

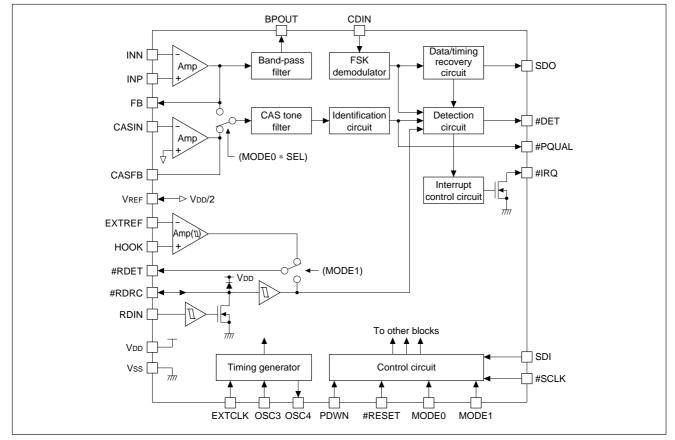
S1C05251 CAS + FSK IC

Low Voltage Operation Products

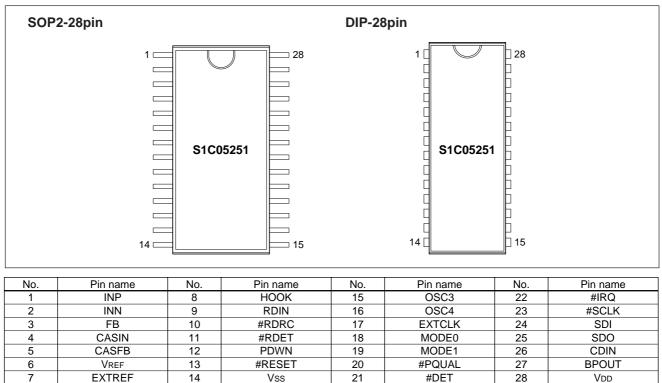
- ITU V.23 & Bell 202 FSK Receiver
- Bellcore "CPE Alerting Signal" Detection
- BT "Idle Tone Alert Signal" Detection
- Low Voltage Operation

DESCRIPTION

The S1C05251 (CAS + FSK IC), an upgraded version of the S1C05250, is a CMOS IC for calling number identification with the Call Waiting function. It provides an interface to various call information delivery services based on Bellcore GR-30-CORE, such as CND (Calling Number Delivery), CNAM (Calling Name Delivery), and CIDCW (Calling Identity on Call Waiting), as well as British Telecom's CLIP (Calling Line Identification Service) and Cable Communications Association's CDS (Caller Display Service). The S1C05251 incorporates power-down, ring detection, and carrier detection circuits, a synchronous receive data output function, and a clock-synchronized serial interface. All these features make it suitable for various applications such as those listed below.


- Calling number delivery service with a Call Waiting function
- Telephone sets and similar auxiliary equipment
- Telephone answering equipment
- Multifunction telephones
- Facsimiles
- Computer peripheral circuits
- Message waiting telephones

■ FEATURES


- Conforms to Bellcore GR-30-CORE and SR-TSV-002476 (same as S1C05250)
- Conforms to British Telecom SIN227 and SIN242 (same as S1C05250)
- Can detect Bellcore CPE alert signal (CAS) and British Telecom idle-tone alert signal using a programmable band-pass filter (same as S1C05250)
- FSK demodulation circuit based on ITU-T V.23 and BELL202 (same as S1C05250)
- Filter bypass mode to detect call progress mode (CPM) signal (same as S1C05250)
- Programmable alert-signal detection level (same as S1C05250)
- Carrier/ring detection output (same as S1C05250)
- FSK energy mode to detect FSK signal in power-down mode (new function for S1C05251)
- Supports CAS signal single-end input (new function for S1C05251)
- Off-hook detection (new function for S1C05251)
- Supports 3.57945 MHz crystal oscillator or external clock input (same as S1C05250)
- Serial-receive data output (same as S1C05250)
- Serial host interface (same as S1C05250)
- Power-down mode (same as S1C05250)
- Power supply voltage: 2.7 V to 5.5 V (same as S1C05250)
- Operating temperature range: -20°C to 70°C (same as S1C05250)
- Current consumption: 3 mA when operating (same as S1C05250)
 - 1 µA in zero-power mode (same as S1C05250)
 - $6\ \mu A$ in FSK energy detection mode (new function for S1C05251)
- Shipping form: SOP2-28pin package (plastic), DIP-28pin package (ceramic) or chip (package for S1C05251)

SEIKO EPSON CORPORATION

BLOCK DIAGRAM

■ PIN CONFIGURATION

■ PIN DESCRIPTION

Note: The signal and pin names prefixed by # are those of active-low signals and pins.

Pin name	Pin No.	Туре	Power-down state	Description
INP	1	Input Analog	Off/ Active	+ Input: Non-inverting amplifier input. This pin is connected to the telephone wire through an input gain-setting resistor and a DC cut capacitor. Under the power down mode, this pin is functionary disconnected from the internal circuitry when the MODE1 pin is set to low level. When the MODE1 pin is set to high level, this pin stays active to detect FSK signal energy to send wake up signal to the host through the #IRQ pin. Do not connect any external components to this pin except gain setting resistors to this pin. Excess load may cause improper operation of the circuit.
INN	2	Input Analog	Off/ Active	- Input: Inverting amplifier input. This pin is connected to the telephone wire through an input gain-setting resistor and a DC cut capacitor. Under the power down mode, this pin is functionary disconnected from the internal circuitry when the MODE1 pin is set to low level. When the MODE1 pin is set to high level, this pin stays active to detect FSK signal energy to send wake up signal to the host through the #IRQ pin. Do not connect any external components to this pin except gain setting resistors to this pin. Excess load may cause improper operation of the circuit.
FB	3	Output Analog	High-Z/ Active	Amplifier Output: A feed back resistor is connected between this pin and the INN pin to set gain. Under the power down mode, this output pin is set to high impedance when the MODE1 pin is set to low level. When the MODE1 pin is set to high level in power down, this pin stays active to detect FSK signal energy to send wake up signal to the host through the #DET pin. Do not connect any external components to this pin except a gain setting resistor to this pin. Excess load may cause improper operation of the circuit.
CASIN	4	Input Analog	Off	CAS Tone Input: CAS tone amplifier input. For the telephone application, this pin is connected to the output of telephone hybrid circuit through input gain-setting resistor and a DC cut capacitor. Under the power down mode, this pin is functionary disconnected from the internal circuitry. Do not connect any external components to this pin except gain setting resistors to this pin. Excess load may cause improper operation of the circuit.
CASFB	5	Output Analog	High-Z	CAS Amplifier Output: A feed back resistor is connected between this pin and the CASIN pin to set CAS gain. Under the power down mode, this output pin is set to high impedance. Do not connect any external components to this pin except a gain setting resistor to this pin. Excess load may cause improper operation of the circuit.
Vref	6	Output Analog	High-Z/ Vdd/2 level	Reference Voltage Output: 1/2 VDD voltage output. This pin must be bypassed to ground through 0.1 μ F capacitor. During power down mode, this output pin is set to high impedance when the MODE1 pin is low level. When the MODE1 pin is set to high level in power down, this pin stays at VDD/2. Do not connect any external components to this pin except a jumper to VREF pin or a bypass capacitor to ground. Excess load may cause improper operation of the circuit.
EXTREF	7	Input Analog	Active	External Reference Voltage Input: External DC reference voltage is connected to this pin. This voltage set the off-hook detection threshold level.
HOOK	8	Input Analog	Active	Off-Hook Detection Input: Diode bridge output from the TIP/RING lines is connected to this pin through external resistor divider to detect off-hook/on-hook states.
RDIN	9	Schmitt trigger input	Active	Ring Detect Input: The attenuated ring signal is connected to this pin for the ring detection. This circuit is always active even if the device is in the power down mode.
#RDRC	10	Open-drain output Schmitt trigger input	Active	Ring Detect RC Terminal: RC network will be connected to this pin to set time delays for the ring signal detection. This circuit is always active even if the device is in the power down mode.
#RDET	11	Output	Active	Ring Detect Output: When the MODE1 pin is set to low level, this pin is connected from output of a Schmitt trigger buffer which input is connected to the #RDRC pin. Low level at this pin indicates that the ring signal is detected. When the MODE1 pin bit is set to high level, this pin is connected from output of a hook detect circuit which input is connected from the HOOK pin. High level at this pin indicates on-hook condition and low level at this pin indicates off-hook condition.
PDWN	12	Input	Active	Power Down Input: This pin must be kept at low level for the normal operation. When it is set to high level, the device enters the power down mode. During power down mode, the OSC4 pin is set to high level, and the VREF, CASFB and FB pins are set to high impedance. (The FB and VREF pins are set to high impedance only when the MODE1 pin is at low level.)
#RESET	13	Input	Active	Reset Input: When this pin is set to low level, all internal host registers are reset to their default conditions. This pin must be set to high level to write data to the internal registers.
Vss	14	Power supply		Device Ground: This pin is connected to the system ground.

Pin name	Pin No.	Туре	Power-down state	Description
OSC3	15	Input	Off	Crystal Oscillator/External Clock Input: A crystal resonator is connected between this pin and the OSC4 pin. This pin may be driven from an external clock source. The proper
				value load capacitor must be connected between this pin and ground. During power
				down, this input pin is disconnected from internal circuits.
OSC4	16	Output	High level	Crystal Oscillator Output: A crystal or ceramic resonator is connected between this pin
				and OSC3 pin. This pin must be kept open when the OSC3 pin is driven from an external
				clock source. The proper value load capacitor must be connected between this pin and
				ground. During power down, this output pin is set to high level.
EXTCLK	17	Input	Active	External Clock Input: Typically 32.768 kHz clock signal is applied to this pin from the
MODE0	10	lanut	Active	host device to enable pre-qualification logic used in FSK energy detection circuitry.
MODEU	18	Input	Active	Mode0 Select Input: This pin select CAS or FSK/CPM mode. When this pin is set to high level, CAS mode is selected. In this mode, CAS detection is enabled and the FSK
				function is disabled. The host device also can write internal registers through the SDI and
				#SCLK pin. Before writing data into registers, this pin must be set to low level once to
				synchronize the serial interface circuit for data writing sequence. When this pin is set to
				low level, FSK/CPM mode is selected. In this mode, CAS detection is disabled and the
				FSK/CPM function is enabled. The host device also can read the received data from the
				SDO pin under this mode.
MODE1	19	Input	Active	Mode1 Select Input: This pin enables FSK energy and off-hook detection mode. When
		·		this pin is set to high level, FSK energy and off-hook detection mode is enabled. When
				this pin is set to low level, FSK energy and off-hook detection mode is disabled.
#PQUAL	20	Output	High level	Pre-qualification Output: Early qualification output will be monitored at this pin. When
				no tones are detected, this pin stays at high level.
#DET	21	Output	Active	Detection Output: When the device is in the power down mode and the MODE1 pin is
				set to low level, low level at this pin indicates the presence of ring signal or phone line
				reversal. If the MODE1 pin is set to high level, low level at this pin indicates the presence
				of ring signal or FSK inbound signal. When in the power up mode and FSK mode is
				selected, low level at this pin indicates the presence of FSK inbound signal. If CPM mode
				is selected, pulses from this pin indicate the presence of CPM tone signal. If CAS mode is
#IRQ	22	On an drain	A ativ o	selected, low level at this pin indicates the presence of CAS tone signal.
#IKQ	22	Open-drain output	Active	Interrupt Request Output: When the device is in the power down mode, low level at this pin indicates the presence of ring signal or phone line reversal. When in the power up
		output		mode and FSK mode is selected, low level at this pin indicates that the received data is
				ready in the internal register for the host device to read. In this mode, this pin is set to
				high level after the first bit of the received data is read. If CPM mode is selected, low level
				at this pin indicates the presence of CPM. If CAS mode is selected, low level at this pin
				indicates that the CAS tone is detected. In this mode, this pin remains low level while
				CAS tones exist.
#SCLK	23	Input	Active	Serial Clock Input: The host device supplies a clock to this pin to write internal registers
				or to read received data. The received data changes its state at falling edge of the clock
				supplied by the host device.
SDI	24	Input	Active	Serial Data Input: The host device writes control bits through this pin.
SDO	25	Output	High level	Serial Data Output: The host device reads the serial receive data from this pin. If
				asynchronous mode is selected, the asynchronous format serial data appears at this pin.
				If synchronous mode is selected, the received serial data is read from this pin by the host
				device with the serial clock supplied to the #SCLK pin. During the power down, CPM or CAS mode, this output pin is set to high level.
CDIN	26	Input	Vref	Capacitor Input: A 0.1 μ F capacitor is connected between this pin and the BPOUT pin.
ODIN	20	Analog	VICEI	The FSK signal can be applied from the FB pin to this pin through this 0.1μ F capacitor to
		7 thalog		bypass the band pass filter for internal testing purpose. Do not connect any external
				components except this capacitor to this pin. Excess load may cause improper operation
				of the circuit.
BPOUT	27	Output	High-Z	Capacitor Output: A 0.1 µF capacitor is connected between this pin and the CDIN pin.
		Analog	-	The band pass filter output is monitored at this pin for internal testing purpose. Do not
		-		connect any external components except this capacitor to this pin. Excess load may
				cause improper operation of the circuit.
Vdd	28	Power supply		Device Power Supply: Positive power supply pin.
		(+)		

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

Parameter	Symbol	Rated value	Unit
Power supply voltage	Vdd	-0.5 to 7	V
Input voltage	Vi	-0.3 to VDD+0.3	V
Total output current	ΣΙνdd	±10	mA
Power dissipation	PD	250	mW
Storage temperature	Tstg	-65 to 150	°C
Solder temperature	TSOL	255	°C
Soldering time	tsol	10	Sec
Operating temperature	TOPR	-20 to 70	°C
Electrostatic withstand voltage	VE	EIAJ test (C=200pF): 250V or more	V
		MIL test (C=100pF, R=1.5kΩ): 1200V or more	

The voltages are referenced to the Vss pin as the ground level.

Recommended Operating Conditions

Parameter	Symbol	Condition	Unit
Power supply voltage	Vdd	2.7 to 5.5	V
Crystal/clock frequency	fclk	3.579545	MHz
Crystal/clock frequency error	ferr	±0.01	%

The voltages are referenced to the Vss pin as the ground level.

• DC Characteristics

		(Unless	s otherwise noted: VDD=2.7V to 5.5V, Vss=0V, fclk=	=3.579545	5MHz, T	a=-20 to	70°C
Parameter	Symbol		Condition	Min.	Тур.	Max.	Unit
High level input voltage (1)	VIH1		OSC3, MODE0, MODE1, #SCLK, SDI, PDWN, #RESET. EXTCLK	0.8Vdd		Vdd	V
High level input voltage (2)	VIH2		RDIN, #RDRC	0.7Vdd		VDD	V
Low level input voltage (1)	VIL1		OSC3, MODE0, MODE1, #SCLK, SDI, PDWN, #RESET, EXTCLK	0		0.2Vdd	V
Low level input voltage (2)	VIL2		RDIN, #RDRC	0		0.3Vdd	V
High level input current	Ін	Vih=Vdd	RDIN, OSC3, MODE0, MODE1, #SCLK, SDI, PDWN, #RESET, #IRQ, EXTCLK, #RDRC (RDIN = Low)	0		0.5	μA
Low level input current	lı∟	VIL=VSS	RDIN, OSC3, MODE0, MODE1, #SCLK, SDI, PDWN, #RESET, #RDRC, #IRQ, EXTCLK	-0.5		0	μA
High level output current	Іон	Voh=0.9Vdd	SDO, #DET, #RDET, #PQUAL			-1.5	mA
Low level output current	IOL	Vol=0.1Vdd	SDO, #DET, #RDET, #PQUAL, #IRQ, #RDRC	2.5			mA
VREF output voltage	VREF				Vdd/2		V
Input impedance	Rin		INP, INN, HOOK, EXTREF, CASIN	10			MΩ
	RCDIN		CDIN	140	200	260	kΩ

• Current Consumption

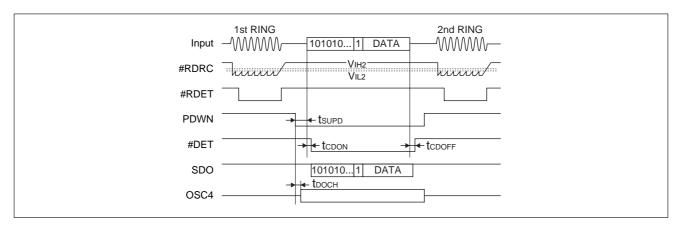
(Unless otherwise noted: Vdd=2.7V to 5.5V, Vss=0V, fcLk=3.579545MHz, Ta=-20 to 70°C											
Parameter	Symbol Condition			Min.	Тур.	Max.	Unit				
Current consumption	IOP	Zero-power mode (PDWN=High)	VDD=5V			1.0	μA				
		FSK energy detection mode (PDWN=High)	Vdd=5V		6.0	8.0	μA				
		Power up mode (no signal inputs)	VDD=5V		3.0		mA				
			Vdd=3V		1.8		mA				

• Crystal Oscillation Characteristics

orystal oscillation onalacteristics										
		(Unless otherwise noted: VDD=2.7V to 5.5V, Vs	ss=0V, 0	CG=CD=18	BpF, Ta=	=25°C)				
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit				
Oscillation start time	tsta	3.579545MHz oscillator			20	msec				

FSK Demodulation Circuit Characteristics FSK AC characteristics

		(Unless otherwise noted: VDD=5.0/3.0V, Vss=0V, fcLk=	3.579545	5MHz, Ta	a=-20 to	70°C)
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Transfer rate	TRATE		1188	1200	1212	Baud
Bell 202 mark (logic 1) frequency	fB1		1188	1200	1212	Hz
Bell 202 space (logic 0) frequency	fвo		2178	2200	2222	Hz
ITU-T V.23 mark (logic 1) frequency	f∨1		1280	1300	1320	Hz
ITU-T V.23 space (logic 0) frequency	f∨2		2068	2100	2132	Hz
SN ratio	SNR		20	-	-	dB
Carrier-detect ON sensitivity *1	CDONFSK	Vdd=5V	-45.0	-43.0	-41.0	dBm
(input level at TPI/RING)		Input amp gain (GAMP)=-5dB	-47.2	-45.2	-43.2	dBV
		VDD=3V	-45.0	-43.0	-41.0	dBm
		Input amp gain (GAMP)=-9.4dB	-47.2	-45.2	-43.2	dBV
Carrier-detect OFFsensitivity *1	CDOFFFSK	VDD=5V	-47.0	-45.0	-43.0	dBm
		Input amp gain (GAMP)=-5dB	-49.2	-47.2	-45.2	dBV
		VDD=3V	-47.0	-45.0	-43.0	dBm
		Input amp gain (GAMP)=-9.4dB	-49.2	-47.2	-45.2	dBV


*1: When the gain in the input amp is set to GAMP (dB), the CDONFSK and CDOFFFSK values (Typ.) can be calculated from the equation below.

 $CDONFSK [dBm] = -GAMP - 48.0 + 20log(\frac{VDD}{5}) [dBm], CDONFSK [dBV] = -GAMP - 50.2 + 20log(\frac{VDD}{5}) [dBV]$

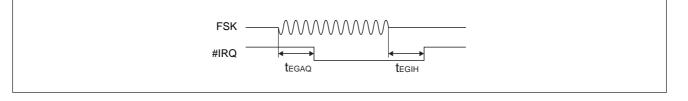
 $CDOFFFSK [dBm] = -GAMP - 50.0 + 20log(\frac{V_{DD}}{5}) [dBm], CDOFFFSK [dBV] = -GAMP - 52.2 + 20log(\frac{V_{DD}}{5}) [dBV]$

FSK switching characteristics

	(Unless	s otherwise noted: VDD=5.0/3.0V, Vss=0V, fcLk=3.579545N	1Hz, Ta=	-20 to 70	J°C, CL=	=50pF)
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
PDWN fall \rightarrow FSK	tsupd				20	msec
Carrier detect start time	t CDON		5	10	15	msec
Data end \rightarrow #DET rise	t CDOFF		5	10	15	msec
PDWN rise \rightarrow Oscillation start	tросн	VDD=5V		7	12	msec
		VDD=3V		10	15	msec

FSK energy detection mode characteristics

(Unless otherwise noted: VDD=5.0/3.0V, Vss=0V, fcLk=3.579545MHz, Ta=-20 to 70°C)								
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit		
Transfer rate	TRATE		1188	1200	1212	Baud		
Bell 202 mark (logic 1) frequency	fB1		1188	1200	1212	Hz		
Bell 202 space (logic 0) frequency	fвo		2178	2200	2222	Hz		
ITU-T V.23 mark (logic 1) frequency	fV1		1280	1300	1320	Hz		
ITU-T V.23 space (logic 0) frequency	fv2		2068	2100	2132	Hz		
SN ratio	SNR		20	-	-	dB		
Carrier-detect ON sensitivity *1	CDONFSK	VDD=5V	-44.0	-41.0	-38.0	dBm		
(input level at TPI/RING)		Input amp gain (GAMP)=-5dB	-46.2	-43.2	-40.2	dBV		
		VDD=3V	-44.0	-41.0	-38.0	dBm		
		Input amp gain (GAMP)=-9.4dB	-46.2	-43.2	-40.2	dBV		


*1: When the gain in the input amp is set to GAMP (dB), the CDONFSK value (Typ.) can be calculated from the equation below.

 $CDONFSK [dBm] = -GAMP - 46.0 + 20log(\frac{VDD}{5}) [dBm], CDONFSK [dBV] = -GAMP - 48.2 + 20log(\frac{VDD}{5}) [dBV]$

EPSON

FSK energy detection mode switching characteristics

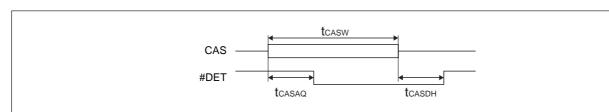
	(Unless	s otherwise noted: VDD=5.0/3.0V, Vss=0V, fcLk=3.579545M	1Hz, Ta=	-20 to 70)°C, C∟=	50pF)
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
FSK energy detect capture time	t egaq	VDD=5V		12	20	msec
FSK end \rightarrow #IRQ rise	t egih	VDD=5V		24	40	msec

Dual-Tone (CAS) Detection Circuit Characteristics

CAS AC characteristics

(Unless otherwise noted: VDD=5.0/3.0V, Vss=0V, fcLk=3.579545MHz, Ta=-20 to 70°C	C)
---	----

Parameter	Symbol	Condition		Тур.	Max.	Unit
Carrier-detect sensitivity *1	CDONTONE	DONTONE VDD=5V, Bellcore mode		-35.9	-31.9	dBm
(input level at TPI/RING)		Input amp gain (GAMP)=-5dB				
		Tone filter gain=-4dB				
		VDD=5V, BT mode *2	-48.1	-44.1	-40.1	dBV
		Input amp gain (GAMP)=-5dB				
		Tone filter gain=-4dB				
		VDD=3V, BT mode *2	-39.9	-35.9	-31.9	dBm
		Input amp gain (GAMP)=-9.4dB				
		Tone filter gain=-4dB				
		VDD=3V, BT mode *2	-48.1	-44.1	-40.1	dBV
		Input amp gain (GAMP)=-9.4dB				
		Tone filter gain=-4dB				
Low tone frequency	f LTONE	Bellcore (±0.5%)	2119.35	2130	2140.65	Hz
		BT line disconnected	2110	2130	2150	Hz
		BT line connected (±0.6%)	2117.22	2130	2142.78	Hz
High tone frequency	f htone	Bellcore (±0.5%)	2736.25	2750	2763.75	Hz
		BT line disconnected	2720	2750	2780	Hz
		BT line connected (±0.6%)	2733.50	2750	2766.50	Hz


*1: When the gain in the input amp is set to GAMP (dB), the CDONTONE value (Typ.) can be calculated from the equation below. (When the internal tone filter gain = -4 dB)

 $CDONTONE \ [dBm] = -G_{AMP} - 40.9 + 20log(\frac{V_{DD}}{5}) \ [dBm], \ CDONTONE \ [dBV] = -G_{AMP} - 49.1 + 20log(\frac{V_{DD}}{5}) \ [dBV]$

*2: BT mode is selected by setting the mode register (address = 0h) bit 2 to 1. By this setting, the gain in each dual-tone filter is raised +6 dB for adjustment to the British Telecom CD level.

CAS switching characteristics

	(Unless	s otherwise noted: VDD=5.0/3	3.0V, Vss=0V, fcLk=3.57954	I5MHz, Ta=-20 to 70°C, C∟=	:50pF)
Parameter	Symbol	Min.	Тур.	Max.	Unit
CAS detect capture time	t CASAQ		2.8×(N+2)+16.9		msec
CAS end \rightarrow #DET rise	tcasdh		2.8×(31-N)+13.1		msec
CAS width	tcasw	75	80	85	msec
$N = TH0 \times 16 + TL3 \times 8 + TL2 \times 4 +$	+ TL1 × 2 + T	ΓL0			

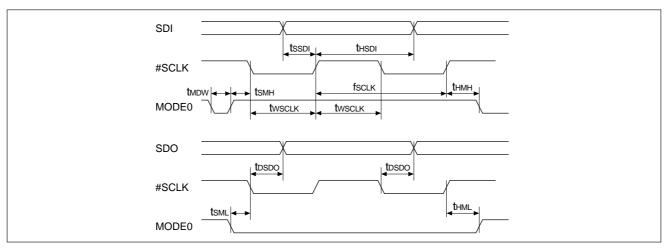
• Call Progress Mode (CPM) Detection Circuit Characteristics **CPM AC characteristics**

(Unless otherwise noted: Vdd=5.0/3.0V, Vss=0V, fcLk=3.579545MHz, Ta=-20 to 70°							
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	
Carrier-detect ON sensitivity *1	CDONCPM	VDD=5V	-45.0	-43.0	-41.0	dBm	
(input level at TPI/RING)		Input amp gain (GAMP)=-5dB	-47.2	-45.2	-43.2	dBV	
		VDD=3V	-45.0	-43.0	-41.0	dBm	
		Input amp gain (GAMP)=-9.4dB	-47.2	-45.2	-43.2	dBV	
Carrier-detect OFF sensitivity *1	arrier-detect OFF sensitivity *1 CDOFFCPM VDD=5V		-47.0	-45.0	-43.0	dBm	
		Input amp gain (GAMP)=-5dB	-49.2	-47.2	-45.2	dBV	
		VDD=3V	-47.0	-45.0	-43.0	dBm	
		Input amp gain (GAMP)=-9.4dB	-49.2	-47.2	-45.2	dBV	

*1: When the gain in the input amp is set to GAMP (dB), the CDONCPM and CDOFFCPM values (Typ.) can be calculated from the equation below.

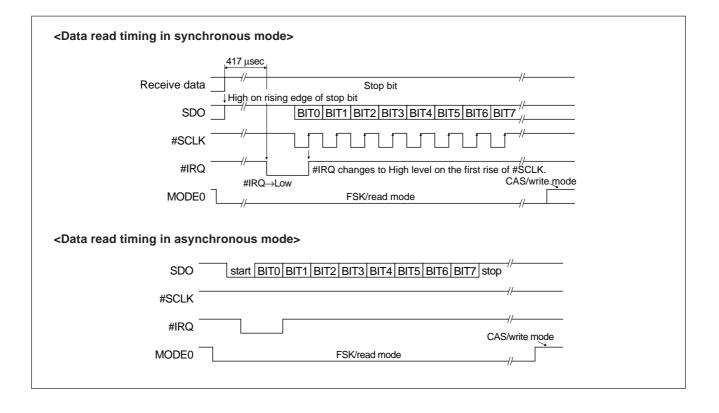
$$\begin{split} & \text{CDonCPM}\left[dBm\right] = -\text{Gamp} - 48.0 + 20\text{log}(\frac{\text{VDD}}{5})\left[dBm\right], \quad \text{CDonCPM}\left[dBV\right] = -\text{Gamp} - 50.2 + 20\text{log}(\frac{\text{VDD}}{5})\left[dBV\right] \\ & \text{CDoffCPM}\left[dBm\right] = -\text{Gamp} - 50.0 + 20\text{log}(\frac{\text{VDD}}{5})\left[dBm\right], \quad \text{CDoffCPM}\left[dBV\right] = -\text{Gamp} - 52.2 + 20\text{log}(\frac{\text{VDD}}{5})\left[dBV\right] \\ & \text{CDoffCPM}\left[dBm\right] = -\text{Gamp} - 50.0 + 20\text{log}(\frac{\text{VDD}}{5})\left[dBm\right], \quad \text{CDoffCPM}\left[dBV\right] = -\text{Gamp} - 52.2 + 20\text{log}(\frac{\text{VDD}}{5})\left[dBV\right] \\ & \text{CDoffCPM}\left[dBm\right] = -\text{Gamp} - 50.0 + 20\text{log}(\frac{\text{VDD}}{5})\left[dBm\right], \quad \text{CDoffCPM}\left[dBV\right] = -\text{Gamp} - 52.2 + 20\text{log}(\frac{\text{VDD}}{5})\left[dBV\right] \\ & \text{CDoffCPM}\left[dBm\right] = -\text{Gamp} - 50.0 + 20\text{log}(\frac{\text{VDD}}{5})\left[dBm\right], \quad \text{CDoffCPM}\left[dBV\right] = -\text{Gamp} - 52.2 + 20\text{log}(\frac{\text{VDD}}{5})\left[dBV\right] \\ & \text{CDoffCPM}\left[dBm\right] = -\text{Gamp} - 50.0 + 20\text{log}(\frac{\text{VDD}}{5})\left[dBm\right], \quad \text{CDoffCPM}\left[dBV\right] = -\text{Gamp} - 52.2 + 20\text{log}(\frac{\text{VDD}}{5})\left[dBV\right] \\ & \text{CDoffCPM}\left[dBW\right] = -\text{Gamp} - 50.0 + 20\text{log}(\frac{\text{VDD}}{5})\left[dBm\right], \quad \text{CDoffCPM}\left[dBV\right] = -\text{Gamp} - 52.2 + 20\text{log}(\frac{\text{VDD}}{5})\left[dBV\right] \\ & \text{CDoffCPM}\left[dBW\right] = -\text{Gamp} - 50.0 + 20\text{log}(\frac{\text{VDD}}{5})\left[dBm\right], \quad \text{CDoffCPM}\left[dBV\right] = -\text{Gamp} - 52.2 + 20\text{log}(\frac{\text{VDD}}{5})\left[dBV\right] \\ & \text{CDoffCPM}\left[dBW\right] = -\text{Gamp} - 50.0 + 20\text{log}(\frac{\text{VDD}}{5})\left[dBm\right], \quad \text{CDoffCPM}\left[dBV\right] = -\text{Gamp} - 50.0 + 20\text{log}(\frac{\text{VDD}}{5})\left[dBW\right] \\ & \text{CDoffCPM}\left[dBW\right] = -\text{Gamp} - 50.0 + 20\text{log}(\frac{\text{VDD}}{5})\left[dBW\right] \\ & \text{CDoffCPM}\left[dBW\right] = -\text{Gamp} - 50.0 + 20\text{log}(\frac{\text{VDD}}{5})\left[dBW\right] \\ & \text{CDoffCPM}\left[dBW\right] = -\text{Gamp} - 50.0 + 20\text{log}(\frac{\text{VDD}}{5})\left[dBW\right] \\ & \text{CDoffCPM}\left[dBW\right] = -\text{Gamp} - 50.0 + 20\text{log}(\frac{\text{VDD}}{5})\left[dBW\right] \\ & \text{CDoffCPM}\left[dBW\right] = -\text{Gamp} - 50.0 + 20\text{log}(\frac{\text{VDD}}{5})\left[dBW\right] \\ & \text{CDoffCPM}\left[dBW\right] = -\text{Gamp} - 50.0 + 20\text{log}(\frac{\text{VDD}}{5})\left[dBW\right] \\ & \text{CDoffCPM}\left[dBW\right] \\ & \text{CDoffCPM}\left[dBW\right] = -\text{Gamp} - 50.0 + 20\text{log}(\frac{\text{VDD}}{5})\left[dBW\right] \\ & \text{CDoffCPM}\left[dBW\right] = -\text{Gamp} - 50.0 + 20\text{log}(\frac{\text{VDD}}{5})\left[dBW\right] \\ & \text{CDoffCPM}\left[dBW\right] = -\text{Gamp} - 50.0 + 20\text{log}(\frac{\text{VDD}}{5})\left[dBW\right] \\ & \text{CDoffCPM}\left[dBW\right] = -\text{Gamp} - 50.0 + 20\text{log}(\frac{\text{VDD}}$$

CPM switching characteristics

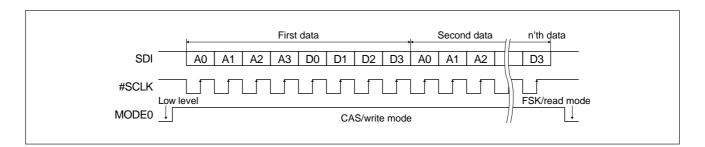

(Unless otherwise noted: VDD=5.0/3.0V, Vss=0V, fcLk=3.579545MHz, Ta=-20 to 7						
Parameter	Symbol	Min.	Тур.	Max.	Unit	
CPM tone-detect capture time	t CPMAQ		25		msec	
CPM tone end \rightarrow #IRQ rise	t срмін		30		msec	
	CPM ·		V			

• Serial Interface Circuit Characteristics

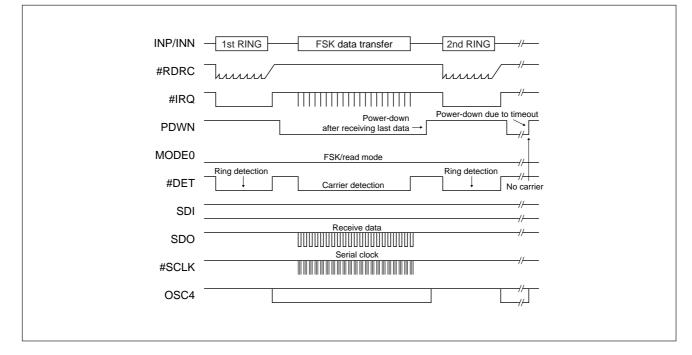
Serial interface AC characteristics


	(Unless oth	erwise noted: VDD=5.0	0/3.0V, Vss=0V, fcLk=3.57954	5MHz, Ta=-20 to 70°C	, C∟=50pF)
Parameter	Symbol	Min.	Тур.	Max.	Unit
#SCLK frequency	f SCLK			1	MHz
#SCLK pulse width	twsclk	400			nsec
SDI setup time	tssdi	250			nsec
SDI hold time	thsdi	500			nsec
SDO delay time	tosdo			250	nsec
MODE0 High setup time	tsмн	1			μsec
MODE0 High hold time	tнмн	1			μsec
MODE0 Low setup time	t _{SML}	1			μsec
MODE0 Low hold time	tнмL	1			μsec
MODE0 Low pulse width	t MDW	1			μsec

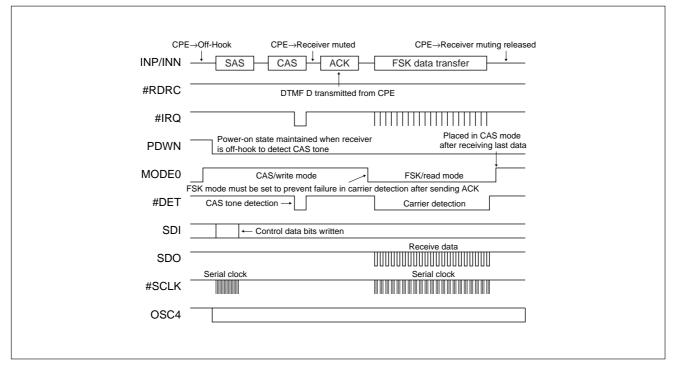
FSK demodulated data read mode


The FSK signal fed to the INP and INN pins is demodulated into 8-bit asynchronous (start-stop) data. The demodulated data is then sampled by the internal 8-bit shift register. When the data has been stored in the shift register, the #IRQ pin changes to Low level, indicating that the data can be read by the host CPU.

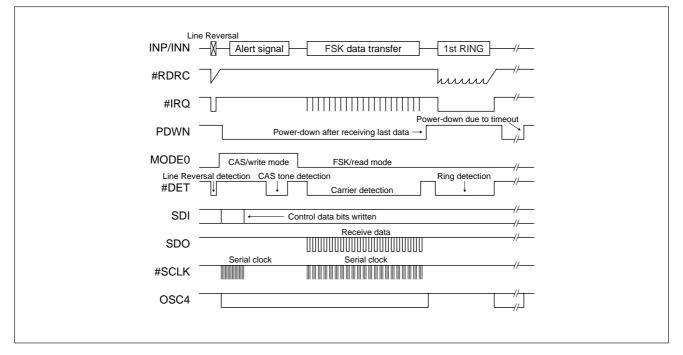
If the MODE pin is set to Low level and synchronous mode has been selected (MDR[0] = 1), the host CPU reads out the 8-bit data synchronously with the clock signal fed from the host CPU to the #SCLK pin. The figure below shows the timing at which this data is read. Each bit of the 8-bit data is output from the SDO pin synchronously with falling edges of the #SCLK clock signal, beginning with bit 0. The host CPU latches each bit into the internal logic at rising edges of the #SCLK clock signal. If the MODE pin is set to Low level and asynchronous mode has been set (MDR[0] = 0), the data is output from the SDO pin at a transfer rate of 1,200 baud. The clock signal from the host CPU is unnecessary. The host CPU latches the data synchronously with the start bit.


CAS detection circuit control-register write mode

The host CPU can write 4-bit data to the internal registers through the SDI pin in order to set each control bit. The host CPU must temporarily pull the MODE pin to Low level to initialize the write control circuit before it can write data. Then, after releasing the MODE pin back to High level, the host CPU must be held at High level while writing data to the internal register. The data input to the SDI pin is sampled at rising edges of the clock signal fed from the host CPU to the #SCLK pin. The first four bits of data sent from the host CPU are the address A[3:0] of the internal register to be accessed. The subsequent four bits are the data bits D[3:0] to be written to the specified register. The data is input beginning with the LSB.

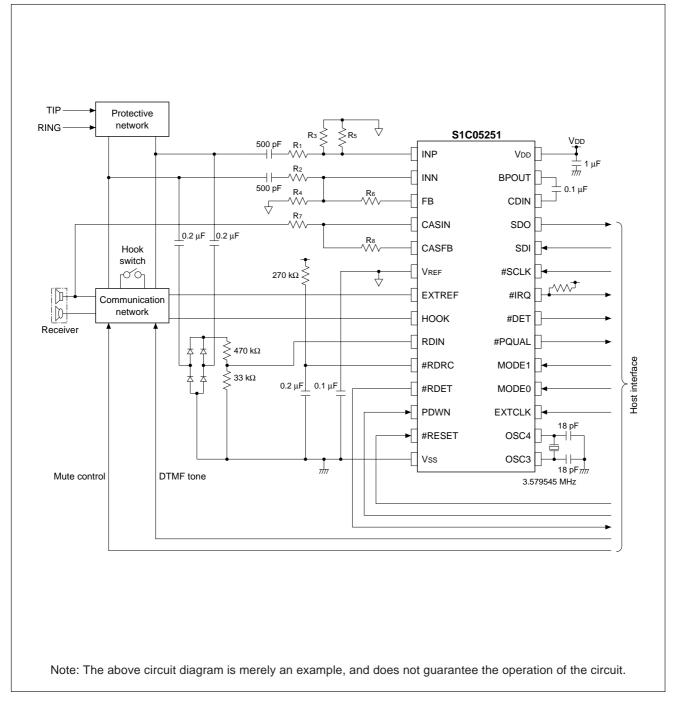


S1C05251 Timing Chart

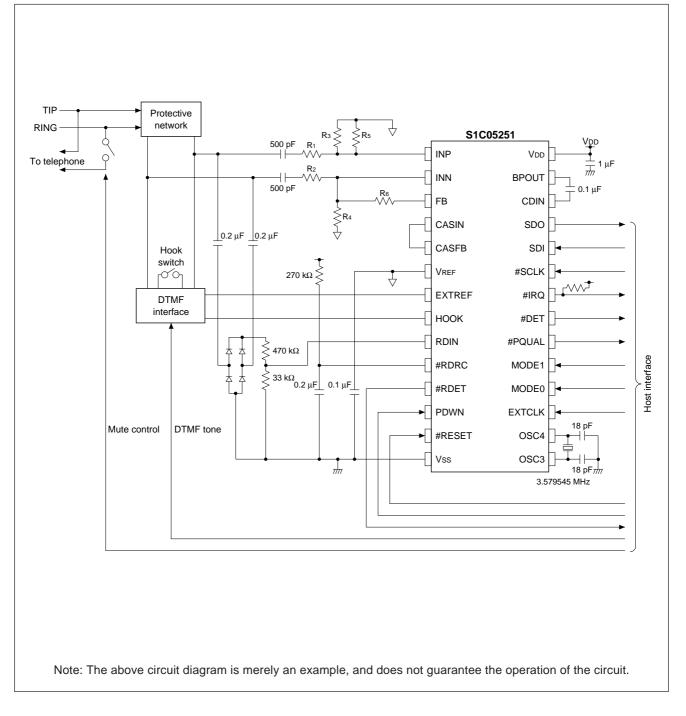

Bellcore on-hook data transfer

Bellcore off-hook data transfer

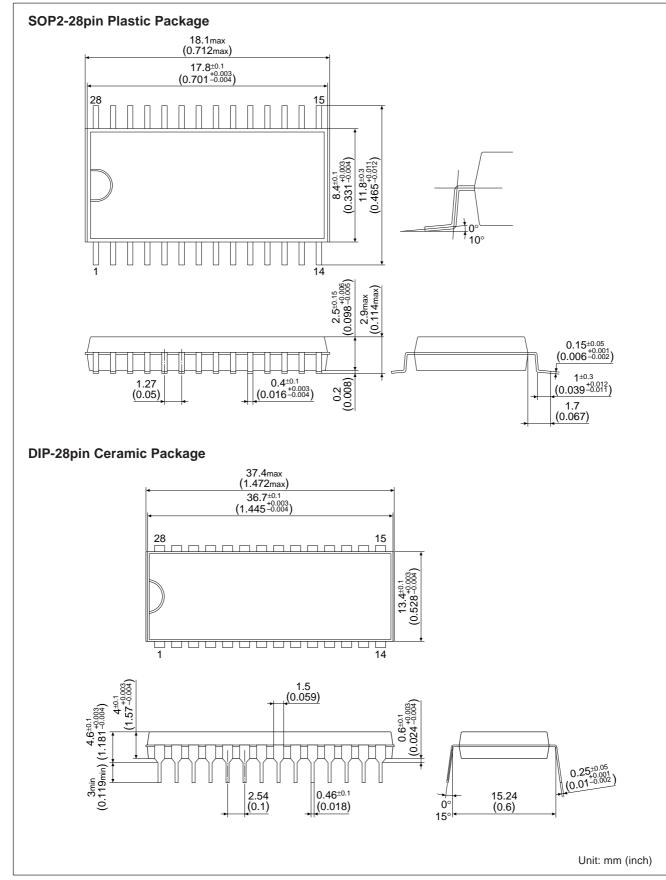
BT Idle State CLI service

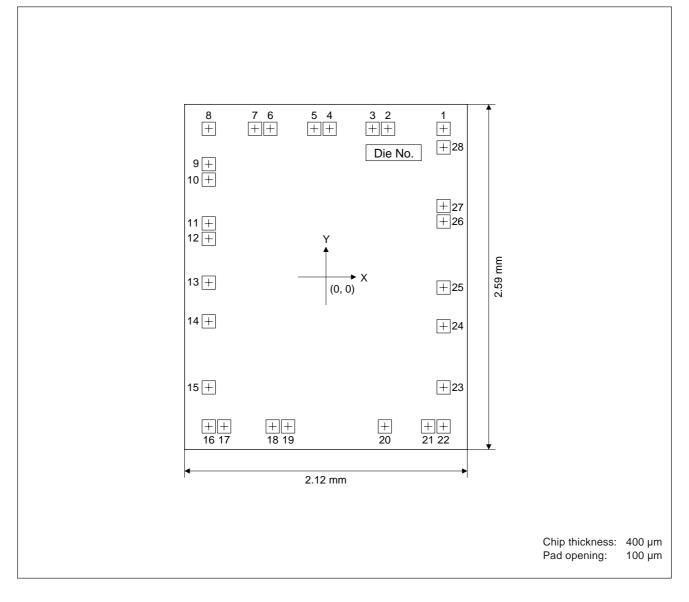


BT Loop State CLI service


Ţ	$\rightarrow Off-hook \qquad TE \rightarrow Receiver\ muted \qquad TE \rightarrow Receiver\ muting\ released$
INP/INN	Alert signal ACK FSK data transfer
#RDRC	DTMF D transmitted from TE
#IRQ	
PDWN	Power-on state maintained when Placed in CAS mode after receiving last data
MODE0	CAS/write mode FSK/read mode
#DET	FSK mode must be set to prevent failure in carrier detection after sending ACK CAS tone detection → Carrier detection
SDI	Control data bits written
SDO	
#SCLK	Serial clock Serial clock
OSC4	

External Wiring Diagram (Example)


Example of Bellcore-compatible telephone circuit


■ PACKAGE DIMENSIONS

EPSON

■ PAD LAYOUT

• Diagram of Pad Layout

Pad Coordinates

Pad Cool	rdinates						(Unit: μm)
Pad No.	Pad name	X coordinate	Y coordinate	Pad No.	Pad name	X coordinate	Y coordinate
1	SD0	879.9	1116.3	15	#RDET	-879.8	-823.8
2	CDIN	463.7	1116.3	16	PDWN	-879.8	-1116.4
3	BPOUT	348.2	1116.3	17	#RESET	-764.3	-1116.4
4	Vdd	26.1	1116.3	18	Vss	-401.0	-1116.4
5	INP	-89.4	1116.3	19	OSC3	-285.5	-1116.4
6	INN	-418.1	1116.3	20	OSC4	440.3	-1116.4
7	FB	-533.6	1116.3	21	EXTCLK	764.4	-1116.4
8	CASIN	-879.8	1116.3	22	MODE0	879.9	-1116.4
9	CASFB	-879.8	850.5	23	MODE1	879.9	-823.8
10	Vref	-879.8	735.0	24	#PQUAL	879.9	-365.3
11	EXTREF	-879.8	406.4	25	#DET	879.9	-74.7
12	HOOK	-879.8	290.9	26	#IRQ	879.9	420.8
13	RDIN	-879.8	-37.8	27	#SCLK	879.9	536.3
14	#RDRC	-879.8	-328.4	28	SDI	879.9	976.1

NOTICE:

No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from the Ministry of International Trade and Industry or other approval from another government agency.

© Seiko Epson Corporation 2001 All right reserved.

SEIKO EPSON CORPORATION

ELECTRONIC DEVICES MARKETING DIVISION IC Marketing & Engineering Group

ED International Marketing Department Europe & U.S.A. 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone : 042-587-5812 FAX : 042-587-5564

ED International Marketing Department Asia 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone : 042-587-5814 FAX : 042-587-5110 EPSON Electronic Devices Website http://www.epson.co.jp/device/