generator clock.								

Table 14.9.1 List of UART Registers

The UART registers are described in detail below.

- Notes: When data is written to the registers, the "Reserved" bits must always be written as 0 and not 1.
 - The following UART bits should be set with transfers disabled (RXEN = 0).
 - All UART_MODx register bits (STPB, PMD, PREN, CHLN)
 - RBFI bit in the UART_CTLx register
 - All UART_EXPx register bits (IRMD)
 - All UART_BRx register bits (BR[7:0])
 - All UART_FMDx register bits (FMD[3:0])
 - All UART_CLKx register bits (UTCLKD[1:0], UTCLKSRC[1:0], UTCLKE)

UART Ch.x Status Register (UART_STx)

Register name	Address	Bit	Name	Function	Setting		Init.	R/W	Remarks		
UART Ch.x	0x4100	D7	TRED	End of transmission flag	1	Completed	0	Not completed	0	R/W	Reset by writing 1.
Status Register	(8 bits)	D6	FER	Framing error flag	1	Error	0	Normal	0	R/W	
(UART_STx)		D5	PER	Parity error flag	1	Error	0	Normal	0	R/W	
		D4	OER	Overrun error flag	1	Error	0	Normal	0	R/W	
		D3	RD2B	Second byte receive flag	1	Ready	0	Empty	0	R	
		D2	TRBS	Transmit busy flag	1	Busy	0	Idle	0	R	Shift register status
		D1	RDRY	Receive data ready flag 1 Ready 0 Empty		0	R				
		D0	TDBE	Transmit data buffer empty flag	1	Empty	0	Not empty	1	R	

D7 TRED: End of Transmission Flag Bit

Indicates whether the transmit operation has completed or not.

- 1 (R): Completed
- 0 (R): Not completed (default)
- 1 (W): Reset to 0
- 0 (W): Ignored

TRED is set to 1 when the TRBS flag is reset to 0 (when transmission has completed). TRED is reset by writing 1.

D6 FER: Framing Error Flag Bit

Indicates whether a framing error has occurred or not.

- 1 (R): Error occurred
- 0 (R): No error (default)
- 1 (W): Reset to 0
- 0 (W): Ignored

FER is set to 1 when a framing error occurs. Framing errors occur when data is received with the stop bit set to 0. FER is reset by writing 1.

D5 PER: Parity Error Flag Bit

Indicates whether a parity error has occurred or not.

- 1 (R): Error occurred
- 0 (R): No error (default)
- 1 (W): Reset to 0
- 0 (W): Ignored

PER is set to 1 when a parity error occurs. Parity checking is enabled only when PREN/ UART_MOD*x* register is set to 1 and is performed when received data is transferred from the shift register to the receive data buffer. PER is reset by writing 1.

D4 OER: Overrun Error Flag Bit

Indicates whether an overrun error has occurred or not.

- 1 (R): Error occurred
- 0 (R): No error (default)
- 1 (W): Reset to 0
- 0 (W): Ignored

OER is set to 1 when an overrun error occurs. Overrun errors occur if the receive data buffer is full when data is received in the shift register. The receive data buffer is not overwritten even if this error occurs. The shift register is overwritten as soon as the error occurs. OER is reset by writing 1.

D3 RD2B: Second Byte Receive Flag Bit

Indicates that the receive data buffer contains two received data.

- 1 (R): Second byte can be read
- 0 (R): Second byte not received (default)

RD2B is set to 1 when the second byte of data is loaded into the receive data buffer and is reset to 0 when the first data is read from the receive data buffer.

D2 TRBS: Transmit Busy Flag Bit

Indicates the transmit shift register status.

- 1 (R): Operating
- 0 (R): Standby (default)

TRBS is set to 1 when transmit data is loaded from the transmit data buffer into the shift register and is reset to 0 when the data transfer is completed. Inspect TRBS to determine whether the transmit circuit is operating or at standby.

D1 RDRY: Receive Data Ready Flag Bit

Indicates that the receive data buffer contains valid received data.

- 1 (R): Data can be read
- 0 (R): Buffer empty (default)

RDRY is set to 1 when received data is loaded into the receive data buffer and is reset to 0 when all data has been read from the receive data buffer.

D0 TDBE: Transmit Data Buffer Empty Flag Bit

Indicates the transmit data buffer status.

- 1 (R): Buffer empty (default)
- 0 (R): Data exists

TDBE is reset to 0 when transmit data is written to the transmit data buffer and is set to 1 when the data is transferred to the shift register.

UART Ch.x Transmit Data Register (UART_TXDx)

Register name	Address	Bit	Name	Function	Setting	Init.	R/W	Remarks
UART Ch. <i>x</i> Transmit Data	0x4101 (8 bits)	D7–0		Transmit data TXD7(6) = MSB	0x0 to 0xff (0x7f)	0x0	R/W	
Register (UART_TXD <i>x</i>)	(0 5.10)			TXD0 = LSB				

D[7:0] TXD[7:0]: Transmit Data

Write transmit data to be set in the transmit data buffer. (Default: 0x0)

The UART starts transmitting when data is written to this register. Data written to TXD[7:0] is retained until sent to the transmit data buffer.

Transmitting data from within the transmit data buffer generates a cause of transmit buffer empty interrupt.

TXD7 (MSB) is invalid in 7-bit mode.

Serial converted data is output from the SOUT*x* pin beginning with the LSB, in which the bits set to 1 are output as High level and bits set to 0 as Low level signals.

This register can also be read.

UART Ch.x Receive Data Register (UART_RXDx)

Register name	Address	Bit	Name	Function	Setting	Init.	R/W	Remarks
UART Ch.x	0x4102	D7–0	RXD[7:0]	Receive data in the receive data	0x0 to 0xff (0x7f)	0x0	R	Older data in the buf-
Receive Data	(8 bits)			buffer				fer is read out first.
Register				RXD7(6) = MSB				
(UART_RXDx)				RXD0 = LSB				

D[7:0] RXD[7:0]: Receive Data

Data in the receive data buffer is read out in sequence, starting with the oldest. Received data is placed in the receive data buffer. The receive data buffer is a 2-byte FIFO that allows proper data reception until it fills, even if data is not read out. If the buffer is full and the shift register also contains received data, an overrun error will occur, unless the data is read out before reception of the subsequent data starts.

The receive circuit includes two receive buffer status flags: RDRY/UART_STx register and RD2B/UART_STx register. The RDRY flag indicates the presence of valid received data in the receive data buffer, while the RD2B flag indicates the presence of two received data in the receive data buffer.

A receive buffer full interrupt occurs when the received data in the receive data buffer reaches the number specified by RBFI/UART_CTLx register.

0 is loaded into RXD7 in 7-bit mode.

Serial data input via the SINx pin is converted to parallel, with the initial bit as LSB, the High level bit as 1, and the Low level bit as 0. This data is then loaded into the receive data buffer. This register is read-only. (Default: 0x0)

UART Ch.x Mode Register (UART_MODx)

			•	· – /							
Register name	Address	Bit	Name	Function		Set	tin	g	Init.	R/W	Remarks
UART Ch.x	0x4103	D7–5	-	reserved			_		-	-	0 when being read.
Mode Register	(8 bits)	D4	CHLN	Character length select	1	8 bits	0	7 bits	0	R/W	
(UART_MOD <i>x</i>)		D3	PREN	Parity enable	1	With parity	0	No parity	0	R/W	1
		D2	PMD	Parity mode select	1	Odd	0	Even	0	R/W	
		D1	STPB	Stop bit select	1	2 bits	0	1 bit	0	R/W	
		D0	-	reserved		-	_		-	-	0 when being read.

D[7:5] Reserved

D4 CHLN: Character Length Select Bit

Selects the serial transfer data length. 1 (R/W): 8 bits 0 (R/W): 7 bits (default)

D3 PREN: Parity Enable Bit

Enables the parity function. 1 (R/W): With parity 0 (R/W): No parity (default)

PREN is used to select whether received data parity checking is performed and whether a parity bit is added to transmit data. Setting PREN to 1 parity-checks the received data. A parity bit is automatically added to the transmit data. If PREN is set to 0, no parity bit is checked or added.

D2 PMD: Parity Mode Select Bit

Selects the parity mode. 1 (R/W): Odd parity 0 (R/W): Even parity (default)

Writing 1 to PMD selects odd parity; writing 0 to it selects even parity. Parity checking and parity bit addition are enabled only when PREN is set to 1. The PMD setting is disabled if PREN is 0.

D1 STPB: Stop Bit Select Bit

Selects the stop bit length. 1 (R/W): 2 bits 0 (R/W): 1 bit (default)

Writing 1 to STPB selects 2 stop bits; writing 0 to it selects 1 bit. The start bit is fixed at 1 bit.

D0 Reserved

UART Ch.x Control Register (UART_CTLx)

Register name	Address	Bit	Name	Function		Set	ting	9	Init.	R/W	Remarks
UART Ch.x	0x4104	D7	TEIEN	End of transmission int. enable	1	Enable	0	Disable	0	R/W	
Control Register	(8 bits)	D6	REIEN	Receive error int. enable	1	Enable	0	Disable	0	R/W	
(UART_CTLx)		D5	RIEN	Receive buffer full int. enable	1	Enable	0	Disable	0	R/W	
		D4	TIEN	Transmit buffer empty int. enable	1	Enable	0	Disable	0	R/W	
		D3–2	-	reserved		-	-		-	-	0 when being read.
		D1	RBFI	Receive buffer full int. condition setup	1	2 bytes	0	1 byte	0	R/W	
		D0	RXEN	UART enable	1	Enable	0	Disable	0	R/W	

D7 TEIEN: End of Transmission Interrupt Enable Bit

Enables interrupt requests to the ITC when transmit operation has completed.

1 (R/W): Enabled

0 (R/W): Disabled (default)

Set this bit to 1 to terminate transmit processing using interrupts.

D6 REIEN: Receive Error Interrupt Enable Bit

Enables interrupt requests to the ITC when a receive error occurs.

1 (R/W): Enabled

0 (R/W): Disabled (default)

Set this bit to 1 to process receive errors using interrupts.

D5 RIEN: Receive Buffer Full Interrupt Enable Bit

Enables interrupt requests to the ITC caused when the received data quantity in the receive data buffer reaches the quantity specified in RBFI.

1 (R/W): Enabled

0 (R/W): Disabled (default)

Set this bit to 1 to read received data using interrupts.

D4 TIEN: Transmit Buffer Empty Interrupt Enable Bit

Enables interrupt requests to the ITC caused when transmission data in the transmit data buffer is sent to the shift register (i.e. when data transmission begins).

1 (R/W): Enabled

0 (R/W): Disabled (default)

Set this bit to 1 to write data to the transmit data buffer using interrupts.

14 UART

D[3:2] Reserved

D1 RBFI: Receive Buffer Full Interrupt Condition Setup Bit

Sets the quantity of data in the receive data buffer to generate a receive buffer full interrupt.

1 (R/W): 2 bytes

0 (R/W): 1 byte (default)

If receive buffer full interrupts are enabled (RIEN = 1), the UART outputs an interrupt request to the ITC when the quantity of received data specified by RBFI is loaded into the receive data buffer.

If RBFI is 0, an interrupt request is output as soon as one received data is loaded into the receive data buffer (when RDRY/UART_STx register is set to 1). If RBFI is 1, an interrupt request is output as soon as two received data are loaded into the receive data buffer (when RD2B/UART_STx register is set to 1).

D0 RXEN: UART Enable Bit

Enables data transfer by the UART. 1 (R/W): Enabled

0 (R/W): Disabled (default)

Set RXEN to 1 before starting UART transfers. Setting RXEN to 0 disables data transfers. Set the transfer conditions while RXEN is 0.

Disabling transfers by writing 0 to RXEN also clears the transmit data buffer.

UART Ch.x Expansion Register (UART_EXPx)

Register name	Address	Bit	Name	Function	S	etting	Init.	R/W	Remarks
UART Ch.x	0x4105	D7–1	-	reserved		-	-	-	0 when being read.
Expansion	(8 bits)								-
Register									
(UART_EXP <i>x</i>)		D0	IRMD	IrDA mode select	1 On	0 Off	0	R/W	

D[7:1] Reserved

D0 IRMD: IrDA Mode Select Bit

Switches the IrDA interface function on and off. 1 (R/W): On 0 (R/W): Off (default)

Set IRMD to 1 to use the IrDA interface. When IRMD is set to 0, this module functions as a normal UART, with no IrDA functions.

UART Ch.x Baud Rate Register (UART_BRx)

Register name	Address	Bit	Name	Function	Setting	Init.	R/W	Remarks
UART Ch.x	0x4106	D7–0	BR[7:0]	Baud rate setting	0x0 to 0xff	0x0	R/W	
Baud Rate	(8 bits)			-				
Register								
(UART_BRx)								

D[7:0] BR[7:0]: Baud Rate Setting Bits

Sets the initial counter value of the baud rate generator. (Default: 0x0)

The counter in the baud rate generator repeats counting from the value set in this register to occurrence of counter underflow to generate the transfer (sampling) clock.

Use the following equations to calculate the initial counter value for obtaining the desired transfer rate.

$$bps = \frac{ct_clk}{\{(BR + 1) \times 16 + FMD\}}$$
$$BR = \left(\frac{ct_clk}{bps} - FMD - 16\right) \div 16$$

ct_clk: Count clock frequency (Hz)

BR: BR[7:0] setting (0 to 255)

bps: Transfer rate (bit/s)

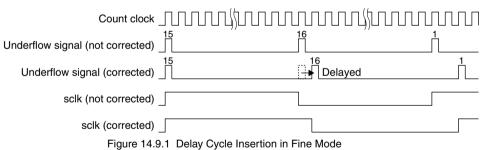
FMD: FMD[3:0] (fine mode) setting (0 to 15)

UART Ch.x Fine Mode Register (UART_FMDx)

Register name	Address	Bit	Name	Function	Setting	Init.	R/W	Remarks
UART Ch.x	0x4107	D7–4	-	reserved	_	-	-	0 when being read.
Fine Mode	(8 bits)	D3–0	FMD[3:0]	Fine mode setup	0x0 to 0xf	0x0	R/W	Set a number of times
Register				-				to insert delay into a
(UART_FMD <i>x</i>)								16-underflow period.

D[7:4] Reserved

D[3:0] FMD[3:0]: Fine Mode Setup Bits


Corrects the transfer rate error. (Default: 0x0)

FMD[3:0] specifies the delay pattern to be inserted into a 16 underflow period of the baud rate generator output clock. Inserting one delay extends the output clock cycle by one count clock cycle.

					.,		Un	derflov	v num	ber						
FMD[3:0]	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0x0	-	-	-	-	-	-	-	_	_	-	-	-	-	-	-	-
0x1	-	-	-	-	_	-	_	-	-	-	-	_	-	-	-	D
0x2	-	-	-	-	-	-	-	D	-	-	-	_	-	-	-	D
0x3	-	-	-	-	-	-	-	D	-	-	-	D	-	-	-	D
0x4	-	-	-	D	-	-	-	D	—	—	—	D	-	-	-	D
0x5	-	-	-	D	-	-	-	D	-	-	-	D	-	D	-	D
0x6	-	-	-	D	-	D	-	D	-	-	-	D	-	D	-	D
0x7	-	-	-	D	-	D	-	D	-	D	-	D	-	D	-	D
0x8	-	D	-	D	-	D	-	D	-	D	-	D	-	D	-	D
0x9	-	D	-	D	-	D	-	D	-	D	-	D	-	D	D	D
0xa	-	D	-	D	-	D	D	D	-	D	-	D	-	D	D	D
0xb	-	D	-	D	-	D	D	D	-	D	D	D	-	D	D	D
0xc	-	D	D	D	-	D	D	D	-	D	D	D	-	D	D	D
0xd	-	D	D	D	-	D	D	D	-	D	D	D	D	D	D	D
0xe	-	D	D	D	D	D	D	D	-	D	D	D	D	D	D	D
Oxf	-	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D

Table 14.9.2 Delay Patterns Specified by FMD[3:0]

D: Indicates the insertion of a delay cycle.

UART Ch.x Clock Control Register (UART_CLKx)

Register name	Address	Bit	Name	Function	Set	ting	Init.	R/W	Remarks
UART Ch.x	0x506c	D7–6	–	reserved	-	_	-	-	0 when being read.
Clock Control	(8 bits)	D5–4	UTCLKD	Clock division ratio select	UTCLKD[1:0]	Division ratio	0x0	R/W	When the clock
Register			[1:0]		0x3	1/8			source is OSC3B
(UART_CLKx)					0x2	1/4			
					0x1	1/2			
					0x0	1/1			
		D3–2	UTCLKSRC	Clock source select	UTCLKSRC	Clock source	0x0	R/W	
			[1:0]		[1:0]	Clock source			
					0x3	External clock]		
					0x2	reserved			
					0x1	OSC1A			
					0x0	OSC3B			
		D1	-	reserved	-	_	-	-	0 when being read.
		D0	UTCLKE	Count clock enable	1 Enable	0 Disable	0	R/W	

D[7:6] Reserved

D[5:4] UTCLKD[1:0]: Clock Division Ratio Select Bits

Selects the division ratio for generating the count clock of the baud rate generator when OSC3B is used as the clock source.

Table 14.9.5 0000D	DIVISION Hallo Selection
UTCLKD[1:0]	Division ratio
0x3	1/8
0x2	1/4
0x1	1/2
0x0	1/1

Table 14.9.3 OSC3B Division Ratio Selection

(Default: 0x0)

D[3:2] UTCLKSRC[1:0]: Clock Source Select Bits

Selects the count clock source for the baud rate generator.

Table 1/ 0 /	Clock Source	Selection
Table 14.9.4	CIOCK SOURCE	Selection

UTCLKSRC[1:0]	Clock source
0x3	External clock (SCLKx)
0x2	Reserved
0x1	OSC1A
0x0	OSC3B

(Default: 0x0)

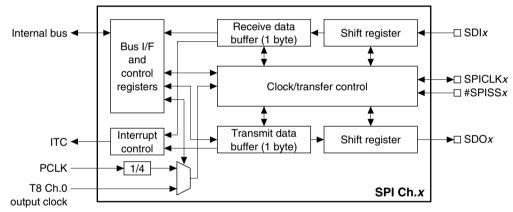
D1 Reserved

D0 UTCLKE: Count Clock Enable Bit

Enables or disables the count clock supply to the counter of the baud rate generator. 1 (R/W): Enabled (on)

0 (R/W): Disabled (off) (default)

The UTCLKE default setting is 0, which disables the clock supply. Setting UTCLKE to 1 sends the clock selected to the counter.


15 SPI

15.1 SPI Module Overview

The S1C17656 includes a synchronized serial interface module (SPI). The following shows the main features of the SPI:

- Number of channels: 1 channel
- Supports both master and slave modes.
- Data length: 8 bits fixed
- Supports both MSB first and LSB first modes.
- Contains one-byte receive data buffer and one-byte transmit data buffer.
- Supports full-duplex communications.
- Data transfer timing (clock phase and polarity variations) is selectable from among 4 types.
- Can generate receive buffer full and transmit buffer empty interrupts.

Figure 15.1.1 shows the SPI module configuration.

Note: The letter '*x*' in register and pin names refers to a channel number (0). Example: SPI_CTL*x* register Ch.0: SPI_CTL0 register

15.2 SPI Input/Output Pins

Table 15.2.1 lists the SPI pins.

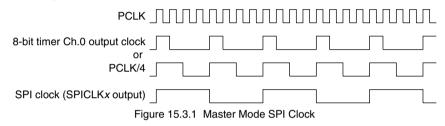
Pin name	I/O	Qty	Function
SDI0 (Ch.0)	I	1	SPI data input pin
			Inputs serial data from SPI bus.
SDO0 (Ch.0)	0	1	SPI data output pin
			Outputs serial data to SPI bus.
SPICLK0 (Ch.0)	I/O	1	SPI external clock input/output pin
			Outputs SPI clock when SPI is in master mode.
			Inputs external clock when SPI is used in slave mode.
#SPISS0 (Ch.0)	1	1	SPI slave select signal (active Low) input pin
			SPI (Slave mode) is selected as a slave device by Low input to this pin.

Table 15.2.1 List of SPI Pins

Note: Use an I/O (P) port to output the slave select signal when the SPI module is configured to master mode.

The SPI input/output pins (SDI*x*, SDO*x*, SPICLK*x*, #SPISS*x*) are shared with I/O ports and are initially set as general purpose I/O port pins. The pin functions must be switched using the port function select bits to use the general purpose I/O port pins as SPI input/output pins.

For detailed information on pin function switching, see the "I/O Ports (P)" chapter.


15.3 SPI Clock

The master mode SPI uses the 8-bit timer (T8) Ch.0 output clock or a PCLK/4 clock to generate the SPI clock. This clock is output from the SPICLKx pin to the slave device while also driving the shift register.

Use MCLK/SPI_CTLx register to select whether the T8 Ch.0 output clock or PCLK/4 clock is used.

Setting MCLK to 1 selects the T8 Ch.0 output clock; setting to 0 selects the PCLK/4 clock.

Using the T8 Ch.0 output clock enables programmable transfer rates. For more information on T8 control, see the "8-bit timer (T8)" chapter.

In slave mode, the SPI clock is input via the SPICLKx pin.

15.4 Data Transfer Condition Settings

The SPI module can be set to master or slave modes. The SPI clock polarity/phase and bit direction (MSB first/LSB first) can also be set via the SPI_CTL*x* register. The data length is fixed at 8 bits.

Note: Make sure the SPI module is halted (SPEN/SPI_CTL*x* register = 0) before master/slave mode selection and clock condition settings.

Master/slave mode selection

MSSL/SPI_CTL*x* register is used to set the SPI module to master mode or slave mode. Setting MSSL to 1 sets master mode; setting it to 0 (default) sets slave mode. In master mode, data is transferred using the internal clock. In slave mode, data is transferred by inputting the master device clock.

SPI clock polarity and phase settings

The SPI clock polarity is selected by CPOL/SPI_CTLx register. Setting CPOL to 1 treats the SPI clock as active Low; setting it to 0 (default) treats it as active High.

The SPI clock phase is selected by CPHA/SPI_CTLx register.

As shown below, these control bits set transfer timing.

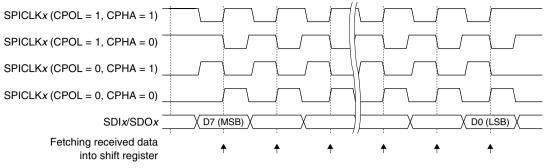


Figure 15.4.1 Clock and Data Transfer Timing

MSB first/LSB first settings

Use MLSB/SPI_CTL*x* register to select whether the data MSB or LSB is input/output first. MSB first is selected when MLSB is 0 (default); LSB first is selected when MLSB is 1.

15.5 Data Transfer Control

Make the following settings before starting data transfers.

- (1) Select the SPI clock source. (See Section 15.3.)
- (2) Select master mode or slave mode. (See Section 15.4.)
- (3) Set clock conditions. (See Section 15.4.)
- (4) Set the interrupt conditions to use SPI interrupts. (See Section 15.6.)

Note: Make sure the SPI is halted (SPEN/SPI_CTLx register = 0) before setting the above conditions.

Enabling data transfers

Set SPEN/SPI_CTLx register to 1 to enable SPI operations. This enables SPI transfers and clock input/output.

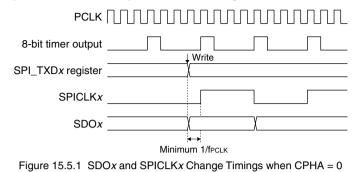
Note: Do not set SPEN to 0 when the SPI module is transferring data.

Data transmission control

To start data transmission, write the transmit data to SPTDB[7:0]/SPI_TXDx register.

The data is written to the transmit data buffer, and the SPI module starts sending data. The buffer data is sent to the transmit shift register. In master mode, the module starts clock output from the SPICLKx pin. In slave mode, the module awaits clock input from the SPICLKx pin. The data in the shift register is shifted in sequence at the clock rising or falling edge, as determined by CPHA/SPI_CTLx register and CPOL/SPI_CTLx register (see Figure 15.4.1) and sent from the SDOx pin.

Note: Make sure that SPEN is set to 1 before writing data to the SPI_TXDx register.


The SPI module includes two status flags for transfer control: SPTBE/SPI_STx register and SPBSY/SPI_STx register.

The SPTBE flag indicates the transmit data buffer status. This flag switches to 0 when the application program writes data to the SPI_TXD*x* register (transmit data buffer) and reverts to 1 when the buffer data is sent to the transmit shift register. An interrupt can be generated when this flag is set to 1 (see Section 15.6). Subsequent data is sent after confirming that the transmit data buffer is empty either by using this interrupt or by inspecting the SPTBE flag. The transmit data buffer size is 1 byte, but a shift register is provided separately to allow data to be written while the previous data is being sent. Always confirm that the transmit data buffer is empty before writing transmit data. Writing data while the SPTBE flag is 0 will overwrite earlier transmit data inside the transmit data buffer.

In master mode, the SPBSY flag indicates the shift register status. This flag switches to 1 when transmit data is loaded from the transmit data buffer to the shift register and reverts to 0 once the data is sent. Read this flag to check whether the SPI module is operating or at standby.

In slave mode, SPBSY flag indicates the SPI slave selection signal (#SPISSx pin) status. The flag is set to 1 when the SPI module is selected as a slave module and is set to 0 when the module is not selected.

Note: When the SPI module is used in master mode with CPHA set to 0, the clock may change a minimum of one system clock (PCLK) cycle time from change of the first transmit data bit.

The half SPICLK*x* cycle will be secured from change of data to change of the clock for the second and following transmit data bits and the second and following bytes during continuous transfer.

Data reception control

In master mode, write dummy data to SPTDB[7:0]/SPI_TXD*x* register. Writing to the SPI_TXD*x* register creates the trigger for reception as well as transmission start. Writing actual transmit data enables simultaneous transmission and reception.

This starts the SPI clock output from the SPICLKx pin.

Note: Make sure that SPEN is set to 1 before writing data to the SPI_TXDx register.

In slave mode, the module waits until the clock is input from the SPICLKx pin. There is no need to write to the SPI_TXDx register if no transmission is required. The receiving operation is started by the clock input from the master device. If data is transmitted simultaneously, write transmit data to the SPI_TXDx register before the clock is input.

The data is received in sequence in the shift register at the rising or falling edge of the clock determined by CPHA/SPI_CTL*x* register and CPOL/SPI_CTL*x* register. (See Figure 15.4.1.) The received data is loaded into the receive data buffer once the 8 bits of data are received in the shift register.

The received data in the buffer can be read from SPRDB[7:0]/SPI_RXDx register.

The SPI module includes SPRBF/SPI_STx register for reception control.

The SPRBF flag indicates the receive data buffer status. This flag is set to 1 when the data received in the shift register is loaded into the receive data buffer, indicating that the received data can be read out. It reverts to 0 when the buffer data is read out from the SPI_RXD*x* register. An interrupt can be generated as soon as the flag is set to 1 (see Section 15.6). The received data should be read out either by using this interrupt or by inspecting the SPRBF flag to confirm that the receive data buffer contains valid received data. The receive data buffer is 1 byte in size, but a shift register is also provided, enabling received data to be retained in the buffer even while the subsequent data is complete. If receiving the subsequent data is complete before the receive data buffer contents are read out, the newly received data will overwrite the previous received data in the buffer.

In master mode, the SPBSY flag indicating the shift register status can be used in the same way while transferring data.

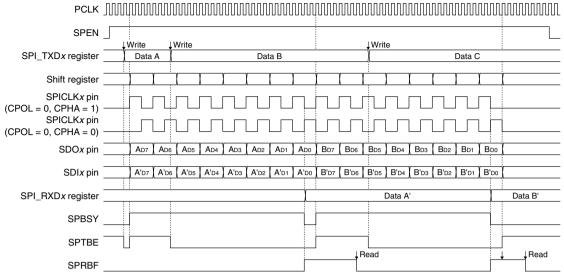


Figure 15.5.2 Data Transmission/Receiving Timing Chart (MSB first)

Disabling data transfers

After a data transfer is completed (both transmission and reception), write 0 to SPEN to disable data transfers. Confirm that the SPTBE flag is 1 and the SPBSY flag is 0 before disabling data transfer. The data being transferred cannot be guaranteed if SPEN is set to 0 while data is being sent or received.

15.6 SPI Interrupts

Each channel of the SPI module includes a function for generating the following two different types of interrupts.

- Transmit buffer empty interrupt
- Receive buffer full interrupt

The SPI channel outputs one interrupt signal shared by the two above interrupt causes to the interrupt controller (ITC). Inspect the status flag to determine the interrupt cause occurred.

Transmit buffer empty interrupt

To use this interrupt, set SPTIE/SPI_CTLx register to 1. If SPTIE is set to 0 (default), interrupt requests for this cause will not be sent to the ITC.

When transmit data written to the transmit data buffer is transferred to the shift register, the SPI module sets SPTBE/SPI_STx register to 1, indicating that the transmit data buffer is empty. If transmit buffer empty interrupts are enabled (SPTIE = 1), an interrupt request is sent simultaneously to the ITC.

An interrupt occurs if other interrupt conditions are met. You can inspect the SPTBE flag in the SPI interrupt handler routine to determine whether the SPI interrupt is attributable to a transmit buffer empty. If SPTBE is 1, the next transmit data can be written to the transmit data buffer by the interrupt handler routine.

Receive buffer full interrupt

To use this interrupt, set SPRIE/SPI_CTLx register to 1. If SPRIE is set to 0 (default), interrupt requests for this cause will not be sent to the ITC.

When data received in the shift register is loaded into the receive data buffer, the SPI module sets SPRBF/SPI_STx register to 1, indicating that the receive data buffer contains readable received data. If receive buffer full interrupts are enabled (SPRIE = 1), an interrupt request is output to the ITC at the same time.

An interrupt occurs if other interrupt conditions are met. You can inspect the SPRBF flag in the SPI interrupt handler routine to determine whether the SPI interrupt is attributable to a receive buffer full. If SPRBF is 1, the received data can be read from the receive data buffer by the interrupt handler routine.

For more information on interrupt processing, see the "Interrupt Controller (ITC)" chapter.

15.7 Control Register Details

Address		Register name	Function
0x4320	SPI_ST0	SPI Ch.0 Status Register	Indicates transfer and buffer statuses.
0x4322	SPI_TXD0	SPI Ch.0 Transmit Data Register	Transmit data
0x4324	SPI_RXD0	SPI Ch.0 Receive Data Register	Receive data
0x4326	SPI_CTL0	SPI Ch.0 Control Register	Sets the SPI mode and enables data transfer.

Table 15.7.1 List of SPI Registers

The SPI registers are described in detail below.

Note: When data is written to the registers, the "Reserved" bits must always be written as 0 and not 1.

SPI Ch.x Status Register (SPI_STx)

Register name	Address	Bit	Name	Function	Setting		Init.	R/W	Remarks		
SPI Ch.x Status	0x4320	D15–3	-	reserved		-	-		-	-	0 when being read.
Register	(16 bits)	D2	SPBSY	Transfer busy flag (master)	1	Busy	0	Idle	0	R	
(SPI_STx)				ss signal low flag (slave)	1	ss = L	0	ss = H			
		D1	SPRBF	Receive data buffer full flag	1	Full	0	Not full	0	R	
		D0	SPTBE	Transmit data buffer empty flag	1	Empty	0	Not empty	1	R	

D[15:3] Reserved

D2 SPBSY: Transfer Busy Flag Bit (Master Mode)/ss Signal Low Flag Bit (Slave Mode)

Master mode

Indicates the SPI transfer status.

- 1 (R): Operating
- 0 (R): Standby (default)

SPBSY is set to 1 when the SPI starts data transfer in master mode and is maintained at 1 while transfer is underway. It is cleared to 0 once the transfer is complete.

Slave mode

Indicates the slave selection (#SPISS*x*) signal status.

- 1 (R): Low level (this SPI is selected)
- 0 (R): High level (this SPI is not selected) (default)

SPBSY is set to 1 when the master device asserts the #SPISSx signal to select this SPI module (slave device). It is returned to 0 when the master device clears the SPI module selection by negating the #SPISSx signal.

D1 SPRBF: Receive Data Buffer Full Flag Bit

Indicates the receive data buffer status.

- 1 (R): Data full
- 0 (R): No data (default)

SPRBF is set to 1 when data received in the shift register is sent to the receive data buffer (when receiving is completed), indicating that the data can be read. It reverts to 0 once the buffer data is read from the SPI_RXDx register.

D0 SPTBE: Transmit Data Buffer Empty Flag Bit

Indicates the transmit data buffer status.

- 1 (R): Empty (default)
- 0 (R): Data exists

SPTBE is set to 0 when transmit data is written to the SPI_TXD*x* register (transmit data buffer), and is set to 1 when the data is transferred to the shift register (when transmission starts).

Transmission data must be written to the SPI_TXDx register when this bit is 1.

SPI Ch.*x* Transmit Data Register (SPI_TXD*x*)

Register name	Address	Bit	Name	Function	Setting	Init.	R/W	Remarks
SPI Ch.x	0x4322	D15–8	-	reserved	_	-	-	0 when being read.
Transmit Data	(16 bits)	D7–0	SPTDB[7:0]	SPI transmit data buffer	0x0 to 0xff	0x0	R/W	
Register				SPTDB7 = MSB				
(SPI_TXDx)				SPTDB0 = LSB				

D[15:8] Reserved

D[7:0] SPTDB[7:0]: SPI Transmit Data Buffer Bits

Sets transmit data to be written to the transmit data buffer. (Default: 0x0)

In master mode, transmission is started by writing data to this register. In slave mode, the contents of this register are sent to the shift register and transmission begins when the clock is input from the master.

SPTBE/SPI_STx register is set to 1 (empty) as soon as data written to this register has been transferred to the shift register. A transmit buffer empty interrupt is generated at the same time. The subsequent transmit data can then be written, even while data is being transmitted.

Serial converted data is output from the SDOx pin, with the bit set to 1 as High level and the bit set to 0 as Low level.

Note: Make sure that SPEN is set to 1 before writing data to the SPI_TXD*x* register to start data transmission/reception.

SPI Ch.*x* Receive Data Register (SPI_RXD*x*)

Register name	Address	Bit	Name	Function	Setting	Init.	R/W	Remarks
SPI Ch.x	0x4324	D15-8	-	reserved	-	-	-	0 when being read.
Receive Data	(16 bits)	D7–0	SPRDB[7:0]	SPI receive data buffer	0x0 to 0xff	0x0	R	
Register				SPRDB7 = MSB				
(SPI_RXD <i>x</i>)				SPRDB0 = LSB				

D[15:8] Reserved

D[7:0] SPRDB[7:0]: SPI Receive Data Buffer Bits

Contains the received data. (Default: 0x0)

SPRBF/SPI_ST*x* register is set to 1 (data full) as soon as data is received and the shift register data has been transferred to the receive data buffer. A receive buffer full interrupt is generated at the same time. Data can then be read until subsequent data is received. If receiving the subsequent data is completed before the register has been read out, the new received data overwrites the contents.

Serial data input from the SDLx pin is converted to parallel, with the High level bit set to 1 and the Low level bit set to 0. The data is the loaded into this register.

This register is read-only.

SPI Ch.x Control Register (SPI_CTLx)

Register name	Address	Bit	Name	Function		Set	tin	g	Init.	R/W	Remarks
SPI Ch.x Con-	0x4326	D15-10	-	reserved		-	_		-	-	0 when being read.
trol Register	(16 bits)	D9	MCLK	SPI clock source select	1	T8 Ch.0	0	PCLK/4	0	R/W	
(SPI_CTLx)		D8	MLSB	LSB/MSB first mode select	1	LSB	0	MSB	0	R/W	
		D7–6	-	reserved		-	-		-	-	0 when being read.
		D5	SPRIE	Receive data buffer full int. enable	1	Enable	0	Disable	0	R/W	
		D4	SPTIE	Transmit data buffer empty int. enable	1	Enable	0	Disable	0	R/W	
		D3	СРНА	Clock phase select	1	Data out	0	Data in	0	R/W	These bits must be
		D2	CPOL	Clock polarity select	1	Active L	0	Active H	0		set before setting
		D1	MSSL	Master/slave mode select	1	Master	0	Slave	0	R/W	SPEN to 1.
		D0	SPEN	SPI enable	1	Enable	0	Disable	0	R/W	

Note: Do not access to the SPI_CTL*x* register while SPBSY/SPI_ST*x* register is set to 1 or SPRBF/ SPI_ST*x* register is set to 1 (while data is being transmitted/received).

D[15:10] Reserved

D9 MCLK: SPI Clock Source Select Bit Selects the SPI clock source. 1 (R/W): 8-bit timer Ch.0 0 (R/W): PCLK/4 (default) **D**8 MLSB: LSB/MSB First Mode Select Bit Selects whether data is transferred with MSB first or LSB first. 1 (R/W): LSB first 0 (R/W): MSB first (default) D[7:6] Reserved D5 SPRIE: Receive Data Buffer Full Interrupt Enable Bit Enables or disables SPI receive data buffer full interrupts. 1 (R/W): Enabled 0 (R/W): Disabled (default) Setting SPRIE to 1 enables the output of SPI interrupt requests to the ITC due to a receive data buffer full. These interrupt requests are generated when the data received in the shift register is transferred to the receive data buffer (when reception is completed). SPI interrupts are not generated by receive data buffer full if SPRIE is set to 0. D4 SPTIE: Transmit Data Buffer Empty Interrupt Enable Bit Enables or disables SPI transmit data buffer empty interrupts. 1 (R/W): Enabled 0 (R/W): Disabled (default) Setting SPTIE to 1 enables the output of SPI interrupt requests to the ITC due to a transmit data buffer empty. These interrupt requests are generated when the data written to the transmit data buffer is transferred to the shift register (when transmission starts). SPI interrupts are not generated by transmit data buffer empty if SPTIE is set to 0. D3 **CPHA: Clock Phase Select Bit** Selects the SPI clock phase. (Default: 0) Set the data transfer timing together with CPOL. (See Figure 15.7.1.) D2 **CPOL: Clock Polarity Select Bit** Selects the SPI clock polarity. 1 (R/W): Active Low 0 (R/W): Active High (default) Set the data transfer timing together with CPHA. (See Figure 15.7.1.) SPICLKx (CPOL = 1, CPHA = 1) SPICLKx (CPOL = 1, CPHA = 0) SPICLKx (CPOL = 0, CPHA = 1) SPICLKx (CPOL = 0, CPHA = 0) D7 (MSB) D0 (LSB) SDIx/SDOx Fetching received data ♠ into shift register Figure 15.7.1 Clock and Data Transfer Timing D1 MSSL: Master/Slave Mode Select Bit

Sets the SPI module to master or slave mode.

1 (R/W): Master mode

0 (R/W): Slave mode (default)

Setting MSSL to 1 selects master mode; setting it to 0 selects slave mode. Master mode performs data transfer with the internal clock. In slave mode, data is transferred by inputting the clock from the master device.

D0 SPEN: SPI Enable Bit

Enables or disables SPI module operation. 1 (R/W): Enabled

0 (R/W): Disabled (default)

Setting SPEN to 1 starts the SPI module operation, enabling data transfer. Setting SPEN to 0 stops the SPI module operation.

Note: The SPEN bit should be set to 0 before setting the CPHA, CPOL, and MSSL bits.

16 LCD Driver (LCD)

16.1 LCD Module Overview

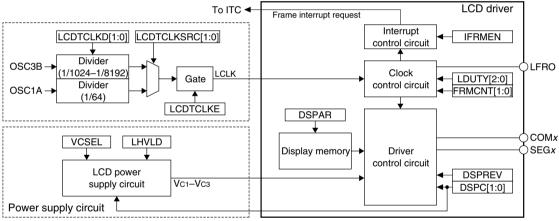
The S1C17656 includes an LCD driver capable of driving an LCD panel with up to 128 segments (32 segments × 4 commons).

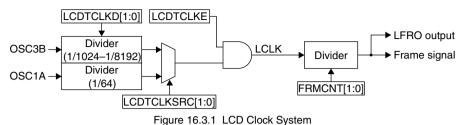
The main features of the LCD driver are listed below.

• Number of SEG and COM outputs	$32 \text{ SEG} \times 4/3/2/1 \text{ COM}$
• Drive bias	1/3 bias (fixed)
• Display data RAM	32 bytes
• Frame frequency configuration	Selectable from four different frequencies
• LCD display mode	Normal display mode
	All on mode
	All off mode
	Inverted display mode

Other functions
 LFRO signal output, frame interrupt

Figure 16.1.1 shows the LCD driver and drive power supply configuration.




Figure 16.1.1 LCD Driver and Driver Power Supply Configuration

16.2 LCD Power Supply

The LCD drive voltages V_{C1} to V_{C3} are generated by the on-chip LCD power supply circuit. No external power supply is needed. For more information on the LCD power supply, see the "Power Supply" chapter.

16.3 LCD Clock

Figure 16.3.1 shows the LCD clock supply system.

Clock source selection

Select the clock source from OSC3B and OSC1A using LCDTCLKSRC[1:0]/LCD_TCLK register.

Table 16.3.1.1 Close	ck Source Selection
LCDTCLKSRC[1:0]	Clock source
0x3, 0x2	Reserved
0x1	OSC1A
0x0	OSC3B

(Default: 0x0)

Clock division ratio selection

When the clock source is OSC1A

No division ratio needs to be selected when OSC1A is selected for the clock source. The OSC1A clock is used as LCLK after dividing by 64 (typ. 512 Hz).

When the clock source is OSC3B

When OSC3B is selected for the clock source, use LCDTCLKD[1:0]/LCD_TCLK register to select the division ratio.

Division ratio
1/8192
1/4096
1/2048
1/1024

Table 16.3.1.2 Clock Division Ratio Selection

(Default: 0x0)

Select a division ratio so that it will generate the LCLK frequency nearest 512 Hz.

Clock enable

The LCLK supply is enabled with LCDTCLKE/LCD_TCLK register. The LCDTCLKE default setting is 0, which stops the clock. Setting LCDTCLKE to 1 feeds the clock generated as above to the LCD driver. If no LCD display is required, stop the clock to reduce current consumption.

If LCLK is not supplied, the LCD cannot display. However, the LCD driver control registers and display memory can be accessed even if LCLK is stopped.

Note: Be sure to set LCDTCLKE to 0 before selecting a clock division ratio.

16.3.2 Frame Signal

The LCD driver generates the frame signal by dividing LCLK. The clock division ratio can be set using FRM-CNT[1:0]/LCD_CCTL register. Figures 16.4.2.1 to 16.4.2.4 show one cycle of the frame frequency as "1 frame." Tables 16.3.2.1 and 16.3.2.2 list the frame frequencies that can be programmed.

When the clock source is OSC1A

Table 16.3.2.1	Frame Frequency Setting	s (when the clock source is OSC1A	= 32.768 kHz (LCLK = 512 Hz))
----------------	-------------------------	-----------------------------------	-------------------------------

Drive duty	FRMCNT[1:0] setting (LCLK division ratio)							
(LDUTY[2:0] setting)	0x0	0x1	0x2	0x3				
1/4 duty (0x3)	128 Hz (1/4)	64 Hz (1/8) *	42.67 Hz (1/12)	32 Hz (1/16)				
1/3 duty (0x2)	85.33 Hz (1/6)	56.89 Hz (1/9)	42.67 Hz (1/12)	34.13 Hz (1/15)				
1/2 duty (0x1)	128 Hz (1/4)	64 Hz (1/8)	42.67 Hz (1/12)	32 Hz (1/16)				
Static (0x0)	128 Hz (1/4)	64 Hz (1/8)	42.67 Hz (1/12)	32 Hz (1/16)				

* Default setting

When the clock source is OSC3B

Table 16.3.2.2 Frame Frequency Settings (when the clock source is OSC3B)

Drive duty		FRMCNT[1:0] setting							
(LDUTY[2:0] setting)	0x0	0x1	0x2	0x3					
1/4 duty (0x3)	foscзв × LCDTCLKD	fosc3B × LCDTCLKD*	foscзв × LCDTCLKD	foscзв × LCDTCLKD					
	4	8	12	16					
1/3 duty (0x2)	foscзв × LCDTCLKD	foscзв × LCDTCLKD	foscзв × LCDTCLKD	foscзв × LCDTCLKD					
	6	9	12	15					
1/2 duty (0x1)	foscзв × LCDTCLKD	foscзв × LCDTCLKD	foscзв × LCDTCLKD	fosc3B × LCDTCLKD					
	4	8	12	16					
Static (0x0)	foscзв × LCDTCLKD	foscзв × LCDTCLKD	foscзв × LCDTCLKD	foscзв × LCDTCLKD					
	4	8	12	16					

* Default setting

fosc3B: OSC3B clock frequency

LCDTCLKD: OSC3B division ratio (1/1024 to 1/8192)

The frame signal generated can be output to an external device via the LFRO pin. However, the output pin must be switched for LFRO output using the port function select bit, as the pin is configured for an I/O port by default. For detailed information on pin function switching, see the "I/O Ports (P)" chapter.

16.4 Drive Duty Control

16.4.1 Drive Duty Switching

Drive duty can be set to 1/4, 1/3, 1/2 or static drive using LDUTY[2:0]/LCD_CCTL register. Table 16.4.1.1 shows the correspondence between LDUTY[2:0] settings, drive duty, and maximum number of display segments.

LDUTY[2:0]	Duty	Valid COM pins	Valid SEG pins	Max. number of display segments
0x7–0x4	Reserved	-	-	-
0x3	1/4	COM0 to COM3	SEG0 to SEG31	128 segments
0x2	1/3	COM0 to COM2	SEG0 to SEG31	96 segments
0x1	1/2	COM0 to COM1	SEG0 to SEG31	64 segments
0x0	Static	COM0	SEG0 to SEG31	32 segments

Table 16.4.1.1 Drive Duty Settings

(Default: 0x3)

The drive bias is fixed at 1/3 (three potentials Vc1, Vc2, Vc3) for all duty settings.

16.4.2 Drive Waveform

Figures 16.4.2.1 to 16.4.2.4 shows the drive waveforms according to the duty selections.

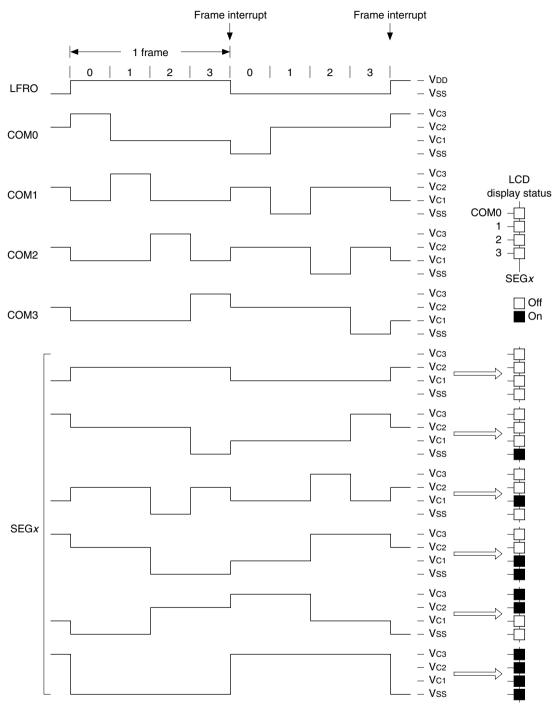


Figure 16.4.2.1 1/4 Duty Drive Waveform

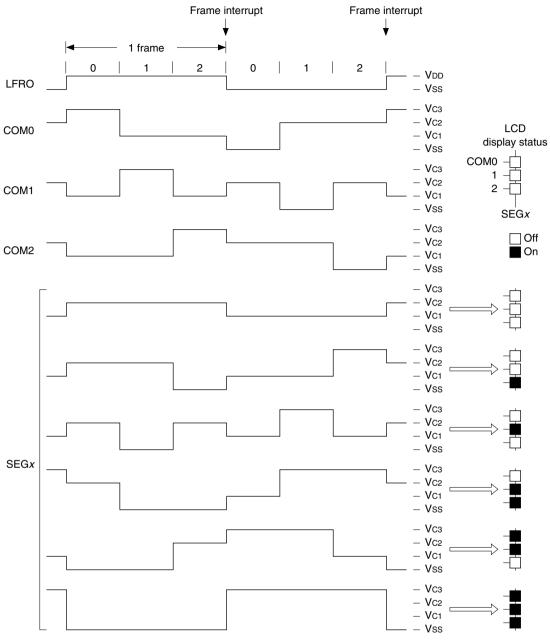


Figure 16.4.2.2 1/3 Duty Drive Waveform

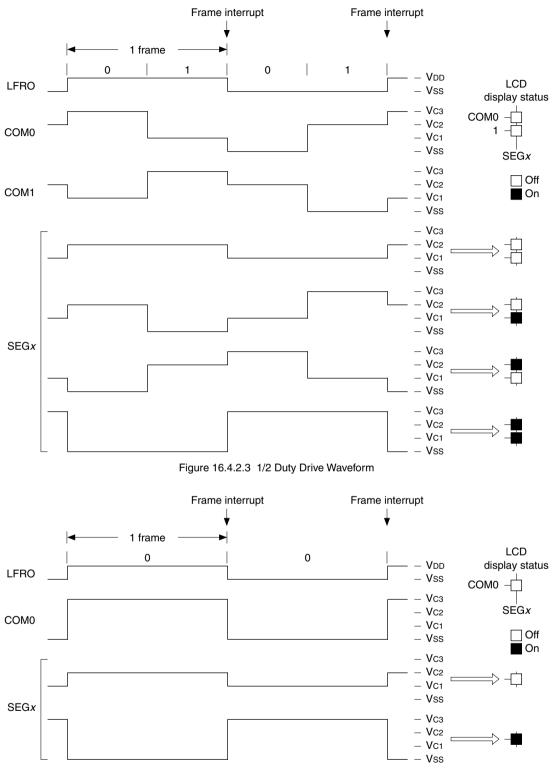
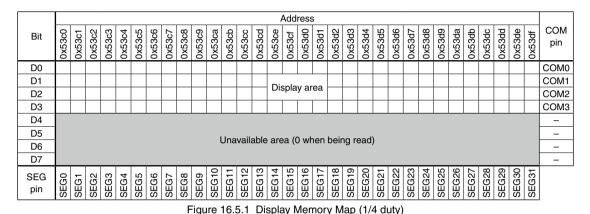


Figure 16.4.2.4 Static Drive Waveform

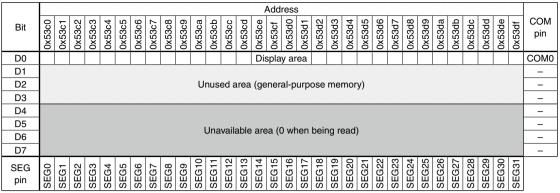

16.5 Display Memory

The S1C17656 includes a 32-byte display memory (address 0x53c0 to address 0x53df).

Figures 16.5.1 to 16.5.4 show the correspondence between display memory and COM/SEG pins for each drive duty.

Writing 1 to a display memory bit corresponding to a segment on the LCD panel turns the segment on, while writing 0 turns the segment off. Since the display memory is a RAM allowing reading and writing, bits can be controlled individually using logic operation instructions (read-modify-write instructions).

Bits (D[3:0]) not assigned to the display area within the display memory can be used as general-purpose RAM that can be read and written to.



	_																																·
																٩dd	ress	6															
Bit	0x53c0	0x53c1	0x53c2	0x53c3	0x53c4	0x53c5	0x53c6	0x53c7	0x53c8	0x53c9	0x53ca	0x53cb	0x53cc	0x53cd	0x53ce	0x53cf	0x53d0	0x53d1	0x53d2	0x53d3	0x53d4	0x53d5	0x53d6	0x53d7	0x53d8	0x53d9	0x53da	0x53db	0x53dc	0x53dd	0x53de	0x53df	COM pin
D0																																	COM0
D1															Dis	spla	y ar	ea															COM1
D2																																	COM2
D3	Unused area (general-purpose memory)													-																			
D4															-																		
D5												Inc		- h -					hain		n n d)												_]
D6												Jna	valla	able	are	a (u) wr	ien	bein	ig re	eau)												_]
D7																																	_
SEG pin	SEG0	SEG1	SEG2	SEG3	SEG4	SEG5	SEG6	SEG7	SEG8	SEG9	SEG10	SEG11	SEG12	SEG13	SEG14	SEG15	SEG16	SEG17	SEG18	SEG19	SEG20	SEG21	SEG22	SEG23	SEG24	SEG25	SEG26	SEG27	SEG28	SEG29	SEG30	SEG31	

Figure 16.5.2 Display Memory Map (1/3 duty)

F															-	Addre	ess																
Bit	0x53c0	0x53c1	0x53c2	0x53c3	0x53c4	0x53c5	0x53c6	0x53c7	0x53c8	0x53c9	0x53ca	0x53cb	0x53cc	0x53cd	0x53ce	0x53cf	0x53d0	0x53d1	0x53d2	0x53d3	0x53d4	0x53d5	0x53d6	0x53d7	0x53d8	0x53d9	0x53da	0x53db	0x53dc	0x53dd	0x53de	0x53df	COM pin
D0															Die	nlov																	COM0
D1	Display area															COM1																	
D2	Unused area (general-purpose memory)														-																		
D3	onused area (genefal-purpose memory)												-																				
D4															-																		
D5	Unavailable area (0 when being read)														-																		
D6											,	Jila	valie	able	are	a (0	VVII	eni	Jein	yıe	au)												-
D7																																	-
SEG pin	SEGO	SEG1	SEG2	SEG3	SEG4	SEG5	SEG6	SEG7	SEG8	SEG9	SEG10	SEG11	SEG12	SEG13	SEG14	SEG15	SEG16	SEG17	SEG18	SEG19	SEG20	SEG21	SEG22	SEG23	SEG24	SEG25	SEG26	SEG27	SEG28	SEG29	SEG30	SEG31	

Figure 16.5.3 Display Memory Map (1/2 duty)

16.6 Display Control

16.6.1 Display On/Off

The LCD display state is controlled using DSPC[1:0]/LCD_DCTL register.

Table 16.6.1.1 LC	D Display Control
DSPC[1:0]	LCD display
0x3	All off (static)
0x2	All on (dynamic)
0x1	Normal display
0x0	Display off
	(Default: 0x0)

For normal display, set DSPC[1:0] to 0x1. Note that the clock must be supplied. (See Section 16.3.)

If "Display off" is selected, the drive voltage supplied from the LCD power supply circuit stops, and the VC1 to VC3 pins are all set to Vss level.

Since "All on" and "All off" directly control the driving waveform output by the LCD driver, display memory data is not altered. COM pins are set to dynamic drive for "All on" and to static drive for "All off." This function can be used to make the display flash on and off without altering the display memory.

DSPC[1:0] is reset to 0x0 (Display off) after an initial reset.

DSPC[1:0] is also reset to 0x0 when the slp instruction is executed and it reverts to the previous setting after SLEEP mode is canceled.

16.6.2 Inverted Display

The LCD display can be inverted (black/white inversion) using merely control bit manipulation, without changing the display memory. Setting DSPREV/LCD_DCTL register to 0 inverts the display; setting to 1 returns the display to normal status.

Note that the display will not be inverted if "All off" is selected using DSPC[1:0]. The display will be inverted when "All on" is selected.

16.7 LCD Interrupt

The LCD module includes a function for generating interrupts using the frame signal.

Frame interrupt

This cause of interrupt occurs every frame and sets the interrupt flag IFRMFLG/LCD_IFLG register in the LCD module to 1. See Figures 16.4.2.1 to 16.4.2.4 for interrupt timings.

To use this interrupt, set IFRMEN/LCD_IMSK register to 1. When IFRMEN is set to 0 (default), interrupt requests for this interrupt cause are not sent to the interrupt controller (ITC).

If IFRMFLG is set to 1 while IFRMEN is set to 1 (interrupt enabled), the LCD module outputs an interrupt request to the ITC. An interrupt is generated if the ITC and S1C17 Core interrupt conditions are satisfied.

For more information on interrupt processing, see the "Interrupt Controller (ITC)" chapter.

- **Notes:** To prevent interrupt recurrences, the LCD module interrupt flag IFRMFLG must be reset in the interrupt handler routine after an LCD interrupt has occurred.
 - To prevent unwanted interrupts, IFRMFLG should be reset before enabling LCD interrupts with IFRMEN.

Table 16.8.1 List of LCD Registers Address Register name Function 0x5070 LCD TCLK LCD Clock Select Register Selects the LCD clock. 0x50a0 LCD DCTL LCD Display Control Register Controls the LCD display. 0x50a2 LCD_CCTL LCD Clock Control Register Controls the LCD drive duty. LCD_VREG 0x50a3 LCD Voltage Regulator Control Register Controls the LCD drive voltage regulator. LCD Interrupt Mask Register Enables/disables interrupts. 0x50a5 LCD_IMSK 0x50a6 LCD IFLG LCD Interrupt Flag Register Indicates/resets interrupt occurrence status

16.8 Control Register Details

The LCD module registers are described in detail below.

Note: When data is written to the registers, the "Reserved" bits must always be written as 0 and not 1.

LCD Timing Clock Select Register (LCD_TCLK)

Register name	Address	Bit	Name	Function	S	etting	Init.	R/W	Remarks
LCD Timing	0x5070	D7–6	-	reserved		_	-	-	0 when being read.
Clock Select	(8 bits)	D5–4	LCDTCLKD	LCD clock division ratio select	LCDTCLKD	Division ratio	0x0	R/W	
Register			[1:0]		[1:0]	OSC3B OSC1A			
(LCD_TCLK)					0x3	1/8192 1/64			
					0x2	1/4096 1/64			
					0x1	1/2048 1/64			
					0x0	1/1024 1/64			
		D3–2	LCDTCLK	LCD clock source select	LCDTCLK	Clock source	0x0	R/W	
			SRC[1:0]		SRC[1:0]	CIOCK SOULCE			
					0x3, 0x2	reserved			
					0x1	OSC1A			
					0x0	OSC3B			
		D1	-	reserved		-	-	-	0 when being read.
		D0	LCDTCLKE	LCD clock enable	1 Enable	0 Disable	0	R/W	

D[7:6] Reserved

D[5:4] LCDTCLKD[1:0]: LCD Clock Division Ratio Select Bits

Selects the division ratio when OSC3B is selected as the LCD clock source.

Table 16.8.2 Clock	Division Ratio Selection
LCDTCLKD[1:0]	Division ratio
0x3	1/8192
0x2	1/4096
0x1	1/2048
0x0	1/1024
	(Defeuilt: 0x0)

 Table 16.8.2
 Clock Division Ratio Selection

(Default: 0x0)

No division ratio needs to be selected if OSC1A is selected as the LCD clock source (fixed at 1/64).

D[3:2] LCDTCLKSRC[1:0]: LCD Clock Source Select Bits

Selects the LCD clock source.

Table 16.8.3 Clock Source Selection

LCDTCLKSRC[1:0]	Clock source
0x3, 0x2	Reserved
0x1	OSC1A
0x0	OSC3B

(Default: 0x0)

D1 Reserved

D0 LCDTCLKE: LCD Clock Enable Bit

Enables or disables the LCD clock supply to the LCD driver.

1 (R/W): Enabled (on)

0 (R/W): Disabled (off) (default)

The LCDTCLKE default setting is 0, which stops the clock. Setting LCDTCLKE to 1 feeds the clock to the LCD driver. If no LCD display is required, stop the clock to reduce current consumption.

LCD Display Control Register (LCD_DCTL)

Register name	Address	Bit	Name	Function	Set	tting	Init.	R/W	Remarks
LCD Display	0x50a0	D7–5	-	reserved		-	-	-	0 when being read.
Control Register	(8 bits)	D4	DSPREV	Reverse display control	1 Normal	0 Reverse	1	R/W	
(LCD_DCTL)		D3–2	-	reserved		-	-	-	0 when being read.
		D1–0	DSPC[1:0]	LCD display control	DSPC[1:0]	Display	0x0	R/W	
					0x3	All off			
					0x2	All on			
					0x1	Normal display			
					0x0	Display off			

D[7:5] Reserved

D4 DSPREV: Reverse Display Control Bit

Inverts (negative display) the LCD display.

1 (R/W): Normal display (default)

0 (R/W): Inverted display

Setting DSPREV to 0 inverts the LCD panel display; setting to 1 returns the display to normal status. This operation does not affect the contents of the display memory.

D[3:2] Reserved

D[1:0] DSPC[1:0]: LCD Display Control Bits

Controls the LCD display.

Table 16.8.4 LCD Display Control								
DSPC[1:0]	LCD display							
0x3	All off (static)							
0x2	All on (dynamic)							
0x1	Normal display							
0x0	Display off							

(Default: 0x0)

For normal display, set DSPC[1:0] to 0x1. Note that the clock must be supplied. (See Section 16.3.)

If "Display off" is selected, the drive voltage supplied from the LCD power supply circuit stops, and the Vc1 to Vc3 pins are all set to Vss level.

Since "All on" and "All off" directly control the driving waveform output by the LCD driver, display memory data is not altered. COM pins are set to dynamic drive for "All on" and to static drive for "All off." This function can be used to make the display flash on and off without altering the display memory.

DSPC[1:0] is reset to 0x0 (Display off) after an initial reset. DSPC[1:0] is also reset to 0x0 when the slp instruction is executed and it reverts to the previous setting after SLEEP mode is canceled.

LCD Clock Control Register (LCD_CCTL)

Register name	Address	Bit	Name	Function	Set	ting	Init.	R/W	Remarks
LCD Clock	0x50a2	D7–6	FRMCNT[1:0]	Frame frequency control	FRMCNT[1:0]	Division ratio	0x1	R/W	Source clock: LCLK
Control Register	(8 bits)				0x3	1/16			
(LCD_CCTL)					0x2	1/12			
					0x1	1/8			
					0x0	1/4			
		D5–3	-	reserved	-	-	-	-	0 when being read.
		D2–0	LDUTY[2:0]	LCD duty select	LDUTY[2:0]	Duty	0x3	R/W	
					0x7–0x4	reserved			
					0x3	1/4			
					0x2	1/3			
					0x1	1/2			
					0x0	Static			

D[7:6] FRMCNT[1:0]: Frame Frequency Control Bits

Sets the Frame frequency.

Table 16.8.5 Frame Frequency Settings (when the clock source is OSC1A = 32.768 kHz (LCLK = 512 Hz))

Drive duty	FRMCNT[1:0] setting (LCLK division ratio)						
(LDUTY[2:0] setting)	0x0	0x1	0x2	0x3			
1/4 duty (0x3)	128 Hz (1/4)	64 Hz (1/8) *	42.67 Hz (1/12)	32 Hz (1/16)			
1/3 duty (0x2)	85.33 Hz (1/6)	56.89 Hz (1/9)	42.67 Hz (1/12)	34.13 Hz (1/15)			
1/2 duty (0x1)	128 Hz (1/4)	64 Hz (1/8)	42.67 Hz (1/12)	32 Hz (1/16)			
Static (0x0)	128 Hz (1/4)	64 Hz (1/8)	42.67 Hz (1/12)	32 Hz (1/16)			

* Default setting

Table 16.8.6 Frame Frequency Settings (when the clock source is OSC3B)

Drive duty		FRMCNT[1	:0] setting	
(LDUTY[2:0] setting)	0x0	0x1	0x2	0x3
1/4 duty (0x3)	foscзв × LCDTCLKD	fosc3B × LCDTCLKD*	foscзв × LCDTCLKD	foscзв × LCDTCLKD
	4	8	12	16
1/3 duty (0x2)	foscзв × LCDTCLKD	fosc3B × LCDTCLKD	foscзв × LCDTCLKD	fosc3B × LCDTCLKD
	6	9	12	15
1/2 duty (0x1)	foscзв × LCDTCLKD	foscзв × LCDTCLKD	foscзв × LCDTCLKD	foscзв × LCDTCLKD
	4	8	12	16
Static (0x0)	fosc3B × LCDTCLKD	fosc3B × LCDTCLKD	foscзв × LCDTCLKD	fosc3B × LCDTCLKD
	4	8	12	16

* Default setting

fosc3B: OSC3B clock frequency

LCDTCLKD: OSC3B division ratio (1/1024 to 1/8192)

D[5:3] Reserved

D[2:0] LDUTY[2:0]: LCD Duty Select Bits

Selects the drive duty.

LDUTY[2:0]	Duty	Valid COM pins	Valid SEG pins	Max. number of display segments
0x7–0x4	Reserved	-	-	-
0x3	1/4	COM0 to COM3	SEG0 to SEG31	128 segments
0x2	1/3	COM0 to COM2	SEG0 to SEG31	96 segments
0x1	1/2	COM0 to COM1	SEG0 to SEG31	64 segments
0x0	Static	COM0	SEG0 to SEG31	32 segments

Table 16.8.7 Drive Duty Settings

(Default: 0x3)

LCD Voltage Regulator Control Register (LCD_VREG)

Register name	Address	Bit	Name	Function		Setti	ng	Init.	R/W	Remarks
LCD Voltage	0x50a3	D7–5	-	reserved		_		-	-	0 when being read.
Regulator	(8 bits)	D4	LHVLD	Vc heavy load protection mode	1	On (Off	0	R/W	
Control Register		D3–1	-	reserved		_		-	-	0 when being read.
(LCD_VREG)		D0	VCSEL	Reference voltage select	1	Vc2 0	VC1	0	R/W	

For more information on the control bit, see "LCD Voltage Regulator Control Register (LCD_VREG)" in the "Power Supply" chapter.

LCD Interrupt Mask Register (LCD_IMSK)

Register name	Address	Bit	Name	Function	Set	ting	Init.	R/W	Remarks
LCD Interrupt	0x50a5	D7–1	-	reserved	-	_	-	-	0 when being read.
Mask Register	(8 bits)								
(LCD_IMSK)		D0	IFRMEN	Frame signal interrupt enable	1 Enable	0 Disable	0	R/W	

D[7:1] Reserved

D0 IFRMEN: Frame Signal Interrupt Enable Bit

Enables or disables frame interrupts.

1 (R/W): Interrupt enabled

0 (R/W): Interrupt disabled (default)

Setting IFRMEN to 1 enables LCD interrupt requests to the ITC. Setting to 0 disables interrupts.

LCD Interrupt Flag Register (LCD_IFLG)

Register name	Address	Bit	Name	Function	Setting		Init.	R/W	Remarks
LCD Interrupt	0x50a6	D7–1	-	reserved		_	-	-	0 when being read.
Flag Register	(8 bits)								
(LCD_IFLG)		D0	IFRMFLG	Frame signal interrupt flag	1 Occurred	0 Not occurred	0	R/W	Reset by writing 1.

D[7:1] Reserved

D0 IFRMFLG: Frame Signal Interrupt Flag Bit

Indicates the frame interrupt cause occurrence status.

- 1 (R): Cause of interrupt has occurred
- 0 (R): No cause of interrupt has occurred (default)
- 1 (W): Flag is reset
- 0 (W): Ignored

IFRMFLG is set to 1 at the frame signal rising edge. IFRMFLG is reset to 0 by writing 1.

17 Sound Generator (SND)

17.1 SND Module Overview

The S1C17656 includes a sound generator (SND) for generating a buzzer signal. The main features of the SND module are outlined below.

- Provides buzzer inverted and non-inverted output pins to directly drive a piezoelectric buzzer.
- Programmable buzzer signal frequency (eight frequencies) and volume level (eight levels)
- Duty ratio controlled digital envelope function (attenuation time is selectable from four types.)
- One-shot output function (output time is selectable from four types.)

Figure 17.1.1 shows the SND configuration.

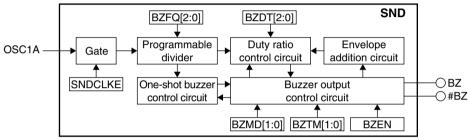


Figure 17.1.1 SND Module Configuration

17.2 SND Output Pins

Table 17.2.1 lists the SND pins.

Table 17.2.1 List of SND Pins

Pin name	I/O	Qty	Function
BZ	0	1	Buzzer non-inverted output pin
			Outputs the buzzer signal generated by the sound generator.
#BZ	0	1	Buzzer inverted output pin
			Outputs the inverted buzzer signal generated by the sound generator.

The SND module output pins (BZ, #BZ) are shared with I/O ports and are initially set as general purpose I/O port pins. The pin functions must be switched using the port function select bits to use the general purpose I/O port pins as SND module output pins. For detailed information on pin function switching, see the "I/O Ports (P)" chapter.

17.3 SND Operating Clock

The SND module uses the OSC1A clock (32.768 kHz Typ.) output from the CLG as its operating clock.

The OSC1A clock supply to the SND module is enabled with SNDCLKE/SND_CLK register. The SNDCLKE default setting is 0, which stops the clock. Setting SNDCLKE to 1 feeds the OSC1A clock to the SND module. Set SNDCLKE to 1 before performing buzzer output. If no buzzer output is required, stop the clock to reduce current consumption.

For more information on OSC1A oscillator control, see the "Clock Generator (CLG)" chapter.

Note: This chapter describes buzzer frequencies and one-shot output times assuming that the OSC1A clock frequency is 32.768 kHz. The frequencies and times vary depending on the OSC1A clock frequency.

17.4 Buzzer Frequency and Volume Settings

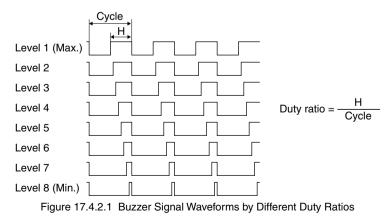
17.4.1 Buzzer Frequency

The SND module generates the buzzer signal by dividing the OSC1A clock (32.768 kHz). The buzzer frequency can be selected from among the eight types with different division ratios. BZFQ[2:0]/SND_BZFQ is used for this selection.

BZFQ[2:0]	Buzzer frequency (Hz)				
0x7	1170.3				
0x6	1365.3				
0x5	1638.4				
0x4	2048.0				
0x3	2340.6				
0x2	2730.7				
0x1	3276.8				
0x0	4096.0				

Table 17.4.1.1	Buzzer Frequency	Selections
----------------	------------------	------------

(Default: 0x0)


17.4.2 Volume level

The buzzer volume level is controlled by changing the duty ratio of the buzzer signal. The volume level can be selected from among eight types using BZDT[2:0]/SND_BZDT register.

	Table 17.4.2.	i volume i	Level Setti	ngs	
		Duty r	atio by buz	zer frequen	cy (Hz)
Volume level	BZDT[2:0]	4096.0	3276.8	2730.7	2340.6
		2048.0	1638.4	1365.3	1170.3
Level 1 (Max.)	0x0	8/16	8/20	12/24	12/28
Level 2	0x1	7/16	7/20	11/24	11/28
Level 3	0x2	6/16	6/20	10/24	10/28
Level 4	0x3	5/16	5/20	9/24	9/28
Level 5	0x4	4/16	4/20	8/24	8/28
Level 6	0x5	3/16	3/20	7/24	7/28
Level 7	0x6	2/16	2/20	6/24	6/28
Level 8 (Min.)	0x7	1/16	1/20	5/24	5/28
				(De	efault: 0x0)

Table 17.4.2.1 Volume Level Settings

Setting BZDT[2:0] to 0x0 turns the volume up to maximum level; setting it to 0x7 turns the volume down to minimum level.

Note: BZDT[2:0] is ineffective in envelope mode, as the duty ratio is automatically controlled by the hardware.

17.5 Buzzer Mode and Output Control

17.5.1 Buzzer Mode Selection

The SND module supports three buzzer modes that allow different types of buzzer outputs. BZMD[1:0]/SND_CTL register is used to select a buzzer mode.

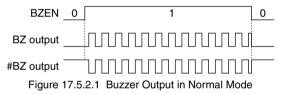

BZMD[1:0]	Buzzer mode
0x3	Reserved
0x2	Envelope mode A software trigger starts buzzer output. The SND module automatically turns down the vol- ume from Level 1 (maximum) and stops output when the volume reaches Level 8 (minimum).
0x1	One-shot mode This mode is provided for generating short buzzer sounds such as key operation sounds. The buzzer output starts by a software trigger and stops automatically after the specified time has elapsed.
0x0	Normal mode Buzzer output is turned on and off via software.

Table 17.5.1.1 Buzzer Mode

(Default: 0x0)

17.5.2 Output Control in Normal Mode

In normal mode, setting BZEN/SND_CTL register to 1 starts buzzer output and setting it to 0 stops the output. The buzzer frequency setting with BZFQ[2:0] and volume setting with BZDT[2:0] are both effective.

Note: The buzzer signal is generated asynchronously to BZEN, so a hazard may occur when the signal is turned on or off by setting BZEN.

17.5.3 Output Control in One-shot Mode

The SND module has a one-shot output function for generating short buzzer sounds such as key operation sounds.

Output time selection

The one-shot buzzer output time can be selected from among four types shown below using BZTM[1:0]/SND_CTL register.

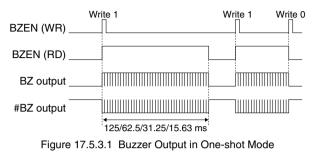
BZTM[1:0]	Output time
0x3	125 ms
0x2	62.5 ms
0x1	31.25 ms
0x0	15.63 ms

Table 17.5.3.1	One-shot Buzzer Output Time Selections
----------------	--

(Default: 0x0)

Output control

Writing 1 to BZEN/SND_CTL register starts one-shot buzzer output. When this trigger is issued, a buzzer signal is output from the buzzer output pin. When the set time has elapsed, the buzzer output stops.


BZEN functions as a status bit. It retains 1 while a one-shot buzzer signal is being output and reverts to 0 upon completion of the output.

Writing 0 to BZEN while a one-shot buzzer signal is being output stops the output immediately.

Writing 1 to BZEN again before a one-shot buzzer output is finished, a new one-shot output begins from that point.

The buzzer frequency setting with BZFQ[2:0] and volume setting with BZDT[2:0] are both effective in one-shot mode.

Figure 17.5.3.1 shows a timing chart in one-shot mode.

17.5.4 Output Control in Envelope Mode

In envelope mode, a digital envelope by duty control can be added to the buzzer signal. The SND module controls envelope by changing the duty ratio from Level 1 (maximum) to Level 8 (minimum) listed in Table 17.4.2.1.

Attenuation time selection

The envelope attenuation time (time to change the duty ratio) can be selected from among four types using BZTM[1:0]/SND_CTL register.

BZTM[1:0]	Attenuation time
0x3	125 ms
0x2	62.5 ms
0x1	31.25 ms
0x0	15.63 ms
000	

Table 17.5.4.1 Envelope Attenuation Time Selections

(Default: 0x0)

Output control

Writing 1 to BZEN/SND_CTL register starts buzzer output in envelope mode. The duty ratio is set to Level 1 (maximum) at the beginning of the output and is stepped down every attenuation time selected. When attenuated down to Level 8 (minimum), the buzzer output stops.

BZEN functions as a status bit. It retains 1 while a buzzer signal is being output and reverts to 0 upon completion of the output.

Writing 0 to BZEN while a buzzer signal is being output stops the output immediately.

Writing 1 to BZEN again before a buzzer output is finished, the duty ratio returns to the maximum level and a new envelope output begins from that point.

Figure 17.5.4.1 shows a timing chart in envelope mode.

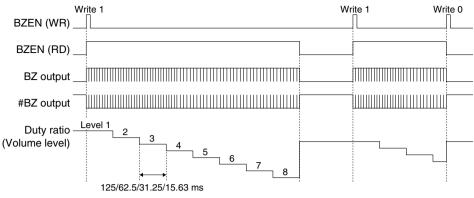


Figure 17.5.4.1 Buzzer Output in Envelope Mode

17.6 Control Register Details

Table 17.6.1	List of SND	Registers
--------------	-------------	-----------

Address		Register name	Function
0x506e	SND_CLK SND Clock Control Register		Controls the SND clock.
0x5180	SND_CTL	SND Control Register	Controls buzzer outputs.
0x5181	SND_BZFQ	Buzzer Frequency Control Register	Sets the buzzer frequency.
0x5182	SND_BZDT	Buzzer Duty Ratio Control Register	Sets the buzzer signal duty ratio.

The SND module registers are described in detail below.

Note: When data is written to the registers, the "Reserved" bits must always be written as 0 and not 1.

SND Clock Control Register (SND_CLK)

Register name	Address	Bit	Name	Function		Sett	ting	g	Init.	R/W	Remarks
SND Clock	0x506e	D7–1	-	reserved		-	-		-	-	0 when being read.
Control Register	(8 bits)										
(SND_CLK)		D0	SNDCLKE	SND clock enable	1	Enable	0	Disable	0	R/W	

D[7:1] Reserved

D0 SNDCLKE: SND Clock Enable Bit

Enables or disables the OSC1A clock supply to the SND module.

1 (R/W): Enabled (on)

0 (R/W): Disabled (off) (default)

The SNDCLKE default setting is 0, which disables the clock supply. Setting SNDCLKE to 1 sends the OSC1A clock to the SND module to enable buzzer outputs. If no buzzer output is required, stop the clock to reduce current consumption.

SND Control Register (SND_CTL)

Register name	Address	Bit	Name	Function	Setting		Init.	R/W	Remarks
SND Control	0x5180	D7–6	-	reserved		_	-	- 1	0 when being read.
Register	(8 bits)	D5–4	BZTM[1:0]	Buzzer envelope time/one-shot	BZTM[1:0]	Time	0x0	R/W	
(SND_CTL)				output time select	0x3	125 ms			
					0x2	62.5 ms			
					0x1	31.25 ms			
					0x0	15.63 ms			
		D3–2	BZMD[1:0]	Buzzer mode select	BZMD[1:0]	Mode	0x0	R/W	
					0x3	reserved			
					0x2	Envelope			
					0x1	One-shot			
					0x0	Normal			
		D1	-	reserved		_	-	-	0 when being read.
		D0	BZEN	Buzzer output control	1 On/Trigger	0 Off	0	R/W	

D[7:6] Reserved

D[5:4] BZTM[1:0]: Buzzer Envelope Time/One-shot Output Time Select Bits

Selects an envelope attenuation time or a one-shot output time.

JIC	The The Selection of th							
	BZTM[1:0]	Attenuation time/One-shot output time						
	0x3	125 ms						
	0x2	62.5 ms						
	0x1	31.25 ms						
	0x0	15.63 ms						
		(Default: 0x0)						

Table 17.6.2 Envelope Attenuation Time/One-shot Buzzer Output Time Selections

In envelope mode, an attenuation time (time to change the duty ratio) can be selected (see Figure 17.5.4.1).

In one-shot mode, a one-shot buzzer output time can be selected (see Figure 17.5.3.1). BZTM[1:0] does not affect buzzer outputs in normal mode.

D[3:2] BZMD[1:0]: Buzzer Mode Select Bits

Selects a buzzer mode.

Table 17.6.3	Buzzer Mode
--------------	-------------

BZMD[1:0]	Buzzer mode
0x3	Reserved
0x2	Envelope mode A software trigger starts buzzer output. The SND module automatically turns down the volume from Level 1 (maximum) and stops output when the volume reaches Level 8 (minimum).
0x1	One-shot mode This mode is provided for generating short buzzer sounds such as key operation sounds. The buzzer output starts by a software trigger and stops automatically after the specified time has elapsed.
0x0	Normal mode Buzzer output is turned on and off via software.

(Default: 0x0)

D1 Reserved

D0 BZEN: Buzzer Output Control Bit

Controls buzzer output. 1 (R/W): On/Trigger

0 (R/W): Off (default)

Normal mode

Setting BZEN to 1 starts buzzer output and setting it to 0 stops the output.

One-shot mode

Writing 1 to BZEN starts one-shot buzzer output. When the time set with BZTM[1:0] has elapsed, the buzzer output stops. BZEN functions as a status bit. It retains 1 while a one-shot buzzer signal is being output and reverts to 0 upon completion of the output. Writing 0 to BZEN while a one-shot buzzer signal is being output stops the output immediately. Writing 1 to BZEN again before a one-shot buzzer output is finished, a new one-shot output begins from that point.

Envelope mode

Writing 1 to BZEN starts buzzer output in envelope mode. The duty ratio is set to Level 1 (maximum) at the beginning of the output and is stepped down every attenuation time selected. When attenuated down to Level 8 (minimum), the buzzer output stops. BZEN functions as a status bit. It retains 1 while a buzzer signal is being output and reverts to 0 upon completion of the output. Writing 0 to BZEN while a buzzer signal is being output stops the output immediately. Writing 1 to BZEN again before a buzzer output is finished, the duty ratio returns to the maximum level and a new envelope output begins from that point.

Buzzer Frequency Control Register (SND_BZFQ)

Register name	Address	Bit	Name	Function	Set	ting	Init.	R/W	Remarks
Buzzer	0x5181	D7–3	-	reserved	-	-	-	-	0 when being read.
Frequency	(8 bits)	D2-0	BZFQ[2:0]	Buzzer frequency select	BZFQ[2:0]	Frequency	0x0	R/W	
Control Register					0x7	1170.3 Hz			
(SND_BZFQ)					0x6	1365.3 Hz			
					0x5	1638.4 Hz			
					0x4	2048.0 Hz			
					0x3	2340.6 Hz			
					0x2	2730.7 Hz			
					0x1	3276.8 Hz			
					0x0	4096.0 Hz			

D[7:3] Reserved

D[2:0] BZFQ[2:0]: Buzzer Frequency Select Bits

Selects a buzzer signal frequency.

Table 17.6.4 Buzzer Frequency Selections			
BZFQ[2:0]	Buzzer frequency (Hz)		
0x7	1170.3		
0x6	1365.3		
0x5	1638.4		
0x4	2048.0		
0x3	2340.6		
0x2	2730.7		
0x1	3276.8		
0x0	4096.0		

(Default: 0x0)

Buzzer Duty Ratio Control Register (SND_BZDT)

Register name	Address	Bit	Name	Function	Set	ting	Init.	R/W	Remarks
Buzzer	0x5182	D7–3	-	reserved	-	_	-	-	0 when being read.
Duty Ratio	(8 bits)	D2–0	BZDT[2:0]	Buzzer duty ratio select	BZDT[2:0]	Duty (volume)	0x0	R/W	
Control Register					0x7	Level 8 (Min.)			
(SND_BZDT)					:	:			
					0x0	Level 1 (Max.)			

D[7:3] Reserved

D[2:0] BZDT[2:0]: Buzzer Duty Ratio Select Bits

Selects a duty ratio that determines the buzzer volume level.

Table 17.6.5 Volume Level Settings					
		Duty ra	atio by buz	zer frequen	cy (Hz)
Volume level	BZDT[2:0]	4096.0	3276.8	2730.7	2340.6
		2048.0	1638.4	1365.3	1170.3
Level 1 (Max.)	0x0	8/16	8/20	12/24	12/28
Level 2	0x1	7/16	7/20	11/24	11/28
Level 3	0x2	6/16	6/20	10/24	10/28
Level 4	0x3	5/16	5/20	9/24	9/28
Level 5	0x4	4/16	4/20	8/24	8/28
Level 6	0x5	3/16	3/20	7/24	7/28
Level 7	0x6	2/16	2/20	6/24	6/28
Level 8 (Min.)	0x7	1/16	1/20	5/24	5/28
				(Dc	fault: 0v0

(Default: 0x0)

Setting BZDT[2:0] to 0x0 turns the volume up to maximum level; setting it to 0x7 turns the volume down to minimum level.

Note: BZDT[2:0] is ineffective in envelope mode, as the duty ratio is automatically controlled by the hardware.

18 Supply Voltage Detection Circuit (SVD)

18.1 SVD Module Overview

The S1C17656 includes an SVD (supply voltage detection) circuit to monitor the VDD or an external voltage. It can be used to check whether the detected voltage drops below the detection level set via software or not. An interrupt or reset can also be generated when low voltage is detected. The following shows the features of the SVD module:

- Voltage to be detected: VDD (power supply voltage) or EXSVD (voltage applied to the P02 pin)
- Detection voltage levels: 13 levels (2.0 V to 3.2 V)
- Detection results: Can be read whether the detected voltage is lower than the detection voltage level or not.
 - Can generate an interrupt or a reset when low voltage is detected.
- Interrupt: 1 system (low voltage detection interrupt)
- Supports intermittent operations: Seven detection cycles are selectable.
 - Low voltage detection count function to generate an interrupt/reset when low voltage is successively detected the number of times specified.
 - Continuous operation is also possible.

Figure 18.1.1 shows the SVD module configuration.

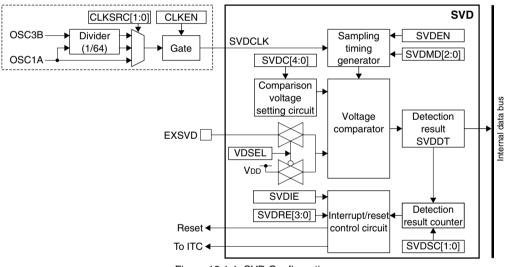


Figure 18.1.1 SVD Configuration

18.2 Voltage to be Detected

The voltage to be detected can be selected from VDD (power supply voltage) and EXSVD (voltage applied to the P02 pin) using VDSEL/SVD_CMP register.

Table 18.2.1 Volta	age to be Detected
VDSEL	Voltage to be detected
1	EXSVD (Note)
0	Vdd
	(Default: 0)

- **Notes:** Before EXSVD can be selected as the voltage to be detected, the EXSVD (P02) pin must be placed into high impedance state. Otherwise, a malfunction or breakdown caused by leakage current or others may occur. For control of the P02 pin, see the "I/O Ports (P)" chapter.
 - The upper limit of the voltage that can be applied to the EXSVD (P02) pin is VDD.

18.3 Operation Clock

The SVD module includes a clock source selector, a divider, and a gate circuit for controlling the operation clock.

Clock source selection

Use CLKSRC[1:0]/SVD_CLK register to select the clock source from OSC3B/64, OSC1A, and OSC1A/64.

CLKSRC[1:0]	Clock source
0x3	Reserved
0x2	OSC1A/64
0x1	OSC1A
0x0	OSC3B/64

Table 10.3.1 Clock Source Selection	Table 18.3.1	Clock Source	Selection
-------------------------------------	--------------	--------------	-----------

(Default: 0x0)

When OSC3B/64 is selected, the OSC3B clock is divided by 64 to generate SVDCLK. When OSC1A is selected, the OSC1A clock is directly used as SVDCLK.

When OSC1A/64 is selected, the OSC1A clock is divided by 64 to generate SVDCLK.

Clock enable

The clock supply is enabled with CLKEN/SVD_CLK register. The CLKEN default setting is 0, which stops the clock. Setting CLKEN to 1 feeds the clock generated as above to the SVD circuit. If no SVD operation is required, stop the clock to reduce current consumption.

If no SVDCLK is supplied, the SVD circuit cannot detect the voltage level. However, the SVD control registers can be accessed even if the SVDCLK supply is stopped.

Note: When disabling the SVDCLK supply, wait for two or more SVDCLK cycles before setting CLKEN to 0 after SVDEN/SVD_EN register is altered from 0 to 1. This waiting time is also required when disabling the clock supply by setting the IC into SLEEP mode.

18.4 Comparison Voltage Setting

The SVD circuit compares the detected voltage (VDD or EXSVD) against the comparison voltage set via software and outputs the results indicating whether the detected voltage exceeds this comparison voltage. The comparison voltage can be selected from among the 13 levels listed in Table 18.4.1 using SVDC[4:0]/SVD_CMP register.

SVDC[4:0]	Comparison voltage	SVDC[4:0]	Comparison voltage
0x1f		Oxf	2.10 V
0x1e		0xe	2.00 V
0x1d	Reserved	0xd	
0x1c		0xc	
0x1b		0xb	
0x1a	3.20 V	0xa	
0x19	3.10 V	0x9	
0x18	3.00 V	0x8	
0x17	2.90 V	0x7	Reserved
0x16	2.80 V	0x6	Reserved
0x15	2.70 V	0x5	
0x14	2.60 V	0x4	
0x13	2.50 V	0x3	
0x12	2.40 V	0x2	
0x11	2.30 V	0x1	
0x10	2.20 V	0x0	

Table 18.4.1 Comparison Voltage Settings

(Default: 0x0)

Note: The comparison voltage is effective only when it is set within the operating voltage range. If the comparison voltage set is out of the operating voltage range, no correct detection results will be obtained.

18.5 SVD Control

The voltage detection using the SVD circuit is initiated by writing 1 to SVDEN/SVD_EN register. After that, the voltage detection results can be read out from SVDDT/SVD_RSLT register. By writing 0 to SVDEN, the SVD circuit stops detection with the current SVDDT retained.

The detection results and SVDDT readings are as follows.

- When detected voltage (VDD or EXSVD) \geq comparison voltage: SVDDT = 0
- When detected voltage (VDD or EXSVD) < comparison voltage: SVDDT = 1
- **Notes:** An SVD circuit-enable response time is required to obtain stable detection results after SVDEN is altered from 0 to 1. Also when SVDC[4:0] is altered, an SVD circuit response time is required to obtain stable detection results. Wait until the response time has elapsed before reading SVDDT. Also when reading the detection results after stopping the SVD circuit, SVDEN should be set to 0 after the response time has elapsed. For these response times, see "Electrical Characteristics."
 - Operating the SVD circuit increases current consumption. If voltage detection is not required, stop SVD operations by setting SVDEN to 0.

18.6 Intermittent Operation

The SVD circuit of this IC has an intermittent operation function. In intermittent operation mode, the SVD circuit turns on at an interval set using SVDMD[2:0]/SVD_EN register to perform detection operation and then it turns off while SVDEN/SVD_EN register is set to 1.

To obtain detection results by controlling SVDEN without intermittent operation performed, set SVDMD[2:0] to 0x0 (continuous operation mode).

Note: If SVDEN is set to 0 while the SVD circuit is operating in intermittent operation mode, SVDDT becomes undefined.

Intermittent operation cycle
SVDCLK/8192
SVDCLK/4096
SVDCLK/2048
SVDCLK/1024
SVDCLK/512
SVDCLK/256
SVDCLK/128
Continuous

Table 18.6.1 Intermittent Operation Mode Voltage Detection Cycle Selection

(Default: 0x0)

Furthermore, the SVD circuit can set the interrupt flag (SVDIF/SVD_IFLG register) to generate an interrupt or a reset when it has successively detected low voltage the number of times specified by SVDSC[1:0]/SVD_CMP register.

Table 18.6.2 Selecting Interrupt/Reset Generating Condition in Intermittent Operation Mode

·	
SVDSC[1:0]	Interrupt/reset generating condition
0x3	Low voltage is successively detected four times.
0x2	Low voltage is successively detected three times.
0x1	Low voltage is successively detected twice.
0x0	Low voltage is successively detected once.

(Default: 0x0)

18.7 SVD Interrupt and Reset

The SVD module includes a function for generating an interrupt or a reset when a low voltage is detected. This function can be used to control the display and heavy load protection when running with a weak battery.

Low voltage detection interrupt

When a condition shown below is met, the interrupt flag (SVDIF/SVD_IFLG register) in the SVD module is set to 1 and an interrupt request is issued.

Continuous (normal) mode: When SVDDT/SVD_RSLT register is set to 1 Intermittent mode: When low voltage is successively detected the number of times specified using SVDSC[1:0]/SVD_CMP register

Once SVDIF is set, it will not be reset even if the voltage subsequently returns to a value exceeding the comparison voltage value. An interrupt may occur due to a temporary voltage drop, therefore, check the voltage status by reading SVDDT in the interrupt handler routine.

To use this interrupt, set SVDIE/SVD_IMSK register to 1. When SVDIE is set to 0 (default), interrupt requests for this cause will not be sent to the interrupt controller (ITC). If SVDIF is set to 1 while SVDIE is set to 1 (interrupt enabled), the SVD module outputs an interrupt request to the ITC. An interrupt is generated if the ITC and S1C17 Core interrupt conditions are satisfied.

For more information on interrupt processing, see the "Interrupt Controller (ITC)" chapter.

Low voltage detection reset function

The SVD module can issue a reset when SVDIF is set to 1. To use this reset function, set SVDRE[3:0]/SVD_EN register to 0b1010 (setting a value other than 0b1010 disables the reset function).

Note that the SVD registers are not initialized even if a low voltage detection reset occurs, but the SVD_CLK register is initialized. Therefore, configure the SVD_CLK register again to operate the IC properly after returning from reset state.

- **Notes:** To prevent interrupt recurrences, the SVD module interrupt flag SVDIF must be reset in the interrupt handler routine after an SVD interrupt has occurred.
 - To prevent unwanted interrupts, SVDIF should be reset before enabling SVD interrupts with SVDIE.
 - Setting SVDIF to 1 generates a reset when SVDRE[3:0]/SVD_EN register = 0b1010 even if SVDEN/SVDEN register is set to 0.
 - After returning from SVD reset, be sure to disable the SVD reset function (set SVDRE[3:0] to a value other than 0b1010) before starting initialization.

18.8 Control Register Details

Address		Register name	Function								
0x5066	SVD_CLK	SVD Clock Control Register	Controls the SVD clock.								
0x5100	SVD_EN	SVD Enable Register	Enables/disables the SVD operation and sets the mode.								
0x5101	SVD_CMP	SVD Comparison Voltage Register	Selects the voltage to be detected and the comparison voltage.								
0x5102	SVD_RSLT	SVD Detection Result Register	Voltage detection results								
0x5103	SVD_IMSK	SVD Interrupt Mask Register	Enables/disables interrupts.								
0x5104	SVD_IFLG	SVD Interrupt Flag Register	Indicates/resets interrupt occurrence status.								

Table 18.8.1 List of SVD Registers

The SVD module registers are described in detail below.

Note: When data is written to the registers, the "Reserved" bits must always be written as 0 and not 1.

			•	· – /					
Register name	Address	Bit	Name	Function	Setting			R/W	Remarks
SVD Clock	0x5066	D7–4	-	reserved	-		-	-	0 when being read.
Control Register	(8 bits)	D3–2	CLKSRC	SVD clock source select	CLKSRC[1:0]	Clock source	0x0	R/W	
(SVD_CLK)			[1:0]		0x3	reserved			
					0x2	OSC1A/64			
					0x1	OSC1A			
					0x0	OSC3B/64			
		D1	-	reserved		-	-	-	0 when being read.
		D0	CLKEN	SVD clock enable	1 Enable	0 Disable	0	R/W	

SVD Clock Control Register (SVD_CLK)

D[7:4] Reserved

D[3:2] CLKSRC[1:0]: SVD Clock Source Select Bits

Selects the clock source for the SVD circuit.

Table 18.8.2	Clock Source	Selection
		0010011011

CLKSRC[1:0]	Clock source
0x3	Reserved
0x2	OSC1A/64
0x1	OSC1A
0x0	OSC3B/64

(Default: 0x0)

D1 Reserved

D0 CLKEN: SVD Clock Enable Bit

Enables or disables the operation clock supply to the SVD circuit.

1 (R/W): Enabled (on)

0 (R/W): Disabled (off) (default)

The CLKEN default setting is 0, which disables the clock supply. Setting CLKEN to 1 feeds the clock selected using CLKSRC[1:0] to the SVD circuit.

SVD Enable Register (SVD_EN)

Register name	Address	Bit	Name	Function	Set	ting	Init.	R/W	Remarks
SVD Enable	0x5100	D7–4	SVDRE[3:0]	SVD reset enable	SVDRE[3:0]	SVD reset	0x0	R/W	
Register	(8 bits)				0b1010	Enable			
(SVD_EN)					Others	Disable			
		D3–1	SVDMD[2:0]	SVD intermittent mode setting	SVDMD[2:0]	Cycle	0x0	R/W	
					0x7	SVDCLK/8192			
					0x6	SVDCLK/4096			
					0x5	SVDCLK/2048			
					0x4	SVDCLK/1024			
					0x3	SVDCLK/512			
					0x2	SVDCLK/256			
					0x1	SVDCLK/128			
					0x0	Continuous			
		D0	SVDEN	SVD enable	1 Enable	0 Disable	0	R/W	

D[7:4] SVDRE[3:0]: SVD Reset Enable Bits

Enables the SVD reset function. 0b1010 (R/W): Enabled Other than 0b1010 (R/W): Disabled (default: 0x0)

By setting SVDRE[3:0] to 0b1010, the IC will be reset when the interrupt flag (SVDIF/SVD_IFLG register) is set to 1 (note, however, that the SVD registers located at 0x5100 to 0x5104 are not initialized).

D[3:1] SVDMD[2:0]: SVD Intermittent Mode Setting Bits

Sets intermittent operation mode (voltage detection cycle).

SVDMD[2:0]	Intermittent operation cycle
0x7	SVDCLK/8192
0x6	SVDCLK/4096
0x5	SVDCLK/2048
0x4	SVDCLK/1024
0x3	SVDCLK/512
0x2	SVDCLK/256
0x1	SVDCLK/128
0x0	Continuous

Table 18.8.3 Intermittent Operation Mode Voltage Detection Cycle Selection

(Default: 0x0)

D0 SVDEN: SVD Enable Bit

Enables or disables SVD operations. 1 (R/W): Enabled 0 (R/W): Disabled (default)

Setting SVDEN to 1 initiates voltage detection; setting to 0 stops detection after loading the detection results to SVDDT/SVD_RSLT register.

- Notes: An SVD circuit-enable response time is required to obtain stable detection results after SVDEN is altered from 0 to 1. Also when SVDC[4:0] is altered, an SVD circuit response time is required to obtain stable detection results. Wait until the response time has elapsed before reading SVDDT. Also when reading the detection results after stopping the SVD circuit, SVDEN should be set to 0 after the response time has elapsed. For these response times, see "Electrical Characteristics."
 - Operating the SVD circuit increases current consumption. If voltage detection is not required, stop SVD operations by setting SVDEN to 0.
 - If SVDEN is set to 0 while the SVD circuit is operating in intermittent operation mode, SVD-DT becomes undefined.

SVD Comparison Voltage Register (SVD_CMP)

Register name	Address	Bit	Name	Function	Set	ting	Init.	R/W	Remarks
SVD	0x5101	D7	VDSEL	Detection voltage select	1 EXSVD	0 VDD	0	R/W	
Comparison	(8 bits)	D6–5	SVDSC[1:0]	SVD sampling result count	SVDSC[1:0]	Count	0x0	R/W	Ineffective when
Voltage Register				(for intermittent mode)	0x3	8 times			SVDMD[2:0]/SVD_
(SVD_CMP)					0x2	4 times			EN register = 0x0.
					0x1	Twice			
					0x0	Once			
		D4–0	SVDC[4:0]	SVD comparison voltage select	SVDC[4:0]	Voltage	0x0	R/W	
					0x1f-0x1b	reserved			
					0x1a	3.20 V			
					0x19	3.10 V			
					0x18	3.00 V			
					0x17	2.90 V			
					0x16	2.80 V			
					0x15	2.70 V			
					0x14	2.60 V			
					0x13	2.50 V			
					0x12	2.40 V			
					0x11	2.30 V			
					0x10	2.20 V			
					0xf	2.10 V			
					0xe	2.00 V			
					0xd-0x0	reserved			

D7 VDSEL: Detection Voltage Select Bit

Selects the voltage to be detected.

- 1 (R/W): EXSVD (voltage applied to the P02 pin)
- 0 (R/W): VDD (power supply voltage) (default)

- **Notes:** Before EXSVD can be selected as the voltage to be detected, the EXSVD (P02) pin must be placed into high impedance state. Otherwise, a malfunction or breakdown caused by leak-age current or others may occur. For control of the P02 pin, see the "I/O Ports (P)" chapter.
 - The upper limit of the voltage that can be applied to the EXSVD (P02) pin is VDD.
 - Do not alter VDSEL when SVDEN/SVD_EN register = 1.

D[6:5] SVDSC[1:0]: SVD Sampling Result Count Bits

Sets the condition to generate an interrupt/reset (number of successive low voltage detections) in intermittent operation mode (SVDMD[2:0]/SVD_EN register = 0x1 to 0x7).

Table 18.8.4 Selecting Interrupt/Reset Generating Condition in Intermittent Operation Mode

SVDSC[1:0]	Interrupt/reset generating condition
0x3	Low voltage is successively detected four times.
0x2	Low voltage is successively detected three times.
0x1	Low voltage is successively detected twice.
0x0	Low voltage is successively detected once.

(Default: 0x0)

D[4:0] SVDC[4:0]: SVD Comparison Voltage Select Bits

Selects one of 13 comparison voltages for detecting voltage drops.

SVDC[4:0]	Comparison Voltage	SVDC[4:0]	Comparison Voltage
0x1f		Oxf	2.10 V
0x1e		0xe	2.00 V
0x1d	Reserved	0xd	
0x1c		0xc	
0x1b		0xb	
0x1a	3.20 V	0xa	
0x19	3.10 V	0x9	
0x18	3.00 V	0x8	
0x17	2.90 V	0x7	Reserved
0x16	2.80 V	0x6	Reserved
0x15	2.70 V	0x5	
0x14	2.60 V	0x4	
0x13	2.50 V	0x3	
0x12	2.40 V	0x2	
0x11	2.30 V	0x1	
0x10	2.20 V	0x0	

Table 18.8.5 Comparison Voltage Settings

(Default: 0x0)

The SVD circuit compares the detected voltage (VDD or EXSVD) against the comparison voltage set by SVDC[4:0], and outputs results indicating whether the detected voltage exceeds this comparison voltage.

Note: The comparison voltage is effective only when it is set within the operating voltage range. If the comparison voltage set is out of the operating voltage range, no correct detection results will be obtained.

SVD Detection Result Register (SVD_RSLT)

Register name	Address	Bit	Name	Function	Setting			R/W	Remarks
SVD Detection	0x5102	D7–1	-	reserved	_		-	-	0 when being read.
Result Register	(8 bits)								_
(SVD_RSLT)		D0	SVDDT	SVD detection result	1 Low	0 Normal	×	R	

D[7:1] Reserved

D0 SVDDT: SVD Detection Result Bit

Indicates the voltage detection results.

1 (R): Detected voltage (VDD or EXSVD) < comparison voltage

0 (R): Detected voltage (VDD or EXSVD) \geq comparison voltage

18 SUPPLY VOLTAGE DETECTION CIRCUIT (SVD)

The SVD circuit compares the detected voltage (VDD or EXSVD) against the voltage set in SVDC[4:0]/ SVD_CMP register while SVDEN/SVD_EN register = 1. The detected current voltage status can be monitored by reading SVDDT. Also SVDDT retains its value after writing 0 to SVDEN, so the detected voltage status can be checked by reading SVDDT after that.

SVD Interrupt Mask Register (SVD_IMSK)

Register name	Address	Bit	Name	Function	Setting		R/W	Remarks
SVD Interrupt	0x5103	D7–1	-	reserved	-	-	-	0 when being read.
Mask Register	(8 bits)							
(SVD_IMSK)		D0	SVDIE	SVD interrupt enable	1 Enable 0 Disable	0	R/W	

D[7:1] Reserved

D0 SVDIE: SVD Interrupt Enable Bit

Enables or disables SVD interrupts.

- 1 (R/W): Interrupt enabled
- 0 (R/W): Interrupt disabled (default)

Setting SVDIE to 1 enables SVD interrupt requests to the ITC; setting to 0 disables interrupts.

SVD Interrupt Flag Register (SVD_IFLG)

Register name	Address	Bit	Name	Function	Setting			Init.	R/W	Remarks	
SVD Interrupt	0x5104	D7–1	-	reserved	-		-	-	0 when being read.		
Flag Register	(8 bits)	D0	SVDIF	SVD interrupt flag	1	Cause of	0	Cause of	0	R/W	Reset by writing 1.
(SVD_IFLG)						interrupt occurred		interrupt not occurred			

D[7:1] Reserved

D0 SVDIF: SVD Interrupt Flag Bit

Indicates whether the cause of SVD interrupt has occurred or not.

- 1 (R): Cause of interrupt has occurred
- 0 (R): No cause of interrupt has occurred (default)
- 1 (W): Flag is reset
- 0 (W): Ignored

SVDIF is set to 1 when a condition shown below is met and is reset by writing 1.

Continuous (normal) mode: When SVDDT/SVD_RSLT register is set to 1

Intermittent mode: When low voltage is successively detected the number of times specified using SVDSC[1:0]/SVD_CMP register

19 R/F Converter (RFC)

19.1 RFC Module Overview

The S1C17656 includes an R/F converter (RFC) module with one conversion channel. It is capable of being used as a CR oscillation type A/D converter. A thermo-hygrometer can easily be implemented by connecting only a resistive sensor (e.g., thermistor) and a few passive elements (resistors and capacitors) to the R/F converter. The following shows the features of the RFC module:

- Conversion method: Resistance to frequency conversion type
- Number of conversion channels: 1 channel
- Oscillation mode: DC oscillation mode (for resistive sensors)
- Counter length: 24 bits
- Five types of interrupts can be generated: Reference oscillation completion interrupt Sensor A oscillation completion interrupt

Sensor B oscillation completion interrupt Measurement counter overflow error interrupt Time base counter overflow error interrupt

Figure 19.1.1 shows the RFC configuration.

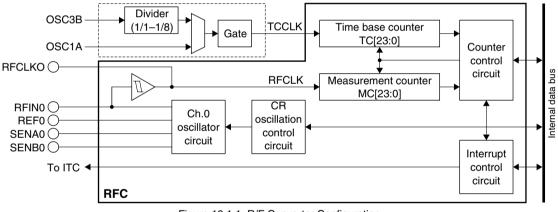


Figure 19.1.1 R/F Converter Configuration

The R/F converter converts the resistance of the sensor connected into frequency (RFCLK) using the embedded CR oscillator circuit, and counts this frequency using the measurement counter for a set period of time to provide the digital value equivalent to the sensor value. The time base counter is also included for generating the measurement time by counting an internal clock (TCCLK). In addition to CR oscillation using a sensor (sensor oscillation), the R/F converter performs CR oscillation using a reference element with less variation in the characteristics due to external factors (reference oscillation). This removes error factors such as voltage fluctuations and unevenness in quality to realize precise measurements. The CR oscillator circuit supports an external clock input as well as general DC driving, allowing use of various sensors.

19.2 RFC Input/Output Pins

Table 19.2.1 lists the RFC input/output pins.

Table 19.2.1 List of R/F Converter Input/Output Pins						
Pin name I/O Qty Function						
SENB0	I/O	1	Sensor B oscillation control pin (see Note 1 below)			
SENA0	I/O	1	Sensor A oscillation control pin (see Note 1 below)			
REF0	I/O	1	Reference oscillation control pin (see Note 1 below)			
RFIN0	I/O	1	RFCLK input and oscillation control pin (see Note 2 below)			
RFCLKO	0	1	RFCLK monitoring output pin			
			Outputs RFCLK to monitor the oscillation frequency.			

Table 19.2.1 List of R/F Converter Input/Output Pins

Notes: 1. The pins go to high impedance status when the port function is switched for the R/F converter.2. The RFIN0 pin goes to Vss level when the port function is switched for the R/F converter. A large current may flow through the RFIN0 pin if the pin is externally biased.

The R/F converter input/output pins are shared with I/O ports and are initially set as general-purpose I/O port pins. The pin functions must be switched using the port function select bits to use the general-purpose I/O port pins as R/ F converter input/output pins.

For detailed information on pin function switching, see the "I/O Ports (P)" chapter.

19.3 Operation Clock

The RFC module includes a clock source selector, dividers, and a gate circuit for controlling the operation clock.

Note: The operation clock (TCCLK) must be enabled before setting the R/F converter. Otherwise, the R/ F converter cannot operate normally.

Clock source selection

Use CLKSRC/RFC_CLK register to select the clock source from OSC3B and OSC1A.

CLKSRC	Clock source							
1	OSC1A							
0	OSC3B							

Table 19.3.1 Clock Source Selection

(Default: 1)

Clock division ratio selection

When the clock source is OSC1A

No division ratio needs to be selected when OSC1A is selected for the clock source. The OSC1A clock (typ. 32.768 kHz) is directly used as TCCLK.

When the clock source is OSC3B

When OSC3B is selected for the clock source, use CLKDIV[1:0]/RFC_CLK register to select the division ratio.

CLKDIV[1:0]	Division ratio
0x3	1/8
0x2	1/4
0x1	1/2
0x0	1/1
	(Defeuilt: 0x0)

Table 19.3.2 OSC3B Division Ratio Selection

(Default: 0x0)

The time base counter uses the clock selected here for counting. Selecting a high-speed clock improves the conversion accuracy. However the clock must be selected so that the time base counter will not overflow in the reference oscillation phase.

Clock enable

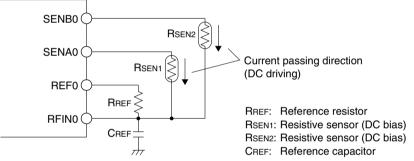
The clock supply is enabled with CLKEN/RFC_CLK register. The CLKEN default setting is 0, which stops the clock. Setting CLKEN to 1 feeds the clock generated as above to the RFC circuit. If no RFC operation is required, stop the clock to reduce current consumption.

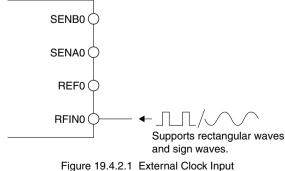
19.4 Operating Modes

The R/F converter features DC oscillation mode for measuring resistive sensors that use the RFC internal oscillator circuit and external clock input mode (event counter mode) for measuring an external clock. Also it includes a CR oscillation clock (RFCLK) monitoring function and continuous oscillation function for measuring the oscillation clock frequency.

19.4.1 DC Oscillation Mode for Measuring Resistive Sensors

In measurements using the RFC internal oscillator circuit, the reference element and a resistive sensor are oscillated for the same duration in time by applying DC bias voltage to count each oscillation frequency. The sensor value can be determined from the difference between the two count values via software. Setting EVTEN/RFC CTL register to 0 enables this function. This mode enables two resistive sensors to be connected. One reference resistor and one reference capacitor are also required.



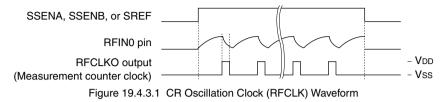

Figure 19.4.1.1 Connection Example in DC Oscillation Mode for Measuring Resistive Sensors

When one resistive sensor only is used, leave the unused pin open.

19.4.2 External Clock Input Mode (Event Counter Mode)

This mode enables to input clocks/pulses from an external circuit such as an oscillator and count them same as those of internal oscillation clocks. It supports rectangular waves and sign waves to be input. (For the threshold voltage of the Schmitt input buffer, see "Electrical Characteristics.")

Setting EVTEN/RFC_CTL register to 1 enables this function. The measurement control procedure is the same as that when the internal oscillator circuit is used.



The unused pins should be left open.

19.4.3 Functions for Measuring CR Oscillation Clock Frequency

CR Oscillation Clock (RFCLK) Monitoring Function

The CR oscillation clock (RFCLK) during converting can be output from the RFCLKO pin for monitoring. Use this output to measure the oscillation frequency.

Continuous oscillation function

The CR oscillations by the sensor and reference element will automatically stop due to stop conditions. Setting 1 to CONEN/RFC_CTL register enables the continuous oscillation function and CR oscillation will continue until stopped by software. Using this function with the CR oscillation monitoring function helps easily measure the CR oscillation clock frequency.

19.5 RFC Counters

The R/F converter includes two kinds of counters: measurement counter (MC) counting the reference element and sensor oscillation clocks, and time base counter (TC) counting the TCCLK clock.

Measurement counter (MC)

The measurement counter is a 24-bit presettable up counter. Counting the reference oscillation clock and the sensor oscillation clock for the same duration in time using this counter minimizes errors caused by voltage, and unevenness of IC quality, as well as external parts and on-board parasitic elements. The counter values should be corrected via software after the reference and sensor oscillation are completed according to the sensor characteristics to determine the value being currently detected by the sensor.

Time base counter (TC)

The time base counter is a 24-bit presettable up/down counter. The time base counter counts up by TCCLK during reference oscillation to measure the reference oscillation time. During sensor oscillation, it counts down from the reference oscillation time and stops the sensor oscillation when it reaches 0x0. This means that the sensor oscillation time becomes equal to the reference oscillation time. The value counted during reference oscillation should be saved in the memory. It can be reused at the subsequent sensor oscillations omitting reference oscillations.

Counter initial value

To obtain the difference between the reference oscillation and sensor oscillation clock count values from the measurement counter simply, appropriate initial values must be set to the counters before starting reference oscillation and sensor oscillation.

Connecting the reference element and sensor with the same resistance will result <Initial value> = <Counter value at the end of sensor oscillation> (if no error introduced). Setting a small initial value to the measurement counter improves measurement accuracy. However, the measurement counter may overflow during sensor oscillation when the sensor value decreases below the reference element value (the measurement will be canceled). The initial value for the measurement counter should be determined taking the range of sensor value into consideration.

The time base counter should be cleared to 0x0 before starting reference oscillation.

19.6 Conversion Operations

The conversion operations by the R/F converter should be controlled in the following procedure regardless of the operating mode: initial settings, reference oscillation control, and sensor oscillation control. This section describes these control procedure.

Although the following explanations assume that the internal oscillator circuit is used, the control procedures are the same even in external clock input mode. When the R/F converter is used in external clock input mode, select which oscillation is performed either reference or sensor and determine the counter initial values depending on the purpose for using.

19.6.1 Initial Settings

- (1) Select the R/F converter operating clock (TCCLK) and enable the clock supply. (See Section 19.3.)
- (2) Configure the pins to be used for the R/F converter by switching from general-purpose input/output ports. See the "I/O Ports (P)" chapter.
- (3) Set RFCEN/RFC_CTL register to 1 to enable the R/F converter.

19.6.2 Reference Oscillation Control

First, perform oscillation with the reference resistor and obtain the time base counter value to perform sensor oscillation for the same period of time.

- (1) Set the initial value (0x0 n) to MC[23:0]/RFC_MC(H/L) registers (measurement counter).
- (2) Set 0x0 to TC[23:0]/RFC_TC(H/L) registers (time base counter).
- (3) Reset the interrupt flags OVTCIF and EREFIF in the RFC_IFLG register by writing 1.
- (4) Set SREF/RFC_TRG register to 1 to start reference oscillation. The CR oscillator circuit starts oscillating with the reference resistor and outputs the clock to the measurement counter. The measurement counter starts counting up using the CR oscillation clock from the initial value that has been set. The time base counter starts counting up using TCCLK from 0x0.
- **Note:** For restrictions and precautions on control bit settings, see the descriptions in the "Control Register Details" section. The control bits may not be set to the desired values depending on conditions.
- (5) When the measurement counter or the time base counter overflows (0xffffff \rightarrow 0x0), SREF is reset to 0 and the reference oscillation stops automatically.
- (6-1) The measurement counter overflow sets EREFIF to 1 indicating that the reference oscillation has been terminated normally. An interrupt can be generated at this point. Read the time base counter value (TC[23:0] = X) and store it to the memory by the interrupt handler routine. When this interrupt is not used, perform the same processing after checking if EREFIF has been set.
- (6-2) The time base counter overflow sets OVTCIF to 1 indicating that the reference oscillation has been terminated abnormally. An interrupt can be generated at this point. Handle this error in the interrupt handler routine. When this interrupt is not used, perform the same processing after checking if OVTCIF has been set.

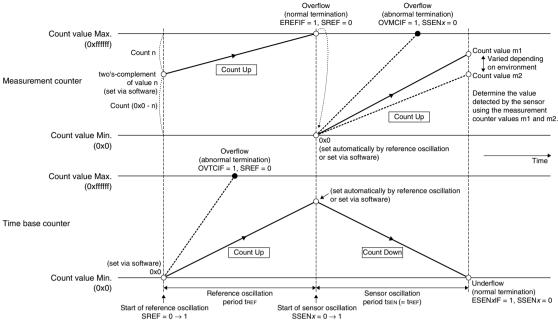


Figure 19.6.2.1 Counter Operations During Reference/Sensor Oscillation

19.6.3 Sensor Oscillation Control

Perform oscillation with the sensor for the period of time obtained by the time base counter in reference oscillation and count the oscillation clock by the measurement counter.

- (1) Initialize MC[23:0] (measurement counter) by writing 0x0. This can be omitted after a reference oscillation has completed.
- (2) Initialize TC[23:0] (time base counter) by writing the value (X) that has been counted in the time base counter during reference oscillation. This can be omitted after a reference oscillation has completed.
- (3) Reset the interrupt flags OVMCIF, ESENBIF, and ESENAIF in the RFC_IFLG register by writing 1.
- (4) Set SSENA/RFC_TRG register (for sensor A) or SSENB/RFC_TRG register (for sensor B) to 1 to start sensor oscillation.

The CR oscillator circuit starts oscillating with the sensor and outputs the clock to the measurement counter. The measurement counter starts counting up using the CR oscillation clock from 0x0. The time base counter starts counting down using TCCLK from the initial value (X) that has been set.

- **Note:** For restrictions and precautions on control bit settings, see the descriptions in the "Control Register Details" section. The control bits may not be set to the desired values depending on conditions.
- (5) When the time base counter reaches 0x0 or the measurement counter overflows (0xffffff \rightarrow 0x0), SSENA or SSENB is reset to 0 and the sensor oscillation stops automatically.
- (6-1) The time base counter reached 0x0 sets ESENAIF (for sensor A) or ESENBIF (for sensor B) to 1 indicating that the sensor oscillation has been terminated normally. An interrupt can be generated at this point. Read the measurement counter value (MC[23:0] = m) and process the detection results by the interrupt handler routine. When this interrupt is not used, perform the same processing after checking if ESENAIF or ESENBIF has been set.
- (6-2) The measurement counter overflow sets OVMCIF to 1 indicating that the sensor oscillation has been terminated abnormally. An interrupt can be generated at this point. Handle this error in the interrupt handler routine. When this interrupt is not used, perform the same processing after checking if OVMCIF has been set.

19.6.4 Forced Termination

To abort reference oscillation or sensor oscillation, write 0 to SREF (reference oscillation), SSENA (sensor A oscillation), or SSENB (sensor B oscillation) in the RFC_TRG register used to start the oscillation. The counters maintain the value at they stopped, note, however, that the conversion results cannot be guaranteed if the oscillation is resumed. When resuming oscillation, initialize the counters.

19.6.5 Conversion Error

Performing reference oscillation and sensor oscillation with the same resistor and capacitor results $n \approx m$. The difference between n and m is a conversion error. Table 19.6.5.1 lists the error factors. (n: measurement counter initial value, m: measurement counter value at the end of sensor oscillation)

Error factor	Influence
External part tolerances	Large
Power supply voltage fluctuations	Large
Parasitic capacitance and resistance of the board	Middle
Temperature	Small
Unevenness of IC quality	Small

Table 19.6.5.1 Error Factors

19.7 RFC Interrupts

The RFC module includes a function for generating the following five different types of interrupts.

- Reference oscillation completion interrupt
- Sensor A oscillation completion interrupt
- Sensor B oscillation completion interrupt
- · Measurement counter overflow error interrupt
- Time base counter overflow error interrupt

The RFC module outputs one interrupt signal shared by the five above interrupt causes to the interrupt controller (ITC). Inspect the interrupt flag to determine the interrupt cause occurred.

Reference oscillation completion interrupt

To use this interrupt, set EREFIE/RFC_IMSK register to 1. If EREFIE is set to 0 (default), interrupt requests for this cause will not be sent to the ITC.

When the measurement counter overflows and a reference oscillation is completed normally, the R/F converter sets EREFIF/RFC_IFLG register to 1. If reference oscillation completion interrupts are enabled (EREFIE = 1), an interrupt request is sent simultaneously to the ITC.

Sensor A oscillation completion interrupt

To use this interrupt, set ESENAIE/RFC_IMSK register to 1. If ESENAIE is set to 0 (default), interrupt requests for this cause will not be sent to the ITC.

When the time base counter reaches 0x0 and a sensor A oscillation is completed normally, the R/F converter sets ESENAIF/RFC_IFLG register to 1. If sensor A oscillation completion interrupts are enabled (ESENAIE = 1), an interrupt request is sent simultaneously to the ITC.

Sensor B oscillation completion interrupt

To use this interrupt, set ESENBIE/RFC_IMSK register to 1. If ESENBIE is set to 0 (default), interrupt requests for this cause will not be sent to the ITC.

When the time base counter reaches 0x0 and a sensor B oscillation is completed normally, the R/F converter sets ESENBIF/RFC_IFLG register to 1. If sensor B oscillation completion interrupts are enabled (ESENBIE = 1), an interrupt request is sent simultaneously to the ITC.

19 R/F CONVERTER (RFC)

Measurement counter overflow error interrupt

To use this interrupt, set OVMCIE/RFC_IMSK register to 1. If OVMCIE is set to 0 (default), interrupt requests for this cause will not be sent to the ITC.

When the measurement counter overflows and a sensor oscillation is terminated abnormally, the R/F converter sets OVMCIF/RFC_IFLG register to 1. If measurement counter overflow error interrupts are enabled (OVMCIE = 1), an interrupt request is sent simultaneously to the ITC.

Time base counter overflow error interrupt

To use this interrupt, set OVTCIE/RFC_IMSK register to 1. If OVTCIE is set to 0 (default), interrupt requests for this cause will not be sent to the ITC.

When the time base counter overflows and a reference oscillation is terminated abnormally, the R/F converter sets $OVTCIF/RFC_IFLG$ register to 1. If time base counter overflow error interrupts are enabled (OVTCIE = 1), an interrupt request is sent simultaneously to the ITC.

For more information on interrupt processing, see the "Interrupt Controller (ITC)" chapter.

- **Notes:** To prevent interrupt recurrences, the interrupt flag must be reset in the interrupt handler routine after an RFC interrupt has occurred. The interrupt flag is reset by writing 1.
 - To prevent unwanted interrupts, reset the interrupt flags before enabling interrupts with the interrupt enable bits.

19.8 Control Register Details

Address		Register name	Function
0x5067	RFC_CLK	RFC Clock Control Register	Controls the RFC clock.
0x53a0	RFC_CTL	RFC Control Register	Controls the R/F converter.
0x53a2	RFC_TRG	RFC Oscillation Trigger Register	Controls oscillations.
0x53a4	RFC_MCL	RFC Measurement Counter Low Register	Measurement counter data
0x53a6	RFC_MCH	RFC Measurement Counter High Register	
0x53a8	RFC_TCL	RFC Time Base Counter Low Register	Time base counter data
0x53aa	RFC_TCH	RFC Time Base Counter High Register	
0x53ac	RFC_IMSK	RFC Interrupt Mask Register	Enables/disables interrupts.
0x53ae	RFC_IFLG	RFC Interrupt Flag Register	Indicates/resets interrupt occurrence status.

The R/F converter registers are described in detail below.

Note: When data is written to the registers, the "Reserved" bits must always be written as 0 and not 1.

RFC Clock Control Register (RFC_CLK)

Register name	Address	Bit	Name	Function	Setting			R/W	Remarks
RFC Clock	0x5067	D7–6	-	reserved	-		-	-	0 when being read.
Control Register	(8 bits)	D5–4	CLKDIV	RFC clock division ratio select	CLKDIV[1:0]	CLKDIV[1:0] Division ratio		R/W	When the clock
(RFC_CLK)			[1:0]		0x3	1/8]		source is OSC3B
					0x2	1/4			
					0x1	1/2			
					0x0	1/1			
		D3	-	reserved	_		-	-	0 when being read.
		D2	CLKSRC	RFC clock source select	1 OSC1A	0 OSC3B	1	R/W	
		D1	-	reserved	_		-	-	0 when being read.
		D0	CLKEN	RFC clock enable	1 Enable	0 Disable	0	R/W	

D[7:6] Reserved

D[5:4] CLKDIV[1:0]: RFC Clock Division Ratio Select Bits

Selects the division ratio for generating the TCCLK clock when OSC3B is used as the clock source.

CLKDIV[1:0]	Division ratio							
0x3	1/8							
0x2	1/4							
0x1	1/2							
0x0	1/1							
070	1/ 1							

Table 19.8.2 OSC3B Division Ratio Selection

(Default: 0x0)

D3 Reserved

D2 CLKSRC: RFC Clock Source Select Bit

Selects the clock source. 1 (R/W): OSC1A (default) 0 (R/W): OSC3B

D1 Reserved

D0 CLKEN: Clock Enable Bit

Enables or disables the TCCLK clock supply. 1 (R/W): Enabled (on) 0 (R/W): Disabled (off) (default)

The CLKEN default setting is 0, which disables the clock supply. Setting CLKEN to 1 sends the clock selected to the R/F converter.

RFC Control Register (RFC_CTL)

Register name	Address	Bit	Name	Function	Setting			Init.	R/W	Remarks
RFC Control	0x53a0	D15-8	-	reserved	-			-	-	0 when being read.
Register	(16 bits)	D7	CONEN	Continuous oscillation enable	1	Enable	0 Disable	0	R/W	
(RFC_CTL)		D6	EVTEN	Event counter mode enable	1	Enable	0 Disable	0	R/W	
		D5–1	-	reserved		-	-	-	-	0 when being read.
		D0	RFCEN	RFC enable	1	Enable	0 Disable	0	R/W	

D[15:8] Reserved

D7 CONEN: Continuous Oscillation Enable Bit

Enables continuous oscillation by disabling the automatic CR oscillation stop function.

1 (R/W): Continuous oscillation enabled

0 (R/W): Continuous oscillation disabled (default)

Setting 1 to CONEN disables the reference oscillation/sensor oscillation stop conditions so that the CR oscillator will continue oscillating. Set SREF (reference oscillation), SSENA (sensor A oscillation), or SSENB (sensor B oscillation) in the RFC_TRG register to 1 to start oscillation even in this mode, and set to 0 to stop oscillation.

Using this function with the CR oscillation monitoring function helps easily measure the CR oscillation clock frequency.

D6 EVTEN: Event Counter Mode Enable Bit

Enables external clock input mode (event counter mode).

1 (R/W): External clock input mode

0 (R/W): DC oscillation mode for measuring resistive sensors (default)

Setting EVTEN to 1 enables the external clock input to the RFIN0 pin. SREF (reference oscillation), SSENA (sensor A oscillation), or SSENB (sensor B oscillation) should be used to control starting oscillation (starting conversion) to perform converting operation.

Note: Do not input an external clock before setting EVTEN to 1. The RFIN0 pin is pulled down to Vss when the pin function is switched for the R/F converter.

D[5:1] Reserved

19 R/F CONVERTER (RFC)

D0 RFCEN: RFC Enable Bit

Enables or disables the R/F converter. 1 (R/W): Enabled 0 (R/W): Disabled (default)

Setting RFCEN to 1 enables the R/F converter to start converting operations. When RFCEN is 0, manipulations of the RFC_TRG register for oscillation control are ineffective.

RFC Oscillation Trigger Register (RFC_TRG)

Register name	Address	Bit	Name	Function	Setting			Init.	R/W	Remarks	
RFC Oscillation	0x53a2	D15–3	-	reserved		-	-		- 1	-	0 when being read.
Trigger Register	(16 bits)	D2	SSENB	Sensor B oscillation control/status	1	Start/Run	0	Stop	0	R/W	
(RFC_TRG)		D1	SSENA	Sensor A oscillation control/status	1	Start/Run	0	Stop	0	R/W	
		D0	SREF	Reference oscillation control/status	1	Start/Run	0	Stop	0	R/W	

D[15:3] Reserved

D2 SSENB: Sensor B Oscillation Control/Status Bit

Controls CR oscillation for sensor B. This bit also indicates the CR oscillation status.

- 1 (W): Start oscillation
- 0 (W): Stop oscillation
- 1 (R): Being oscillated
- 0 (R): Stopped (default)

D1 SSENA: Sensor A Oscillation Control/Status Bit

Controls CR oscillation for sensor A. This bit also indicates the CR oscillation status.

- 1 (W): Start oscillation
- 0 (W): Stop oscillation
- 1 (R): Being oscillated
- 0 (R): Stopped (default)

D0 SREF: Reference Oscillation Control/Status Bit

Controls CR oscillation for the reference element. This bit also indicates the CR oscillation status.

- 1 (W): Start oscillation
- 0 (W): Stop oscillation
- 1 (R): Being oscillated
- 0 (R): Stopped (default)
- **Notes:** SREF, SSENA, and SSENB are all ineffective when RFCEN/RFC_CTL register is 0 (converting operation disabled).
 - When writing 1 to SREF, SSENA, or SSENB to start oscillation, be sure to avoid that more than one bit are set to 1.
 - Be sure to reset the interrupt flags in the RFC_IFLG register (EREFIF, ESENAIF, ESENBIF, OVMCIF, and OVTCIF) before starting oscillation using SREF, SSENA, and SSENB.

RFC Measurement Counter Low and High Registers (RFC_MCL, RFC_MCH)

Register name	Address	Bit	Name	Function	Setting	Init.	R/W	Remarks
RFC	0x53a4	D15-0	MC[15:0]	Measurement counter low-order	0x0–0xffff	0x0	R/W	
Measurement	(16 bits)			16-bit data				
Counter Low								
Register								
(RFC_MCL)								
RFC	0x53a6	D15-8	-	reserved	-	-	-	0 when being read.
Measurement	(16 bits)	D7–0	MC[23:16]	Measurement counter high-order	0x0–0xff	0x0	R/W	-
Counter High				8-bit data				
Register								
(RFC_MCH)								

D[7:0]/RFC_MCH, D[15:0]/RFC_MCL

MC[23:0]: Measurement Counter Bits

Measurement counter data can be read and written to. (Default: 0x0)

Note: The measurement counter must be set from the low-order value (MC[15:0]/RFC_MCL register) first. The counter may not be set to the correct value if the high-order value (MC[23:16]/RFC_MCH register) is written first.

RFC Time Base Counter Low and High Registers (RFC_TCL, RFC_TCH)

				•	-	•	-		
Register name	Address	Bit	Name	Function		Setting	Init.	R/W	Remarks
RFC Time Base	0x53a8	D15–0	TC[15:0]	Time base counter low-order 16-		0x0–0xffff	0x0	R/W	
Counter Low	(16 bits)			bit data					
Register									
(RFC_TCL)									
RFC Time Base	0x53aa	D15-8	-	reserved		_	-	-	0 when being read.
Counter High	(16 bits)	D7–0	TC[23:16]	Time base counter high-order		0x0–0xff	0x0	R/W	
Register				8-bit data					
(RFC_TCH)									

D[7:0]/RFC_TCH, D[15:0]/RFC_TCL

TC[23:0]: Time Base Counter Bits

Time base counter data can be read and written to. (Default: 0x0)

Note: The time base counter must be set from the low-order value (TC[15:0]/RFC_TCL register) first. The counter may not be set to the correct value if the high-order value (TC[23:16]/RFC_TCH register) is written first.

RFC Interrupt Mask Register (RFC_IMSK)

Register name	Address	Bit	Name	Function	Setting			g	Init.	R/W	Remarks
RFC Interrupt	0x53ac	D15–5	-	reserved	Γ	-			-	-	0 when being read.
Mask Register	(16 bits)	D4	OVTCIE	TC overflow error interrupt enable	1	Enable	0	Disable	0	R/W	
(RFC_IMSK)		D3	OVMCIE	MC overflow error interrupt enable	1	Enable	0	Disable	0	R/W	
		D2	ESENBIE	Sensor B oscillation completion	1	Enable	0	Disable	0	R/W	
				interrupt enable							
		D1	ESENAIE	Sensor A oscillation completion	1	Enable	0	Disable	0	R/W	
				interrupt enable							
		D0	EREFIE	Reference oscillation completion	1	Enable	0	Disable	0	R/W	
				interrupt enable							

D[15:5] Reserved

D4 OVTCIE: TC Overflow Error Interrupt Enable Bit

Enables or disables time base counter overflow error interrupts.

1 (R/W): Interrupt enabled

0 (R/W): Interrupt disabled (default)

D3 OVMCIE: MC Overflow Error Interrupt Enable Bit

Enables or disables measurement counter overflow error interrupts.

1 (R/W): Interrupt enabled

0 (R/W): Interrupt disabled (default)

D2 ESENBIE: Sensor B Oscillation Completion Interrupt Enable Bit

Enables or disables sensor B oscillation completion interrupts.

1 (R/W): Interrupt enabled

0 (R/W): Interrupt disabled (default)

D1 ESENAIE: Sensor A Oscillation Completion Interrupt Enable Bit

Enables or disables sensor A oscillation completion interrupts.

1 (R/W): Interrupt enabled

0 (R/W): Interrupt disabled (default)

D0 EREFIE: Reference Oscillation Completion Interrupt Enable Bit

Enables or disables reference oscillation completion interrupts.

1 (R/W): Interrupt enabled

0 (R/W): Interrupt disabled (default)

RFC Interrupt Flag Register (RFC_IFLG)

Register name	Address	Bit	Name	Function	Setting				Init.	R/W	Remarks
RFC Interrupt	0x53ae	D15–5	-	reserved	-			-	-	0 when being read.	
Flag Register	(16 bits)	D4	OVTCIF	TC overflow error interrupt flag	1	Cause of	0	Cause of	0	R/W	Reset by writing 1.
(RFC_IFLG)		D3	OVMCIF	MC overflow error interrupt flag]	interrupt		interrupt not	0	R/W	
		D2	ESENBIF	Sensor B oscillation completion	1	occurred		occurred	0	R/W	
				interrupt flag							
		D1	ESENAIF	Sensor A oscillation completion]				0	R/W	
				interrupt flag							
		D0	EREFIF	Reference oscillation completion	1				0	R/W	
				interrupt flag							

D[15:5] Reserved

D4 OVTCIF: TC Overflow Error Interrupt Flag Bit

Indicates the time base counter overflow error interrupt cause occurrence status.

1 (R): Cause of interrupt has occurred

- 0 (R): No cause of interrupt has occurred (default)
- 1 (W): Flag is reset
- 0 (W): Ignored

OVTCIF is set to 1 when a reference oscillation is terminated abnormally due to time base counter overflow. OVTCIF is reset to 0 by writing 1.

D3 OVMCIF: MC Overflow Error Interrupt Flag Bit

Indicates the measurement counter overflow error interrupt cause occurrence status.

- 1 (R): Cause of interrupt has occurred
- 0 (R): No cause of interrupt has occurred (default)
- 1 (W): Flag is reset
- 0 (W): Ignored

OVMCIF is set to 1 when a sensor oscillation is terminated abnormally due to measurement counter overflow. OVMCIF is reset to 0 by writing 1.

D2 ESENBIF: Sensor B Oscillation Completion Interrupt Flag Bit

Indicates the sensor B oscillation completion interrupt cause occurrence status.

- 1 (R): Cause of interrupt has occurred
- 0 (R): No cause of interrupt has occurred (default)
- 1 (W): Flag is reset
- 0 (W): Ignored

ESENBIF is set to 1 when the time base counter reaches 0x0 and a sensor B oscillation is completed normally. ESENBIF is reset to 0 by writing 1.

D1 ESENAIF: Sensor A Oscillation Completion Interrupt Flag Bit

Indicates the sensor A oscillation completion interrupt cause occurrence status.

- 1 (R): Cause of interrupt has occurred
- 0 (R): No cause of interrupt has occurred (default)
- 1 (W): Flag is reset
- 0 (W): Ignored

ESENAIF is set to 1 when the time base counter reaches 0x0 and a sensor A oscillation is completed normally. ESENAIF is reset to 0 by writing 1.

D0 EREFIF: Reference Oscillation Completion Interrupt Flag Bit

Indicates the reference oscillation completion interrupt cause occurrence status.

- 1 (R): Cause of interrupt has occurred
- 0 (R): No cause of interrupt has occurred (default)
- 1 (W): Flag is reset
- 0 (W): Ignored

EREFIF is set to 1 when the measurement counter overflows and a reference oscillation is completed normally. EREFIF is reset to 0 by writing 1.

20 On-chip Debugger (DBG)

20.1 Resource Requirements and Debugging Tools

Debugging work area

Debugging requires a 64-byte debugging work area. For more information on the work area location, see the "Memory Map, Bus Control" chapter.

The start address for this debugging work area can be read from the DBRAM register (0xffff90).

Debugging tools

Debugging involves connecting ICDmini (S5U1C17001H) to the S1C17656 debug pins and inputting the debug instruction from the debugger on the personal computer.

The following tools are required:

- S1C17 Family In-Circuit Debugger ICDmini (S5U1C17001H)
- S1C17 Family C compiler package (e.g., S5U1C17001C)

Debug pins

The following debug pins are used to connect ICDmini (S5U1C17001H).

Pin name	I/O	Qty	Function
DCLK	0	1	On-chip debugger clock output pin
			Outputs a clock to the ICDmini (S5U1C17001H).
DSIO	I/O	1	On-chip debugger data input/output pin
			Used to input/output debugging data and input the break signal.
DST2	0	1	On-chip debugger status signal output pin
			Outputs the processor status during debugging.

Table 20.1.1 List of Debug Pins

The on-chip debugger input/output pins (DCLK, DST2, DSIO) are shared with I/O ports and are initially set as the debug pins. If the debugging function is not used, these pins can be switched using the port function select bits to enable use as general-purpose I/O port pins.

For detailed information on pin function switching, see the "I/O Ports (P)" chapter.

20.2 Debug Break Operation Status

The S1C17 Core enters debug mode when the brk instruction is executed or a debug interrupt is generated by a break signal (Low) input to the DSIO pin. This state persists until the retd instruction is executed. During this time, hardware interrupts and NMIs are disabled.

The default setting halts peripheral circuit operations. This setting can be modified even when debugging is underway.

The peripheral circuits that operate with PCLK will continue running in debug mode by setting DBRUN1/MISC_ DMODE1 register to 1. Setting DBRUN1 to 0 (default) will stop these peripheral circuits in debug mode.

The peripheral circuits that operate with a clock other than PCLK will continue running in debug mode by setting DBRUN2/MISC_DMODE2 register to 1. Setting DBRUN2 to 0 (default) will stop these peripheral circuits in debug mode.

Some peripheral circuits, such as SPI and T16A2, that run with an external input clock will not stop operating even if the S1C17 Core enters debug mode.

The LCD driver and RTC continue the operating status at occurrence of the debug interrupt.

20.3 Additional Debugging Function

The S1C17656 expands the following on-chip debugging functions of the S1C17 Core.

Branching destination in debug mode

When a debug interrupt is generated, the S1C17 Core enters debug mode and branches to the debug processing routine. In this process, the S1C17 Core is designed to branch to address 0xfffc00. In addition to this branching destination, the S1C17656 also allows designation of address 0x0 (beginning address of the internal RAM) as the branching destination when debug mode is activated. The branching destination address is selected using DBADR/MISC_IRAMSZ register. When the DBADR is set to 0 (default), the branching destination is set to 0xfffc00. When it is set to 1, the branching destination is set to 0x0.

Adding instruction breaks

The S1C17 Core supports two instruction breaks (hardware PC breaks). The S1C17656 increased this number to five, adding the control bits and registers given below.

- IBE2/DCR register: Enables instruction breaks #2.
- IBE3/DCR register: Enables instruction breaks #3.
- IBE4/DCR register: Enables instruction breaks #4.
- IBAR2[23:0]/IBAR2 register: Set instruction break address #2.
- IBAR3[23:0]/IBAR3 register: Set instruction break address #3.
- IBAR4[23:0]/IBAR4 register: Set instruction break address #4.

Note that the debugger included in the S5U1C17001C (Ver. 1.2.1) or later is required to use five hardware PC breaks.

20.4 Flash Security Function

This IC provides a security function to protect the internal Flash memory and RAM from unauthorized reading and tampering by using the debugger through ICDmini. Figure 20.4.1 shows a Flash security function setting flow.

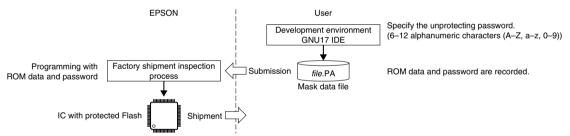


Figure 20.4.1 Shipment of IC with ROM Data Programmed and Flash Security Function Setting Flow

The following shows the status of the IC with protected Flash:

- The Flash memory and RAM data are undefined if they are read from the debugger.
- An error occurs if an attempt is made to program the Flash memory through ICDmini.

However, the Flash security function can be disabled by entering the unprotecting password predefined to GNU17 IDE (the security function will take effect again after a reset). For setting the password, refer to the "(S1C17 Family C Compiler Package) S5U1C17001C Manual."

Note: Disable the Flash security function before debugging an IC with protected Flash via ICDmini. The debugging functions may not run normally if the Flash security function is enabled.

20.5 Control Register Details

Address		Register name	Function									
0x4020	MISC_DMODE1	Debug Mode Control Register 1	Enables peripheral operations in debug mode (PCLK).									
0x5322	MISC_DMODE2	Debug Mode Control Register 2	Enables peripheral operations in debug mode (except PCLK).									
0x5326	MISC_IRAMSZ	IRAM Size Select Register	Selects the IRAM size.									
0xffff90	DBRAM	Debug RAM Base Register	Indicates the debug RAM base address.									
0xffffa0	DCR	Debug Control Register	Controls debugging.									
0xffffb8	IBAR2	Instruction Break Address Register 2	Sets Instruction break address #2.									
0xfffbc	IBAR3	Instruction Break Address Register 3	Sets Instruction break address #3.									
0xffffd0	IBAR4	Instruction Break Address Register 4	Sets Instruction break address #4.									

Table 20.5.1 List of Debug Registers

The debug registers are described in detail below.

- Notes: When data is written to the registers, the "Reserved" bits must always be written as 0 and not 1.
 - For debug registers not described here, refer to the S1C17 Core Manual.

Debug Mode Control Register 1 (MISC_DMODE1)

Register name	Address	Bit	Name	Function	Setting	Init.	R/W	Remarks
Debug Mode	0x4020	D7–2	-	reserved	-	-	-	0 when being read.
Control	(8 bits)							
Register 1		D1	DBRUN1	Run/stop select in debug mode	1 Run 0 Stop	0	R/W	
(MISC_DMODE1)		D0	-	reserved	_	-	-	0 when being read.

D[7:2] Reserved

D1 DBRUN1: Run/Stop Select Bit in Debug Mode

Selects the operating status of the peripheral circuits that operate with PCLK in debug mode.

1 (R/W): Run

0 (R/W): Stop (default)

Setting DBRUN1 to 1 enables the peripheral circuits that operate with PCLK to run even in debug mode. Setting it to 0 will stop them when the S1C17 Core enters debug mode. Set DBRUN1 to 1 to maintain running status for these peripheral circuits in debug mode.

D0 Reserved

Debug Mode Control Register 2 (MISC_DMODE2)

Register name	Address	Bit	Name	Function	Setting			Init.	R/W	Remarks
Debug Mode	0x5322	D15–1	-	reserved	Τ	_		-	-	0 when being read.
Control	(16 bits)									-
Register 2		D0	DBRUN2	Run/stop select in debug mode	1	Run	0 Stop	0	R/W	
(MISC_DMODE2)				(except PCLK peripheral circuits)						

D[15:1] Reserved

D0 DBRUN2: Run/Stop Select Bit in Debug Mode (except PCLK peripheral circuits)

Selects the operating status of the peripheral circuits that operate with a clock other than PCLK in debug mode.

1 (R/W): Run

0 (R/W): Stop (default)

Setting DBRUN2 to 1 enables the peripheral circuits that operate with a clock other than PCLK to run even in debug mode. Setting it to 0 will stop them when the S1C17 Core enters debug mode. Set DBRUN2 to 1 to maintain running status for these peripheral circuits in debug mode.

Some peripheral circuits, such as SPI and T16A2, that run with an external input clock will not stop operating even if the S1C17 Core enters debug mode.

The LCD driver and RTC continue the operating status at occurrence of the debug interrupt.

IRAM Size Select Register (MISC_IRAMSZ)

Register name	Address	Bit	Name	Function		Sett	ing	Init.	R/W	Remarks
IRAM Size	0x5326	D15–9	-	reserved		-	-	-	-	0 when being read.
Register	(16 bits)	D8	DBADR	Debug base address select	1	0x0	0 0xfffc00	0	R/W	
(MISC_IRAMSZ)		D7	-	reserved		_	-	-	-	0 when being read.
		D6–4	IRAMACTSZ	IRAM actual size	0x3 (= 2KB)			0x3	R	
			[2:0]		. ,					
		D3	-	reserved		-	-	-	-	0 when being read.
		D2–0	IRAMSZ[2:0]	IRAM size select	IR	RAMSZ[2:0]	Size	0x3	R/W	
						0x5	512B			
						0x4	1KB			
					0x3 2KB					
						Other	reserved			

D[15:9] Reserved

D8 DBADR: Debug Base Address Select Bit

Selects the branching destination address when a debug interrupt occurs. 1(R/W): 0x0 0(R/W): 0xfffc00 (default)

D7 Reserved

D[6:4] IRAMACTSZ[2:0]: IRAM Actual Size Bits

Indicates the actual internal RAM size embedded. (Default: 0x3)

D3 Reserved

D[2:0] IRAMSZ[2:0]: IRAM Size Select Bits

Selects the size of the internal RAM to be used.

Table 20.5.2 Interna	RAM Size Selection
IRAMSZ[2:0]	Internal RAM size
0x5	512B
0x4	1KB
0x3	2KB
Other	Reserved
	(D - ())

(Default: 0x3)

Note: The MISC_IRAMSZ register is write-protected. To alter this register settings, you must override this write-protection by writing 0x96 to the MISC_PROT register. Normally, the MISC_PROT register should be set to a value other than 0x96, except when altering the MISC_IRAMSZ register. Unnecessary rewriting of the MISC_IRAMSZ register may result in system malfunctions.

Debug RAM Base Register (DBRAM)

Register name	Address	Bit	Name	Function	Setting	Init.	R/W	Remarks
Debug RAM	0xffff90	D31-24	-	Unused (fixed at 0)	0x0	0x0	R	
Base Register	(32 bits)	D23-0	DBRAM[23:0]	Debug RAM base address	0x7c0	0x7c0	R	
(DBRAM)				÷				

D[31:24] Not used (Fixed at 0)

D[23:0] DBRAM[23:0]: Debug RAM Base Address Bits

Read-only register containing the beginning address of the debugging work area (64 bytes).

Debug Control Register (DCR)

Register name	Address	Bit	Name	Function	Setting				Init.	R/W	Remarks
Debug Control	0xffffa0	D7	IBE4	Instruction break #4 enable	1	Enable	0	Disable	0	R/W	
Register	(8 bits)	D6	IBE3	Instruction break #3 enable	1	Enable	0	Disable	0	R/W	1
(DCR)		D5	IBE2	Instruction break #2 enable	1	Enable	0	Disable	0	R/W	
		D4	DR	Debug request flag	1	Occurred	0	Not occurred	0	R/W	Reset by writing 1.
		D3	IBE1	Instruction break #1 enable	1	Enable	0	Disable	0	R/W	
		D2	IBE0	Instruction break #0 enable	1	Enable	0	Disable	0	R/W	
		D1	SE	Single step enable	1	Enable	0	Disable	0	R/W	
		D0	DM	Debug mode	1	Debug mode	0	User mode	0	R	

D7 IBE4: Instruction Break #4 Enable Bit

Enables or disables instruction break #4. 1 (R/W): Enabled 0 (R/W): Disabled (default)

If this bit is set to 1, the instruction fetch address and the value set in the IBAR4 register are compared. If they match, an instruction break is generated. If this bit is set to 0, no comparison is performed.

D6 IBE3: Instruction Break #3 Enable Bit

Enables or disables instruction break #3. 1 (R/W): Enabled 0 (R/W): Disabled (default)

If this bit is set to 1, the instruction fetch address and the value set in the IBAR3 register are compared. If they match, an instruction break is generated. If this bit is set to 0, no comparison is performed.

D5 IBE2: Instruction Break #2 Enable Bit

Enables or disables instruction break #2.

1 (R/W): Enabled

0 (R/W): Disabled (default)

If this bit is set to 1, the instruction fetch address and the value set in the IBAR2 register are compared. If they match, an instruction break is generated. If this bit is set to 0, no comparison is performed.

D4 DR: Debug Request Flag Bit

Indicates the presence or absence of an external debug request.

- 1 (R): Request generated
- 0 (R): Request not generated (default)
- 1 (W): Flag is reset
- 0 (W): Ignored

This flag is cleared (reset to 0) when 1 is written. It must be cleared before the debug processing routine is terminated by the retd instruction.

D3 IBE1: Instruction Break #1 Enable Bit

Enables or disables instruction break #1. 1 (R/W): Enabled

0 (R/W): Disabled (default)

If this bit is set to 1, the instruction fetch address and the value set in the IBAR1 register are compared. If they match, an instruction break is generated. If this bit is set to 0, no comparison is performed.

D2 IBE0: Instruction Break #0 Enable Bit

Enables or disables instruction break #0. 1 (R/W): Enabled 0 (R/W): Disabled (default)

If this bit is set to 1, the instruction fetch address and the value set in the IBAR0 register are compared. If they match, an instruction break is generated. If this bit is set to 0, no comparison is performed.

D1 SE: Single Step Enable Bit

Enables or disables single-step operations. 1 (R/W): Enabled 0 (R/W): Disabled (default)

D0 DM: Debug Mode Bit

Indicates the processor operating mode (debug mode or user mode).

- 1 (R): Debug mode
- 0 (R): User mode (default)

Instruction Break Address Register 2 (IBAR2)

Register name	Address	Bit	Name	Function	Setting	Init.	R/W	Remarks
Instruction	0xffffb8	D31-24	-	reserved	-	-	-	0 when being read.
Break Address	(32 bits)	D23-0	IBAR2[23:0]	Instruction break address #2	0x0 to 0xffffff	0x0	R/W	
Register 2				IBAR223 = MSB				
(IBAR2)				IBAR20 = LSB				

D[31:24] Reserved

D[23:0] IBAR2[23:0]: Instruction Break Address #2 Bits

Sets instruction break address #2. (default: 0x000000)

Instruction Break Address Register 3 (IBAR3)

Register name	Address	Bit	Name	Function	Setting	Init.	R/W	Remarks
Instruction	0xffffbc	D31-24	-	reserved	-	-	-	0 when being read.
Break Address	(32 bits)	D23–0	IBAR3[23:0]	Instruction break address #3	0x0 to 0xffffff	0x0	R/W	
Register 3				IBAR323 = MSB				
(IBAR3)				IBAR30 = LSB				

D[31:24] Reserved

D[23:0] IBAR3[23:0]: Instruction Break Address #3 Bits

Sets instruction break address #3. (default: 0x000000)

Instruction Break Address Register 4 (IBAR4)

Register name	Address	Bit	Name	Function	Setting	Init.	R/W	Remarks
Instruction	0xffffd0	D31–24	-	reserved	_	-	_	0 when being read.
Break Address	(32 bits)	D23–0	IBAR4[23:0]	Instruction break address #4	0x0 to 0xffffff	0x0	R/W	-
Register 4				IBAR423 = MSB				
(IBAR4)				IBAR40 = LSB				

D[31:24] Reserved

D[23:0] IBAR4[23:0]: Instruction Break Address #4 Bits

Sets instruction break address #4. (default: 0x000000)

21 Multiplier/Divider (COPRO)

21.1 Overview

The S1C17656 has an embedded coprocessor that provides multiplier/divider functions. The following shows the features of the multiplier/divider:

• Multiplication:

Supports signed/unsigned multiplications. (16 bits \times 16 bits = 32 bits) Can be executed in 1 cycle.

• <u>Multiplication and accumulation (MAC)</u>: Supports signed MAC operations with overflow detection function. (16 bits \times 16 bits + 32 bits = 32 bits)

Can be executed in 1 cycle.

• Division:

Supports signed/unsigned divisions. (16 bits ÷ 16 bits = 16 bits with 16-bit residue) Can be executed in 17 to 20 cycles.

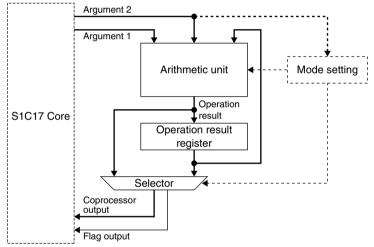


Figure 21.1.1 Multiplier/Divider Block Diagram

21.2 Operation Mode and Output Mode

The Multiplier/divider operates according to the operation mode specified by the application program. As listed in Table 21.2.1, the multiplier/divider supports nine operations.

The multiplication, division and MAC results are 32-bit data, therefore, the S1C17 Core cannot read them in one access cycle. The output mode is provided to specify the high-order 16 bits or low-order 16 bits of the operation results to be read from the multiplier/divider.

The operation and output modes can be specified with a 7-bit data by writing it to the mode setting register in the multiplier/divider. Use a "ld.cw" instruction for this writing.

ld.cw%rd,%rs%rs[6:0] is written to the mode setting register. (%rd: not used)ld.cw%rd, imm7imm7[6:0] is written to the mode setting register. (%rd: not used)

6	4	3		0
Output mode setting value			Operation mode setting value	

Figure 21.2.1 Mode Setting Register

Setting value (D[6:4])	Output mode	Setting value (D[3:0])	Operation mode
0x0	16 low-order bits output mode	0x0	Initialize mode 0
	The low-order 16 bits of operation results		Clears the operation result register to 0x0.
	can be read as the coprocessor output.		
0x1	16 high-order bits output mode	0x1	Initialize mode 1
	The high-order 16 bits of operation results		Loads the 16-bit augend into the low-order
	can be read as the coprocessor output.		16 bits of the operation result register.
0x2–0x7	Reserved	0x2	Initialize mode 2
			Loads the 32-bit augend into the operation
			result register.
		0x3	Operation result read mode
			Outputs the data in the operation result reg-
			ister without computation.
		0x4	Unsigned multiplication mode
			Performs unsigned multiplication.
		0x5	Signed multiplication mode
			Performs signed multiplication.
		0x6	Reserved
		0x7	Signed MAC mode
			Performs signed MAC operation.
		0x8	Unsigned division mode
			Performs unsigned division.
		0x9	Signed division mode
			Performs signed division.
		0xa–0xf	Reserved

Table 21.2.1 Mode Settings

21.3 Multiplication

The multiplication function performs "A (32 bits) = B (16 bits) \times C (16 bits)."

To perform a multiplication, set the operation mode to 0x4 (unsigned multiplication) or 0x5 (signed multiplication). Then send the 16-bit multiplicand (B) and 16-bit multiplier (C) to the multiplier/divider using a "ld.ca" instruction. The one-half (16 bits according to the output mode) result (A[15:0] or A[31:16]) and the flag status will be returned to the CPU registers. Another one-half should be read by setting the multiplier/divider into operation result read mode.

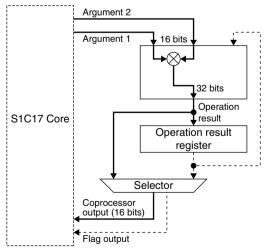


Figure 21.3.1 Data Path in Multiplication Mode

res: operation result register

Mode setting value	Instruction		Operations	Flags	Remarks
0x04	ld.ca	%rd,%rs	$res[31:0] \leftarrow \%rd \times \%rs$	$psr(CVZN) \leftarrow 0b0000$	The operation result register
or 0x05			%rd ← res[15:0]		keeps the operation result until
	(ext	imm9)	res[31:0] \leftarrow %rd \times <i>imm7/16</i>		it is rewritten by other opera-
	ld.ca	%rd, <i>imm7</i>	%rd ← res[15:0]		tion.
0x14	ld.ca	%rd,%rs	$res[31:0] \leftarrow \%rd \times \%rs$		
or 0x15			%rd ← res[31:16]		
	(ext	imm9)	res[31:0] \leftarrow %rd \times <i>imm7/16</i>		
	ld.ca	%rd, <i>imm</i> 7	%rd ← res[31:16]		

Table 21.3.1 Operation in Multiplication Mode

Example:

·· 1 ···			
ld.cv	%r0,0x4	;	Sets the modes (unsigned multiplication mode and 16 low-order bits output mode).
ld.ca	%r0,%r1	;	Performs "res = $\%r0 \times \%r1$ " and loads the 16 low-order bits of the result to $\%r0$.
ld.cv	%r0,0x13	;	Sets the modes (operation result read mode and 16 high-order bits output mode).
ld.ca	%r1,%r0	;	Loads the 16 high-order bits of the result to %r1.

21.4 Division

The division function performs "B (16 bits) ÷ C (16 bits) = A (16 bits), residue D (16 bits)."

To perform a division, set the operation mode to 0x8 (unsigned division) or 0x9 (signed division). Then send the 16-bit dividend (B) and 16-bit divisor (C) to the multiplier/divider using a "ld.ca" instruction. The quotient and the residue will be stored in the low-order 16 bits and the high-order 16 bits of the operation result register, respectively. The 16-bit quotient or residue according to the output mode specification and the flag status will be returned to the CPU registers. Another 16-bit result should be read by setting the multiplier/divider into operation result read mode.

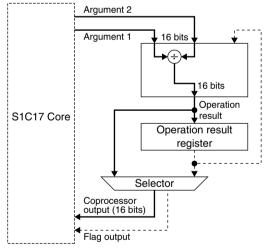


Figure 21.4.1 Data Path in Division Mode

Table 21.4.1	Operation	in	Division	Mode
--------------	-----------	----	----------	------

Mode setting value	Instruction		Operations	Flags	Remarks
0x08	ld.ca	%rd,%rs	res[31:0] ← %rd ÷ %rs	psr (CVZN) \leftarrow 0b0000	The operation result register
or 0x09			%rd \leftarrow res[15:0] (quotient)		keeps the operation result until
	(ext	imm9)	res[31:0] ← %rd ÷ <i>imm7/16</i>		it is rewritten by other opera-
	ld.ca	%rd, <i>imm7</i>	%rd \leftarrow res[15:0] (quotient)		tion.
0x018	ld.ca	%rd,%rs	res[31:0] ← %rd ÷ %rs		
or 0x19			%rd \leftarrow res[31:16] (residue)		
	(ext	imm9)	res[31:0] ← %rd ÷ <i>imm7/16</i>		
	ld.ca	%rd, <i>imm</i> 7	%rd \leftarrow res[31:16] (residue)		

21-3

21 MULTIPLIER/DIVIDER (COPRO)

Example:

ld.cw	%r0,0x8	;	Sets the modes (unsigned division mode and 16 low-order bits output mode).
ld.ca	%r0,%r1	;	Performs "res = $\%$ r0 ÷ $\%$ r1" and loads the 16 low-order bits of the result (quotient) to $\%$ r0.
ld.cw	%r0,0x13	;	Sets the modes (operation result read mode and 16 high-order bits output mode).
ld.ca	%r1,%r0	;	Loads the 16 high-order bits of the result (residue) to %r1.

21.5 MAC

The MAC (multiplication and accumulation) function performs "A (32 bits) = B (16 bits) \times C (16 bits) + A (32 bits)."

Before performing a MAC operation, the initial value (A) must be set to the operation result register.

To clear the operation result register (A = 0), just set the operation mode to 0x0. It is not necessary to send 0x0 to the multiplier/divider with another instruction.

To load a 16-bit value or a 32-bit value to the operation result register, set the operation mode to 0x1 (16 bits) or 0x2 (32 bits), respectively. Then send the initial value to the multiplier/divider using a "ld.cf" instruction.

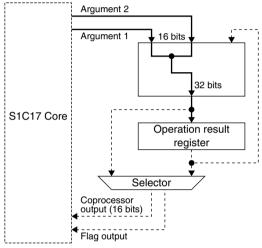


Figure 21.5.1 Data Path in Initialize Mode

Table 21.5.1	Initializing the	Operation	Result Register
--------------	------------------	-----------	------------------------

Mode setting value	Ins	struction	Operations	Remarks
0x0	-		res[31:0] ← 0x0	Setting the operating mode executes the initialization without sending data.
0x1	ld.cf	%rd,%rs	res[31:16] ← 0x0 res[15:0] ← %rs	
	(ext ld.cf	<i>imm9</i>) %rd, <i>imm</i> 7	res[31:16] ← 0x0 res[15:0] ← <i>imm7/16</i>	
0x2	ld.cf	%rd,%rs	res[31:16] ← %rd res[15:0] ← %rs	
	(ext ld.cf	<i>imm9</i>) %rd, <i>im</i> m7	res[31:16] ← %rd res[15:0] ← <i>imm7/16</i>	

res: operation result register

To perform a MAC operation, set the operation mode to 0x7 (signed MAC). Then send the 16-bit multiplicand (B) and 16-bit multiplier (C) to the multiplier/divider using a "ld.ca" instruction. The one-half (16 bits according to the output mode) result (A[15:0] or A[31:16]) and the flag status will be returned to the CPU registers. Another one-half should be read by setting the multiplier/divider into operation result read mode.

The overflow (V) flag in the PSR may be set to 1 according to the result. Other flags are set to 0.

When repeating the MAC operation without operation result read mode inserted, send multiplicand and multiplier data for number of required times. In this case it is not necessary to set the MAC mode every time.

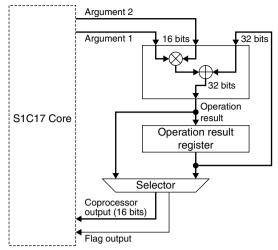


Figure 21.5.2 Data Path in MAC Mode

Table 21.5.2 Operation in MAC Mode

Mode setting value	Ins	truction	Operations	Flags	Remarks
0x07	ld.ca	%rd,%rs		psr (CVZN) \leftarrow 0b0100 if an overflow has oc-	The operation result register keeps the
	(ext ld.ca	<i>imm9</i>) %rd, <i>imm</i> 7	res[31:0] ← %rd × <i>imm7/16</i> + res[31:0] %rd ← res[15:0]		operation result un- til it is rewritten by
0x17	ld.ca		res[31:0] ← %rd × %rs + res[31:0] %rd ← res[31:16]	Otherwise psr (CVZN) ← 0b0000	other operation.
	(ext ld.ca	<i>imm9</i>) %rd, <i>imm</i> 7	res[31:0] ← %rd × <i>imm7/16</i> + res[31:0] %rd ← res[31:16]	-	

res: operation result register

Example:

ld.cw	%r0,0x7	;	Sets the modes (signed MAC mode and 16 low-order bits output mode).
ld.ca	%r0,%r1	;	Performs "res = $\%r0 \times \%r1$ + res" and loads the 16 low-order bits of the result to $\%r0$.
ld.cw	%r0,0x13	;	Sets the modes (operation result read mode and 16 high-order bits output mode).
ld.ca	%r1,%r0	;	Loads the 16 high-order bits of the result to %r1.

Conditions to set the overflow (V) flag

An overflow occurs in a MAC operation and the overflow (V) flag is set to 1 when the signs of the multiplication result, operation result register value, and multiplication & accumulation result match the following conditions:

Mode setting value	Sign of multiplication result	Sign of operation result	Sign of multiplication & ac-							
	eigh of manphoaden result	register value	cumulation result							
0x07	0 (positive)	0 (positive)	1 (negative)							
0x07	1 (negative)	1 (negative)	0 (positive)							

Table 21.5.3 Conditions to Set the Overflow (V) Flag

An overflow occurs when a MAC operation performs addition of positive values and a negative value results, or it performs addition of negative values and a positive value results. The coprocessor holds the operation result when the overflow (V) flag is cleared.

Conditions to clear the overflow (V) flag

The overflow (V) flag that has been set will be cleared when an overflow has not been occurred during execution of the "ld.ca" instruction for MAC operation or when the "ld.ca" or "ld.cf" instruction is executed in an operation mode other than operation result read mode.

21.6 Reading Operation Results

The "ld.ca" instruction cannot load a 32-bit operation result to a CPU register, so a multiplication or MAC operation returns the one-half (16 bits according to the output mode) result (A[15:0] or A[31:16]) and the flag status to the CPU registers. Another one-half should be read by setting the multiplier/divider into operation result read mode. The operation result register keeps the loaded operation result until it is rewritten by other operation.

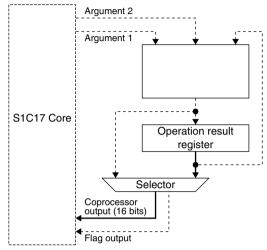


Figure 21.6.1 Data Path in Operation Result Read Mode

Table 21.6.1	Operation in Operation Result Read Mode
--------------	---

Mode setting value	Instruction	Operations	Flags	Remarks
0x03	ld.ca %rd,%rs	%rd ← res[15:0]	$psr(CVZN) \leftarrow 0b0000$	This operation mode does not
	ld.ca %rd, <i>im</i> m7	%rd ← res[15:0]		affect the operation result reg-
0x13	ld.ca %rd,%rs	%rd ← res[31:16]		ister.
	ld.ca %rd, <i>im</i> m7	%rd ← res[31:16]		

res: operation result register

22 Electrical Characteristics

22.1 Absolute Maximum Ratings

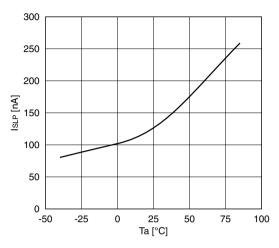
				(Vss = 0V)
Item	Symbol	Condition	Rated value	Unit
Power supply voltage	Vdd		-0.3 to 4.0	V
Flash programming voltage	VPP		-0.3 to 8.0	V
LCD power supply voltage	Vсз		-0.3 to 4.0	V
Input voltage	Vi		-0.3 to VDD + 0.5	V
Output voltage	Vo		-0.3 to VDD + 0.5	V
High level output current	Іон	1 pin	-10	mA
		Total of all pins	-20	mA
Low level output current	IOL	1 pin	10	mA
		Total of all pins	20	mA
Storage temperature	Tstg		-65 to 125	°C

22.2 Recommended Operating Conditions

					(Vs	s = 0V)
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating power supply voltage	Vdd	Normal operation mode	1.8	-	3.6	V
Flash programming voltage	VPP		7.3	7.5	7.7	V
Operating frequency	fosc1A	Crystal oscillation	-	32.768	-	kHz
Operating temperature	Та		-40	-	85	°C
Capacitor between Vss and VD1	C1		-	0.1	-	μF
Capacitor between Vss and Vc1 *1	C2		-	0.1	-	μF
Capacitor between Vss and Vc2 *1	C3		-	0.1	_	μF
Capacitor between Vss and Vc3 *1	C4		-	0.1	-	μF
Capacitor between CA and CB *1	C5		-	0.1	-	μF

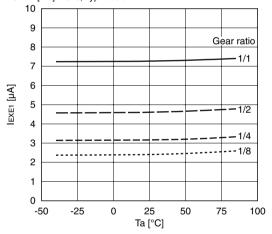
*1 The capacitors are not required when LCD driver is not used. In this case, leave the Vc1 to Vc3, CA, and CB pins open.

22.3 Current Consumption

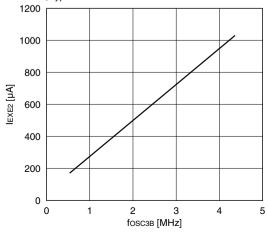

Unless otherwise specified: VDD = 1.8 to 3.6V, VSS = 0V, $Ta = 25^{\circ}C$, PCKEN[1:0] = 0x3 (ON), RDWAIT[1:0] = 0x0 (no wait), CCLKGR[1:0] = 0x0 (gear ratio 1/1), RTCRUN = 0 (OFF), HVLD = 0, LCD = OFF

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Current consumption	ISLP	OSC1A = OFF, OSC3B = OFF	-	130	300	nA
in SLEEP mode		OSC1A = 32kHz, OSC3B = OFF, RTCRUN = 1 (ON)	-	400	620	nA
Current consumption	IHALT1	OSC1A = 32kHz, OSC3B = OFF, PCKEN[1:0] = 0x0 (OFF)	-	0.5	0.7	μA
in HALT mode		OSC1A = 32kHz, OSC3B = OFF, PCKEN[1:0] = 0x0 (OFF), RTCRUN = 1 (ON)	-	0.5	0.7	μA
		OSC1A = 32kHz, OSC3B = OFF	-	0.8	1	μA
	IHALT2	OSC1A = 32kHz, OSC3B = ON (500kHz)	-	65	85	μA
		OSC1A = 32kHz, OSC3B = ON (1MHz)	-	80	100	μA
		OSC1A = 32kHz, OSC3B = ON (2MHz)	-	100	130	μA
		OSC1A = 32kHz, OSC3B = ON (4MHz)	-	160	200	μA
Current consumption	IEXE1	OSC1A = 32kHz, OSC3B = OFF, CPU = OSC1A	-	7.3	9	μA
during execution *1		OSC1A = 32kHz, OSC3B = OFF, CPU = OSC1A, CCLKGR[1:0] = 0x2 (gear ratio 1/4)	-	3.2	4	μA
	IEXE2	OSC1A = 32kHz, OSC3B = ON (500kHz), CPU = OSC3B	-	170	210	μA
		OSC1A = 32kHz, OSC3B = ON (1MHz), CPU = OSC3B	-	280	350	μA
		OSC1A = 32kHz, OSC3B = ON (2MHz), CPU = OSC3B	-	490	550	μA
		OSC1A = 32kHz, OSC3B = ON (4MHz), CPU = OSC3B	-	1050	1300	μA
		OSC1A = 32kHz, OSC3B = ON (2MHz), CPU = OSC3B, CCLKGR[1:0] = 0x2 (gear ratio 1/4)	-	240	300	μA

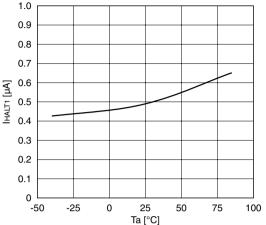
*1 The values of current consumption during execution were measured when a test program consisting of 60.5% ALU instructions, 17% branch instructions, 12% memory read instructions, and 10.5% memory write instructions was executed continuously in the Flash memory.


Current consumption-temperature characteristic in SLEEP mode

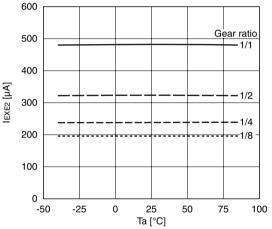
OSC1A = OFF, OSC3B = OFF, Typ. value


Current consumption-temperature characteristic during execution with OSC1A + clock gear OSC1A = 32.768kHz crystal, OSC3B = OFF,

PCKEN[1:0] = 0x3, Typ. value


Current consumption-frequency characteristic during execution with OSC3B

$$\label{eq:sc3b} \begin{split} & \text{OSC3B} = \text{ON}, \, \text{OSC1A} = 32.768 \text{kHz crystal}, \, \text{PCKEN} [1:0] = 0 \text{x3}, \\ & \text{Ta} = 25^\circ\text{C}, \, \text{Typ. value} \end{split}$$


Current consumption-temperature characteristic in HALT mode (OSC1A operation)

OSC1A = 32.768kHz crystal, OSC3B = OFF, PCKEN[1:0] = 0x0, CCLKGR[1:0] = 0x0, Typ. value

Current consumption-temperature characteristic during execution with OSC3B + clock gear OSC3P = ON (2004 r = 20.76)kHz erustel

22.4 Oscillation Characteristics

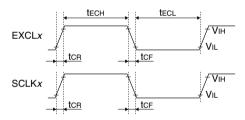
Oscillation characteristics change depending on conditions (board pattern, components used, etc.). Use the following characteristics as reference values.

OSC1A crystal oscillation

Unless otherwise specified: VDD = 1.8 to 3.6V, Vss = 0V, Ta = 25°C, Cg = built-in, CD = built-in, Rf = built-in, RD = built-in

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Oscillation start time *1	tsta		-	-	3	s
Built-in gate capacitance	CG		-	12	-	pF
Built-in drain capacitance	CD		-	6	-	pF

*1 Crystal resonator = C-002RX: manufactured by SEIKO EPSON (R1 = 50kΩ Max., CL = 7pF)


OSC3B oscillation

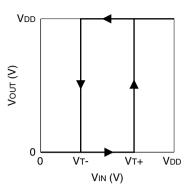
Unless otherwise specified: VDD = 1.8 to 3.6V, Vss = 0V, Ta = 25°C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Oscillation start time	tsta		-	-	5.0	μs
Oscillation frequency *1	fosc3B	OSC3BFSEL[1:0] = 0x0 (2MHz)	T	1.912	T	MHz
		OSC3BFSEL[1:0] = 0x1 (1MHz)	Typ. × 0.95	1.001	Typ. × 1.05	MHz
		OSC3BFSEL[1:0] = 0x2 (500kHz)	0.95	0.514	1.05	MHz
		OSC3BFSEL[1:0] = 0x3 (4MHz)	Тур. ×	4.367	Typ. ×	MHz
			0.90		1.10	
Dependence of oscillation frequency on	Tfoscзв	OSC3BFSEL[1:0] = 0x0–0x2,	-	0.05	0.14	%/°C
temperature *1		Frequency accuracy per ±1°C change in				
		temperature (with reference to 25°C)				

*1 Reference value

22.5 External Clock Input Characteristics

Unless otherwise specified: VDD = 1.8 to 3.6V, Vss = 0V, VIH = 0.8VDD, VIL = 0.2VDD, Ta = -40 to 85°C


Item	Symbol	Min.	Тур.	Max.	Unit
EXCLx input High pulse width	tech	60	-	-	ns
EXCLx input Low pulse width	tECL	60	-	-	ns
UART transfer rate	Ru	-	-	230400	bps
UART transfer rate (IrDA mode)	Ruirda	-	-	115200	bps
Input rise time	tCR	-	-	80	ns
Input fall time	t CF	-	-	80	ns

22.6 Input/Output Pin Characteristics

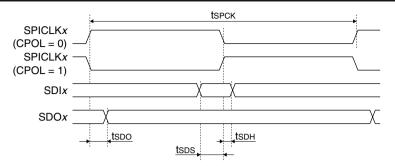
Unless otherwise specified: VDD = 1.8 to 3.6V, Vss = 0V, Ta = -40 to 85°C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
High level Schmitt input threshold voltage	VT+	Pxx, #RESET	0.5Vdd	-	0.9Vdd	V
Low level Schmitt input threshold voltage	VT-	Pxx, #RESET	0.1Vdd	-	0.5VDD	V
Hysteresis voltage	ΔVT	Pxx, #RESET	0.1VDD	-	-	V
High level output current	Іон	Pxx, Voh = 0.9Vdd	-	-	-0.4	mA
Low level output current	IOL	Pxx, Vol = 0.1VDD	0.4	-	-	mA
Leakage current	ILEAK	Pxx, #RESET	-100	-	100	nA
Input pull-up resistance	RIN	#RESET	100	250	500	kΩ
		Pxx, Ta = 25°C	80	200	500	kΩ
		Pxx, Ta = -40 to 85°C	50	200	1000	kΩ
Pin capacitance	CIN	Pxx , $VIN = 0V$, $f = 1MHz$, $Ta = 25^{\circ}C$	-	-	15	pF
Reset low pulse width	tsR	$V_{IH} = 0.8V_{DD}, V_{IL} = 0.2V_{DD}$	100	-	-	μs
Operating power voltage	Vsr		1.8	-	-	V
#RESET power-on reset time	tPSR		1.0	-	-	ms

Schmitt input threshold voltage

High-level output current characteristic Low-level output current characteristic Ta = 85°C, Max. value Ta = 85°C, Min. value VDD-VOH [V] 0.8 0 0.2 0.4 0.6 1.0 0 16 14 -2 VDD = 1.8V 13 -4 VDD = 3.6V 10 lон [mA] loL [mA] -6 8 VDD = 3.6V 6 -8 VDD = 1.8V 4 -10 2 -12 0 0.2 0.0 0.4 0.6 0.8 VOL [V] **Reset pulse** tsr νн #RESET **#RESET** power-on reset timing VDD Śsr #RESET Cres tPSR
 Vss 0.5Vdd 0.1Vdd #RESET TT -

Note: Be sure to set the #RESET pin to 0.1 VDD or less when performing a power-on reset after the power is turned off.


Seiko Epson Corporation

1.0

(Rev. 1.0)

Power on

22.7 SPI Characteristics

Master mode

Unless otherwise specified: VDD = 1.8 to 3.6V, Vss = 0V, Ta = -40 to 85°C

Item	Symbol	Min.	Тур.	Max.	Unit
SPICLKx cycle time	tspck	500	-	-	ns
SDIx setup time	tsps	70	-	-	ns
SDIx hold time	tsdh	10	-	-	ns
SDOx output delay time	tsdo	-	-	20	ns

Slave mode

Unless otherwise specified: VDD = 1.8 to 3.6V, Vss = 0V, Ta = -40 to 85°C

Item	Symbol	Min.	Тур.	Max.	Unit
SPICLKx cycle time	t SPCK	500	-	-	ns
SDIx setup time	tsds	30	-	-	ns
SDIx hold time	tSDH	80	-	-	ns
SDOx output delay time	tspo	-	-	110	ns

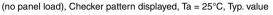
22.8 LCD Driver Characteristics

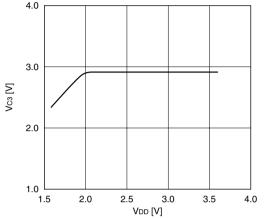
The typical values in the following LCD driver characteristics varies depending on the panel load (panel size, drive duty, number of display pixels and display contents), so evaluate them by connecting to the actually used LCD panel.

LCD drive voltage

Unless otherwise specified: VDD = 2.2 to 3.6V, Vss = 0V, Ta = 25° C, C₂–C₅ = 0.1µF, Checker pattern displayed, No panel load, VCSEL = 1 (Vc2 reference voltage), LCD_BCLK[1:0] = 0x1 (2kHz/OSC1A = 32kHz source clock),

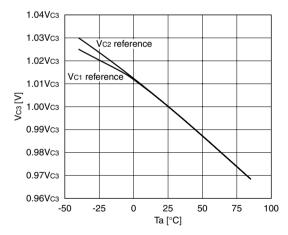
FRMCNT[1:0] = 0x1 (64Hz/OSC1A = 32kHz (LCLK = 512Hz)), LDUTY[2:0] = 0x3 (1/4 duty), DSPC[1:0] =	 0x1(Normal display)
---	---


Item	Symbol	Condition	Min.	Тур.	Max.	Unit
LCD drive voltage	VC1	Connect 1M Ω load resistor between Vss and Vc1	T	0.974	T	V
(Vc2 reference voltage)	VC2	Connect 1M Ω load resistor between Vss and Vc2	Typ. × 0.96	1.958	Typ. × 1.04	V
	Vсз	Connect 1M Ω load resistor between Vss and Vc ₃	0.90	2.900	1.04	V


Unless otherwise specified: VDD = 1.8 to 3.6V, VSS = 0V, $Ta = 25^{\circ}C$, $C_2-C_5 = 0.1\mu$ F, Checker pattern displayed, No panel load, VCSEL = 0 (Vc1 reference voltage), LCD_BCLK[1:0] = 0x1 (2kHz/OSC1A = 32kHz source clock), FRMCNT[1:0] = 0x1 (64Hz/OSC1A = 32kHz (LCLK = 512Hz)), LDUTY[2:0] = 0x3 (1/4 duty), DSPC[1:0] = 0x1 (Normal display)

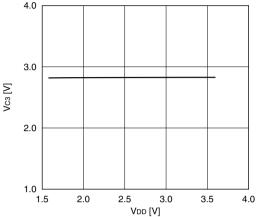
				`		
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
LCD drive voltage	VC1	Connect 1M Ω load resistor between Vss and Vc1	Tun v	0.977	Tun v	V
(Vc1 reference voltage)	VC2	Connect 1M Ω load resistor between Vss and Vc ₂	Typ. × 0.96	1.884	Typ. × 1.04	V
	Vсз	Connect 1M Ω load resistor between Vss and Vc ₃	0.90	2.800	1.04	V

LCD drive voltage-supply voltage characteristic (when Vc2 reference voltage is selected)


VDD = 1.6 to 3.6V, LCD_BCLK[1:0] = 0x1 (2kHz/OSC1A = 32kHz source clock), FRMCNT[1:0] = 0x1 (64Hz/OSC1A = 32kHz (LCLK = 512Hz)), LDUTY[2:0] = 0x3 (1/4 duty), DSPC[1:0] = 0x1(Normal display), When a 1 M Ω load resistor is connected between Vss–Vc1, Vss–Vc2, and Vss–Vc3 (Connected between Vss–Vc1, Vss–Vc2, and Vss–Vc3)

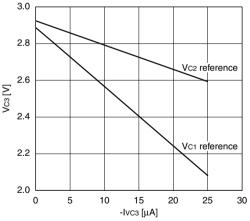
LCD drive voltage-temperature characteristic

 $\label{eq:VDD} \begin{array}{l} V_{DD} = 3.0V, LCD_BCLK[1:0] = 0x1 \ (2kHz/OSC1A = 32kHz \\ source clock), FRMCNT[1:0] = 0x1 \ (64Hz/OSC1A = 32kHz \\ (LCLK = 512Hz)), LDUTY[2:0] = 0x3 \ (1/4 \ duty), \\ DSPC[1:0] = 0x1 \ (Normal \ display), When a 1 \ M\Omega \ load \ resistor \\ is \ connected \ between \ Vss-Vc1, \ Vss-Vc2, \ and \ Vss-Vc3 \\ (no \ panel \ load), \ Checker \ pattern \ displayed, \ Typ. \ value \end{array}$



SEG/COM output characteristics

Unless otherwise specified: VDD = 1.8 to 3.6V, Vss = 0V, Ta = -40 to 85°C

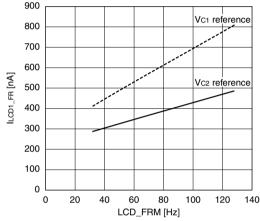

Symbol Item Condition Min. Тур. Max. Unit μĀ Segment/Common output current ISEGH SEGxx, COMxx, VSEGH = VC3/VC2/VC1 - 0.1V -10 μĀ ISEGL SEGxx, COMxx, VSEGL = 0.1V 10

LCD drive voltage-supply voltage characteristic (when Vc1 reference voltage is selected)

LCD drive voltage-load characteristic

 $\label{eq:VDD} VDD = 2.2V \ (Vc2 \ reference)/VDD = 1.8V \ (Vc1 \ reference), \\ LCD_BCLK[1:0] = 0x1 \ (2kHz/OSC1A = 32kHz \\ source \ clock), \ FRMCNT[1:0] = 0x1 \ (64Hz/OSC1A = 32kHz \\ (LCLK = 512Hz)), \ LDUTY[2:0] = 0x3 \ (1/4 \ duty), \\ DSPC[1:0] = 0x1 \ (Normal \ display), \ When \ a \ 1 \ M\Omega \ load \ resistor \\ is \ connected \ between \ Vss-Vc1, \ Vss-Vc2, \ and \ Vss-Vc3 \\ (no \ panel \ load), \ Checker \ pattern \ displayed, \ Ta = 25^{\circ}C, \ Typ. \ value \\ \end{array}$

LCD driver circuit current consumption


Unless otherwise specified: VDD = 2.2 to 3.6V (Vc2 reference)/1.8 to 3.6V (Vc1 reference), Vss = 0V, Ta = 25°C, C2–C5 = 0.1 µF, Checker pattern displayed, No panel load, PCKEN[1:0] = 0x0 (OFF), LCD_BCLK[1:0] = 0x1 (2kHz/OSC1A = 32kHz source clock), FRMCNT[1:0] = 0x1 (64Hz/OSC1A = 32kHz (LCLK = 512Hz)), LDUTY[2:0] = 0x3 (1/4 duty), DSPC[1:0] = 0x1(Normal display)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
LCD circuit current with Vc2 reference voltage *1	ILCD2	VCSEL = 1	-	410	580	nA
LCD circuit current with Vc1 reference voltage *1	ILCD1	VCSEL = 0	-	670	850	nA
Heavy load protection mode	ILCD2H	LHVLD = 1, VCSEL = 1	_	2.7	3.5	μA
LCD circuit current with Vc2 reference voltage *1						
Heavy load protection mode	ILCD1H	LHVLD = 1, VCSEL = 0	-	1.8	2.4	μA
LCD circuit current with Vc1 reference voltage *1						

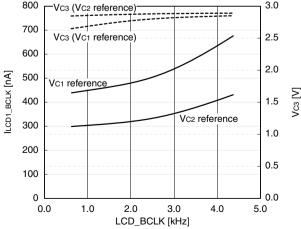
*1 This value is added to the current consumption in HALT mode or current consumption during execution when the LCD circuit is active. Current consumption increases according to the display contents and panel load.

LCD frame frequency dependence current consumption characteristic

VDD = 3.0V, Ta = 25°C, LCD_BCLK[1:0] = 0x1 (2kHz/OSC1A = 32kHz source clock), FRMCNT[1:0] = 0x0 to 0x3 (128 to 32Hz/OSC1A = 32kHz (LCLK = 512Hz)), LDUTY[2:0] = 0x3 (1/4 duty), DSPC[1:0] = 0x1(Normal display), Checker pattern displayed, No panel load, PCKEN[1:0] = 0x0 (OFF), Typ. value

LCD boost clock frequency dependence current consumption characteristic/ drive voltage characteristic

Common conditions:


Ta = 25°C, LCD_BCLK[1:0] = 0x0 to 0x3 (4kHz to 512Hz/OSC1A = 32kHz source clock), FRMCNT[1:0] = 0x1 (64Hz/OSC1A = 32kHz (LCLK = 512Hz)), LDUTY[2:0] = 0x3 (1/4 duty), DSPC[1:0] = 0x1(Normal display), Checker pattern displayed, No panel load, PCKEN[1:0] = 0x0 (OFF), Typ. value

Current consumption characteristic conditions:

VDD = 3.0V

Drive voltage characteristic conditions:

 $V_{DD} = 1.8V$ (Vc1 reference)/VDD = 2.2V (Vc2 reference), When a 1 M Ω load resistor is connected between Vss-Vc1 and Vss-Vc2, and a 1µA load is connected to Vc3

----- Current consumption characteristic

22.9 SVD Circuit Characteristics

Analog characteristics

Unless otherwise specified: VDD = 1.8 to 3.6V, Vss = 0V, Ta = -40 to 85°C

Item	Symbol	Condition	Min.	Тур.	Max.	Un
XSVD pin input voltage range	VEXSVD		0	-	Vdd	V
XSVD input impedance	REXSVD			-	_	k <u>(</u>
		SVDC[4:0] = 0x1	-	-	_	kΩ
		SVDC[4:0] = 0x2		-	-	k
		SVDC[4:0] = 0x3		-	-	k
		SVDC[4:0] = 0x4	-	-	-	k۵
		SVDC[4:0] = 0x5	-	-	-	k۵
		SVDC[4:0] = 0x6	-	-	-	k
		SVDC[4:0] = 0x7	-	-	-	k۵
		SVDC[4:0] = 0x8	-	-	-	k۵
		SVDC[4:0] = 0x9	-	-	-	k
		SVDC[4:0] = 0xa	-	-	-	k
		SVDC[4:0] = 0xb		-	-	k
		SVDC[4:0] = 0xc	-	-	-	k
		SVDC[4:0] = 0xd		-	-	k۵
		SVDC[4:0] = 0xe	336	479	623	k
		SVDC[4:0] = 0xf	352	503	654	k
		SVDC[4:0] = 0x10	369	527	685	k
		SVDC[4:0] = 0x11	386	551	717	k
		SVDC[4:0] = 0x12	403	575	748	k
		SVDC[4:0] = 0x13	420	599	779	k
		SVDC[4:0] = 0x14	436	623	810	k
		SVDC[4:0] = 0x15	453	647	842	k
		SVDC[4:0] = 0x16	470	671	872	k
		SVDC[4:0] = 0x17	487	695	904	k
		SVDC[4:0] = 0x18	503	719	935	k
		SVDC[4:0] = 0x19	520	743	966	k
		SVDC[4:0] = 0x1a	537	767	997	k
		SVDC[4:0] = 0x1b	-	-	-	k
		SVDC[4:0] = 0x1c	-	-	-	k
		SVDC[4:0] = 0x1d	-	-	-	k
		SVDC[4:0] = 0x1e	-	-	-	k
		SVDC[4:0] = 0x1f	-	-	-	k
VD voltage	Vsvd	SVDC[4:0] = 0x0		-		1
		SVDC[4:0] = 0x1		-		1
		SVDC[4:0] = 0x2		-		\
		SVDC[4:0] = 0x3		-		1
		SVDC[4:0] = 0x4		-		\
		SVDC[4:0] = 0x5		_		1
		SVDC[4:0] = 0x6		_		1
		SVDC[4:0] = 0x7		_		1
		SVDC[4:0] = 0x8		_		\
		SVDC[4:0] = 0x9		_		1
		SVDC[4:0] = 0xa		_		
		SVDC[4:0] = 0xb		_		\
		SVDC[4:0] = 0xc		_		
		SVDC[4:0] = 0xd		_		1
		SVDC[4:0] = 0xe		2.00		
				2.10	Typ. ×	
		SVDC[4:0] = 0xf	IVD.×		Typ.×	
		SVDC[4:0] = 0xf SVDC[4:0] = 0x10	Typ. × 0.96	2.20	1.04	
		SVDC[4:0] = 0x10	0.96	2.20 2.30	1.04	
		SVDC[4:0] = 0x10 SVDC[4:0] = 0x11		2.30	1.04	\
		SVDC[4:0] = 0x10 SVDC[4:0] = 0x11 SVDC[4:0] = 0x12		2.30 2.40	1.04	
		SVDC[4:0] = 0x10 SVDC[4:0] = 0x11 SVDC[4:0] = 0x12 SVDC[4:0] = 0x13		2.30 2.40 2.50	1.04	
		SVDC[4:0] = 0x10 SVDC[4:0] = 0x11 SVDC[4:0] = 0x12 SVDC[4:0] = 0x13 SVDC[4:0] = 0x14		2.30 2.40 2.50 2.60	1.04	
		SVDC[4:0] = 0x10 SVDC[4:0] = 0x11 SVDC[4:0] = 0x12 SVDC[4:0] = 0x13 SVDC[4:0] = 0x14 SVDC[4:0] = 0x15		2.30 2.40 2.50 2.60 2.70	1.04	
		SVDC[4:0] = 0x10 SVDC[4:0] = 0x11 SVDC[4:0] = 0x12 SVDC[4:0] = 0x13 SVDC[4:0] = 0x14 SVDC[4:0] = 0x15 SVDC[4:0] = 0x16		2.30 2.40 2.50 2.60 2.70 2.80	1.04	
		SVDC[4:0] = 0x10 SVDC[4:0] = 0x11 SVDC[4:0] = 0x12 SVDC[4:0] = 0x13 SVDC[4:0] = 0x14 SVDC[4:0] = 0x15 SVDC[4:0] = 0x16 SVDC[4:0] = 0x17		2.30 2.40 2.50 2.60 2.70 2.80 2.90	1.04	
		SVDC[4:0] = 0x10 SVDC[4:0] = 0x11 SVDC[4:0] = 0x12 SVDC[4:0] = 0x13 SVDC[4:0] = 0x14 SVDC[4:0] = 0x15 SVDC[4:0] = 0x16 SVDC[4:0] = 0x17 SVDC[4:0] = 0x18		2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00	1.04	
		SVDC[4:0] = 0x10 SVDC[4:0] = 0x11 SVDC[4:0] = 0x12 SVDC[4:0] = 0x13 SVDC[4:0] = 0x14 SVDC[4:0] = 0x15 SVDC[4:0] = 0x16 SVDC[4:0] = 0x17 SVDC[4:0] = 0x18 SVDC[4:0] = 0x19		2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10	1.04	
		SVDC[4:0] = 0x10 SVDC[4:0] = 0x11 SVDC[4:0] = 0x12 SVDC[4:0] = 0x13 SVDC[4:0] = 0x14 SVDC[4:0] = 0x14 SVDC[4:0] = 0x15 SVDC[4:0] = 0x16 SVDC[4:0] = 0x17 SVDC[4:0] = 0x18 SVDC[4:0] = 0x19 SVDC[4:0] = 0x1a		2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20	1.04	
		SVDC[4:0] = 0x10 SVDC[4:0] = 0x11 SVDC[4:0] = 0x12 SVDC[4:0] = 0x13 SVDC[4:0] = 0x14 SVDC[4:0] = 0x15 SVDC[4:0] = 0x16 SVDC[4:0] = 0x17 SVDC[4:0] = 0x18 SVDC[4:0] = 0x19 SVDC[4:0] = 0x1a SVDC[4:0] = 0x1a		2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 -	1.04	
		SVDC[4:0] = 0x10 SVDC[4:0] = 0x11 SVDC[4:0] = 0x12 SVDC[4:0] = 0x13 SVDC[4:0] = 0x14 SVDC[4:0] = 0x15 SVDC[4:0] = 0x16 SVDC[4:0] = 0x17 SVDC[4:0] = 0x18 SVDC[4:0] = 0x19 SVDC[4:0] = 0x1a SVDC[4:0] = 0x1a SVDC[4:0] = 0x1b SVDC[4:0] = 0x1c		2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 -	1.04	
		SVDC[4:0] = 0x10 SVDC[4:0] = 0x11 SVDC[4:0] = 0x12 SVDC[4:0] = 0x13 SVDC[4:0] = 0x14 SVDC[4:0] = 0x15 SVDC[4:0] = 0x16 SVDC[4:0] = 0x17 SVDC[4:0] = 0x18 SVDC[4:0] = 0x19 SVDC[4:0] = 0x1a SVDC[4:0] = 0x1a		2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 -	1.04	

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
SVD circuit-enable response time *1	tsvden		-	-	500	μs
SVD circuit response time *2	tsvD		-	-	60	μs

This time is required to obtain stable detection results after SVDEN is altered from 0 to 1. *1

*2 This time is required to obtain stable detection results after SVDC[4:0] is altered.

SVD circuit current consumption

Unless otherwise specified: VDD = 1.8 to 3.6V, Vss = 0V, Ta = 25°C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
SVD circuit current *1	Isvd	SVDMD[2:0] = 0x0, SVDC[4:0] = 0xe, SVDCLK = 32kHz	-	13.5	21	μA
		SVDMD[2:0] = 0x1, SVDC[4:0] = 0xe, SVDCLK = 32kHz	-	2.2	3.5	μA
		SVDMD[2:0] = 0x2, SVDC[4:0] = 0xe, SVDCLK = 32kHz	-	1.1	2	μA
		SVDMD[2:0] = 0x3, SVDC[4:0] = 0xe, SVDCLK = 32kHz	-	0.6	1	μA
		SVDMD[2:0] = 0x7, SVDC[4:0] = 0xe, SVDCLK = 32kHz	-	0.2	0.3	μA

*1 This value is added to the current consumption during SLEEP/HALT/execution (with or without heavy load protection mode) when the SVD circuit is active

22.10 R/F Converter Characteristics

R/F converter characteristics change depending on conditions (board pattern, components used, etc.). Use these characteristic values as a reference and perform evaluation using the actual printed circuit board.

Analog characteristics

Unless otherwise specified: VDD = 1.8 to 3.6V, Vss = 0V, Ta = -40 to 85°C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Reference and sensor oscillation frequency *1	f RFCLK		1	-	1000	kHz
Reference and sensor oscillation frequency IC deviation *2	$\Delta freclk/\Delta IC$	Ta = 25°C	-30	-	30	%
Reference resistor and resistive sensor resistance *3	RREF, RSEN		1	-	-	kΩ
Reference capacitance *3	CREF		100	-	-	pF
Time base counter clock frequency	ftcclk		-	-	2	MHz
RFIN pin high level Schmitt input voltage	VT+		0.5•Vdd	-	0.9•Vdd	V
RFIN pin low level Schmitt input voltage	VT-		0.1•Vdd	-	0.5•Vdd	V

The oscillation frequency/IC deviation characteristic value may increase due to variations in oscillation frequency caused by leak-*1 age if the oscillation frequency is 1 kHz or lower.

In these characteristics, unevenness between production lots, and variations in board, resistances and capacitances used in the *2 measurement environment are taken into account (variations in temperature are not included).

*3 The CR oscillation can be performed if the resistance or capacitance is out of the range shown in the table (see characteristic curves), note, however, that the oscillation frequency/IC deviation characteristic value may increase due to parasitic elements on the board and those in the IC.

RFC reference/sensor oscillation frequencyresistance characteristic

IC deviation

Vdd

100

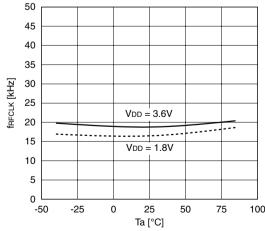
CREF = 1000pF, Ta = 25°C, Typ. value

10000

1000

10

1


0

٥

FILK [kHz] 100

RFC reference/sensor oscillation frequencytemperature characteristic

 $RREF/RSEN = 100k\Omega$, CREF = 1000pF, Typ. value

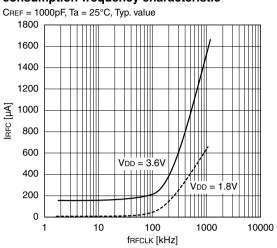
R/F converter current consumption

10

RREF/RSEN $[k\Omega]$

1

Unless otherwise specified: VDD = 3.6V, Vss = 0V, Ta = 25°C, PCKEN[1:0] = 0x3 (ON), CREF = 1000pF, RREF/RSEN = 100kΩ


10000

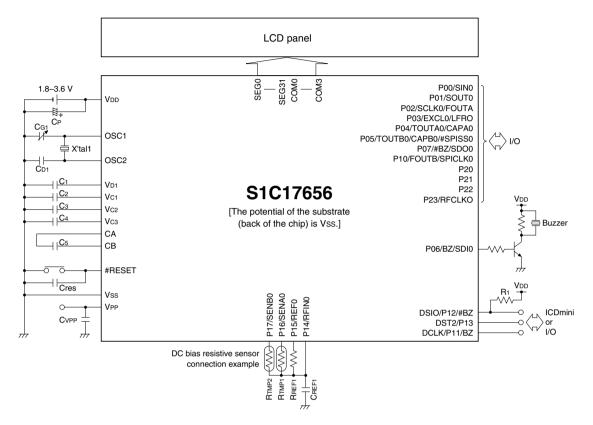
 $V_{DD} = 3.6$

1000

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
R/F converter operating current *1	IRFC		-	200	350	μA

This value is added to the current consumption in HALT mode or current consumption during execution when the R/F converter is active. Current consumption depends on the VDD voltage, reference capacitance, and reference/sensor oscillation frequency.

RFC reference/sensor oscillation current consumption-frequency characteristic


22.11 Flash Memory Characteristics

Unless otherwise specified: VDD = 1.8 to 3.6V, VPP = 7.5V (for programming/erasing), Vss = 0V, Ta = -40 to 85°C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Programming count *1	CFEP	Programmed data is guaranteed to be	50	-	-	times
		retained for 10 years.				

*1 Assumed that Erasing + Programming as count of 1. The count includes programming in the factory for shipment with ROM data programmed.

23 Basic External Connection Diagram

Recommended values for external parts

Symbol	Name	Recommended part
X'tal1	32 kHz crystal resonator	C-002RX (R ₁ = 50 k Ω (Max.), CL = 7 pF) manufactured by SEIKO EPSON

Other

Symbol	Name	Recommended value
CP	Capacitor for power supply	3.3 µF
CG1	Gate capacitor	6 pF
CD1	Drain capacitor	0 pF
Cres	Capacitor for #RESET pin	0.47 µF
C1	Capacitor between VD1 and VSS	0.1 µF
C2	Capacitor between Vc1 and Vss	0.1 µF
C3	Capacitor between Vc2 and Vss	0.1 µF
C4	Capacitor between Vc3 and Vss	0.1 µF
C5	Capacitor between CA and CB	0.1 µF
CREF1	Reference capacitor	-
RREF1	Reference resistor	-
RTMP1-2	Resistive sensors	-
R1	DSIO pull-up resistor	10 kΩ
CVPP	Capacitor between VPP and Vss	1 µF

Notes: • The values in the above table are shown only for reference and not guaranteed.

• Crystal resonator is extremely sensitive to influence of external components and printed-circuit boards. Before using a resonator, please contact the manufacturer for further information on conditions of use.

(Unit: mm)

24 Package

TQFP14-80pin

14 12 60 41 \tilde{n} n n nΠ 61 40 E 12 4 INDEX _ 80 -|| 1 Ш 20 0.5 0.17-0.27 .2max 0.09-0.2 ┨┝┨┝┨┝┨┝┨┝┨┝┨┝ ±0°–8° 0.1 0.3-0.75 1

Figure 24.1 TQFP14-80pin Package Dimensions

Appendix A List of I/O Registers

Internal peripheral circuit area 1 (0x4000-0x43ff)

Peripheral	Address		Register name	Function
MISC register	0x4020	MISC_	Debug Mode Control Register 1	Enables peripheral operations in debug mode
(8-bit device)		DMODE1		(PCLK).
UART	0x4100	UART_ST0	UART Ch.0 Status Register	Indicates transfer, buffer and error statuses.
(with IrDA)	0x4101	UART_TXD0	UART Ch.0 Transmit Data Register	Transmit data
Ch.0	0x4102	UART_RXD0	UART Ch.0 Receive Data Register	Receive data
(8-bit device)	0x4103	UART_MOD0	UART Ch.0 Mode Register	Sets transfer data format.
	0x4104	UART_CTL0	UART Ch.0 Control Register	Controls data transfer.
	0x4105	UART_EXP0	UART Ch.0 Expansion Register	Sets IrDA mode.
	0x4106	UART_BR0	UART Ch.0 Baud Rate Register	Sets baud rate.
	0x4107	UART_FMD0	UART Ch.0 Fine Mode Register	Sets fine mode.
8-bit timer	0x4240	T8_CLK0	T8 Ch.0 Count Clock Select Register	Selects a count clock.
Ch. 0	0x4242	T8_TR0	T8 Ch.0 Reload Data Register	Sets reload data.
(16-bit device)	0x4244	T8_TC0	T8 Ch.0 Counter Data Register	Counter data
	0x4246	T8_CTL0	T8 Ch.0 Control Register	Sets the timer mode and starts/stops the timer.
	0x4248	T8_INT0	T8 Ch.0 Interrupt Control Register	Controls the interrupt.
Interrupt	0x4306	ITC_LV0	Interrupt Level Setup Register 0	Sets the P0 interrupt level.
controller	0x4308	ITC_LV1	Interrupt Level Setup Register 1	Sets the CT interrupt level.
(16-bit device)	0x430a	ITC_LV2	Interrupt Level Setup Register 2	Sets the RTC interrupt level.
	0x430c	ITC_LV3	Interrupt Level Setup Register 3	Sets the LCD and T16A2 Ch.0 interrupt levels.
	0x4310	ITC_LV5	Interrupt Level Setup Register 5	Sets the T8 Ch.0 interrupt level.
	0x4312	ITC_LV6	Interrupt Level Setup Register 6	Sets the UART Ch.0 interrupt level.
	0x4314	ITC_LV7	Interrupt Level Setup Register 7	Sets the SPI Ch.0 interrupt level.
	0x4316	ITC_LV8	Interrupt Level Setup Register 8	Sets the RFC Ch.0 interrupt level.
	0x4318	ITC_LV9	Interrupt Level Setup Register 9	Sets the SVD interrupt level.
SPI Ch.0	0x4320	SPI_ST0	SPI Ch.0 Status Register	Indicates transfer and buffer statuses.
(16-bit device)	0x4322	SPI_TXD0	SPI Ch.0 Transmit Data Register	Transmit data
	0x4324	SPI_RXD0	SPI Ch.0 Receive Data Register	Receive data
	0x4326	SPI_CTL0	SPI Ch.0 Control Register	Sets the SPI mode and enables data transfer.

Internal Peripheral Circuit Area 2 (0x5000-0x5fff)

Peripheral	Address		Register name	Function
Clock timer	0x5000	CT_CTL	Clock Timer Control Register	Resets and starts/stops the timer.
(8-bit device)	0x5001	CT_CNT	Clock Timer Counter Register	Counter data
	0x5002	CT_IMSK	Clock Timer Interrupt Mask Register	Enables/disables interrupt.
	0x5003	CT_IFLG	Clock Timer Interrupt Flag Register	Indicates/resets interrupt occurrence status.
Watchdog timer	0x5040	WDT_CTL	Watchdog Timer Control Register	Resets and starts/stops the timer.
(8-bit device)	0x5041	WDT_ST	Watchdog Timer Status Register	Sets the timer mode and indicates NMI status.
Clock generator	0x5060	CLG_SRC	Clock Source Select Register	Selects the clock source.
(8-bit device)	0x5061	CLG_CTL	Oscillation Control Register	Controls oscillation.
	0x5064	CLG_FOUTA	FOUTA Control Register	Controls FOUTA clock output.
(SVD, RTC,	0x5065	CLG_FOUTB	FOUTB Control Register	Controls FOUTB clock output.
T16A2, UART,	0x5066	SVD_CLK	SVD Clock Control Register	Controls the SVD clock.
SND, LCD)	0x5067	RFC_CLK	RFC Clock Control Register	Controls the RFC clock.
	0x5068	T16A_CLK0	T16A2 Clock Control Register Ch.0	Controls the T16A2 Ch.0 clock.
	0x506c	UART_CLK0	UART Ch.0 Clock Control Register	Selects the baud rate generator clock.
	0x506e	SND CLK	SND Clock Control Register	Controls the SND clock.
	0x5070	LCD_TCLK	LCD Timing Clock Control Register	Controls the LCD clock.
	0x5071	LCD_BCLK	LCD Booster Clock Control Register	Controls the LCD booster clock.
	0x507d	CLG_WAIT	Oscillation Stabilization Wait Control Register	Controls oscillation stabilization waiting time.
	0x5080	CLG_PCLK	PCLK Control Register	Controls the PCLK supply.
	0x5081	CLG_CCLK	CCLK Control Register	Configures the CCLK division ratio.
LCD driver	0x5063	LCD_TCLK	LCD Clock Select Register	Selects the LCD clock.
(8-bit device)	0x50a0	LCD_DCTL	LCD Display Control Register	Controls the LCD display.
	0x50a2	LCD_CCTL	LCD Clock Control Register	Controls the LCD drive duty.
	0x50a3	LCD_VREG	LCD Voltage Regulator Control Register	Controls the LCD drive voltage regulator.
	0x50a5	LCD_IMSK	LCD Interrupt Mask Register	Enables/disables interrupts.
	0x50a6	LCD_IFLG	LCD Interrupt Flag Register	Indicates/resets interrupt occurrence status.
SVD circuit	0x5100	SVD_EN	SVD Enable Register	Enables/disables the SVD operation and sets
(8-bit device)				the mode.
	0x5101	SVD_CMP	SVD Comparison Voltage Register	Selects the voltage to be detected and the
				comparison voltage.
	0x5102	SVD_RSLT	SVD Detection Result Register	Voltage detection results
	0x5103	SVD_IMSK	SVD Interrupt Mask Register	Enables/disables interrupts.
	0x5104	SVD_IFLG	SVD Interrupt Flag Register	Indicates/resets interrupt occurrence status.
Power generator	0x5120	VD1_CTL	VD1 Control Register	Controls the VD1 regulator heavy load protec-
(8-bit device)			-	tion mode.
Sound	0x5180	SND_CTL	SND Control Register	Controls buzzer outputs.
generator	0x5181	SND_BZFQ	Buzzer Frequency Control Register	Sets the buzzer frequency.
(8-bit device)	0x5182	SND_BZDT	Buzzer Duty Ratio Control Register	Sets the buzzer signal duty ratio.

Peripheral	Address		Register name	Function					
P port &	0x5200	P0 IN	P0 port input data						
port MUX	0x5201	P0 OUT	P0 Port Input Data Register P0 Port Output Data Register	P0 port output data					
(8-bit device)	0x5202	P0 OEN	P0 Port Output Enable Register	Enables P0 port outputs. Controls the P0 port pull-up resistor.					
	0x5202	P0 PU	P0 Port Pull-up Control Register						
}	0x5205	P0 IMSK	P0 Port Interrupt Mask Register	Enables P0 port interrupts.					
	0x5205 0x5206	P0 EDGE	P0 Port Interrupt Edge Select Register	Selects the signal edge for generating P0					
	0x5206	PU_EDGE	PO Port Interrupt Edge Select Register						
	0.5007		Do Bastilata and Ela a Daviata a	port interrupts.					
	0x5207	P0_IFLG	P0 Port Interrupt Flag Register	Indicates/resets the P0 port interrupt occur- rence status.					
	0x5208	P0_CHAT	P0 Port Chattering Filter Control Register	Controls the P0 port chattering filter.					
	0x5209	P0_KRST	P0 Port Key-Entry Reset Configuration Register	Configures the P0 port key-entry reset functio					
	0x520a	P0 IEN	P0 Port Input Enable Register	Enables P0 port inputs.					
	0x5210	P1 IN	P1 Port Input Data Register	P1 port input data					
	0x5211	P1 OUT	P1 Port Output Data Register	P1 port output data					
	0x5212	P1 OEN	P1 Port Output Enable Register	Enables P1 port outputs.					
	0x5213	P1_PU	P1 Port Pull-up Control Register	Controls the P1 port pull-up resistor.					
ł	0x5213	P1_CHAT	P1 Port Chattering Filter Control Register	Controls the P1 port chattering filter.					
}	0x5210	P1 IEN	P1 Port Input Enable Register	Enables P1 port inputs.					
	0x5220	P2 IN	P2 Port Input Data Register	P2 port input data					
	0x5221	P2_OUT	P2 Port Output Data Register	P2 port output data					
	0x5222	P2_OEN	P2 Port Output Enable Register	Enables P2 port outputs.					
	0x5223	P2_PU	P2 Port Pull-up Control Register	Controls the P2 port pull-up resistor.					
	0x5228	P2_CHAT	P2 Port Chattering Filter Control Register	Controls the P2 port chattering filter. Enables P2 port inputs.					
	0x522a	P2_IEN	P2 Port Input Enable Register						
	0x52a0	P00_03PMUX	P0[3:0] Port Function Select Register	Selects the P0[3:0] port functions.					
	0x52a1	P04_07PMUX	P0[7:4] Port Function Select Register	Selects the P0[7:4] port functions.					
	0x52a2	P10_13PMUX	P1[3:0] Port Function Select Register	Selects the P1[3:0] port functions.					
	0x52a3	P14 17PMUX	P1[7:4] Port Function Select Register	Selects the P1[7:4] port functions.					
1	0x52a4	P23PMUX	P23 Port Function Select Register	Selects the P23 port function.					
MISC registers	0x5322	MISC	Debug Mode Control Register 2	Enables peripheral operations in debug mod					
(16-bit device)	ONCOLL	DMODE2		(except PCLK).					
(10 bit dovido)	0x5324	MISC PROT	MISC Protect Register	Enables writing to the MISC registers.					
ł	0x5326	MISC IRAMSZ	IRAM Size Select Register	Selects the IRAM size.					
}	0x5328	MISC_TTBRL	Vector Table Address Low Register	Sets vector table address.					
		MISC_TTBRH	Vector Table Address High Register						
	0x532a 0x532c		PSR Register	Indicates the S1C17 Core PSR values.					
R/F converter		MISC_PSR							
	0x53a0	RFC_CTL	RFC Control Register	Controls the R/F converter.					
(16-bit device)	0x53a2	RFC_TRG	RFC Oscillation Trigger Register	Controls oscillations.					
	0x53a4	RFC_MCL	RFC Measurement Counter Low Register	Measurement counter data					
	0x53a6	RFC_MCH	RFC Measurement Counter High Register						
	0x53a8	RFC_TCL	RFC Time Base Counter Low Register	Time base counter data					
	0x53aa	RFC_TCH	RFC Time Base Counter High Register						
	0x53ac	RFC_IMSK	RFC Interrupt Mask Register	Enables/disables interrupts.					
	0x53ae	RFC_IFLG	RFC Interrupt Flag Register	Indicates/resets interrupt occurrence status.					
16-bit PWM	0x5400	T16A_CTL0	T16A Counter Ch.0 Control Register	Controls the counter.					
timer Ch.0	0x5402	T16A TC0	T16A Counter Ch.0 Data Register	Counter data					
	0x5404	T16A CCCTL0	T16A Comparator/Capture Ch.0 Control	Controls the comparator/capture block and					
(16-bit device)	0X3404								
(16-bit device)		_	Register	TOUT.					
(16-bit device)	0x5406	T16A_CCA0	Register T16A Compare/Capture Ch.0 A Data Register	TOUT. Compare A/capture A data					
(16-bit device)	0x5406 0x5408		Register T16A Compare/Capture Ch.0 A Data Register T16A Compare/Capture Ch.0 B Data Register	TOUT. Compare A/capture A data Compare B/capture B data					
(16-bit device)	0x5406	T16A_CCA0	Register T16A Compare/Capture Ch.0 A Data Register	TOUT. Compare A/capture A data					
(16-bit device)	0x5406 0x5408		Register T16A Compare/Capture Ch.0 A Data Register T16A Compare/Capture Ch.0 B Data Register T16A Compare/Capture Ch.0 Interrupt Enable Register T16A Compare/Capture Ch.0 Interrupt Flag	TOUT. Compare A/capture A data Compare B/capture B data					
	0x5406 0x5408 0x540a 0x540c	T16A_CCA0 T16A_CCB0 T16A_IEN0 T16A_IFLG0	Register T16A Compare/Capture Ch.0 A Data Register T16A Compare/Capture Ch.0 B Data Register T16A Compare/Capture Ch.0 Interrupt Enable Register T16A Compare/Capture Ch.0 Interrupt Flag Register	TOUT. Compare A/capture A data Compare B/capture B data Enables/disables interrupts. Displays/sets interrupt occurrence status.					
Flash controller	0x5406 0x5408 0x540a	T16A_CCA0 T16A_CCB0 T16A_IEN0 T16A_IFLG0 FLASHC_	Register T16A Compare/Capture Ch.0 A Data Register T16A Compare/Capture Ch.0 B Data Register T16A Compare/Capture Ch.0 Interrupt Enable Register T16A Compare/Capture Ch.0 Interrupt Flag	TOUT. Compare A/capture A data Compare B/capture B data Enables/disables interrupts.					
Flash controller (16-bit device)	0x5406 0x5408 0x540a 0x540c 0x54b0	T16A_CCA0 T16A_CCB0 T16A_IEN0 T16A_IFLG0 FLASHC_ WAIT	Register T16A Compare/Capture Ch.0 A Data Register T16A Compare/Capture Ch.0 B Data Register T16A Compare/Capture Ch.0 Interrupt Enable Register T16A Compare/Capture Ch.0 Interrupt Flag Register FLASHC Read Wait Control Register	TOUT. Compare A/capture A data Compare B/capture B data Enables/disables interrupts. Displays/sets interrupt occurrence status. Sets Flash read wait cycle.					
Flash controller (16-bit device) Real-time clock	0x5406 0x5408 0x540a 0x540c 0x54b0 0x54b0 0x56c0	T16A_CCA0 T16A_CCB0 T16A_IEN0 T16A_IFLG0 FLASHC_ WAIT RTC_CTL	Register T16A Compare/Capture Ch.0 A Data Register T16A Compare/Capture Ch.0 B Data Register T16A Compare/Capture Ch.0 Interrupt Enable Register T16A Compare/Capture Ch.0 Interrupt Flag Register FLASHC Read Wait Control Register RTC Control Register	TOUT. Compare A/capture A data Compare B/capture B data Enables/disables interrupts. Displays/sets interrupt occurrence status. Sets Flash read wait cycle. Controls the RTC.					
Flash controller (16-bit device) Real-time clock	0x5406 0x5408 0x540a 0x540c 0x54b0 0x54b0 0x56c0 0x56c2	T16A_CCA0 T16A_CCB0 T16A_IEN0 T16A_IFLG0 FLASHC_ WAIT RTC_CTL RTC_IEN	Register T16A Compare/Capture Ch.0 A Data Register T16A Compare/Capture Ch.0 B Data Register T16A Compare/Capture Ch.0 Interrupt Enable Register T16A Compare/Capture Ch.0 Interrupt Flag Register FLASHC Read Wait Control Register RTC Control Register RTC Interrupt Enable Register	TOUT. Compare A/capture A data Compare B/capture B data Enables/disables interrupts. Displays/sets interrupt occurrence status. Sets Flash read wait cycle. Controls the RTC. Enables/disables interrupts.					
(16-bit device)	0x5406 0x5408 0x540a 0x540c 0x54b0 0x54b0 0x56c0	T16A_CCA0 T16A_CCB0 T16A_IEN0 T16A_IFLG0 FLASHC_ WAIT RTC_CTL	Register T16A Compare/Capture Ch.0 A Data Register T16A Compare/Capture Ch.0 B Data Register T16A Compare/Capture Ch.0 Interrupt Enable Register T16A Compare/Capture Ch.0 Interrupt Flag Register FLASHC Read Wait Control Register RTC Control Register	TOUT. Compare A/capture A data Compare B/capture B data Enables/disables interrupts. Displays/sets interrupt occurrence status. Sets Flash read wait cycle. Controls the RTC.					

Core I/O Reserved Area (0xffff84–0xffffd0)

Peripheral	Address		Register name	Function		
S1C17 Core	0xffff84	IDIR	Processor ID Register	Indicates the processor ID.		
1/0	0xffff90	DBRAM	Debug RAM Base Register Indicates the debug RAM base			
	0xffffa0	DCR	Debug Control Register	Controls debugging.		
	0xfffb4	IBAR1	Instruction Break Address Register 1	Sets Instruction break address #1.		
	0xffffb8	IBAR2	Instruction Break Address Register 2	Sets Instruction break address #2.		
	0xfffbc	IBAR3	Instruction Break Address Register 3	Sets Instruction break address #3.		
	0xffffd0	IBAR4	Instruction Break Address Register 4	Sets Instruction break address #4.		

Note: Addresses marked as "Reserved" or unused peripheral circuit areas not marked in the table must not be accessed by application programs.

0x4100-0x4107, 0x506c

UART (with IrDA) Ch.0

Register name	Address	Bit	Name	Function		Set	tin	g	Init.	R/W	Remarks
UART Ch.0	0x4100	D7	TRED	End of transmission flag	1	Completed	0	Not completed	0	R/W	Reset by writing 1.
Status Register	(8 bits)	D6	FER	Framing error flag	1	Error	0	Normal	0	R/W	······
(UART_ST0)	(•••••)	D5	PER	Parity error flag	1	Error	-	Normal	0	R/W	-
,		D4	OER	Overrun error flag		Error	-	Normal	0	R/W	1
		D3	RD2B	Second byte receive flag	1	Ready		Empty	0	R	
		D2	TRBS	Transmit busy flag	1	Busy	0	Idle	0	R	Shift register status
		D1	RDRY	Receive data ready flag		Ready		Empty	0	R	erint regiotor etatue
		D0	TDBE	Transmit data buffer empty flag		Empty		Not empty	1	R	-
UART Ch.0	0x4101	D7–0	TXD[7:0]	Transmit data		0x0 to 0	xff	(0x7f)	0x0	R/W	
Transmit Data	(8 bits)			TXD7(6) = MSB				. ,			
Register				TXD0 = LSB							
(UART_TXD0)											
UART Ch.0	0x4102	D7–0	RXD[7:0]	Receive data in the receive data		0x0 to 0	xff	(0x7f)	0x0	R	Older data in the buf-
Receive Data	(8 bits)			buffer							fer is read out first.
Register				RXD7(6) = MSB							
(UART_RXD0)				RXD0 = LSB							
UART Ch.0	0x4103	D7–5	-	reserved		-	_		-	-	0 when being read.
Mode Register	(8 bits)	D4	CHLN	Character length select	1	8 bits	0	7 bits	0	R/W	
(UART_MOD0)		D3	PREN	Parity enable	1	With parity	0	No parity	0	R/W	1
		D2	PMD	Parity mode select	1	Odd	0	Even	0	R/W	1
		D1	STPB	Stop bit select	1	2 bits	0	1 bit	0	R/W	1
		D0	-	reserved			-		-	-	0 when being read.
UART Ch.0	0x4104	D7	TEIEN	End of transmission int. enable	1	Enable	0	Disable	0	R/W	ĺ
Control Register	(8 bits)	D6		Receive error int. enable	1	Enable	0	Disable	0	R/W	1
(UART_CTLO)	` ´	D5	RIEN	Receive buffer full int. enable	_			Disable	0	R/W	
		D4	TIEN	Transmit buffer empty int. enable	<u> </u>	Enable	_	Disable	0	R/W	1
		D3-2	_	reserved	-		-		-	-	0 when being read.
		 D1	RBFI	Receive buffer full int. condition setup	1	2 bytes	0	1 byte	0	R/W	
		D0	RXEN	UART enable		Enable		Disable	0	R/W	1
UART Ch.0	0x4105	D7–1		reserved			_		-	-	0 when being read.
Expansion	(8 bits)										je men se ngresse
Register	(•••••)										
(UART_EXP0)		D0	IRMD	IrDA mode select	1	On	0	Off	0	R/W	
UART Ch.0	0x4106	D7–0	BR[7:0]	Baud rate setting		0x0 t	0.0	xff	0x0	R/W	1
Baud Rate	(8 bits)	2. 0		Dada fato county		0,101					
Register	(/										
(UART_BR0)											
UART Ch.0	0x4107	D7–4	-	reserved		-	_		-	-	0 when being read.
Fine Mode	(8 bits)	D3-0	FMD[3:0]	Fine mode setup		0x0 t	to C)xf	0x0	R/W	Set a number of times
Register	. ,			· · · · · · · · · · · · · · ·							to insert delay into a
(UART_FMD0)											16-underflow period.
UART Ch.0	0x506c	D7–6	-	reserved		-	_		-	-	0 when being read.
Clock Control	(8 bits)	D5-4	UTCLKD	Clock division ratio select	U	JTCLKD[1:0]	C	ivision ratio	0x0	R/W	When the clock
Register	. ,		[1:0]			0x3		1/8	1		source is OSC3B
(UART_CLK0)						0x2		1/4			
						0x1		1/2			
	ļ			-		0x0		1/1			
		D3–2		Clock source select	ļι	JTCLKSRC	6	lock source	0x0	R/W	
			[1:0]		_	[1:0]					
						0x3	E	xternal clock			
						0x2		reserved			
						0x1		OSC1A			
		D1		reserved	-	0x0	I	OSC3B	_		0 when being read.
		D1	- UTCLKE	UART clock enable	4	Enable	-	Disable	0	_ R/W	o when being read.
		DU	UICLKE	UART GOCK enable			10	loisable	0		

0x4240-0x4248

8-bit Timer Ch.0

Register name	Adducco	Bit	Name	Function		C.e.		-	Init.	R/W	Remarks
		-	Name			50	ttin	9		-	
T8 Ch.0 Count	0x4240	D15-4	-	reserved		5 5 4 4 1	-		-		0 when being read.
Clock Select Register	(16 bits)	D3–0	DF[3:0]	Count clock division ratio select	⊢	DF[3:0]		ivision ratio	0x0	R/W	Source clock = PCLK
•						0xf 0xe		reserved 1/16384			
(T8_CLK0)						0xe 0xd		1/10304			
						0xc		1/4096			
						0xb		1/2048			
						0xa		1/1024			
						0x9		1/512			
						0x8		1/256			
						0x7		1/128			
						0x6		1/64			
						0x5		1/32			
						0x4		1/16			
						0x3 0x2		1/8 1/4			
						0x2 0x1		1/4 1/2			
						0x0		1/2			
T8 Ch.0 Reload	0x4242	D15-8	-	reserved	-	0.00	_	.,	_		0 when being read.
Data Register	(16 bits)	D15 0	TR[7:0]	Reload data		0x0	to 0	vff	0x0	R/W	o when being read.
(T8_TR0)	(10 510)	0,0		TB7 = MSB		0,0	.0 0	All	UNU		
(·_ ·/				TR0 = LSB							
T8 Ch.0	0x4244	D15-8	 _	reserved	Ē		_		-	-	0 when being read.
Counter Data	(16 bits)	D7-0	TC[7:0]	Counter data		0x0	to 0	xff	0xff	R	Ű
Register				TC7 = MSB							
(T8_TC0)				TC0 = LSB							
T8 Ch.0	0x4246	D15–5	-	reserved			_		-	-	Do not write 1.
Control Register	(16 bits)	D4	TRMD	Count mode select	1	One shot	0	Repeat	0	R/W	
(T8_CTL0)		D3–2	-	reserved			-		_		0 when being read.
		D1	PRESER	Timer reset	_	Reset		Ignored	0	W	
		D0	PRUN	Timer run/stop control	1	Run	0	Stop	0	R/W	
T8 Ch.0	0x4248	D15–9	-	reserved			-		-	-	0 when being read.
Interrupt	(16 bits)	D8	T8IE	T8 interrupt enable	1	Enable	0	Disable	0	R/W	
Control Register		D7–1	-	reserved			-		-		0 when being read.
(T8_INT0)		D0	T8IF	T8 interrupt flag	1	Cause of	0	Cause of	0	R/W	Reset by writing 1.
						interrupt		interrupt not			
						occurred		occurred			

0x4306-0x4318

Interrupt Controller

Register name	Address	Bit	Name	Function	Setting	Init.	R/W	Remarks
Interrupt Level Setup Register 0	0x4306 (16 bits)	D15–3	-	reserved	_	-	-	0 when being read.
(ITC_LV0)		D2-0	ILV0[2:0]	P0 interrupt level	0 to 7	0x0	R/W	
Interrupt Level	0x4308	D15–11	-	reserved	-	-	-	0 when being read.
Setup Register 1	(16 bits)			CT interrupt level	0 to 7	0x0	R/W	
(ITC_LV1)		D7–0	-	reserved	-	-	-	0 when being read.
Interrupt Level Setup Register 2	0x430a (16 bits)	D15–3	-	reserved	-	-	-	0 when being read.
(ITC_LV2)	(10 513)	D2–0	ILV4[2:0]	RTC interrupt level	0 to 7	0x0	R/W	
Interrupt Level	0x430c	D15–11	-	reserved	-	-	-	0 when being read.
Setup Register 3	(16 bits)			T16A2 Ch.0 interrupt level	0 to 7	0x0	R/W	
(ITC_LV3)		D7–3		reserved	-	-		0 when being read.
		D2-0	ILV6[2:0]	LCD interrupt level	0 to 7	0x0	R/W	
Interrupt Level Setup Register 5	0x4310 (16 bits)	D15–3	-	reserved	-	-	-	0 when being read.
(ITC_LV5)	. ,	D2-0	ILV10[2:0]	T8 Ch.0 interrupt level	0 to 7	0x0	R/W	
Interrupt Level Setup Register 6	0x4312 (16 bits)	D15–3	-	reserved	-	-	-	0 when being read.
(ITC_LV6)		D2-0	ILV12[2:0]	UART Ch.0 interrupt level	0 to 7	0x0	R/W	
Interrupt Level Setup Register 7	0x4314 (16 bits)	D15–3	-	reserved	-	-	-	0 when being read.
(ITC_LV7)	. ,	D2-0	ILV14[2:0]	SPI Ch.0 interrupt level	0 to 7	0x0	R/W	
Interrupt Level	0x4316	D15-11	-	reserved	-	-	-	0 when being read.
Setup Register 8	(16 bits)	D10-8	ILV17[2:0]	RFC Ch.0 interrupt level	0 to 7	0x0	R/W	
(ITC_LV8)		D7–0	-	reserved	_	-	-	0 when being read.
Interrupt Level Setup Register 9	0x4318 (16 bits)	D15–3	-	reserved	_	-	-	0 when being read.
(ITC_LV9)	(-)	D2-0	ILV18[2:0]	SVD interrupt level	0 to 7	0x0	R/W	

0x4320-0x4326

SPI Ch.0

Register name	Address	Bit	Name	Function		Set	tin	g	Init.	R/W	Remarks
SPI Ch.0	0x4320	D15–3	-	reserved		-	_		-	-	0 when being read.
Status Register	(16 bits)	D2	SPBSY	Transfer busy flag (master)	1	Busy	0	Idle	0	R	
(SPI_ST0)				ss signal low flag (slave)	1	ss = L	0	ss = H			
		D1	SPRBF	Receive data buffer full flag	1	Full	0	Not full	0	R	
		D0	SPTBE	Transmit data buffer empty flag	1	Empty	0	Not empty	1	R	
SPI Ch.0	0x4322	D15–8	-	reserved		-	-		-	-	0 when being read.
Transmit Data	(16 bits)	D7–0	SPTDB[7:0]	SPI transmit data buffer		0x0 t	o 0	xff	0x0	R/W	
Register				SPTDB7 = MSB							
(SPI_TXD0)				SPTDB0 = LSB							
SPI Ch.0	0x4324	D15–8	-	reserved		-	-		-	-	0 when being read.
Receive Data	(16 bits)	D7–0	SPRDB[7:0]	SPI receive data buffer		0x0 t	o 0	xff	0x0	R	
Register				SPRDB7 = MSB							
(SPI_RXD0)				SPRDB0 = LSB							
SPI Ch.0	0x4326	D15-10	-	reserved		-	_		-	-	0 when being read.
Control Register	(16 bits)	D9	MCLK	SPI clock source select	1	T8 Ch.0	0	PCLK/4	0	R/W	
(SPI_CTL0)		D8	MLSB	LSB/MSB first mode select	1	LSB	0	MSB	0	R/W	
		D7–6	-	reserved		-	-		-	-	0 when being read.
		D5	SPRIE	Receive data buffer full int. enable	1	Enable	0	Disable	0	R/W	
		D4	SPTIE	Transmit data buffer empty int. enable	1	Enable	0	Disable	0	R/W	
		D3	СРНА	Clock phase select	1	Data out	0	Data in	0	R/W	These bits must be
		D2	CPOL	Clock polarity select	1	Active L	0	Active H	0	R/W	set before setting
		D1	MSSL	Master/slave mode select	1	Master	0	Slave	0	R/W	SPEN to 1.
		D0	SPEN	SPI enable	1	Enable	0	Disable	0	R/W	

0x5000-0x5003

Clock Timer

Register name	Address	Bit	Name	Function	Setting			Init.	R/W	Remarks	
Clock Timer	0x5000	D7–5	-	reserved	1	-	_		-	-	0 when being read.
Control Register	(8 bits)	D4	CTRST	Clock timer reset	1	Reset	0	Ignored	0	W	
(CT_CTL)		D3–1	-	reserved		-	_		-	-	
		D0	CTRUN	Clock timer run/stop control	1	Run	0	Stop	0	R/W	
Clock Timer	0x5001	D7–0	CTCNT[7:0]	Clock timer counter value	Γ	0x0 t	o 0	xff	0	R	
Counter Register	(8 bits)										
(CT_CNT)											
Clock Timer	0x5002	D7–4	-	reserved	1	_			-	-	0 when being read.
Interrupt Mask	(8 bits)	D3	CTIE32	32 Hz interrupt enable	1	Enable	0	Disable	0	R/W	-
Register		D2	CTIE8	8 Hz interrupt enable	1	Enable	0	Disable	0	R/W	
(CT_IMSK)		D1	CTIE2	2 Hz interrupt enable	1	Enable	0	Disable	0	R/W	1
		D0	CTIE1	1 Hz interrupt enable	1	Enable	0	Disable	0	R/W	
Clock Timer	0x5003	D7–4	-	reserved		-	_		-	-	0 when being read.
Interrupt Flag	(8 bits)	D3	CTIF32	32 Hz interrupt flag	1	Cause of	0	Cause of	0	R/W	Reset by writing 1.
Register		D2	CTIF8	8 Hz interrupt flag	1	interrupt		interrupt not	0	R/W	1
(CT_IFLG)		D1	CTIF2	2 Hz interrupt flag	1	occurred		occurred	0	R/W	1
		D0	CTIF1	1 Hz interrupt flag	1				0	R/W	1

0x5040-0x5041

Watchdog Timer

Register name	Address	Bit	Name	Function		Sett	ing	Init.	R/W	Remarks
Watchdog	0x5040	D7–5	-	reserved		-			-	0 when being read.
Timer Control	(8 bits)	D4	WDTRST	Watchdog timer reset	1 F	1 Reset 0 Ignored		0	W	-
Register		D3–0	WDTRUN[3:0]	Watchdog timer run/stop control	Othe	er than 1010	1010	1010	R/W	
(WDT_CTL)						Run	Stop			
Watchdog	0x5041	D7–2	-	reserved		-	-	-	-	0 when being read.
Timer Status	(8 bits)									-
Register		D1	WDTMD	NMI/Reset mode select	1 F	Reset	0 NMI	0	R/W	
(WDT_ST)		D0	WDTST	NMI status	1 N	MI occurred	0 Not occurred	0	R	

0x5060-0x5081

Clock Generator

Register name	Address	Bit	Name	Function	Sett	ting	Init.	R/W	Remarks
Clock Source	0x5060	D7–6	OSC3B	OSC3B frequency select	OSC3BFSEL[1:0]	Frequency	0x0	R/W	
Select Register	(8 bits)		FSEL[1:0]		0x3	4 MHz			
(CLG_SRC)					0x2	500 kHz			
					0x1	1 MHz			
					0x0	2 MHz			
		D5–2	-	reserved	-	-	-	-	0 when being read.
		D1–0	CLKSRC[1:0]	System clock source select	CLKSRC[1:0]	Clock source	0x0	R/W	
					0x3, 0x2	reserved			
					0x1	OSC1A			
					0x0	OSC3B			

Register name Address Bit Name Function Setting	Init.	R/W	Remarks
Oscillation 0x5061 D7-3 - reserved -	- 1	-	0 when being read.
Control Register (8 bits) D2 OSC3BEN OSC3B enable 1 Enable 0 Disable	1	R/W	
(CLG_CTL) D1 OSC1EN OSC1A enable 1 Enable 0 Disable	0	R/W	-
D0 - reserved -	_	_	0 when being read.
FOUTA Control 0x5064 D7 – reserved –	<u> </u>		0 when being read.
Register (8 bits) D6–4 FOUTAD FOUTA clock division ratio select FOUTAD[2:0] Division ratio	0x0	R/W	o when being read.
(CLG_FOUTA) [2:0] [2:0] [2:0]		11/11	
0x5 1/32			
0x4 1/16			
0x3 1/8			
0x2 1/4			
0x0 1/1			
D3-2 FOUTASRC FOUTA clock source select FOUTASRC[1:0] Clock source	0x0	R/W	1
[1:0] 0x3, 0x2 reserved			
0x1 OSC1A			
0x0 OSC3B			
D1 – reserved –	-	-	0 when being read.
D0 FOUTAE FOUTA output enable 1 Enable 0 Disable	0	R/W	<u> </u>
FOUTB Control 0x5065 D7 - reserved -		-	0 when being read.
Register (8 bits) D6-4 FOUTBD FOUTB clock division ratio select FOUTBD[2:0] Division ratio	0x0	R/W	s mon boing read.
(CLG_FOUTB) [2:0] [2:0] [2:0] [2:0]			
0x5 1/32			
0x4 1/16			
0x3 1/8			
0x2 1/4			
0x1 1/2			
0x0 1/1			
D3-2 FOUTBSRC FOUTB clock source select FOUTBSRC[1:0] Clock source	0x0	R/W	1
[1:0] 0x3, 0x2 reserved	1		
0x1 OSC1A			
0x0 OSC3B			
D1 – reserved –	-	-	0 when being read.
D0 FOUTBE FOUTB output enable 1 Enable 0 Disable	0	R/W	
Oscillation 0x507d D7-6 OSC3BWT OSC3B stabilization wait cycle OSC3BWT[1:0] Wait cycle	0x0	R/W	
Stabilization (8 bits) [1:0] select 0x3 8 cycles			
Wait Control 0x2 16 cycles			
Register 0x1 32 cycles			
(CLG_WAIT) 0x0 64 cycles			
D5–2 – reserved –	-	-	0 when being read.
D1-0 OSC1AWT OSC1A stabilization wait cycle OSC1AWT[1:0] Wait cycle	0x0	R/W	
[1:0] select 0x3 reserved			
0x2 4096 cycles			
0x1 reserved			
0x0 16384 cycles			
PCLK Control 0x5080 D7–2 – reserved –	-	-	0 when being read.
	0x3	R/W	
Register (8 bits) D1-0 PCKEN[1:0] PCLK enable PCKEN[1:0] PCLK supply		1	
Register (CLG_PCLK) (8 bits) D1-0 PCKEN[1:0] PCLK enable PCKEN[1:0] PCLK supply 0x3 Enable			
Register (CLG_PCLK) (8 bits) D1-0 PCKEN[1:0] PCLK supply 0x3 Enable 0x2 Not allowed			
Register (CLG_PCLK) (8 bits) D1-0 PCKEN[1:0] PCLK supply 0x3 Enable 0x2 Not allowed 0x1 Not allowed			
Register (CLG_PCLK) (8 bits) D1-0 PCKEN[1:0] PCLK supply 0x3 Enable 0x2 Not allowed			
Register (CLG_PCLK) (8 bits) D1-0 PCKEN[1:0] PCLK supply 0x3 Enable 0x2 Not allowed 0x1 Not allowed 0x0 Disable			0 when being read.
Register (CLG_PCLK) (8 bits) D1-0 PCKEN[1:0] PCLK supply 0x3 Enable 0x2 Not allowed 0x0 Disable 0x0 Disable	- 0x0	_ R/W	0 when being read.
Register (CLG_PCLK) (8 bits) D1-0 PCKEN[1:0] PCLK supply 0x3 Enable 0x2 Not allowed 0x1 Not allowed 0x0 Disable	 0x0	– R/W	0 when being read.
Register (CLG_PCLK) (8 bits) D1-0 PCKEN[1:0] PCLK supply 0x3 Enable 0x2 Not allowed 0x1 Not allowed 0x0 Disable CCLK Control Register 0x5081 D7-2 - 10-0 CCLKGR[1:0] CCLK clock gear ratio select CCLKGR[1:0]	- 0x0	– R/W	0 when being read.
Register (CLG_PCLK) (8 bits) D1-0 PCKEN[1:0] PCLK supply 0x3 Enable 0x2 Not allowed 0x1 Not allowed 0x0 Disable CCLK Control (CLG_CCLK) 0x5081 D7-2 - reserved - Register (CLG_CCLK) D1-0 CCLKGR[1:0] CCLK clock gear ratio select CLLKGR[1:0] Gear ratio 0x3	0x0	– R/W	0 when being read.

0x5070-0x5071, 0x50a0-0x50a6

Setting Init. R/W Register name Address Bit Function Name Remarks LCD Timing D7–6 0x5070 reserved -0 when being read. LCDTCLKD LCD clock division ratio select Clock Select (8 bits) D5-4 LCDTCLKD Division ratio 0x0 R/W Register (LCD_TCLK) [1:0] OSC3B OSC1A [1:0] 1/8192 1/4096 1/2048 0x3 1/64 1/64 1/64 0x2 0x1 0x0 1/1024 1/64 LCDTCLK D3-2 LCD clock source select LCDTCLK R/W 0x0 Clock source SRC[1:0] SRC[1:0] 0x3, 0x2 reserved 0x1 OSC1A OSC3B 0x0 D1 reserved -0 when being read. LCDTCLKE LCD clock enable 1 Enable 0 Disable 0 R/W D0

LCD Driver

Register name	Address	Bit	Name	Function		Sett	ing	Init.	R/W	Remarks
LCD Booster	0x5071	D7	-	reserved		_	-	-	-	0 when being read.
Clock Control	(8 bits)	D6-4	LCDBCLKD	LCD booster clock division ratio	LCDBCLK	D	Division ratio	0x0	R/W	
Register			[2:0]	select	D[2:0]	OS	C3B OSC1A			
(LCD_BCLK)					0x7	-	- -			
					0x6		096 –			
					0x5 0x4		048 – 024 –			
					0x4 0x3		512 1/64			
					0x2		256 1/32			
					0x1		1/16			
					0x0		64 1/8			
		D3–2	LCDBCLK	LCD Booster clock source select	LCDBCL		Clock source	0x0	R/W	
			SRC[1:0]		SRC[1:0					
					0x3, 0x2	2	reserved			
					0x1 0x0		OSC1A OSC3B			
		D1	_	reserved	0.00		03038	_		0 when being read.
		D0	LCDBCLKE	LCD Booster clock enable	1 Enable		0 Disable	0	R/W	o when being read.
LCD Display	0x50a0	D7–5	_	reserved		_	-	_		0 when being read.
Control Register	(8 bits)	D4	DSPREV	Reverse display control	1 Normal		0 Reverse		R/W	o mon boing roual
(LCD_DCTL)	(,	D3-2	_	reserved	- i i torritar		_		-	0 when being read.
. ,		D1-0	DSPC[1:0]	LCD display control	DSPC[1:0	01	Display	0x0	R/W	
		2.0	201 0[110]		0x3	•]	All off	0/10		
					0x0		All on			
					0x1		Normal display			
					0x0		Display off			
LCD Clock	0x50a2	D7–6	FRMCNT[1:0]	Frame frequency control	FRMCNT[1	1:01	Division ratio	0x1	R/W	Source clock: LCLK
Control Register	(8 bits)				0x3	-	1/16			
(LCD_CCTL)					0x2		1/12			
					0x1		1/8			
					0x0		1/4			
		D5–3	-	reserved		_	-	-	-	0 when being read.
		D2–0	LDUTY[2:0]	LCD duty select	LDUTY[2:	0]	Duty	0x3	R/W	
					0x7-0x4	ŀ	reserved			
					0x3		1/4			
					0x2		1/3			
					0x1		1/2			
					0x0		Static			
LCD Voltage	0x50a3	D7–5	-	reserved		-	-	-	-	0 when being read.
Regulator	(8 bits)	D4	LHVLD	Vc heavy load protection mode	1 On		0 Off	0	R/W	
Control Register		D3–1	-	reserved		_	-	-	-	0 when being read.
(LCD_VREG)		D0	VCSEL	Reference voltage select	1 VC2		0 Vc1	0	R/W	
LCD Interrupt	0x50a5	D7–1	-	reserved		-		-	-	0 when being read.
Mask Register	(8 bits)									
(LCD_IMSK)		D0	IFRMEN	Frame signal interrupt enable	1 Enable	e 0 Disable		0	R/W	
LCD Interrupt	0x50a6	D7–1	-	reserved		-	-	-	-	0 when being read.
Flag Register	(8 bits)									
(LCD_IFLG)		D0	IFRMFLG	Frame signal interrupt flag	1 Occurred	ed 0 Not occurred		0	R/W	Reset by writing 1.

0x5066, 0x5100–0x5104

SVD Circuit

Register name	Address	Bit	Name	Function	Set	ting	Init.	R/W	Remarks
SVD Clock	0x5066	D7–4	-	reserved	-	_	-	-	0 when being read.
Control Register	(8 bits)	D3–2	CLKSRC	SVD clock source select	CLKSRC[1:0]	Clock source	0x0	R/W	
(SVD_CLK)			[1:0]		0x3	reserved			
					0x2	OSC1A/64			
					0x1	OSC1A			
					0x0	OSC3B/64			
		D1	-	reserved	-	-	-	-	0 when being read.
		D0	CLKEN	SVD clock enable	1 Enable	0 Disable	0	R/W	
SVD Enable	0x5100	D7–4	SVDRE[3:0]	SVD reset enable	SVDRE[3:0]	SVD reset	0x0	R/W	
Register	(8 bits)				0b1010	Enable			
(SVD_EN)					Others	Disable			
		D3–1	SVDMD[2:0]	SVD intermittent mode setting	SVDMD[2:0]	Cycle	0x0	R/W	
					0x7	SVDCLK/8192			
					0x6	SVDCLK/4096			
					0x5	SVDCLK/2048			
					0x4	SVDCLK/1024			
					0x3	SVDCLK/512			
					0x2	SVDCLK/256			
					0x1	SVDCLK/128			
					0x0	Continuous			
		D0	SVDEN	SVD enable	1 Enable	0 Disable	0	R/W	

Register name	Address	Bit	Name	Function	Set	ting	Init.	R/W	Remarks
SVD	0x5101	D7	VDSEL	Detection voltage select	1 EXSVD	0 VDD	0	R/W	
Comparison	(8 bits)	D6–5	SVDSC[1:0]	SVD sampling result count	SVDSC[1:0]	Count	0x0	R/W	Ineffective when
Voltage Register				(for intermittent mode)	0x3	8 times			SVDMD[2:0]/SVD_
(SVD_CMP)					0x2	4 times			EN register = 0x0.
					0x1	Twice			
					0x0	Once			
		D4–0	SVDC[4:0]	SVD comparison voltage select	SVDC[4:0]	Voltage	0x0	R/W	
					0x1f-0x1b	reserved			
					0x1a	3.20 V			
					0x19	3.10 V			
					0x18	3.00 V			
					0x17	2.90 V			
					0x16	2.80 V			
					0x15	2.70 V			
					0x14	2.60 V			
					0x13	2.50 V			
					0x12	2.40 V			
					0x11	2.30 V			
					0x10	2.20 V			
					Oxf	2.10 V			
					0xe	2.00 V			
					0xd-0x0	reserved			
SVD Detection	0x5102	D7–1	-	reserved	-	-	-	-	0 when being read.
Result Register	(8 bits)								
(SVD_RSLT)		D0	SVDDT	SVD detection result	1 Low	0 Normal	×	R	
SVD Interrupt	0x5103	D7–1	-	reserved		-	-	-	0 when being read.
Mask Register	(8 bits)								
(SVD_IMSK)		D0	SVDIE	SVD interrupt enable	1 Enable	0 Disable	0	R/W	
SVD Interrupt	0x5104	D7–1	-	reserved	-	-	-	-	0 when being read.
Flag Register	(8 bits)	D0	SVDIF	SVD interrupt flag	1 Cause of	0 Cause of	0	R/W	Reset by writing 1.
(SVD_IFLG)					interrupt occurred	interrupt not occurred			

0x5120

Power Generator

Register name	Address	Bit	Name	Function	Setting			Init.	R/W	Remarks
VD1 Control	0x5120	D7–6	-	reserved		_		-	-	0 when being read.
Register	(8 bits)	D5	HVLD	VD1 heavy load protection mode	1	On C	Off	0	R/W	
(VD1_CTL)		D4–0	-	reserved		-	·	-	-	0 when being read.

0x506e, 0x5180–0x5182

Sound Generator

Register name	Address	Bit	Name	Function	Set	ting	Init.	R/W	Remarks
SND Clock	0x506e	D7–1	-	reserved	-	_	-	-	0 when being read.
Control Register	(8 bits)								
(SND_CLK)		D0	SNDCLKE	SND clock enable	1 Enable	0 Disable	0	R/W	
SND Control	0x5180	D7–6	-	reserved		_	-	-	0 when being read.
Register	(8 bits)	D5–4	BZTM[1:0]	Buzzer envelope time/one-shot	BZTM[1:0]	Time	0x0	R/W	
(SND_CTL)				output time select	0x3	125 ms			
					0x2	62.5 ms			
					0x1	31.25 ms			
					0x0	15.63 ms			
		D3–2	BZMD[1:0]	Buzzer mode select	BZMD[1:0]	Mode	0x0	R/W	
					0x3	reserved			
					0x2	Envelope			
					0x1	One-shot			
					0x0	Normal			
		D1	-	reserved	· · ·	-	-	-	0 when being read.
		D0	BZEN	Buzzer output control	1 On/Trigger	0 Off	0	R/W	
Buzzer	0x5181	D7–3	-	reserved	-	-	-	-	0 when being read.
Frequency	(8 bits)	D2–0	BZFQ[2:0]	Buzzer frequency select	BZFQ[2:0]	Frequency	0x0	R/W	
Control Register					0x7	1170.3 Hz			
(SND_BZFQ)					0x6	1365.3 Hz			
					0x5	1638.4 Hz			
					0x4	2048.0 Hz			
					0x3	2340.6 Hz			
					0x2	2730.7 Hz			
					0x1	3276.8 Hz			
					0x0	4096.0 Hz			
Buzzer	0x5182	D7–3	-	reserved		-	-	-	0 when being read.
Duty Ratio	(8 bits)	D2-0	BZDT[2:0]	Buzzer duty ratio select	BZDT[2:0]	Duty (volume)	0x0	R/W	
Control Register					0x7	Level 8 (Min.)			
(SND_BZDT)					:	:			
					0x0	Level 1 (Max.)			

0x5200-0x52a4

P Port & Port MUX

Register name	Address	Bit	Name	Function		Set	tin	g	Init.	R/W	Remarks
P0 Port Input Data Register (P0_IN)	0x5200 (8 bits)	D7–0	P0IN[7:0]	P0[7:0] port input data	1	1 (H)	0	0 (L)	×	R	
P0 Port Output Data Register (P0_OUT)	0x5201 (8 bits)	D7–0	P0OUT[7:0]	P0[7:0] port output data	1	1 (H)	0	0 (L)	0	R/W	
P0 Port Output Enable Register (P0_OEN)	0x5202 (8 bits)	D7–0	P0OEN[7:0]	P0[7:0] port output enable	1	Enable	0	Disable	0	R/W	
P0 Port Pull-up Control Register (P0_PU)	0x5203 (8 bits)	D7–0	P0PU[7:0]	P0[7:0] port pull-up enable	1	Enable	0	Disable	1 (0xff)	R/W	
P0 Port Interrupt Mask Register (P0_IMSK)	0x5205 (8 bits)	D7–0	P0IE[7:0]	P0[7:0] port interrupt enable	1	Enable	0	Disable	0	R/W	
P0 Port Interrupt Edge Select Register (P0_EDGE)	0x5206 (8 bits)	D7–0	P0EDGE[7:0]	P0[7:0] port interrupt edge select	1	Falling edge	0	Rising edge	0	R/W	
P0 Port Interrupt Flag Register (P0_IFLG)	0x5207 (8 bits)	D7–0	P0IF[7:0]	P0[7:0] port interrupt flag	1	Cause of interrupt occurred	0	Cause of interrupt not occurred	0	R/W	Reset by writing 1.
P0 Port	0x5208	D7	-	reserved	Γ	-	_		-	-	0 when being read.
Chattering Filter Control Register (P0_CHAT)	(8 bits)	D6–4	P0CF2[2:0]	P0[7:4] chattering filter time	_	P0CF2[2:0] 0x7 0x6 0x5 0x4	1	Filter time 6384/fpclk 8192/fpclk 4096/fpclk 2048/fpclk	0 0x0	R/W R/W	
		D3		reserved		0x3 0x2 0x1 0x0		1024/fpclk 512/fpclk 256/fpclk None			0 when being read
		D3 D2–0	- P0CF1[2:0]	P0[3:0] chattering filter time		P0CF1[2:0]	-	Filter time	- 0x0	– R/W	0 when being read.
						0x7 0x6 0x5 0x4 0x3 0x2 0x1 0x0	1	16384/fpclk 8192/fpclk 4096/fpclk 2048/fpclk 1024/fpclk 512/fpclk 256/fpclk None			
P0 Port Key-	0x5209	D7–2	-	reserved	Ē		_		-	-	0 when being read.
Entry Reset Configuration Register (P0_KRST)	(8 bits)	D1–0	P0KRST[1:0]	P0 port key-entry reset configuration	P	0KRST[1:0] 0x3 0x2 0x1 0x0		onfiguration P0[3:0] = 0 P0[2:0] = 0 P0[1:0] = 0 Disable	0x0	R/W	
P0 Port Input Enable Register (P0_IEN)	0x520a (8 bits)	D7–0	P0IEN[7:0]	P0[7:0] port input enable	1	Enable	0	Disable	1 (0xff)	R/W	
P1 Port Input	0x5210	D7–2	P1IN[7:2]	P1[7:2] port input data	1	1 (H)	0	0 (L)	×	R	
Data Register (P1_IN)	(8 bits)	D1	– P1IN0	reserved P10 port input data		-	-	0(1)	-	-	0 when being read.
P1 Port Output Data Register (P1_OUT)	0x5211 (8 bits)	D0 D7–0	1	P10 port input data P1[7:0] port output data		1 (H) 1 (H)		0 (L) 0 (L)	× 0	R/W	
P1 Port Output Enable Register (P1_OEN)	0x5212 (8 bits)	D7–0	P1OEN[7:0]	P1[7:0] port output enable	1	Enable	0	Disable	0	R/W	
P1 Port Pull-up Control Register (P1_PU)	0x5213 (8 bits)	D7–0	P1PU[7:0]	P1[7:0] port pull-up enable	1	Enable	0	Disable	1 (0xff)	R/W	

Register name	Address	Bit	Name	Function		Set	ting	9	Init.	R/W	Remarks
P1 Port	0x5218	D7	-	reserved	İ	-	-		-	-	0 when being read.
Chattering	(8 bits)	D6-4	P1CF2[2:0]	P1[7:4] chattering filter time	F	P1CF2[2:0]		Filter time	0	R/W	
Filter Control	` ´			[]		0x7	-	6384/fpclk	0x0	R/W	
Register						0x6		8192/fpclk			
(P1_CHAT)						0x5	.	4096/fpclk			
						0x4		2048/fpclk			
						0x3		1024/fpclk			
						0x2		512/fpclk			
						0x1		256/fpclk			
						0x0		None			
		D3	-	reserved		-	-		-	-	0 when being read.
		D2–0	P1CF1[2:0]	P1[3:0] chattering filter time	F	P1CF1[2:0]		Filter time	0x0	R/W	
						0x7		6384/fpclk			
						0x6		8192/fpclk			
						0x5		4096/fpclk			
						0x4		2048/fpclk			
						0x3		1024/fpclk			
						0x2		512/fpclk			
						0x1		256/fpclk			
			1		<u> </u>	0x0	<u> </u>	None			1
P1 Port Input	0x521a	D7–2	P1IEN[7:2]	P1[7:2] port input enable	1	Enable	0	Disable	1	R/W	
Enable Register	(8 bits)	D1	-	reserved	_		-		-	-	0 when being read.
(P1_IEN)		D0	P1IEN0	P10 port input enable	1	Enable	0	Disable	1	R/W	
P2 Port Input	0x5220	D7–4	-	reserved		-	-		-	-	0 when being read.
Data Register	(8 bits)	D3-0	P2IN[3:0]	P2[3:0] port input data	1	1 (H)	0	0 (L)	×	R	-
(P2_IN)			_								
P2 Port Output	0x5221	D7–4	-	reserved		-	_		-	-	0 when being read.
Data Register	(8 bits)	D3–0	P2OUT[3:0]	P2[3:0] port output data	1	1 (H)	0	0 (L)	0	R/W	, , , , , , , , , , , , , , , , , , ,
(P2_OUT)								.,			
P2 Port	0x5222	D7–4	-	reserved		-	_		-	-	0 when being read.
Output Enable	(8 bits)	D3-0	P2OEN[3:0]	P2[3:0] port output enable	1	Enable	0	Disable	0	R/W	Ŭ
Register	· ,			t difference in the second							
(P2_OEN)											
P2 Port Pull-up	0x5223	D7–4	-	reserved		-	_		-	-	0 when being read.
Control Register	(8 bits)	D3-0	P2PU[3:0]	P2[3:0] port pull-up enable	1	Enable	0	Disable	1	R/W	J
(P2_PU)	(,			· _[] h hh	1				(0xf)		
P2 Port	0x5228	D7–3	Î_	reserved	T		-		- T	-	0 when being read.
Chattering	(8 bits)	D2-0	P2CF1[2:0]	P2[3:0] chattering filter time	F	P2CF1[2:0]		Filter time	0x0	R/W	
Filter Control	()			[]	F	0x7	-	6384/fpclk			
Register						0x6		8192/fpclk			
(P2_CHAT)						0x5		4096/fpclk			
						0x4		2048/fpclk			
						0x3		1024/fpclk			
						0x2		512/fpclk			
						0x1		256/fpclk			
						0x0		None			
P2 Port Input	0x522a	D7–4	-	reserved		-	-		-	-	0 when being read.
Enable Register	(8 bits)	D3-0	P2IEN[3:0]	P2[3:0] port input enable	1	Enable	0	Disable	1	R/W	<u> </u>
(P2_IEN)									(0xf)		
P0[3:0] Port	0x52a0	D7–6	P03MUX[1:0]	P03 port function select	P	03MUX[1:0]		Function	0x0	R/W	
Function Select		-			Η.	0x3		LFRO	1		
Register	. ,					0x2		reserved			
(P00_03PMUX)						0x1		EXCL0			
						0x0		P03			J
		D5–4	P02MUX[1:0]	P02 port function select	P	02MUX[1:0]		Function	0x0	R/W	
						0x3		reserved			
						0x2		FOUTA			
						0x1		SCLK0			
		D 2 -	Dodlar		+-	0x0	<u> </u>	P02		D	
		D3–2	P01MUX[1:0]	P01 port function select	P	01MUX[1:0]	-	Function	0x0	R/W	
						0x3		reserved			
						0x2		reserved			
						0x1		SOUT0			
		D1 0	P00MUV[1.0]	P00 port function select	-	0x0	-	P01 Function	020	R/W	-
		D1–0		Foo port function select	٣	00MUX[1:0] 0x3	\vdash	Function reserved	0x0		
						0x3 0x2		reserved			
						0x2 0x1		SINO			
						0x0		P00			
			1		1	0.00		1.00	1	L	1

Register name	Address	Bit	Name	Function	Set	ting	Init.	R/W	Remarks
P0[7:4] Port	0x52a1	D7–6	P07MUX[1:0]	P07 port function select	P07MUX[1:0]	Function	0x0	R/W	
Function Select	(8 bits)				0x3	reserved			
Register					0x2	SDO0			
(P04_07PMUX)					0x1	#BZ			
					0x0	P07			
		D5–4	P06MUX[1:0]	P06 port function select	P06MUX[1:0]	Function	0x0	R/W	
					0x3	reserved			
					0x2	SDI0			
					0x1	BZ			
		D3–2	DOGMUNT OF	P05 port function select	0x0	P06	0x0	R/W	
		D3-2	PUSMUALIS	P05 port function select	P05MUX[1:0] 0x3	Function reserved		H/VV	
					0x3 0x2	#SPISS0			
					0x1	TOUTBO/CAPBO			
					0x0	P05			
		D1-0	P04MUX[1:0]	P04 port function select	P04MUX[1:0]	Function	0x0	R/W	
		5.0			0x3	reserved			
					0x2	reserved			
					0x1	TOUTA0/CAPA0			
					0x0	P04			
P1[3:0] Port	0x52a2	D7–6	P13MUX[1:0]	P13 port function select	P13MUX[1:0]	Function	0x0	R/W	
Function Select		2. 5			0x3	reserved			
Register	(. ,				0x2	reserved			
(P10_13PMUX)					0x1	P13			
/					0x0	DST2			
		D5–4	P12MUX[1:0]	P12 port function select	P12MUX[1:0]	Function	0x0	R/W	
					0x3	reserved			
					0x2	#BZ			
					0x1	P12			
					0x0	DSIO			
		D3–2	P11MUX[1:0]	P11 port function select	P11MUX[1:0]	Function	0x0	R/W	
					0x3	reserved			
					0x2	BZ			
					0x1	P11			
		D 1 0	BIOMUNTI OI		0x0	DCLK	0.0	DAV	
		D1–0	P10MUX[1:0]	P10 port function select	P10MUX[1:0]	Function	0x0	R/W	
					0x3 0x2	reserved			
					0x2 0x1	SPICLK0 FOUTB			
					0x0	P10			
P1[7:4] Port	0x52a3	D7–6	D17MUV(1.01	P17 port function select	P17MUX[1:0]	Function	0x0	R/W	
Function Select	(8 bits)	D7=0		F 17 port function select					
Register	(0 010)				0x3 0x2	reserved reserved			
(P14_17PMUX)					0x2 0x1	SENB0			
					0x0	P17			
		D5-4	P16MUX[1:0]	P16 port function select	P16MUX[1:0]	Function	0x0	R/W	
		20 4			0x3	reserved			
					0x2	reserved			
					0x1	SENA0			
					0x0	P16			
		D3–2	P15MUX[1:0]	P15 port function select	P15MUX[1:0]	Function	0x0	R/W	
			- -		0x3	reserved			
					0x2	reserved			
					0x1	REF0			
					0x0	P15			
		D1–0	P14MUX[1:0]	P14 port function select	P14MUX[1:0]	Function	0x0	R/W	
					0x3	reserved			
					0x2	reserved			
					0x1	RFIN0			
					0x0	P14			
P23 Port	0x52a4	D7–6	P23MUX[1:0]	P23 port function select	P23MUX[1:0]	Function	0x0	R/W	
Function Select	(8 bits)				0x3	reserved			
Register					0x2	reserved			
(P23PMUX)					0x1	RFCLKO			
		D5 0			0x0	P23	<u> </u>		O uch an hui
		D5–0	-	reserved		_	-	-	0 when being read.

0x4020, 0x5322-0x532c

MISC Registers

Register name	Address	Bit	Name	Function	Setting		Init.	R/W	Remarks
Debug Mode	0x4020	D7–2	-	reserved	-	-	-	-	0 when being read.
Control	(8 bits)								
Register 1		D1	DBRUN1	Run/stop select in debug mode	1 Run	0 Stop	0	R/W	
(MISC_DMODE1)		D0	-	reserved	-	-	-	-	0 when being read.

Register name	Address	Bit	Name	Function	Setting	Init.	R/W	Remarks
Debug Mode Control	0x5322 (16 bits)	D15–1	-	reserved	-	-	-	0 when being read.
Register 2 (MISC_DMODE2)		D0	DBRUN2	Run/stop select in debug mode (except PCLK peripheral circuits)	1 Run 0 Stop	0	R/W	
MISC Protect Register (MISC_PROT)	0x5324 (16 bits)	D15–0	PROT[15:0]	MISC register write protect	Writing 0x96 removes the write protection of the MISC registers (0x5326–0x532a) and the FLASHC_WAIT register (0x54b0). Writing another value set the write protection.	0x0	R/W	
IRAM Size	0x5326	D15–9	-	reserved	-	-	-	0 when being read.
Register	(16 bits)		DBADR	Debug base address select	1 0x0 0 0xfffc00	0	R/W	
(MISC_IRAMSZ)		D7	-	reserved	-	-	-	0 when being read.
		D6–4	IRAMACTSZ [2:0]	IRAM actual size	0x3 (= 2KB)	0x3	R	
		D3	-	reserved	-	-	-	0 when being read.
		D2–0	IRAMSZ[2:0]	IRAM size select	IRAMSZ[2:0] Size 0x5 512B 0x4 1KB 0x3 2KB Other reserved	_ 0x3	R/W	
Vector Table	0x5328	D15–8	TTBR[15:8]	Vector table base address A[15:8]	0x0–0xff	0x80	R/W	
Address Low Register (MISC_TTBRL)	(16 bits)	D7–0	TTBR[7:0]	Vector table base address A[7:0] (fixed at 0)	0x0	0x0	R	
Vector Table	0x532a	D15–8	-	reserved	_	-	-	0 when being read.
Address High Register (MISC_TTBRH)	(16 bits)	D7–0		Vector table base address A[23:16]	0x0–0xff	0x0	R/W	
PSR Register	0x532c	D15-8	-	reserved	-	-	-	0 when being read.
(MISC_PSR)	(16 bits)	D7–5		PSR interrupt level (IL) bits	0x0 to 0x7	0x0	R	
		D4	PSRIE	PSR interrupt enable (IE) bit	1 (enable) 0 (disable)	0	R	
		D3	PSRC	PSR carry (C) flag	1 (set) 0 (cleared)	0	R	
		D2	PSRV	PSR overflow (V) flag	1 1 (set) 0 0 (cleared)	0	R]
		D1	PSRZ	PSR zero (Z) flag	1 1 (set) 0 0 (cleared)	0	R	
		D0	PSRN	PSR negative (N) flag	1 1 (set) 0 0 (cleared)	0	R	

0x5067, 0x53a0–0x53ae

R/F converter Ch.0

Register name	Address	Bit	Name	Function		Set	tin	g	Init.	R/W	Remarks
RFC Clock	0x5067	D7–6	Ì–	reserved		-	_	0	Î -	-	0 when being read.
Control Register	(8 bits)	D5-4	CLKDIV	RFC clock division ratio select	0	CLKDIV[1:0]		ivision ratio	0x0	R/W	When the clock
(RFC_CLK)	. ,		[1:0]			0x3		1/8	-		source is OSC3B
						0x2		1/4			
						0x1		1/2			
						0x0		1/1			
		D3	-	reserved			-	· · · · · · · · · · · · · · · · · · ·	-	-	0 when being read.
		D2	CLKSRC	RFC clock source select	1	OSC1A	0	OSC3B	1	R/W	
		D1	-	reserved		-	-		-	-	0 when being read.
		D0	CLKEN	RFC clock enable	1	Enable	0	Disable	0	R/W	
RFC Control	0x53a0	D15–8	-	reserved		-	_		-	-	0 when being read.
Register	(16 bits)	D7	CONEN	Continuous oscillation enable	1	Enable	0	Disable	0	R/W	
(RFC_CTL)		D6	EVTEN	Event counter mode enable	1	Enable	0	Disable	0	R/W	
		D5–1	-	reserved		-	-		-	-	0 when being read.
		D0	RFCEN	RFC enable	1	Enable	0	Disable	0	R/W	
RFC Oscillation	0x53a2	D15–3	-	reserved		-	_		-	-	0 when being read.
Trigger Register	(16 bits)	D2	SSENB	Sensor B oscillation control/status	1	Start/Run	0	Stop	0	R/W	
(RFC_TRG)		D1	SSENA	Sensor A oscillation control/status	1	Start/Run	0	Stop	0	R/W]
		D0	SREF	Reference oscillation control/status	1	Start/Run	0	Stop	0	R/W	
RFC	0x53a4	D15–0	MC[15:0]	Measurement counter low-order		0x0-	-0x1	fff	0x0	R/W	
Measurement	(16 bits)			16-bit data							
Counter Low											
Register											
(RFC_MCL)											
RFC	0x53a6	D15–8	-	reserved		-	-		-	-	0 when being read.
Measurement	(16 bits)	D7–0	MC[23:16]	Measurement counter high-order		0x0-	-0x	ff	0x0	R/W	
Counter High				8-bit data							
Register											
(RFC_MCH)			<u> </u>	<u> </u>					<u> </u>		
RFC Time Base	0x53a8	D15–0	TC[15:0]	Time base counter low-order 16-		0x0-	-0x1	fff	0x0	R/W	
Counter Low	(16 bits)			bit data							
Register											
(RFC_TCL)											

Register name	Address	Bit	Name	Function		Set	tin	g	Init.	R/W	Remarks
RFC Time Base	0x53aa	D15-8	-	reserved	-				-	-	0 when being read.
Counter High	(16 bits)	D7–0	TC[23:16]	Time base counter high-order	0x0–0xff			ff	0x0	R/W	
Register				8-bit data							
(RFC_TCH)											
RFC Interrupt	0x53ac	D15–5	-	reserved		-	_		-	-	0 when being read.
Mask Register	(16 bits)	D4	OVTCIE	TC overflow error interrupt enable	1	Enable	0	Disable	0	R/W	
(RFC_IMSK)		D3	OVMCIE	MC overflow error interrupt enable	_	Enable	0	Disable	0	R/W	
		D2	ESENBIE	Sensor B oscillation completion	1	Enable	0	Disable	0	R/W	
				interrupt enable							
		D1	ESENAIE	Sensor A oscillation completion	1	Enable	0	Disable	0	R/W	
				interrupt enable							
		D0	EREFIE	Reference oscillation completion	1	Enable	0	Disable	0	R/W	
				interrupt enable							
RFC Interrupt	0x53ae	D15–5	-	reserved		-	-		-	-	0 when being read.
Flag Register	(16 bits)	D4	OVTCIF	TC overflow error interrupt flag	1	Cause of	0	Cause of	0	R/W	Reset by writing 1.
(RFC_IFLG)		D3	OVMCIF	MC overflow error interrupt flag		interrupt		interrupt not	0	R/W	
		D2	ESENBIF	Sensor B oscillation completion		occurred		occurred	0	R/W	
				interrupt flag							
		D1	ESENAIF	Sensor A oscillation completion					0	R/W	
				interrupt flag							
		D0	EREFIF	Reference oscillation completion					0	R/W	
				interrupt flag							

0x5068, 0x5400–0x540c

16-bit PWM Timer Ch.0

Register name	Address	Bit	Name	Function	S	etting	Init.	R/W	Remarks
T16A Clock Control Register Ch.0 (T16A CLK0)	0x5068 (8 bits)	D7–4	T16ACLKD [3:0]	Clock division ratio select	T16ACLKD [3:0] 0xf 0xe	Division ratio OSC3B OSC1A 1/16384 -	0x0	R/W	
(1104_02.00)					0xd 0xc 0xb 0xa 0x9 0x8 0x7 0x6 0x5 0x4 0x3	1/8192 – 1/4096 – 1/2048 – 1/1024 – 1/512 – 1/256 1/256 1/128 1/128 1/64 1/64 1/32 1/32 1/16 1/16			
		D3-2	T16ACLK SRC[1:0]	Clock source select	0x3 0x2 0x1 0x0 T16ACLKSF [1:0] 0x3 0x2 0x1 0x0	1/4 1/4 1/2 1/2 1/1 1/1	0x0	R/W	
		D1	-	reserved		-	-	-	0 when being read.
		D0	T16ACLKE	Count clock enable	1 Enable	0 Disable	0	R/W	
T16A Counter	0x5400	D15–7	-	reserved		-	-	-	0 when being read.
Ch.0 Control	(16 bits)	D6	нсм	Half clock mode enable	1 Enable	0 Disable	0	R/W	
Register		D5-4		reserved	4 5.00		-	-	0 when being read.
(T16A_CTL0)		D3 D2	CBUFEN TRMD	Compare buffer enable Count mode select	1 Enable 1 One-shot	0 Disable 0 Repeat	0	R/W R/W	
		 D1	PRESET	Count mode select	1 Reset	0 Ignored	0	W R/W	0 when being read.
		D1 D0	PRESET	Counter reset	1 Run	0 Stop	0	R/W	o when being read.
T16A Counter Ch.0 Data Register (T16A TC0)	0x5402 (16 bits)		T16ATC [15:0]	Counter data T16ATC15 = MSB T16ATC0 = LSB) to 0xffff	0x0	R	

Register name	Address	Bit	Name	Function		Set	tin	g	Init.	R/W	Remarks
T16A	0x5404	D15-14	CAPBTRG	Capture B trigger select	IC/	APBTRG[1:0]	Т	rigger edge	0x0	R/W	
Comparator/	(16 bits)	-	[1:0]	33		0x3		1 and ↓			
Capture Ch.0	()					0x2		\downarrow			
Control Register						0x1		↑			
(T16A_CCCTL0)		B / B / B	TOUTDUD		-	0x0	⊢	None			
		D13–12	TOUTBMD	TOUT B mode select	μc	DUTBMD[1:0]		Mode	0x0	R/W	
			[1:0]			0x3 0x2		npB:↑or↓ npA:↑or↓			
						0x1		np A: ↑, B:↓			
						0x0	[Off			
		D11-10	-	reserved		-	-		-	-	0 when being read.
		D9	TOUTBINV	TOUT B invert	1	Invert	0	Normal	0	R/W	
		D8	CCBMD	T16A_CCB register mode select		Capture		Comparator	0	R/W	
		D7–6	CAPATRG	Capture A trigger select	C	APATRG[1:0]	Т	rigger edge	0x0	R/W	
			[1:0]			0x3		1 and ↓			
						0x2 0x1		Ť			
						0x0		None			
		D5-4	TOUTAMD	TOUT A mode select	тс	DUTAMD[1:0]		Mode	0x0	R/W	•
			[1:0]		-	0x3	cm	np B: ↑ or ↓			
						0x2		np A: ↑ or ↓			
						0x1	cm	np A: ↑, B:↓			
						0x0		Off			
		D3-2	– TOUTAINV	reserved			-		-	-	0 when being read.
		D1 D0	CCAMD	TOUT A invert T16A CCA register mode select	1	Invert Capture		Normal Comparator	0	R/W R/W	
T16A	0x5406	-	CCA[15:0]	Compare/capture A data	<u> </u>	0x0 to			0x0	R/W	
Comparator/	(16 bits)	015 0	007[10.0]	CCA15 = MSB		0,010	, 0,	(III)		10.44	
Capture Ch.0 A	(10 5.00)			CCA0 = LSB							
Data Register											
(T16A_CCA0)											
T16A	0x5408	D15–0	CCB[15:0]	Compare/capture B data		0x0 to	0	dfff	0x0	R/W	
Comparator/	(16 bits)			CCB15 = MSB							
Capture Ch.0 B				CCB0 = LSB							
Data Register											
(T16A_CCB0)											
T16A	0x540a	D15–6	-	reserved			-		-	-	0 when being read.
Comparator/	(16 bits)	D5		Capture B overwrite interrupt enable		Enable	<u> </u>	Disable	0	R/W	
Capture Ch.0		D4		Capture A overwrite interrupt enable		Enable		Disable	0	R/W	
Interrupt Enable		D3	CAPBIE	Capture B interrupt enable	1	Enable	<u> </u>	Disable	0	R/W	
Register		D2	CAPAIE	Capture A interrupt enable	1	Enable		Disable	0	R/W	
(T16A_IEN0)		D1	CBIE	Compare B interrupt enable	1	Enable	-	Disable	0	R/W	
		D0	CAIE	Compare A interrupt enable	1	Enable	0	Disable	0	R/W	
T16A	0x540c	D15–6	-	reserved			-	-	-	-	0 when being read.
Comparator/	(16 bits)	D5		Capture B overwrite interrupt flag	1	Cause of	0	Cause of	0	R/W	Reset by writing 1.
Capture Ch.0		D4		Capture A overwrite interrupt flag		interrupt occurred		interrupt not occurred	<u> </u>	R/W	
Interrupt Flag		D3	CAPBIF	Capture B interrupt flag		occurred		occurred	0	R/W	4
Register		D2	CAPAIF	Capture A interrupt flag					0	R/W	-
(T16A_IFLG0)		D1 D0		Compare B interrupt flag					0	R/W R/W	4
		00	CAIF	Compare A interrupt flag		1		1	U	H/W	1

0x54b0

Flash Controller

Register name	Address	Bit	Name	Function	Setting		Init.	R/W	Remarks
FLASHC Read	0x54b0	D15-8	-	reserved	-		-	-	0 when being read.
Wait Control	(16 bits)	D7	-	reserved	-		Х	-	X when being read.
Register		D6–2	-	reserved	-	-	-	-	0 when being read.
(FLASHC_		D1–0	RDWAIT	Flash read wait cycle	RDWAIT[1:0]	Wait	0x1	R/W	
WAIT)			[1:0]		0x3	3 wait			
					0x2	2 wait			
					0x1 1 wait				
					0x0	No wait			

0x56c0-0x56c8

Real-time Clock

Register name	Address	Bit	Name	Function		Set	tin	g	Init.	R/W	Remarks
RTC Control	0x56c0	D15–9	-	reserved		-	_		-	-	0 when being read.
Register	(16 bits)	D8	RTCST	RTC run/stop status	1	Running	0	Stop	0	R	
(RTC_CTL)		D7–6	-	reserved		-	-		-	-	0 when being read.
		D5	BCDMD	BCD mode select	1	BCD mode	0	Binary mode	0	R/W	
		D4	RTC24H	24H/12H mode select	1	12H	0	24H	0	R/W	
		D3–1	-	reserved	-		-	-	0 when being read.		
		D0	RTCRUN	RTC run/stop control	1	Run	0	Stop	0	R/W	

Register name	Address	Bit	Name	Function		Set	tin	g	Init.	R/W	Remarks
RTC Interrupt	0x56c2	D15-10	-	reserved	Γ	-	-		-	-	0 when being read.
Enable Register	(16 bits)	D9	INT1DEN	1-day interrupt enable	1	Enable	0	Disable	0	R/W	
(RTC_IEN)		D8	INTHDEN	Half-day interrupt enable	1	Enable	0	Disable	0	R/W	
		D7	INT1HEN	1-hour interrupt enable	1	Enable	0	Disable	0	R/W	
		D6	INT10MEN	10-minute interrupt enable	1	Enable	0	Disable	0	R/W	
		D5	INT1MEN	1-minute interrupt enable	1	Enable	0	Disable	0	R/W	
		D4	INT10SEN	10-second interrupt enable	1	Enable	0	Disable	0	R/W	
		D3	INT1HZEN	1 Hz interrupt enable	1	Enable	0	Disable	0	R/W	
		D2	INT4HZEN	4 Hz interrupt enable	1	Enable	0	Disable	0	R/W	
		D1	INT8HZEN	8 Hz interrupt enable	1	Enable	0	Disable	0	R/W	
		D0	INT32HZEN	32 Hz interrupt enable	1	Enable	0	Disable	0	R/W	
RTC Interrupt	0x56c4	D15-10		reserved			-		-	-	0 when being read.
Flag Register	(16 bits)	D9	INT1D	1-day interrupt flag	1	Cause of	0	Cause of	0		Reset by writing 1.
(RTC_IFLG)		D8	INTHD	Half-day interrupt flag		interrupt		interrupt not	0	R/W	
		D7	INT1H	1-hour interrupt flag		occurred		occurred	0	R/W	
		D6	INT10M	10-minute interrupt flag					0	R/W	
		D5	INT1M	1-minute interrupt flag					0	R/W	
		D4	INT10S	10-second interrupt flag					0	R/W	
		D3	INT1HZ	1 Hz interrupt flag	1				0	R/W	
		D2	INT4HZ	4 Hz interrupt flag					0	R/W	
		D1	INT8HZ	8 Hz interrupt flag					0	R/W	
		D0	INT32HZ	32 Hz interrupt flag					0	R/W	
RTC	0x56c6	D15	-	reserved		-	-		-		0 when being read.
Minute/Second	(16 bits)	D14–8	RTCMIN	Minute counter		0x0 to 0x3b (Х	R/W	
Counter			[6:0]			0x00 to 0x59	(B	CD mode)			
Register		D7	-	reserved			-		-		0 when being read.
(RTC_MS)		D6–0	RTCSEC [6:0]	Second counter		0x0 to 0x3b (0x00 to 0x59			х	R/W	
RTC	0x56c8	D15–8	_	reserved			(0		_	_	0 when being read.
Hour Counter	(16 bits)	D13-0	АМРМ	AM/PM	1	PM	0	AM	х	R/W	ssir sonig road.
Register	(D6	-	reserved	† ·	-	-		-		0 when being read.
(RTC_H)		D5-0	RTCHOUR	Hour counter		0x0 to 0x17 (bin	arv mode)	х	R/W	i i i i i i i i i i i i i i i i i i i
			[5:0]			0x00 to 0x23					

0xffff84–0xffffd0

S1C17 Core I/O

Register name	Address	Bit	Name	Function				Init.	R/W	Remarks	
Processor ID Register (IDIR)	0xffff84 (8 bits)	D7–0		Processor ID 0x10: S1C17 Core	0x10 0			0x10	R		
Debug RAM Base Register (DBRAM)	0xffff90 (32 bits)	D31–24 D23–0		Unused (fixed at 0) Debug RAM base address		0x 0x7			0x0 0x7c0	R R	
Debug Control Register (DCR)	0xffffa0 (8 bits)	D6 D5	IBE3 IBE2	Instruction break #4 enable Instruction break #3 enable Instruction break #2 enable Debug request flag	1 1	Enable Enable Enable Occurred	0	Disable Disable Disable Not occurred	0 0 0	R/W R/W R/W	Reset by writing 1.
		D2 D1	IBE0 SE	Instruction break #1 enable Instruction break #0 enable Single step enable Debug mode	1 1	Enable Enable Enable Debug mode	0	Disable Disable Disable User mode	0 0 0 0	R/W R/W R/W	
Instruction Break Address Register 1 (IBAR1)	0xffffb4 (32 bits)	D31–24 D23–0	IBAR1[23:0]	reserved Instruction break address #1 IBAR123 = MSB IBAR10 = LSB		 0x0 to	- 0x	ffffff	- 0x0	– R/W	0 when being read.
Instruction Break Address Register 2 (IBAR2)	0xffffb8 (32 bits)	D31–24 D23–0	IBAR2[23:0]	reserved Instruction break address #2 IBAR223 = MSB IBAR20 = LSB		0x0 to	- 0x	ffffff	- 0x0	– R/W	0 when being read.
Instruction Break Address Register 3 (IBAR3)	0xffffbc (32 bits)	D31–24 D23–0	IBAR3[23:0]	reserved Instruction break address #3 IBAR323 = MSB IBAR30 = LSB	– 0x0 to 0xffffff		- 0x0	– R/W	0 when being read.		
Instruction Break Address Register 4 (IBAR4)	0xffffd0 (32 bits)	D31–24 D23–0	IBAR4[23:0]	reserved Instruction break address #4 IBAR423 = MSB IBAR40 = LSB	- 0x0 to 0xffffff		- 0x0	– R/W	0 when being read.		

Appendix B Power Saving

Current consumption will vary dramatically, depending on CPU operating mode, operation clock frequency, and the peripheral circuits being operated. Listed below are the control methods for saving power.

B.1 Clock Control Power Saving

This section describes clock systems that can be controlled via software and power-saving control details. For more information on control registers and control methods, refer to the respective module sections.

System SLEEP

• Execute the slp instruction (when RTC is stopped)

When the entire system can be stopped, stop the RTC and execute the slp instruction. The CPU enters SLEEP mode and the OSC1A/OSC3B clocks stop. This also stops all peripheral circuits using the OSC1A/OSC3B clocks. Starting up the CPU from SLEEP mode is therefore limited to startup using a port (described later).

• Execute the slp instruction (when RTC is running)

When the system except the RTC for time keeping can be stopped, maintain the RTC in running state and execute the slp instruction. The CPU enters SLEEP mode and the OSC3B clock stops. This also stops all peripheral circuits using the OSC3B clock. Starting up the CPU from SLEEP mode is therefore limited to startup using a port or RTC (described later).

System clocks

- Select a low-speed clock source (CLG module) Select a low-speed oscillator for the system clock source. You can reduce current consumption by selecting the OSC1A clock when low-speed processing is possible.
- Disable unnecessary oscillator circuits (CLG module) Operate the oscillator comprising the system clock source. Where possible, stop the other oscillators. You can reduce current consumption by using OSC1A as the system clock and disable the OSC3B oscillator.

CPU clock (CCLK)

• Execute the halt instruction

Execute the halt instruction when program execution by the CPU is not required, for example, when the system is waiting for an interrupt. The CPU enters HALT mode and suspends operations, but the peripheral circuits maintain the status in place at the time of the halt instruction, enabling use of peripheral circuits for generating interrupts and the LCD driver. You can reduce power consumption even further by suspending unnecessary oscillator and peripheral circuits before executing the halt instruction. The CPU is started from HALT mode by an interrupt from a port or the peripheral circuit operating in HALT mode.

• Select a low-speed clock gear (CLG module)

The CLG module can reduce CPU clock speeds to between 1/1 and 1/8 of the system clock via the clock gear settings. You can reduce current consumption by operating the CPU at the minimum speed required for the application.

Peripheral clock (PCLK)

• Stop PCLK (CLG module)

Stop the PCLK clock supplied from the CLG to peripheral circuits if none of the following peripheral circuits is required.

Peripheral circuits that use PCLK

- Interrupt controller
- 8-bit timer Ch.0
- SPI Ch.0
- Power generator
- P ports and port MUX (control registers, chattering filters)
- MISC registers

PCLK is not required for the peripheral modules/functions shown below.

Peripheral circuits/functions that do not use PCLK

- Real-time clock
- Clock timer
- Watchdog timer
- LCD driver
- Sound generator
- R/F converter
- Supply voltage detection circuit
- 16-bit PWM timer Ch.0
- UART Ch.0
- FOUTA/FOUTB outputs

Table B.1.1 shows a list of methods for clock control and starting/stopping the CPU.

Current consumption	OSC1A	OSC3B	CPU (CCLK)	PCLK peripheral	RTC	OSC1A peripheral	CPU stop method	CPU startup method
↑ Low	Stop	Stop	Stop	Stop	Stop	Stop	Execute slp instruction	1
	Oscillation (for RTC)	Stop	Stop	Stop	Run	Stop	Execute slp instruction	1, 2
	Oscillation (for RTC)	Stop	Stop	Stop	Run	Stop	Execute halt instruction	1, 2
	Oscillation (system CLK)	Stop	Stop	Stop	Run	Run	Execute halt instruction	1, 2, 3
	Oscillation (system CLK)	Stop	Stop	Run	Run	Run	Execute halt instruction	1, 2, 3, 4
	Oscillation (system CLK)	Stop	Run (1/1)	Run	Run	Run		
	Oscillation	Oscillation (system CLK)	Stop	Run	Run	Run	Execute halt instruction	1, 2, 3, 4
	Oscillation	Oscillation (system CLK)	Run (low gear)	Run	Run	Run		
High ↓	Oscillation	Oscillation (system CLK)	Run (1/1)	Run	Run	Run		

Table B.1.1 Clock Control List

HALT and SLEEP mode cancelation methods (CPU startup method)

- 1. Startup by port Started up by an I/O port interrupt.
- 2. Startup by RTC Started up by an RTC interrupt.
- 3. Startup by OSC1A peripheral circuit Started up by a clock timer or watchdog timer interrupt.
- 4. Startup by PCLK peripheral circuit Started up by a PCLK peripheral circuit interrupt.

B.2 Reducing Power Consumption via Power Supply Control

The available power supply controls are listed below.

VD1 regulator

• Note that turning on internal voltage regulator heavy load protection will increase current consumption. Turn off heavy load protection for normal operations. Turn on only if operations are unstable.

LCD power supply circuit

- Setting VCSEL to 0 (VC1 reference voltage) will increase current consumption. Set VCSEL to 1 (VC2 reference voltage) if the power supply voltage VDD is 2.2 V or higher.
- Turning on the LCD power supply heavy load protection will increase current consumption. Turn off heavy load protection for normal operations. Turn on only if the display is unstable.

Power supply voltage detection (SVD) circuit

• Operating the SVD circuit will increase current consumption. Turn off power supply voltage detection unless it is required.

Appendix C Mounting Precautions

This section describes various precautions for circuit board design and IC mounting.

Oscillator circuit

- Oscillation characteristics depend on factors such as components used (resonator, CG, CD) and circuit board patterns. In particular, with ceramic or crystal resonators, select the appropriate capacitors (CG, CD) only after fully evaluating components actually mounted on the circuit board.
- Oscillator clock disturbances caused by noise may cause malfunctions. To prevent such disturbances, consider the following points. The latest devices, in particular, are manufactured by microscopic processes, making them especially susceptible to noise.

Areas in which noise countermeasures are especially important include the OSC2 pin and related circuit components and wiring. OSC1 pin handling is equally important. The noise precautions required for the OSC1 and OSC2 pins are described below.

- (1) Components such as a resonator, resistors, and capacitors connected to the OSC1 and OSC2 pins should have the shortest connections possible.
- (2) Wherever possible, avoid locating digital signal lines within 3 mm of the OSC1 and OSC2 pins or related circuit components and wiring. Rapidly-switching signals, in particular, should be kept at a distance from these components. Since the spacing between layers of multi-layer printed circuit boards is a mere 0.1 mm to 0.2 mm, the above precautions also apply when positioning digital signal lines on other layers. Never place digital signal lines alongside such components or wiring, even if more than 3 mm distance or located on other layers. Avoid crossing wires.
- (3) Use Vss to shield OSC1 and OSC2 pins and related wiring (including wiring for adjacent circuit board layers). Layers wired should be adequately shielded as much as possible. Fully ground adjacent layers, where possible. At minimum, shield the area at least 5 mm around the above pins and wiring. Even after implementing these precautions, avoid configuring digital signal lines in parallel, as described in (2) above. Avoid crossing even on discrete layers, except for lines carrying signals with low switching fre-
- (4) After implementing these precautions, check the output clock waveform by running the actual application program within the product.

You can check the quality of the OSC1A waveform via the FOUTA or FOUTB output. In particular, enlarge the areas before and after the clock rising and falling edges and take special care to confirm that the regions approximately 100 ns to either side are free of clock or spiking noise.

Failure to observe precautions (1) to (3) adequately may lead to noise in the OSC1A output. Noise in the OSC1A output will destabilize timers operated by the OSC1A clock as well as CPU Core operations when the system clock switches to OSC1A.

Reset circuit

quencies.

- The reset signal input to the #RESET pin when power is turned on will vary, depending on various factors, such as power supply start-up time, components used, and circuit board patterns. Constants such as capacitance and resistance should be determined through testing with real-world products.
- Components such as capacitors and resistors connected to the #RESET pin should have the shortest connections possible to prevent noise-induced resets.

Power supply circuit

Sudden power supply fluctuations due to noise will cause malfunctions. Consider the following issues.

- (1) Connections from the power supply to the VDD and Vss pins should be implemented via the shortest, thickest patterns possible.
- (2) If a bypass capacitor is connected between VDD and Vss, connections between the VDD and Vss pins should be as short as possible.

Signal line location

- To prevent electromagnetically-induced noise arising from mutual induction, large-current signal lines should not be positioned close to circuits susceptible to noise, such as oscillators.
- Locating signal lines in parallel over significant distances or crossing signal lines operating at high speed will cause malfunctions due to noise generated by mutual interference. Specifically, avoid positioning crossing signal lines operating at high speed close to circuits susceptible to noise, such as oscillators.

Handling of light (for bare chip mounting)

The characteristics of semiconductor components can vary when exposed to light. ICs may malfunction or non-volatile memory data may be corrupted if ICs are exposed to light.

Consider the following precautions for circuit boards and products in which this IC is mounted to prevent IC malfunctions attributable to light exposure.

- (1) Design and mount the product so that the IC is shielded from light during use.
- (2) Shield the IC from light during inspection processes.
- (3) Shield the IC on the upper, underside, and side faces of the IC chip.
- (4) Mount the IC chip within one week of opening the package. If the IC chip must be stored before mounting, take measures to ensure light shielding.
- (5) Adequate evaluations are required to assess nonvolatile memory data retention characteristics before product delivery if the product is subjected to heat stress exceeding regular reflow conditions during mounting processes.

Unused pins

(1) I/O port (P) pins

Unused pins should be left open. The control registers should be fixed at the initial status (input with pullup enabled).

(2) OSC1 and OSC2 pins

If the OSC1A oscillator circuit is not used, the OSC1 and OSC2 pins should be left open. The control registers should be fixed at the initial status (oscillation disabled).

(3) VC1–3, CA, CB, SEGx, and COMx pins

If the LCD driver is not used, these pins should be left open. The control registers should be fixed at the initial status (display off). The unused SEGx pins that are not required to connect should be left open even if the LCD driver is used.

Miscellaneous

This product series is manufactured using microscopic processes.

Although it is designed to ensure basic IC reliability meeting EIAJ and MIL standards, minor variations over time may result in electrical damage arising from disturbances in the form of voltages exceeding the absolute maximum rating when mounting the product in addition to physical damage. The following factors can give rise to these variations:

- (1) Electromagnetically-induced noise from industrial power supplies used in mounting reflow, reworking after mounting, and individual characteristic evaluation (testing) processes
- (2) Electromagnetically-induced noise from a solder iron when soldering

In particular, during soldering, take care to ensure that the soldering iron GND (tip potential) has the same potential as the IC GND.

Appendix D Measures Against Noise

To improve noise immunity, take measures against noise as follows:

Noise Measures for VDD and Vss Power Supply Pins

The IC will malfunction at the instant when noise falling below the rated voltage is input. Take measures on the circuit board, including close patterns for circuit board power supply circuits, noise-filtering decoupling capacitors, and surge/noise prevention components on the power supply line.

For the recommended patterns on the circuit board, see "Mounting Precautions" in Appendix.

Noise Measures for #RESET Pin

The pull-up resistor for the #RESET pin included in this product has a relatively high impedance of 100 k Ω to 500 k Ω and is not noise-resistant. Extraneous noise may pull the #RESET pin down to a low level and this will cause the IC to reset. Therefore, the circuit board must be designed properly taking noise measures into consideration.

For the recommended patterns on the circuit board, see "Mounting Precautions" in Appendix.

Noise Measures for Oscillator Pins

The oscillator input pins must pass a signal of small amplitude, so they are hypersensitive to noise. Therefore, the circuit board must be designed properly taking noise measures into consideration. For the recommended patterns on the circuit board, see "Mounting Precautions" in Appendix.

Noise Measures for Interrupt Input Pins

This product is able to generate a port input interrupt when the input signal changes. The interrupt is generated when an input signal edge is detected, therefore, an interrupt may occur if the signal changes due to extraneous noise.

To prevent occurrence of unexpected interrupts due to extraneous noise, enable the chattering filter circuit when using the port input interrupt.

For details of the port input interrupt and chattering filter circuit, see the "I/O Ports (P)" chapter.

Noise Measures for UART Pins

This product includes a UART module for asynchronous communications. The UART starts receive operation when it detects a low level input from the SINx pin. Therefore, a receive operation may be started if the SINx pin is set to low due to extraneous noise. In this case, a receive error will occur or invalid data will be received. To prevent UART from malfunction caused by extraneous noise, take the following measures:

- Stop the UART operations (RXEN/UART_CTLx register = 0) while asynchronous communication is not performed.
- Execute the resending process via software after executing the receive error handler with a parity check.

For details of the pin functions and the function switch control, see the "I/O Ports (P)" chapter. For the UART control and details of receive errors, see the "UART" chapter.

Appendix E Initialization Routine

The following lists typical vector tables and initialization routines:

boot.s

```
.org
      0x8000
.section .rodata
                                                                 ...(1)
; _____
     Vector table
:
______
                           ; interrupt vector interrupt
                           : number
                                      offset source
.long BOOT
                          ; 0x00
                                       0 \times 00
                                             reset
                                                                 ...(2)
                          ; 0x01
.long unalign_handler
                                       0x04
                                             unalign
.long nmi_handler
                          ; 0x02
                                       0x08
                                             NMT
                        ; 0x03
.long int03_handler
                                       0x0c
                          ; 0x04
.long p0_handler
                                       0x10
                                              P0 port
                        ; 0x05
; 0x06
.long int05_handler
                                      0x14
.long int06_handler
                                      0 \times 18
.long ct_handler
                          ; 0x07
                                             СТ
                                     0x1c
.long rtc_handler
                          ; 0x08
                                     0x20
                                            RTC
                       ; 0x08
; 0x09
.long int09_handler
                                      0x24
                                             _
                          ; 0x0a
.long lcd_handler
                                      0x28
                                              LCD
                       ; 0x0a
; 0x0b
; 0x0c
.long t16a2_0_handler
                                      0x2c
                                              T16A2 ch0
                           ; 0x0c
.long int0c_handler
                                      0x30
                       ; 0x0C
; 0x0d
: 0x0e
.long int0d handler
                                     0x34
.long t8_0_handler
                          ; 0x0e
                                     0x38
                                             T8 ch0
                        ; 0x0f
; 0x10
; 0x11
.long int0f_handler
                                      0x3c
.long uart_0_handler
                                             UART ch0
                                      0 \times 40
.long int11_handler
                                       0x44
                          ; 0x12
.long spi_0_handler
                                      0 \times 48
                                              SPI ch0
                           ; 0x13
.long int13_handler
                                      0 \times 4 c
                      , 0x1
; 0x15
; 0x15
; 0x17
; 0x17
; 0x18
; 0x1^
; 0x1
.long int14_handler
                                      0x50
.long rfc_handler
                                            RFC ch0
                                     0 \times 54
.long svd_handler
                                      0x58
                                            SVD
.long int17_handler
                                      0x5c
.long int18_handler
                                      0x60
.long int19_handler
                                      0x64
                                              _
.long int1a_handler
                                      0x68
                          ; 0x1b
.long int1b handler
                                      0x6c
.long int1c_handler
                          ; 0x1c
                                       0x70
                                              _
                          ; 0x1d
.long int1d_handler
                                       0x74
                                              _
                          ; 0x1e
.long int1e_handler
                                       0 \times 78
.long intlf handler
                           ; 0x1f
                                       0x7c
Program code
...(3)
.text
.align 1
BOOT
      ; ----- Stack pointer -----
      Xld.a %sp, 0x07c0
                                                                 ...(4)
      ; ----- Memory controller ------
      Xld.a %r1, 0x54b0 ; FLASHC register address
      Xld.a
            %r2, 0x5324
                          ; MISC_PROT register address
      ; MISC write protection off
      Xld.a %r0, 0x96
                          ; [0x5324] <= 0x96
             [%r2], %r0
      ld.b
                                                                 ...(5)
      ; Flash read wait cycle
      Xld.a %r0, 0x00 ; No wait
ld.b [%r1], %r0 ; [0x54b0] <= 0x00
                                                                 ...(6)
      ; MISC write protection on
            [%r2], %r0 ; [0x5324] <= 0x00
                                                                 ...(7)
      ld.b
S1C17656 TECHNICAL MANUAL
```

- (1) A ".rodata" section is declared to locate the vector table in the ".vector" section.
- Interrupt handler routine addresses are defined as vectors.
 "intXX_handler" can be used for software interrupts.
- (3) The program code is written in the ".text" section.
- (4) Sets the stack pointer.
- (5) Removes write-protection from the MISC and FLASHC registers.
- (6) Sets the number of Flash memory read wait cycles. Can be set to no wait in the S1C17656. (See the "Memory Map, Bus Control" chapter.)
- (7) Sets write-protection to the MISC and FLASHC registers.

Revision History

Code No.	Page	Contents
412745100	All	New establishment

EPSON

International Sales Operations

AMERICA

EPSON ELECTRONICS AMERICA, INC.

214 Devcon Drive, San Jose, CA 95112, USA Phone: +1-800-228-3964

Fax: +1-408-922-0238

EUROPE

EPSON EUROPE ELECTRONICS GmbH

Riesstrasse 15, 80992 Munich, GERMANY

Phone: +49-89-14005-0

Fax: +49-89-14005-110

ASIA

EPSON (CHINA) CO., LTD.

7F, Jinbao Bldg., No.89 Jinbao St., Dongcheng District, Beijing 100005, CHINA Phone: +86-10-8522-1199 Fa

Fax: +86-10-8522-1125

SHANGHAI BRANCH

7F, Block B, Hi-Tech Bldg., 900 Yishan Road, Shanghai 200233, CHINA Phone: +86-21-5423-5577 Fax: +86-21-5423-4677

SHENZHEN BRANCH

12F, Dawning Mansion, Keji South 12th Road, Hi-Tech Park, Shenzhen 518057, CHINA Phone: +86-755-2699-3828 Fax: +86-755-2699-3838

EPSON HONG KONG LTD.

Unit 715-723, 7/F Trade Square, 681 Cheung Sha Wan Road, Kowloon, Hong Kong Phone: +852-2585-4600 Fax: +852-2827-4346

EPSON TAIWAN TECHNOLOGY & TRADING LTD.

14F, No. 7, Song Ren Road, Taipei 110, TAIWAN Phone: +886-2-8786-6688 Fax: +886-2-8786-6660

EPSON SINGAPORE PTE., LTD.

1 HarbourFront Place, #03-02 HarbourFront Tower One, Singapore 098633 Phone: +65-6586-5500 Fax: +65-6271-3182

SEIKO EPSON CORP. KOREA OFFICE

5F, KLI 63 Bldg., 60 Yoido-dong, Youngdeungpo-Ku, Seoul 150-763, KOREA Phone: +82-2-784-6027 Fax: +82-2-767-3677

SEIKO EPSON CORP. MICRODEVICES OPERATIONS DIVISION

IC Sales & Marketing Department

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-42-587-5814 Fax: +81-42-587-5117