
(Integrated Tool Package for S1C88 Family)

CMOS 8-BIT SINGLE CHIP MICROCOMPUTER

S5U1C88000C Manual I

C Compiler/Assembler/Linker

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko
Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any
liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or
circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such
as medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there
is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright
infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic
products under the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from
the Ministry of Economy, Trade and Industry or other approval from another government agency.

The C compiler, assembler and tools explained in this manual are developed by TASKING, Inc.
Windows 2000 and Windows XP are registered trademarks of Microsoft Corporation, U.S.A.
PC/AT and IBM are registered trademarks of International Business Machines Corporation, U.S.A.
All other product names mentioned herein are trademarks and/or registered trademarks of their respective owners.

© SEIKO EPSON CORPORATION 2008, All rights reserved.

Devices
S1 C 88104 F 0A01

Packing specifications
 00 : Besides tape & reel
 0A : TCP BL 2 directions
 0B : Tape & reel BACK
 0C : TCP BR 2 directions
 0D : TCP BT 2 directions
 0E : TCP BD 2 directions
 0F : Tape & reel FRONT
 0G : TCP BT 4 directions
 0H : TCP BD 4 directions
 0J : TCP SL 2 directions
 0K : TCP SR 2 directions
 0L : Tape & reel LEFT
 0M : TCP ST 2 directions
 0N : TCP SD 2 directions
 0P : TCP ST 4 directions
 0Q : TCP SD 4 directions
 0R : Tape & reel RIGHT
 99 : Specs not fixed

Specification

Package
 D: die form; F: QFP, B: BGA

Model number

Model name
 C: microcomputer, digital products

Product classification
 S1: semiconductor

Development tools
S5U1 C 88348 D1 1

Packing specifications
 00: standard packing

Version
 1: Version 1

Tool type
 Hx : ICE
 Ex : EVA board
 Px : Peripheral board
 Wx : Flash ROM writer for the microcomputer
 Xx : ROM writer peripheral board

 Cx : C compiler package
 Ax : Assembler package
 Dx : Utility tool by the model
 Qx : Soft simulator

Corresponding model number
 88348: for S1C88348

Tool classification
 C: microcomputer use

Product classification
 S5U1: development tool for semiconductor products

00

00

Configuration of product number

MANUAL ORGANIZATION

S5U1C88000C MANUAL I EPSON i
C COMPILER/ASSEMBLER/LINKER

MANUAL ORGANIZATION

The S1C88 Family Integrated Tool Package contains the tools required to develop software for the S1C88
Family microcomputers. The S5U1C88000C Manual (S1C88 Family Integrated Tool Package) describes the
tool functions and how to use the tools. The manual is organized into two documents as shown below.

I. C Compiler/Assembler/Linker (this document)
Describes the C Compiler and its tool chain ([Main Tool Chain]note part shown in the figure on the
next page).

II. Workbench/Development Tools/Assembler Package Old Version
Describes the Work Bench that provides an integrated development environment, Advanced Locator,
the Mask Data Creation Tools ([Development Tool Chain] part shown in the figure on the next page),
Debugger, and Structured Assembler ([Sub Tool Chain] part shown in the figure on the next page).

This manual assumes that the reader is familiar with C and Assembly languages.

Refer to the following manuals as necessary when developing an S1C88xxx microcomputer:

S1C88xxx Technical Manual
Describes the device specifications, control method and Flash EEPROM programming.

S5U1C88000Q Manual
Describes the operation of the tools included in the Simulator Package.

S5U1C88000H5 Manual
Describes the operation of the ICE (S5U1C88000H5).

S5U1C88xxxP Manual
Describes the operation of the peripheral circuit board installed in the ICE.

Note: [Main Tool Chain] has added Advanced Locator alc88 beginning with Ver. 3, which can be used in
place of Locator lc88. This manual is written for the TASKING tool chain, and only describes the C
Compiler, Assembler, Linker, Locator, and related information. For details about Advanced Locator
not included in the TASKING tool chain, refer to document II, "Workbench/Development Tools/
Assembler Package Old Version".
Except when using existing resources including locator description files, you need not learn a
description language for relocating objects, which is why we recommend using Advanced Locator
with a branching optimization function. Therefore, when developing new S1C88 Family applications
(i.e., when using Advanced Locator), you need not specifically read the description of Locator lc88
in Chapter 4 and DELFEE (the locator description language) in Chapter 5 of this manual. The
locator functions and operations described elsewhere in this manual are to be replaced by Ad-
vanced Locator.

MANUAL ORGANIZATION

ii EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

ic
e8

8u
r.

ex
e

S
eg

m
en

t o
pt

io
n

ge
ne

ra
to

r
w

in
so

g.
ex

e

fil
e.

S
S

A

S
eg

m
en

t o
pt

io
n

H
E

X
 fi

le

fil
e.

S
D

C

fil
e.

in
i

M
as

k
da

ta
 c

he
ck

er

w
in

m
dc

.e
xe

fil
e.

P
A

n
M

as
k

da
ta

 fi
le

F
un

ct
io

n
op

tio
n

ge
ne

ra
to

r
w

in
fo

g.
ex

e

fil
e.

F
S

A
fil

e.
F

D
C

F
un

ct
io

n
op

tio
n

do
cu

m
en

t f
ile

F
un

ct
io

n
op

tio
n

H
E

X
 fi

le

S
eg

m
en

t o
pt

io
n

do
cu

m
en

t f
ile

P
ro

gr
am

 u
nu

se
d

ar
ea

fil
lin

g
ut

ili
ty

 fi
l8

8x
xx

fil
e.

P
S

A
P

ro
gr

am

da
ta

 H
E

X
 fi

le

C
 c

om
pi

le
r

c8
8.

ex
e

A
ss

em
bl

er

as
88

.e
xe

O
bj

ec
t r

ea
de

r

pr
88

.e
xe

Li
br

ar
y

m
ai

nt
ai

ne
r

ar
88

.e
xe

T
ex

t e
di

to
r

(p
re

pa
re

d
by

 c
us

to
m

er
)

fil
e.

O
U

T

Li
nk

er
ob

je
ct

m
od

ul
e

fil
e.

A
B

S

A
bs

ol
ut

e
lo

ad
m

od
ul

e

M
ot

or
ol

a
S

ob
je

ct
 fi

le

fil
e.

C
C

 s
ou

rc
e

fil
es

fil
e.

S
R

C
A

ss
em

bl
y

fil
es

fil
e.

O
B

J
O

bj
ec

t
m

od
ul

es

B
itm

ap
 u

til
ity

 B
m

pU
til

.e
xe

(S
im

ul
at

or
 p

ac
ka

ge
)

B
itm

ap
 e

di
to

r

(p
re

pa
re

d
by

 c
us

to
m

er
)

fil
e.

B
M

P
B

itm
ap

fil
e(

s)

fil
e.

B
M

U

B
itm

ap
de

fin
iti

on

fil
e

fil
e.

T
X

T
D

at
a

ta
bl

e
fil

e

fil
e.

E
R

R
E

rr
or

fil
e

∗1

∗2

∗2
∗2

∗2
∗2

∗2

∗3

∗1

fil
e.

LS
T

Li
st

fil
e

fil
e.

A
O

bj
ec

t
lib

ra
ry

M
ak

e
pr

og
ra

m

m
k8

8.
ex

e

C
on

tr
ol

 p
ro

gr
am

cc
88

.e
xe

fil
e.

M
A

K
M

ak
e

fil
e

fil
e.

M
E

M
fil

e.
IN

F
fil

e.
C

P
U

fil
e.

D
S

C

Lo
ca

to
r

de
sc

rip
tio

n
fil

es

O
R

fil
e.

E
R

S
E

rr
or

fil
e

fil
e.

M
A

P
Lo

ca
te

m
ap

fil
e

fil
e.

S
YS

ym
bo

lic

ta
bl

e
fil

e

∗1

∗4

∗5

∗4

fil
e.

E
LC

E
rr

or
fil

e

Li
nk

er

lk
88

.e
xe

fil
e.

P
R

T

P
or

t
se

tti
ng

fil
e

P
or

t s
et

tin
g

ut
ili

ty

P
rt

U
til

.e
xe

S
im

ul
at

or

si
m

88
.e

xe

D
eb

ug
ge

r

db
88

.e
xe

 (
un

de
r

de
ve

lo
pm

en
t)

IC
E

 &
 P

er
ip

he
ra

l c
irc

ui
t b

oa
rd

T
ar

ge
t b

oa
rd

R
O

M
 w

rit
er

 c
on

tr
ol

 s
of

tw
ar

e

fil
e.

W
P

J
P

ro
je

ct
fil

e

W
or

kb
en

ch

w
b8

8.
ex

e

fil
e.

LC
D

LC
D

de
fin

iti
on

fil
e

fil
e.

C
M

P
fil

e.
S

P
J

C
om

po
ne

nt
m

ap
pi

ng
 fi

le
S

im
ul

at
or

pr
oj

ec
t f

ile

m
od

el
.P

A
R

IC
E

pa

ra
m

et
er

fil

e

m
od

el
.M

O
T

P
er

ip
he

ra
l

ci
rc

ui
t b

oa
rd

F
P

G
A

 d
at

a

ic
e8

8u
r.

in
i

IC
E

in

i f
ile

fil
e.

B
M

P
B

itm
ap fil
e

LC
D

 p
an

el
 c

us
to

m
iz

e
ut

ili
ty

Lc
dU

til
.e

xe

fil
e.

A
xx

R
es

ul
t

da
ta

 fi
le

fil
e.

C
S

V

C
he

ck

sh
ee

t f
ile

fil
e.

M
xx

R
ef

er
en

ce

da
ta

 fi
le

fil
e.

T
X

T

C
om

m
an

d
fil

eA
ut

o
ev

al
ua

tio
n

sy
st

em

A
ut

oE
va

.e
xe

fil
e.

S
Y

S
ym

bo
lic

ta

bl
e

fil
e

S
ym

bo
lic

 ta
bl

e
fil

e
ge

ne
ra

to
r

sy
88

.e
xe

fil
e.

S
Y

S
ym

bo
lic

ta

bl
e

fil
e

S
ym

bo
lic

 ta
bl

e
fil

e
ge

ne
ra

to
r

sy
m

88
.e

xe

∗1

fil
e.

LN
L

Li
nk

m
ap

fil
e

A
dv

an
ce

d
lo

ca
to

r
de

fin
iti

on
 fi

le

fil
e.

C
A

L

C
al

l
gr

ap
h

fil
e

fil
e.

E
LK

E
rr

or
fil

e

fil
e.

S
A

M
ai

n
 t

o
o

l c
h

ai
n

E
m

b
ed

d
ed

 s
ys

te
m

 s
im

u
la

to
r

P
re

pr
oc

es
so

r

sa
p8

8.
ex

e

A
ss

em
bl

er

as
m

88
.e

xe

fil
e.

S
A

M
ot

or
ol

a
S

ob
je

ct
 fi

le

fil
e.

A
B

S

A
bs

ol
ut

e
ob

je
ct

fil
e

fil
e.

S
A

ss
em

bl
y

so
ur

ce
 fi

le
s

D
ev

ic
e

in
fo

rm
at

io
n

de
fin

iti
on

 fi
le

fil
e.

M
S

P
re

pr
oc

es
se

d
so

ur
ce

 fi
le

s

fil
e.

O
O

bj
ec

t
m

od
ul

es

fil
e.

LC
M

Li
nk

 c
om

m
an

d
pa

ra
m

et
er

 fi
le

H
E

X
 c

on
ve

rt
er

he
x8

8.
ex

e

fil
e.

R
E

F

S
ym

bo
l

in
fo

rm
at

io
n

re
fe

re
nc

e
fil

e

Li
nk

er

lin
k8

8.
ex

e

S
ym

bo
l i

nf
or

m
at

io
n

ge
ne

ra
to

r

re
l8

8.
ex

e

fil
e.

X
C

ro
ss

re
fe

re
nc

e
fil

e

E
rr

or
lis

t f
ile

fil
e.

LS
T

A
ss

em
bl

y
lis

t f
ile

fil
e.

E

S
u

b
 t

o
o

l c
h

ai
n

D
ev

el
o

p
m

en
t

to
o

l c
h

ai
n

R
O

M
 w

rit
er

M
an

uf
ac

tu
re

d
in

S
ei

ko
 E

ps
on

F
la

sh
 R

O
M

M
C

U
M

as
k

R
O

M
M

C
U

W
B

W
B

B
u

ild

B
u

ild

B
u

ild

B
u

ild

A
dv

an
ce

d
lo

ca
to

r

al
c8

8.
ex

e

B
u

ild
Lo

ca
to

r

lc
88

.e
xe

B
u

ild

B
u

ild

W
B

W
B

W
B

W
B

W
B

W
B

W
B

W
B

∗1
: I

f t
he

 e
rr

or
 fi

le
 is

 g
en

er
at

ed
, w

b8
8

di
sp

la
ys

 th
e

co
nt

en
ts

 o
f t

he
 fi

le
 in

 th
e

m
es

sa
ge

 v
ie

w
 a

nd
 a

llo
w

s
a

ta
g

ju
m

p
fu

nc
tio

n.

 ∗
2:

 C
re

at
ed

 u
si

ng
 a

 te
xt

 e
di

to
r.

∗3

: C
re

at
ed

 u
si

ng
 a

 b
itm

ap
 e

di
to

r.

∗4
: C

re
at

ed
 u

si
ng

 th
e

w
b8

8
se

ct
io

n
ed

ito
r

(o
r

a
te

xt
 e

di
to

r)
.

 ∗
5:

 S
el

ec
te

d
by

 w
b8

8.

W
B

B
u

ild

W
B

C
an

 b
e

in
vo

ke
d

fr
om

 th
e

w
or

kb
en

ch
 w

b8
8.

T

oo
ls

 e
xe

cu
te

d
au

to
m

at
ic

al
ly

 d
ur

in
g

bu
ild

 p
ro

ce
ss

 b
y

w
b8

8.
B

u
ild

S1
C

88
 F

A
M

IL
Y
 I

N
T

E
G

R
A

T
E

D
 D

E
V

E
L

O
P

M
E

N
T
 E

N
V

IR
O

N
M

E
N

T

CONTENTS

S5U1C88000C MANUAL I EPSON iii
C COMPILER/ASSEMBLER/LINKER

CONTENTS

CHAPTER 1 C COMPILER ___ 1
1.1 Overview .. 1

1.1.1 Introduction to S1C88 C Cross-Compiler ... 1
1.1.2 General Implementation ... 2

1.1.2.1 Compiler Phases .. 2
1.1.2.2 Frontend Optimizations ... 3
1.1.2.3 Backend Optimizations .. 4

1.1.3 Compiler Structure ... 5
1.1.4 Environment Variables ... 6

1.1.4.1 Using the Control Program ... 6
1.1.4.2 Using the Makefile ... 7

1.2 Language Implementation ... 9
1.2.1 Introduction .. 9
1.2.2 Accessing Memory ... 10

1.2.2.1 Storage Types .. 10
1.2.2.2 Memory Models .. 12
1.2.2.3 The _at() Attribute .. 13

1.2.3 Data Types ... 14
1.2.3.1 ANSI C Type Conversions ... 14
1.2.3.2 Character Arithmetic .. 16
1.2.3.3 Special Function Registers ... 16

1.2.4 Function Parameters ... 17
1.2.5 Parameter Passing ... 17
1.2.6 Automatic Variables ... 17
1.2.7 Register Variables .. 18
1.2.8 Initialized Variables ... 18
1.2.9 Type Qualifier volatile ... 18
1.2.10 Strings .. 19
1.2.11 Pointers .. 19
1.2.12 Function Pointers .. 20
1.2.13 Inline C Functions ... 20
1.2.14 Inline Assembly .. 20
1.2.15 Calling Assembly Functions ... 21
1.2.16 Intrinsic Functions .. 22
1.2.17 Interrupts ... 25
1.2.18 Structure Tags .. 26
1.2.19 Typedef ... 26
1.2.20 Language Extensions ... 26
1.2.21 Portable C Code .. 27
1.2.22 How to Program Smart ... 27

1.3 Run-time Environment .. 28
1.3.1 Startup Code .. 28
1.3.2 Register Usage ... 29
1.3.3 Section Usage .. 29
1.3.4 Stack ... 30
1.3.5 Heap ... 31
1.3.6 Interrupt Functions ... 32

1.4 Compiler Use .. 33
1.4.1 Control Program ... 33

1.4.1.1 Detailed Description of the Control Program Options 34
1.4.1.2 Environment Variables .. 36

1.4.2 Compiler .. 37
1.4.2.1 Detailed Description of the Compiler Options 38

1.4.3 Include Files .. 46
1.4.4 Pragmas ... 47
1.4.5 Compiler Limits ... 48

CONTENTS

iv EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

1.4.6 Linker Messages .. 49
1.4.7 Return Values ... 49

1.5 Libraries ... 50
1.5.1 Header Files .. 50
1.5.2 C Libraries ... 51

1.5.2.1 C Library Implementation Details ... 51
1.5.2.2 C Library Interface Description ... 54
1.5.2.3 Printf and Scanf Formatting Routines .. 76

1.5.3 Run-time Library ... 77

1.6 Floating Point Arithmetic ... 78
1.6.1 Data Size and Register Usage ... 78
1.6.2 Compiler Option .. 78
1.6.3 Special Floating Point Values ... 79
1.6.4 Trapping Floating Point Exceptions ... 79
1.6.5 Floating Point Trap Handling API .. 80
1.6.6 Floating Point Libraries .. 82

1.6.6.1 Floating Point Arithmetic Routine .. 82

CHAPTER 2 ASSEMBLER __ 85
2.1 Description ... 85

2.1.1 Invocation .. 85
2.1.2 Detailed Description of Assembler Options ... 86
2.1.3 Environment Variables used by as88 .. 92
2.1.4 List File .. 92

2.1.4.1 Absolute List File Generation ... 92
2.1.4.2 Page Header ... 93
2.1.4.3 Source Listing ... 93

2.1.5 Debug Information .. 95
2.1.6 Instruction Set ... 95

2.2 Software Concept .. 96
2.2.1 Introduction ... 96
2.2.2 Modules ... 96

2.2.2.1 Modules and Symbols ... 96
2.2.3 Sections .. 96

2.2.3.1 Section Names .. 96
2.2.3.2 Absolute Sections .. 98
2.2.3.3 Grouped Sections .. 98
2.2.3.4 Section Examples .. 98

2.3 Assembly Language ... 100
2.3.1 Input Specification .. 100
2.3.2 Assembler Significant Characters .. 101
2.3.3 Registers ... 105
2.3.4 Other Special Names .. 105

2.4 Operands and Expressions .. 106
2.4.1 Operands .. 106

2.4.1.1 Operands and Addressing Modes .. 106
2.4.2 Expressions ... 107

2.4.2.1 Number .. 107
2.4.2.2 Expression String ... 108
2.4.2.3 Symbol ... 108
2.4.2.4 Expression Type ... 108

2.4.3 Operators .. 110
2.4.3.1 Addition and Subtraction ... 110
2.4.3.2 Sign Operators ... 110
2.4.3.3 Multiplication and Division ... 111
2.4.3.4 Shift Operators .. 111
2.4.3.5 Relational Operators ... 111

CONTENTS

S5U1C88000C MANUAL I EPSON v
C COMPILER/ASSEMBLER/LINKER

2.4.3.6 Bitwise Operators .. 112
2.4.3.7 Logical Operators ... 112

2.4.4 Functions .. 113
2.4.4.1 Mathematical Functions .. 113
2.4.4.2 String Functions .. 113
2.4.4.3 Macro Functions ... 113
2.4.4.4 Assembler Mode Functions ... 113
2.4.4.5 Address Handling Functions ... 114
2.4.4.6 Detailed Description ... 114

2.5 Macro Operations .. 118
2.5.1 Introduction .. 118
2.5.2 Macro Operations .. 118
2.5.3 Macro Definition .. 119
2.5.4 Macro Calls .. 120
2.5.5 Dummy Argument Operators ... 121

2.5.5.1 Dummy Argument Concatenation Operator - \ 121
2.5.5.2 Return Value Operator - ? ... 121
2.5.5.3 Return Hex Value Operator - % .. 122
2.5.5.4 Dummy Argument String Operator - " .. 122
2.5.5.5 Macro Local Label Operator - ^ ... 123

2.5.6 DUP, DUPA, DUPC, DUPF Directives ... 124
2.5.7 Conditional Assembly ... 124

2.6 Assembler Directives ... 125
2.6.1 Overview ... 125

2.6.1.1 Debugging ... 125
2.6.1.2 Assembly Control ... 125
2.6.1.3 Symbol Definition .. 126
2.6.1.4 Data Definition/Storage Allocation ... 126
2.6.1.5 Macros and Conditional Assembly .. 126

2.6.2 ALIGN Directive ... 127
2.6.3 ASCII Directive .. 127
2.6.4 ASCIZ Directive .. 127
2.6.5 CALLS Directive ... 128
2.6.6 COMMENT Directive ... 128
2.6.7 DB Directive ... 129
2.6.8 DEFINE Directive .. 129
2.6.9 DEFSECT Directive ... 130
2.6.10 DS Directive ... 131
2.6.11 DUP Directive .. 131
2.6.12 DUPA Directive .. 132
2.6.13 DUPC Directive ... 132
2.6.14 DUPF Directive .. 133
2.6.15 DW Directive .. 134
2.6.16 END Directive .. 134
2.6.17 ENDIF Directive .. 135
2.6.18 ENDM Directive ... 135
2.6.19 EQU Directive .. 135
2.6.20 EXITM Directive .. 136
2.6.21 EXTERN Directive ... 136
2.6.22 FAIL Directive .. 137
2.6.23 GLOBAL Directive ... 137
2.6.24 IF Directive .. 138
2.6.25 INCLUDE Directive ... 138
2.6.26 LOCAL Directive .. 139
2.6.27 MACRO Directive ... 139
2.6.28 MSG Directive .. 140
2.6.29 NAME Directive ... 140
2.6.30 PMACRO Directive .. 140
2.6.31 RADIX Directive ... 141

CONTENTS

vi EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

2.6.32 SECT Directive ... 141
2.6.33 SET Directive .. 142
2.6.34 SYMB Directive .. 142
2.6.35 UNDEF Directive ... 142
2.6.36 WARN Directive .. 143

2.7 Assembler Controls .. 144
2.7.1 Introduction .. 144
2.7.2 Overview Assembler Controls .. 144
2.7.3 Description of Assembler Controls .. 145

2.7.3.1 CASE ... 145
2.7.3.2 IDENT ... 145
2.7.3.3 LIST ON/OFF .. 146
2.7.3.4 LIST ... 146
2.7.3.5 MODEL ... 147
2.7.3.6 STITLE... 148
2.7.3.7 TITLE ... 148
2.7.3.8 WARNING.. 149

CHAPTER 3 LINKER __ 150
3.1 Overview .. 150

3.2 Linker Invocation ... 151
3.2.1 Detailed Description of Linker Options .. 151

3.3 Libraries .. 153
3.3.1 Library Search Path ... 153
3.3.2 Linking with Libraries .. 154
3.3.3 Library Member Search Algorithm .. 154

3.4 Linker Output ... 155

3.5 Overlay Sections .. 159

3.6 Type Checking .. 160
3.6.1 Introduction .. 160
3.6.2 Recursive Type Checking ... 160
3.6.3 Type Checking between Functions ... 161
3.6.4 Missing Types ... 162

3.7 Linker Messages .. 163

CHAPTER 4 LOCATOR ___ 164
4.1 Overview .. 164

4.2 Invocation .. 164
4.2.1 Detailed Description of Locator Options .. 165

4.3 Getting Started ... 167

4.4 Calling the Locator via the Control Program ... 168

4.5 Locator Output .. 168

4.6 Locator Messages .. 168

4.7 Address Space .. 169

4.8 Copy Table ... 169

4.9 Locator Labels ... 170
4.9.1 Locator Labels Reference .. 170

CHAPTER 5 DESCRIPTIVE LANGUAGE FOR EMBEDDED ENVIRONMENTS __________ 174
5.1 Introduction ... 174

5.2 Getting Started ... 174
5.2.1 Introduction .. 174
5.2.2 Basic Structure ... 174

CONTENTS

S5U1C88000C MANUAL I EPSON vii
C COMPILER/ASSEMBLER/LINKER

5.3 CPU Part ... 175
5.3.1 Introduction .. 175
5.3.2 Address Translation: map and mem ... 177
5.3.3 Address Spaces ... 178
5.3.4 Addressing Modes .. 179
5.3.5 Busses ... 180
5.3.6 Chips ... 181
5.3.7 External Memory .. 181

5.4 Software Part ... 182
5.4.1 Introduction .. 182
5.4.2 Load Module ... 182
5.4.3 Layout Description ... 182
5.4.4 Space Definition ... 183
5.4.5 Block Definition .. 184
5.4.6 Selecting Sections ... 185
5.4.7 Cluster Definition ... 186
5.4.8 Amode Definition .. 187
5.4.9 Manipulating Sections in Amodes .. 187
5.4.10 Section Placing Algorithm ... 188

5.5 Memory Part .. 189
5.5.1 Introduction .. 189

5.6 Delfee Keyword Reference ... 190
5.6.1 Abbreviation of Delfee Keywords ... 208
5.6.2 Delfee Keywords Summary ... 208

CHAPTER 6 UTILITIES __ 209
6.1 Overview .. 209

6.2 ar88 .. 210

6.3 cc88 .. 212

6.4 mk88 ... 215

6.5 pr88 .. 222
6.5.1 Preparing the Demo Files .. 224
6.5.2 Displaying Parts of an Object File .. 224

6.5.2.1 Option -h, display general file info .. 224
6.5.2.2 Option -s, display section info ... 225
6.5.2.3 Option -c, display call graphs ... 226
6.5.2.4 Option -e, display external part ... 227
6.5.2.5 Option -g, display global type information ... 228
6.5.2.6 Option -d, display debug information ... 229
6.5.2.7 Option -i, display the section images .. 232

6.5.3 Viewing an Object at Lower Level ... 233
6.5.3.1 Object Layers .. 233
6.5.3.2 The Level Option -ln .. 233
6.5.3.3 The Verbose Option -vn ... 236

APPENDIX A C COMPILER ERROR MESSAGES ______________________________ 237

APPENDIX B ASSEMBLER ERROR MESSAGES _______________________________ 253

APPENDIX C LINKER ERROR MESSAGES __________________________________ 262

APPENDIX D LOCATOR ERROR MESSAGES _________________________________ 266

APPENDIX E ARCHIVER ERROR MESSAGES ________________________________ 272

APPENDIX F EMBEDDED ENVIRONMENT ERROR MESSAGES ____________________ 274

APPENDIX G DELFEE ___ 276

CONTENTS

viii EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

APPENDIX H IEEE-695 OBJECT FORMAT ________________________________ 280
H.1 IEEE-695 ... 280

H.2 Command Language Concept ... 281

H.3 Notational Conventions ... 282

H.4 Expressions .. 283
H.4.1 Functions without Operands ... 284
H.4.2 Monadic Functions .. 284
H.4.3 Dyadic Functions and Operators .. 284
H.4.4 MUFOM Variables .. 285
H.4.5 @INS and @EXT Operator ... 285
H.4.6 Conditional Expressions ... 285

H.5 MUFOM Commands ... 286
H.5.1 Module Level Commands .. 286

H.5.1.1 MB Command ... 286
H.5.1.2 ME Command ... 286
H.5.1.3 DT Command.. 286
H.5.1.4 AD Command ... 286

H.5.2 Comment and Checksum Command ... 286
H.5.3 Sections .. 287

H.5.3.1 SB Command .. 287
H.5.3.2 ST Command .. 287
H.5.3.3 SA Command .. 288

H.5.4 Symbolic Name Declaration and Type Definition .. 288
H.5.4.1 NI Command ... 288
H.5.4.2 NX Command.. 288
H.5.4.3 NN Command ... 288
H.5.4.4 AT Command .. 288
H.5.4.5 TY Command .. 288

H.5.5 Value Assignment ... 289
H.5.5.1 AS Command .. 289

H.5.6 Loading Commands ... 289
H.5.6.1 LD Command.. 289
H.5.6.2 IR Command ... 289
H.5.6.3 LR Command .. 290
H.5.6.4 RE Command .. 290

H.5.7 Linkage Commands ... 290
H.5.7.1 RI Command ... 290
H.5.7.2 WX Command ... 290
H.5.7.3 LI Command ... 290
H.5.7.4 LX Command .. 290

H.6 MUFOM Functions ... 291

APPENDIX I MOTOROLA S-RECORDS ____________________________________ 293

QUICK REFERENCE ___ 295

CHAPTER 1 C COMPILER

S5U1C88000C MANUAL I EPSON 1
C COMPILER/ASSEMBLER/LINKER

CHAPTER 1 C COMPILER

1.1 Overview

1.1.1 Introduction to S1C88 C Cross-Compiler
This manual provides a functional description of the S1C88 C Cross-Compiler. This manual uses c88 (the
name of the binary) as a shorthand notation for "S1C88 C Compiler".

SEIKO EPSON offers a complete tool chain for the S1C88 family of processors. 'S1C88' is used as a
shorthand notation for the S1C88 family of processors and their derivatives.

The S1C88 C compiler accepts source programs written in ANSI C and translates these into S1C88
assembly source code files. The S1C88 C cross-compiler generates code for the S1C88 operating in 'native'
mode. The compiler accepts language extensions to improve code performance and to allow the use of
typical S1C88 architectural provisions efficiently at the C level. The compiler is ANSI C compatible and
consists of three major parts; the preprocessor, the S1C88 C frontend and the associated backend or code
generator. These are all integrated into a single program to avoid the need of intermediate files, thus
speeding up the compilation process. It also simplifies the implementation of joint frontend-backend
optimization strategies and preprocessor pragmas. This effectively makes the compiler a one pass
compiler, with minimum file I/O overhead.

The compiler processes one C function at a time, until the entire source module has been read. The
function is parsed, checked on semantic correctness and then transformed into an intermediate code tree
that is stored in memory. Code optimizations are performed during the construction of the intermediate
code, and are also applied when the complete function has been processed. The latter are often referred to
as global optimizations.

c88 generates assembly source code using the S1C88 assembly language specification, you must assemble
this code with the S1C88 Cross-Assembler. This manual uses as88 as a shorthand notation for "S1C88
Cross-Assembler".

You can link the generated object with other objects and libraries using the lk88 S1C88 linker. In this
manual we use lk88 as a shorthand notation for "lk88 S1C88 linker". You can locate the linked object to a
complete application using the lc88 S1C88 locator. In this manual we use lc88 as a shorthand notation for
"lc88 S1C88 locator".

The program cc88 is a control program. The control program facilitates the invocation of various compo-
nents of the S1C88 tool chain. cc88 recognizes several filename extensions. C source files (.c) are passed
to the compiler. Assembly sources (.asm) are preprocessed and passed to the assembler. Relocatable
object files (.obj) and libraries (.a) are recognized as linker input files. Files with extension .out and
.dsc are treated as locator input files. The control program supports options to stop at any stage in the
compilation process and has options to produce and retain intermediate files.

CHAPTER 1 C COMPILER

2 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

1.1.2 General Implementation
This section describes the different phases of the compiler and the target independent optimizations.

1.1.2.1 Compiler Phases
During the compilation of a C program, a number of phases can be identified. These phases are divided
into two groups, referred to as frontend and backend.

frontend:

The preprocessor phase:
File inclusion and macro substitution are done by the preprocessor before parsing of the C program
starts. The syntax of the macro preprocessor is independent of the C syntax, but also described in the
ANSI X3.159-1989 standard.

The scanner phase:
The scanner converts the preprocessor output to a stream of tokens.

The parser phase:
The tokens are fed to a parser for the C grammar. The parser performs a syntactic and semantic
analysis of the program, and generates an intermediate representation of the program.

The frontend optimization phase:
Target processor independent optimization is performed by transforming the intermediate code. The
next section discusses the frontend optimizations.

backend:

The backend optimization phase:
Performs target processor specific optimizations. Very often this means another transformation of the
intermediate code and actions like register allocation techniques for variables, expression evaluation
and the best usage of the addressing modes. Section 1.2, "Language Implementation", discusses this
item in more detail.

The code generator phase:
This phase converts the intermediate code to an internal instruction code, representing the S1C88
assembly instructions.

The peephole optimizer / pipeline scheduler phase:
This phase uses pattern matching techniques to perform peephole optimizations on the internal code.
The pipeline scheduler reorders and combines instructions to minimize the number of instructions.
Finally the peephole optimizer translates the internal instruction code into assembly code for as88.
The generated assembly does not contain any macros. The assembler is also equipped with an
optimizer.

All phases (of both frontend and backend) of the compiler are combined into one program. The compiler
does not use intermediate files for communication between the different phases of compilation. The
backend part is not called for each C statement, but starts after a complete C function has been processed
by the frontend (in memory), thus allowing more optimization. The compiler only requires one pass over
the input file, resulting in relatively fast compilation.

CHAPTER 1 C COMPILER

S5U1C88000C MANUAL I EPSON 3
C COMPILER/ASSEMBLER/LINKER

1.1.2.2 Frontend Optimizations
The command line option -O controls the amount of optimization applied on the C source. Within a
source file, the pragma #pragma optimize sets the optimization level of the compiler. Using the
pragma, certain optimizations can be switched on or off for a particular part of the program. Several
optimizations cannot be controlled individually. e.g., constant folding will always be done.

The compiler performs the following optimizations on the intermediate code. They are independent of
the target processor and the code generation strategy:

Constant folding
Expressions only involving constants are replaced by their result.

Expression rearrangement
Expressions are rearranged to allow more constant folding.
E.g. 1+ (x-3) is transformed into x + (1-3), which can be folded.

Expression simplification
Multiplication by 0 or 1 and additions or subtractions of 0 are removed. Such useless expressions may
be introduced by macros, or by the compiler itself (e.g., array subscription).

Logical expression optimization
Expressions involving '&&', '||' and '!' are interpreted and translated into a series of conditional
jumps.

Loop rotation
With for and while loops, the expression is evaluated once at the 'top' and then at the 'bottom' of the
loop. This optimization does not save code, but speeds up execution.

Switch optimization
A number of optimizations of a switch statement are performed, such as the deletion of redundant
case labels or even the deletion of the switch.

Control flow optimization
By reversing jump conditions and moving code, the number of jump instructions is minimized. This
reduces both the code size and the execution time.

Jump chaining
A conditional or unconditional jump to a label which is immediately followed by an unconditional
jump may be replaced by a jump to the destination label of the second jump. This optimization does
not save code, but speeds up execution.

Remove useless jumps
An unconditional jump to a label directly following the jump is removed. A conditional jump to such
a label is replaced by an evaluation of the jump condition. The evaluation is necessary because it may
have side effects.

Conditional jump reversal
A conditional jump over an unconditional jump is transformed into one conditional jump with the
jump condition reversed. This reduces both the code size and the execution time.

Cross jumping and branch tail merging
Identical code sequences in two different execution paths are merged when this is possible without
adding extra instructions. This transformation decreases code size rather than execution time, but
under certain circumstances it avoids the execution of one jump.

Constant/copy propagation
A reference to a variable with known contents is replaced by those contents.

Common subexpression elimination
The compiler has the ability to detect repeated uses of the same (sub-) expression. Such a "common"
expression may be temporarily saved to avoid recomputation. This method is called common
subexpression elimination, abbreviated CSE.

CHAPTER 1 C COMPILER

4 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

Dead code elimination
Unreachable code can be removed from the intermediate code without affecting the program. How-
ever, the compiler generates a warning message, because the unreachable code may be the result of a
coding error.

Loop optimization
Invariant expressions may be moved out of a loop and expressions involving an index variable may
be reduced in strength.

Loop unrolling
Eliminate short loops by replacing them with a number of copies.

1.1.2.3 Backend Optimizations
The following optimizations are target dependent and are therefore performed by the backend.

Allocation graph
Variables, parameters, intermediate results and common subexpressions are represented in allocation
units. Per function, the compiler builds a graph of allocation units which indicates which units are
needed and when. This allows the register allocator to get the most efficient occupation of the avail-
able registers. The compiler uses the allocation graph to generate the assembly code.

Peephole optimizations
The generated assembly code is improved by replacing instruction sequences by equivalent but faster
and/or shorter sequences, or by deleting unnecessary instructions.

Leaf function handling
Leaf functions (function not calling other functions), are handled specially with respect to stack frame
building.

Dead store elimination
Expressions from which the result is never used are eliminated.

Tail recursion elimination
Replace a recursion statement to branch to the beginning of the statement.

CHAPTER 1 C COMPILER

S5U1C88000C MANUAL I EPSON 5
C COMPILER/ASSEMBLER/LINKER

1.1.3 Compiler Structure
If you want to build an S1C88 application you need to invoke the following programs directly, or via the
control program:

• The C compiler (c88), which generates an assembly source file from the file with suffix .c. The suffix of
the compiler output file is .src. However, you can direct the output to another file with the -o option.
C source lines can be intermixed with the generated assembly statements with the -s option. High level
language debugging information can be generated with the -g option. You are advised not to use the -g
option when inspecting the generated assembly source code, because it contains a lot of 'unreadable'
high level language debug directives. The C compilers make only one pass on every file. This pass
checks the syntax, generates the code and performs code optimization.

• The corresponding cross-assembler (as88), which processes the generated assembly source file into a
relocatable object file with suffix .obj.

• The lk88 linker, which links the generated relocatable object files and C-libraries. The result is a
relocatable object file with suffix .out. A linker map file with suffix .lnl is available after this stage.

• The lc88 locator, which locates the generated relocatable object files. The result is an absolute loadable
file with suffix .abs. A full application map file with suffix .map is available after this stage.

You can directly load the output file of the locator with extension .abs into the debugger.

The next figure explains the relationship between the different parts of the S1C88 tool chain:

C source file
.c

C preprocessor
&

C compiler
c88

link map file
.lnl

assembly file
.src

list file
.lst

assembler
as88

locate map file
.map

locator
lc88

debugger
(S5U1C88000H5)

object reader
pr88

S1C88 execution
environment

library maintainer
ar88

control program
cc88

program builder
mk88

relocatable object module
.obj

linker object
.out

absolute load
module
.abs

Motorola S-record
object file
.sre

relocatable object library
.a

locator description file
.dsc

incremental linker
lk88

Fig. 1.1.3.1 S1C88 development flow

CHAPTER 1 C COMPILER

6 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

The program cc88 is a so-called control program, which facilitates the invocation of various components
of the S1C88 tool chain. C source programs are compiled by the compiler, assembly source files are
passed to the assembler. A C preprocessor program is available as an integrated part of the C compiler.
The control program recognizes the file extensions .a and .obj as input files for the linker. The control
program passes files with extensions .out and .dsc to the locator. All other files are considered to be
object files and are passed to the linker. The control program has options to suppress the locating stage
(-cl), the linker stage (-c) or the assembler stage (-cs).

Optionally the locator, lc88 produces output files in Motorola S-record format. The default output format
is IEEE-695.

Normally, the control program removes intermediate compilation results, as soon as the next phase
completes successfully. If you want to retain all intermediate files, the option -tmp prevents removal of
these files.

For a description of all utilities available and the possible output formats of the locator, see the respective
sections.

1.1.4 Environment Variables
This section contains an overview of the environment variables used by the S1C88 tool chain.

Environment Variable
AS88INC

C88INC

C88LIB

CC88BIN

CC88OPT

PATH
TMPDIR

Description
Specifies an alternative path for include files for
the assembler.
Specifies an alternative path for #include files
for the C compiler c88.
Specifies a path to search for library files used
by the linker lk88.
When this variable is set, the control program,
cc88, prepends the directory specified by this
variable to the names of the tools invoked.
Specifies extra options and/or arguments to
each invocation of cc88. The control program
processes the arguments from this variable
before the command line arguments.
Specifies the search path for your executables.
Specifies an alternative directory where
programs can create temporary files. Used by
c88, cc88, as88, lk88, lc88, ar88.

1.1.4.1 Using the Control Program
A detailed description of the process using the sample program calc.c is described below. This proce-
dure is outlined as a guide for you to build your own executables for debugging.

1. Make the subdirectory c of the examples directory the current working directory.

2. Be sure that the directory of the binaries is present in the PATH environment variable.

3. Compile, assemble, link and locate the modules using one call to the control program cc88:

cc88 -g -M -Ml -calc.c -o calc.abs

The -g option specifies to generate symbolic debugging information. This option must always be
specified when debugging with the debugger.
Some optimizations may affect the ability to debug the code in a high level language debugger.
Therefore, the -O0 option must be selected with -g to switch off these optimizations. When the -g
option is specified to the compiler with a higher optimization level, the compiler will issue warning
message W555.
The -M option specifies to generate map files.
The -Ml option specifies to use the large memory model.
The -o option specifies the name of the output file.

CHAPTER 1 C COMPILER

S5U1C88000C MANUAL I EPSON 7
C COMPILER/ASSEMBLER/LINKER

The command in step 3 generates the object file calc.obj, the linker map file calc.lnl, the locator
map file calc.map and the absolute output file calc.abs. The file calc.abs is in the IEEE Std. 695
format, and can directly be used by the debugger. No separate formatter is needed.

Now you have created all the files necessary for debugging with the debugger with one call to the control
program.

If you want to see how the control program calls the compiler, assembler, linker and locator, you can use
the -v0 option or -v option. The -v0 option only displays the invocations without executing them. The -v
option also executes them.

cc88 -g -M -Ml calc.c -o calc.abs -v0

The control program shows the following command invocations without executing them:

S1C88 control program va.b rc SN00000000-003 (c) year TASKING, Inc.
+ c88 -e -g -Ml -o /tmp/cc24611b.src calc.c
+ as88 -e -g -o calc.obj /tmp/cc24611b.src
+ lk88 -e -M calc.obj -lcl -lrt -lfp -ocalc.out -Ocalc
+ lc88 -e -M -ocalc.abs calc.out

The -e option removes output files after errors occur. The -O option of the linker specifies the basename
of the map file. The -lcl, -lrt and -lfp options of the linker specify to link the appropriate C library, run-
time library and floating point library.

As you can see, the tools use temporary files for intermediate results. If you want to keep the intermedi-
ate files you can use the -tmp option. The following command makes this clear.

cc88 -g -M -Ml calc.c -o calc.abs -v0 -tmp

This command produces the following output:

S1C88 control program va.b rc SN00000000-003 (c) year TASKING, Inc.
+ c88 -e -g -Ml -o calc.src calc.c
+ as88 -e -g -o calc.obj calc.src
+ lk88 -e -M calc.obj -lcl -lrt -lfp -ocalc.out -Ocalc
+ lc88 -e -M -ocalc.abs calc.out

As you can see, if you use the -tmp option, the assembly source files and linker output file will be created
in your current directory also.

Of course, you will get the same result if you invoke the tools separately using the same calling scheme as
the control program.

As you can see, the control program automatically calls each tool with the correct options and controls.
The control program is described in detail in Section 1.4, "Compiler Use".

1.1.4.2 Using the Makefile
The subdirectories in the examples directory each contain a makefile which can be processed by
mk88. Also each subdirectory contains a readme.txt file with a description of how to build the ex-
ample.

To build the calc demo example follow the steps below. This procedure is outlined as a guide for you to
build your own executables for debugging.

1. Make the subdirectory asm of the examples directory the current working directory.
This directory contains a makefile for building the calc demo example. It uses the default mk88
rules.

2. Be sure that the directory of the binaries is present in the PATH environment variable.

3. Compile, assemble, link and locate the modules using one call to the program builder mk88:

mk88

This command will build the example using the file makefile.

CHAPTER 1 C COMPILER

8 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

To see which commands are invoked by mk88 without actually executing them, type:
mk88 -n

This command produces the following output:

S1C88 program builder vx.y rz SN00000000-003 (c) year TASKING, Inc.
cc88 -g -M -Ml calc.c -o calc.abs

The -g option in the makefile is used to instruct the C compiler to generate symbolic debug information.
This information makes debugging an application written in C much easier to debug.
The -M option in the makefile is used to create the linker list file (.lnl) and the locator map file (.map).
The -Ml option specifies to use the large memory model.
The -o option specifies the name of the output file.

To remove all generated files type:

mk88 clean

CHAPTER 1 C COMPILER

S5U1C88000C MANUAL I EPSON 9
C COMPILER/ASSEMBLER/LINKER

1.2 Language Implementation

1.2.1 Introduction
The C cross-compiler (c88) offers a new approach to high-level language programming for the S1C88
family. It conforms to the ANSI standard, but allows you to control the special functions of the S1C88 in
C.
This chapter describes the C language implementation in relation to the S1C88 architecture.

The extensions to the C language in c88 are:

_sfrbyte and _sfrword
Data types for the declaration of Special Function Registers. The compiler does not allocate memory
for an _sfrbyte or _sfrword.

_at
You can specify a variable to be at an absolute address.

storage types
Apart from a memory category (extern, static, ...) you can specify a storage type in each declaration.
This way you obtain a memory model-independent addressing of variables in several address ranges
(_near, _far, _rom).

memory-specific pointers
c88 allows you to define pointers which point to a specific target memory. A pointer can point to
_near or _far memory. Each pointer produces efficient code according to its type.

common functions
When a function is declared as a common function (_common keyword) then the function contents
will be placed within the lower 32K of memory (shared code bank).

assembly functions
See Section 1.2.15, "Calling Assembly Functions", for details.

interrupt functions
You can specify interrupt functions directly through interrupt vectors in the C language (_inter-
rupt keyword).

intrinsic functions
A number of pre-declared functions can be used to generate inline assembly code at the location of the
intrinsic (built-in) function call. This avoids the overhead which is normally used to do parameter
passing and context saving before executing the called function.

CHAPTER 1 C COMPILER

10 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

1.2.2 Accessing Memory
The S1C88 has a different banking mechanism for CODE and DATA access. The compiler takes care of
handling this.

In practice the majority of the C code of a complete application is standard C (without using any lan-
guage extension). You can compile this part of the application without any modification, using the
memory model which fits best to the requirements of the system (code density, amount of external RAM
etc.).

Only a small part of the application uses language extensions. These parts often have some of the follow-
ing properties. They

- access I/O, using the special function registers

- need high execution speed

- need high code density

- access non-default memory

- are used to service interrupts

1.2.2.1 Storage Types
Static storage specifiers can be used to allocate static objects in a particular memory area of the address-
ing space of the processor. All objects taking static storage may be declared with an explicit storage
specifier. By default static variables will be allocated in _far memory for the large and compact code
model and in _near memory for the small and compact data model.

c88 recognizes the following storage type specifiers:

Storage Type
_near
_far
_rom

Description
lowest 64K addresses of data memory
anywhere in data memory, but within one 64K page
located in ROM

Examples:
int _near Var_in_near; /* fast accessible integer in low

 (64K) addresses of _near Memory */
int _near * _far Ptr_in_far_to_near; /* allocate pointer in _far Memory,

 used to point to integers in
 _near */

char _rom string[] = "S1C88"; /* string in ROM Memory */

Using the _near addressing qualifier, allows the compiler to generate faster access code for frequently
used variables. Pointers to _near memory are also faster in use than pointers to _far memory.

Functions are by default allocated in ROM Memory; the storage specifier may be omitted in that case.
Also, function return values cannot be assigned to a storage area.

In addition to static storage specifiers, a static object can be assigned to a fixed memory address using the
_at() keyword:

int _near myvar _at(0x100);

This is useful to interface to object programs using fixed memory schemes.

CHAPTER 1 C COMPILER

S5U1C88000C MANUAL I EPSON 11
C COMPILER/ASSEMBLER/LINKER

Examples using storage specifiers:

Some examples of using storage specifiers:

int _near *p; // pointer to int in _near memory
// (pointer has 16-bit size)

int _far *g; // pointer to int in _far memory
// (pointer has 24-bit size)

g = p; /* the compiler issues a warning */

If a library function declares:

extern int _near foo; //extern int in _near memory

and a data object is declared as:

int _far foo; //int in _far memory

the linker will flag this as an error. The usage of the variables is always without a storage specifier:

char _far example; /* define a char in _far memory */
example = 2; /* assign example */

The generated assembly would be:

LD ep,#@dpag(_example)
LD a,#2
LD [@doff(_example)],a

All allocations with the same storage specifiers are collected in units called 'sections'. The section with the
_near attribute will be located within the first 64K. It is always possible to steer the location of sections
manually.

Storage and section relations

The following tables show the resulting assembler section types and attributes for each C storage type:

Storage Type
_near
_far
_rom
const _near
const _far

S1C88 Section Type / Attribute
DATA, SHORT
DATA, FIT 10000H
CODE, ROMDATA, FIT 10000H
CODE, ROMDATA
CODE, ROMDATA, FIT 10000H

CHAPTER 1 C COMPILER

12 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

1.2.2.2 Memory Models
c88 supports four memory models: small, compact code, compact data and large. You can select one of
these models with the -M option. By default the compiler compiles for the small model. Programs for the
S1C88 are always compiled using a reentrant model. Static model functions have to be specified within
the source.

The following table gives an overview of the different memory models. If no memory model is specified
on the command line, c88 uses the small model because this model generates the most efficient code. The
different compiler models assume program/data sizes as follows:

Memory Model
small (s)
(default)
compact code (c)

compact data (d)

large (l)

Program Size
≤ 64K

≤ 64K

> 64K

> 64K

Data Size
≤ 64K

> 64K

≤ 64K

> 64K

Description
No 'LD NB', expand page registers
assumed zero
No 'LD NB', expand page registers
are loaded when needed
'LD NB' are inserted, expand page
registers assumed zero
'LD NB' are inserted, expand page
registers are loaded when needed

Note that the assembler uses the same model selection assumptions. This ensures that two objects built
for different memory models cannot be linked together.

Separate versions of the C and run-time libraries are supplied for all supported models, avoiding the
need for you to recompile or rebuild these when using a particular model.

The different models are designed for using the various CPU modes of the S1C88. Because the pushed
return addresses differ for the CPU modes, the compiler has to take care of this. The compiler models
'small' and 'compact code' assume two byte return addresses to be pushed on a CALL instruction, while
the other models assume three byte return addresses. Please note that the startup module may need to be
adapted for your own situation.

The C compiler models are designed for the following CPU modes:

Compiler Model
small
compact code
compact data
large

CPU Mode
Single chip (MCU), 64K (MPU)

512K Min
512K Max
512K Max

Because the PAGE registers handling differs within the different compiler models, and because the return
address sizes are different, the S1C88 tools do not accept mixing memory models within a single applica-
tion. The linker will notice when an application is linked using mixed models.

In all models, C function parameters and automatics are passed via the stack. The linker is using a
function call graph of the entire application for this purpose. Data areas of functions which are not calling
each other can be overlayed, since these functions will never be active simultaneously. However, this
cannot be accomplished for functions called through pointers.

CHAPTER 1 C COMPILER

S5U1C88000C MANUAL I EPSON 13
C COMPILER/ASSEMBLER/LINKER

_MODEL

c88 introduces the predefined preprocessor symbol _MODEL. The value of _MODEL represents the
memory model selected (-M option). This can be very helpful in making conditional C code in one source
module, used for different applications in different memory models. See also Section 1.2.21, "Portable C
Code", explaining the include file c88.h.

The value of _MODEL is:

small model 's'

compact code model 'c'

compact data model 'd'

large model 'l'

Example:
#if _MODEL == 's' /* small model */
...

#endif

1.2.2.3 The _at() Attribute
In C for the S1C88 it is possible to place certain variables at absolute addresses. Instead of writing a piece
of assembly code, a variable can be placed on an absolute address using the _at() attribute.

Example:
_far unsigned char Display _at(0x2000);

The example above creates a variable with the name Display at address 0x2000. In the generated
assembly code an absolute section will appear. On this position space is reserved for the variable
Display.

A number of restrictions are in effect when placing variables on an absolute address:

• Only global variables can be placed on absolute addresses. Parameters of functions, or automatics
within functions cannot be placed on an absolute address.

• When declared 'extern', the variable is not allocated by the compiler. When the same variable is allo-
cated within another module but on a different address, the compiler, assembler or linker will not
notice.

• When the variable is declared 'static', no public symbol will be generated (normal C behavior).

• Absolute variables cannot be initialized, except for absolute variables declared in rom.

• Functions cannot be declared absolute.

• Absolute variables cannot overlap each other, declaring two absolute variables on the same address
will cause an error generated by the assembler or by the linker. The compiler does not check this.

• Declaring the same absolute variable within two modules will also produce conflicts during link time
(except when one of the modules declares the variable 'extern').

CHAPTER 1 C COMPILER

14 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

1.2.3 Data Types
The following ANSI C data types are supported. In addition to these types, the _sfrbyte and _sfrword
types are added. Two types of pointers are recognized.

Data Type

signed char
unsigned char
_sfrbyte
signed short
unsigned short
signed int
unsigned int
_sfrword
signed long
unsigned long
enum
_near pointer
_far pointer

Size
(in bytes)

1
1
1
2
2
2
2
2
4
4
2
2
3

Range

-128 to +127
0 to 255U
0 to 255U
-32768 to +32767
0 to 65535U
-32768 to +32767
0 to 65535U
0 to 65535U
-2147483648 to +2147483647
0 to 4294967295UL
0 to 65535U
0 to 65535U
0 to 16M

- char, _sfrbyte, _sfwordvshort, int and long are all integral types, supporting all implicit
(automatic) conversions.

- c88 generates instructions using (8 bit) character arithmetic, when it is correct to evaluate a character
expression this way. This results in a higher code density compared with integer arithmetic. Section
1.2.3.2, "Character Arithmetic", provides details.

- char and short are treated as 8-bit and 16-bit int respectively.

- the S1C88 convention is used, storing variables with the most significant part at the higher memory
address (Little Endian).

1.2.3.1 ANSI C Type Conversions
According to the ANSI C X3.159-1989 standard, a character, a short integer, an integer bit field (either
signed or unsigned), or an object of enumeration type, may be used in an expression wherever an integer
may be used. If a signed int can represent all the values of the original type, then the value is con-
verted to signed int; otherwise the value will be converted to unsigned int. This process is called
integral promotion.

Integral promotion is also performed on function pointers and function parameters of integral types
using the old-style declaration. To avoid problems with implicit type conversions, you are advised to use
function prototypes.

Many operators cause conversions and yield result types in a similar way. The effect is to bring operands
into a common type, which is also the type of the result. This pattern is called the usual arithmetic conver-
sions.

Integral promotions are performed on both operands; then, if either operand is unsigned long, the
other is converted to unsigned long.
Otherwise, if one operand is long and the other is unsigned int, the effect depends on whether a
long can represent all values of an unsigned int; if so, the unsigned int operand is converted to
long; if not, both are converted to unsigned long.
Otherwise, if one operand is long, the other is converted to long.
Otherwise, if either operand is unsigned int, the other is converted to unsigned int.
Otherwise, both operands have type int.

See also Section 1.2.3.2, "Character Arithmetic".

Note that sometimes surprising results may occur, for example when unsigned char is promoted to int.
You can always use explicit casting to obtain the type required. The following example makes this clear:

CHAPTER 1 C COMPILER

S5U1C88000C MANUAL I EPSON 15
C COMPILER/ASSEMBLER/LINKER

static unsigned char a=0xFF, b, c;

void f()
{

b=~a;
if (b == ~a)
{

/* This code is never reached because,
 * 0x0000 is compared to 0xFF00.
 * The compiler converts character 'a' to
 * an int before applying the ~ operator
 */
...

}

c=a+1;
while(c != a+1)
{

/* This loop never stops because,
 * 0x0000 is compared to 0x0100.
 * The compiler evaluates 'a+1' as an
 * integer expression. As a side effect,
 * the comparison will also be an integer
 * operation
 */
...

}
}

To overcome this 'unwanted' behavior use an explicit cast:

static unsigned char a=0xFF, b, c;

void f()
{

b=~a;
if (b == (unsigned char)~a)
{

/* This code is always reached */
...

}

c=a+1;
while(c != (unsigned char)(a+1))
{

/* This code is never reached */
...

}
}

Keep in mind that the arithmetic conversions apply to multiplications also:

static int h, i, j;
static long k, l, m;

/* In C the following rules apply:
 * int * int result: int
 * long * long result: long
 *
 * and NOT int * int result: long
 */

void f()
{

h = i * j; /* int * int = int */
k = l * m; /* long * long = long */

l = i * j; /* int * int = int,
 * afterwards promoted (sign
 * or zero extended) to long
 */

l = (long) i * j; /* long * long = long */
l = (long)(i * j); /* int * int = int,

 * afterwards casted to long
 */

}

CHAPTER 1 C COMPILER

16 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

1.2.3.2 Character Arithmetic
c88 generates code using 8 bit (character) arithmetic as long as the result of the expression is exactly the
same as if it was evaluated in integer arithmetic. This must be done, because ANSI does not define
character arithmetic and character constants. Although the S1C88 performs 16-bit operation as fast as 8-
bit operations, the overhead caused by the integral promotions is suppressed.
So it is recommended to use character variables in expressions, because it saves data space for allocation,
and often results in a higher code density. You can always force to use character arithmetic with a charac-
ter cast. The following examples clarify when integer arithmetic is used and when character arithmetic:

char a, b, c, d;
int i;

void
main()
{

c = a + b; /* character arithmetic */
i = a + b; /* integer arithmetic */
i = (char)(a + b); /* character arithmetic */

c = a / d; /* character arithmetic */
c = (a + b) / d; /* integer arithmetic */
c = ((char)(a + b)) / d; /* character arithmetic */

c = a >> d; /* character arithmetic */
c = (a + b) >> d; /* integer arithmetic */

if (a > b) /* character arithmetic */
c = d;

if ((a + b) > c) /* integer arithmetic */
c = d;

}

1.2.3.3 Special Function Registers
The _sfrbyte and _sfrword keywords allow direct access to all special function registers, as if they
were C variables. These special function registers can be used the same way as any other integral data
type, including all automatic conversions.

An _sfrbyte is handled the same way as a volatile unsigned char variable. An _sfrword is
handled as a volatile unsigned int variable.

You can also declare sfr-registers within your C source by using the data types _sfrbyte or _sfrword.
The notation is as follows:

_sfrbyte name _at(address) ;
_sfrword name _at(address) ;

where, name must be replaced with the name of the sfr-register you want to specify. address is the byte or
word address of the sfr-register. Because these registers are placed in the sfr-area of the processor, the
compiler will not allocate any storage space.

Note, that the words 'sfrbyte' and 'sfrword' are not reserved words for c88. So these words can be used as
identifiers. c88 does not generate symbolic debugging information for special function registers, because
they are already known by the debugger.

Because the special function registers are dealing with I/O, it is not correct to optimize away the access to
them. Therefore, c88 deals with the special function registers as if they were declared with the volatile
qualifier.

For example:
_sfrbyte SPP _at(0xFF01);

int i;
volatile int v;

main()
{

i; /* optimized away */
SPP=1; /* access SPP (implicit volatile) */
v; /* volatile: access variable */

}

CHAPTER 1 C COMPILER

S5U1C88000C MANUAL I EPSON 17
C COMPILER/ASSEMBLER/LINKER

1.2.4 Function Parameters
c88 supports (ANSI) prototyping of function parameters. Therefore, c88 allows passing parameters of
type char, without converting these parameters to int type. This results into higher code density, higher
execution speed and less RAM data space needed for parameter passing.

For example, in the following C code:

void func(char number, long value);
int printf(char *format, ...);

void
main(void)
{

int i;
char c;

func(c, i);
printf("c=%d, i=%d\n", c, i);

}

the code generator uses the prototype of func() and:
- passes c as a byte
- promotes i to long before passing it as a long

However, the code generator does not know anything of the printf() arguments, because this function
is declared with a variable argument list. If there is no prototype (as with the old style K & R functions),
the compiler promotes both char type parameters to int type, the same way an automatic conversion is
done in an assignment of a char type variable to an int type variable. So, with the printf() call the code
generator:

- promotes c to int before passing it as int
- passes i as int

1.2.5 Parameter Passing
By default parameters are passed via registers. If not enough registers are available, some parameters are
passed via registers, the other parameters are passed over the stack.

All parameters of a variable argument list function are always passed over the stack. Parameters are
pushed in reverse order, so all ANSI C macros defined in stdarg.h can be applied.

Example with variable argument function:
_printf(char *format, ...)

- all parameters (including format) are passed via the stack.

1.2.6 Automatic Variables
In non-reentrant functions recursion is not possible. In these functions automatic variables are not
allocated on a stack, but in a static area. In a reentrant function automatic variables are treated the
conventional way: coming and going with a function on the stack. In static functions it is possible to force
an automatic to a specified memory by using a storage type specifier. The automatics are still overlayable
with automatics of other functions.

Although automatic variables are allocated in a static area with non-reentrant functions, they are not the
same as local variables (within a function) which are declared to be static by means of the static
keyword.

The difference is:

- (as in the 'normal' approach) it is not guaranteed that an automatic variable still has the same value as
the previous time the function returned, because it may have been overlaid with another automatic
variable of another module.

- (as in the 'normal' approach) it is guaranteed that the value of the static variable is the same as the
previous time the function returned. Static variables are never overlaid.

CHAPTER 1 C COMPILER

18 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

1.2.7 Register Variables
In C the register type qualifier tells the compiler that the variable will be used very often. So the code
generator must try to reserve a register for this variable and use this register instead of the stack location
of this automatic variable. Whenever possible, the compiler allocates automatic objects and parameter
objects within registers. c88 therefore ignores the register keyword.

For every object not placed in registers, the next rules apply.

Reentrant functions:
For these functions, automatic variables are allocated on the stack and are addressed using the
stacked or indexed addressing mode.

The code generator of c88 uses a 'saved by caller' strategy. This means that a function which needs the
contents of one or more registers over a function call, must save the contents of these 'registers' and
restore them after the call. The major advantage of this approach is, that only registers which are
really used after the call are saved.

Conclusion:
The usage of the register keyword is not necessary for improving code density or speed.

Note: The register type qualifier cannot be used for arrays and structures.

1.2.8 Initialized Variables
Non automatic initialized variables use the same amount of space in both ROM and RAM (for all possible
RAM memory spaces). This is because the initializers are stored in ROM and copied to RAM at start-up.
This is completely transparent to the user. The only exception is an initialized variable residing in ROM,
by means of the _rom storage type specifier:

Examples (small memory model):

int i = 100; /* 2 bytes in ROM and
 2 bytes in RAM */

_rom int j = 3; /* 2 bytes in ROM */
char *p = "TEXT"; /* 2 bytes for p in RAM

 5 bytes for "TEXT" in ROM */
_rom char a[] = "HELP"; /* 5 bytes in ROM */
_near char c = 'a'; /* 1 byte in ROM

 1 byte in _near RAM */

1.2.9 Type Qualifier volatile
You can use the volatile type qualifier when modifications on the object have undesired side effects
when they are performed in the regular way. Memory locations may not be updated because of compiler
optimizations, which attempt to save a memory write by keeping the value in a register. When a variable
is declared with the volatile qualifier, the compiler disables such optimizations. Volatile variables are
located in a segment of which the NOCLEAR attribute is set.

The ANSI report describes that the updates of volatile objects follow the rules of the abstract machine (the
target processor) and thus access to a volatile object becomes implementation defined.

Example:
const volatile _near int real_time_clock _at(0x1234);

/* define the real time clock register;
it is read-only (const);
read operations must access the real memory
location (volatile)

*/

CHAPTER 1 C COMPILER

S5U1C88000C MANUAL I EPSON 19
C COMPILER/ASSEMBLER/LINKER

1.2.10 Strings
In this section the word 'strings' means the separate occurrence of a string in a C program. So, array
variables initialized with strings are just initialized character arrays, which can be allocated in any
memory type, and are not considered as 'strings'. See Section 1.2.8, "Initialized Variables", for more
information on this topic.

Strings and literals in a C source program, which are not used to initialize an array, have static storage
duration. The ANSI X3.159-1989 standard permits string literals to be put in ROM. c88 always allocates a
string in ROM. Note that initialized arrays are still located in RAM.

char ramhelp[] = "help";
/* allocation of 5 bytes in RAM and 5 bytes in ROM */

Example of an array in ROM only, initialized with the addresses of strings, also ROM only:

char * _rom message[] = {"hello","alarm","exit"};

ANSI string concatenation is supported: adjacent strings are concatenated - only when they appear as
primary expressions - to a single new one. The result may not be longer than the maximum string length
(ANSI limit 509 characters, actual compiler limit 1500 characters).

The ANSI Standard states that identical string literals need not be distinct, i.e. may share the same
memory. Because memory can be very scarce with microcontroller applications, the c88 compiler overlays
identical strings within the same module.

In section 3.1.4 the Standard states that behavior is undefined if a program attempts to modify a string
literal. Because it is a common extension to ANSI (A.6.5.5) that string literals are modifiable, there may be
existing C source modifying strings at run-time. This can be done either with pointers, or even worse:

"st ing"[2] = 'r';

c88 does not accept this statement.

1.2.11 Pointers
Some objects have two types: a 'logical' type and a storage type. For example, a function is residing in
ROM (storage type), but the logical type is the return type of this function. The most obvious C type
having different storage and logical type is a pointer. For example:

_far char *_near p; /* pointer residing in _near, pointing to _far */

means p has storage type _near (allocated in direct addressable RAM), but has logical type 'character in
target memory space _far'. The memory type specifier used left to the '∗', specifies the target memory of
the pointer, the memory specifier used right to the '∗', specifies the storage memory of the pointer.

The memory type specifiers are treated like any other type specifier (like unsigned). This means the
pointer above can also be declared (exactly the same) using:

char _far *_near p; /* pointer residing in _near, pointing to _far */

If the target memory and storage memory of a pointer are not explicitly declared, c88 uses the default of
the memory model selected.

Model
's'
'c'
'd'
'l'

Target Memory Default
_near
_far

_near
_far

In pointer arithmetic c88 checks, besides the type of each pointer, also the target memory of the pointers,
which should be the same. For example, it is invalid (and has no use) to assign a pointer to _far to a
pointer to _near. Of course, an appropriate cast corrects the error.

CHAPTER 1 C COMPILER

20 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

1.2.12 Function Pointers
Reentrant functions use the stack for passing parameters and automatic variable allocation. When using
the reentrant memory model, all functions are in fact implicitly reentrant.

So, function pointers are only allowed to point to functions compiled as reentrant. Parameters are passed
to these functions via the stack. A function pointer may point to any reentrant function in the application.

1.2.13 Inline C Functions
The _inline keyword is used to signal the compiler to inline the function body instead of calling the
function. An inline function must be defined in the same source file before it is 'called'. When an inline
function has to be called in several source files, each file must include the definition of the inline function.
Usually this is done by defining the inline function in a header file.

Not using a function which is defined as an _inline function does not produce any code.

Example (t.c):
int w,x,y,z;

_inline int
add(int a, int b)
{

return(a + b);
}

void
main(void)
{

w = add(1, 2);
z = add(x, y);

}

No specific debug information is generated about inline functions. The debugger cannot step-into an
inline function, it considers the inline function as one HLL source line.

The pragmas asm and endasm are allowed in inline functions. This makes it possible to define inline
assembly functions. See also Section 1.2.14, "Inline Assembly", in this chapter.

1.2.14 Inline Assembly
c88 supports inline assembly using the following pragmas:

#pragma asm Insert assembly text following this pragma.

#pragma asm_noflush As #pragma asm, but the peephole optimizer does not flush the code buffer.

#pragma endasm Switch back to the C language.

Note that C modules containing inline assembly are not portable and are very hard to prototype in other
environments.

The peephole optimizer in the compiler maintains a code buffer for optimizing sequences of assembly
instructions before they are written in the output file. The compiler does not interpret the text of inline
assembly. It passes inline assembly lines directly to the output file. To prevent that instructions in the
peephole buffer, which belong to C code before the inline assembly lines, will be written in the output file
after the inline assembly text, the compiler flushes the instruction buffer in the peephole optimizer. All
instructions in the buffer are written to the output file. If this behavior is not desired the pragma
asm_noflush starts inline assembly without flushing the code buffer.

CHAPTER 1 C COMPILER

S5U1C88000C MANUAL I EPSON 21
C COMPILER/ASSEMBLER/LINKER

1.2.15 Calling Assembly Functions
The S1C88 C compiler uses fixed registers for passing arguments to functions (see Section 1.3.2, "Register
Usage"). When calling assembler functions from a C program, follow this scheme. However, all the
arguments must be passed via the usable registers only. (Note that an error or warning will not occur
even if some arguments cannot be allocated to the registers.)

When the C functions that call assembler functions are compiled, make sure the register allocation of the
parameters that are passed to the assembler functions using the compile results (assembler source). The
following is a program example.

1. Source program
int sub_asm(int ia, char ca, int ib, char cb, int _near *pic);

int main(void)
{

int ia, ib, ic, id;
int _near *pic;
char ca, cb;

ia = 1;
ib = 2;
ca = '3';
cb = '4';
ic = 5;
pic = ⁣

id = sub_asm(ia, ca, ib, cb, pic);

id +=1;
 :
}

#pragma asm
_sub_asm:
 :
ret
#pragma endasm

2. Assembler source after compiled (when no option is specified)
LD iy,#05h
LD [sp],iy ; [sp] <- ic
LD iy,sp ; iy <- &ic
LD ba,#01h ; ba <- ia
LD l,#033h ; l <- ca
LD ix,#02h ; ix <- ib
LD yp,#034h ; yp <- cb
CARL _sub_asm
INC ba ; id <- ba

 :
_sub_asm:
 :
ret

3. Parameter allocation scheme (see also Section 1.3.2, "Register Usage")

Arguments are passed via the registers shown below in the order of descending priorities.

Priority
Higher Lower

char A L YP XP H B
int BA HL IX IY
long HLBA IYIX
near pointer IY IX HL BA
far pointer IYP IXP HLP

CHAPTER 1 C COMPILER

22 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

Consequently, the function in the sample above,

int sub_asm(int ia, char ca, int ib, char cb, int *pic);

uses the registers listed below.

BA = int ia
L = char ca
IX = int ib
YP = char cb
IY = int *pic

(Since the A register that has the highest priority for char type arguments is used for int ia, char
ca is allocated to the L register that has second priority. The same is applied to other arguments.)

The int type return value from sub_asm will be allocated to the BA register that has the highest
priority for int type values.

1.2.16 Intrinsic Functions
When you want to use some specific S1C88 instructions, that have no equivalence in C, you would be
forced to write assembly routines to perform these tasks. However, c88 offers a way of handling this in C.
c88 has a number of built-in functions, which are implemented as intrinsic functions.

To the programmer intrinsic functions appear as normal C functions, but the difference is that they are
interpreted by the code generator, so that more efficient code may be generated. Several pre-declared
functions are available to generate inline assembly code at the location of the intrinsic function call. This
avoids the overhead that is normally introduced by parameter passing and context saving before execut-
ing the called function.

The names of the intrinsic functions all have a leading underscore, because the ANSI specification states
that public C names starting with an underscore are implementation defined.

The advantages of using intrinsic functions, compared with in-line assembly (pragma asm/endasm) are:

• the possibility to use simulation routines or stub functions by a host compiler, to replace the inline
assembly code generated by c88

• C level variables can be accessed

• the compiler chooses to generate the most efficient code to access C variables

• intrinsic code is optimized, except for _nop()

The following intrinsic functions are implemented:

Function
_bcd()
_halt()
_int()
_jrsf()
_nop()
_pack()
_rlc()
_rrc()
_slp()
_swap()
_ubcd()
_unpack()
_upck()

Description
Set 'D' flag on expression evaluation
HALT instruction
Software interrupt
Jump to relative location if condition is true
NOP instruction, not optimized away
Pack integer into character value
Rotate left
Rotate right
SLP instruction
Swap high and low nibbles
Set 'U' and 'D' flags on expression evaluation
Set 'U' flag on expression evaluation
Unpack character into integer value

Prototypes for the intrinsic functions are present in c88.h. Below are the details of the implemented
intrinsic functions:

CHAPTER 1 C COMPILER

S5U1C88000C MANUAL I EPSON 23
C COMPILER/ASSEMBLER/LINKER

_bcd
void _bcd();

When evaluating the argument expression, the 'D' flag will be set. That means, Add/Subtract and
Negate instructions are done as binary decimal. Problems can be expected when the expression uses
for example floating point while the 'D' flag will not be reset throughout the expression evaluation.

The argument may be of any type of expression (char/int/long). Therefore, the argument list is
implemented as an old-style (K&R style) function definition (without defining argument type).

Returns nothing.

_halt
void _halt(void);

Generate HALT instructions.

Returns nothing.

_halt();

 ... Code ...
HALT

_int
void _int(ICE vector);

Insert an execute software interrupt instruction (INT). The argument should be an ICE type value,
determining the interrupt vector address to jump to. ICE denotes that the operand must be an Integral
Constant Expression rather than any type of integral expression.

Returns nothing.

_jrsf
char _jrsf(ICE number);

Use the JRS Fnumber,_lab instruction. This instruction is ideal for use within an if() condition test. The
given number must be a constant value between 0 and 3. ICE denotes that the operand must be an
Integral Constant Expression rather than any type of integral expression. The code generator chooses
between the Fnumber and the NFnumber variant of the instruction.

Returns the result.

if (_jrsf(2))
{

...
}

 ... Code ...
JRS NF2, _L0001

_L0001:

_nop
void _nop(void);

Generate NOP instructions.

Returns nothing.

_nop();

 ... Code ...
NOP

CHAPTER 1 C COMPILER

24 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

_pack
char _pack(int operand);

Use the PACK instruction to pack the integer operand into a character value.

Returns the character value.

_rlc
char _rlc(char operand);

Use the RLC instruction to rotate byte operand to the left. The instruction only affects the result, not the
operand.

Returns the result.

char c;
int i;
/* rotate left */
c = _rlc(c);

_rrc
char _rrc(char operand);

Use the RRC instruction to rotate byte operand to the right. The instruction only affects the result, not
the operand.

Returns the result.

char c;
int i;
/* rotate right */
c = _rrc(c);

_slp
void _slp(void);

Generate SLP instruction.

Returns nothing.

_slp();

 ... Code ...
SLP

_swap
char _swap(char operand);

Use the SWAP instruction to swap the high and low nibbles of the character operand.

Returns the result.

_ubcd
void _ubcd();

When evaluating the argument expression, the 'U' and 'D' flags will be set. That means, only the lower
nibble of a byte is used to do the computation, and Add/Subtract and Negate instructions are done as
a BCD operation. Problems can be expected when the expression uses for example floating point
while the 'D' flag will not be reset throughout the expression evaluation.

The argument may be of any type of expression (char/int/long). Therefore, the argument list is
implemented as an old-style function definition.

Returns nothing.

CHAPTER 1 C COMPILER

S5U1C88000C MANUAL I EPSON 25
C COMPILER/ASSEMBLER/LINKER

_unpack
void _unpack();

When evaluating the argument expression, the 'U' flag will be set. That means, only the lower nibble
of a byte is used to do the computation.

The argument may be of any type of expression (char/int/long). Therefore, the argument list is
implemented as an old-style function definition.

Returns nothing.

_upck
int _upck(char operand);

Use the UPCK instruction to unpack the character operand into an integer value.

Returns the integer value.

1.2.17 Interrupts
The S1C88 C language introduces a new reserved word: _interrupt, which can be seen as a special
type qualifier, only allowed with function declarations. A function can be declared to serve as an inter-
rupt service routine. Interrupt functions cannot return anything and must have a void argument type list.
For example, in:

void _interrupt(vector)
_isr(void)
{

...
};

The compiler generates an interrupt service frame for interrupts. The _interrupt function qualifier
takes one argument, vector, that defines the interrupt vector address of a two byte interrupt vector area.

Some interrupts are reserved and handled or used by the compiler (run-time library) like:

• Hardware reset.

Example of _interrupt:

Suppose, you want an interrupt function for a software interrupt, and the vector address is 0x30:

int c;

void
_interrupt(0x30)
transmit(void)
{

c = 1;
}

This will result in assembly:

DEFSECT ".abs_48", CODE AT 48
SECT ".abs_48"
DW _transmit

DEFSECT ".short_code", CODE, SHORT
SECT ".short_code"

_transmit:
LD A,#1
LD [_c],A
RETE

CHAPTER 1 C COMPILER

26 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

1.2.18 Structure Tags
A tag declaration is intended to specify the lay-out of a structure or union. If a memory type is specified,
it is considered to be part of the declarator. A tag name itself, nor its members can be bound to any
storage area, although members having type "... pointer to" do require one. A tag may then be used to
declare objects of that type, and may allocate them in different memories (if that declaration is in the
same scope). The following example illustrates this constraint.

struct S {
_near int i; /* referring to storage: not correct */
_far char *p; /* used to specify target memory: correct */
};

In the example above c88 ignores the erroneous _near storage specifier (without displaying a warning
message).

1.2.19 Typedef
Typedef declarations follow the same scope rules as any declared object. Typedef names may be (re-)
declared in inner blocks but not at the parameter level. However, in typedef declarations, memory
specifiers are allowed. A typedef declaration should at least contain one type specifier.

Examples:
typedef _near int NEARINT; /* storage type _near: OK */
typedef int _far *PTR; /* logical type _far storage type 'default' */

1.2.20 Language Extensions
The following language extensions are implemented in the S1C88 C Compiler. They cannot be translate
with any ANSI-C conforming C-compiler.

Character arithmetic

Perform character arithmetic. c88 generates code using 8-bit character arithmetic as long as the result
of the expression is exactly the same as if it was evaluated using integer arithmetic. See also Section
1.2.3.2, "Character Arithmetic".

Uninitialized constant definitions

Define storage for uninitialized constant rom data, instead of implicit zero initialization. The compiler
generates a 'DS 1' for 'const char i[1];'.

Keyword language extensions

Allow keyword language extensions such as _near, _far and _sfrbyte.

Maximum number of significant characters

500 significant characters are allowed in an identifier instead of the minimum ANSI-C translation
limit of 31 significant characters. Note: more significant characters are truncated without any notice.

C++ style comments

Allow C++ style comments in C source code. For example:

 // e.g this is a C++ comment line.

__STDC__ definition

__STDC__ is defined as '0'. The decimal constant '0', intended to indicate a non-conforming imple-
mentation.

Promoting old-style function parameters

Do not promote old-style function parameters when prototype checking.

CHAPTER 1 C COMPILER

S5U1C88000C MANUAL I EPSON 27
C COMPILER/ASSEMBLER/LINKER

Using unsigned char

Use type unsigned char for 0x80–0xff. The type of an unsuffixed octal or hexadecimal constant is the
first of the corresponding list in which its value can be represented:

char, unsigned char, int, unsigned int, long, unsigned long

lvalue cast

Allow type cast of an lvalue object with incomplete type void and lvalue cast which does not change
the type and memory of an lvalue object.

Example:
void *p; ((int*)p)++; /* allowed */
int i; (char)i=2; /* NOT allowed */

Checking assignments of a constant string to a non-constant string pointer

Do not check for assignments of a constant string to a non-constant string pointer. With this option the
following example produces no warning:

char *p;
void main(void) { p = "hello"; }

1.2.21 Portable C Code
If you are developing C code for the S1C88 using c88, you might want to test some code on the host you
are working on, using a C compiler for that host. Therefore, we deliver the include file c88.h. This
header file checks if _C88 is defined (c88 only), and redefines the storage type specifiers if it is not
defined.

When using this include file, you are able to use the storage type specifiers (when needed) and yet write
'portable C code'.

Furthermore an adapted prototype of each S1C88 C built-in function is present, because these functions
are not known by another ANSI compiler. If you use these functions, you should write them in C, per-
forming the same job as the S1C88 and link these functions with your application for simulation pur-
poses.

1.2.22 How to Program Smart
If you want to get the best code out of c88, the following guidelines should be kept in mind:

1. Always use function prototyping. So, char variables can be passed as char without being promoted
to int.

2. If you are using the large model (because it is not possible to use a smaller model), try to declare the
most frequently used variables (static) with storage type _near. If you want your code to remain
portable, you can use the register keyword.

3. Try to use the unsigned qualifier as much as possible (e.g. for (i = 0; i < 500; i++)),
because unsigned comparisons require less code than signed comparisons.

4. Try to use the smallest data type as possible: character for small loops and so on. See also Section
1.2.3.2, "Character Arithmetic".

CHAPTER 1 C COMPILER

28 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

1.3 Run-time Environment

1.3.1 Startup Code
When linking your C modules with the library, you automatically link the object module, containing the
C startup code. This module is called cstart.obj and is present in every C library (once for every
model and execution mode).

Because this module specifies the run-time environment of your S1C88 C application, you might want to
edit it to match your needs. Therefore, this module is delivered in source in the file cstart.c in the src
subdirectory of the lib directory. Typically, you will copy the template startup file to your own directory
and edit it. The startup code contains macro preprocessor symbols to tune the startup code. The invoca-
tion (using the cc88 control program) is:

cc88 -Ms -c cstart.c

In the C startup code an absolute code section is defined for setting up the reset vector and the S1C88 C
environment. The reset vector contains a jump to the _START label. This global label may not be re-
moved, since it is referred to by the C compiler. It is also used as the default start address of the applica-
tion (see the start keyword in the locator description language DELFEE). The code space for all non
used interrupt vectors are reserved in the locator description file to prevent lc88 from using this area for a
user code section. This code space may be used for small user code sections.

The stack is defined in the locator description file (.dsc in directory etc) with the keyword stack,
which results in a section called stack. See Section 1.3.4, "Stack", for detailed information on the stack.

The heap is defined in the description file with the keyword heap, which results in as section called
heap. See Section 1.3.5, "Heap", for detailed information on heap management.

The startup code also takes care of initialized C variables, residing in the different RAM areas. Each
memory type has a unique name for both the ROM and the RAM section. The startup code copies the
initial values of initialized C variables from ROM to RAM, using these special sections and some run-time
library functions. When initialization of C variables is not needed, you can translate the file cstart.c
with -DNOCOPY. See also the table keyword in the locator description language DELFEE.

When everything described above has been executed, your C application is called, using the global label
_main, which has been generated by c88 for the C function main().

When the C application 'returns', which is not likely to happen in an embedded environment, the pro-
gram ends with a SLP instruction, using the assembly label __exit. When using a debugger, it can be
useful to set a breakpoint on this label, indicating the program has reached the end, or the library func-
tion exit() has been called.

One extra feature is done in the startup code for the S1C88 microcontroller. The Watchdog timer is
handled. A very common problem is that the NMI/Watchdog interrupt handling is forgotten in an
application. This causes unexpected results, as the Watchdog cannot be disabled. Therefore, this handling
is by default done by the startup code. When an application needs to handle the NMI/Watchdog itself,
then the startup code needs to be recompiled for that application.

The following macro can be used to control the functionality of cstart.c:

NOCOPY - Do NOT produce code to clear BSS sections and initialize DATA sections.

CHAPTER 1 C COMPILER

S5U1C88000C MANUAL I EPSON 29
C COMPILER/ASSEMBLER/LINKER

1.3.2 Register Usage
c88 will try to use the available registers as efficient as possible. The compiler uses a flexible register
allocation scheme, which implies that any change to the C code may result in a different register usage.

For passing parameters to functions c88 uses a fixed scheme:

- The arguments are passed via the registers A, B, L, H, YP, XP, BA, HL, IX and IY. Char arguments are
passed via the byte registers A, L, YP, XP, H and B. Integers are passed via the word registers BA, HL,
IX and IY. Long arguments are passed via 32-bit register pairs HLBA and IYIX.

- Structures and unions are passed via the stack.

- Near pointers are passed in registers IY, IX HL and BA. Far pointers are passed in register pairs IYP, IXP
and HLP (where, IYP = IY + YP, IXP = IX + XP, HLP = HL + A).

- When there are too much arguments to be passed in the registers the arguments will be passed via the
stack.

For C function return types, the following registers are used:

Return Type
char
short/int
long
pointer

Register
A

BA
HLBA
HLP

Description
accumulator

(HL high word, BA low word)
HL +A

- Structures and unions are returned on the stack.

1.3.3 Section Usage
c88 uses a number of sections. For each used section the compiler generates a DEFSECT directive in the
output. The following list gives an overview of section-names used:

Section Name
.text
.text_function
.comm
.nbss
.fbss
.nbssnc
.fbssnc
.ndata
.fdata
.nrdata
.frdata

Comment
model s and c: code
model d and l: code
code with _common qualifier _interrupt code
cleared _near data
cleared _far data
non-cleared _near data
non-cleared _far data
initialized _near data
initialized _far data
const _near data
const _far data

CHAPTER 1 C COMPILER

30 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

1.3.4 Stack
The S1C88 processor has a system stack of a maximum of 64K byte. This system stack is used for function
calls, interrupts, function parameters and automatics. Static functions use overlayable sections for these
purposes.

The following diagram show the structure of the system stack when using reentrant (= default) functions.

system stack
(reentrant functions)

high memory

system stack
grows down

low memory

 framesize

stacksize

stack pointer
sdjust

parameter n
...

parameter 1

return address

saved registers

local 1
...

local n
temporary

storage

fp
($fp)

sp
($sp)

Fig. 1.3.4.1 Stack diagram

The stack is defined in the locator description file (.dsc in directory etc) with the keyword stack,
which results in a section called stack. The description file tells lc88 where to allocate the stack.

The stack size can be controlled with the keyword length=size in the description file. If you do not
specify the stack size, the locator will allocate the rest of the available RAM for the stack, as done in the
startup code. You can use the locator defined labels __lc_bs and __lc_es in your application to
retrieve the begin and end address of the stack. Please note that the locator will only allocate a stack
section if the application refers to one of the locator defined symbols __lc_bs or __lc_es. Remember
that there must be enough space allocated for the stack, which grows downwards.

For non-reentrant functions, (non-register) automatics and (non-register) parameters are allocated in a
static area, and therefore, do not use any stack space.

CHAPTER 1 C COMPILER

S5U1C88000C MANUAL I EPSON 31
C COMPILER/ASSEMBLER/LINKER

1.3.5 Heap
The heap is only needed when dynamic memory management library functions are used: malloc(),
calloc(), free() and realloc(). The heap is a reserved area in memory. Only if you use one of the
memory allocation functions listed above, the locator automatically allocates a heap, as specified in the
locator description file with the keyword heap.

A special section called heap is used for the allocation of the heap area. You can place the heap section
anywhere in memory, using the locator description file. You can specify the size of the heap using the
keyword length=size in the locator description file. If you do not specify the heap size and yet refer to
it (e.g. call malloc()), the locator will allocate the rest of the available memory for the heap. The locator
defined labels __lc_bh and __lc_eh (begin and end of heap) are used by the library function sbrk(),
which is called by malloc() when memory is needed from the heap.

Example part of the locator description file defining the heap size and location:

amode data
{

section selection=w;
heap length=1000; // heap (only when used)

}

Note that the special heap segment is only allocated when its locator labels are used in the program.

When the heap is needed for an application built in the small or compact data model of the compiler, the
locator description file needs to be changed. If not, the locator will report errors. The declaration of the
heap should be moved from 'amode data' into 'amode data_short'.

CHAPTER 1 C COMPILER

32 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

1.3.6 Interrupt Functions
Interrupt functions may be implemented directly in C, by using the _interrupt(n) function qualifier.
A function declared with this qualifier differs from a normal function definition in a number of ways:

1. All registers that might possibly be corrupted during the execution of the interrupt function are saved
on function entry and restored on function exit. Normally, only the registers directly used by the
interrupt function will be saved.

2. The function is terminated with a RETE instruction instead of a RET instruction.

Example:

; S1C88 C compiler v99.9 r9 SN00000000-000 (c) year TASKING, Inc.
; options: -n -s
$CASE ON

NAME INTERPT
; interpt.c:
; 1 |int flag;
; 2 |
; 3 |_interrupt(0x30)
; 4 |void handler(void)
; 5 |{

GLOBAL _handler
DEFSECT ".code48", CODE AT 030H

SECT ".code48"
DW _handler

DEFSECT ".comm", CODE, SHORT
SECT ".comm"

_handler:
PUSH ale

; 6 | flag=1;

LD iy,#01h
LD [_flag],iy

; 7 |}

POP ale
RETE

DEFSECT ".bss", DATA, SHORT, CLEAR
SECT ".bss"
GLOBAL _flag

_flag: DS 2
EXTERN (DATA) __lc_es
END

CHAPTER 1 C COMPILER

S5U1C88000C MANUAL I EPSON 33
C COMPILER/ASSEMBLER/LINKER

1.4 Compiler Use

1.4.1 Control Program
The control program cc88 facilitates the invocation of the various components of the S1C88 tool chain,
from a single command line. The control program accepts source files and options on the command line
in random order.

The invocation syntax of the control program is:

cc88 [[option] ... [control] ... [file] ...] ...

Options are preceded by a '-' (minus sign). The input file can have one of the extensions explained below.

The control program recognizes the following argument types:

• Arguments starting with a '-' character are options. Some options are interpreted by the control pro-
gram itself; the remaining options are passed to those programs in the tool chain that accept the option.

• Arguments with a .c suffix are interpreted as C source programs and are passed to the compiler.

• Arguments with a .asm suffix are interpreted as assembly source files which have to be preprocessed
and passed to the assembler.

• Arguments with a .src suffix are interpreted as compiled assembly source files. They are directly
passed to the assembler.

• Arguments with a .a suffix are interpreted as library files and are passed to the linker.

• Arguments with a .obj suffix are interpreted as object files and are passed to the linker.

• Arguments with a .out suffix are interpreted as linked object files and are passed to the locator. The
locator accepts only one .out file in the invocation.

• Arguments with a .dsc suffix are treated as locator command files. If there is a file with extension
.dsc on the command line, the control program assumes a locate phase has to be added. If there is no
file with extension .dsc, the control program stops after linking (unless it has been directed to stop in
an earlier phase).

• Everything else is considered an object file and is passed to the linker.

Normally, a control program tries to compile and assemble all source files to object files, followed by a
link and locate phase which produces an absolute output file. There are however, options to suppress the
assembler, linker or locator stage. The control program produces unique filenames for intermediate steps
in the compilation process, which are removed afterwards. If the compiler and assembler are called
subsequently, the control program prevents preprocessing of the compiler generated assembly file.
Normally, assembly input files are preprocessed first.

CHAPTER 1 C COMPILER

34 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

The following options are interpreted by the control program:

Control Program Options

Option
-Mc
-Md
-Ml
-Ms
-Ta arg
-Tc arg
-Tlk arg
-Tlc arg
-V
-al
-c
-cl
-cs
-f file
-ieee
-nolib
-o file
-srec
-tmp
-v
-v0

Description
Compact code memory model
Compact data memory model
Large memory model
Small memory model
Pass argument directly to the assembler
Pass argument directly to the C compiler
Pass argument directly to the linker
Pass argument directly to the locator
Display version header only
Generate absolute list file
Do not link: stop at .obj
Do not locate: stop at .out
Do not assemble: compile C files to .src and stop
Read arguments from file ("-" denotes standard input)
Set locator output file format to IEEE-695 (default)
Do not link with the standard libraries
Specify the output file
Set locator output file format to Motorola S-records
Keep intermediate files
Show command invocations
Show command invocations, but do not start them

1.4.1.1 Detailed Description of the Control Program Options
-M{s|c|d|l} Specify the memory model to be used:

small (s)
compact data (d)
compact code (c)
large (l)

-Ta arg
-Tc arg
-Tlk arg
-Tlc arg

With these options you can pass a command line argument directly to the assembler
(-Ta), C compiler (-Tc), linker (-Tlk) or locator (-Tlc). These options may be used to pass
some options that are not recognized by the control program, to the appropriate pro-
gram. The argument may be either directly appended to the option, or follow the option
as a separate argument of the control program.

-V The copyright header containing the version number is displayed, after which the
control program terminates.

-al Generate an absolute list file for each module in the application.

-c
-cl
-cs

Normally, the control program invokes all stages to build an absolute file from the given
input files. With these options it is possible to skip the C compiler, assembler, linker or
locator stage. With the -cs option the control program stops after the compilation of the
C source files (.c) and after preprocessing the assembly source files (.asm), and retains
the resulting .src files. With the -c option the control program stops after the assem-
bler, with as output one or more object files (.obj). With the -cl option the control
program stops after the link stage, with as output a linker object file (.out).

CHAPTER 1 C COMPILER

S5U1C88000C MANUAL I EPSON 35
C COMPILER/ASSEMBLER/LINKER

-f file Read command line arguments from file. The filename "-" may be used to denote
standard input. To get around the limits on the size of the command line, it is possible
to use command files. These command files contain the options that could not be part of
the real command line. Command files can also be generated on the fly, for example by
the make utility.
Some simple rules apply to the format of the command file:

1. It is possible to have multiple arguments on the same line in the command file.

2. To include whitespace in the argument, surround the argument with either single or
double quotes.

3. If single or double quotes are to be used inside a quoted argument, we have to go by
the following rules:

a. If the embedded quotes are only single or double quotes, use the opposite quote
around the argument. Thus, if a argument should contain a double quote,
surround the argument with single quotes.

b. If both types of quotes are used, we have to split the argument in such a way that
each embedded quote is surrounded by the opposite type of quote.

Example:

"This has a single quote ' embedded"

or

'This has a double quote " embedded'

or

'This has a double quote " and a single quote '"' embedded"

4. Some operating systems impose limits on the length of lines within a text file. To
circumvent this limitation it is possible to use continuation lines. These lines end
with a backslash and newline. In a quoted argument, continuation lines will be
appended without stripping any whitespace on the next line. For non-quoted
arguments, all whitespace on the next line will be stripped.

Example:

"This is a continuation \

line"

→ "This is a continuation line"

control(file1(mode,type),\

file2(type))

→ control(file1(mode,type),file2(type))

5. It is possible to nest command line files up to 25 levels.

-ieee
-srec

With these options you can specify the locator output format of the absolute file. The
output file can be an IEEE-695 file (.abs) or Motorola S-record file (.sre). The default
output is IEEE-695 (.abs).

-nolib With this option the control program does not supply the standard libraries to the
linker. Normally the control program supplies the default C and run-time libraries to
the linker. Which libraries are needed is derived from the compiler options.

CHAPTER 1 C COMPILER

36 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

-o file Normally, this option is passed to the locator to specify the output file name. When you
use the -cl option to suppress the locating phase, the -o option is passed to the linker.
When you use the -c option to suppress the linking phase, the -o option is passed to the
assembler, provided that only one source file is specified. When you use the -cs option
to suppress the assembly phase, the -o option is passed to the compiler. The argument
may be either directly appended to the option, or follow the option as a separate
argument of the control program.

-tmp With this option the control program creates intermediate files in the current directory.
They are not removed automatically. Normally, the control program generates tempo-
rary files for intermediate translation results, such as compiler generated assembly files,
object files and the linker output file. If the next phase in the translation process com-
pletes successfully, these intermediate files will be removed.

-v When you use the -v option, the invocations of the individual programs are displayed
on standard output, preceded by a '+' character.

-v0 This option has the same effect as the -v option, with the exception that only the invoca-
tions are displayed, but the programs are not started.

1.4.1.2 Environment Variables
The control program uses the following environment variables:

TMPDIR This variable may be used to specify a directory, which the control program should use
to create temporary files. When this environment variable is not set, temporary files are
created in the current directory.

CC88OPT This environment variable may be used to pass extra options and/or arguments to each
invocation of the control program cc88. The control program processes the arguments
from this variable before the command line arguments.

CC88BIN When this variable is set, the control program prepends the directory specified by this
variable to the names of the tools invoked.

CHAPTER 1 C COMPILER

S5U1C88000C MANUAL I EPSON 37
C COMPILER/ASSEMBLER/LINKER

1.4.2 Compiler
The invocation syntax of the C compiler is:

c88 [[option] ... [file] ...] ...

The C compiler accepts C source file names and command line options in random order. Source files are
processed in the same order as they appear on the command line (left-to-right). Options are indicated by
a leading '-' character. Each C source file is compiled separately and the compiler generates an output file
with suffix .src per C source module, containing assembly source code.

The priority of the options is left-to-right: when two options conflict, the first (most left) one takes effect.
You can overrule the default output file name with the -o option. The compiler uses each -o option only
once, so it is possible to specify multiple -o options for multiple source files.

A summary of the options is given below. The next section describes the options in more detail.

Compiler Options
Option

-Dmacro[=def]
-H file
-Idirectory
-M{s|c|d|l}
-O{0|1}
-V
-e
-err
-f file
-g
-o file
-s
-w[num]

Description
Define preprocessor macro
Include file before starting compilation
Look in directory for include files
Select memory model: small, compact code, compact data or large
Control optimization
Display version header only
Remove output file if compiler errors occur
Send diagnostics to error list file (.err)
Read options from file
Enable symbolic debug information
Specify name of output file
Merge C-source code with assembly output
Suppress one or all warning messages

Compiler Options (functional order)
Description

Include options
Read options from file
Include file before starting compilation
Look in directory for include files
Preprocess options
Define preprocessor macro
Code generation options
Select memory model: small, compact code, compact data or large
Control optimization
Output file options
Remove output file if compiler errors occur
Specify name of output file
Merge C-source code with assembly output
Diagnostic options
Display version header only
Send diagnostics to error list file (.err)
Enable symbolic debug information
Suppress one or all warning messages

Option

-f file
-H file
-Idirectory

-Dmacro[=def]

-M{s|c|d|l}
-O{0|1}

-e
-o file
-s

-V
-err
-g
-w[num]

CHAPTER 1 C COMPILER

38 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

1.4.2.1 Detailed Description of the Compiler Options
Option letters are listed below. Each option (except -o; see description of the -o option) is applied to
every source file. If the same option is used more than once, the first (most left) occurrence is used. The
placement of command line options is of no importance except for the -I and -o options. For the -o option,
the filename may not start immediately after the option. There must be a tab or space in between. All
other option arguments must start immediately after the option. Source files are processed in the same
order as they appear on the command line (left-to-right).

Some options have an equivalent pragma.

-D

Option:

-Dmacro[=def]

Arguments:

The macro you want to define and optionally its definition.

Description:

Define macro to the preprocessor, as in #define. If def is not given ('=' is absent), '1' is assumed. Any
number of symbols can be defined. The definition can be tested by the preprocessor with #if, #ifdef
and #ifndef, for conditional compilations. If the command line is getting longer than the limit of the
operating system used, the -f option is needed.

ANSI specifies the following predefined symbols to exist, which cannot be removed:

__FILE__ "current source filename"

__LINE__ current source line number (int type)

__TIME__ "hh:mm:ss"

__DATE__ "Mmm dd yyyy"

__STDC__ level of ANSI standard. This macro is set to 0 (zero).

When c88 is invoked, also the following predefined symbols exist:

_C88 predefined symbol to identify the compiler. This symbol can be used to flag parts of the
source which must be recognized by the c88 compiler only. It expands to the version
number of the compiler.

_MODEL identifies for which memory model the module is compiled. It expands to a single character
('t' for tiny, 's' for small, 'm' for medium or 'l' for large) that can be tested by the preproces-
sor. See Section 1.2.2.2, "Memory Models" for details.

Example:

The following command defines the symbol NORAM as 1 and defines the symbol PI as 3.1416.

c88 -DNORAM -DPI=3.1416 test.c

-e

Option:

-e

Description:

Remove the output file when an error has occurred. With this option the 'make' utility always does the
proper productions.

Example:

c88 -e test.c

CHAPTER 1 C COMPILER

S5U1C88000C MANUAL I EPSON 39
C COMPILER/ASSEMBLER/LINKER

-err

Option:

-err

Description:

Write errors to the file source.err instead of stderr.

Example:

To write errors to the test.err instead of stderr, enter:

c88 -err test.c

-f

Option:

-f file

Arguments:

A filename for command line processing. The filename "-" may be used to denote standard input.

Description:

Use file for command line processing. To get around the limits on the size of the command line, it is
possible to use command files. These command files contain the options that could not be part of the
real command line. Command files can also be generated on the fly, for example by the make utility.
More than one -f option is allowed.
Some simple rules apply to the format of the command file:

1. It is possible to have multiple arguments on the same line in the command file.

2. To include whitespace in the argument, surround the argument with either single or double
quotes.

3. If single or double quotes are to be used inside a quoted argument, we have to go by the following
rules:

a. If the embedded quotes are only single or double quotes, use the opposite quote around the
argument. Thus, if a argument should contain a double quote, surround the argument with
single quotes.

b. If both types of quotes are used, we have to split the argument in such a way that each embed-
ded quote is surrounded by the opposite type of quote.

Example:

"This has a single quote ' embedded"
or

'This has a double quote " embedded'
or

'This has a double quote " and a single quote '"' embedded"

4. Some operating systems impose limits on the length of lines within a text file. To circumvent this
limitation it is possible to use continuation lines. These lines end with a backslash and newline. In
a quoted argument, continuation lines will be appended without stripping any whitespace on the
next line. For non-quoted arguments, all whitespace on the next line will be stripped.

Example:
"This is a continuation \
line"

→ "This is a continuation line"

control(file1(mode,type),\
file2(type))
→ control(file1(mode,type),file2(type))

5. It is possible to nest command line files up to 25 levels.

CHAPTER 1 C COMPILER

40 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

Example:

Suppose the file mycmds contains the following lines:

-err
test.c

The command line can now be:

c88 -f mycmds

-g

Option:

-g

Description:

Add directives to the output files, incorporating symbolic information to facilitate high level debug-
ging.

When the compiler is set to a high optimization level the debug comfort may decrease.

Examples:

To add symbolic debug information to the output files, enter:

c88 -g test.c

See also:

-O

-H

Option:

-Hfile

Arguments:

The name of an include file.

Description:

Include file before compiling the C-source. This is the same as specifying #include "file" at the first line
of your C-source.

Example:

c88 -Hstdio.h test.c

See also:

-I

-I

Option:

-Idirectory

Arguments:

The name of the directory to search for include file(s).

Description:

Change the algorithm for searching #include files whose names do not have an absolute pathname to
look in directory. Thus, #include files whose names are enclosed in "" are searched for first in the
directory of the file containing the #include line, then in directories named in -I options in left-to-right
order. If the include file is still not found, the compiler searches in a directory specified with the
environment variable C88INC. C88INC may contain more than one directory.

CHAPTER 1 C COMPILER

S5U1C88000C MANUAL I EPSON 41
C COMPILER/ASSEMBLER/LINKER

Finally, the directory ../include relative to the directory where the compiler binary is located is
searched. This is the standard include directory supplied with the compiler package.

For #include files whose names are in <>, the directory of the file containing the #include line is not
searched. However, the directories named in -I options (and the one in C88INC and the relative path)
are still searched.

Example:

c88 -I/proj/include test.c

See also:

Section 1.4.3, "Include Files".

-M

Option:

-Mmodel

Arguments:

The memory model to be used, where model is one of:

s small
c compact code
d compact data
l large

Default:

-Ms

Description:

Select memory model to be used.

Example:

c88 -Ml test.c

See also:

Section 1.2.2.2, "Memory Models".

-O

Option:

-Oflag

Arguments:

0 or 1

Default:

-O1

Description:

Control optimization. You can specify a single number 1 or 0, to enable or disable optimization.

-O0 - Switchable optimizations switched off.

-O1 - Default. Set optimization to let c88 generate the smallest code.

CHAPTER 1 C COMPILER

42 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

An overview of the optimization using the -O option is given below.

Relax alias checking

With -O1 you relax alias checking. If you specify this option, c88 will not erase remembered register
contents of user variables if a write operation is done via an indirect (calculated) address. You must be
sure this is not done in your C-code (check pointers!) before turning on this option.

With -O0 you specify strict alias checking. If you specify this option, the compiler erases all register
contents of user variables when a write operation is done via an indirect (calculated) address.

Clearing of non-initialized static and public variables

The compiler performs 'clearing' of non-initialized static and public variables regardless of the option
specified.

Common subexpression elimination

With -O1 you enable CSE (common subexpression elimination). With this option specified, the
compiler tries to detect common subexpressions within the C code. The common expressions are
evaluated only once, and their result is temporarily held in registers.

With -O0 you disable CSE (common subexpression elimination). With this option specified, the
compiler will not try to search for common expressions. Also relax alias checking, expression propaga-
tion and moving invariant code outside a loop will be disabled.

Example:
/*
 * Compile with -O0,
 * Compile with -O1, common subexpressions are found
 * and temporarily saved.
 */

char x, y, a, b, c, d;

void
main(void)
{

x = (a * b) - (c * d);

y = (a * b) + (c * d);/*(a*b) and (c*d) are common */
}

Data flow, constant/copy propagation

With -O1 you enable constant and copy propagation. With this option, the compiler tries to find
assignments of constant values to a variable, a subsequent assignment of the variable to another
variable can be replaced by the constant value.

With -O0 you disable constant and copy propagation.

Example:
/*
 * Compile with -O0, 'i' is actually assigned to 'j'
 * Compile with -O1, 15 is assigned to 'j', 'i' was
 * propagated
 */

int i;
int j;

void
main(void)
{

i = 10;
j = i + 5;

}

CHAPTER 1 C COMPILER

S5U1C88000C MANUAL I EPSON 43
C COMPILER/ASSEMBLER/LINKER

Expression propagation

With -O1 you enable expression propagation. With this option, the compiler tries to find assignments
of expressions to a variable, a subsequent assignment of the variable to another variable can be
replaced by the expression itself.

With -O0 you disable expression propagation.

Example:
/*
 * Compile with -O0, normal cse is done
 * Compile with -O1, 'i+j' is propagated.
 */

unsigned i, j;

int
main(void)
{

static int a;
a = i + j;
return (a);

}

Code flow, order rearranging

With -O1 you enable control flow optimizations and code order rearranging on the intermediate code
representation, such as jump chaining and conditional jump reversal.

With -O0 you disable control flow optimizations.

Examples:

The following example shows a control optimization:
/*
 * Compile with -O0
 * Compile with -O1, compiler finds first time 'i' is
 * always < 10, the unconditional jump is removed.
 */
int i;

void
main(void)
{

for(i=0; i<10; i++)
{

do_something();
}

}

The following example shows a conditional jump reversal:
/*
 * Compile with -O0, code as written sequential
 * Compile with -O1, code is rearranged
 * Code rearranging enables other optimizations to optimize better, e.g. CSE
 */

int i;
extern void dummy(void);

void main ()
{

do
{

if (i)
{

i--;
}
else
{

i++;
break;

}
dummy();

} while (i);
}

CHAPTER 1 C COMPILER

44 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

Peephole optimization

With -O1 you enable peephole optimization. Remove redundant code. The peephole optimizer
searches for redundant instructions or for instruction sequences which can be combined to minimize
the number of instructions.

With -O0 you disable peephole optimization.

Move invariant code outside loop

With -O1 you move invariant code outside a loop.

With -O0 you disable moving invariant code outside a loop.

Example:
/*
 * Compile with -OI -Oc -O0, normal cse is done
 * Compile with -Oi -Oc -O0, invariant code is found in
 * the loop, code is moved outside the loop.
 */
void
main(void)
{

char x, y, a, b;
int i;

for(i=0; i<20; i++)
{

x = a + b;
y = a + b;

}
}

Fast loops (increases code size)

Fast loops are disabled regardless of the option specified.

Small code size

With -O1 you tell the compiler to generate smaller code. Whenever possible less instructions are used.
Note that this may result in more instruction cycles.

With -O0 you disable the smaller code optimization.

Loop unrolling

Loop unrolling is disabled regardless of the option specified.

Subscript strength reduction

With -O1 you enable subscript strength reduction. With this option specified, the compiler tries to
reduce expressions involving an index variable in strength.

With -O0 you disable subscript strength reduction.

Example:
/*
 * Compile with -O0, disable subscript strength reduction
 * Compile with -O1, begin and end address of 'a' are
 * determined before the loop and temporarily put in registers
 * instead of determining the address each time inside the loop
 */
int i;
int a[4];

void
main(void)
{

for(i=0; i<4; i++)
{

a[i] = i;
}

}

CHAPTER 1 C COMPILER

S5U1C88000C MANUAL I EPSON 45
C COMPILER/ASSEMBLER/LINKER

-o

Option:

-o file

Arguments:

An output filename. The filename may not start immediately after the option. There must be a tab or
space in between.

Default:

Module name with .src suffix.

Description:

Use file as output filename, instead of the module name with .src suffix. Special care must be taken
when using this option, the first -o option found acts on the first file to compile, the second -o option
acts on the second file to compile, etc.

Example:

When specified:

c88 file1.c file2.c -o file3.src -o file2.src

two files will be created, file3.src for the compiled file file1.c and file2.src for the compiled
file file2.c.

-s

Option:

-s

Pragma:

source

Description:

Merge C source code with generated assembly code in output file.

Example:

c88 -s test.c
; test.c:
; 1 |int i;
; 2 |
; 3 |int
; 4 |main(void)
; 5 |{

 extern __START
 global _main

See also:

Pragmas source and nosource in Section 1.4.4, "Pragmas".

-V

Option:

-V

Description:

Display version information.

Example:

c88 -V
S1C88 C compiler vx.y rz SN00000000-015 (c) year TASKING, Inc.

CHAPTER 1 C COMPILER

46 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

-w

Option:

-w[num]

Arguments:

Optionally the warning number to suppress.

Description:

-w suppress all warning messages. -wnum only suppresses the given warning.

Example:

To suppress warning 135, enter:

c88 file1.c -w135

1.4.3 Include Files
You may specify include files in two ways: enclosed in <> or enclosed in "". When an #include directive is
seen, c88 used the following algorithm trying to open the include file:

1. If the filename is enclosed in "", and it is not an absolute pathname (does not begin with a '\', the
include file is searched for in the directory of the file containing the #include line. For example, in:

c88 ..\..\source\test.c

c88 first searches in the directory ..\..\source for include files.

If you compile a source file in the directory where the file is located (c88 test.c), the compiler searches
for include files in the current directory.

Note that this first step is not done for include files enclosed in <>.

2. Use the directories specified with the -I options, in a left-to-right order. For example:

c88 -I..\..\include demo.c

3. Check if the environment variable C88INC exists. If it does exist, use the contents as a directory
specifier for include files. You can specify more than one directory in the environment variable
C88INC by using a separator character. Instead of using -I as in the example above, you can specify
the same directory using C88INC:

set C88INC=..\..\include
c88 demo.c

4. When an include file is not found with the rules mentioned above, the compiler tries the subdirectory
include, one directory higher than the directory containing the c88 binary. For example:

c88.exe is installed in the directory C:\C88\BIN
The directory searched for the include file is C:\C88\INCLUDE

The compiler determines run-time which directory the binary is executed from to find this include
directory.

A directory name specified with the -I option or in C88INC may or may not be terminated with a direc-
tory separator, because c88 inserts this separator, if omitted.

When you specify more than one directory to the environment variable C88INC, you have to use one of
the following separator characters:

; , space

e.g. set C88INC=..\..\include;\proj\include

CHAPTER 1 C COMPILER

S5U1C88000C MANUAL I EPSON 47
C COMPILER/ASSEMBLER/LINKER

1.4.4 Pragmas
According to ANSI (3.8.6) a preprocessing directive of the form:

#pragma pragma-token-list new-line

causes the compiler to behave in an implementation-defined manner. The compiler ignores pragmas
which are not mentioned in the list below. Pragmas give directions to the code generator of the compiler.
Besides the pragmas there are two other possibilities to steer the code generation process: command line
options and keywords (e.g., _near type variables) in the C application itself. The compiler acknowledges
these three groups using the following rules:

Command line options can be overruled by keywords and pragmas. Keywords can be overruled by
pragmas. Hence, pragmas have the highest priority.

This approach makes it possible to set a default optimization level for a source module, which can be
overridden temporarily within the source by a pragma.

The C compiler c88 supports the following pragmas:

asm
Insert the following (non preprocessor lines) as assembly language source code into the output file.
The inserted lines are not checked for their syntax. The code buffer of the peephole optimizer is
flushed. Thus the compiler will stop optimizations like peephole pattern replacement and resumes
these optimizations after the endasm pragma as if it starts at the beginning of a function.

For advanced assembly in-lining, intrinsic functions can be used. The defined set of intrinsic functions
cover most of the specific S1C88 features which could otherwise not be accessed by the C language.
For more information on intrinsic functions see Section 1.2.16, "Intrinsic Functions".

asm_noflush
Same as pragma asm, except that the peephole optimizer does not flush the code buffer and assumes
register contents remain valid.

endasm
Switch back to the C language.
Section 1.2.14, "Inline Assembly", contains more information.

source
Same as -s option. Enable mixing C source with assembly code.

nosource
Default. Disable generation of C source within assembly code.

CHAPTER 1 C COMPILER

48 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

1.4.5 Compiler Limits
The ANSI C standard [1-2.2.4] defines a number of translation limits, which a C compiler must support to
conform to the standard. The standard states that a compiler implementation should be able to translate
and execute a program that contains at least one instance of every one of the limits listed below. c88's
actual limits are given within parentheses.

Most of the actual compiler limits are determined by the amount of free memory in the host system. In
this case a 'D' (Dynamic) is given between parentheses. Some limits are determined by the size of the
internal compiler parser stack. These limits are marked with a 'P'. Although the size of this stack is 200,
the actual limit can be lower and depends on the structure of the translated program.

• 15 nesting levels of compound statements, iteration control structures and selection control structures
(P > 15)

• 8 nesting levels of conditional inclusion (50)

• 12 pointer, array, and function declarators (in any combinations) modifying an arithmetic, a structure, a
union, or an incomplete type in a declaration (15)

• 31 nesting levels of parenthesized declarators within a full declarator (P > 31)

• 32 nesting levels of parenthesized expressions within a full expression (P > 32)

• 31 significant characters in an external identifier (full ANSI-C mode),
500 significant characters in an external identifier (non ANSI-C mode)

• 511 external identifiers in one translation unit (D)

• 127 identifiers with block scope declared in one block (D)

• 1024 macro identifiers simultaneously defined in one translation unit (D)

• 31 parameters in one function declaration (D)

• 31 arguments in one function call (D)

• 31 parameters in one macro definition (D)

• 31 arguments in one macro call (D)

• 509 characters in a logical source line (1500)

• 509 characters in a character string literal or wide string literal (after concatenation) (1500)

• 8 nesting levels for #included files (50)

• 257 case labels for a switch statement, excluding those for any nested switch statements (D)

• 127 members in a single structure or union (D)

• 127 enumeration constants in a single enumeration (D)

• 15 levels of nested structure or union definitions in a single struct-declaration-list (D)

CHAPTER 1 C COMPILER

S5U1C88000C MANUAL I EPSON 49
C COMPILER/ASSEMBLER/LINKER

1.4.6 Linker Messages
c88 has three classes of messages: user errors, warnings and internal compiler errors.

Some user error messages carry extra information, which is displayed by the compiler after the normal
message. The messages with extra information are marked with 'I' in the list described in Appendix. They
never appear without a previous error message and error number. The number of the information
message is not important, and therefore, this number is not displayed. A user error can also be fatal
(marked as 'F' in the list described in Appendix), which means that the compiler aborts compilation
immediately after displaying the error message and may generate a 'not complete' output file.

The error numbers and warning numbers are divided in two groups. The frontend part of the compiler
uses numbers in the range 0 to 499, whereas the backend (code generator) part of the compiler uses
numbers in the range 500 and higher. Note that most error messages and warning messages are produced
by the frontend.

If you program a non fatal error, c88 displays the C source line that contains the error, the error number
and the error message on the screen. If the error is generated by the code generator, the C source line
displayed always is the last line of the current C function, because code generation is started when the
end of the function is reached by the frontend. However, in this case, c88 displays the line number
causing the error before the error message. c88 always generates the error number in the assembly output
file, exactly matching the place where the error occurred.

So, when a compilation is not successful, the generated output file is not accepted by the assembler, thus
preventing a corrupt application to be made (see also the -e option).

Warning messages do not result into an erroneous assembly output file. They are meant to draw your
attention to assumptions of the compiler, for a situation which may not be correct. Warning messages can
be controlled with the -w[num] option.

The last class of messages are the internal compiler errors. The following format is used:

S number: internal error - please report

These errors are caused by failed internal consistency checks and should never occur. However, if such a
'SYSTEM' error appears, please report the occurrence to Seiko Epson. Please include a diskette or tape,
containing a small C program causing the error.

1.4.7 Return Values
c88 returns an exit status to the operating system environment for testing.

For example,

in a MS-DOS BATCH-file you can examine the exit status of the program executed with
ERRORLEVEL:

c88 -s %1.c
IF ERRORLEVEL 1 GOTO STOP_BATCH

The exit status of c88 is one of the numbers of the following list:

Exit status:

0 Compilation successful, no errors

1 There were user errors, but terminated normally

2 A fatal error, or System error occurred, premature ending

3 Stopped due to user abort

CHAPTER 1 C COMPILER

50 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

1.5 Libraries
This chapter describes the library functions delivered with the compiler. Some functions (e.g. printf(),
scanf()) can be edited to match your needs. c88 come with libraries in object format per memory model
and with header files containing the appropriate prototype of the library functions. The library functions
are also shipped in source code (C or assembly).

A number of standard operations within C are too complex to generate inline code for (e.g. 32 bit signed
divide). These operations are implemented as run-time library functions.

Note: Use the library functions at on the user's own risk after performing enough evaluation, since the
function operations cannot be guaranteed.

1.5.1 Header Files
The following header files are delivered with the C compiler:

<assert.h> assert

<c88.h> Special file with c88 definitions. No C functions. Can be used for prototyping your applica-
tion on a host using a standard C compiler.

<ctype.h> isalnum, isalpha, isascii, iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace, isupper,
isxdigit, toascii, _tolower, tolower, _toupper, toupper

<errno.h> Error numbers. No C functions.

<limits.h> Limits and sizes of integral types. No C functions.

<locale.h> localeconv, setlocale. Delivered as skeletons.

<setjmp.h> longjmp, setjmp

<signal.h> raise, signal. Functions are delivered as skeletons.

<stdarg.h> va_arg, va_end, va_start

<stddef.h> offsetof, definition of special types.

<stdio.h> clearerr, fclose, _fclose, feof, ferror, fflush, fgetc, fgetpos, fgets, fopen, _fopen, fprintf, fputc,
fputs, fread, freopen, fscanf, fseek, fsetpos, ftell, fwrite, getc, getchar, gets, _ioread, _iowrite,
_lseek, perror, printf, putc, putchar, puts, _read, remove, rename, rewind, scanf, setbuf,
setvbuf, sprintf, sscanf, tmpfile, tmpnam, ungetc, vfprintf, vprintf, vsprintf, _write

<stdlib.h> abort, abs, atexit, atof, atoi, atol, bsearch, calloc, div, exit, free, getenv, labs, ldiv, malloc,
mblen, mbstowcs, mbtowc, qsort, rand, realloc, srand, strtod, strtol, strtoul, system,
wcstombs, wctomb

<string.h> memchr, memcmp, memcpy, memmove, memset, strcat, strchr, strcmp, strcol, strcpy,
strcspn, strerror, strlen, strncat, strncmp, strncpy, strpbrk, strrchr, strspn, strstr, strtok,
strxfrm

<time.h> asctime, clock, ctime, difftime, gmtime, localtime, mktime, strftime, time. All functions are
delivered as skeletons.

CHAPTER 1 C COMPILER

S5U1C88000C MANUAL I EPSON 51
C COMPILER/ASSEMBLER/LINKER

1.5.2 C Libraries
The C library contains C library functions. All C library functions are described in this chapter. These
functions are only called by explicit function calls in your application program.

The lib directory contains subdirectories for the different processor types. The C library uses the follow-
ing name syntax:

Table 1.5.2.1 C library name syntax
Compiler Model
Small (default)
Compact code
Compact data
Large

Library to link
libcs.a (default)
libcc.a
libcd.a
libcl.a

Note that the lk88 linker is using this naming convention when specifying the -l option. For example,
with -lcd the linker is looking for libcd.a in the system lib directory. Specifying the libraries is a job
taken care of by the control program.

1.5.2.1 C Library Implementation Details
A detailed description of the delivered C library is shown in the following list.

Some C library routines need to be recompiled before they can be used from a program. These library
functions are not activated by default, because of the extra memory required.

Explanation:

Y - Fully implemented

I - Implemented, but need some user written low level routine

R - Implemented, but needs recompilation

L - Delivered as a skeleton

File
assert.h
ctype.h

errno.h
limits.h
locale.h

Implemented
Y
Y

Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
L
L

Routine name
'assert()' macro

isalnum
isalpha
iscntrl
isdigit
isgraph
islower
isprint
ispunct
isspace
isupper
isxdigit
tolower
toupper
_tolower
_toupper
isascii
toascii

localeconv
setlocale

Description / Reason
Macro definition
Most of the routines are delivered as macro AND as function (as prescribed
by ANSI).

Not defined by ANSI
Not defined by ANSI
Not defined by ANSI
Not defined by ANSI
Only Macros
Only Macros

No OS present
No OS present

CHAPTER 1 C COMPILER

52 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

File
setjmp.h

signal.h

stdarg.h

stddef.h
stdio.h

Implemented
Y
Y
Y
Y
L
L
Y
Y
Y
Y
Y
Y
Y
I
Y
Y
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
L
L
I
I
Y
Y
Y
Y
L
L
Y
I
I
Y
L
L
L
L
L
L
L

Routine name

longjmp
setjmp

raise
signal

va_arg
va_end
va_start

clearerr
fclose
feof
ferror
fflush
fgetc
fgetpos
fgets
fopen
fprintf
fputc
fputs
fread
freopen
fscanf
fseek
fsetpos
ftell
fwrite
getc
getchar
gets
perror
printf
putc
putchar
puts
remove
rename
rewind
scanf
setbuf
setvbuf
sprintf
sscanf
tmpfile
tmpnam
ungetc
vfprintf
vprintf
vsprintf
_fclose
_fopen
_ioread
_iowrite
_lseek
_read
_write

Description / Reason

No OS present
No OS present

Only Macros

Needs _fclose

Needs _write/_iowrite
Needs _read/_ioread
Needs _lseek
Needs _read/_ioread
Needs _fopen
Needs _write/_iowrite
Needs _write/_iowrite
Needs _write/_iowrite
Needs _read/_ioread
Needs _fclose/_fopen
Needs _read/_ioread
Needs _lseek
Needs _lseek
Needs _lseek
Needs _write/_iowrite
Needs _read/_ioread
Needs _read/_ioread
Needs _write/_iowrite
Needs _write/_iowrite
Needs _write/_iowrite
Needs _write/_iowrite
Needs _write/_iowrite

Needs _lseek
Needs _read/_ioread

Delivered as a random name generator, but should use some process ID.

Needs _write/_iowrite
Needs _write/_iowrite

Low level file close routine
Low level file open routine
Low level input routine
Low level output routine
Low level file positioning routine
Low level block input routine, when not customized, will use _ioread
Low level block write routine, when not customized, will use _iowrite

CHAPTER 1 C COMPILER

S5U1C88000C MANUAL I EPSON 53
C COMPILER/ASSEMBLER/LINKER

File
stdlib.h

string.h

time.h

Implemented
Y
Y
Y
R
Y
Y
Y
Y
Y
Y
Y
L
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y

L
L
L
L
L
L
Y
Y
Y
Y
Y
Y
Y
Y
Y
L
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
L
Y
L
L
L
L
L
L
L
L

Routine name

abort
abs
atexit
atoi
atol
bsearch
calloc
div
exit
free
getenv
labs
ldiv
malloc
qsort
strtod
strtol
strtoul
rand
realloc
srand

system
mblen
mbstowcs
mbtowc
wcstombs
wctomb

memchr
memcmp
memcpy
memmove
memset
strcat
strchr
strcmp
strcoll
strcpy
strcspn
strerror
strlen
strncat
strncmp
strncpy
strpbrk
strrchr
strspn
strstr
strtok
strxfrm

asctime
clock
ctime
gmtime
localtime
mktime
strftime
time

Description / Reason

Calls _exit() in cstart

Needs recompilation of exit()

Calls _exit() in cstart

No OS present

No OS present
wide chars not supported
wide chars not supported
wide chars not supported
wide chars not supported
wide chars not supported

wide chars not supported

wide chars not supported
real time clock not supported

CHAPTER 1 C COMPILER

54 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

1.5.2.2 C Library Interface Description

_fclose
#include <stdio.h>
int _fclose(FILE *file);

Low level file close function. _fclose is used by the function fclose. The given stream should be
properly closed, any buffer is already flushed.

_fopen
#include <stdio.h>
int _fopen(const char *file, FILE *iop);

Low level file open function. _fopen is used by the functions fopen and freopen. The given stream
should be properly opened.

_ioread
#include <stdio.h>
int _ioread(FILE *fp);

Low level input function. The delivered library contains an 'empty' function. To perform real I/O, you
must customize this function. _ioread is used by all input functions (scanf, getc, gets, etc.).

_iowrite
#include <stdio.h>
int _iowrite(int c, FILE *fp);

Low level output function. The delivered library contains an 'empty' function. To perform real I/O,
you must customize this function. _iowrite is used by all output functions (printf, putc, puts, etc.).

_lseek
#include <stdio.h>
long _lseek(FILE *iop, long offset, int origin);

Low level file positioning function. _lseek is used by all file positioning functions (fgetpos, fseek,
fsetpos, ftell, rewind).

_read
#include <stdio.h>
size_t _read(FILE *fin, char *base, size_t size);

Low level block input function. You must customize this function before using it. When not custom-
ized it will use _ioread. It is used by all input functions. It reads a block of characters from the given
stream.

Returns the number of characters read.

_tolower
#include <ctype.h>
int _tolower(int c);

Converts c to a lowercase character, does not check if c really is an uppercase character. This is a non-
ANSI function.

Returns the converted character.

CHAPTER 1 C COMPILER

S5U1C88000C MANUAL I EPSON 55
C COMPILER/ASSEMBLER/LINKER

_toupper
#include <ctype.h>
int _toupper(int c);

Converts c to an uppercase character, does not check if c really is a lowercase character. This is a non-
ANSI function.

Returns the converted character.

_write
#include <stdio.h>
size_t _write(FILE *iop, char *base, size_t size);

Low level block output function. You must customize this function before using it. When not custom-
ized it will use _iowrite. It is used by all output functions. It writes a block of characters to the given
stream.

Returns the number of characters correctly written.

abort
#include <stdlib.h>
void abort(void);

Terminates the program abnormally. It calls the function _exit, which is defined in the start-up
module.

Returns nothing.

abs
#include <stdlib.h>
int abs(int n);

Returns the absolute value of the signed int argument.

asctime
#include <time.h>
char *asctime(const struct tm *tp);

Converts the time in the structure *tp into a string of the form:

Mon Jan 21 16:15:14 1989\n\0

Returns the time in string form.

assert
#include <assert.h>
void assert(int expr);

When compiled with NDEBUG, this is an empty macro. When compiled without NDEBUG defined, it
checks if expr is true. If it is true, then a line like:

"Assertion failed: expression, file filename, line num"

is printed.

Returns nothing.

atexit
#include <stdlib.h>
int atexit(void (*fcn)(void));

Registers the function fcn to be called when the program terminates normally.

Returns zero, if program terminates normally. non-zero, if the registration cannot be made.

CHAPTER 1 C COMPILER

56 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

atoi
#include <stdlib.h>
int atoi(const char *s);

Converts the given string to an integer value. White space is skipped, conversion is terminated at the
first unrecognized character.

Returns the integer value.

atol
#include <stdlib.h>
long atol(const char *s);

Converts the given string to a long value. White space is skipped, conversion is terminated at the first
unrecognized character.

Returns the long value.

bsearch
#include <stdlib.h>
void *bsearch(const void *key, const void *base, size_t n, size_t size,
 int (* cmp) (const void *, const void *));

This function searches in an array of n members, for the object pointed to by ptr. The initial base of
the array is given by base. The size of each member is specified by size. The given array must be
sorted in ascending order, according to the results of the function pointed to by cmp.

Returns a pointer to the matching member in the array, or NULL when not found.

calloc
#include <stdlib.h>
void *calloc(size_t nobj, size_t size);

The allocated space is filled with zeros. The maximum space that can be allocated can be changed by
customizing the heap size (see Section 1.3.5, "Heap"). By default no heap is allocated. When "calloc()"
is used while no heap is defined, the locator gives an error.

Returns a pointer to space in external memory for nobj items of size bytes length.
NULL if there is not enough space left.

clearerr
#include <stdio.h>
void clearerr(FILE *stream);

Clears the end of file and error indicators for stream.

Returns nothing.

clock
#include <time.h>
clock_t clock(void);

Determines the processor time used.

Returns 1.

CHAPTER 1 C COMPILER

S5U1C88000C MANUAL I EPSON 57
C COMPILER/ASSEMBLER/LINKER

ctime
#include <time.h>
char *ctime(const time_t *tp);

Converts the calender time *tp into local time, in string form. This function is the same as:

asctime(localtime(tp));

Returns the local time in string form.

div
#include <stdlib.h>
div_t div(int num, int denom);

Both arguments are integers. The returned quotient and remainder are also integers.

Returns a structure containing the quotient and remainder of num divided by denom.

exit
#include <stdlib.h>
void exit(int status);

Terminates the program normally. Acts as if 'main()' returns with status as the return value.

Returns zero, on successful termination.

fclose
#include <stdio.h>
int fclose(FILE *stream)

Flushes any unwritten data for stream, discards any unread buffered input, frees any automatically
allocated buffer, then closes the stream.

Returns zero if the stream is successfully closed, or EOF on error.

feof
#include <stdio.h>
int feof(FILE *stream);

Returns a non-zero value if the end-of-file indicator for stream is set.

ferror
#include <stdio.h>
int ferror(FILE *stream);

Returns a non-zero value if the error indicator for stream is set.

fflush
#include <stdio.h>
int fflush(FILE *stream);

Writes any buffered but unwritten date, if stream is an output stream. If stream is an input stream,
the effect is undefined.

Returns zero if successful, or EOF on a write error.

fgetc
#include <stdio.h>
int fgetc(FILE *stream);

Reads one character from the given stream.

Returns the read character, or EOF on error.

CHAPTER 1 C COMPILER

58 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

fgetpos
#include <stdio.h>
int fgetpos(FILE *stream, fpos_t *ptr);

Stores the current value of the file position indicator for the stream pointed to by stream in the object
pointed to by ptr. The type fpos_t is suitable for recording such values.

Returns zero if successful, a non-zero value on error.

fgets
#include <stdio.h>
char *fgets(char *s, int n, FILE *stream);

Reads at most the next n-1 characters from the given stream into the array s until a newline is found.

Returns s, or NULL on EOF or error.

fopen
#include <stdio.h>
FILE *fopen(const char *filename, const char *mode);

Opens a file for a given mode.

Returns a stream. If the file cannot not be opened, NULL is returned.

You can specify the following values for mode:

 "r" read; open text file for reading

 "w" write; create text file for writing; if the file already exists its contents is discarded

 "a" append; open existing text file or create new text file for writing at end of file

 "r+" open text file for update; reading and writing

 "w+" create text file for update; previous contents if any is discarded

 "a+" append; open or create text file for update, writes at end of file

The update mode (with a '+') allows reading and writing of the same file. In this mode the function
fflush must be called between a read and a write or vice versa. By including the letter b after the initial
letter, you can indicate that the file is a binary file. E.g. "rb" means read binary, "w+b" means create
binary file for update. The filename is limited to FILENAME_MAX characters. At most FOPEN_MAX
files may be open at once.

fprintf
#include <stdio.h>
int fprintf(FILE *stream, const char *format, ...);

Performs a formatted write to the given stream. See also "printf()", "_iowrite()" and Section 1.5.2.3,
"Printf and Scanf Formatting Routines".

fputc
#include <stdio.h>
int fputc(int c, FILE *stream);

Puts one character onto the given stream. See also "_iowrite()".

Returns EOF on error.

fputs
#include <stdio.h>
int fputs(const char *s, FILE *stream);

Writes the string to a stream. The terminating NULL character is not written. See also "_iowrite()".

Returns NULL if successful, or EOF on error.

CHAPTER 1 C COMPILER

S5U1C88000C MANUAL I EPSON 59
C COMPILER/ASSEMBLER/LINKER

fread
#include <stdio.h>
size_t fread(void *ptr, size_t size, size_t nobj, FILE *stream);

Reads nobj members of size bytes from the given stream into the array pointed to by ptr. See also
"_ioread()".

Returns the number of successfully read objects.

free
#include <stdlib.h>
void free(void *p);

Deallocates the space pointed to by p. p must point to space earlier allocated by a call to "calloc()",
"malloc()" or "realloc()". Otherwise the behavior is undefined. See also "calloc()", "malloc()" and
"realloc()".

Returns nothing.

freopen
#include <stdio.h>
FILE *freopen(const char *filename, const char *mode, FILE *stream);

Opens a file for a given mode associates the stream with it. This function is normally used to change
the files associated with stdin, stdout, or stderr. See also "fopen()".

Returns stream, or NULL on error.

fscanf
#include <stdio.h>
int fscanf(FILE *stream, const char *format, ...);

Performs a formatted read from the given stream. See also "scanf()", "_ioread()" and Section 1.5.2.3,
"Printf and Scanf Formatting Routines".

Returns the number of items converted successfully.

fseek
#include <stdio.h>
int fseek(FILE *stream, long offset, int origin);

Sets the file position indicator for stream. A subsequent read or write will access data beginning at
the new position. For a binary file, the position is set to offset characters from origin, which may
be SEEK_SET for the beginning of the file, SEEK_CUR for the current position in the file, or
SEEK_END for the end-of-file. For a text stream, offset must be zero, or a value returned by ftell.
In this case origin must be SEEK_SET.

Returns zero if successful, a non-zero value on error.

fsetpos
#include <stdio.h>
int fsetpos(FILE *stream, const fpos_t *ptr);

Positions stream at the position recorded by fgetpos in *ptr.

Returns zero if successful, a non-zero value on error.

CHAPTER 1 C COMPILER

60 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

ftell
#include <stdio.h>
long ftell(FILE *stream);

Returns the current file position for stream, or -1L on error.

fwrite
#include <stdio.h>
size_t fwrite(const void *ptr, size_t size, size_t nobj, FILE *stream);

Writes nobj members of size bytes to the given stream from the array pointed to by ptr.

Returns the number of successfully written objects.

getc
#include <stdio.h>
int getc(FILE *stream);

Reads one character out of the given stream. Currently #defined as getchar(), because FILE I/O is
not supported. See also "_ioread()".

Returns the character read or EOF on error.

getchar
#include <stdio.h>
int getchar(void);

Reads one character from standard input. See also "_ioread()".

Returns the character read or EOF on error.

getenv
#include <stdlib.h>
char *getenv(const char *name);

Returns the environment string associated with name, or NULL if no string exists.

gets
#include <stdio.h>
char *gets(char *s);

Reads all characters from standard input until a newline is found. The newline is replaced by a
NULL-character. See also "_ioread()".

Returns a pointer to the read string or NULL on error.

gmtime
#include <time.h>
struct tm *gmtime(const time_t *tp);

Converts the calender time *tp into Coordinated Universal Time (UTC).

Returns a structure representing the UTC, or NULL if UTC is not available.

isalnum
#include <ctype.h>
int isalnum(int c);

Returns a non-zero value when c is an alphabetic character or a number ([A–Z][a–z][0–9]).

CHAPTER 1 C COMPILER

S5U1C88000C MANUAL I EPSON 61
C COMPILER/ASSEMBLER/LINKER

isalpha
#include <ctype.h>
int isalpha(int c);

Returns a non-zero value when c is an alphabetic character ([A–Z][a–z]).

isascii
#include <ctype.h>
int isascii(int c);

Returns a non-zero value when c is in the range of 0 and 127. This is a non-ANSI function.

iscntrl
#include <ctype.h>
int iscntrl(int c);

Returns a non-zero value when c is a control character.

isdigit
#include <ctype.h>
int isdigit(int c);

Returns a non-zero value when c is a numeric character ([0–9]).

isgraph
#include <ctype.h>
int isgraph(int c);

Returns a non-zero value when c is printable, but not a space.

islower
#include <ctype.h>
int islower(int c);

Returns a non-zero value when c is a lowercase character ([a–z]).

isprint
#include <ctype.h>
int isprint(int c);

Returns a non-zero value when c is printable, including spaces.

ispunct
#include <ctype.h>
int ispunct(int c);

Returns a non-zero value when c is a punctuation character (such as '.', ',', '!', etc.).

isspace
#include <ctype.h>
int isspace(int c);

Returns a non-zero value when c is a space type character (space, tab, vertical tab, formfeed,
linefeed, carriage return).

CHAPTER 1 C COMPILER

62 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

isupper
#include <ctype.h>
int isupper(int c);

Returns a non-zero value when c is an uppercase character ([A–Z]).

isxdigit
#include <ctype.h>
int isxdigit(int c);

Returns a non-zero value when c is a hexadecimal digit ([0–9][A–F][a–f]).

labs
#include <stdlib.h>
long labs(long n);

Returns the absolute value of the signed long argument.

ldiv
#include <stdlib.h>
ldiv_t ldiv(long num, long denom);

Both arguments are long integers. The returned quotient and remainder are also long integers.

Returns a structure containing the quotient and remainder of num divided by denom.

localeconv
#include <locale.h>
struct lconv *localeconv(void);

Sets the components of an object with type struct lconv with values appropriate for the format-
ting of numeric quantities according to the rules of the current locale.

Returns a pointer to the filled-in object.

localtime
#include <time.h>
struct tm *localtime(const time_t *tp);

Converts the calender time *tp into local time.

Returns a structure representing the local time.

longjmp
#include <setjmp.h>
void longjmp(jmp_buf env, int val);

Restores the environment previously saved with a call to setjmp(). The function calling the corre-
sponding call to setjmp() may not be terminated yet. The value of val may not be zero.

CHAPTER 1 C COMPILER

S5U1C88000C MANUAL I EPSON 63
C COMPILER/ASSEMBLER/LINKER

malloc
#include <stdlib.h>
void *malloc(size_t size);

The allocated space is not initialized. The maximum space that can be allocated can be changed by
customizing the heap size (see Section 1.3.5, "Heap"). By default no heap is allocated. When "malloc()"
is used while no heap is defined, the locator gives an error. When "malloc()" is used within the small
or compact data memory model, the heap from the locator description file must be moved from
addressing mode 'data' to addressing mode 'data short'. Otherwise, locating the application results in
locating errors.

Returns a pointer to space in external memory of size bytes length. NULL if there is not enough
space left.

mblen
#include <stdlib.h>
int mblen(const char *s, size_t n);

Determines the number of bytes comprising the multi-byte character pointed to by s, if s is not a null
pointer. Except that the shift state is not affected. At most n characters will be examined, starting at
the character pointed to by s.

Returns the number of bytes, or 0 if s points to the NULL character, or -1 if the bytes do not form a
valid multi-byte character.

mbstowcs
#include <stdlib.h>
size_t mbstowcs(wchar_t *pwcs, const char *s, size_t n);

Converts a sequence of multi-byte characters that begins in the initial shift state from the array
pointed to by s, into a sequence of corresponding codes and stores these codes into the array pointed
to by pwcs, stopping after n codes are stored or a code with value zero is stored.

Returns the number of array elements modified (not including a terminating zero code, if any), or
(size_t)-1 if an invalid multi-byte character is encountered.

mbtowc
#include <stdlib.h>
int mbtowc(wchar_t *pwc, const char *s, size_t n);

Determines the number of bytes that comprise the multi-byte character pointed to by s. It then
determines the code for value of type wchar_t that corresponds to that multi-byte character. If the
multi-byte character is valid and pwc is not a NULL pointer, the mbtowc function stores the code in
the object pointed to by pwc. At most n characters will be examined, starting at the character pointed
to by s.

Returns the number of bytes, or 0 if s points to the NULL character, or -1 if the bytes do not form a
valid multi-byte character.

memchr
#include <string.h>
void *memchr(const void *cs, int c, size_t n);

Checks the first n bytes of cs on the occurrence of character c.

Returns NULL when not found, otherwise a pointer to the found character is returned.

CHAPTER 1 C COMPILER

64 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

memcmp
#include <string.h>
int memcmp(const void *cs, const void *ct, size_t n);

Compares the first n bytes of cs with the contents of ct.

Returns a value < 0 if cs < ct,
0 if cs = = ct,
or a value > 0 if cs > ct.

memcpy
#include <string.h>
void *memcpy(void *s, const void *ct, size_t n);

Copies n characters from ct to s. No care is taken if the two objects overlap.

Returns s

memmove
#include <string.h>
void *memmove(void *s, const void *ct, size_t n);

Copies n characters from ct to s. Overlapping objects will be handled correctly.

Returns s

memset
#include <string.h>
void *memset(void *s, int c, size_t n);

Fills the first n bytes of s with character c.

Returns s

mktime
#include <time.h>
time_t mktime(struct tm *tp);

Converts the local time in the structure *tp into calendar time.

Returns the calendar time, or -1 if it cannot be represented.

offsetof
#include <stddef.h>
int offsetof(type, member);

Returns the offset for the given member in an object of type.

perror
#include <stdio.h>
void perror(const char *s);

Prints s and an implementation-defined error message corresponding to the integer errno, as if by:

fprintf(stderr, "%s: %s\n", s, "error message");

The contents of the error message are the same as those returned by the strerror function with the
argument errno. See also the "strerror()" function.

Returns nothing.

CHAPTER 1 C COMPILER

S5U1C88000C MANUAL I EPSON 65
C COMPILER/ASSEMBLER/LINKER

printf
#include <stdio.h>
int printf(const char *format,...);

Performs a formatted write to the standard output stream. See also "_iowrite()" and Section 5.2.3,
"Printf and Scanf Formatting Routines".

Returns the number of characters written to the output stream.

The format string may contain plain text mixed with conversion specifiers. Each conversion specifier
should be preceded by a '%' character. The conversion specifier should be build in order:

- Flags (in any order):

- specifies left adjustment of the converted argument.

+ a number is always preceded with a sign character.
+ has higher precedence as space.

space a negative number is preceded with a sign, positive numbers with a space.

0 specifies padding to the field width with zeros (only for numbers).

specifies an alternate output form. For o, the first digit will be zero. For x or X, "0x" and
"0X" will be prefixed to the number. For e, E, f, g, G, the output always contains a decimal
point, trailing zeros are not removed.

- A number specifying a minimum field width. The converted argument is printed in a field with at
least the length specified here. If the converted argument has fewer characters than specified, it will
be padded at the left side (or at the right when the flag '-' was specified) with spaces. Padding to
numeric fields will be done with zeros when the flag '0' is also specified (only when padding left).
Instead of a numeric value, also '*' may be specified, the value is then taken from the next argu-
ment, which is assumed to be of type int.

- A period. This separates the minimum field width from the precision.

- A number specifying the maximum length of a string to be printed. Or the number of digits printed
after the decimal point (only for floating point conversions). Or the minimum number of digits to be
printed for an integer conversion. Instead of a numeric value, also '*' may be specified, the value is
then taken from the next argument, which is assumed to be of type int.

- A length modifier 'h', 'l' or 'L'. 'h' indicates that the argument is to be treated as a short or unsigned
short number. 'l' should be used if the argument is a long integer. 'L' indicates that the argument is a
long double.

Flags, length specifier, period, precision and length modifier are optional, the conversion character is
not. The conversion character must be one of the following, if a character following '%' is not in the
list, the behavior is undefined:

Character
d, i
o

x, X
u
c
s

f
e, E
g, G

n

p
%

Printed as
int, signed decimal
int, unsigned octal
int, unsigned hexadecimal in lowercase or uppercase respectively
int, unsigned decimal
int, single character (converted to unsigned char)
char *, the characters from the string are printed until a NULL character is
found. When the given precision is met before, printing will also stop.
double
double
double
int *, the number of characters written so far is written into the argument.
This should be a pointer to an integer in default memory. No value is printed.
pointer (hexadecimal 24-bit value)
No argument is converted, a '%' is printed.

CHAPTER 1 C COMPILER

66 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

putc
#include <stdio.h>
int putc(int c, FILE *stream);

Puts one character onto the given stream. See also "_iowrite()".

Returns EOF on error.

putchar
#include <stdio.h>
int putchar(int c);

Puts one character onto standard output. See also "_iowrite()".

Returns the character written or EOF on error.

puts
#include <stdio.h>
int puts(const char *s);

Writes the string to stdout, the string is terminated by a newline. See also "_iowrite()".

Returns NULL if successful, or EOF on error.

qsort
#include <stdlib.h>
void qsort(const void *base, size_t n, size_t size,
 int (* cmp)(const void *, const void *));

This function sorts an array of n members. The initial base of the array is given by base. The size of
each member is specified by size. The given array is sorted in ascending order, according to the
results of the function pointed to by cmp.

raise
#include <signal.h>
int raise(int sig);

Sends the signal sig to the program. See also "signal()".

Returns zero if successful, or a non-zero value if unsuccessful.

rand
#include <stdlib.h>
int rand(void);

Returns a sequence of pseudo-random integers, in the range 0 to RAND_MAX.

realloc
#include <stdlib.h>
void *realloc(void *p, size_t size);

Reallocates the space for the object pointed to by p. The contents of the object will be the same as
before calling realloc().The maximum space that can be allocated can be changed by customizing the
heap size (see Section 1.3.5, "Heap"). By default no heap is allocated. When "realloc()" is used while no
heap is defined, the linker gives an error. See also "malloc()".

Returns NULL and *p is not changed, if there is not enough space for the new allocation. Otherwise
a pointer to the newly allocated space for the object is returned.

CHAPTER 1 C COMPILER

S5U1C88000C MANUAL I EPSON 67
C COMPILER/ASSEMBLER/LINKER

remove
#include <stdio.h>
int remove(const char *filename);

Removes the named file, so that a subsequent attempt to open it fails.

Returns zero if file is successfully removed, or a non-zero value, if the attempt fails.

rename
#include <stdio.h>
int rename(const char *oldname, const char *newname);

Changes the name of the file.

Returns zero if file is successfully renamed, or a non-zero value, if the attempt fails.

rewind
#include <stdio.h>
void rewind(FILE *stream);

Sets the file position indicator for the stream pointed to by stream to the beginning of the file. This
function is equivalent to:
(void) fseek(stream, 0L, SEEK_SET);
clearerr(stream);

Returns nothing.

scanf
#include <stdio.h>
int scanf(const char *format, ...);

Performs a formatted read from the standard input stream. See also "_ioread()" and Section 1.5.2.3,
"Printf and Scanf Formatting Routines".

Returns the number of items converted successfully.

All arguments to this function should be pointers to variables (in default memory) of the type which
is specified in the format string.
The format string may contain:

- Blanks or tabs, which are skipped.

- Normal characters (not '%'), which should be matched exactly in the input stream.

- Conversion specifications, starting with a '%' character.

Conversion specifications should be build as follows (in order):

- A '∗ ', meaning that no assignment is done for this field.

- A number specifying the maximum field width.

- The conversion characters d, i, n, o, u and x may be precede by 'h' if the argument is a pointer to
short rather than int, or by 'l' (letter ell) if the argument is a pointer to long. The conversion
characters e, f, and g may be precede by 'l' if a pointer double rather than float is in the argu-
ment list, and by 'L' if a pointer to a long double.

- A conversion specifier. '∗ ', maximum field width and length modifier are optional, the conversion
character is not. The conversion character must be one of the following, if a character following '%'
is not in the list, the behavior is undefined.

Length specifier and length modifier are optional, the conversion character is not. The conversion
character must be one of the following, if a character following '%' is not in the list, the behavior is
undefined.

CHAPTER 1 C COMPILER

68 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

Character
d
i

o
u
x
c
s

f
e, E
g, G

n

p
[...]

[^...]

%

Scanned as
int, signed decimal.
int, the integer may be given octal (i.e. a leading 0 is entered) or hexadecimal
(leading "0x" or "0X"), or just decimal.
int, unsigned octal.
int, unsigned decimal.
int, unsigned hexadecimal in lowercase or uppercase.
single character (converted to unsigned char).
char *, a string of non white space characters. The argument should point to
an array of characters, large enough to hold the string and a terminating
NULL character.
float
float
float
int *, the number of characters written so far is written into the argument.
No scanning is done.
pointer; hexadecimal 24-bit value.
Matches a string of input characters from the set between the brackets.
A NULL character is added to terminate the string. Specifying []...] includes
the ']' character in the set of scanning characters.
Matches a string of input characters not in the set between the brackets.
A NULL character is added to terminate the string. Specifying [^]...] includes
the ']' character in the set.
Literal '%', no assignment is done.

setbuf
#include <stdio.h>
void setbuf(FILE *stream, char *buf);

Buffering is turned off for the stream, if buf is NULL.

Otherwise, setbuf is equivalent to:

(void) setvbuf(stream, buf, _IOFBF, BUFSIZ)

See also "setvbuf()".

setjmp
#include <setjmp.h>
int setjmp(jmp_buf env);

Saves the current environment for a subsequent call to longjmp.

Returns the value 0 after a direct call to setjmp(). Calling the function "longjmp()" using the saved
env will restore the current environment and jump to this place with a non-zero return
value.

See also "longjmp()".

setlocale
#include <locale.h>
char *setlocale(int category, const char *locale);

Selects the appropriate portion of the program's locale as specified by the category and locale
arguments.

Returns the string associated with the specified category for the new locale if the selection can be
honored.
NULL pointer if the selection cannot be honored.

CHAPTER 1 C COMPILER

S5U1C88000C MANUAL I EPSON 69
C COMPILER/ASSEMBLER/LINKER

setvbuf
#include <stdio.h>
int setvbuf(FILE *stream, char *buf, int mode, size_t size);

Controls buffering for the stream; this function must be called before reading or writing. mode can
have the following values:

_IOFBF causes full buffering
_IOLBF causes line buffering of text files
_IONBF causes no buffering

 If buf is not NULL, it will be used as a buffer; otherwise a buffer will be allocated. size determines
the buffer size.

Returns zero if successful, a non-zero value for an error.

See also "setbuf()".

signal
#include <signal.h>
void (*signal(int sig, void (*handler)(int)))(int);

Determines how subsequent signals will be handled. If handler is SIG_DFL, the default behavior is
used; if handler is SIG_IGN, the signal is ignored; otherwise, the function pointed to by handler
will be called, with the argument of the type of signal. Valid signals are:

SIGABRT abnormal termination, e.g. from abort
SIGFPE arithmetic error, e.g. zero divide or overflow
SIGILL illegal function image, e.g. illegal instruction
SIGINT interactive attention, e.g. interrupt
SIGSEGV illegal storage access, e.g. access outside memory limits
SIGTERM termination request sent to this program

When a signal sig subsequently occurs, the signal is restored to its default behavior; then the signal-
handler function is called, as if by (*handler)(sig). If the handler returns, the execution will
resume where it was when the signal occurred.

Returns the previous value of handler for the specific signal, or SIG_ERR if an error occurs.

sprintf
#include <stdio.h>
int sprintf(char *s, const char *format, ...);

Performs a formatted write to a string. See also "printf()" and Section 1.5.2.3, "Printf and Scanf Format-
ting Routines".

srand
#include <stdlib.h>
void srand(unsigned int seed);

This function uses seed as the start of a new sequence of pseudo-random numbers to be returned by
subsequent calls to srand(). When srand is called with the same seed value, the sequence of pseudo-
random numbers generated by rand() will be repeated.

Returns nothing.

sscanf
#include <stdio.h>
int sscanf(char *s, const char *format, ...);

Performs a formatted read from a string. See also "scanf()" and Section 1.5.2.3, "Printf and Scanf
Formatting Routines".

CHAPTER 1 C COMPILER

70 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

strcat
#include <string.h>
char *strcat(char *s, const char *ct);

Concatenates string ct to string s, including the trailing NULL character.

Returns s

strchr
#include <string.h>
char *strchr(const char *cs, int c);

Returns a pointer to the first occurrence of character c in the string cs. If not found, NULL is
returned.

strcmp
#include <string.h>
int strcmp(const char *cs, const char *ct);

Compares string cs to string ct.

Returns <0 if cs < ct,
0 if cs = = ct,
>0 if cs > ct.

strcoll
#include <string.h>
int strcoll(const char *cs, const char *ct);

Compares string cs to string ct. The comparison is based on strings interpreted as appropriate to the
program's locale.

Returns <0 if cs < ct,
0 if cs = = ct,
>0 if cs > ct.

strcpy
#include <string.h>
char *strcpy(char *s, const char *ct);

Copies string ct into the string s, including the trailing NULL character.

Returns s

strcspn
#include <string.h>
size_t strcspn(const char *cs, const char *ct);

Returns the length of the prefix in string cs, consisting of characters not in the string ct.

strerror
#include <string.h>
char *strerror(size_t n);

Returns pointer to implementation-defined string corresponding to error n.

CHAPTER 1 C COMPILER

S5U1C88000C MANUAL I EPSON 71
C COMPILER/ASSEMBLER/LINKER

strftime
#include <time.h>
size_t
strftime(char *s, size_t smax, const char *fmt, const struct tm *tp);

Formats date and time information from the structure *tp into s according to the specified format
fmt. fmt is analogous to a printf format. Each %c is replaced as described below:

%a abbreviated weekday name
%A full weekday name
%b abbreviated month name
%B full month name
%c local date and time representation
%d day of the month (01–31)
%H hour, 24-hour clock (00–23)
%I hour, 12-hour clock (01–12)
%j day of the year (001–366)
%m month (01–12)
%M minute (00–59)
%p local equivalent of AM or PM
%S second (00–59)
%U week number of the year, Sunday as first day of the week (00–53)
%w weekday (0–6, Sunday is 0)
%W week number of the year, Monday as first day of the week (00–53)
%x local date representation
%X local time representation
%y year without century (00–99)
%Y year with century
%Z time zone name, if any
%% %

Ordinary characters (including the terminating '\0') are copied into s. No more than smax characters
are placed into s.

Returns the number of characters ('\0' not included), or
zero if more than smax characters where produced.

strlen
#include <string.h>
size_t strlen(const char *cs);

Returns the length of the string in cs, not counting the NULL character.

strncat
#include <string.h>
char *strncat(char *s, const char *ct, size_t n);

Concatenates string ct to string s, at most n characters are copied. Add a trailing NULL character.

Returns s

strncmp
#include <string.h>
int strncmp(const char *cs, const char *ct, size_t n);

Compares at most n bytes of string cs to string ct.

Returns <0 if cs < ct,
0 if cs = = ct,
>0 if cs > ct.

CHAPTER 1 C COMPILER

72 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

strncpy
#include <string.h>
char *strncpy(char *s, const char *ct, size_t n);

Copies string ct onto the string s, at most n characters are copied. Add a trailing NULL character if
the string is smaller than n characters.

Returns s

strpbrk
#include <string.h>
char *strpbrk(const char *cs, const char *ct);

Returns a pointer to the first occurrence in cs of any character out of string ct. If none are found,
NULL is returned.

strrchr
#include <string.h>
char *strrchr(const char *cs, int c);

Returns a pointer to the last occurrence of c in the string cs. If not found, NULL is returned.

strspn
#include <string.h>
size_t strspn(const char *cs, const char *ct);

Returns the length of the prefix in string cs, consisting of characters in the string ct.

strstr
#include <string.h>
char *strstr(const char *cs, const char *ct);

Returns a pointer to the first occurrence of string ct in the string cs. Returns NULL if not found.

strtod
#include <stdlib.h>
double strtod(const char *s, char **endp);

Converts the initial portion of the string pointed to by s to a double value. Initial white spaces are
skipped. When endp is not a NULL pointer, after this function is called, *endp will point to the first
character not used by the conversion.

Returns the read value.

strtok
#include <string.h>
char *strtok(char *s, const char *ct);

Search the string s for tokens delimited by characters from string ct. It terminates the token with a
NULL character.

Returns a pointer to the token. A subsequent call with s == NULL will return the next token in the
string.

CHAPTER 1 C COMPILER

S5U1C88000C MANUAL I EPSON 73
C COMPILER/ASSEMBLER/LINKER

strtol
#include <stdlib.h>
long strtol(const char *s, char **endp, int base);

Converts the initial portion of the string pointed to by s to a long integer. Initial white spaces are
skipped. Then a value is read using the given base. When base is zero, the base is taken as defined
for integer constants. I.e. numbers starting with an '0' are taken octal, numbers starting with '0x' or
'0X' are taken hexadecimal. Other numbers are taken decimal. When endp is not a NULL pointer, after
this function is called, *endp will point to the first character not used by the conversion.

Returns the read value.

strtoul
#include <stdlib.h>
unsigned long strtoul(const char *s, char **endp, int base);

Converts the initial portion of the string pointed to by s to an unsigned long integer. Initial white
spaces are skipped. Then a value is read using the given base. When base is zero, the base is taken
as defined for integer constants. I.e. numbers starting with an '0' are taken octal, numbers starting
with '0x' or '0X' are taken hexadecimal. Other numbers are taken decimal. When endp is not a NULL
pointer, after this function is called, *endp will point to the first character not used by the conversion.

Returns the read value.

strxfrm
#include <string.h>
size_t strncmp(char *ct, const char *cs, size_t n);

Transforms the string pointed to by cs and places the resulting string into the array pointed to by ct.
No more than n characters are placed into the resulting string pointed to by ct, including the termi-
nating null character.

Returns the length of the transformed string.

system
#include <stdlib.h>
int system(const char *s);

Passes the string s to the environment for execution.

Returns a non-zero value if there is a command processor, if s is NULL; or an implementation-
dependent value, if s is not NULL.

time
#include <time.h>
time_t time(time_t *tp);

The return value is also assigned to *tp, if tp is not NULL.

Returns the current calendar time, or -1 if the time is not available.

tmpfile
#include <stdio.h>
FILE *tmpfile(void);

Creates a temporary file of the mode "wb+" that will be automatically removed when closed or when
the program terminates normally.

Returns a stream if successful, or NULL if the file could not be created.

CHAPTER 1 C COMPILER

74 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

tmpnam
#include <stdio.h>
char *tmpnam(char s[L_tmpnam]);

Creates a temporary name (not a file). Each time tmpnam is called a different name is created.
tmpnam(NULL) creates a string that is not the name of an existing file, and returns a pointer to an
internal static array. tmpnam(s) creates a string and stores it in s and also returns it as the function
value. s must have room for at least L_tmpnam characters. At most TMP_MAX different names are
guaranteed during execution of the program.

Returns a pointer to the temporary name, as described above.

toascii
#include <ctype.h>
int toascii(int c);

Converts c to an ascii value (strip highest bit). This is a non-ANSI function.

Returns the converted value.

tolower
#include <ctype.h>
int tolower(int c);

Returns c converted to a lowercase character if it is an uppercase character, otherwise c is returned.

toupper
#include <ctype.h>
int toupper(int c);

Returns c converted to an uppercase character if it is a lowercase character, otherwise c is returned.

ungetc
#include <stdio.h>
int ungetc(int c, FILE *fin);

Pushes at the most one character back onto the input buffer.

Returns EOF on error.

va_arg
#include <stdarg.h>
va_arg(va_list ap, type);

Returns the value of the next argument in the variable argument list. It's return type has the type of
the given argument type. A next call to this macro will return the value of the next argu-
ment.

va_end
#include <stdarg.h>
va_end(va_list ap);

This macro must be called after the arguments have been processed. It should be called before the
function using the macro 'va_start' is terminated (ANSI specification).

CHAPTER 1 C COMPILER

S5U1C88000C MANUAL I EPSON 75
C COMPILER/ASSEMBLER/LINKER

va_start
#include <stdarg.h>
va_start(va_list ap, lastarg);

This macro initializes ap. After this call, each call to va_arg() will return the value of the next argu-
ment. In our implementation, va_list cannot contain any bit type variables. Also the given argu-
ment lastarg must be the last non-bit type argument in the list.

vfprintf
#include <stdio.h>
int vfprintf(FILE *stream, const char *format, va_list arg);

Is equivalent to vprintf, but writes to the given stream. See also "vprintf()", "_iowrite()" and Section
1.5.2.3, "Printf and Scanf Formatting Routines".

vprintf
#include <stdio.h>
int vprintf(const char *format, va_list arg);

Does a formatted write to standard output. Instead of a variable argument list as for printf(), this
function expects a pointer to the list. See also "printf()", "_iowrite()" and Section 1.5.2.3, "Printf and
Scanf Formatting Routines".

vsprintf
#include <stdio.h>
int vsprintf(char *s, const char *format, va_list arg);

Does a formatted write a string. Instead of a variable argument list as for printf(), this function expects
a pointer to the list. See also "printf()", "_iowrite()" and Section 1.5.2.3, "Printf and Scanf Formatting
Routines".

wcstombs
#include <stdlib.h>
size_t wcstombs(char *s, const wchar_t *pwcs, size_t n);

Converts a sequence of codes that correspond to multi-byte characters from the array pointed to by
pwcs, into a sequence of multi-byte characters that begins in the initial shift state and stores these
multi-byte characters into the array pointed to by s, stopping if a multi-byte character would exceed
the limit of n total bytes or if a NULL character is stored.

Returns the number of bytes modified (not including a terminating NULL character, if any), or
(size_t)-1 if a code is encountered that does not correspond to a valid multi-byte charac-
ter.

wctomb
#include <stdlib.h>
int wctomb(char *s, wchar_t wchar);

Determines the number of bytes needed to represent the multi-byte corresponding to the code whose
value is wchar (including any change in the shift state). It stores the multi-byte character representa-
tion in the array pointed to by s (if s is not a NULL pointer). At most MB_CUR_MAX characters are
stored. If the value of wchar is zero, the wctomb function is left in the initial shift state.

Returns the number of bytes, or -1 if the value of wchar does not correspond to a valid multi-byte
character.

CHAPTER 1 C COMPILER

76 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

1.5.2.3 Printf and Scanf Formatting Routines
The functions printf(), fprintf(), vfprintf(), vsprintf(), ... call one single function that deals
with the format string and arguments. This function is _doprint(). This is a rather big function because
the number of possibilities of the format specifiers in a format string are large. If you do not use all the
possibilities of the format specifiers a smaller _doprint() function can be used. Three different versions
exist:

LARGE the full formatter, no restrictions

MEDIUM floating point printing is not supported

SMALL as MEDIUM, but also the precision
specifier '.' cannot be used

The same applies to all scanf type functions, which all call the function _doscan().

The formatters included in the libraries are LARGE. You can select different formatters by linking sepa-
rate objects of _doscan() and _doprint() with your application. The following objects are included:

lib\libcs

_doprnts.obj _doprint(), small model, SMALL formatter
_doprntm.obj _doprint(), small model, MEDIUM formatter
_doprntl.obj _doprint(), small model, LARGE formatter
_doscans.obj _doscan(), small model, SMALL formatter
_doscanm.obj _doscan(), small model, MEDIUM formatter
_doscanl.obj _doscan(), small model, LARGE formatter

lib\libcc

_doprnts.obj _doprint(), code compact, SMALL formatter
_doprntm.obj _doprint(), code compact, MEDIUM formatter
_doprntl.obj _doprint(), code compact, LARGE formatter
_doscans.obj _doscan(), code compact, SMALL formatter
_doscanm.obj _doscan(), code compact, MEDIUM formatter
_doscanl.obj _doscan(), code compact, LARGE formatter

lib\libcd

_doprnts.obj _doprint(), data compact, SMALL formatter
_doprntm.obj _doprint(), data compact, MEDIUM formatter
_doprntl.obj _doprint(), data compact, LARGE formatter
_doscans.obj _doscan(), data compact, SMALL formatter
_doscanm.obj _doscan(), data compact, MEDIUM formatter
_doscanl.obj _doscan(), data compact, LARGE formatter

lib\libcl

_doprnts.obj _doprint(), large model, SMALL formatter
_doprntm.obj _doprint(), large model, MEDIUM formatter
_doprntl.obj _doprint(), large model, LARGE formatter
_doscans.obj _doscan(), large model, SMALL formatter
_doscanm.obj _doscan(), large model, MEDIUM formatter
_doscanl.obj _doscan(), large model, LARGE formatter

Example:

cc88 -Ms hello.obj c:\c88\lib\libcs_doprntm.obj

This will use the MEDIUM _doprint() formatter for the small model.

CHAPTER 1 C COMPILER

S5U1C88000C MANUAL I EPSON 77
C COMPILER/ASSEMBLER/LINKER

1.5.3 Run-time Library
Some compiler generated code contains calls to run-time library functions that would use too much code
if generated as inline code. The name of a run-time library function always contains two leading under-
scores. For example, to perform a 32 bit division.

Because c88 generates assembly code (and not object code) it prepends an underscore '_' for the names of
(public) C variables to distinguish these symbols from S1C88 registers. So if you use a function with a
leading underscore, the assembly label for this function contains two leading underscores. This function
name could cause a name conflict (double defined) with one of the run-time library functions. However,
ANSI states that it is not portable to use names starting with an underscore for public C variables and
functions, because results are implementation defined.

Table 1.5.3.1 Run-time library name syntax
Compiler Model
small (default)
compact code
compact data
large

Library to link
librts.a (default)
librtc.a
librtd.a
librtl.a

CHAPTER 1 C COMPILER

78 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

1.6 Floating Point Arithmetic
Floating point arithmetic support for the c88 is included in software as a separate set of libraries. When
linking, the desired floating point library must be specified after the C library. The libraries are reentrant,
and only use temporary program stack memory.

To ensure portability of floating point arithmetic, floating point arithmetic for the c88 has been imple-
mented adhering to the IEEE-754 standard for floating point arithmetic. See the "IEEE Standard for
Binary Floating-Point Arithmetic" document, as published in 1985 by the IEEE Computer Society, for
more details on these floating point arithmetic definitions. This document is referred to as IEEE-754 in
this manual.

c88 supports single precision floating point operations only, usable via the ANSI C types float and
double. For the sole purpose of speed, also a non-trapping library is included for each memory model.
For the library name syntax, see Section 1.6.6, "Floating Point Libraries".

It is possible to intercept floating point exceptional cases and, if desired, handle them with an application
defined exception handler. The intercepting of floating point exceptions is referred to as 'trapping'.
Examples of how to install a trap handler are included.

1.6.1 Data Size and Register Usage
c88 handles float and double type values as 4-bit data. The range that can be specified is

+/-1,176E-38 to +/-3,402E+38

The compiler uses the HLBA register (HL ← high word, BA ← low word) when float/double type
arguments and return values are allocated to a register.

1.6.2 Compiler Option
-F and -Fc shown below are provided as the command option for c88 to controlling floating point arith-
metic. See Section 1.4.2, "Compiler", for details of the invocation syntax and other options.

-F/-Fc

Option:

-F[c]

Description:

-F forces using single precision floating point only, even when double or long double is used. In
fact double and long double are treated as float and default argument promotion from float to
double is suppressed. When you use this option, you must use the single precision version of the C
library. See Section 1.6.6, "Floating Point Libraries", for the naming conventions of the standard
libraries.

-Fc enables the use of 'float' constants. In ANSI C floating point constants are treated having type
double, unless the constant has the suffix 'f'. So '3.0' is a double precision constant, while '3.0f' is a
single precision constant. This option tells the compiler to treat all floating point constants as single
precision float types (unless they have an explicit 'l' suffix).

Example:

To force double to be treated as float, enter:

c88 -F test.c

CHAPTER 1 C COMPILER

S5U1C88000C MANUAL I EPSON 79
C COMPILER/ASSEMBLER/LINKER

1.6.3 Special Floating Point Values
Below is a list of special, IEEE-754 defined, floating point values as they can occur during run-time.

Table 1.6.3.1 Special floating point values
Special Value

+0.0 (Positive Zero)
-0.0 (Negative Zero)
+INF (Positive Infinite)
-INF (Negative Infinite)
NaN (Not a Number)

Sign
0
1
0
1
0

Exponent
all zeros
all zeros
all ones
all zeros
all ones

Mantissa
all zeros
all zeros
all zeros
all zeros
all ones

1.6.4 Trapping Floating Point Exceptions
Two floating point run-time libraries are delivered for every memory model:

with floating point trap handling (libfpmt.a)

without a trapping mechanism (libfpm.a)

The distinction is made by adding an additional 't' to the name of the library comprising trap handling.
The m must be replaced by one of the C memory models ('s' small, 'c' compact code, 'd' compact data or 'l'
large). By specifying the -fptrap option to the control program cc88, the trapping type floating point
library is linked into your application. If this option is not specified, the floating point library without any
trapping mechanism is used when linking.

The floating point libraries without trapping mechanism execute faster, but the result of a floating point
operation is undefined when any operand or result is not in range.

IEEE-754 Trap Handler

In the IEEE-754 standard a trap handler is defined, which is invoked on (specified) exceptional events,
passing along much information about the event. To install your own trap handler, use the library call
_fp_install_trap_handler. When installing your own exception handler, you will have to select
on which types of exceptions you want to have your handler invoked, using the function call
_fp_set_exception_mask. See further below for more details on the floating point library excep-
tion handling function interface.

SIGFPE Signal Handler

In ANSI-C the regular approach of dealing with floating point exceptions is by installing a so-called
signal handler by means of the ANSI-C library call signal. If such a handler is installed, floating
point exceptions cause this handler to be invoked. To have the signal handler for the SIGFPE signal
actually become operational with the provided floating point libraries, a (very) basic version of the
IEEE-754 exception handler must be installed (see example below) which will raise the desired signal
by means of the ANSI-C library function call raise. For this to be achieved, the function call
_fp_install_trap _handler is present. When installing your own exception handler, you will
have to select on which types of exceptions you want to receive a signal, using the function call
_fp_set_exception_mask. See further below for more details on the floating point library excep-
tion handling function interface.

There is no way to specify any information about the context or nature of the exception to the signal
handler. Just that a floating point exception occurred can be detected. See therefore the IEEE-754 trap
handler discussion above if you want more control over floating point results.

CHAPTER 1 C COMPILER

80 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

Example:
#include <float.h>
#include <signal.h>

static void pass_fp_exception_to_signal(_fp_exception_info_t *info)
{

info; /* suppress parameter not used warning */

/* cause SIGFPE signal to be raised */

raise(SIGFPE);
/*
 * now continue the program
 * with the unaltered result
 */

}

1.6.5 Floating Point Trap Handling API
For purposes of dealing with floating point arithmetic exceptions, the following library calls are available:

#include <float.h>

int _fp_get_exception_mask(void);
void _fp_set_exception_mask(int);

A pair of functions to get or set the mask which controls which type of floating point arithmetic excep-
tions are either ignored or passed on to the trap handler. The types of possible exception flag bits are
defined as:

EFINVOP
EFDIVZ
EFOVFL
EFUNFL
EFINEXCT

while,
EFALL

is the OR of all possible flags. See below for an explanation of each flag.

#include <float.h>

int _fp_get_exception_status(void);
void _fp_set_exception_status(int);

A pair of functions for examining or presetting the status word containing the accumulation of all floating
point exception types which occurred so far. See the possible exception type flags above.

#include <float.h>

void _fp_install_trap_handler(void (*)(_fp_exception_info_t *));

This function call expects a pointer to a function, which in turn expects a pointer to a structure of type
_fp_exception_info_t. The members of _fp_exception_info_t are:

exception

This member contains one of the following (numerical) values:
EFINVOP
EFDIVZ
EFOVFL
EFUNFL
EFINEXCT

CHAPTER 1 C COMPILER

S5U1C88000C MANUAL I EPSON 81
C COMPILER/ASSEMBLER/LINKER

operation

This member contains one of the following numbers:
_OP_ADDITION
_OP_SUBTRACTION
_OP_COMPARISON
_OP_EQUALITY
_OP_LESS_THAN
_OP_LARGER_THAN
_OP_MULTIPLICATION
_OP_DIVISION
_OP_CONVERSION

source_format
destination_format

Numerical values of these two members are:
_TYPE_SIGNED_CHARACTER
_TYPE_UNSIGNED_CHARACTER
_TYPE_SIGNED_SHORT_INTEGER
_TYPE_UNSIGNED_SHORT_INTEGER
_TYPE_SIGNED_INTEGER
_TYPE_UNSIGNED_INTEGER
_TYPE_SIGNED_LONG_INTEGER
_TYPE_UNSIGNED_LONG_INTEGER
_TYPE_FLOAT
_TYPE_DOUBLE

operand1 /* left side of binary or */
/* right side of unary */

operand2 /* right side for binary */
result

These three are of the following type, to receive and return a value of arbitrary type:

typedef union _fp_value_union_t
{

char c;
unsigned char uc;
short s;
unsigned short us;
int i;
unsigned int ui;
long l;
unsigned long ul;
float f;

#if ! _SINGLE_FP
double d;

#endif
}
_fp_value_union_t;

The following table lists all the exception code flags, the corresponding error description and result:

Table 1.6.5.1 Exception type flag codes
Error Description

Invalid Operation
Division by zero
Overflow
Underflow
Inexact
INF Infinite which is the largest absolute floating point number, being always:

-INF < every finite number < +INF
NAN Not a Number, a symbolic entity encoded in floating point format.

Exception Flag
EFINVOP
EFDIVZ
EFOVFL
EFUNFL
EFINEXT

Default Result with Trapping
NaN

+INF or -INF
+INF or -INF

zero
undefined

To ensure all exception types are specified, you can specify EFALL to a function, which is the binary OR
of all above enlisted flags.

CHAPTER 1 C COMPILER

82 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

1.6.6 Floating Point Libraries
When you use floating point, the floating point library must always be linked after the C library and
before the run-time library. Arithmetic routines like sin(), cos(), etc. are not present in these libraries
(they are present in the C library), only basic floating point operations can be done.

Table 1.6.6.1 Compiler model and floating point library

Compiler Model

Small (default)
Compact code
Compact data
Large

No trapping
libfps.a (default)
libfpc.a
libfpd.a
libfpl.a

Library to link
Trapping

libfpst.a
libfpct.a
libfpdt.a
libfplt.a

The following floating point header files are delivered with the C compiler:

<float.h> Constants related to floating point arithmetic.

<math.h> acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod, frexp, ldexp, log, log10, modf,
pow, sin, sinh, sqrt, tan, tanh

<time.h> difftime (Delivered as a skeleton.)

1.6.6.1 Floating Point Arithmetic Routine

acos
#include <math.h>
double acos(double x);

Returns the arccosine cos-1(x) of x in the range [0, π], x ∈ [-1, 1].

asin
#include <math.h>
double asin(double x);

Returns the arcsine sin-1(x) of x in the range [-π/2, π/2], x ∈ [-1, 1].

atan
#include <math.h>
double atan(double x);

Returns the arctangent tan-1(x) of x in the range [-π/2, π/2], x ∈ [-1, 1].

atan2
#include <math.h>
double atan2(double y, double x);

Returns the result of: tan-1(y/x) in the range [-π, π].

atof
#include <stdlib.h>
double atof(const char *s);

Converts the given string to a double value. White space is skipped, conversion is terminated at the
first unrecognized character.

Returns the double value.

CHAPTER 1 C COMPILER

S5U1C88000C MANUAL I EPSON 83
C COMPILER/ASSEMBLER/LINKER

ceil
#include <math.h>
double ceil(double x);

Returns the smallest integer not less than x, as a double.

cos
#include <math.h>
double cos(double x);

Returns the cosine of x.

cosh
#include <math.h>
double cosh(double x);

Returns the hyperbolic cosine of x.

difftime
#include <time.h>
double difftime(time_t time2, time_t time1);

Returns the result of time2 - time1 in seconds.

exp
#include <math.h>
double exp(double x);

Returns the result of the exponential function ex.

fabs
#include <math.h>
double fabs(double x);

Returns the absolute double value of x. |x|

floor
#include <math.h>
double floor(double x);

Returns the largest integer not greater than x, as a double.

fmod
#include <math.h>
double fmod(double x, double y);

Returns the floating-point remainder of x/y, with the same sign as x. If y is zero, the result is
implementation-defined.

frexp
#include <math.h>
double frexp(double x, int *exp);

Splits x into a normalized fraction in the interval [1/2, 1> //C-51 compatible, which is returned, and
a power of 2, which is stored in *exp. If x is zero, both parts of the result are zero. For example:
frexp(4.0, &var) results in 0.5·23. The function returns 0.5, and 3 is stored in var.

Returns the normalized fraction.

CHAPTER 1 C COMPILER

84 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

ldexp
#include <math.h>
double ldexp(double x, int n);

Returns the result of: x·2n.

log
#include <math.h>
double log(double x);

Returns the natural logarithm ln(x), x>0.

log10
#include <math.h>
double log10(double x);

Returns the base 10 logarithm log10(x), x>0.

modf
#include <math.h>
double modf(double x, double *ip);

Splits x into integral and fractional parts, each with the same sign as x. It stores the integral part in *ip.

Returns the fractional part.

pow
#include <math.h>
double pow(double x, double y);

A domain error occurs if x=0 and y 0, or if x<0 and y is not an integer.

Returns the result of x raised to the power of y: xy.

sin
#include <math.h>
double sin(double x);

Returns the sine of x.

sinh
#include <math.h>
double sinh(double x);

Returns the hyperbolic sine of x.

sqrt
#include <math.h>
double sqrt(double x);

Returns the square root of x. √x, where x 0.

tan
#include <math.h>
double tan(double x);

Returns the tangent of x.

tanh
#include <math.h>
double tanh(double x);

Returns the hyperbolic tangent of x.

CHAPTER 2 ASSEMBLER

S5U1C88000C MANUAL I EPSON 85
C COMPILER/ASSEMBLER/LINKER

CHAPTER 2 ASSEMBLER

2.1 Description
The S1C88 assembler as88 assembles the assembly source files generated by the C compiler c88 to gener-
ate the relocatable object files that can be linked using lk88.

The following phases can be identified during assembly:

1. Preprocess

2. Legality check of all instructions

3. Address calculation

4. Generation of object and (when requested) list file

The assembler generates relocatable object files using the IEEE-695 object format. This file format speci-
fies a code part and a symbol part as well as a symbolic debug information part.

File inclusion and macro facilities are integrated into the assembler. See Section 2.5, "Macro Operations",
for more information.

2.1.1 Invocation
The compiler control program, cc88, may call the assembler automatically. cc88 translates some of its
command line options to options of as88. However, the assembler can be invoked as an individual
program also.

The invocation of as88 is:

as88 [option]... source-file [map-file]
as88 -V

Invocation with -V only displays a version header.

The source-file must be an assembly source file. This file is the input source of the assembler. This file
contains assembly code which is either user written or generated by c88. Any name is allowed for this
file. If this name does not have an extension, the extension .asm is assumed or, if the file is still not
found, the extension .src is assumed.

The optional map-file is passed to the assembler when producing an absolute list file. The map file is
produced by the locator. To produce an absolute list file, see Section 2.1.4.1, "Absolute List File Genera-
tion".

In the default situation, an object file with extension .obj is produced. With the -l option a list file with
extension .lst is produced.

Options are preceded by a '-' (minus sign). Options can not be combined after a single '-'. If all goes well,
the assembler generates a relocatable object module which contains the object code, with the default
extension .obj. You can specify another output filename with the -o option. Error messages are written
to the terminal, unless they are directed to an error list file with the -err assembler option.

The following list describes the assembler options briefly. The next section gives a more detailed descrip-
tion.

CHAPTER 2 ASSEMBLER

86 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

Options Summary

Option
-C file
-Dmacro[=def]
-L[flag...]
-M[s|c|d|l]
-V
-c
-e
-err
-f file
-i[l|g]
-l
-o filename
-t
-v

-w[num]

Description
Include file before source
Define preprocessor macro
Remove specified source lines from list file
Specify memory model
Display version header only
Switch to case insensitive mode (default case sensitive)
Remove object file on assembly errors
Redirect error messages to error file
Read options from file
Default label style local or global
Generate listing file
Specify name of output file
Display section summary
Verbose mode. Print the filenames and numbers of the passes
while they progress
Suppress one or all warning messages

2.1.2 Detailed Description of Assembler Options

-C

Option:

-C file

Arguments:

The name of an include file.

Description:

Include file before assembling the source.

Example:

To include the file S1C88.inc before any other include file, enter:

as88 -C S1C88.inc test.src

-c

Option:

-c

Default:

Case sensitive

Description:

Switch to case insensitive mode. By default, the assembler operates in case sensitive mode.

Example:

To switch to case insensitive mode, enter:

as88 -c test.src

-D

Option:

-Dmacro[=def]

Arguments:

The macro you want to define and optionally its definition.

CHAPTER 2 ASSEMBLER

S5U1C88000C MANUAL I EPSON 87
C COMPILER/ASSEMBLER/LINKER

Description:

Define macro as in 'define'. If def is not given ('=' is absent), '1' is assumed. Any number of symbols can
be defined.

Example:

as88 -DTWO=2 test.src

-e

Option:

-e

Description:

Use this option if you do not want an object file when the assembler generates errors. With this option
the 'make' utility always does the proper productions.

Example:

as88 -e test.src

-err

Option:

-err

Description:

The assembler redirects error messages to a file with the same basename as the output file and the
extension .ers. The assembler uses the basename of the output file instead of the input file.

Example:

To write errors to the test.ers instead of stderr, enter:

as88 -err test.src

-f

Option:

-f file

Arguments:

A filename for command line processing. The filename "-" may be used to denote standard input.

Description:

Use file for command line processing. To get around the limits on the size of the command line, it is
possible to use command files. These command files contain the options that could not be part of the
real command line. Command files can also be generated on the fly, for example by the make utility.

More than one -f option is allowed.

Some simple rules apply to the format of the command file:

1. It is possible to have multiple arguments on the same line in the command file.

2. To include whitespace in the argument, surround the argument with either single or double
quotes.

3. If single or double quotes are to be used inside a quoted argument, we have to go by the following
rules:

a. If the embedded quotes are only single or double quotes, use the opposite quote around the
argument. Thus, if a argument should contain a double quote, surround the argument with
single quotes.

b. If both types of quotes are used, we have to split the argument in such a way that each embed-
ded quote is surrounded by the opposite type of quote.

CHAPTER 2 ASSEMBLER

88 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

Example:
"This has a single quote ' embedded"

or
'This has a double quote " embedded'

or
'This has a double quote " and a single quote '"' embedded"

4. Some operating systems impose limits on the length of lines within a text file. To circumvent this
limitation it is possible to use continuation lines. These lines end with a backslash and newline. In
a quoted argument, continuation lines will be appended without stripping any whitespace on the
next line. For non-quoted arguments, all whitespace on the next line will be stripped.

Example:
"This is a continuation \
line"

→ "This is a continuation line"

control(file1(mode,type),\
file2(type))
→ control(file1(mode,type),file2(type))

5. It is possible to nest command line files up to 25 levels.

Example:

Suppose the file mycmds contains the following line:

-err
test.src

The command line can now be:
as88 -f mycmds

-i

Option:

-i[l|g]

Default:

-il (local labels)

Description:

Select default handling for label identifiers. -il specifies that data and code assembly labels are by
default treated as LOCAL labels, unless overruled by the GLOBAL directive. With -ig data and code
assembly labels are by default treated as GLOBAL labels, unless overruled by the LOCAL directive.

Example:

To specify that assembly label identifiers are treated as GLOBAL labels by default, enter:

as88 -ig test.src

-L

Option:

-L[flag...]

Arguments:

Optionally one or more flags specifying which source lines are to be removed from the list file.

Default:

-LcDEGlMnPQsWXy

CHAPTER 2 ASSEMBLER

S5U1C88000C MANUAL I EPSON 89
C COMPILER/ASSEMBLER/LINKER

Description:

Specify which source lines are to be removed from the list file. A list file is generated when the -l
option is specified. If you do not specify the -L option the assembler removes source lines containing
#line directives or symbolic debug information, empty source lines and puts wrapped source lines on
one line. -L without any flags, is equivalent to -Lcdeglmnpqswxy, which removes all specified source
lines form the list file.

Flags can be switched on with the lower case letter and switched off with the uppercase letter. The
following flags are allowed:

c Default. Remove source lines containing assembler controls (the OPTIMIZE directive).

C Keep source lines containing assembler controls.

d Remove source lines containing section directives (the DEFSECT, SECT directives).

D Default. Keep source lines containing section directives.

e Remove source lines containing one of the symbol definition directives EXTERN, GLOBAL or
LOCAL.

E Default. Keep source lines containing symbol definition directives.

g Remove generic instruction expansion.

G Default. Show generic instruction expansion.

l Default. Remove source lines containing C preprocessor line information (lines with #line).

L Keep source lines containing C preprocessor line information.

m Remove source lines containing macro/dup directives (lines with MACRO or DUP).

M Default. Keep source lines containing macro/dup directives.

n Default. Remove empty source lines (newlines).

N Keep empty source lines.

p Remove source lines containing conditional assembly (lines with IF, ELSE, ENDIF). Only the valid
condition is shown.

P Default. Keep source lines containing conditional assembly.

q Remove source lines containing assembler equates (lines with EQU).

Q Default. Keep source lines containing assembler equates.

s Default. Remove source lines containing high level language symbolic debug information (lines
with SYMB).

S Keep source lines containing HLL symbolic debug information.

w Remove wrapped part of source lines.

W Default. Keep wrapped source lines.

x Remove source lines containing MACRO/DUP expansions.

X Default. Keep source lines containing MACRO/DUP expansions.

y Default. Hide cycle counts.

Y Show cycle counts.

Example:

To remove source lines with assembler controls from the resulting list file and to remove wrapped
source lines, enter:

as88 -l -Lcw test.src

CHAPTER 2 ASSEMBLER

90 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

-l

Option:

-l

Description:

Generate listing file. The listing file has the same basename as the output file. The extension is .lst.

Example:

To generate a list file with the name test.lst, enter:

as88 -l test.src

See also:

-L

-M

Option:

-Mmodel

Arguments:

The memory model to be used, where model is one of:

s small, maximum of 64K code and data
c compact code, maximum of 64K code and 16M data
d compact data, maximum of 8M code and 64K data
l large, maximum of 8M code and 16M data

Default:

-Ml

Description:

Specify the memory model to be used for assembling source files.

Example:

To assemble using the small model, enter:

as88 -Ms test.src

-o

Option:

-o filename

Arguments:

An output filename. The filename may not start immediately after the option. There must be a tab or
space in between.

Default:

Basename of assembly file with .obj suffix.

Description:

Use filename as output filename of the assembler, instead of the basename of the assembly file with the
.obj extension.

Example:

To create the object file myfile.obj instead of test.obj, enter:

as88 test.src -o myfile.obj

CHAPTER 2 ASSEMBLER

S5U1C88000C MANUAL I EPSON 91
C COMPILER/ASSEMBLER/LINKER

-t

Option:

-t

Description:

Produce totals (section size summary). For each section its memory address, size, number of cycles
and name is listed on stdout.

Example:
as88 -t test.src

Section summary:
 NR ADDR SIZE CYCLE NAME
 1 0007 5 .text
 2 021234 000e 0 .data
 3 0001 0 .tiny

-V

Option:

-V

Description:

With this option you can display the version header of the assembler. This option must be the only
argument of as88. Other options are ignored. The assembler exits after displaying the version header.

Example:
as88 -V

S1C88 assembler va.b rc SN000000-015 (c) year TASKING, Inc.

-v

Option:

-v

Description:

Verbose mode. With this option specified, the assembler prints the filenames and the assembly passes
while they progress. So you can see the current status of the assembler.

Example:
as88 -v test.src

Parsing "test.src"
 30 lines (total now 31)
Optimizing
Evaluating absolute ORG addresses
Parsing symbolic debug information
Creating object file "test.obj"
Closing object file

-w

Option:

-w[num]

Arguments:

Optionally the warning number to suppress.

Description:

-w suppress all warning messages. -wnum suppresses warning messages with number num. More
than one -wnum option is allowed.

Example:

The following example suppresses warnings 113 and 114:

as88 -w113 -w114 file.src

CHAPTER 2 ASSEMBLER

92 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

2.1.3 Environment Variables used by as88

AS88INC With this environment variable you can specify directories where the as88 assembler will
search for include files. Multiple pathnames can be separated with semicolons.

Include files whose names are enclosed in "" are searched for first in the directory of the file
containing the include line, then in the current directory. If the include file is still not
found, the assembler searches in a directory specified with this environment variable
AS88INC. AS88INC contain more than one directory. Finally, the directory ..\include
relative to the directory where the assembler binary is located is searched.

For include files whose names are in <>, the directory of the file containing the include line
and the current directory are not searched. However, the directories specified with
AS88INC and the relative path are still searched.

TMPDIR With the TMPDIR environment symbol you can specify the directory where the assembler
can generate temporary files. If the assembler terminates normally, the temporary file will
be removed automatically.
If you do not set TMPDIR, the temporary file will be created in the current working direc-
tory.

2.1.4 List File
The list file is the output file of the assembler which contains information about the generated code. The
amount and form of information depends on the use of the -L option. The name is the basename of the
output file with the extension .lst. The list file is only generated when the -l option is supplied. When -l
is supplied, a list file is also generated when assembly errors/warnings occur. In this case the error/
warning is given just below the source line containing the error/warning.

2.1.4.1 Absolute List File Generation
After locating the whole application, an absolute list file can be generated for all assembly source input
files with the assembler. To generate an absolute list file from an assembly source file the source code
needs to be assembled again with use of the locator map file of the application the assembly source
belongs to. See Section 4.5, "Locator Output", how to produce a locator map file.

An absolute list file contains absolute addresses whereas a standard list file contains relocatable ad-
dresses.

When a map file is specified as input for the assembler, only the absolute list file is generated when list
file generation is enabled with the list file option -l. The previously generated object file is not overwrit-
ten when absolute list file generation is enabled. Absolute list file generation is only enabled when a map
file is specified on the input which contains the filename extension .map.

Note: When you want to generate an absolute list file, you have to specify the same options as you did
when generating the object file. If the options are not the same you might get an incorrect absolute
list file.

Example:

Suppose your first invocation was:

as88 -Ms test.src

then when you want to generate an absolute list file you have to specify the same option (-Ms) and
the -l option:

as88 -Ms -l test.src test.map

With this command he absolute list file "test.lst" is created.

CHAPTER 2 ASSEMBLER

S5U1C88000C MANUAL I EPSON 93
C COMPILER/ASSEMBLER/LINKER

2.1.4.2 Page Header
The page header consists of four lines.

The first line contains the following information:

- information about assembler name

- version and serial number

- copyright notice

The second line contains a title specified by the TITLE (first page) or STITLE (succeeding pages) control
and a page number.

The third line contains the name of the file (first page) or is empty (succeeding pages).

The fourth line contains the header of the source listing as described in the next section.

Example:

S1C88 assembler va.b rc SNzzzzzz-zzz (c) year TASKING, Inc.
Title for demo use only page 1
/tmp/hello.asm
ADDR CODE CYCLES LINE SOURCELINE

2.1.4.3 Source Listing
The following line appears in the page header:

ADDR CODE CYCLES LINE SOURCELINE

The different columns are discussed below.

ADDR
This is the memory address. The address is a (6 digit) hexadecimal number that represents the offset
from the beginning of a relocatable section or the absolute address for an absolute section.

In lines that generate object code, the value is at the beginning of the line. For any other line there is
no display.

Example:

ADDR CODE LINE SOURCELINE
000000 1 defsect ".text", code
000000 2 sect ".text"
000000 CEC6rr 4 ld xp,#@dpag(data_label)
000003 CEC4rr 7 ld nb,#@cpag(label)
000006 F101 8 jr label
 .
 .
021234 13 defsect ".data", data at 21234h
 14 data_label:
021234 16 ds 49
 | RESERVED
021264

CODE
This is the object code generated by the assembler for this source line, displayed in hexadecimal
format. The displayed code need not be the same as the generated code that is entered in the object
module. The code can also be relocatable code or a relocatable part and external part. In this case the
letter 'r' is printed for the relocatable code part in the listing.

For lines that allocate space (DS) the code field contains the text "RESERVED".

CHAPTER 2 ASSEMBLER

94 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

Example:
ADDR CODE LINE SOURCELINE
 .
 .
000000 CEC6rr 4 ld xp,#@dpag(data_label)
000003 CEC4rr 7 ld nb,#@cpag(label)
000006 F101 8 jr label
 .
 .
021234 13 defsect ".data", data at 21234h
 14 data_label:
021234 16 ds 49
 | RESERVED
021264

In this example the word "RESERVED" marks the space reserved for the ds directive.

CYCLES
If you provide the option -LY to the assembler, the CYCLES column also appears in the list file. The
first value indicates the cycle count of the instruction, the second value is a cumulated cycle count.

Example:
ADDR CODE CYCLES LINE SOURCELINE
 .
 .
000000 CEC6rr 3 3 4 ld xp,#@dpag(data_label)
000003 CEC4rr 4 7 7 ld nb,#@cpag(label)
000006 F101 2 9 8 jr label
 .
 .

LINE
This column contains the line number. This is a decimal number indicating each input line, starting
from 1 and incrementing with each source line. If listing of the line is suppressed (i.e. by $LIST OFF),
the number increases by one anyway.

Example:

The following source part,

;Line 12
$LIST OFF

;Line 14
$LIST ON

;Line 16

results in the following list file part:

ADDR CODE CYCLES LINE SOURCELINE
 .
 .
 12 ;Line 12
 16 ;Line 16

SOURCELINE
This column contains the source text. This is a copy of the source line from the source module. For
ease of reading the list file, tabs are expanded with sufficient numbers of blank spaces.

If the source column in the listing is too narrow to show the whole source line, the source line is
continued in the next listing line.

Errors and warnings are included in the list file following the line in which they occurred.

Example:
ADDR CODE CYCLES LINE SOURCELINE
 .
 .
021271 FF8F 29 dw @coff(@caddr(300,8fffh))
as88 W172: /tmp/t.src line 29 : page number must be between 0 and FF

CHAPTER 2 ASSEMBLER

S5U1C88000C MANUAL I EPSON 95
C COMPILER/ASSEMBLER/LINKER

2.1.5 Debug Information
If the debug information generated by the C compiler is present in the source file, the as88 assembler
passes this information to the object file. This allows C source symbolic debugging. The as88 assembler
does not generate new debug information.

2.1.6 Instruction Set
The as88 assembler accepts all the assembly language instruction mnemonics defined for the S1C88.

For a complete list of all instructions with mnemonics, operands, opcode format and states refer to the
"S1C88 Core CPU Manual".

The following shows the precautions:

Dealing with the RETS Instruction

You have to take special care when a program contains a rets instruction. rets returns to the return
address+2. Because the instruction affects the address returned to, the following situation does not
work:

carl _label

carl _function ; 3-byte instruction
...

_label:
...
rets ; --> in effect, this will jump into the

; middle of the 3-byte 'carl _function'
; instruction (return address + 2)

The assembler is not capable of detecting this type of conflicts.

CHAPTER 2 ASSEMBLER

96 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

2.2 Software Concept

2.2.1 Introduction
Complex software projects often are divided into smaller program units. These subprograms may be
written by a team of programmers in parallel, or they may be programs written for a precious develop-
ment effort that are going to be reused. The as88 assembler provides directives to subdivide a program
into smaller parts, modules. Symbols can be defined local to a module, so that symbol names can be used
without regard to the symbols in other modules. Code and data can be organized in separate sections.
These sections can be named in such a way that different modules can implement different parts of these
sections. These sections can be located in memory by the locator so that concerns about memory place-
ment are postponed until after the assembly process. By using separate modules, a module can be
changed without re-assembling the other modules. This speeds up the turnaround time during the
development process.

2.2.2 Modules
Modules are the separate implementation parts of a project. Each module is defined in a separate file. A
module is assembled separately from other modules. By using the INCLUDE directive common defini-
tions and macros can be included in each module. Using the mk88 utility the module file and include file
dependencies can be specified so only the correct modules are re-assembled after changes to one of the
files the modules depend upon.

2.2.2.1 Modules and Symbols
A module can use symbols defined in other modules and in the module itself. Symbols defined in a
module can be local (other modules cannot access it) or global (other modules have access to it). Symbols
outside of a module can be defined with the EXTERN directive. Local symbols are symbols defined by
the LOCAL directive or symbols defined with an SET or EQU directive. Global symbols are either labels,
or symbols explicitly defined global with the GLOBAL directive.

2.2.3 Sections
Sections are relocatable blocks of code and data. Sections are defined with the DEFSECT directive and
have a name. A section may have attributes to instruct the locator to place it on a predefined starting
address, in short or non-short memory or that it may be overlaid with another section. See the DEFSECT
directive discussion for a complete description of all possible attributes. Sections are defined once and are
activated with the SECT directive. The linker will check between different modules and emits an error
message if the section attributes do not match. The linker will also concatenate all matching section
definitions into one section. So, all ".text" sections generated by the compiler will be linked into one big
".text" chunk which will be located in one piece. By using this naming scheme it is possible to collect all
pieces of code or data belonging together into one bigger section during the linking phase. A SECT
directive referring to an earlier defined section is called a continuation. Only the name can be specified.

2.2.3.1 Section Names
The assembler generates object files in relocatable IEEE-695 object format. The assembler groups units of
code and data in the object file using sections. All relocatable information is related to the start address of
a section. The locator assigns absolute addresses to sections. A section is the smallest unit of code or data
that can be moved to a specific address in memory after assembling a source file. The compiler requires
that the assembler supports several different sections with appropriate attributes to assign specific
characteristics to those sections. (section with read only data, sections with code etc.)

DEFSECT sect_name, sect_type [, attrib]... [AT address]

CHAPTER 2 ASSEMBLER

S5U1C88000C MANUAL I EPSON 97
C COMPILER/ASSEMBLER/LINKER

A section must be declared before it can be used. The DEFSECT directive declares a section with its
attributes. A section name can be any identifier. The '@' character is not allowed in regular section names.
The assembler and linker use this character to create overlayable sections. This is explained below.

The section type can be:

sect_type : CODE | DATA This defines in what memory (CODE or DATA) the section is located.

The section attributes can be:

attrib : SHORT within first 32K of code memory or within first 64K of data memory

FIT 100H section must fit within one 256 byte page

FIT 8000H section must fit within one 32K byte page

FIT 10000H section must fit within one 64K byte page

CLEAR clear section during program startup

NOCLEAR section is not cleared during startup

INIT initialization data copied from ROM to RAM at startup

OVERLAY section must have an overlay name

ROMDATA section contains data instead of executable code

JOIN group sections together

Unless disabled, the startup code in the tool chain has to clear data sections with the CLEAR attribute.
These sections contain data space allocations for which no initializers have been specified. CLEAR
sections are zeroed (cleared) at program startup. Sections can be excluded from this initialization with the
NOCLEAR attribute. This is also the default situation for all sections.

Sections with the SHORT attribute must be allocated in the first 32K byte of code memory of the S1C88
(i.e. for CODE sections) or within the first 64K of data memory (for DATA sections). The locator produces
a warning if a section with the SHORT attribute cannot be allocated in this area.

You can group sections together with the JOIN attribute. For example, when more sections have to be
located within the same data page, you can use this attribute.

A section becomes overlayable by specifying the OVERLAY attribute. Only DATA sections are
overlayable. The assembler reports an error if it finds the attribute combined with sections of other types.
Because it is useless to initialize overlaid sections at program startup time (code using overlaid data
cannot assume that the data is in the defined state upon first use), the NOCLEAR attribute is defined
implicitly when OVERLAY is specified. Overlayable section names are composed as follows:

DEFSECT "OVLN@nfunc", DATA, OVERLAY, SHORT
↑ ↑

 pool name function name

The linker overlays sections with the same pool name. To decide whether DATA sections can be overlaid,
the linker builds a call graph. Data in sections belonging to functions that call each other cannot be
overlaid. The compiler generates pseudo instructions (CALLS) with information for the linker to build
this call graph. The CALLS pseudo has the following (simplified) syntax:

CALLS 'caller_name', 'callee_name' [, 'callee_name']...

If the function main() has overlayable data allocations in short memory and calls nfunc(), the follow-
ing sections and call information will be generated:

DEFSECT "OVLN@nfunc", DATA, OVERLAY, SHORT
DEFSECT "OVLN@main", DATA, OVERLAY, SHORT

CALLS 'main', 'nfunc'

CHAPTER 2 ASSEMBLER

98 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

Sections become absolute when an address has been specified in the declaration using the AT keyword.
The assembler generates information in the object file which instructs the locator to put the section
contents at the specified address. It is not allowed to make an overlayable section absolute. The assembler
reports an error if the AT keyword is used in combination with the OVERLAY section attribute.

After a section has been declared, it can be activated and re-activated with the SECT directive:

DEFSECT ".STRING", CODE, ROMDATA
SECT ".STRING"

_l001: ASCII "hello world"

All instructions and pseudos which generate data or code must be within an active section. The assem-
bler emits a warning if code or data starts without a section definition and activation.

2.2.3.2 Absolute Sections
Absolute sections (i.e. DEFSECT directives with a start address) may only be continued in the defining
module (continuation). When such a section is defined in the same manner in another module, the locator
will try to place the two sections at the same address. This results in a locator error. When an absolute
section is defined in more than one module, the section must be defined relocatable and its starting
address must be defined in the locator description (.dsc) file. Overlay sections may not be defined
absolute.

2.2.3.3 Grouped Sections
When you have to group sections together in one page, you can use the JOIN section attribute. The JOIN
attribute should be used together with the FIT attribute, which defines the page size. The page size for
one particular group should be the same for all sections in the group. For example, when two data
sections have to be located within the same 64K page, you can write this as follows:

DEFSECT ".data1@group", DATA, JOIN, FIT 10000H
SECT ".data1@group"

and for the second section:

DEFSECT ".data2@group", DATA, JOIN, FIT 10000H
SECT ".data2@group"

Note that sections are grouped by the extension used in the section name. So, the definition is:

DEFSECT "sect@group", DATA, JOIN, FIT 10000H
↑ ↑

 section name joined group name

2.2.3.4 Section Examples
Some examples of the DEFSECT and SECT directives are as follows:

DEFSECT ".CONST", CODE AT 1000H
SECT ".CONST"

Defines and activates a section named .CONST starting on address 1000H. Other parts of the same
section, and in the same module, must be defined with:

SECT ".CONST"

DEFSECT ".text", CODE
SECT ".text"

Defines and activates a relocatable section in CODE memory. Other parts of this section, with the
same name, may be defined in the same module or any other module. Other modules should use the
same DEFSECT statement. When necessary, it is possible to give the section an absolute starting
address with the locator description file.

CHAPTER 2 ASSEMBLER

S5U1C88000C MANUAL I EPSON 99
C COMPILER/ASSEMBLER/LINKER

DEFSECT ".fardata", DATA, CLEAR
SECT ".fardata"

Defines a relocatable named section in DATA memory. The CLEAR attribute instructs the locator to
clear the memory located to this section. When this section is used in another module it must be
defined identically.

Continuations of this section in the same module are as follows:

SECT ".fardata"

DEFSECT ".ovlf@f", DATA, OVERLAY
SECT ".ovlf@f"

Defines a relocatable section in DATA memory. The section may be overlaid with other overlayable
DATA sections. The function associated with this overlayable part is "f". This is the name that should
be used with the CALLS directive to designate which function call each other so the linker can build a
correct call graph. See also Section 2.2.3.1, "Section Names".

CHAPTER 2 ASSEMBLER

100 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

2.3 Assembly Language

2.3.1 Input Specification
An assembly program consists of zero or more statements, one statement per line. A statement may
optionally be followed by a comment, which is introduced by a semicolon character (;) and terminated by
the end of the input line. Any source statement can be extended to one or more lines by including the line
continuation character (\) as the last character on the line to be continued. The length of a source state-
ment (first line and any continuation lines) is only limited by the amount of available memory. Upper and
lower case letters are considered equivalent for assembler mnemonics and directives, but are considered
distinct for labels, symbols, directive arguments, and literal strings.

A statement can be defined as:

[label:] [instruction | directive | macro_call] [;comment]

where,

label is an identifier. A label does not have to start on the first position of a line, but a label
must always be followed by a colon.
identifier can be made up of letters, digits and/or underscore characters (_). The first
character may not be a digit. The size of an identifier is only limited by the amount of
available memory.

Example:

LAB1: ; This is a label

instruction is any valid S1C88 assembly language instruction consisting of a mnemonic and oper-
ands. Operands are described in Section 2.4, "Operands and Expressions". See the
"S1C88 Core CPU Manual" for details of the instructions.

Examples:

RET ; No operand

PUSH A ; One operand

ADD BA,HL ; Two operands

directive any one of the assembler directives; described separately in Section 2.6, "Assembler
Directives".

macro_call a call to a previously defined macro. See Section 2.5, "Macro Operations".

A statement may be empty.

CHAPTER 2 ASSEMBLER

S5U1C88000C MANUAL I EPSON 101
C COMPILER/ASSEMBLER/LINKER

2.3.2 Assembler Significant Characters
There are several one character sequences that are significant to the assembler. Some have multiple
meanings depending on the context in which they are used. Special characters associated with expression
evaluation are described in Section 2.4, "Operands and Expressions". Other assembler-significant charac-
ters are:

; - Comment delimiter

\ - Line continuation character or
Macro dummy argument concatenation operator

? - Macro value substitution operator

% - Macro hex value substitution operator

^ - Macro local label operator

" - Macro string delimiter or
Quoted string DEFINE expansion character

@ - Function delimiter

* - Location counter substitution

[] - Location addressing mode operator

- Immediate addressing mode operator

Individual descriptions of each of the assembler special characters follow. They include usage guidelines,
functional descriptions, and examples.

;

Comment Delimiter Character

Any number or characters preceded by a semicolon (;), but not part of a literal string, is considered a
comment. Comments are not significant to the assembler, but they can be used to document the source
program. Comments will be reproduced in the assembler output listing. Comments are preserved in
macro definitions.

Comments can occupy an entire line, or can be placed after the last assembler-significant field in a source
statement. The comment is literally reproduced in the listing file.

Examples:

; This comment begins in column 1 of the source file
Loop: CALL [COMPUTE] ; This is a trailing comment

; These two comments are preceded
; by a tab in the source file

\

Line Continuation Character or Macro Dummy Argument Concatenation Operator

Line Continuation

The backslash character (\), if used as the last character on a line, indicates to the assembler that the
source statement is continued on the following line. The continuation line will be concatenated to the
previous line of the source statement, and the result will be processed by the assembler as if it were a
single line source statement. The maximum source statement length (the first line and any continuation
lines) is 512 characters.

Example:
; THIS COMMENT \
EXTENDS OVER \
THREE LINES

CHAPTER 2 ASSEMBLER

102 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

Macro Argument Concatenation

The backslash (\) is also used to cause the concatenation of a macro dummy argument with other adja-
cent alphanumeric characters. For the macro processor to recognize dummy arguments, they must
normally be separated from other alphanumeric characters by a non-symbol character. However, some-
times it is desirable to concatenate the argument characters with other characters. If an argument is to be
concatenated in front of or behind some other symbol characters, then it must be followed by or preceded
by the backslash, respectively.

See also Section 2.5.5.1, "Dummy Argument Concatenation Operator - \".

Example:

Suppose the source input file contained the following macro definition:

SWAP_MEM MACRO REG1,REG2 ;swap memory contents
 LD A,[I\REG1] ;using A as temp
 LD B,[I\REG2] ;using B as temp
 LD [I\REG1],B
 LD [I\REG2],A
 ENDM

The concatenation operator (\) indicates to the macro processor that the substitution characters for the
dummy arguments are to be concatenated in both cases with the character I. If this macro were called
with the following statement,

SWAP_MEM X,Y

the resulting expansion would be:

LD A,[IX]
LD B,[IY]
LD [IX],B
LD [IY],A

?

Return Value of Symbol Character

The ?symbol sequence, when used in macro definitions, will be replaced by an ASCII string representing
the value of symbol. This operator may be used in association with the backslash (\) operator. The value
of symbol must be an integer.

See also Section 2.5.5.2, "Return Value Operator - ?".

Example:

Consider the following macro definition:

SWAP_MEM MACRO REG1,REG2 ;swap memory contents
 LD A,[_lab\?REG1] ;using A as temp
 LD B,[_lab\?REG2] ;using B as temp
 LD [_lab\?REG1],B
 LD [_lab\?REG2],A
 ENDM

If the source file contained the following SET statements and macro call,

AREG SET 1
BREG SET 2

SWAP_MEM AREG,BREG

the resulting expansion as it would appear on the source listing would be:

LD A,[_lab1]
LD B,[_lab2]
LD [_lab1],B
LD [_lab2],A

CHAPTER 2 ASSEMBLER

S5U1C88000C MANUAL I EPSON 103
C COMPILER/ASSEMBLER/LINKER

%

Return Hex Value of Symbol Character

The %symbol sequence, when used in macro definitions, will be replaced by an ASCII string representing
the hexadecimal value of symbol. This operator may be used in associations with the backslash (\)
operator. The value of symbol must be an integer.

See also Section 2.5.5.3, "Return Hex Value Operator - %".

Example:

Consider the following macro definition:

GEN_LAB MACRO LAB,VAL,STMT
LAB\%VAL: STMT
 ENDM

If this macro were called as follows,

NUM SET 10
GEN_LAB HEX,NUM,'NOP'

The resulting expansion as it would appear in the listing file would be:

HEXA: NOP

^

Macro Local Label Character

The circumflex (^), when used as a unary operator in a macro expansion, will cause name mangling of
any associated local label. Normally, the macro preprocessor will leave any local label inside a macro
expansion to a normal label in the current module. By using the Local Label character (^), the label is
made a unique label. This is done by removing the leading underscore and appending a unique string
"__M_Lxxxxxx" where "xxxxxx" is a unique sequence number. The ^-operator has no effect outside of a
macro expansion. The ^-operator is useful for passing label names as macro arguments to be used as local
label names in the macro. Note that the circumflex is also used as the binary exclusive or operator.

See also Section 2.5.5.5, "Macro Local Label Operator - ^".

Example:

Consider the following macro definition:

LOAD MACRO ADDR
ADDR:

LD A,[ADDR]
^ADDR:

LD A,[^ADDR]
ENDM

If this macro were called as follows,

LOAD _LOCAL

the resulting expansion as it would appear in the listing file would be:

_LOCAL:
LD A,[_LOCAL]

_LOCAL__M_L000001:
LD A,[_LOCAL__M_L000001]

CHAPTER 2 ASSEMBLER

104 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

"

Macro String Delimiter or Quoted String DEFINE Expansion Character

Macro String

The double quote ("), when used in macro definitions, is transformed by the macro processor into the
string delimiter, the single quote ('). The macro processor examines the characters between the double
quotes for any macro arguments. This mechanism allows the use of macro arguments as literal strings.

See also Section 2.5.5.4, "Dummy Argument String Operator - "".

Example:

Using the following macro definition,

CSTR MACRO STRING
ASCII "STRING"
ENDM

and a macro call,

CSTR ABCD

the resulting macro expansion would be:

ASCII 'ABCD'

Quoted String DEFINE Expansion

A sequence of characters which matches a symbol created with a DEFINE directive will not be expanded
if the character sequence is contained within a quoted string. Assembler strings generally are enclosed in
single quotes ('). If the string is enclosed in double quotes (") then DEFINE symbols will be expanded
within the string. In all other respects usage of double quotes is equivalent to that of single quotes.

Example:

Consider the source fragment below:

DEFINE LONG 'short'
STR_MAC MACRO STRING

MSG 'This is a LONG STRING'
MSG "This is a LONG STRING"
ENDM

If this macro were invoked as follows,

STR_MAC sentence

then the resulting expansion would be:

MSG 'This is a LONG STRING'
MSG 'This is a short sentence'

@

Function Delimiter

All assembler built-in functions start with the @ symbol. See Section 2.4.4, "Functions", for a full discus-
sion of these functions.

Example:

SVAL EQU @ABS(VAL) ; Obtain absolute value

CHAPTER 2 ASSEMBLER

S5U1C88000C MANUAL I EPSON 105
C COMPILER/ASSEMBLER/LINKER

*

Location Counter Substitution

When used as an operand in an expression, the asterisk represents the current integer value of the
runtime location counter.

Example:

DEFSECT ".CODE", CODE AT 100H
SECT ".CODE"

XBASE EQU *+20H ; XBASE = 120H

[]

Location Addressing Mode Operator

Square brackets are used to indicate to the assembler to use a location addressing mode.

Example:

LD A,[_Value]

#

Immediate Addressing Mode

The pound sign (#) is used to indicate to the assembler to use the immediate addressing mode.

Example:

CNST EQU 5H
LD A,#CNST ;Load A with the value 5H

2.3.3 Registers
The following S1C88 register names, either upper or lower case, cannot be used as symbol names in an
assembly language source file:

A BR
B IX
BA IY
H
L
HL

NB SC
EP PC
XP SP
YP

2.3.4 Other Special Names
The following names, used in the S1C88 instruction set, either upper or lower case, cannot be used as
symbol names in an assembly language source file:

C P
T M
LT F0
LE F1
GT F2
GE F3
V NF0
NV NF1
NC NF2
NT NF3

CHAPTER 2 ASSEMBLER

106 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

2.4 Operands and Expressions

2.4.1 Operands
An operand is the part of the instruction that follows the instruction opcode. There can be one or two or
even no operands in an instruction. An operand of an assembly instruction has one of the following
types:

Operands Description

expr any valid expression as described in the section Expressions.

reg any valid register as described in the section Registers.

symbol a symbolic name as created by an equate. A symbol can be an expression.

address a combination of expr, reg and symbol.

If an expression can be completely evaluated at assembly time, it is called an absolute expression; if it is
not, it is called a relocatable expression. See Section 2.4.2, "Expressions", for more details.

2.4.1.1 Operands and Addressing Modes
The S1C88 assembly language has several addressing modes. These are listed below with a short descrip-
tion. For details see the "S1C88 Core CPU Manual".

Register Direct
The instruction specifies the register which contains the operand.

Syntax: mnemonic register

Register Indirect
The instruction specifies the register containing the operand address. Several forms are available.

Syntax: mnemonic [RR]
mnemonic [RR + off]
mnemonic [RR + L]

Immediate
An immediate operand is a one byte number or one word number, which is encoded as part of the
instruction. Immediate operands are indicated by the # sign before the expression defining the value
of the operand.

Syntax: mnemonic #number

Absolute
The instruction contains the operand address. The address can be 8 or 16 bits.

Syntax: mnemonic [direct_address]

PC Relative
The instruction contains the 8 or 16-bit offset relative to the current PC value.

Syntax: mnemonic offset

Implied
The instruction implicitly defines the used registers.

Syntax: mnemonic

CHAPTER 2 ASSEMBLER

S5U1C88000C MANUAL I EPSON 107
C COMPILER/ASSEMBLER/LINKER

2.4.2 Expressions
An operand of an assembler instruction or directive is either an assembler symbol, a register name or an
expression. An expression is a sequence of symbols that denotes an address in a particular memory space
or a number.
Expressions that can be evaluated at assembly time are called absolute expressions. Expressions where
the result is unknown until all sections have been combined and located are called relocatable expres-
sions. When any operand of an expression is relocatable the entire expression is relocatable. Relocatable
expressions are emitted in the object file and evaluated by the linker or the locator. Relocatable expres-
sions may only contain integral functions. An error is emitted when during object creation non-IEEE
relocatable expressions are found.
An expression has a type which depends on the type of the identifiers in the expression. See Section
2.4.2.4, "Expression Type", for details.
The assembler evaluates expressions with 64-bit precision in two's complement.
The syntax of an expression can be any of the following:

- number
- expression_string
- symbol
- expression binary_operator expression
- unary_operator expression
- (expression)
- function

All types of expressions are explained below and in the following sections.

() You can use parentheses to control the evaluation order of the operators. What is between parentheses
is evaluated first.

Examples:

(3+4)*5 ; Result is 35. 3 + 4 is evaluated first.
3+(4*5) ; Result is 23. 4 * 5 is evaluated first.

; parentheses are superfluous here

2.4.2.1 Number
Numeric constants can be used in expressions. If there is no postfix, the assembler assumes the number is
in the default RADIX. The default RADIX on its turn is decimal.

number can be one of the following:
- bin_numB
- dec_num (or dec_numD)
- oct_numO (or oct_numQ)
- hex_numH

Lowercase equivalences are allowed: b, d, o, q, h.

bin_num is a binary number formed of '0'–'1' ending with a 'B' or 'b'.
Examples: 1001B; 1011B; 01100100b;

dec_num is a decimal number formed of '0'–'9', optionally followed by the letter 'D' or 'd'.
Examples: 12; 5978D;

oct_num is an octal number formed of '0'–'7' ending with an 'O', 'o', 'Q' or 'q'.
Examples: 11O; 447o; 30146q

hex_num is a hexadecimal number formed of the characters '0'–'9' and 'a'–'f' or 'A'–'F' ending with a 'H'
or 'h'. The first character must be a decimal digit, so it may be necessary to prefix a hexadeci-
mal number with the '0' character.
Examples: 45H; 0FFD4h; 9abcH

A number may be written without a following radix indicator if the input radix is changed using the
RADIX directive. For example, a hexadecimal number may be written without the suffix H if the input
radix is set to 16 (assuming an initial radix of 10). The default radix is 10.

CHAPTER 2 ASSEMBLER

108 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

2.4.2.2 Expression String
An expression_string is a string with an arbitrary length evaluating to a number. The value of the string is
calculated by taking the first 4 characters padded with 0 to the left.

string is a string of ASCII characters, enclosed in single (') or double (") quotes. The starting and closing
quote must be the same. To include the enclosing quote in the string, double it. E.g. the string containing
both quotes can be denoted as: " ' "" " or ' ' ' " '.

See Section 2.5, "Macro Operations", for the differences between single and double quoted strings.

Examples:
'A'+1 ; a 1-character ASCII string,

; result 42H
"9C"+1 ; a 2-character ASCII string,

; result 3944H

2.4.2.3 Symbol
A symbol is an identifier. A symbol represents the value of an identifier which is already defined, or will be
defined in the current source module by means of a label declaration or an equate directive.

Examples:
CON1 EQU 3H ; The variable CON1 represents the value of 3

LD A,[CON1+20H] ; Load A with contents of address 23H

When you invoke the assembler, the following predefined symbols exist:

_AS88 contains a string with the name of the assembler ("as88")

_MODEL contains an integer with the ASCII value of the selected MODEL (in lower case)

2.4.2.4 Expression Type
The type of an expression is either a number (integral) or an address. The result type of an expression
depends on the operator and its operands. The tables below summarize all available operators.

Please note:

1. a label is of type 'address'; an equate symbol has the type of the equate expression;

2. the type of an untyped symbol can be an address or a number, depending on the context; the
result of the operation can be determined using the tables;

3. the binary logical and relational operators (||, &&, ==, !=, <, <=, >, >=) accept any combination of
operands, the result is always the integral number 0 or 1;

4. the binary shift and bitwise operators <<, >>, |, & and ^ only accept integral operands.

The following table shows the result type of expressions with unary operators (a '∗ ' indicates an illegal
combination).

Table 2.4.2.4.1 Expression type, unary operators
Operator

~
!
-
+

integer
integer
integer
integer
integer

addr
∗
∗
∗

integer

CHAPTER 2 ASSEMBLER

S5U1C88000C MANUAL I EPSON 109
C COMPILER/ASSEMBLER/LINKER

The following table shows the result type of expressions with binary numerical operators.

Table 2.4.2.4.2 Expression type, binary numerical operators
Operator

-
+
*
/

%

integer, integer
integer
integer
integer
integer
integer

addr, integer
addr
addr

∗
∗
∗

integer, addr
∗

addr
∗
∗
∗

addr, addr
integer

∗
∗
∗
∗

Note: A string operand will be converted to an integral number.

The following table shows the result type of functions. A '–' in the column Operands means that the
function has no operands.

Table 2.4.2.4.3 Expression type, functions
Function

@ABS()
@ARG()

@AS88()
@CADDR()
@CAT()
@CNT()
@COFF()
@CPAG()
@DADDR()
@DEF()
@DOFF()
@DPAG()
@HIGH()
@LEN()
@LOW()
@LST()
@MAC()
@MAX()
@MIN()
@MODEL()
@MXP()
@POS()

@SCP()
@SGN()
@SUB()

Operands
integer
symbol
integer
–
integer,addr
string,string
–
addr
addr
integer,addr
symbol
addr
addr
addr
string
addr
–
symbol
integer,integer,...
integer,integer,...
–
–
string,string
string,string,integer
string,string
integer
string,integer,integer

Result
integer
integer
integer
string
addr
string

integer
addr

integer
addr

integer
addr

integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
string

CHAPTER 2 ASSEMBLER

110 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

2.4.3 Operators
There are two types of operators:

- unary operators

- binary operators

Operators can be arithmetic operators, shift operators, relational operators, bitwise operators, or logical
operators. All operators are described in the following sections.

If the grouping of the operators is not specified with parentheses, the operator precedence is used to
determine evaluation order. Every operator has a precedence level associated with it. The following table
lists the operators and their order of precedence (in descending order).

Table 2.4.3.1 Operators precedence list
Operators

+, -, ~, !
*, /, %
+, -
<<, >>
<, <=, >, >=
==, !=
&
^
 |
&&
||

Type
unary
binary
binary
binary
unary
binary
binary
binary
binary
binary
binary

Except for the unary operators, the assembler evaluates expressions with operators of the same prece-
dence level left-to-right. The unary operators are evaluated right-to-left. So, -4+3*2 evaluates to
(-4)+(3*2).

2.4.3.1 Addition and Subtraction

Synopsis:

Addition: operand + operand

Subtraction: operand - operand

The + operator adds its two operands and the - operator subtracts them. The operands can be any
expression evaluating to an absolute number or a relocatable operand, with the restrictions of Table
2.4.2.4.2.

Examples:
0A342H + 23H ; addition of absolute numbers
0FF1AH - AVAR ; subtraction with the value of symbol AVAR

2.4.3.2 Sign Operators

Synopsis:

Plus: +operand

Minus: -operand

The + operator does not modify its operand. The - operator subtracts its operand from zero. See also the
restrictions in Table 2.4.2.4.1.

Example:
5+-3 ; result is 2

CHAPTER 2 ASSEMBLER

S5U1C88000C MANUAL I EPSON 111
C COMPILER/ASSEMBLER/LINKER

2.4.3.3 Multiplication and Division

Synopsis:

Multiplication: operand * operand

Division: operand / operand

Modulo: operand % operand

The * operator multiplies its two operands, the / operator performs an integer division, discarding any
remainder. The % operator also performs an integer division, but discards the quotient and returns the
remainder. The operands can be any expression evaluating to an absolute number or a relocatable
operand, with the restrictions of Table 2.4.2.4.2. Note that the right operands of the / and % operator may
not be zero.

Examples:
AVAR*2 ; multiplication
0FF3CH/COUNT ; division
23%4 ; modulo, result is 3

2.4.3.4 Shift Operators

Synopsis:

Shift left: operand << count

Shift right: operand >> count

These operators shift their left operand (operand) either left (<<) or right (>>) by the number of bits
(absolute number) specified with the right operand (count). The operands can be any expression evaluat-
ing to an (integer) number.

Example:
AVAR>>4 ; shift right variable AVAR, 4 times

2.4.3.5 Relational Operators

Synopsis:

Equal: operand == operand

Not equal: operand != operand

Less than: operand < operand

Less than or equal: operand <= operand

Greater than: operand > operand

Greater than or equal: operand >= operand

These operators compare their operands and return an absolute number (an integer) of 1 for 'true' and 0
for 'false'. The operands can be any expression evaluating to an absolute number or a relocatable oper-
and.

Examples:
3>=4 ; result is 0 (false)
4==COUNT ; 1 (true), if COUNT is 4.

; 0 otherwise.
9<0AH ; result is 1 (true)

CHAPTER 2 ASSEMBLER

112 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

2.4.3.6 Bitwise Operators

Synopsis:

Bitwise AND: operand & operand

Bitwise OR: operand | operand

Bitwise XOR: operand ^ operand

One's complement: ~ operand

The AND, OR and XOR operators take the bitwise AND, OR respectively XOR of the left and right
operand. The one's complement (bitwise NOT) operator performs a bitwise complement on its operand.
The operands can be any expression evaluating to an (integer) number.

Examples:
0BH&3 ; result is 3

1011B
0011B &
0011B

~0AH ; result is 0FFF5H
~ 00000000 00001010B
= 11111111 11110101B

2.4.3.7 Logical Operators

Synopsis:

Logical AND: operand && operand

Logical OR: operand || operand

Logical NOT: ! operand

The logical AND operator returns an integer 1 if both operands are non-zero; otherwise it returns an
integer 0. The logical OR operator returns an integer 1 if either of its operands is non-zero; otherwise it
returns an integer 0. The ! operator performs a logical not on its operand. ! returns an integer 1 ('true) if
the operand is 0; otherwise, ! returns 0 ('false'). The operands can be can be any expression evaluating to
an integer.

Examples:
0BH&&3 ; result is 1 (true)

!0AH ; result is 0 (false)
!(4<3) ; result is 1 (true)

; 4 < 3 result is 0 (false)

CHAPTER 2 ASSEMBLER

S5U1C88000C MANUAL I EPSON 113
C COMPILER/ASSEMBLER/LINKER

2.4.4 Functions
The assembler has several built-in functions to support data conversion, string comparison, and math
computations. Functions can be used as terms in any arbitrary expression. Functions have the following
syntax:

@function_name(argument[,argument]...)

Functions start with the '@' sign and have zero or more arguments, and are always followed by opening
and closing parentheses. There must be no intervening spaces between the function name and the
opening parenthesis and between the (comma-separated) arguments.

Assembler functions can be grouped into five types:

1. Mathematical functions
2. String functions
3. Macro functions
4. Assembler mode functions
5. Address handling functions

2.4.4.1 Mathematical Functions
The mathematical functions comprise min/max functions, among others:

ABS - Absolute value

MAX - Maximum value

MIN - Minimum value

SGN - Return sign

2.4.4.2 String Functions
String functions compare strings, return the length of a string, and return the position of a substring
within a string:

CAT - Catenate strings

LEN - Length of string

POS - Position of substring in string

SCP - Compare strings

SUB - Substring from a string

2.4.4.3 Macro Functions
Macro functions return information about macros:

ARG - Macro argument function

CNT - Macro argument count

MAC - Macro definition function

MXP - Macro expansion function

2.4.4.4 Assembler Mode Functions
Miscellaneous functions having to do with assembler operation:

AS88 - Assembler executable name

DEF - Symbol definition function

LST - LIST control flag value

MODEL - Selected model of the assembler

CHAPTER 2 ASSEMBLER

114 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

2.4.4.5 Address Handling Functions
Functions handling specific address arithmetic:

CADDR - Code address

COFF - Code page offset

CPAG - Code page number

DADDR - Data address

DOFF - Data page offset

DPAG - Data page number

HIGH - 256 byte page number

LOW - 256 byte page offset

2.4.4.6 Detailed Description
Individual descriptions of each of the assembler functions follow. They include usage guidelines, func-
tional descriptions, and examples.

@ABS(expression)

Returns the absolute value of expression as an integer value.

Example:

LD A,#@ABS(VAL) ;load absolute value

@ARG(symbol | expression)

Returns integer 1 if the macro argument represented by symbol or expression is present, 0 otherwise. If
the argument is a symbol it must be single-quoted and refer to a dummy argument name. If the
argument is an expression it refers to the ordinal position of the argument in the macro dummy
argument list. A warning will be issued if this function is used when no macro expansion is active.

Example:

IF @ARG('TWIDDLE') ;twiddle factor provided?

@AS88()

Returns the name of the assembler executable. This is as88 for the S1C88 family.

Example:

ANAME: DB @AS88() ;ANAME = 'as88'

@CADDR(code-page,code-offset)

Returns the code address specified by the code page (32K bank) and page offset (32K offset). The
resulting value will be a relocatable expression when code-offset is relocatable. When code-offset is
absolute, the result will be a constant value.

Example:

CAZERO SET @CADDR(3,8004h) ;CAZERO = 18004h
CAONE SET @CADDR(3,5000h) ;CAONE = 5000h

@CAT(str1,str2)

Concatenates the two strings into one string. The two strings must be enclosed with single or double
quotes.

Example:

DEFINE ID "@CAT('S1C','88')" ;ID = 'S1C88'

CHAPTER 2 ASSEMBLER

S5U1C88000C MANUAL I EPSON 115
C COMPILER/ASSEMBLER/LINKER

@CNT()

Returns the count of the current macro expansion arguments as an integer. A warning will be issued if
this function is used when no macro expansion is active.

Example:

ARGCNT SET @CNT() ;squirrel away arg count

@COFF(address)

Returns the code page offset (32K offset) of the given address. The resulting value will be a relocatable
expression when address is relocatable. When address is absolute, the result will be a constant value. Bit
16 (MSB) of the result is 0 when the address is in the first code page (first 32K). In all other cases bit 16
(MSB) of the result is 1.

Example:

PAGEZERO SET @COFF(07FFFH) ;PAGEZERO = 07FFFH
PAGEONE SET @COFF(0CFFFH) ;PAGEONE = 0CFFFH
PAGETWO SET @COFF(014FFFH) ;PAGETWO = 0CFFFH

@CPAG(address)

Returns the code page (32K bank) of the given address. The resulting value will be a relocatable
expression when address is relocatable. When address is absolute, the result will be a constant value.

Example:

ZEROPAGE SET @CPAG(07FFFH) ;ZEROPAGE = 0H
ONEPAGE SET @CPAG(0CFFFH) ;ONEPAGE = 1H
TWOPAGE SET @CPAG(014FFFH) ;TWOPAGE = 2H

@DADDR(data-page,data-offset)

Returns the data address specified by the data page (64K bank) and page offset (64K offset). The
resulting value will be a relocatable expression when data-offset is relocatable. When data-offset is
absolute, the result will be a constant value.

Example:

DATHREE SET @DADDR(3,1234h) ;DATHREE = 31234h

@DEF(symbol)

Returns an integer 1 if symbol has been defined, 0 otherwise. symbol may be any label not associated
with a MACRO directive. If symbol is quoted it is looked up as a DEFINE symbol; if it is not quoted it
is looked up as an ordinary label.

Example:

IF @DEF('ANGLE') ;assemble if ANGLE defined

@DOFF(address)

Returns the data page offset (64K offset) of the given address. The resulting value will be a relocatable
expression when address is relocatable. When address is absolute, the result will be a constant value.

Example:

PAGEZERO SET @DOFF(07FFFH) ;PAGEZERO = 07FFFH
PAGEONE SET @DOFF(0CFFFH) ;PAGEONE = 0CFFFH
PAGETWO SET @DOFF(014FFFH) ;PAGETWO = 04FFFH

CHAPTER 2 ASSEMBLER

116 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

@DPAG(address)

Returns the data page (64K bank) of the given address. The resulting value will be a relocatable
expression when address is relocatable. When address is absolute, the result will be a constant value.

Example:

ZEROPAGE SET @DPAG(07FFFH) ;ZEROPAGE = 0H
ONEPAGE SET @DPAG(0CFFFH) ;ONEPAGE = 0H
TWOPAGE SET @DPAG(014FFFH) ;TWOPAGE = 1H

@HIGH(address)

Returns the 256 byte page number of the given address. The resulting value will be a relocatable
expression when address is relocatable. When address is absolute, the result will be a constant value.

Example:

HPAGE SET @HIGH(07FFFH) ;HPAGE = 07FH

@LEN(string)

Returns the length of string as an integer.

Example:

SLEN SET @LEN('string') ;SLEN = 6

@LOW(address)

Returns the 256 byte page offset of the given address. The resulting value will be a relocatable expres-
sion when address is relocatable. When address is absolute, the result will be a constant value.

Example:

LPAGE SET @LOW(07FFFH) ;LPAGE = 0FFH

@LST()

Returns the value of the LIST control flag as an integer. Whenever a LIST ON control is encountered
in the assembler source, the flag is incremented; when a LIST OFF control is encountered, the flag is
decremented.

Example:

DUP @ABS(@LST()) ;list unconditionally

@MAC(symbol)

Returns an integer 1 if symbol has been defined as a macro name, 0 otherwise.

Example:

IF @MAC(DOMUL) ;expand macro

@MAX(expr1[,exprN]...)

Returns the greatest of expr1, ..., exprN as an integer.

Example:

MAX: DB @MAX(1,5,-3) ;MAX = 5

CHAPTER 2 ASSEMBLER

S5U1C88000C MANUAL I EPSON 117
C COMPILER/ASSEMBLER/LINKER

@MIN(expr1[,exprN]...)

Returns the least of expr1, ..., exprN as an integer.

Example:

MIN: DB @MIN(1,5,-3) ;Min = -3

@MODEL()

Returns the selected model of the assembler (as specified on the command line or as specified with
the MODEL control). The returned value is the ASCII character value of the selected MODEL (always
in lower case).

Example (assumes -Ms option):
MDL SET @MODEL() ;MDL = 73h (ASCII value of 's')

@MXP()

Returns an integer 1 if the assembler is expanding a macro, 0 otherwise.

Example:

IF @MXP() ;macro expansion active?

@POS(str1,str2[,start])

Returns the position str2 in str1 as an integer, starting at position start. If start is not given the search
begins at the beginning of str1. If the start argument is specified it must be a positive integer and
cannot exceed the length of the source string.

Example:

ID EQU @POS('S1C88','88') ;ID = 3

@SCP(str1,str2)

Returns an integer 1 if the two strings compare, 0 otherwise. The two strings must be separated by a
comma.

Example:

IF @SCP(STR,'MAIN') ;does STR equal MAIN?

@SGN(expression)

Returns the sign of expression as an integer: -1 if the argument is negative, 0 if zero, 1 if positive. The
expression may be relative or absolute.

Example:

IF @SGN(INPUT) == 1 ;is sign positive?

@SUB(str,expr1,expr2)

Returns the substring from str as a string. expr1 is the starting position within str and expr2 is the
length of the desired string. The assembler issues an error if either expr1 or expr2 exceeds the length of
str.

Example:

DEFINE ID "@SUB('S1C88',3,2)" ;ID = '88'

CHAPTER 2 ASSEMBLER

118 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

2.5 Macro Operations

2.5.1 Introduction
This chapter describes the macro operations and conditional assembly.
The macro preprocessor is implemented in the assembler.

2.5.2 Macro Operations
Programming applications frequently involve the coding of a repeated pattern or group of instructions.
Some patterns contain variable entries which change for each repetition of the pattern. Others are subject
to conditional assembly for a given occurrence of the instruction group. In either case, macros provide a
shorthand notation for handling these instruction patterns. Having determined the iterated pattern, the
programmer can, within the macro, designate selected fields of any statement as variable. Thereafter by
invoking a macro the programmer can use the entire pattern as many times as needed, substituting
different parameters for the designated variable portions of the statements.

When the pattern is defined it is given a name. This name becomes the mnemonic by which the macro is
subsequently invoked (called). If the name of the macro is the same as an existing assembler directive or
mnemonic opcode, the macro will replace the directive or mnemonic opcode, and a warning will be
issued.

The macro call causes source statements to be generated. The generated statements may contain substi-
tutable arguments. The statements produced by a macro call are relatively unrestricted as to type. They
can be any processor instruction, almost any assembler directive, or any previously-defined macro.
Source statements resulting from a macro call are subject to the same conditions and restrictions that are
applied to statements written by the programmer.

To invoke a macro, the macro name must appear in the operation code field of a source statement. Any
arguments are placed in the operand field. By suitably selecting the arguments in relation to their use as
indicated by the macro definition, the programmer causes the assembler to produce in-line coding
variations of the macro definition.

The effect of a macro call is to produce in-line code to perform a predefined function. The code is inserted
in the normal flow of the program so that the generated instructions are executed with the rest of the
program each time the macro is called.

An important feature in defining a macro is the use of macro calls within the macro definition. The
assembler processes such nested macro calls at expansion time only. The nesting of one macro definition
within another definition is permitted. However, the nested macro definition will not be processed until
the primary macro is expanded. The macro must be defined before its appearance in a source statement
operation field.

CHAPTER 2 ASSEMBLER

S5U1C88000C MANUAL I EPSON 119
C COMPILER/ASSEMBLER/LINKER

2.5.3 Macro Definition
The definition of a macro consists of three parts: the header, which assigns a name to the macro and
defines the dummy arguments; the body, which consists of prototype or skeleton source statements; and
the terminator. The header is the MACRO directive, its name, and the dummy argument list. The body
contains the pattern of standard source statements. The terminator is the ENDM directive.

The header of a macro definition has the form:

macro_name MACRO [dummy argument list] [comment]

The required name is the symbol by which the macro will be called. The dummy argument list has the
form:

[dumarg[,dumarg]...]

The dummy arguments are symbolic names that the macro processor will replace with arguments when
the macro is expanded (called). Each dummy argument must obey the same rules as global symbol
names. Dummy arguments are separated by commas.

When a macro call is executed, the dummy arguments within the macro definition (NMUL, AVEC, BVEC,
OFFSET, RESULT in the example below) are replaced with the corresponding argument as defined by the
macro call.

All local label definitions within a macro which use the local label operator are made unique for this
macro call. This is done by appending a unique postfix to every local label, making the scope of the label
local to the module. This mechanism allows the programmer to freely use local labels within a macro
definition without regard to the number of times that the macro is expanded. Labels without the local
label operator are considered to be normal labels and thus cannot occur more than once unless used with
the SET directive (see Section 2.6, "Assembler Directives").

Example:

The macro:
N_R_MUL MACRO NMUL,AVEC,BVEC,OFFSET,RESULT ;header

LD B,#NMUL ;body
LD IX,#AVEC
LD IY,#BVEC

^again: LD L,[IX+OFFSET]
LD A,[IY+OFFSET]
MLT
ADD A,[RESULT]
LD [RESULT],A
INC IX
INC IY
DJR NZ,^again
ENDM ;terminator
N_R_MUL 10H,_obj1,_obj2,10H,_RESULT

expands to: (note the different handling of again and _RESULT)

LD B,#10H
LD IX,#_obj1
LD IY,#_obj2

again__M_L000001:
LD L,[IX+10H]
LD A,[IY+10H]
MLT
ADD A,[_RESULT]
LD [_RESULT],A
INC IX
INC IY
DJR NZ,again__M_L000001

CHAPTER 2 ASSEMBLER

120 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

2.5.4 Macro Calls
When a macro is invoked the statement causing the action is termed a macro call. The syntax of a macro
call consists of the following fields:

[label:] macro_name [arguments] [comment]

The argument field can have the form:

[arg[,arg]...]

The macro call statement is made up of three besides the comment field: the label, if any, will correspond
to the value of the location counter at the start of the macro expansion; the operation field which contains
the macro name; and the operand field which contains substitutable arguments. Within the operand field
each calling argument of a macro call corresponds one-to-one with a dummy argument of the macro
definition. For example, the N_R_MUL macro defined earlier could be invoked for expansion (called) by
the statement:

N_R_MUL CNT+1,VEC1,VEC2,OFFS,OUT

where the operand field arguments, separated by commas and taken left to right, correspond to the
dummy arguments NMUL through RESULT, respectively. These arguments are then substituted in their
corresponding positions of the definition to produce a sequence of instructions.

Macro arguments consist of sequences of characters separated by commas. Although these can be speci-
fied as quoted strings, to simplify coding the assembler does not require single quotes around macro
argument strings. However, if an argument has an embedded comma or space, that argument must be
surrounded by single quotes ('). An argument can be declared null when calling a macro. However, if
must be declared explicitly null. Null arguments can be specified in four ways:

- by writing the delimiting commas in succession with no intervening spaces;

- by terminating the argument list with a comma and omitting the rest of the argument list;

- by declaring the argument as a null string;

- by simply omitting some or all of the arguments.

A null argument will cause no character to be substituted in the generated statements that reference the
argument. If more arguments are supplied in the macro call than appear in the macro definition, a
warning will be issued by the assembler.

CHAPTER 2 ASSEMBLER

S5U1C88000C MANUAL I EPSON 121
C COMPILER/ASSEMBLER/LINKER

2.5.5 Dummy Argument Operators
The assembler macro processor provides for text substitution of arguments during macro expansion. In
order to make the argument substitution facility more flexible, the assembler also recognizes certain text
operators within macro definitions which allow for transformations of the argument text. These operators
can be used for text concatenation, numeric conversion, and string handling.

2.5.5.1 Dummy Argument Concatenation Operator - \
Dummy arguments that are intended to be concatenated with other characters must be preceded by the
concatenation operator, '\' to separate them from the rest of the characters. The argument may precede or
follow the adjoining text, but there must be no intervening blanks between the concatenation operator
and the rest of the characters. To position an argument between two alphanumeric characters, place a
backslash both before and after the argument name. For example, consider the following macro defini-
tion:

SWAP_MEM MACRO REG1,REG2 ;swap memory contents
LD A,[I\REG1] ;using A as temp
LD B,[I\REG2] ;using B as temp
LD [I\REG1],B
LD [I\REG2],A
ENDM

If this macro were called with the following statement,

 SWAP_MEM X,Y

then for the macro expansion, the macro processor would substitute the character 'X' for the dummy
argument REG1, and the character 'Y' for the dummy argument REG2. The concatenation operator (\)
indicates to the macro processor that the substitution characters for the dummy arguments are to be
concatenated in both cases with the character I. The resulting expansion of this macro call would be:

 LD A,[IX]
 LD B,[IY]
 LD [IX],B
 LD [IY],A

2.5.5.2 Return Value Operator - ?
Another macro definition operator is the question mark (?) that returns the value of a symbol. When the
macro processor encounters this operator, the ?symbol sequence is converted to a character string repre-
senting the decimal value of the symbol. For example, consider the following modification of the
SWAP_MEM macro described above:

SWAP_MEM MACRO REG1,REG2 ;swap memory contents
LD A,[_lab\?REG1] ;using A as temp
LD B,[_lab\?REG2] ;using B as temp
LD [_lab\?REG1],B
LD [_lab\?REG2],A
ENDM

If the source file contained the following SET statements and macro call,

AREG SET 1
BREG SET 2

SWAP_MEM AREG,BREG

then the sequence of events would be as follows: the macro processor would first substitute the charac-
ters AREG for each occurrence of REG1 and BREG for each occurrence of REG2. For discussion purposes
(this would never appear on the source listing), the intermediate macro expansion would be:

LD A,[_lab\?AREG]
LD B,[_lab\?BREG]
LD [_lab\?AREG],B
LD [_lab\?BREG],A

CHAPTER 2 ASSEMBLER

122 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

The macro processor would then replace ?AREG with the character X and ?BREG with the character Y,
since X is the value of the symbol AREG and Y is the value of BREG. The resulting intermediate expan-
sion would be:

LD A,[_lab\1]
LD B,[_lab\2]
LD [_lab\1],B
LD [_lab\2],A

Next, the macro processor would apply the concatenation operator (\), and the resulting expansion as it
would appear on the source listing would be:

LD A,[_lab1]
LD B,[_lab2]
LD [_lab1],B
LD [_lab2],A

2.5.5.3 Return Hex Value Operator - %
The percent sign (%) is similar to the standard return value operator except that it returns the hexadeci-
mal value of a symbol. When the macro processor encounters this operator, the %symbol sequence is
converted to a character string representing the hexadecimal value of the symbol. Consider the following
macro definition:

GEN_LAB MACRO LAB,VAL,STMT
LAB\%VAL: STMT

ENDM

This macro generates a label consisting of the concatenation of the label prefix argument and a value that
is interpreted as hexadecimal. If this macro were called as follows,

NUM SET 10
GEN_LAB HEX,NUM,'NOP'

the macro processor would first substitute the characters HEX for LAB, then it would replace %VAL with
the character A, since A is the hexadecimal representation for the decimal integer 10. Next, the macro
processor would apply the concatenation operator (\). Finally, the string 'NOP' would be substituted for
the STMT argument. The resulting expansion as it would appear in the listing file would be:

HEXA: NOP

The percent sign is also the character used to indicate a binary constant. If a binary constant is required
inside a macro it may be necessary to enclose the constant in parentheses or escape the constant by
following the percent sign by a backslash (\).

2.5.5.4 Dummy Argument String Operator - "
Another dummy argument operator is the double quote ("). This character is replaced with a single quote
by the macro processor, but following characters are still examined for dummy argument names. The
effect in the macro call is to transform any enclosed dummy arguments into literal strings. For example,
consider the following macro definition:

STR_MAC MACRO STRING
ASCII "STRING"
ENDM

If this macro were called with the following macro expansion line,

STR_MAC ABCD

then the resulting macro expansion would be:

ASCII 'ABCD'

CHAPTER 2 ASSEMBLER

S5U1C88000C MANUAL I EPSON 123
C COMPILER/ASSEMBLER/LINKER

Double quotes also make possible DEFINE directive expansion within quoted strings. Because of this
overloading of the double quotes, care must be taken to insure against inappropriate expansions in macro
definitions. Since DEFINE expansion occurs before macro substitution, any DEFINE symbols are re-
placed first within a macro dummy argument string:

DEFINE LONG 'short'
STR_MAC MACRO STRING

MSG 'This is a LONG STRING'
MSG "This is a LONG STRING"
ENDM

If this macro were invoked as follows,

STR_MAC sentence

then the resulting expansion would be:

MSG 'This is a LONG STRING'
MSG 'This is a short sentence'

2.5.5.5 Macro Local Label Operator - ^
It may be desirable to pass a name as a macro argument to be used as a local address reference within the
macro body. If a circumflex (^) precedes an identifier then the macro preprocessor will perform name
mangling on that label so the label is used literally in the resulting macro expansion. Here is an example:

LOAD MACRO ADDR
LD A,[^ADDR]
ENDM

The macro ^-operator performs name mangling on the ADDR argument. Consider the following macro
call:

_LOCAL: LOAD _LOCAL

With the local label in the macro definition the macro LOAD would expand to the something like this:

_LOCAL:
LD A,[_LOCAL__M_L000001]

This would result in an assembly error as the label LOCAL__M_L000001 is nowhere defined. Without the
local label operator in the macro definition (as shown above) the macro LOAD would expand, as ex-
pected, to this:

_LOCAL:
LD A,[_LOCAL]

This will assemble correctly.

CHAPTER 2 ASSEMBLER

124 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

2.5.6 DUP, DUPA, DUPC, DUPF Directives
The DUP, DUPA, DUPC, and DUPF directives are specialized macro forms. They can be thought of as a
simultaneous definition and call of an unnamed macro. The source statements between the DUP, DUPA,
DUPC, and DUPF directives and the ENDM directive follow the same rules as macro definitions, includ-
ing (in the case of DUPA, DUPC, and DUPF) the dummy operator characters described previously. For a
detailed description of these directives, refer to Section 2.6, "Assembler Directives".

2.5.7 Conditional Assembly
Conditional assembly facilitates the writing of comprehensive source programs that can cover many
conditions. Assembly conditions may be specified through the use of arguments in the case of macros,
and through definition of symbols via the DEFINE, SET, and EQU directives. Variations of parameters
can then cause assembly of only those parts necessary for the given conditions. The built-in functions of
the assembler provide a versatile means of testing many conditions of the assembly environment (see
Section 2.4.4, "Functions", for more information on the assembler built-in functions).

Conditional directives can also be used within a macro definition to ensure at expansion time that
arguments fall within a range of allowable values. In this way macros become self-checking and can
generate error messages to any desired level of detail.

The conditional assembly directive IF has the following form:

IF expression
 .
 .
[ELSE] ;(the ELSE directive is optional)
 .
 .
ENDIF

A section of a program that is to be conditionally assembled must be bounded by an IF-ENDIF directive
pair. If the optional ELSE directive is not present, then the source statements following the IF directive
and up to the next ENDIF directive will be included as part of the source file being assembled only if the
expression had a nonzero result. If the expression has a value of zero, the source file will be assembled as if
those statements between the IF and the ENDIF directives were never encountered. If the ELSE directive
is present and expression has a nonzero result, then the statements between the IF and ELSE directives
will be assembled, and the statement between the ELSE and ENDIF directives will be skipped. Alterna-
tively, if expression has a value of zero, then the statements between the IF and ELSE directives will be
skipped, and the statements between the ELSE and ENDIF directives will be assembled.

CHAPTER 2 ASSEMBLER

S5U1C88000C MANUAL I EPSON 125
C COMPILER/ASSEMBLER/LINKER

2.6 Assembler Directives

2.6.1 Overview
Assembler directives, or pseudo instructions, are used to control the assembly process. Rather than being
translated into an S1C88 machine instruction, assembler directives are interpreted by the assembler. The
directives perform actions such as assembly control, listing control, defining symbols or changing the
location counter. Upper and lower case letters are considered equivalent for assembler directives.

Assembler directives can be grouped by function into five types:

1. Debugging

2. Assembly control

3. Symbol definition

4. Data definition/storage allocation

5. Macros and conditional assembly

2.6.1.1 Debugging
The compiler generates the following directives to pass high level language symbolic debug information
via the assembler into the object file:

CALLS - Pass call information to object file. Used to build a call tree at link time for overlaying
overlay sections.

SYMB - Pass symbolic debug information

2.6.1.2 Assembly Control
The directives used for assembly control are:

ALIGN - Specify alignment

COMMENT - Start comment lines. This directive is not permitted in IF/ELSE/ENDIF constructs and
MACRO/DUP definitions.

DEFINE - Define substitution string

DEFSECT - Define section name and attributes

END - End of source program

FAIL - Programmer generated error message

INCLUDE - Include secondary file

MSG - Programmer generated message

RADIX - Change input radix for constants

SECT - Activate section

UNDEF - Undefine DEFINE symbol

WARN - Programmer generated warning

CHAPTER 2 ASSEMBLER

126 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

2.6.1.3 Symbol Definition
The directives used to control symbol definition are:

EQU - Equate symbol to a value;
accepts forward references

EXTERN - External symbol declaration;
also permitted in module body

GLOBAL - Global symbol declaration;
also permitted in module body

LOCAL - Local symbol declaration

NAME - Identify object file

SET - Set symbol to a value;
accepts forward references

2.6.1.4 Data Definition/Storage Allocation
The directives used to control constant data definition and storage allocation are:

ASCII - Define ASCII string

ASCIZ - Define NULL padded ASCII string

DB - Define constant byte

DS - Define storage

DW - Define constant word

2.6.1.5 Macros and Conditional Assembly
The directives used for macros and conditional assembly are:

DUP - Duplicate sequence of source lines

DUPA - Duplicate sequence with arguments

DUPC - Duplicate sequence with characters

DUPF - Duplicate sequence in loop

ENDIF - End of conditional assembly

ENDM - End of macro definition

EXITM - Exit macro

IF - Conditional assembly directive

MACRO - Macro definition

PMACRO - Purge macro definition

CHAPTER 2 ASSEMBLER

S5U1C88000C MANUAL I EPSON 127
C COMPILER/ASSEMBLER/LINKER

2.6.2 ALIGN Directive

Syntax:

ALIGN expression

Description:

Align the location counter. The expression must be represented by a value of 2k. The default alignment
is on a multiple of 1 byte. expression must be greater than 0. If expression is not a value of 2k, a warning
is issued and the alignment will be set to the next 2k value. Alignment will be performed once at the
place where you write the align pseudo. The start of a section is aligned automatically to the largest
alignment value occurring in that section.

Depending on the section type the assembler has two cases for this directive.

- Relocatable sections
The section will be aligned on the calculated alignment boundary. A gap is generated depending
on the current relative location counter for this section.

- Absolute sections
The section location is not changed.
A gap is generated according to the current absolute address.

Examples:

ALIGN 4 ;align at 4 bytes
lab1: ALIGN 6 ;not a 2k value.

;a warning is issued
;lab1 is aligned on 8 bytes

2.6.3 ASCII Directive

Syntax:

[label:] ASCII string [, string]...

Description:

Define list of ASCII characters. The ASCII directive allocates and initializes an array of memory for
each string argument. No NULL byte is added to the end of the array. Therefore, the behavior is
identical to the DB directive with a string argument.

See also:

ASCIZ, DB

Examples:

HELLO: ASCII "Hello world" ;Is the same as DB "Hello world"

2.6.4 ASCIZ Directive

Syntax:

[label:] ASCIZ string [, string]...

Description:

Define list of ASCII characters. The ASCIZ directive allocates and initializes an array of memory for
each string argument. A NULL byte is added to the end of each array.

See also:

ASCII, DB

Examples:

HELLO: ASCIZ "Hello world" ;Is the same as DB "Hello world",0

CHAPTER 2 ASSEMBLER

128 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

2.6.5 CALLS Directive

Syntax:

CALLS 'caller', 'callee'[, nr]... [, 'callee'[, nr]...]...

Description:

Create a flow graph reference between caller and callees. The linker needs this information to build a
flow graph, which steers the overlay algorithm. caller and callee are names of functions

Stack information is also specified. After the callee name, for each possible stack a usage count can be
specified (e.g. system stack, user stack). The value specified (nr) is the stack usage (in bytes for the
S1C88) at the time of the call including the 'RET' address of the current function. Currently the S1C88
tool only use the system stack.

This information is used by the linker to compute the used stack within the application. The informa-
tion is found in the generated linker map file (-M option) within the call graph.

When callee is an empty name, this means we define the stack usage of the function itself.

See also Section 2.2.3.1, "Section Names", and Section 3.4, "Linker Output".

Examples:

DEFSECT "OVLN@nfunc", DATA, OVERLAY, SHORT
DEFSECT "OVLN@main", DATA, OVERLAY, SHORT

CALLS 'main', 'nfunc', 5

2.6.6 COMMENT Directive

Syntax:

COMMENT delimiter
 :
delimiter

Description:

Start Comment Lines. The COMMENT directive is used to define one or more lines as comments. The
first non-blank character after the COMMENT directive is the comment delimiter. The two delimiters
are used to define the comment text. The line containing the second comment delimiter will be
considered the last line of the comment. The comment text can include any printable characters and
the comment text will be produced in the source listing as it appears in the source file.

A label is not allowed with this directive.

This directive is not permitted in IF/ELSE/ENDIF constructs and MACRO/DUP definitions.

Examples:

COMMENT + This is a one line comment +
COMMENT * This is a multiple line comment. Any number of lines

 can be placed between the two delimiters.
*

CHAPTER 2 ASSEMBLER

S5U1C88000C MANUAL I EPSON 129
C COMPILER/ASSEMBLER/LINKER

2.6.7 DB Directive

Syntax:

[label:] DB arg[, arg]...

Description:

Define Constant Byte. The DB directive allocates and initializes a byte of memory for each arg argu-
ment. arg may be a numeric constant, a single or multiple character string constant, a symbol, or an
expression. The DB directive may have one or more arguments separated by commas. Multiple
arguments are stored in successive address locations. If multiple arguments are present, one or more
of them can be null (two adjacent commas), in which case the corresponding address location will be
filled with zeros. An error will occur if the evaluated argument value is too large to represent in a
single byte.
label, if present, will be assigned the value of the runtime location counter at the start of the directive
processing.
Integer arguments are stored as is, but must be byte values (e.g. within the range 0–255). Single and
multiple character strings are handled in the following manner:

1. Single character strings are stored in a byte whose bits represent the ASCII value of the character.
Example: 'R' = 52H

2. Multiple character strings represent bytes composed of the ASCII representation of the characters
in the string.
Example: 'ABCD' = 41H, 42H, 43H, 44H

See also:

DS, DW

Examples:
TABLE: DB 14,253,62H,'ABCD'
CHARS: DB 'A','B','C','D'

2.6.8 DEFINE Directive

Syntax:

DEFINE symbol string

Description:

Define Substitution String. The DEFINE directive is used to define substitution strings that will be
used on all following source lines. All succeeding lines will be searched for an occurrence of symbol,
which will be replaced by string. This directive is useful for providing better documentation in the
source program. symbol must adhere to the restrictions for labels. That is, the first character must be
alphabetic or the underscore (_), and the remainder of which must be either alphanumeric or the
underscore (_). A warning will result if a new definition of a previously defined symbol is attempted.
Macros represent a special case. DEFINE directive translations will be applied to the macro definition
as it is encountered. When the macro is expanded any active DEFINE directive translations will again
be applied.
A label is not allowed with this directive.

See also:

UNDEF

Examples:

If the following DEFINE directive occurred in the first part of the source program:
DEFINE ARRAYSIZ '10 * SAMPLSIZ'

then the source line below:

DS ARRAYSIZ

would be transformed by the assembler to the following:

DS 10 * SAMPLSIZ

CHAPTER 2 ASSEMBLER

130 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

2.6.9 DEFSECT Directive

Syntax:

DEFSECT section, type [, attr]... [AT address]

Description:

Use this directive to define section names and declaration attributes. Before any code or data can be
placed in a section, you must use the SECT directive to activate the section. The definition can have
declaration attributes and must have a section type (type).

The section type can be:

 type: DATA | CODE

The section declaration attribute can be:

 attr:
Group1: SHORT | TINY
Group2: FIT 100H | FIT 8000H | FIT 10000H
Group3: OVERLAY | ROMDATA | NOCLEAR | CLEAR | INIT | MAX
Group4: JOIN

For each group one attribute can be specified at the most. CLEAR sections are zeroed at startup. This
attribute can only be used on a DATA type section.

Sections with the NOCLEAR attribute are not zeroed at startup. This is a default attribute for DATA
sections. The attribute can only be used for DATA sections.

The INIT attribute defines that the DATA section contains initialization data, which is copied from
ROM to RAM at program startup.

A section becomes overlayable by specifying the OVERLAY attribute. Only DATA sections are
overlayable.

ROMDATA sections (allowed on DATA and CODE sections) contain data to be placed in ROM. This
ROM area is not executable.

When DATA sections with the same name occur in different object modules with the MAX attribute,
the linker generates a section of which the size is the maximum of the sizes in the individual object
modules. The MAX attribute only applies to DATA sections.

The SHORT attribute specifies for CODE sections that the section must be located within the first 32K
(common, non-banked area). When used on a DATA section, the SHORT attribute specifies that the
section has to be located within the first 64K page.

The TINY attribute specifies that the section must be located within one page of 256 bytes maximum,
within the first 64K of data memory.

The FIT attributes specify that a section may not cross a given boundary. As a result, the specified size
is also the maximum possible size for such a section (be aware, the linker links all sections with the
same name together and the check will be done on the resulting section). So, for example a FIT
8000H section may be located within range 0 and 7FFFH or within 8000H and 0FFFFH. It cannot be
positioned across address 8000H or 10000H, etc.

You can group sections together in one page with the JOIN attribute. The JOIN attribute should
always be used together with the FIT attribute. For example, when more sections have to be located
within the same data page, you can use this attribute. See also Section 2.2.3.3, "Grouped Sections".

See Section 2.2.3.1, "Section Names", for detailed information about sections, section types and section
attributes.

See also:

SECT

Examples:

DEFSECT ".text", DATA ;declare section .text
SECT ".text" ;switch to section .text

CHAPTER 2 ASSEMBLER

S5U1C88000C MANUAL I EPSON 131
C COMPILER/ASSEMBLER/LINKER

2.6.10 DS Directive

Syntax:

[label:] DS expression

Description:

Define Storage. The DS directive reserves a block of memory the length of which in bytes is equal to
the value of expression. This directive causes the runtime location counter to be advanced by the value
of the absolute integer expression in the operand field. The block of memory reserved is not initialized
to any value. The expression must be an integer greater than zero and cannot contain any forward
references to address labels (labels that have not yet been defined).

label, if present, will be assigned the value of the runtime location counter at the start of the directive
processing.

See also:

DB, DW

Examples:

S_BUF: DS 12 ; Sample buffer

2.6.11 DUP Directive

Syntax:

[label:] DUP expression
 :
ENDM

Description:

Duplicate Sequence of Source Lines. The sequence of source lines between the DUP and ENDM
directives will be duplicated by the number specified by the integer expression. If the expression
evaluates to a number less than or equal to 0, the sequence of lines will not be included in the assem-
bler output. The expression result must be an absolute integer and cannot contain any forward
references to address labels (labels that have not already been defined). The DUP directive may be
nested to any level.

label, if present, will be assigned the value of the runtime location counter at the start of the DUP
directive processing.

See also:

DUPA, DUPC, DUPF, ENDM, MACRO

Examples:

The sequence of source input statements,

COUNT SET 3
DUP COUNT ; SRA BY COUNT
SRA A
ENDM

would generate the following in the source listing:

COUNT SET 3
DUP COUNT ; SRA BY COUNT
SRA A
ENDM

; SRA A
; SRA A
; SRA A

CHAPTER 2 ASSEMBLER

132 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

2.6.12 DUPA Directive

Syntax:

[label:] DUPA dummy, arg[, arg]...
 :
ENDM

Description:

Duplicate Sequence With Arguments. The block of source statements defined by the DUPA and
ENDM directives will be repeated for each argument. For each repetition, every occurrence of the
dummy parameter within the block is replaced with each succeeding argument string. If the argument
string is a null, then the block is repeated with each occurrence of the dummy parameter removed. If
an argument includes an embedded blank or other assembler-significant character, it must be en-
closed with single quotes.

label, if present, will be assigned the value of the runtime location counter at the start of the DUPA
directive processing.

See also:

DUP, DUPC, DUPF, ENDM, MACRO

Examples:

If the input source file contained the following statements,

DUPA VALUE,12,32,34
DB VALUE
ENDM

then the assembler source listing would show

DUPA VALUE,12,32,34
DB VALUE
ENDM

; DB 12
; DB 32
; DB 34

2.6.13 DUPC Directive

Syntax:

[label:] DUPC dummy, string
 :
ENDM

Description:

Duplicate Sequence With Characters. The block of source statements defined by the DUPC and
ENDM directives will be repeated for each character of string. For each repetition, every occurrence of
the dummy parameter within the block is replaced with each succeeding character in the string. If the
string is null, then the block is skipped.

label, if present, will be assigned the value of the runtime location counter at the start of the DUPC
directive processing.

See also:

DUP, DUPA, DUPF, ENDM, MACRO

CHAPTER 2 ASSEMBLER

S5U1C88000C MANUAL I EPSON 133
C COMPILER/ASSEMBLER/LINKER

Examples:

If the input source file contained the following statements,

DUPC VALUE,'123'
DB VALUE
ENDM

then the assembler source listing would show

DUPC VALUE,'123'
DB VALUE
ENDM

; DB 1
; DB 2
; DB 3

2.6.14 DUPF Directive

Syntax:

[label:] DUPF dummy, [start], end[, increment]
.
.
ENDM

Description:

Duplicate Sequence In Loop. The block of source statements defined by the DUPF and ENDM
directives will be repeated in general (end - start) + 1 times when increment is 1. start is the starting
value for the loop index; end represents the final value. increment is the increment for the loop index; it
defaults to 1 if omitted (as does the start value). The dummy parameter holds the loop index value and
may be used within the body of instructions.

label, if present, will be assigned the value of the runtime location counter at the start of the DUPF
directive processing.

See also:

DUP, DUPA, DUPC, ENDM, MACRO

Examples:

If the input source file contained the following statements,

DUPF NUM,0,3
LD [NUM],A
ENDM

then the assembler source listing would show
DUPF NUM,0,3
LD [NUM],A
ENDM

; LD [0],A
; LD [1],A
; LD [2],A
; LD [3],A

CHAPTER 2 ASSEMBLER

134 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

2.6.15 DW Directive

Syntax:

[label:] DW arg[, arg]...

Description:

Define Constant Word. The DW directive allocates and initializes a word of memory for each arg
argument. arg may be a numeric constant, a single or double character string constant, a symbol, or an
expression. The DW directive may have one or more arguments separated by commas. Multiple
arguments are stored in successive address locations. If multiple arguments are present, one or more
of them can be null (two adjacent commas), in which case the corresponding address location will be
filled with zeros. An error will occur if the evaluated argument value is too large to represent in a
single word.

label, if present, will be assigned the value of the runtime location counter at the start of the directive
processing.

Note that word values are stored in memory with the lower 8 bits on the lowest address.

Integer arguments are stored as is. Single and multiple character strings are handled in the following
manner:

1. Single character strings are stored in a word whose lower seven bits represent the ASCII value of
the character.

Example: 'R' = 52H

2. Multiple character strings consisting of more than two characters are not allowed. Two-character
strings are stored as if the ASCII value of the first character is the high byte value of the word. The
second character is used as the low byte.

Example: 'AB' = 4142H

See also:

DB, DS

Examples:

TABLE: DW 14,1635,2662H,'AB'

is equal to

TABLE: DB 14,0,1635%256,6,62H,26H,'B','A'

2.6.16 END Directive

Syntax:

END

Description:

End of Source Program. The optional END directive indicates that the logical end of the source
program has been encountered. The END directive cannot be used in a macro expansion.

A label is not allowed with this directive.

Examples:

END ;End of source program

CHAPTER 2 ASSEMBLER

S5U1C88000C MANUAL I EPSON 135
C COMPILER/ASSEMBLER/LINKER

2.6.17 ENDIF Directive

Syntax:

ENDIF

Description:

End of Conditional Assembly. The ENDIF directive is used to signify the end of the current level of
conditional assembly. Conditional assembly directives can be nested to any level, but the ENDIF
directive always refers to the most previous IF directive. A label is not allowed with this directive.

See also:

IF

Examples:

IF DEB ;Report building of the debug version
MSG 'Debug Version'
ENDIF

2.6.18 ENDM Directive

Syntax:

ENDM

Description:

End of Macro Definition. Every MACRO, DUP, DUPA, and DUPC directive must be terminated by an
ENDM directive. A label is not allowed with this directive.

See also:

DUP, DUPA, DUPC, MACRO

Examples:

SWAP_MEM MACRO REG1,REG2 ;swap memory contents
LD A,[I\REG1] ;using A as temp
LD B,[I\REG2] ;using B as temp
LD [I\REG1],B
LD [I\REG2],A
ENDM

2.6.19 EQU Directive

Syntax:

name EQU expression

Description:

Equate Symbol to a Value. The EQU directive assigns the value of expression to the symbol name.
The EQU directive is one of the directives that assigns a value other than the program counter to the
name. The symbol name cannot be redefined anywhere else in the program. The expression may be
relative or absolute, and forward references are allowed.
An EQU symbol can be made global.

See also:

SET

Examples:

A_D_PORT EQU 4000H

This would assign the value 4000H to the symbol A_D_PORT.

CHAPTER 2 ASSEMBLER

136 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

2.6.20 EXITM Directive

Syntax:

EXITM

Description:

Exit Macro. The EXITM directive will cause immediate termination of a macro expansion. It is useful
when used with the conditional assembly directive IF to terminate macro expansion when error
conditions are detected.
A label is not allowed with this directive.

See also:

DUP, DUPA, DUPC, MACRO

Examples:

CALC MACRO XVAL,YVAL
IF XVAL<0
MSG 'Macro parameter value out of range'
EXITM ;Exit macro
ENDIF
 :
ENDM

2.6.21 EXTERN Directive

Syntax:

EXTERN [(attrib[, attrib]...)] symbol[, symbol]...

Description:

External Symbol Declaration. The EXTERN directive is used to specify that the list of symbols is
referenced in the current module, but is not defined within the current module. These symbols must
either have been defined outside of any module or declared as globally accessible within another
module using the GLOBAL directive.

The optional argument attrib can be one of the following symbol attributes:

CODE symbol is in ROM

DATA symbol is in RAM

SHORT symbol is within first page of memory
for CODE in first 32K
for DATA in first 64K

TINY symbol is in one page of 256 bytes maximum of the first 64K page of DATA

If the EXTERN directive is not used to specify that a symbol is defined externally and the symbol is
not defined within the current module, a warning is generated, and an EXTERN symbol is inserted.

A label is not allowed with this directive.

See also:

GLOBAL

Examples:

EXTERN AA,CC,DD ;defined elsewhere
EXTERN (CODE,SHORT) EE ;within first 32K of code memory

CHAPTER 2 ASSEMBLER

S5U1C88000C MANUAL I EPSON 137
C COMPILER/ASSEMBLER/LINKER

2.6.22 FAIL Directive

Syntax:

FAIL [{str | exp} [, {str | exp}]...]

Description:

Programmer Generated Error. The FAIL directive will cause an error message to be output by the
assembler. The total error count will be incremented as with any other error. The FAIL directive is
normally used in conjunction with conditional assembly directives for exceptional condition checking.
The assembly stops immediately after the error has been printed. An arbitrary number or strings and
expressions, in any order but separated by commas, can be specified optionally to describe the nature
of the generated error.

A label is not allowed with this directive.

See also:

MSG, WARN

Examples:

FAIL 'Parameter out of range'

2.6.23 GLOBAL Directive

Syntax:

GLOBAL symbol[,symbol]...

Description:

Global Section Symbol Declaration. The GLOBAL directive is used to specify that the list of symbols
is defined within the current section or module, and that those definitions should be accessible by all
modules. If the symbols that appear in the operand field are not defined in the module, an error will
be generated. Symbols that are defined "global" are accessible from other modules using the EXTERN
directive.

A label is not allowed with this directive.

Only program labels and EQU labels can be made global.

See also:

EXTERN, LOCAL

Examples:

GLOBAL LOOPA ;LOOPA will be globally
;accessible by other modules

CHAPTER 2 ASSEMBLER

138 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

2.6.24 IF Directive

Syntax:

IF expression
 :
[ELSE] (the ELSE directive is optional)
 :
ENDIF

Description:

Conditional Assembly Directive. Part of a program that is to be conditionally assembled must be
bounded by an IF-ENDIF directive pair. If the optional ELSE directive is not present, then the source
statements following the IF directive and up to the next ENDIF directive will be included as part of
the source file being assembled only if the expression has a nonzero result. If the expression has a value
of zero, the source file will be assembled as if those statements between the IF and the ENDIF direc-
tives were never encountered. If the ELSE directive is present and expression has a nonzero result, then
the statements between the IF and ELSE directives will be assembled, and the statements between the
ELSE and ENDIF directives will be skipped. Alternatively, if expression has a value of zero, then the
statements between the IF and ELSE directives will be skipped, and the statements between the ELSE
and ENDIF directives will be assembled.

The expression must have an absolute integer result and is considered true if it has a nonzero result.
The expression is false only if it has a result of 0. Because of the nature of the directive, expression must
be known on pass one (no forward references allowed). IF directives can be nested to any level. The
ELSE directive will always refer to the nearest previous IF directive as will the ENDIF directive.

A label is not allowed with this directive.

See also:

ENDIF

Examples:

IF XVAL<0
MSG 'Please select larger value for XVAL'
ENDIF

2.6.25 INCLUDE Directive

Syntax:

INCLUDE string | <string>

Description:

Include Secondary File. This directive is inserted into the source program at any point where a
secondary file is to be included in the source input stream. The string specifies the filename of the
secondary file. The filename must be compatible with the operating system and can include a direc-
tory specification.

The file is searched for first in the current directory, unless the <string> syntax is used, or in the
directory specified in string. If the file is not found, the assembler searches in a directory specified
with this environment variable AS88INC. AS88INC contain more than one directory. Finally, the
directory ..\include relative to the directory where the assembler binary is located is searched.
If the <string> syntax is given, the directory specified in string and the current directory are not
searched. However, the directories specified with AS88INC and the relative path are still searched.

A label is not allowed with this directive.

Examples:

INCLUDE 'storage\mem.asm'
INCLUDE <data.asm> ; Do not look in current directory

CHAPTER 2 ASSEMBLER

S5U1C88000C MANUAL I EPSON 139
C COMPILER/ASSEMBLER/LINKER

2.6.26 LOCAL Directive

Syntax:

LOCAL symbol[, symbol]...

Description:

Local Section Symbol Declaration. The LOCAL directive is used to specify that the list of symbols is
defined within the current module, and that those definitions are explicitly local to that section or
module. It is useful in cases where a symbol may not be exported outside of the module (as labels in a
module are defined "global" by default). If the symbols that appear in the operand field are not
defined in the module, an error will be generated.

A label is not allowed with this directive.

See also:

GLOBAL

Examples:

LOCAL LOOPA ;LOOPA local to this module

2.6.27 MACRO Directive

Syntax:

name MACRO [dummy argument list]

 :

macro definition statements

 :

ENDM

Description:

Macro Definition. The dummy argument list has the form:

[dumarg[, dumarg]...]

The required name is the symbol by which the macro will be called.

The definition of a macro consists of three parts: the header, which assigns a name to the macro and
defines the dummy arguments; the body, which consists of prototype or skeleton source statements;
and the terminator. The header is the MACRO directive, its name, and the dummy argument list. The
body contains the pattern of standard source statements. The terminator is the ENDM directive.

The dummy arguments are symbolic names that the macro processor will replace with arguments
when the macro is expanded (called). Each dummy argument must obey the same rules as symbol
names. Within each of the three dummy argument field, the dummy arguments are separated by
commas. The dummy argument fields are separated by one or more blanks.

Macro definitions may be nested but the nested macro will not be defined until the primary macro is
expanded.

Section 2.5, "Macro Operations", contains a complete description of macros.

See also:

DUP, DUPA, DUPC, DUPF, ENDM

Examples:
SWAP_MEM MACRO REG1,REG2 ;swap memory contents

LD A,[I\REG1] ;using A as temp
LD B,[I\REG2] ;using B as temp
LD [I\REG1],B
LD [I\REG2],A
ENDM

CHAPTER 2 ASSEMBLER

140 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

2.6.28 MSG Directive

Syntax:

MSG [{str | exp}[, {str | exp}]...]

Description:

Programmer Generated Message. The MSG directive will cause a message to be output by the
assembler. The error and warning counts will not be affected. The MSG directive is normally used in
conjunction with conditional assembly directives for informational purposes. The assembly proceeds
normally after the message has been printed. An arbitrary number of strings and expressions, in any
order but separated by commas, can be specified optionally to describe the nature of the message.

A label is not allowed with this directive.

See also:

FAIL, WARN

Examples:

MSG 'Generating tables'

2.6.29 NAME Directive

Syntax:

NAME "str"

Description:

The NAME directive is used by the assembler to give an identification to the produced object file. The
linker and locator can then use this information to identify the source within the map files. Also a
debugger may display the value as a 'module' name.

When this directive is omitted, the assembler will use the module's source name as an identification.
When using the control program, this name might become a 'random' name.

Examples:

NAME "strcat" ;object is identified by the name "strcat"

2.6.30 PMACRO Directive

Syntax:

PMACRO symbol[, symbol]...

Description:

Purge Macro Definition. The specified macro definition will be purged from the macro table, allowing
the macro table space to be reclaimed.

A label is not allowed with this directive.

See also:

MACRO

Examples:

PMACRO MAC1,MAC2

This statement would cause the macros named MAC1 and MAC2 to be purged.

CHAPTER 2 ASSEMBLER

S5U1C88000C MANUAL I EPSON 141
C COMPILER/ASSEMBLER/LINKER

2.6.31 RADIX Directive

Syntax:

RADIX expression

Description:

Change Input Radix for Constants. Changes the input base of constants to the result of expression. The
absolute integer expression must evaluate to one of the legal constant bases (2, 8, 10, or 16). The
default radix is 10. The RADIX directive allows the programmer to specify constants in a preferred
radix without a leading radix indicator. The radix suffix for base 10 numbers is the 'D' character. Note
that if a constant is used to alter the radix, it must be in the appropriate input base at the time the
RADIX directive is encountered.

A label is not allowed with this directive.

Examples:

_RAD10: DB 10 ; Evaluates to hex A
RADIX 2

_RAD2: DB 10 ; Evaluates to hex 2
RADIX 16D

_RAD16: DB 10 ; Evaluates to hex 10
RADIX 3 ; Bad radix expression

2.6.32 SECT Directive

Syntax:

SECT "str" [, RESET]

Description:

The SECT directive flags the assembler that another section, with name str, becomes active. Before a
section can be activated for the first time, it must be defined first, by the DEFSECT directive. Subse-
quent activations can be done by the SECT directive only.

You can use the section attribute RESET to reset counting storage allocation in DATA sections with
section attribute MAX.

See Section 2.2.3.1, "Section Names", for detailed information about sections.

See also:

DEFSECT

Examples:

DEFSECT ".text", DATA ;declare section .text
SECT ".text" ;switch to section .text

CHAPTER 2 ASSEMBLER

142 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

2.6.33 SET Directive

Syntax:

name SET expression

Description:

Set Symbol to a Value. The SET directive is used to assign the value of the expression in the operand
field to the symbol name. The SET directive functions somewhat like the EQU directive. However,
symbols defined via the SET directive can have their values redefined in another part of the program
(but only through the use of another SET directive). The SET directive is useful in establishing
temporary or reusable counters within macros. The expression in the operand field of a SET may have
forward references.

SET symbols cannot be made global.

See also:

EQU

Examples:

COUNT SET 0 ; Initialize COUNT

2.6.34 SYMB Directive

Syntax:

SYMB string, expression[, abs_expr] [, abs_expr]

Description:

The SYMB directive is used for passing high-level language symbolic debug information via the
assembler (and linker/locator) to the debugger. expression can be any expression. abs_expr can be any
expression resulting in an absolute value.

The SYMB directive is not meant for 'hand coded' assembly files. It is documented for completeness
only and is supposed to be 'internal' to the tool chain.

2.6.35 UNDEF Directive

Syntax:

UNDEF symbol

Description:

Undefine DEFINE Symbol. The UNDEF directive causes the substitution string associated with
symbol to be released, and symbol will no longer represent a valid DEFINE substitution. See the
DEFINE directive for more information.

A label is not allowed with this directive.

See also:

DEFINE

Examples:

UNDEF DEBUG ;Undefines the DEBUG substitution string

CHAPTER 2 ASSEMBLER

S5U1C88000C MANUAL I EPSON 143
C COMPILER/ASSEMBLER/LINKER

2.6.36 WARN Directive

Syntax:

WARN [{str | exp}[, {str | exp}]...]

Description:

Programmer Generated Warning. The WARN directive will cause a warning message to be output by
the assembler. The total warning count will be incremented as with any other warning. The WARN
directive is normally used in conjunction with conditional assembly directives for exceptional condi-
tion checking. The assembly proceeds normally after the warning has been printed. An arbitrary
number of strings and expressions, in any order but separated by commas, can be specified optionally
to describe the nature of the generated warning.

A label is not allowed with this directive.

See also:

FAIL, MSG

Examples:

WARN 'parameter too large'

CHAPTER 2 ASSEMBLER

144 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

2.7 Assembler Controls

2.7.1 Introduction
Assembler controls are provided to alter the default behavior of the assembler. They can be specified on
'control lines', embedded in the source file. A control line is a line starting with a dollar sign ($). Such a
line is not processed like a normal assembly source line, but as an assembler control line. One control per
source line is allowed. An assembler control line may contain comments. Upper and lower case letters are
considered equivalent for assembler directives.

The controls are classified as: primary or general.

Primary controls affect the overall behavior of the assembler and remain in effect throughout the assem-
bly. For this reason, primary controls may only be used at the beginning of a source file, before the
assembly starts. If you specify a primary control more than once, a warning message is given and the last
definition is used. This enables you to override primary controls via command line options.

General controls are used to control the assembler during assembly. Control lines containing general
controls may appear anywhere in a source file. When you specify general controls via the invocation line
the corresponding general controls in the source file are ignored.

On the next pages, the available assembler controls are listed in alphabetic order. Some controls are set by
default, and some controls have a default value.

2.7.2 Overview Assembler Controls

Table 2.7.2.1 Assembler controls
Control

$CASE ON
$CASE OFF
$IDENT LOCAL
$IDENT GLOBAL
$LIST ON
$LIST OFF
$LIST "flags"
$MODEL [S|C|D|L]

$STITLE "title"
$TITLE "title"
$WARNING OFF
$WARNING OFF num
Type: Type of control: pri for primary controls, gen for general controls.

Type
pri

pri

gen

pri
pri

gen
pri
pri

Default
ON

LOCAL

cDEGlMnPQsWXy
L

spaces

Description
All user names are case sensitive.
User names are not case sensitive.
Default local labels.
Default global labels.
Resume listing.
Stop listing.
Define what to include in/exclude from the list file.
Select memory model. Object files in different models
cannot be linked together.
Set list page header title for next pages.
Set list page header title for first page.
Suppress all warnings.
Suppress one warning.

CHAPTER 2 ASSEMBLER

S5U1C88000C MANUAL I EPSON 145
C COMPILER/ASSEMBLER/LINKER

2.7.3 Description of Assembler Controls

2.7.3.1 CASE
Control:

$CASE ON
$CASE OFF

Related option:

-c Set case sensitivity off; overrules the control.

Class:

Primary

Default:

$CASE ON

Description:

Selects whether the assembler operates in case sensitive mode or not. In case insensitive mode the
assembler maps characters on input to uppercase (literal strings excluded).

Example:
;Begin of source
$case off ;assembler in case insensitive mode

2.7.3.2 IDENT
Control:

$IDENT LOCAL
$IDENT GLOBAL

Related option:

-i[l|g] Default labels are local or global.

Class:

Primary

Default:

$IDENT LOCAL

Description:

With the $IDENT control you specify how a label is to be treated by the assembler. This is for code
and data labels only. $IDENT LOCAL specifies that labels are local by default, with $IDENT GLOBAL
labels are global by default.

SET identifiers are always treated as local symbols.

You can always overrule the default settings with the LOCAL or GLOBAL directives for a specific
label.

Example:
;Begin of source
$ident global ; assembly labels are global by default

CHAPTER 2 ASSEMBLER

146 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

2.7.3.3 LIST ON/OFF
Control:

$LIST ON
$LIST OFF

Related option:

-l Produce an assembler list file

Class:

General

Default:

$LIST ON

Description:

Switch the listing generation on or off. These controls take effect starting at the next line. Actual list
file generation is selected on the command line. Without the command line option -l, no list file is
produced.

Example:
$list off ; Turn listing off.

; These lines are not present in the list file
 :
$list on ; Turn listing back on.

; These lines are present in the list file
 :

2.7.3.4 LIST
Control:

$LIST "flags"

Related option:

-L[flag...] Remove specified source lines from list file

Class:

Primary

Default:

$LIST "cDEGlMnPQsWXy"

Description:

Specify which source lines are to be removed from the list file. The flags defined within the string are
the same as for the -L command line option. See the -L option for an explanation of each flag available.

Example:
;Begin of source
$list "cw" ; Remove source lines with assembler controls from the

; resulting list file and remove wrapped source lines
 :

CHAPTER 2 ASSEMBLER

S5U1C88000C MANUAL I EPSON 147
C COMPILER/ASSEMBLER/LINKER

2.7.3.5 MODEL
Control:

$MODEL [S | C | D | L]

Related option:

-Mmodel Specify memory model

Class:

Primary

Default:

$MODEL L

Description:

With the $MODEL control you specify how the source must use the processor. You can specify four
models:

Model
S
C
D
L

Description
small model, maximum of 64K code and data
compact code model, maximum of 64K code and 16M data
compact data model, maximum of 8M code and 64K data
large model, maximum of 8M code and 16M data

This means, for example, that in the small model, you should never change the CB/NB register value
in the source, and also the EP/XP/YP registers must be fixed.

You cannot link object files that have been assembled for different models. This is to make sure the
different models use the same approach to the page registers. The $MODEL control is used by the C
compiler this way, but an assembler programmer is still able to select the 'wrong' model within a
source. Thus writing a non-working program.

Example:
;Begin of source
$model s

; assemble using the small model

CHAPTER 2 ASSEMBLER

148 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

2.7.3.6 STITLE
Control:

$STITLE "title"

Related option:

-l Produce an assembler list file

Class:

General

Default:

$STITLE ""

Description:

Initialize Program Sub-Title. The $STITLE control initializes the program subtitle to the title in the
operand field. The subtitle will be printed on the top of all succeeding pages until another $STITLE
control is encountered. The subtitle is initially blank. The $STITLE control will not be printed in the
source listing. An $STITLE control with no string argument will cause the current subtitle to be blank.

If the page width is too small for the title to fit in the header, it will be truncated.

See also:

TITLE

Example:
$stitle "Demo title"

; title in page header on succeeding pages
; is Demo title

2.7.3.7 TITLE
Control:

$TITLE "title"

Related option:

-l Produce an assembler list file

Class:

Primary

Default:

spaces

Description:

This control specifies the title to be used in the page heading of the first page of the list file.

If the page width is too small for the title to fit in the header, it will be truncated.

See also:

STITLE

Example:
;Begin of source
$title "NEWTITLE"

; title in page header on first page is NEWTITLE

CHAPTER 2 ASSEMBLER

S5U1C88000C MANUAL I EPSON 149
C COMPILER/ASSEMBLER/LINKER

2.7.3.8 WARNING
Control:

$WARNING OFF
$WARNING OFF num

Related option:

-w[num] Suppress one or all warning messages

Class:

Primary

Default:

– (All warnings enabled)

Description:

$WARNING suppresses all warnings. This is the same as -w. $WARNING OFF num suppresses one
warning message, where num is the warning message number (same as the -wnum option).

Example:
;Begin of source
$warning off ; switch all warnings off

CHAPTER 3 LINKER

150 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

CHAPTER 3 LINKER

3.1 Overview
This section gives a global overview of the process of linking programs for the S1C88 and its derivatives.
The linker executable name for the S1C88 is lk88.

The linker combines relocatable object files, generated by the assembler, into one new relocatable object
file (preferred extension .out). This file may be used as input in subsequent linker calls: the linkage
process may be incremental. Normally the linker complains about unresolved external references. With
incremental linking it is normal to have unresolved references in the output file. Incremental linking must
be selected separately.

The linker can read normal object files and libraries of object modules. Modules in a library are included
only when they are referenced. At the end of the linkage process the generated object, without unresolved
references, will be called: a load module.

The S1C88 linker is an overlaying linker. The compiler generates overlayable sections. An overlayable
section contains space reservations for variables which, at C level, are local to a function. If functions do
not call each other, their local variables can be overlayed in memory. It is a task of the linker to combine
function call information into a call graph and to determine upon the structure of this call graph how
sections can be overlayed, using the smallest amount of RAM.

Incremental linkage disables overlaying, so the last link phase should not be incremental, even if the
incremental phase resolves all externals.

The following diagram shows the input files and output files of the linker:

map file .lnl

object files .obj

load module .out

object library .a

linker
lk88

Fig. 3.1.1 S1C88 Linker

CHAPTER 3 LINKER

S5U1C88000C MANUAL I EPSON 151
C COMPILER/ASSEMBLER/LINKER

3.2 Linker Invocation
The invocation of the S1C88 linker is:

lk88 [option]... file ...

Options may appear in any order. Options start with a '-'. Only the -lx option is position dependent.
Option may be combined: -rM is equal to -r -M. Options that require a filename or a string may be
separated by a space or not: -oname is equal to -o name.

file can be any object file (.obj), object libraries (.a) or incremental linker (.out) files. The files are
linked in the same order as they appear on the command line.

The linker recognizes the following options:

Options Summary
Option

-C
-L directory
-L
-M
-N
-O name
-V
-c
-e
-err
-f file
-l x
-o filename
-r
-u symbol
-v or -t
-w n

Description
Link case insensitive (default case sensitive)
Additional search path for system libraries
Skip system library search
Produce a link map (.lnl)
Turn off overlaying
Specify basename of the resulting map files
Display version header only
Produce a separate call graph file (.cal)
Clean up if erroneous result
Redirect error messages to error file (.elk)
Read command line information from file, '-' means stdin
Search also in system library libx.a
Specify name of output file
Suppress undefined symbol diagnostics
Enter symbol as undefined in the symbol table
Verbose option. Print name of each file as it is processed
Suppress messages above warning level n.

3.2.1 Detailed Description of Linker Options

-C
With this option lk88 links case insensitive. The default is case sensitive linking.

-L [directory]
Add directory to the list of directories that are searched for system libraries. Directories specified with
-L are searched before the standard directories specified by the environment variable C88LIB. If you
specify -L without a directory, the environment variable C88LIB is not searched for system libraries.
You may use the -L option more than once to add several directories to the search path for system
libraries. The search path is created in the same order as in which the directories are specified on the
command line.

Note: Directory names that include "O" (capital letter) cannot be specified with the -L option.

-M
Produce a link map (.lnl).

-N
Turn off overlaying. This can be useful for debugging.

-O name
Use name as the default basename for the resulting map files.

-V
With this option you can display the version header of the linker. This option must be the only
argument of lk88. Other options are ignored. The linker exits after displaying the version header.

-c
Generate separate call graph file (.cal).

CHAPTER 3 LINKER

152 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

-e
Remove all link products such as temporary files, the resulting output file and the map file, in case an
error occurred.

-err
The linker redirects error messages to a file with the same basename as the output file and the exten-
sion .elk. The default filename is a.elk.

-f file
Read command line information from file. If file is a '-', the information is read from standard input.
You need to provide the EOF code to close stdin.
Use file for command line processing. To get around the limits on the size of the command line, it is
possible to use command files. These command files contain the options that could not be part of the
real command line. Command files can also be generated on the fly, for example by the make utility.
More than one -f option is allowed.
Some simple rules apply to the format of the command file:

1. It is possible to have multiple arguments on the same line in the command file.

2. To include whitespace in the argument, surround the argument with either single or double
quotes.

3. If single or double quotes are to be used inside a quoted argument, we have to go by the following
rules:

a. If the embedded quotes are only single or double quotes, use the opposite quote around the
argument. Thus, if a argument should contain a double quote, surround the argument with
single quotes.

b. If both types of quotes are used, we have to split the argument in such a way that each embed-
ded quote is surrounded by the opposite type of quote.

Example:
"This has a single quote ' embedded"

or
'This has a double quote " embedded'

or
'This has a double quote " and a single quote '"' embedded"

4. Some operating systems impose limits on the length of lines within a text file. To circumvent this
limitation it is possible to use continuation lines. These lines end with a backslash and newline. In
a quoted argument, continuation lines will be appended without stripping any whitespace on the
next line. For non-quoted arguments, all whitespace on the next line will be stripped.

Example:
"This is a continuation \
line"

→ "This is a continuation line"

control(file1(mode,type),\
file2(type))

→ control(file1(mode,type),file2(type))

5. It is possible to nest command line files up to 25 levels.

-l x
Search also in system library libx.a, where x is a string. The linker first searches for system libraries
in any directories specified with -Ldirectory, then in the standard directories specified with the envi-
ronment variable C88LIB, unless the -L option is used without a directory specified. This option is
position dependent (see Section 3.3.2, "Linking with Libraries").

-o filename
Use filename as output filename of the linker. If this option is omitted, the default filename is a.out.

CHAPTER 3 LINKER

S5U1C88000C MANUAL I EPSON 153
C COMPILER/ASSEMBLER/LINKER

-r
No report is made for unresolved symbols. Use this option with incremental linking.

-u symbol
Enter symbol as undefined in the symbol table. This is useful for linking from a library.

-v or -t
Verbose option. Print the name of each file as it is processed.

-w n
Give a warning level between 0 an 9 (inclusive). All warnings with a level above n are suppressed.
The level of a message is printed in the last column of this message. If you do not use the -w option,
the default warning level is 8.

3.3 Libraries
There are two kinds of libraries. One of them is the user library. If you make your own library of object
modules, this library must be specified as an ordinary filename. The linker will not use any search path to
find such a library. The file must have the extension .a.

Example:

lk88 start.obj -fobj.lnk mylib.a

or, if the library resides in a sub directory:

lk88 start.obj -fobj.lnk libs\mylib.a

The other kind of library is the system library. You must define system libraries with the -l option. With
the option -lcs you specify the system library libcs.a.

3.3.1 Library Search Path
The linker searches for system library files according to the following algorithm:

1. Use the directories specified with the -Ldirectory options, in a left-to-right order. For example:

lk88 -L..\lib -L\usr\local\lib start.obj -fobj.lnk -lcs

2. If the -L option is not specified without a directory, check if the environment variable C88LIB exists. If
it does, use the contents as a directory specifier for library files. It is possible to specify more than one
directory in the environment variable C88LIB by separating the directories with a directory separator.
Valid directory separators are:

Instead of using -L as in the example above, the same directory can be specified using C88LIB:

set C88LIB=..\lib;\usr\local\lib
lk88 start.obj -fobj.lnk -lcs

3. Search in the lib directory relative to the installation directory of lk88 for library files.
lk88.exe is installed in the directory C:\C88\BIN
The directory searched for the library file is C:\C88\LIB

The linker determines run-time which directory the binary is executed from to find this lib directory.

4. If the library is still not found, search in the processor and model specific subdirectory of the lib
directory relative to the installation directory of lk88 for library files. For example:

C:\C88\LIB\S1C88s

CHAPTER 3 LINKER

154 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

The S1C88s directory is searched if the application is built in the small memory model. In general, the
following directories are searched:

Directory
S1C88s
S1C88d
S1C88c
S1C88l

Application built in
small model
compact data model
compact code model
large model

For an explanation of memory models, see also Chapter 1, "C Compiler" and Section 2.7.3.5, "MODEL".

A directory name specified with the -Ldirectory option or in C88LIB may or may not be terminated with a
directory separator, because lk88 inserts this separator, if omitted.

3.3.2 Linking with Libraries
If you are linking from libraries, only those objects you need are extracted from the library. This implies
that if you invoke the linker like:

lk88 mylib.a

nothing is linked and no output file will be produced, because there are no unresolved symbols when the
linker searches through mylib.a.

It is possible to force a symbol as undefined with the option -u:

lk88 -u main mylib.a (space between -u and main is optional)

In this case the symbol main will be searched for in the library and (if found) the object containing main
will be extracted. If this module contains new unresolved symbols, the linker looks again in mylib.a.
This process repeats until no new unresolved symbols are found. See also the library member search
algorithm in the next section.

The position of the library is important, if you specify:

lk88 -lcs myobj.obj mylib.a

the linker starts with searching the system library libcs.a without unresolved symbols, thus no module
will be extracted. After that, the user object and library are linked. When finished, all symbols from the C
library remain unresolved. So, the correct invocation is:

lk88 myobj.obj mylib.a -lcs

All symbols which remain unresolved after linking myobj.obj and mylib.a will be searched for in the
system library libcs.a. Note that the link order for objects, user libraries and system libraries is the
order in which they appear at the command line. Objects are always linked, object modules in libraries
are only linked if they are needed.

3.3.3 Library Member Search Algorithm
A library built with ar88 always contains an index part at the beginning of the library. The linker scans
this index while searching for unresolved externals. However, to keep the index as small as possible, only
the defined symbols of the library members are recorded in this area.

When the linker finds a symbol that matches an unresolved external, the corresponding object file is
extracted from the library and is processed. After processing the object file, the remaining library index is
searched. If after a complete search unresolved externals are introduced, the library will be scanned
again.

Using the -v option, you can follow the linker actions in respect to the libraries.

CHAPTER 3 LINKER

S5U1C88000C MANUAL I EPSON 155
C COMPILER/ASSEMBLER/LINKER

3.4 Linker Output
The linker produces an IEEE-695 object output file and, if requested, a map file, and/or a call graph file.

The linker output object is still relocatable. It is the task of the locator to determine the absolute addresses
of the sections. The linker combines sections with the same name to one (bigger) output section.

The linker produces a map file if the option -M is specified. The name of the map file is the same as the
name of the output file. The extension is .lnl. If no output filename is specified the default name is
a.lnl. The map file is organized per linked object. Each object is divided in sections and symbols per
section. The map file shows the relative position of each linked object from the start of the section.

The generated call graph will also be printed in the map file. The call graph contains an overview of
which function calls are present. The call graph also contains information about the stack usage of the call
graph. When a function is called, the stack usage before entering the function is written in front of the
function name. The total stack usage of the function (including its calls) is written behind the function.
The maximum stack usage of a function itself is written below the function. The number indicates the size
of the stack usage (in bytes for the S1C88). See also the example.

The call graph also generates two types of messages:

- one for the detection of a recursive function call which is displayed as:

Call graph(s)
=============

Call graph 1:

 function
 |
 +-- function1 !! RECURSIVE !!

- one for the detection of a static function that is referenced / called by different call graphs.

If a static function is called by different call graphs, the function is handled as a separate graph and is
not overlayed with the different call graphs it is referenced in.

Call graph(s)
=============

Call graph 1:

 root1
 |
 +-- shared !! NOT OVERLAYED !! (referenced by different call graphs)

Call graph 2:

 root2
 |
 +-- shared !! NOT OVERLAYED !! (referenced by different call graphs)
 |
 +-- sub2

CHAPTER 3 LINKER

156 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

The command line option -c forces the linker to generate a separate call graph file with a compressed call
graph. The filename extension of this file is .cal.

If the linker is used for incremental linking, the -r option must be used. The effect is, that unresolved symbol
diagnostics will not be generated, and overlaying is not done (see Section 3.5, "Overlay Sections"). In this case,
the output of the linker can be used again as input object. A call graph will always be generated.

A sample map file (.lnl):

Call graph(s)
=============

Call graph 1:

 _start (14)
 |
 +-(4)- _exit (2)
 | |
 | +-(2)
 |
 +-(2)- main (12)
 | |
 | +-(2)- puts (10)
 | | |
 | | +-(2)- fputc (8)
 | | | |
 | | | +-(2)- _flsbuf (6)
 | | | | |
 | | | | +-(2)- _iowrite (2)
 | | | | | |
 | | | | | +-(2)
 | | | | |
 | | | | +-(2)- _write (4)
 | | | | | |
 | | | | | +-(2)- _iowrite (2)
 | | | | | | |
 | | | | | | +-(2)
 | | | | | |
 | | | | | +-(2)
 | | | | |
 | | | | +-(2)
 | | | |
 | | | +-(2)
 | | |
 | | +-(2)
 | |
 | +-(2)
 |
 +-(4)

Maximum stack usage: 14
Pool offsets
============

Pool #1: zp_ovln (Total of 39 bytes)

Pool: zp_ovln
off siz

puts() 0 6
fputc() 6 7
_flsbuf() 13 12
_write() 25 10
_iowrite() 35 4

Object: cstart.obj
==================

CHAPTER 3 LINKER

S5U1C88000C MANUAL I EPSON 157
C COMPILER/ASSEMBLER/LINKER

Section:abs_65534 (Start = 0x0)

Section:.text (Start = 0x0)
0x0000001c E __exit
0x00000000 E __START
Object: hello.obj
=================

Section:.text (Start = 0x1f)
0x0000001f E _main

Section:.string (Start = 0x0)
Object: _puts.obj
=================

Section:.text (Start = 0x28)
0x00000028 E _puts
Object: _fputc.obj
==================

Section:.text (Start = 0x78)
0x00000078 E _fputc
Object: _iob.obj
================

Section:.near_data (Start = 0x0)
0x00000000 E __iob

Section:.near_bss (Start = 0x0)
0x00000000 E __ungetc
Object: _flsbuf.obj
===================

Section:.text (Start = 0x0102)
0x00000102 E __flsbuf
Object: _iowrite.obj
====================

Section:.text (Start = 0x0314)
0x00000314 E __iowrite
Object: _write.obj
==================

Section:.text (Start = 0x0318)
0x00000318 E __write

The addresses in the map file are offsets relative to the start of the section in the output file. For instance,
section .text of the object module hello.obj starts at offset 0x1f from the output .text section.
Function main also starts at offset 0x1f from the start of the resulting .text section. The E after the
address indicates the label is external.

CHAPTER 3 LINKER

158 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

When we take the following part of the call graph,

+----- _write (4)
 |
 +-(2)- _iowrite (2)
 | |
 | +-(2)
 |
 +-(2)

we can see from the indentation in the structure of the tree that function _write calls function
_iowrite. The total stack usage of function _write (including its calls) is given behind the function
name:

 _write (4)

To determine the total stack usage we take the maximum of the following:

1. local usage before calling a function (the first value), added to the total usage of that function (the last
value):
+-(2)- _iowrite (2)

2. the usage of the function itself:
 |
 +-(2)

CHAPTER 3 LINKER

S5U1C88000C MANUAL I EPSON 159
C COMPILER/ASSEMBLER/LINKER

3.5 Overlay Sections
In order to make memory use in the static memory model more effective, the compiler generates special
sections, with the overlay attribute, which must be overlayed by the linker. Each C function has its own
section with local variables, temporaries etc. The linker builds a call graph to determine a valid overlay of
the sections of functions which do not call each other.

For example:

#include <stdio.h>

void foo(int);

void
main(void)
{

int j;
printf("hello\n");
j = 2;
foo(j);

}
void
foo(int j)
{

int i;
i = j;

}

The linker detects that foo does not call printf, and printf does not call foo. The compiler generates
an overlayable data section for the local variable i. printf, which also has local variables, gets its own
overlayable data section. The linker puts the overlay sections of these two functions at the same memory
area. The advantage is that the target memory is used more effectively.

CHAPTER 3 LINKER

160 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

3.6 Type Checking

3.6.1 Introduction
By default the compiler and the assembler generate high-level type information. Unless you disable
generation of type information (-g0), each object contains type information of high-level types. The linker
compares this type information and warns you if there are conflicts. The linker distinguishes four types of
conflicts:

1. Type not completely specified (W109). Occurs if you do not specify the depth of an array, or if you do
not specify arguments in one of the function prototypes. The linker does not report this type of
conflicts unless you specify a warning level 9 (-w9), default is warning level 8.

2. Compatible types, different definitions (W110). Occurs if for instance you link a short with an int. The
S1C88 takes both as 16 bits, so there will not be a problem. However, the code is not portable. Also
structures or types with different names produce this warning. The warning level for this message is
8, so you can switch off this kind of message by specifying warning level 7 or less (-w7).

3. Signed/unsigned conflict (W111). If you link a signed int with an unsigned int, you get this message.
In many cases there will be no problem, but the unsigned version can hold a bigger integer.
The warning level of this warning is 6 and can be suppressed by specifying a warning level of 5 or
less (-w5).

4. All other type conflicts (W112). If you get warning 112, there is probably a more serious type conflict.
This can be a conflict in a function return type, a conflict in length between two built in types (short/
long) or a completely different type. This warning has a level of 4, and can be switched off with
warning level 3 or less (-w3).

3.6.2 Recursive Type Checking
The linker compares type recursively. For instance, the type of foo:

struct s1 {
 struct s2 *s2_ptr;
};

struct s2 {
 int count;
} sample;

struct s1 foo = { &sample };

If you compile this source and link it with another compiled source with only struct s2 different:

struct s1 {
 struct s2 *s2_ptr;
};

struct s2 {
 short count;
};

extern struct s1 foo;

message W112 (type conflict) will be generated. Although struct s1 is the same in both cases, this is a
real type conflict: For instance, the code "foo.s2_ptr->count++" produces different code in both
objects.

If you have several conflicts in one symbol, the linker reports only the one with the lowest warning level.
(The most serious one.)

CHAPTER 3 LINKER

S5U1C88000C MANUAL I EPSON 161
C COMPILER/ASSEMBLER/LINKER

3.6.3 Type Checking between Functions
If you use K&R style functions, it is not possible to check the type of the arguments and the number of
arguments. Return types are 'int' if not specified. Prototypes are only needed if a function has a non-
integer return type:

test2(par)
int par;
{

test1(par);
return test3(1, 2);

}

In this case, test1 (defined in another source) has a return type void, and test3 has a return type int,
which is the default. At the default warning level, the linker does not report any conflict. If you should
specify warning level 9 (-w9), the linker reports a 'not completely specified' type, because the linker is not
able to check the arguments. Conflicts in return types cause real type conflicts at warning level 4.

If the source is ANSI style (which is recommended), the linker checks the types of all parameters, and the
number of parameters. In this case the source of the example above looks like:

void test1(int); /* ANSI style prototypes */
int test3(int, int);

test2(int par) /* ANSI style function definition*/
{

test1(par);
return test3(1, 2);

}

Another source, containing the definition of test1 and test3 may look like:

void test1(int one)
{

/*
** code for function test1
*/
.
.
.

}
int test3(int one, int two)
{

/*
** Code for function test3
*/
.
.
.

}

Prototypes are only needed for functions which are referenced before they are defined within one source.
However, it is a good practice to include a prototype file with prototypes of all the functions in a file. If
you do so, type checking for functions is done by the compiler. Nevertheless, if you do not compile all
sources after you have changed the prototype file, the linker will report the type conflict.

It is possible to add ANSI style prototypes to K&R style C-code. In this case full type checking for func-
tions becomes available. To accomplish this, make a new header file with all prototypes for all functions
in your application. Include this file in each source, or tell the compiler to include it for you by means of
the option -H:

cc88 -c -Hproto.h *.c

CHAPTER 3 LINKER

162 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

3.6.4 Missing Types
In C you are allowed to define pointers to unspecified objects. The linker is not able to check such types.
For instance:

struct s1 {
struct s2 *s2_ptr;

};

struct s1 foo;

The structure s2 is not specified. Because the linker is not able to check whether struct s2 is the same
in all sources, a warning at level 9 will be generated:

lk88 W102 (9) <name>: Incomplete type specification, type index = T101

It is possible that the struct s2 is known in an other source. If this source uses variable foo, a second
message is generated, reporting a level 9 type conflict:

lk88 W109 (9) <f1>: Type not completely specified for symbol <foo> in <f2>

Because the type definition is not complete, the first warning reports that the linker cannot check the
type, although this is allowed in C. This message is given once for each object for each incomplete type.
The second warning reports a difference in types, an incomplete type versus a complete type. Note that al
these warnings are only generated if you specify warning level 9 (-w9).

CHAPTER 3 LINKER

S5U1C88000C MANUAL I EPSON 163
C COMPILER/ASSEMBLER/LINKER

3.7 Linker Messages
There are four kinds of messages: fatal messages, error messages, warning messages and verbose mes-
sages. Fatal messages are generated if the linker is not able to perform its task due to the severity of the
error. In those situations, the exit code will be 2. Error messages will be reported if an error occurred
which is not fatal for the linker. However, the output of the linker is not usable. The exit code in case of
one or more error messages will be 1. Warning messages are generated if the linker detects potential
errors, but the linker is unable to judge those errors. The exit code will be 0 in this case, indicating a
usable .out file. Of course, if the linker reports no messages at all, the exit code is 0 also.

Each linker message has a built-in warning level. With option -wx it is possible to suppress messages
with a warning level above x.

Verbose messages are generated only if the verbose option (-v) is on. They report the progress of the link
process.

Linker messages have the following layout:

S1C88 object linker vx.y rz SN000000-000 (C)year Tasking Software BV
lk88 W112 a.obj: Type conflict for symbol <f> in b.obj (4)

The first line shows the banner of the S1C88 linker. The second line reports a type conflict in the file
a.obj. Apparently there is a conflicting type definition of the function f in module b.obj. The number
at the end of the line '(4)', shows the warning level.

There are four message groups:

1. Fatal (always level 0):
- Write error
- Out of memory
- Illegal input object

2. Error (always level 0):
- Unresolved symbols (and no incremental linking)
- Can't open input file
- Illegal recursive use of an non reentrant function

3. Warning (levels from 1 to 9):
- Type conflict between two symbols
- Illegal option (Ignored)
- No system library search path, and system library requested

4. Verbose (level not relevant, only given with option -v):
- Extracting files from a library
- Current file/library name
- pass one or pass two
- Rescanning library for new unresolved symbols
- Cleaning up temp files
- warning level

CHAPTER 4 LOCATOR

164 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

CHAPTER 4 LOCATOR

4.1 Overview
This chapter describes the S1C88 locator.

The task of the locator is to locate a .out file, made by lk88, to absolute addresses. In an embedded
environment an accurate description of available memory and information about controlling the behavior
of the locator is crucial for a successful application. For example, it may be necessary to port applications
to processors with different memory configurations, or it may be necessary to tune the location of sec-
tions to take full advantage of fast memory chips. To perform its task the locator needs a description of
the derivative of the S1C88 used. The locator uses a special language for this description: DELFEE, which
stands for DEscriptive Language For Embedded Environments. This steering language is used in a
special file, which is called the description file. See Chapter 5, "DEscriptive Language For Embedded
Environments", for detailed information.

The description file is an optional parameter in the locator invocation. Without a description file name on
the command line, or without the -d option, the locator searches the file s1c88.dsc in the current
directory or in directory etc in the S1C88 product tree.

map file .mapMotorola S

description file .dsc

linker object files .out

absolute object file

locator
lc88

Fig. 4.1.1 Locator

4.2 Invocation
The invocation of the locator is:

lc88 [option]... [file]...

Options may appear in any order. Options start with a '-'. They may be combined: -eM is equal to -e -M.
Options that require a filename or a string may be separated by a space or not: -oname is equal to -o name.

file may be any file with a .out or .dsc extension.

The locator recognizes the following options:

Options Summary
Option

-M
-S space
-V
-d file
-e
-err
-f file
-f format
-o filename
-p
-v
-w n

Description
Produce a locate map file (.map)
Generate specific space
Display version header only
Read description file information from file, '-' means stdin
Clean up if erroneous result
Redirect error messages (.elc)
Read command line information from file, '-' means stdin
Specify output format
Specify name of output file
Make a proposal for a software part on stdout
Verbose option. Print name of each file as it is processed
Suppress messages above warning level n.

CHAPTER 4 LOCATOR

S5U1C88000C MANUAL I EPSON 165
C COMPILER/ASSEMBLER/LINKER

4.2.1 Detailed Description of Locator Options
-M

Produce a locate map (.map).

-S space
With this option you can generate a specific output file for a specified space instead of generating an
output file containing all spaces. space is the name of a space from a .dsc file.

-V
With this option you can display the version header of the locator. This option must be the only
argument of lc88. Other options are ignored. The locator exits after displaying the version header.

-d file
Read description file information from file instead of a .dsc file. If file is a '-', the information is read
from standard input.

-e
Remove all locate products such as temporary files, the resulting output file and the map file, in case
an error occurred.

-err
Redirect error messages to an error file with the extension .elc.

-f file
Read command line information from file. If file is a '-', the information is read from standard input.
You need to provide the EOF code to close stdin. file may not be a number in the range 0–3, because
these numbers are used to specify an output format.
Use file for command line processing. To get around the limits on the size of the command line, it is
possible to use command files. These command files contain the options that could not be part of the
real command line. Command files can also be generated on the fly, for example by the make utility.
More than one -f option is allowed.
Some simple rules apply to the format of the command file:

1. It is possible to have multiple arguments on the same line in the command file.

2. To include whitespace in the argument, surround the argument with either single or double
quotes.

3. If single or double quotes are to be used inside a quoted argument, we have to go by the following
rules:

a. If the embedded quotes are only single or double quotes, use the opposite quote around the
argument. Thus, if a argument should contain a double quote, surround the argument with
single quotes.

b. If both types of quotes are used, we have to split the argument in such a way that each embed-
ded quote is surrounded by the opposite type of quote.

Example:
"This has a single quote ' embedded"

or
'This has a double quote " embedded'

or
'This has a double quote " and a single quote '"' embedded"

4. Some operating systems impose limits on the length of lines within a text file. To circumvent this
limitation it is possible to use continuation lines. These lines end with a backslash and newline. In
a quoted argument, continuation lines will be appended without stripping any whitespace on the
next line. For non-quoted arguments, all whitespace on the next line will be stripped.

CHAPTER 4 LOCATOR

166 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

Example:
"This is a continuation \
line"

→ "This is a continuation line"

control(file1(mode,type),\
file2(type))

→ control(file1(mode,type),file2(type))

5. It is possible to nest command line files up to 25 levels.

-f format
Specify output format. format can be one of the following output formats:

1 = IEEE Std. 695 (Default)
2 = Motorola S records

The default output format is IEEE Std. 695 (-f1), which can directly be used by the debugger. The
other output formats can be used for loading into a PROM-programmer.

-o filename
Use filename as output filename of the locator. If this option is omitted, the default filename depends
on the output format specified:

Format Default output name
1 a.abs

2 a.sre

-p
Make a proposal for a software part in a description file on standard output.

-v
Verbose option. Print the name of each file as it is processed.

-w n
Give a warning level between 0 an 9 (inclusive). All warnings with a level above n are suppressed.
The level of a message is printed in the last column of this message. If omitted, the warning level
defaults to 8.

CHAPTER 4 LOCATOR

S5U1C88000C MANUAL I EPSON 167
C COMPILER/ASSEMBLER/LINKER

4.3 Getting Started
The locator invocation is normally done via the control program. This control program hides the locator
phase completely. In this section you will invoke the locator as a separate tool in order to get a better
understanding of the use of options and the description file.

You can find a more detailed description of the descriptive language for embedded environments
(DELFEE) in Chapter 5, "DEscriptive Language For Embedded Environments".

If you want to locate the calc demo, you need the relocatable demo file calc.out as input for the
locator. You can generate this file by copying the contents of the directory examples\asm to your
working directory, and invoke the control program:

cc88 -cl -M -Ms -nolib startup.asm _copytbl.asm watchdog.asm
 calc.asm -o calc.out

Be sure that the bin directory of the S1C88 tools is in the search path. The option -cl tells the control
program to stop after linking and to suppress the locating phase. The file you made by this command is
the complete demo, but still in a relocatable form. Now, you can locate this relocatable file calc.out to
absolute addresses by typing:

lc88 -M calc.out -ds1c88316.dsc

The -M option causes lc88 to make a map file. The default output file format is IEEE-695 (-f1 option).
Since you did not specify an output name, the default output name a.abs will be generated. (For -f1 the
default is a.abs and for -f2 the default is a.sre) After the invocation, the locator has generated two
files:

- a.abs, The IEEE 695 output file
- a.map, The locate map file

If you want to give the output file a specific name, you must use the -ofile option:

lc88 -M calc.out -o calc.abs -ds1c88316.dsc

You may need to adjust the description file. In a description file you can change the locating algorithm of
the locator. If you do not specify a description file (argument of -d option), the locator uses the file
s1c88.dsc from the etc sub directory (in the S1C88 product tree). With the -d option given above you
specify the s1c88316.dsc description file. If you do not want to change this original description file
(which is advisable), make a copy of file s1c88316.dsc to your working directory.

You can change the copy of the description file. Everything after a comment (//) until the end of the line
is ignored. As an example, change the lines:

amode code {
section selection=x;
section selection=r;
copy;
table;

}

into:

amode code {
section .text;
section .ptext;
copy;
table;

}

The effect will be that the location order of the sections .text and .ptext is now forced to be fixed.

Locate again to see the effect. The modified description file s1c88316.dsc in your working directory
will be found before the original version in the etc directory. Because you want to compare the map files,
choose another output name:

lc88 -M calc.out -ocalc_o.abs -ds1c88316.dsc

Now you can compare calc.map and calc_o.map.

CHAPTER 4 LOCATOR

168 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

If you want to choose between a description file with and without the changes you made, you must
rename the s1c88316.dsc in your working directory to, for example, order.dsc. If you want the
changed version of the description, you can invoke the locator as follows:

lc88 -M -d order calc.out -ocalc_o.abs

The space between -d and order is optional. If you do install order.dsc in the etc subdirectory, you
can use the option -dorder from any working directory.

If you want to know more about the locate language DELFEE, read Chapter 5.

4.4 Calling the Locator via the Control Program
It is recommended to call the locator via the control program cc88. The control program translates certain
options for the locator (e.g., -srec to -f2). Other options (such as -M) are passed directly to the locator.
Typical, you can use the control program to get an .abs file directly from .c, .src, .asm or .obj files.
The invocation:

cc88 -M -Ms -g -nolib startup.asm _copytbl.asm watchdog.asm calc.asm
 -o calc.abs s1c88316.dsc

builds an absolute demo file called calc.abs ready for running via the debugger.

4.5 Locator Output
The locator produces an absolute file and, if requested, a map file and/or an error file. The output file is
absolute and in Motorola S-record format or in IEEE-695 format, depending on the usage of the -f option.
The default output name is a.sre or a.abs, respectively.

The map file (-M option) always has the same basename as the output object file, with an extension .map.
The map file shows the absolute position of each section. External symbols are listed with their absolute
address, both sorted on address and sorted on symbol.

The error output file (-err option) has the same name as the object output file, but with extension .elc.
Errors occurred before the -err option is evaluated are printed on stderr.

4.6 Locator Messages
There are four kinds of messages: fatal messages, error messages, warning messages and verbose mes-
sages. Fatal messages are generated if the locator is not able to continue with its task due to the severity
of the error. In those situations, the exit code will be 2. Error messages will be reported if an error oc-
curred, not fatal for the locator. However, the output of the locator is not usable. The exit code in case of
one or more error messages will be 1. Warning messages are generated if the locator detects potential
errors, but the locator is unable to judge those errors. The exit code will be 0 in this case, indicating a
usable .abs file. Of course, if the locator reports no messages, the exit code is also 0.

Each locator message has a built-in warning level. With option -wx it is possible to suppress messages
with a warning level above x.

Verbose messages are generated only if the verbose option (-v) is on. They report the progress of the
locate process.

Locator messages have the following layout:

S1C88 locator vx.y rz SN000000-127 (C)year Tasking Software BV
lc88 W112 (3) calc.out: Copy table not referenced, initial data is not copied

The first line shows the locator banner. (Suppressed if the locator invocation is done by the control
program.) The second line shows the warning. The number after the warning number shows the warning
level.

CHAPTER 4 LOCATOR

S5U1C88000C MANUAL I EPSON 169
C COMPILER/ASSEMBLER/LINKER

4.7 Address Space
Figures 4.7.1 and 4.7.2 show the different address space mappings of the S1C88.

0xffffff

Space
S1C88_space

0x000000

internal_bus S1C88_bus
address bus

Fig. 4.7.1 S1C88 physical address space mapping

0xffffff

0x7fffff

0x0000
0x7fff
0xf000
0xffff

0x..ff
0x..00

0xffff

Space
S1C88_space

code
code_short

io

data_short

data_tiny

data

0xffffff

0x000000

Fig. 4.7.2 S1C88 virtual address space mapping

4.8 Copy Table
One of the actions with the process initialization is copy data from ROM to RAM, and initialize memory
with the CLEAR attribute. The locator generates a copy table for each process. The copy table can be
referenced by label __lc_cp. One entry in the copy table has the following layout (see locate.h,
delivered with the C compiler):

typedef struct cp_entry {
char cp_actions; /* 1 byte */
_huge unsigned char *cp_destin; /* 3 byte address */
_huge unsigned char *cp_source; /* 3 byte address */
unsigned long cp_length; /* 4 byte length */

} cp_entry_t;

The first member, cp_actions, defines what action you must perform with the current entry. Actions
are organized as a bit per action:

value 0 Reached end of the table.

CP_COPY (value 1) Copy from cp_source to cp_destin over cp_length bytes.

CP_BSS (value 2) Clear memory from cp_destin over cp_length bytes.

CHAPTER 4 LOCATOR

170 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

Table entries are generated as follows:

• one entry for each section with the CLEAR attribute

• one entry for each section with the INIT attribute

• one 'zero' entry to indicate the end-of-table

If there is nothing to do (no sections to clear and no data to copy) the copy table has only one action entry
with value zero.

At C level, the copy table can be declared as:

cpt_t _lc_cp;

And accessing a member of entry x becomes:

_lc_cp[x].cp_actions;

If label __lc_cp is not used, the table is not generated.

4.9 Locator Labels
The locator assigns addresses to the following labels when they are referenced:

__lc_cp : Start of copy table The copy table gives the source and destination addresses of sections
to be copied. This table will be generated by the locator only if this label is used.

__lc_bs : Begin of stack space (using keyword stack).

__lc_es : End of stack space. Initialization of stack pointer.

__lc_b_name : Begin of section name.

__lc_e_name : End of section name.

__lc_u_name : User defined label. The label must be defined in the description file. For example:

label mylab;

__lc_ub_name : Begin of user defined label. The label must be defined in the description file. For
example:

label mybuffer length=100;

__lc_ue_name : End of user defined label.

4.9.1 Locator Labels Reference
This section contains a description of all locator labels. Locator labels are labels starting with __lc_. They
are ignored by the linker and resolved at locate time. Some of these labels are real labels at the beginning
or the end of a section. Other labels have a second function, these labels are used to address locator
generated data. The data is only generated if the label is used.

Because labels that start with __lc_ are treated differently in both the linker and the locator, you can only
use this type of labels as references, not as definitions.

Note: At C level, all locator labels start with one leading underscore (the compiler adds another under-
score '_').

CHAPTER 4 LOCATOR

S5U1C88000C MANUAL I EPSON 171
C COMPILER/ASSEMBLER/LINKER

__lc_b_section, __lc_e_section

Syntax:
extern unsigned char _lc_b_section[];
extern unsigned char _lc_e_section[];

Description:

You can use the general locator labels __lc_b_section and __lc_e_section to obtain the addresses of
section section in a program. The b version points to the start of the section, while the e version points
to its end.

You can replace the dot before a section name by an underscore (_), making it possible to access these
labels from 'C'. This convention introduces a possible name conflict. If, for example, both sections
.text and _text exist, the general label __lc_b__text is set to the start of _text. The label for
section .text is only usable at assembly level with its real name. Of course, you should avoid such a
conflict by not using section names with a leading underscore.

Example:
printf("Text size is 0x%x\n", _lc_e__text - _lc_b__text);

__lc_bh, __lc_eh

Syntax:
extern unsigned char _lc_bh[];
extern unsigned char _lc_eh[];

Description:

All locator h labels are related to the heap. You can allocate a heap by defining it in a cluster descrip-
tion. See also the Delfee keyword heap.

__lc_bh is a label at the begin of the heap. At 'C' level _lc_bh represent the heap. The label is defined
as a char array, but an array of any basic type will do. __lc_eh represents the end of the heap.

Example:

Heap definition:

block total_range {
.
.
cluster ram {
 amode data {

heap length = 200;
.

 }
}
.

}

sbrk code:

extern unsigned char _lc_bh[];
extern unsigned char _lc_eh[];

static char *
sbrk(long length) {

.

.

if ((lastmem + length) > _lc_eh) {
return (char *) -1; /* overflow */

}

CHAPTER 4 LOCATOR

172 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

__lc_bs, __lc_es

Syntax:
extern unsigned char _lc_bs[];
extern unsigned char _lc_es[];

Description:

All locator s labels are related to the stack. You can allocate a stack by defining it in a cluster descrip-
tion. See also the Delfee keyword stack.

__lc_bs is a label at the begin of the stack. At 'C' level _lc_bs represent the stack. The label is defined
as a char array, but an array of any basic type will do. __lc_es represents the end of the stack. Because
__lc_es is on a higher address than __lc_bs and because the stack for the S1C88 grows to lower
addresses, the stack actually starts at the label __lc_es and ends at __lc_bs.

Example:

Stack definition:

block total_range {
cluster ram {
 amode data {

stack length = 100;
.

 }
}

}

Stack initialization:

__START:
LD SP,#__lc_es ; set stack pointer to

; begin of stack space

__lc_cp

Syntax:
extern char *_lc_cp;

Description:

The copy table is generated per process. Each entry in this table represents a copy or clearing action.
Entries for the table are automatically generated by the locator for:

- All sections with attribute b, which must be cleared at startup time: a clearing action.

- All sections with attribute i, which must be copied from rom to ram at program startup: a copy
action.

The layout of the copy table is described in Section 4.8, "Copy Table". Type cpt_t is defined in
locate.h.

__lc_u_identifier

Syntax:
extern int _lc_u_identifier[];

Description:

This locator label can be defined by the user by means of the Delfee keyword label. This label must be
defined in the Delfee file without the prefix __lc_u_. From assembly the label can be referenced with
the prefix __lc_u_, from C with the prefix _lc_u_ (one leading underscore).

CHAPTER 4 LOCATOR

S5U1C88000C MANUAL I EPSON 173
C COMPILER/ASSEMBLER/LINKER

Example:

In description file:

block total_range {
cluster ram {
 amode data {

label bstart;
section text;
label bend;

 }
}
.
.
.

}

From C:

#include <stdio.h>
extern int _lc_u_bstart[];
extern int _lc_u_bend[];
int main()
{
 printf("Size of cluster ram is %d\n",

(long)_lc_u_bend -
(long)_lc_u_bstart);

}

__lc_ub_identifier, __lc_ue_identifier

Syntax:
extern int _lc_ub_identifier[];
extern int _lc_ue_identifier[];

Description:

These locator labels can be defined by the user by means of the Delfee keywords reserved label=. The
locator labels specify the begin and end of a reserved area. The identifier is the name for the reserved
area and must be defined in the Delfee file without the prefix __lc_ub_ or __lc_ue_. From assembly
the labels can be referenced with the prefix __lc_ub_ and __lc_ue_, from C with the prefix _lc_ub_
and _lc_ue_ (one leading underscore).

Example:

In description file:

block total_range {
cluster ram {

attribute w;
amode data {

section selection=w;
reserved label=xvwbuffer length=0x10;
// Start address of reserved area is
// label __lc_ub_xvwbuffer
// End address of reserved area is
// label __lc_ue_xvwbuffer

}
}

}

From C:

#include <stdio.h>
extern int _lc_ub_xvwbuffer[];
extern int _lc_ue_xvwbuffer[];
int main()
{
 printf("Size of reserved area xvwbuffer is %d\n",

(long)_lc_ue_xvwbuffer -
(long)_lc_ub_xvwbuffer);

}

CHAPTER 5 DESCRIPTIVE LANGUAGE FOR EMBEDDED ENVIRONMENTS

174 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

CHAPTER 5 DESCRIPTIVE LANGUAGE FOR

EMBEDDED ENVIRONMENTS

5.1 Introduction
In an embedded environment an accurate description of available memory and control over the behavior
of the locator is crucial for a successful application. For example, it may be necessary to port applications
to processors with different memory configurations, or it may be necessary to tune the location of sec-
tions to take full advantage of fast memory chips.

For this purpose the DELFEE language, which stands for DEscriptive Language For Embedded Environ-
ments, was designed.

5.2 Getting Started

5.2.1 Introduction
This section gives a general introduction about the DELFEE description language. The goal is to give you
an overview and some basic knowledge what the DELFEE description language is about, and how a basic
description file looks. A more detailed description and examples are given in the following sections.

5.2.2 Basic Structure
The DELFEE language describes where code or data sections should be placed on the actual memory
chips. This language has to define the interface between a virtual world (the software) and a physical
world (the hardware configuration).

On the one side, in the virtual world, there are the code and data sections which are described by the
assembly language. Sections can have names, attributes like writable or read-only and can have an
address in the addressing space or an addressing mode describing the range of the address space in
which they may be located.

On the other side, the physical world, the actual processor is present which reads instructions from
memory chips and interprets these instructions. With the DELFEE language you can instruct the locator
to place the code and data sections at the correct addresses, taking into account things like the type of
memory chip (rom/ram, fast/slow), availability of memory, etc. The DELFEE language gives the possibil-
ity to tune the same application for different hardware configurations.

In the DELFEE language the interface between virtual and physical world is described in three parts:

1. software part (*.dsc)
The software part belongs to the virtual world and describes the ordering of the data and code
sections. The software part may vary for different applications and can even be empty.

2. cpu part (*.cpu)
The cpu part is the interface between the virtual world and the real world. It contains the application
independent part of the virtual world (the address translation of addressing modes to the addressing
space), and the configuration independent part of the physical world (on-chip memory, address
busses). The cpu part is independent of application and configuration.

3. memory part (*.mem)
The memory belongs to the physical world. It contains the description of the external memory. The
memory part may vary for different configurations and can even be empty (if there is no external
memory).

Notice that the software part and the memory part can be empty, but that the cpu part must always be
defined.

CHAPTER 5 DESCRIPTIVE LANGUAGE FOR EMBEDDED ENVIRONMENTS

S5U1C88000C MANUAL I EPSON 175
C COMPILER/ASSEMBLER/LINKER

The DELFEE language is used in a special file, which is called the description file. In the DELFEE descrip-
tion language the different parts are defined with the following syntax:

software {
layout {

// ordering of sections
}

}

cpu {
// mapping of addressing modes to address space
// defining address space
// mapping of address space to actual busses
// defining on-chip memory

}

memory {
// description of external memory

}

For convenience the cpu part and the memory part can be placed in different files, which makes it
possible to have different layout parts for different applications and different memory parts for different
configurations. The files can be included using the syntax:

 cpu filename // include cpu part defined in file filename
 mem filename // include memory part defined in file filename

5.3 CPU Part

5.3.1 Introduction
The cpu part contains the application and configuration independent part of the description file. This part
defines the translations of the addresses from the assembler language (virtual addresses) all the way
down to the chips (physical addresses). To describe the translations, DELFEE recognizes four main levels:

1. addressing mode(s) definitions. Addressing modes are subsets of an address space. They define
address ranges within an address space.

2. address space(s) definitions. The address space is the total range of addresses available.

3. bus(ses) definitions.

4. (on-chip) memory chips definitions.

The address translation is defined from addressing mode via space and bus to the chip. The addressing
modes and the busses can be nested, the space and the chip cannot.

addressing
mode 1

addressing
mode 3 space

internal
bus

external
bus

internal
chip

external
chip

map

map

map

mem

mem

bus

map

addressing
mode 2 map

addressing
mode 4 map

Fig. 5.3.1.1 Address translation

The addressing modes and addressing spaces belong to the virtual part, the busses and chips belong to
the physical part. The following sections describe the address space and the addressing modes which are
subsets of the address space. Then a description of the physical side (hardware configuration) follows,
describing the busses and chips that are available.

CHAPTER 5 DESCRIPTIVE LANGUAGE FOR EMBEDDED ENVIRONMENTS

176 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

The following example illustrates how a cpu part could look like. It is a fictitious example, mainly used to
illustrate the definitions. You should be able to recognize the addressing mode definitions, address space
definition, bus definitions and on-chip memory definition. Each definition is explained in the following
sub-sections.

cpu {
//
// addressing mode definitions
//
amode near_code {

attribute Y1;
mau 8;
map src=0 size=1k dst=0 amode = far_code;

}
amode far_code {

attribute Y2;
mau 8;
map src=0 size=32k dst=0 space = address_space;

}
amode near_data {

attribute Y3;
mau 8;
map src=0 size=1k dst=0 amode = far_data;

}
amode far_data {

attribute Y4;
mau 8;
map src=0 size=32k dst=32k space = address_space;

}
//
// space definitions
//
space address_space {

mau 8;
map src=0 size=32k dst=0 bus = address_bus label = rom;
map src=32k size=32k dst=32k bus = address_bus label = ram;

}
//
// bus definitions
//
bus address_bus {

mau 8;
mem addr=0 chips=rom_chip;
map src=0x100 size=0x7f00 dst=0x100 bus = external_rom_bus;
mem addr=32k chips=ram_chip;
map src=0x8100 size=0x7f00 dst=0x100 bus = external_ram_bus;

}
//
// internal memory definitions
//
chips rom_chip attr=r mau=8 size=0x100; // internal rom
chips ram_chip attr=w mau=8 size=0x100; // internal ram

}

CHAPTER 5 DESCRIPTIVE LANGUAGE FOR EMBEDDED ENVIRONMENTS

S5U1C88000C MANUAL I EPSON 177
C COMPILER/ASSEMBLER/LINKER

5.3.2 Address Translation: map and mem
In DELFEE there are two ways to describe a memory translation between two levels (the source level and
the destination level):

1. map keyword. This is for address translations between amodes, spaces, busses (not chips).

2. mem keyword. This describes the address translation between bus and chip. mem is a simplified case
of map.

300

200

100

src 0

100

0 dst
address (mau=8)
source level

address (mau=16)
destination level

size

map src=0 size=200 dst=0

Fig. 5.3.2.1 Map address translation

The generalized syntax for the map definition is (see Figure 5.3.2.1):

map src=number size=number dst=number destination_type=destination_name optional_specifiers;

where,

src start address of the source level. In case of an address translation between amodes and spaces, the
source level is the amode and the destination level is the space.

size length of the source level.

dst start address at the destination level.

destination_type
the destination type depends on the context the mapping is used in and can have three different
types:

1. amode allowed in context: amode.
2. space allowed in context: amode.
3. bus allowed in context: space, bus.

optional_specifiers
The optional identifiers are also dependent of the context they are used in:

1. label Only allowed in space context and needed as a reference for the block definition in
the software part (see Section 5.4.5).

label = name ;

2. align This indicates that every section will be aligned at the specified value.

align = number ;

3. page This indicates that every section should be within a given page size.

page = number ;

Both the source level and the destination level have an address range that is expressed in a number of
Minimum Addressable Units (MAU, the minimal amount of storage, in bits, that is accessed using an
address). The mapping only describes the range and the destination of the address mapping, the actual
transformation also depends on the memory unit that an address can access. If a source level with a
minimum addressable unit of 8 bits (mau=8) maps to a destination level with a minimum addressable
unit of 16 bits (mau=16), the size of the destination level, expressed in address range, is half the original
size. So, according to Figure 5.3.2.1, the size of the destination level is 100.

CHAPTER 5 DESCRIPTIVE LANGUAGE FOR EMBEDDED ENVIRONMENTS

178 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

If a map is present from level1 down to level2, the map definition works as follows:

end_address of level2 = dst + (size ∗ mau of level1 / mau of level2)

The mem description is actually a simplified case of the map description. The length of the address
translation is taken from the chip size, the destination address is always zero. It is used to map a bus to a
chip.

The syntax is:

mem addr=number chips=name;

where,

addr start address location of a chip.

chips the name of the chip that is located at address number.

5.3.3 Address Spaces
The link between the virtual and the physical world is the description of the address space and the way it
maps onto the internal address busses.

The address space is defined by the complete range of addresses that the instruction set can access. Some
instruction sets support multiple address spaces (for example a data space and a code space).

An address space is described by the syntax:

space name {
mau number;
map src=number size=number dst=number bus=bus_name label=name;

// :
// more maps

}

where,

space defines the name by which the space can be referenced in the description file.

mau the Minimum Addressable Unit, meaning the minimum amount of storage (in bits) that is ac-
cessed using an address.

map this specifies the mapping of a range of addresses in the address space to a bus defined by
bus_name. The range of addresses is defined by src and length, the offset on the bus is defined by
dst. (The bus you map the address space on, may have a different MAU, which will lead to
another length of the range of the bus). An address space can only map onto a bus.

Usually an address in the address space corresponds to the same address on the bus. In that case src and
dst have the same value.

In the previous example there is one space definition:

space address_space {
mau 8;
map src=0 size=32k dst=0 bus=address_bus label=rom;
map src=32k size=32k dst=32k bus=address_bus label=ram;

}

In this example the space is named address_space. Note that the amod definitions use this name as
destination for their mappings. The minimum addressable unit (MAU) is set to 8 bits. The labels rom and
ram are used by block definitions in the software part which are discussed in Section 5.4.5.

CHAPTER 5 DESCRIPTIVE LANGUAGE FOR EMBEDDED ENVIRONMENTS

S5U1C88000C MANUAL I EPSON 179
C COMPILER/ASSEMBLER/LINKER

5.3.4 Addressing Modes
Addressing modes define address ranges in the addressing space. Addressing modes usually have a
special characteristic, like bitaddressable part of memory, parts especially for code sections, zero pages,
etc. The addressing modes are defined by the instruction set. The syntax of defining an addressing mode
in the DELFEE language is:

An address space is described by the syntax:

amode name {
mau number;
attr Ynumber;
map src=number size=number dst=number amode|space=name;

}

where,

amode the name by which the addressing mode can be referenced. In the object file the addressing mode
of a section is encoded with an Ynumber. This means that the name given to the addressing mode
has only meaning within the description file, not to the sections!

mau the Minimum Addressable Unit, meaning the minimum amount of storage (in bits) that is
accessed using an address.

attr Y the addressing mode number. Code or data sections (generated by the assembler) all have a
number specifying the addressing mode they belong to. In the DELFEE description file this
number is used to identify the addressing mode. This number must never be changed, because
the interpretation of the sections will get mixed up.

map defines the mapping of the addressing mode to another addressing mode (amode) or an address
space (space).

Below is an example of two addressing mode definitions:

amode near_data {
attribute Y3;
mau 8;
map src=0 size=1k dst=0 amode=far_data;

}
amode far_data {

attribute Y4;
mau 8;
map src=0 size=32k dst=32k space=address_space;

}

0x03ff
0x0000

0x7fff

0xffff

0x7fff

0x0000
Space

address_space

far_data near_data

Fig. 5.3.4.1 Addressing mode mapping

In this example the addressing modes are named near_data and far_data. They are identified by the
addressing mode numbers Y3 and Y4 respectively. The minimum addressable unit (MAU) is set to 8 bits.
Addressing mode near_data maps on addressing mode far_data, and far_data, in its turn, maps
on address space address_space. address_space is the space as discussed in the previous section.

CHAPTER 5 DESCRIPTIVE LANGUAGE FOR EMBEDDED ENVIRONMENTS

180 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

5.3.5 Busses
The bus keyword describes the bus configuration of a cpu. In essence it describes the address translation
from the address space to the chip. The syntax is:

bus name {
mau number;
map src=number size=number dst=number bus=name;
mem addr=number chips=name;

}

where,

bus the name by which the bus can be referenced.

mau the Minimum Addressable Unit, meaning the minimum amount of storage (in bits) that is ac-
cessed using an address.

map mapping to another bus.

mem mapping to a memory chip.

Below is an example of a bus definition:

bus address_bus {
mau 8;
mem addr=0 chips=rom_chip;
map src=0x100 size=0x7f00 dst=0x100 bus=external_rom_bus;
mem addr=32k chips=ram_chip;
map src=0x8100 size=0x7f00 dst=0x100 bus=external_ram_bus;

}

0x7fff

external_ram_bus

0x00ff
0x0000

ram_chip

0x7fff

external_rom_bus

0x00ff
0x0000

rom_chip

0xffff

0x8100
0x7fff

0x0100
0x0000

Bus
address_bus

Fig. 5.3.5.1 Bus mapping

In this example the address bus is named address_bus. The minimum addressable unit (MAU) is set to
8 bits. The internal memory chip rom_chip is located at address 0 of the bus, and the chip ram_chip is
located at address 32k.

Two address mappings to other busses are present: one to external_rom_bus and one to
external_ram_bus.

The first mapping translates addresses 0x100-0x7ff of address_bus (src=0x100 size=0x7f00)
onto addresses of external_rom_bus starting at address 0x100 (dst=0x100).

The second mapping translates addresses 0x8100-0xffff of address_bus (src=0x8100
size=0x7f00) onto addresses of external_ram_bus starting at address 0x100 (dst=0x100). Note
that the second mapping maps to RAM, not ROM. That is why both destination addresses are the same.

CHAPTER 5 DESCRIPTIVE LANGUAGE FOR EMBEDDED ENVIRONMENTS

S5U1C88000C MANUAL I EPSON 181
C COMPILER/ASSEMBLER/LINKER

5.3.6 Chips
The chips keyword describes the memory chip. The syntax is:

chips name attr=letter_code mau=number size=number;

where,

chips the name by which the chip can be referenced.

attr defines the attributes of the chip with a letter code.

letter_code one of the following attributes:
r read-only memory.
w writable memory.
s special memory (it must not be located).

mau the Minimum Addressable Unit, meaning the minimum amount of storage (in bits) that is
accessed using an address.

size the size of the chip (address range from 0–size).

Below is an example of two chip definitions:

chips rom_chip attr=r mau=8 size=0x100; // internal rom
chips ram_chip attr=w mau=8 size=0x100; // internal ram

In this example the chips are named rom_chip and ram_chip. The minimum addressable unit (MAU) is
set to 8 bits. The size of both chips is 0x100 MAUs (= 256 bytes). Chip rom_chip is read-only and chip
ram_chip writable, as you would expect with ROM and RAM.

5.3.7 External Memory
With the syntax described in the previous sections it would be possible to define mappings from an
address space to external memory chips (DELFEE does not actually know, or care, if memory is on-chip).
However, this is not advisory. For maintenance and flexibility reasons it is better to keep the internal
(static) memory part apart from the external (variable) memory part. Section 5.5, "Memory Part", de-
scribes how to deal with external memory.

In the cpu part you only have to define a mapping to an external bus, which can later be defined in the
memory part. The following example contains references to two external busses: external_ram_bus
and external_rom_bus.

bus address_bus {
mau 8;
mem addr=0 chips=rom_chip;
map src=0x100 size=0x7f00 dst=0x100 bus=external_rom_bus;
mem addr=32k chips=ram_chip;
map src=0x8100 size=0x7f00 dst=0x100 bus=external_ram_bus;

}

CHAPTER 5 DESCRIPTIVE LANGUAGE FOR EMBEDDED ENVIRONMENTS

182 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

5.4 Software Part

5.4.1 Introduction
The software part has two main parts:

1. load_mod

2. layout description

software {
load_mod start = start_label;

layout {
// ordering of sections

}
}

5.4.2 Load Module
The keyword load_mod defines the program start label. The program start label is the start of the code
and the reset vector should point to this label. The locator generates a warning if this label is not refer-
enced.

load_mod start = start_label;

5.4.3 Layout Description
First of all, the layout definition can be omitted. If you omit the layout definition, the locator will generate
a layout definition based on the DELFEE description of the amodes (addressing modes) in the cpu part
(See Section 5.3). However this does not allow you to control the order in which sections (like stack and
heap) are located. If you define the layout part, the locator uses this description.

The layout part is probably the most difficult part of the DELFEE language. It is designed to give the
locate algorithm the information it needs to locate the sections correctly. Through some examples you will
be shown how to influence the locate algorithm using the DELFEE language.

To give you an idea of where all this will lead to, an example of a layout part is given:

layout {
space address_space {

block rom {
cluster first_code_clstr {

attribute i;
amode near_code;
amode far_code;

}
cluster code_clstr {

attribute r;
amode near_code {

section selection=x;
section selection=r;

}
amode far_code {

table;
section selection=x;
section selection=r;
copy; // locate rom copies here

}
}

}

CHAPTER 5 DESCRIPTIVE LANGUAGE FOR EMBEDDED ENVIRONMENTS

S5U1C88000C MANUAL I EPSON 183
C COMPILER/ASSEMBLER/LINKER

block ram {
cluster data_clstr {

attribute w;
amode near_data {

section selection=w;
}
amode far_data {

section selection=w;
heap;
stack;

}
}

}
}

}

The layout definition is defined with the syntax:

layout {
// space definitions

}

The first thing to notice is the different levels inside the layout definition:

space This level can only occur inside a layout level. There are as much space levels as there are space
definitions in the cpu part.

block This level can only occur inside a space level. There are as much block levels as there are
mappings defined in the space definition in the cpu part.

cluster This level can only occur inside a block level. There can be multiple clusters inside a block.
Their main purpose is to group (code/data) sections. The locator locates each cluster in the
specified order.

amode This level can only occur inside a cluster level. An amode corresponds to an amode definition
in the cpu part. Within an amode you can specify the order in which data/code sections are
located.

The four levels can roughly be divided in two groups. The space and block definition correspond to
address ranges and the cluster and amode definition correspond to (groups of) sections.

The following paragraphs first introduce the space and block definition. Then separate paragraphs show
how to select certain groups of sections and how this is used in the cluster and amode definition.

5.4.4 Space Definition
Section 5.3.3 already defined the address translation of a space in the cpu part. In the example in that
section, the following space was defined:

space address_space {
mau 8;
map src=0 size=32k dst=0 bus=address_bus label=rom;
map src=32k size=32k dst=32k bus=address_bus label=ram;

}

For every space defined in the cpu part you have to provide a description in the layout definition.

The space level should be inside the layout definition and can only contain one or more block levels.

The name of the space must correspond to a space definition in the cpu part.

The syntax is:

space name {
// block definitions

}

CHAPTER 5 DESCRIPTIVE LANGUAGE FOR EMBEDDED ENVIRONMENTS

184 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

Below is an example of a space definition from the software part:

space address_space {
block rom {

....
}
block ram {

...
}

}

In this example space address_space defines two blocks: block rom and block ram.

5.4.5 Block Definition
With the block description you can set boundaries to the sections based on chip sizes.

A block references a physical area of memory. Selected sections are only allowed within the range of the
block description. In effect a block limits the range in which a section can be located.

The physical address range of a block is actually defined in the cpu part by a labeled mapping:

space address_space {
mau 8;
map src=0 size=32k dst=0 bus = address_bus label = rom; //<--

// --> block name: rom
map src=32k size=32k dst=32k bus = address_bus label = ram; //<--

// --> block name: ram
}

The name of the block description must correspond to a label in the map definition of a space definition
in the cpu part. The block definition must be inside the space definition and can only contain one or
more cluster levels.

The syntax is:

block name {
// cluster definitions

}

Below is an example of a bus definition from the software part:

block rom {
cluster first_code_clstr {

...
}
cluster code_clstr {

...
}

}

In this example block rom defines two clusters: cluster first_code_clstr and cluster code_clstr.

CHAPTER 5 DESCRIPTIVE LANGUAGE FOR EMBEDDED ENVIRONMENTS

S5U1C88000C MANUAL I EPSON 185
C COMPILER/ASSEMBLER/LINKER

5.4.6 Selecting Sections
The previous paragraphs explained how the address ranges are defined by block definitions, now it is
time to select the sections that should be placed in these blocks. In DELFEE there are two levels in which
you can define the order of locating:

1. cluster

2. amode

To define the locating order you need to have some kind of handle to specify a section or a group of
sections. DELFEE recognizes the following characteristics of a section:

name of the section
This is unique to a specific section.

attribute(s) of a section
The attributes of a section are specified by the assembler or compiler. Possible attributes are defined in
Table 5.4.6.1. By selecting an attribute you select a group of sections. The attributes can be grouped to
an attribute string, for example: by1w.

addressing mode
All sections have an addressing mode (as defined in the cpu part).

Table 5.4.6.1 Section attributes
attr
W
R
X
Z

Ynum
A
B
F
I
N
P

Meaning
Writable
Read only
Execute only
Zero page
Addressing mode
Absolute
Blank
Not filled
Initialize
Now
Postponed

Description
Must be located in ram
Can be located in rom
Can be located in rom
Must be located in the zero page
Must be located in addressing mode num
Already located by the assembler
Section must be initialized to '0' (cleared)
Section is not filled or cleared (scratch)
Section must be initialized in rom
Section is located before normal sections (without N or P)
Section is located after normal sections (without N or P)

To specify a (group) of sections, DELFEE has the following syntax:

1. select a group on section attribute:

section selection = attr;

2. select a section by name:

section name;

3. select a special section:

heap; //locate heap here
stack; //locate stack here
table; //locate copy table here
copy; //locate all initial data here
copy name; //locate initial data of the named section here

4. create a section:

reserved label = name length = number;

Instead of selecting a section by an attribute, DELFEE also allows excluding a section by its attribute.

Excluding an attribute is done by placing a '-' (minus sign) in front of attr.

So, the example:

section selection=attr1-attr2

selects a group of sections with attribute attr1 and without attribute attr2.

CHAPTER 5 DESCRIPTIVE LANGUAGE FOR EMBEDDED ENVIRONMENTS

186 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

5.4.7 Cluster Definition
Clusters are used to place specified sections in a group. The locator will handle the clusters in the order
that they are specified. This gives you the possibility to create a group of selected sections and give it a
higher locate priority.

There are several possibilities to specify that a section is part of a cluster. The exact rules and their
priorities are given in Section 5.4.10, "Section Placing Algorithm". The three main possibilities are:

1. attribute

2. section selection=

3. amode definition

Examine the following example:

layout {
space address_space {

block rom {
cluster first_code_clstr {

attribute i;
amode near_code;
amode far_code;

}
cluster code_clstr {

attribute r;
amode near_code {

section selection=x;
section selection=r;

}
amode far_code {

table;
section selection=x;
section selection=r;
copy; // locate rom copies here

}
}

}
}

}

In this example an extra cluster first_code_cluster was created. Using the placing algorithm
(Section 5.4.10) you can see that sections with attribute 'i' will be placed in cluster first_code_clstr
and therefore will get a higher priority than sections in cluster code_clstr.

The syntax is:

cluster name {
// section selections

}

Within a cluster the sections with the least freedom are located first. Freedom is defined by the possible
addresses a section can be located at.

CHAPTER 5 DESCRIPTIVE LANGUAGE FOR EMBEDDED ENVIRONMENTS

S5U1C88000C MANUAL I EPSON 187
C COMPILER/ASSEMBLER/LINKER

5.4.8 Amode Definition
Within a cluster you can specify an addressing mode or amode. Although in the cpu part (Section 5.3.4)
an address range was assigned to every amode, in the layout part the addressing mode is used to identify
groups of sections.

The syntax is:

:
amode name {

section selection = attr;
:

}
:

The order of locating is now determined by the order of specification.

For example, suppose you want to locate all writable sections first, then the heap, followed by the stack.
In the DELFEE language this is specified by:

 :
section selection = w; // 'w' means writable sections
heap;
stack;
 :

5.4.9 Manipulating Sections in Amodes
The previous paragraphs explained how to set the order of the sections within an amode definition.
DELFEE recognizes an extra set of keywords to further tune the locating of code and data sections.

An amode definition can contain the following keywords:

Keyword
section
selection
attribute
copy
fixed
gap
reserved
heap
stack
table
assert
length

Description
Selects a section, or group of sections
Specifies attributes for grouping sections
Assigns attributes (are past to the cluster)
Selects a rom copy of a section by name, or all rom copies in general
Forces a section to be located around a fixed address
Creates a gap in the address range where sections will not be located
Reserves a memory area, which can be referenced using locator labels
Defines the place and attributes of the heap
Defines the place and attributes of the stack
Defines the place and attributes of the copy table
A user defined assertion
Specifies the length of stack, heap, physical block or reserved space

All keywords are described in Section 5.6, "Delfee Keyword Reference".

CHAPTER 5 DESCRIPTIVE LANGUAGE FOR EMBEDDED ENVIRONMENTS

188 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

5.4.10 Section Placing Algorithm
There are different ways to reference a section. Sections can be referenced as a group based on a certain
attribute, or they can be referenced very specific by name. To find out where sections are placed in the
layout part, DELFEE uses the following algorithm:

1. First, try to find a selection by section name.

2. If not found, search for a 'section selection=' within a matching amode block.

3. If not found, search for a 'section selection=' not within an amode block.

4. If not found, search for a cluster with a correct 'amode= ..,..,.. ;' and correct attributes.

5. If not found, search for a cluster with correct attributes.

6. If not found, relax attribute checking, and start over again.

Relax attributes using the following rules:

1. If stack, heap or reserved, switch indication off and try again.

2. If attribute 'f' (not filled), switch 'f' off and try again.

3. If attribute 'b' (clear), switch 'b' off and try again.

4. If attribute 'i' (initialize), switch 'i' off and try again.

5. If attribute 'x' (executable code), switch 'x' off and 'r' (read-only) on and try again. (Try to place
executable sections in read-only memory.)

6. If attribute 'r' (read-only), switch 'r' off 'w' (writable) on and try again. (Try to place read-only sections
in writable memory.)

CHAPTER 5 DESCRIPTIVE LANGUAGE FOR EMBEDDED ENVIRONMENTS

S5U1C88000C MANUAL I EPSON 189
C COMPILER/ASSEMBLER/LINKER

5.5 Memory Part

5.5.1 Introduction
The memory part defines the variable part of the memory configuration. It can be placed in a different
file, which allows to easily switch between different memory configurations. The syntax used for the
mappings is the same as used in the cpu part.

As you have seen in the example of the cpu part in Section 5.3, there were two references to external
busses:

bus address_bus {
mau 8;
mem addr=0 chips=rom_chip;
map src=0x100 size=0x7f00 dst=0x100 bus=external_rom_bus;
mem addr=32k chips=ram_chip;
map src=0x8100 size=0x7f00 dst=0x100 bus=external_ram_bus;

}

In the memory part you have to define the description for the busses external_rom_bus and
external_ram_bus. Using the description in Sections 5.3.5 and 5.3.6 for specifying busses and chips,
the memory part could look like:

memory {
bus external_rom_bus {

mau 8;
mem addr=0 chips=xrom;

}

chips xrom attr=r mau =8 size=0x8000;

bus external_ram_bus {
mau 8;
mem addr=0 chips=xram;

}

chips xram attr=w mau=8 size=0x8000;
}

CHAPTER 5 DESCRIPTIVE LANGUAGE FOR EMBEDDED ENVIRONMENTS

190 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

5.6 Delfee Keyword Reference
This section contains an alphabetical description of all keywords that can be used in a description file.
Some keywords can be abbreviated to a minimum of four characters.

.addr

Syntax:

.addr (Software part)

Description:

The predefined label .addr contains the current address.

Example:
block ram {

cluster data_clstr {
attribute w;
amode near_data {

section selection=w;
assert (.addr < 256, "page overflow");

// if the condition is false,
// the locator generates an error with
// the text as message

}
...

}
}

address

Syntax:

address = address (all parts)
addr = address (abbreviated form)

Description:

Specify an absolute address in memory.

Example:

Cpu or memory part:
bus address_bus {

mau 8;
mem addr=0 chips=rom_chip;
...
mem addr=32k chips=ram_chip;
...

}

Software part:
block rom {

...
cluster code_clstr {

attribute r;
amode near_code {

section selection=x;
section selection=r;
section .string address = 0x0100;

}
...

}
}

CHAPTER 5 DESCRIPTIVE LANGUAGE FOR EMBEDDED ENVIRONMENTS

S5U1C88000C MANUAL I EPSON 191
C COMPILER/ASSEMBLER/LINKER

Note that the locate order in the amode definition in the example above is fixed. Sections with at-
tribute selection 'x' and/or 'r' are forced to be located before section .string. If this fixed order is not
desired, the absolute address specification can be done in a separate amode definition.
Example:
amode near_code {

section .string address = 0x0100;
}

amode near_code {
section selection=x;
section selection=r;

}

amode

Syntax:

amode identifier[, identifier]... { amod_description } (def) (Cpu or memory part)
amode = identifier (ref)

amode identifier[, identifier]... ; (Software part)
amode identifier[, identifier]... { section_blocks }

Description:

The keyword amode can appear in all parts. In the cpu or memory part you can use amode to map an
addressing mode or register bank on a particular address space (definition). When you specify
amode=, you map a specific addressing mode on a previously defined addressing mode (reference).
The only keywords allowed in an amod_description (cpu part) are attribute, map and mau. The key-
word attribute Ynum uniquely identifies the addressing mode.
In the software part you can use amode as part of a cluster definition to change the locating order of
sections. See also Section 5.4.10, "Section Placing Algorithm".

Example:

From cpu or memory part:
cpu {
 amode near_data {

attribute Y3;
mau 8;
map src=0 size=1k dst=0 amode = far_data;

// reference
 }
 amode far_data { // definition

attribute Y4;
mau 8;
map src=0 size=32k dst=32k space = address_space;

 }

From software part:
block ram {
 cluster data_clstr {

attribute w;
amode near_data {
 // Sections with addressing mode
 // near_data are located here
 section selection=w;
}
amode far_data {
 // Sections with addressing mode
 // far_data and the stack and heap
 // are located here
 section selection=w;
 heap;
 stack;
}

 }
}

CHAPTER 5 DESCRIPTIVE LANGUAGE FOR EMBEDDED ENVIRONMENTS

192 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

assert

Syntax:

assert (condition , text) ; (Software part)
asse (condition , text) ; (abbreviated form)

Description:

Test condition of virtual address in memory. Generate an error if the assertion fails and give a message
with 'text'. condition is specified as one of:

expr1 > expr2
expr1 < expr2
expr1 == expr2
expr1 != expr2

expr1 and expr2 can be any expression or label. The predefined label .addr contains the current
address.

Example:
block ram {

cluster data_clstr {
attribute w;
amode near_data {

section selection=w;
assert (.addr < 256, "page overflow");

// if the condition is false,
// the locator generates an error with
// the text as message

}
...

}
}

attribute

Syntax:

attribute attribute_string ; (Software part)
attr attribute_string ; (abbreviated form)
attribute = attribute_string (Software part)
attr = attribute_string (abbreviated form)

Description:

With attribute you can assign attributes to sections, clusters or memory blocks. See also the keyword
selection.

For sections these attributes are pure supplementary to the standard section attributes. The standard
section attributes such as zero page (Y1), blank (B) and executable (X) are set by the compiler (or by
the assembler in the case of an assembler program).

With an action attribute after a section (attr=), you can set section attributes or you can disable section
attributes with the - (minus) sign.

The attributes have the following meaning:

num (Section only) Align the section at 2num MAUs.

Ynum (amode and sections only) Identify addressing mode. Indicate that sections with this attribute
should be allocated in this cluster.

r (Memory and clusters) Indicate this is a read-only cluster or read-only memory.

w (Memory and clusters) Indicate this is a writable cluster or writable memory.

s (Memory only) Indicate this is special memory, it must not be located.

x (Clusters/sections only) Indicate that the cluster/section is executable.

CHAPTER 5 DESCRIPTIVE LANGUAGE FOR EMBEDDED ENVIRONMENTS

S5U1C88000C MANUAL I EPSON 193
C COMPILER/ASSEMBLER/LINKER

g (Clusters/sections only) Indicate that the cluster/section is global (known in a multi-module
environment).

b (Clusters/sections only) Indicate that clusters/sections should be cleared before locating.

i (Sections only) Indicate that clusters/sections should be copied from ROM to RAM.

f (Clusters/sections only) Indicate that clusters/sections should not be filled and not cleared.
This is called a scratch cluster/section.

Default attributes if the attribute keyword is omitted:

sections: The attributes as generated from the assembler/compiler.

clusters: The attributes as indicated by the underlying memory, thus r for rom and w for ram.

memory: If no attributes defined, the default is writable (w).

Example:

From software part:
layout {
 space address_space {

block rom {
 cluster first_code_clstr {

attribute i; // set cluster attribute
amode near_code;
amode far_code;

 }
}
block ram
 cluster ram {

amode near_data {
 // Default attribute of cluster
 // data is 'w', because the
 // memory is RAM.

 section selection=w;
 section selection=b attr=-b;
 // Sections with attribute b are
 // are located here, and
 // attribute 'b' is switched off
}
.

 }
 .
}

 }
}

From cpu part:
 amode near_data {

attribute Y3; //identify code with Y3
mau 8;
map src=0 size=1k dst=0 amode = far_data;

 }
 ...

 chips rom_chip attr=r mau=8 size=0x100;
 chips ram_chip attr=w mau=8 size=0x100;

...
// memory attributes

CHAPTER 5 DESCRIPTIVE LANGUAGE FOR EMBEDDED ENVIRONMENTS

194 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

block

Syntax:

block identifier { block_description } (Software part)

Description:

With block you define the contents of a physical area of memory. You can make a block description
for each chip you use. Each block has a symbolic name as previously defined by the keyword chips. It
is allowed to combine two or more memory chips in one block as long as their total address range is
linear, without gaps. The identifier indicates that a memory block starts at the specified chip, no matter
how many chips are combined.

Example:
layout {

space address_space {
block ram
 // Memory block starting at chip ram_chip

cluster ram {
 ...
}

}
}

}

bus

Syntax:

bus identifier[, identifier]... { bus_description } (def) (Cpu or memory part)
bus = identifier (ref)

Description:

With bus you define the physical memory addresses for the chips that are located on the cpu (defini-
tion). When you specify bus=, you map a specific address range on a previously defined address bus
(reference). The only keywords allowed in an bus description are mem, map and mau.

Example:
cpu {

space address_space {
// Specify space 'address_space' for the address_bus
// address bus.
mau 8;
map src=0 size=32k dst=0 bus = address_bus label = rom;
map src=32k size=32k dst=32k bus = address_bus label = ram;

// ref
}

bus address_bus { // definition
mau 8;
mem addr=0 chips=rom_chip;
map src=0x100 size=0x7f00 dst=0x100 bus = external_rom_bus;
mem addr=32k chips=ram_chip;
map src=0x8100 size=0x7f00 dst=0x100 bus = external_ram_bus;

}
...

}

CHAPTER 5 DESCRIPTIVE LANGUAGE FOR EMBEDDED ENVIRONMENTS

S5U1C88000C MANUAL I EPSON 195
C COMPILER/ASSEMBLER/LINKER

chips

Syntax:

chips identifier[, identifier]... chips_description (def) (Cpu or memory part)
chips = identifier[| identifier]... [, identifier[| identifier]...]... (ref)

Description:

With chips you describe the chips on the cpu or on your target board (definition). For each chip its
size and minimum addressable unit (mau) is specified. With the keyword attr you can define if the
memory is read-only. The only three attributes allowed are r for read-only, w for writable, or s for
special. If omitted, w is default.
You can use chips= after the keyword mem to specify where a chip is located (reference). You can
create chip pairs by separating each chip with a vertical bar '|'.

Example:
cpu {

bus address_bus {
mau 8;
mem addr=0 chips=rom_chip; // ref
...

}
chips rom_chip attr=r mau=8 size=0x100; // def
chips ram_chip attr=w mau=8 size=0x100;
...

}

cluster

Syntax:

cluster cluster_name { cluster_description } (Software part)
cluster cluster_name[, cluster_name]... ;

Description:

In the software layout part you can define the cluster name and cluster location order. The attributes
as valid for clusters (see attribute) can be specified in the first syntax. If you do not specify any
attribute, the default attribute r or w is automatically set.
In a cluster description you can not only determine the locate order of sections within the named
cluster, but you can also specify stack and heap size, extra process memory, define labels for the
process, etc.

Example:
space address_space {

block rom {
cluster first_code_clstr {
 // The default attribute 'r' of cluster
 // text is overruled to 'i'. All sections with attribute
 // 'i' are located here by default.

attribute i;
amode near_code;
amode far_code;
 // Sections with addressing mode
 // near_code or far_cdoe are located here

}

block ram {
cluster data_clstr {
 // default attribute 'w' because the memory is RAM.
 // All writable sections are located here by default.

attribute w; // can be omitted
amode near_data {

section selection=w;
}

}
}

CHAPTER 5 DESCRIPTIVE LANGUAGE FOR EMBEDDED ENVIRONMENTS

196 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

copy

Syntax:

copy section_name [attr = attribute] ; (Software part)
copy selection = attribute [attr = attribute] ;
copy ;

Description:

The ROM copy of data sections with the attribute i will be copied from ROM to RAM at program
startup. With copy you define the placement in memory of these ROM copies. You can specify a
specific section by giving the section's name, or select sections with a specific attribute. If you do not
specify an argument, the locator locates all ROM copies at the specified location. With attr= you can
change the section attributes.

If you do not specify the keyword copy at all, the locator finds a suitable place for ROM copies.

See also the keywords attribute and selection.

Example:
space address_space {
 block rom {

...
cluster code_clstr {

attribute r; //cluster attribute
amode far_code {
 table;
 section selection=x;
 section selection=r;
 copy; // all ROM copies are located here
}

}
}

cpu

Syntax:

cpu { cpu_description } (Cpu part)
cpu filename

Description:

The keyword cpu appears together with software and memory at the highest level in a description
file. The actual cpu description starts between the curly braces { }. Normally you do not need to
change the cpu part because it is delivered with the product and describes the derivative completely.

The second syntax is the so-called include syntax. The locator opens the file filename and reads the
actual cpu description from this file. You must start the included file with cpu again. The filename can
contain a complete path including a drive letter. Parts of filename, or the complete filename can be put
in a environment variable. The file is first searched for in the current directory, and secondly in the
etc directory relative to the installation directory.

Example:

Contents of the description file:
software {

...
}

cpu target.cpu //cpu part in separate file
memory target.mem

See Section 5.3 for a sample contents of a .cpu file.

CHAPTER 5 DESCRIPTIVE LANGUAGE FOR EMBEDDED ENVIRONMENTS

S5U1C88000C MANUAL I EPSON 197
C COMPILER/ASSEMBLER/LINKER

dst

Syntax:

dst = address (Cpu or memory part)

Description:

Specify destination address as part of the keyword map in an amode, space or bus description. For
address you can use any decimal, hexadecimal or octal number. You can also use the (standard) Delfee
suffix k, for kilo (210) or M, for mega (220). The unit of measure depends on the MAU (minimum
addressable unit) of the destination memory space.

Example:
cpu {

...
amode near_code {

attribute Y1;
mau 8; // 8-bit addressable
map src=0 size=1k dst=0 amode=far_code;

}
}

fixed

Syntax:

fixed address = address ; (Software part)
fixed addr = address ; (abbreviated form)

Description:

Define a fixed point in the memory map. The locator allocates the section/cluster preceding the fixed
definition and the section/cluster following it as close as possible to the fixed point.

Example:
block ram {

cluster near_data_clstr {
 amode near_data {

section selection=w;
fixed addr = 0x2000;

 }
}
cluster far_data_clstr;

}

Cluster far_data_clstr will be located with its upper bound at address 0x2000 and cluster
near_data_clstr starts at this address. The same can be applied to sections.

gap

Syntax:

gap; (Software part)
gap length = value ;

Description:

Reserve a gap with a dynamic size. The locator tries to make the memory space as big as possible. You
can use this keyword in a block description to create a gap between clusters, or in a cluster description
to create a gap between sections. You can also use the gap keyword in combination with the fixed
keyword.

With the second form you can specify a gap of a fixed length. This form can only occur in a block
description.

CHAPTER 5 DESCRIPTIVE LANGUAGE FOR EMBEDDED ENVIRONMENTS

198 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

Example:
space address_space {

block ram {
cluster data_clstr {

attr w;
amode near_data;

} // low side mapping

gap; // balloon
cluster stck; // high side mapping

}
}

heap

Syntax:

heap heap_description ; (Software part)
heap ;

Description:

Like table and stack, heap is another special section. The section is not created from the .out file, but
generated at locate time. To control the size of this special section the keyword length is allowed
within the heap description. You can use heap to include dynamic memory for a process.

Heap can only be used if a malloc() function has been implemented.

Two locator labels are used to mark begin and end of the heap, __lc_bh for the begin of heap, and
__lc_eh for the end of heap.

Note that if the heap keyword is specified in the description file this does not automatically mean that
a heap will always be generated. A heap will only be allocated when its section labels (__lc_bh for
begin of heap and __lc_eh for end of heap) are used in the program.

The heap description can be a length specification and/or an attribute specification. See the example.

Example:
layout {

space address_space {
block ram {

cluster data_clstr {
amode far_data {

section selection=w;
heap length=100;

// Heap of 100 MAUs
}

}
}

}
}

label

Syntax:

label identifier ; (Software part)
label = identifier ; (All parts)

Description:

The first form can be used stand-alone to specify a virtual address in memory by means of a label. The
virtual address is label __lc_u_identifier. Note that at C level, all locator labels start with one under-
score (the compiler adds another underscore '_').

CHAPTER 5 DESCRIPTIVE LANGUAGE FOR EMBEDDED ENVIRONMENTS

S5U1C88000C MANUAL I EPSON 199
C COMPILER/ASSEMBLER/LINKER

The second form can only be used as part of another keyword. As part of the keyword reserved you
can assign a label to an address range. The start of the address range is identified by label
__lc_ub_identifier. The end of the address range is identified by label __lc_ue_identifier. The keyword
label is also allowed as part of the map keyword to assign a name to a block of memory in a space
definition.

Example:

From the software part:
block ram {

cluster data_clstr {
attribute w;
amode far_data {

section selection=w;
heap;
stack;
reserved label=xvwbuffer length=0x10;
// Start address of reserved area is
// label __lc_ub_xvwbuffer
// End address of reserved area is
// label __lc_ue_xvwbuffer

}
}

}

From the cpu part:
space address_space {

mau 8;
map src=0 size=32k dst=0 bus = address_bus label=rom;
map src=32k size=32k dst=32k bus = address_bus label=ram;

}

layout

Syntax:

layout { layout_description } (Software part)
layout filename

Description:

The layout part describes the layout of sections in memory. The layout part groups sections into
clusters and you can define the name, number and the order of clusters. The layout part describes
how these clusters must be allocated into physical RAM and ROM block. The space and block names
used in the layout part must be present in the memory part or the cpu part. The cluster definitions can
contain fixed addresses as well as definitions of gaps between sections.

Example:
software {
 layout {
 space address_space {

block rom {
 cluster first_code_clstr {
 attribute i;
 amode near_code;
 }
....

CHAPTER 5 DESCRIPTIVE LANGUAGE FOR EMBEDDED ENVIRONMENTS

200 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

length

Syntax:

length = length (Cpu, memory and software part)
leng = length (abbreviated form)

Description:

You can use the keyword length to define the length in MAUs (minimum addressable units) of a
certain memory area. length must be a numeric value and can be given either in hex, octal or decimal.
As usual, hex numbers must start with '0x' and octal numbers must start with '0'. You can use the
suffix k which stands for kilo or M which stands for mega.

You can use length to specify the length of the reserved memory or to specify the stack, heap or gap
length. For details see the keywords reserved, stack, heap and gap.

Example:
space address_space {

block ram {
cluster data_clstr {

amode far_data {
stack leng = 2k;

}
}

}
}

load_mod

Syntax:

load_mod identifier start = label; (Software part)
load_mod start = label;

Description:

With load_mod you are introducing a load module description. This keyword is followed by an
optional identifier, representing a load module name with or without the .out extension. The load
module itself must be supplied to the locator as a parameter in the invocation. If the identifier is
omitted, the load module is taken from the command line.

Example:
software {

load_mod start = __START;
}

or
software {

load_mod hello start = __USER_start;
}

map

Syntax:

map map_description (Cpu or memory part)

Description:

Map a memory part, specified as a source address and a size, to a destination address of an amode,
space or bus. The unit of measure depends on the MAU of the memory space.

CHAPTER 5 DESCRIPTIVE LANGUAGE FOR EMBEDDED ENVIRONMENTS

S5U1C88000C MANUAL I EPSON 201
C COMPILER/ASSEMBLER/LINKER

Example:
cpu {
 .
 amode far_data {

 attribute Y4;
 mau 8;
 map src=0 size=32k dst=32k space=address_space;

 }
 space address_space {

 mau 8;
 map src=0 size=32k dst=0 bus = address_bus label=rom;
 map src=32k size=32k dst=32k bus = address_bus label=ram;

 }
 bus address_bus {

 mau 8;
 mem addr=0 chips=rom_chip;
 map src=0x100 size=0x7f00 dst=0x100 bus=external_rom_bus;
 mem addr=32k chips=ram_chip;
 map src=0x8100 size=0x7f00 dst=0x100 bus=external_ram_bus;

 }
 .
}

mau

Syntax:

mau number ; (Cpu or memory part)
mau = number

Description:

You can use the keyword mau to specify the minimum addressable unit in bits of a certain memory
area. The first form can only be used in an amode, space or bus description. The second form can be
used to specify the minimum addressable unit of a chip. Note that mau affects the unit of measure for
other keywords. If no mau is specified, the default number is 8 (byte addressable).

Example:
cpu {
 amode near_code {
 attribute Y1;
 mau 8; // byte addressable
 map src=0 size=1k dst=0 amode=far_code;

// src is at address 0,
// size is 1k byte units
// dst is at address 0

 }
}

mem

Syntax:

mem mem_description ; (Cpu or memory part)

Description:

Define the start address of a chip in memory. The only keywords allowed in a mem description are
address and chips.

CHAPTER 5 DESCRIPTIVE LANGUAGE FOR EMBEDDED ENVIRONMENTS

202 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

Example:
cpu {
 ...
 bus internal_bus {
 mau 8;
 mem addr=0 chips=rom_chip;

// chip 'rom_chip' is located at memory
// address 0
...

 mem addr=32k chips=ram_chip;
// chip 'ram_chip' is located at memory
// address 0x8000
...

 }
 chips rom_chip attr=r mau=8 size=0x100;
 chips ram_chip attr=w mau=8 size=0x100;

}

memory

Syntax:

memory { memory_description } (Memory part)
memory filename

Description:

Together with software and cpu, memory introduces a main part of the description file. You can
specify the actual memory part between the curly braces { }.

You can use the memory part to describe any additional memory or addresses of peripherals not
integrated on the cpu.

The second syntax is the include syntax. In this case, the memory part is defined in a separate file.
This included file must start again with memory. The filename can contain a complete path, including
a drive letter. You can put parts of filename, or the complete filename in an environment variable. The
file is first searched for in the current directory, and secondly in the etc directory relative to the
installation directory.

Example:
software {

...
}

cpu target.cpu
memory target.mem //mem part in separate file

See Section 5.5 for a sample contents of a .mem file.

regsfr

Syntax:

regsfr filename (Cpu or memory part)

Description:

Specify a register file generated by the register manager for use by the debugger.

Example:
cpu {

.

.
regsfr regfile.dat
/*
 * Use file regfile.dat generated by register manager
 */

}

CHAPTER 5 DESCRIPTIVE LANGUAGE FOR EMBEDDED ENVIRONMENTS

S5U1C88000C MANUAL I EPSON 203
C COMPILER/ASSEMBLER/LINKER

reserved

Syntax:

reserved reserved_description ; (Software part)
reserved ;

Description:

Reserve a fixed amount of memory space or reserve as much memory as possible in the memory
space. If no length is specified the size of the memory allocation depends on the size of the memory
space or the size is limited by a fixed point definition following the reserved allocation.

You can only use the keywords address, attribute, label and length in the reserved description. You
can use the keyword reserved in an amode description.

Example:
space address_space {

block rom {
cluster code_clstr {

amode near_code {
 // system reserved
 // (exception vector)
 reserved length=0x2 addr=0x24;
}

}
}

section

Syntax:

section identifier [addr = address] [attr = attribute] ; (Software part)
section selection = attribute [addr = address] [attr = attribute] ;

Description:

section can be used in the layout part to specify the location order within a cluster. See also layout.
The identifier is the name of a section.

With addr= you can make a section absolute.
With attr= you can assign new attributes to a section or disable attributes.

See also the keywords address, attribute and selection.

Example:
space address_space {

block ram {
cluster data_clstr {

amode near_data {
 // locate section .data here and set
 // attribute 'w'
 section .data attr=w;
 section selection=b attr=-b;
}

}
}

}

CHAPTER 5 DESCRIPTIVE LANGUAGE FOR EMBEDDED ENVIRONMENTS

204 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

selection

Syntax:

selection = attribute

Description:

You can use selection after the keywords section or copy to select all sections with (a) specified
attribute(s).

If more attributes are specified, only sections with all attributes are selected. If a minus sign '-' pre-
cedes the attribute, only sections not having the attribute are selected.

See also the keywords attribute, copy and section.

Example:
space address_space {

block ram {
 cluster data_clstr {

amode near_data {
 // select sections with w on and not i.
 // (select all writable sections which
 // are not copied from ROM)
 section selection=-iw;
}

 }
}
.

}
...

size

Syntax:

size = size (Cpu or memory part)

Description:

You can use the keyword size to define the size in minimum addressable units (MAU) of a certain
memory area. size must be a numeric value and can be given either in hex, octal or decimal. As usual,
hex numbers must start with '0x' and octal numbers must start with '0'. You can use the suffix k which
stands for kilo or M which stands for mega.

You can use size to specify the size of a part of memory that must be mapped on another part of
memory or to specify the size of a chip. For details see the keywords map and chips.

Example:
cpu {
 amode near_code {

attribute Y1; //identify near_code with Y1
map src=0 size=1k dst=0 amode=far_code;

 }
 space address_space {

mau 8;
map src=0 size=32k dst=0 bus=address_bus label=rom;
map src=32k size=32k dst=32k bus=address_bus label=ram;

 }
 chips rom_chip attr=r mau=8 size=0x100;
 chips ram_chip attr=w mau=8 size=0x100;

// size of chips
}

CHAPTER 5 DESCRIPTIVE LANGUAGE FOR EMBEDDED ENVIRONMENTS

S5U1C88000C MANUAL I EPSON 205
C COMPILER/ASSEMBLER/LINKER

software

Syntax:

software { software_description } (Software part)
software filename

Description:

The keyword software appears at the highest level in a description file. The actual software descrip-
tion starts between the curly braces { }.
The second syntax is the so called include syntax. The locator will open file filename and read the
actual software description from this file. The first keyword in filename must be software again. The
filename can contain a complete path including a drive letter. You can put parts of filename, or the
complete filename in an environment variable. The file is first searched for in the current directory, and
secondly in the etc directory relative to the installation directory.

Example:

Contents of the description file:
software $(MY_OWN_DESCRIPTION)

cpu target.cpu
memory target.mem

Environment variable MY_OWN_DESCRIPTION contains the name of a file with contents like:
software {

load_mod start = __START;
layout {
.
.
}

}

space

Syntax:

space identifier { space_description } (Software part)
space identifier[, identifier]... { space_description } (Cpu or memory part)
space = identifier

Description:

The keyword space can be used in the cpu part, memory part and software part. In the cpu or
memory part you can use space to describe a physical memory address space. The only keywords
allowed in a space description in the cpu or memory part are mau and map.
In the software part you can use space to describe one or more memory blocks. Each space has a
symbolic name as previously defined by the keyword space in the cpu or memory part.

Example:

From the cpu part:
cpu {
 amode far_data {

attribute Y4;
mau 8;
map src=0 size=32k dst=32k space=address_space;

 }
...

 space address_space {
// Specify space 'address_space' for the
// address_bus address bus.
mau 8;
map src=0 size=32k dst=0 bus=address_bus label=rom;
map src=32k size=32k dst=32k bus=address_bus label=ram;

 }
 .
}

CHAPTER 5 DESCRIPTIVE LANGUAGE FOR EMBEDDED ENVIRONMENTS

206 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

From the software part:
layout {

// define the preferred locating order of sections
// in the memory space
// (the range is defined in the .cpu file)
space address_space {
...

// define for each sub-area in the space
// the locating order of sections
block rom {
 // Memory block starting at chip rom_chip

 // define a cluster for read-only sections
 cluster code_clstr {

....
 }
}

.
}

}

src

Syntax:

src = address (Cpu or memory part)

Description:

Specify source address as part of the keyword map in an amode, space or bus description. For address
you can use any decimal, hexadecimal or octal number. You can also use the (standard) Delfee suffix
k, for kilo (210) or M, for mega (220). The address is specified in the addressing mode's local MAU
(minimum addressable unit) size (default 8 bits).

Example:
cpu {
 ...
 amode near_code {

 attribute Y1;
 mau 8; // 8-bit addressable
 map src=0 size=1k dst=0 amode=far_code;

 }
}

stack

Syntax:

stack stack_description ; (Software part)
stack ;

Description:

stack is a special form of a section description. The stack is allocated at locate time. The locator only
allocates a stack if one is needed. Two special locator labels are associated with the stack space located
with keyword stack. The begin of the stack area can be obtained by the locator label __lc_bs, the end
address is accessible by means of label __lc_es.

If the stack grows downwards the begin of stack must be the highest address. To accomplish this, you
can keep the length positive and set the stack pointer to end_of_stack, so the formula:

end_of_stack = begin_of_stack + length

is always true.

You can only use the keywords attribute and length in the stack description. If you specify stack
without a description, the locator tries to make the stack as big as possible. If you do not specify the
keyword stack at all, the locator also tries to make the stack as big as possible but at least 100 (MAUs).

CHAPTER 5 DESCRIPTIVE LANGUAGE FOR EMBEDDED ENVIRONMENTS

S5U1C88000C MANUAL I EPSON 207
C COMPILER/ASSEMBLER/LINKER

Example:
space address_space {

block ram {
cluster data_clstr {

amode far_data {
section selection=w;
stack leng=150;
// stack of 150 MAUs
...

}
}

}
}

start

Syntax:

start = label ; (Software part)

Description:

Define a start label for a process.

You can use start only within a load module description.

Example:
software {

load_mod start = system_start;

layout {
.
.
}

}

table

Syntax:

table attr = attribute ; (Software part)
table ;

Description:

Like stack and heap also table is a special kind of section. Normal sections are generated at compile
time, and passed via the assembler and linker to the locator. The stack and heap sections are gener-
ated at locate time, with a user requested size.

table is different. The locator is able to generate a copy table. Normally, this table is put in read-only
memory. If you want to steer the table location, you can use the table keyword. With table only
attribute is allowed. The length is calculated at locate time. table can occur in a cluster description.

Example:
space address_space {
 block rom {

...
cluster code_clstr {

attribute r; // cluster attribute
amode far_code {
 table; // locate copy table here
 section selection=x;
 section selection=r;
 copy; // all ROM copies are located here
}

}
}

CHAPTER 5 DESCRIPTIVE LANGUAGE FOR EMBEDDED ENVIRONMENTS

208 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

5.6.1 Abbreviation of Delfee Keywords
The following Delfee keywords can be abbreviated to unique 4 character words:

Table 5.6.1.1 Abbreviation of Delfee keywords
Keyword

address
assert
attribute
length

Abbreviation
addr
asse
attr
leng

5.6.2 Delfee Keywords Summary

Table 5.6.2.1 Overview of Delfee keywords
Keyword

address
amode
assert
attribute
block
bus
chips
cluster
copy
cpu
dst
fixed
gap
heap
label
layout
length
load_mod
map
mau
mem
memory
regsfr
reserved
section
selection
size
software
space
src
stack
start
table

Description
Specify absolute memory address
Specify the addressing modes
Error if assertion failed
Assign attributes to clusters, sections, stack or heap
Define physical memory area
Specify address bus
Specify cpu chips
Specify the order and placement of clusters
Define placement of ROM-copies of data sections
Define cpu part
Destination address
Define fixed point in memory map
Reserve dynamic memory gap
Define heap
Define virtual address label
Start of the layout description
Length of stack, heap, physical block or reserved space
Define load module (process)
Map a source address on a destination address
Define minimum addressable unit (in bits)
Define physical start address of a chip
Define memory part
Specify register file for use by debugger
Reserve memory
Define how a section must be located
Specify attributes for grouping sections into clusters
Size of address space or memory
Define the software part
Define an addressing space or specify memory blocks
Source address
Define a stack section
Give an alternative start label
Define a table section

CHAPTER 6 UTILITIES

S5U1C88000C MANUAL I EPSON 209
C COMPILER/ASSEMBLER/LINKER

CHAPTER 6 UTILITIES

6.1 Overview
The following utilities are supplied with the Cross-Assembler for the S1C processor family which can be
useful at various stages during program development.

ar88 An IEEE archiver. This is a librarian facility, which can be used to create and maintain object
libraries.

cc88 A control program for the S1C tool chain.

mk88 A utility program to maintain, update, and reconstruct groups of programs.

pr88 An IEEE object reader that views the contents of files which have been created by a tool from the
S1C tool chain.

The utilities are explained on the following pages.

CHAPTER 6 UTILITIES

210 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

6.2 ar88
Name

ar88 IEEE archiver and library maintainer

Synopsis

ar88 key_option [option]... library [object_file]...
ar88 -V
ar88 -?

Description

With ar88 you can combine separate object modules in a library file. The linker optionally includes
modules from a library when a specific module resolves an external symbol definition in one of the
modules that has been read before. The library maintainer ar88 is a program to build library files and
it offers the possibility to replace, extract or remove modules from an existing library.

key_option one of the main options indicating the action ar88 has to take. Key options may appear
in any order, at any place.

option optional sub-options as explained on the next pages.

library is the library file.

object_file is an object module to be added, extracted, replaced or removed from the library.

Options

You may specify options with or without a leading '-'. Options may occur in random order. You may
also combine options. So -xv is allowed. -V and -? however, must be the only option on the command
line.

Key options:

-d
Delete the named object modules from the library.

-m
Move the named object modules to the end of the library, or to another position as specified by one
of the positioning options.

-p
Print the named object modules in the library on standard output.

Note: the object is in binary format. The option is normally used with a redirection:
ar88 -p lib.a object.obj > t.obj

-r
Replace the named object modules in the library if they exist. If they are not in the library, add
them. If no names are given, only those object modules are replaced for which a file with the same
name is found in the current directory. New modules are placed at the end.

-t
Print a table of contents of the library. If no names are given, all object modules in the library are
printed. If names are given, only those object modules are tabled.

-x
Extract the named object modules from the library. If no names are given, all modules are ex-
tracted from the library. In neither case does x alter the library.

Other options:

-?
Display an explanation of options at stdout.

-V
Display version information at stderr.

CHAPTER 6 UTILITIES

S5U1C88000C MANUAL I EPSON 211
C COMPILER/ASSEMBLER/LINKER

-a posname
Append or move new object modules after existing module posname. This option can only be used
in combination with the m or r option.

-b posname
Insert or move new object modules before existing module posname. This option can only be used
in combination with the m or r option.

-c
Create the library file without notification if the library does not exist.

-f file
Read options from file file. '-' means stdin. You need to provide the EOF code to close stdin
(usually Ctrl-Z).

-o
Reset the last-modified date to the date recorded in the library. It can only be used in combination
with the x option.

-s
Print a list of symbols. This option must be combined with -t.

-s1
Print a list of symbols. Each symbol is preceded by the library name and the name of the object
file. This option must be combined with -t.

-u
Replace only those object modules with the last-modified date later than the library file. It can
only be used in combination with the r option.

-v
Verbose. Under the verbose option, ar88 gives a module-by-module description of the making of a
new library file from the old library and the constituent modules. It can only be used in combina-
tion with the d, m, r, or x option.

-wn
Set warning level n.

Examples

1. Create library clib.a consisting of the modules startup.obj, and calc.obj:

ar88 cr clib.a startup.obj calc.obj

2. Extract all modules form library clib.a:
ar88 x clib.a

3. Print a list of symbols from library clib.a:
ar88 ts clib.a

startup.obj
 symbols:
 _start
 _copytable
calc.obj
 symbols:
 _entry

4. Print a list of symbols from library clib.a in a different form:

ar88 ts1 clib.a

clib.a:startup.obj:_start
clib.a:startup.obj:_copytable
clib.a:calc.obj:_entry

5. Delete module calc.obj from library clib.lib:

ar88 d clib.a calc.obj

CHAPTER 6 UTILITIES

212 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

6.3 cc88
Name

cc88 control program for the S1C tool chain

Synopsis

cc88 [[option]... [control] ... [file]...]...
cc88 -V
cc88 -?

Description

The control program cc88 facilitates the invocation of the various components of the S1C family tool
chain from a single command line. The control program accepts source files and options on the
command line in random order.

Options are preceded by a '-' (minus sign). The input file can have one of the extensions explained
below.

The control program recognizes the following argument types:

• Arguments starting with a '-' character are options. Some options are interpreted by the control
program itself; the remaining options are passed to those programs in the tool chain that accept the
option.

• Arguments with a .c suffix are interpreted as C source programs and are passed to the compiler.

• Arguments with a .asm suffix are interpreted as assembly source files which have to be prepro-
cessed and passed to the assembler.

• Arguments with a .src suffix are interpreted as compiled assembly source files. They are directly
passed to the assembler.

• Arguments with a .a suffix are interpreted as library files and are passed to the linker.

• Arguments with a .obj suffix are interpreted as object files and are passed to the linker.

• Arguments with a .out suffix are interpreted as linked object files and are passed to the locator.
The locator accepts only one .out file in the invocation.

• Arguments with a .dsc suffix are treated as locator command files. If there is a file with extension
.dsc on the command line, the control program assumes a locate phase has to be added. If there is
no file with extension .dsc, the control program stops after linking (unless it has been directed to
stop in an earlier phase)

• If other arguments are found, an error message is given.

Normally, a control program tries to compile and assemble all source files to object files, followed by a
link and locate phase which produces an absolute output file. There are however, options to suppress
the assembler, linker or locator stage. The control program produces unique filenames for intermedi-
ate steps in the compilation process, which are removed afterwards. If the compiler and assembler are
called subsequently, the control program prevents preprocessing of the compiler generated assembly
file. Normally, assembly input files are preprocessed first.

Options

-?
Display a short explanation of options at stdout.

-M{s|c|d|l}
Specify the memory model to be used:

small (s)
compact data (d)
compact code (c)
large (l)

CHAPTER 6 UTILITIES

S5U1C88000C MANUAL I EPSON 213
C COMPILER/ASSEMBLER/LINKER

-V
The copyright header containing the version number is displayed, after which the control program
terminates.

-Ta arg / -Tc arg / -Tlk arg / -Tlc arg
With these options you can pass a command line argument directly to the assembler (-Ta), C
compiler (-Tc), linker (-Tlk) or locator (-Tlc). These options may be used to pass some options that
are not recognized by the control program, to the appropriate program. The argument may be
either directly appended to the option, or follow the option as a separate argument of the control
program.

-al
Generate an absolute list file for each module in the application.

-c / -cl / -cs
Normally, the control program invokes all stages to build an absolute file from the given input
files. With these options it is possible to skip the C compiler, assembler, linker or locator stage.
With the -cs option the control program stops after the compilation of the C source files (.c) and
after preprocessing the assembly source files (.asm), and retains the resulting .src files. With the
-c option the control program stops after the assembler, with as output one or more object files
(.obj). With the -cl option the control program stops after the link stage, with as output a linker
object file (.out).

-f file
Read command line arguments from file. The filename "-" may be used to denote standard input.
To get around the limits on the size of the command line, it is possible to use command files. These
command files contain the options that could not be part of the real command line. Command files
can also be generated on the fly, for example by the make utility.
Some simple rules apply to the format of the command file:

1. It is possible to have multiple arguments on the same line in the command file.

2. To include whitespace in the argument, surround the argument with either single or double
quotes.

3. If single or double quotes are to be used inside a quoted argument, we have to go by the
following rules:

a. If the embedded quotes are only single or double quotes, use the opposite quote around the
argument. Thus, if a argument should contain a double quote, surround the argument with
single quotes.

b. If both types of quotes are used, we have to split the argument in such a way that each
embedded quote is surrounded by the opposite type of quote.

Example:
"This has a single quote ' embedded"

or
'This has a double quote " embedded'

or
'This has a double quote " and a single quote '"' embedded"

4. Some operating systems impose limits on the length of lines within a text file. To circumvent
this limitation it is possible to use continuation lines. These lines end with a backslash and
newline. In a quoted argument, continuation lines will be appended without stripping any
whitespace on the next line. For non-quoted arguments, all whitespace on the next line will be
stripped.

Example:
"This is a continuation \
line"

→ "This is a continuation line"

control(file1(mode,type),\
file2(type))

→ control(file1(mode,type),file2(type))

5. It is possible to nest command line files up to 25 levels.

CHAPTER 6 UTILITIES

214 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

-ieee / -srec
With these options you can specify the locator output format of the absolute file. The output file
can be an IEEE-695 file (.abs) or Motorola S-record file (.sre). The default output is IEEE-695
(.abs).

-nolib
With this option the control program does not supply the standard libraries to the linker. Normally
the control program supplies the default C and run-time libraries to the linker. Which libraries are
needed is derived from the compiler options.

-o file
Normally, this option is passed to the locator to specify the output file name. When you use the -cl
option to suppress the locating phase, the -o option is passed to the linker. When you use the -c
option to suppress the linking phase, the -o option is passed to the assembler, provided that only
one source file is specified. When you use the -cs option to suppress the assembly phase, the -o
option is passed to the compiler. The argument may be either directly appended to the option, or
follow the option as a separate argument of the control program.

-tmp
With this option the control program creates intermediate files in the current directory. They are
not removed automatically. Normally, the control program generates temporary files for interme-
diate translation results, such as compiler generated assembly files, object files and the linker
output file. If the next phase in the translation process completes successfully, these intermediate
files will be removed.

-v
When you use the -v option, the invocations of the individual programs are displayed on standard
output, preceded by a '+' character.

-v0
This option has the same effect as the -v option, with the exception that only the invocations are
displayed, but the programs are not started.

Environment Variables used by cc88

The control program uses the following environment variables:

TMPDIR
This variable may be used to specify a directory, which the control programs should use to create
temporary files. When this environment variable is not set, temporary files are created in the
current directory.

CC88OPT
This environment variable may be used to pass extra options and/or arguments to each invocation
of the control program. The control program processes the arguments from this variable before the
command line arguments.

CC88BIN
When this variable is set, the control program prepends the directory specified by this variable to
the names of the tools invoked.

CHAPTER 6 UTILITIES

S5U1C88000C MANUAL I EPSON 215
C COMPILER/ASSEMBLER/LINKER

6.4 mk88
Name

mk88 maintain, update, and reconstruct groups of programs

Synopsis

mk88 [option]... [target]... [macro=value]...
mk88 -V
mk88 -?

Description

mk88 takes a file of dependencies (a 'makefile') and decides what commands have to be executed to
bring the files up-to-date. These commands are either executed directly from mk88 or written to the
standard output without executing them.

If no target is specified on the command line, mk88 uses the first target defined in the first makefile.

Options

-?
Show invocation syntax.

-D
Display the text of the makefiles as read in.

-DD
Display the text of the makefiles and 'mk88.mk'.

-G dirname
Change to the directory specified with dirname before reading a makefile. This makes it possible to
build an application in another directory than the current working directory.

-S
Undo the effect of the -k option. Stop processing when a non-zero exit status is returned by a
command.

-V
Display version information at stderr.

-W target
Execute as if this target has a modification time of "right now". This is the "What If" option.

-d
Display the reasons why mk88 chooses to rebuild a target. All dependencies which are newer are
displayed.

-dd
Display the dependency checks in more detail. Dependencies which are older are displayed as
well as newer.

-e
Let environment variables override macro definitions from makefiles. Normally, makefile macros
override environment variables. Command line macro definitions always override both environ-
ment variables and makefile macros definitions.

-f file
Use the specified file instead of 'makefile'. A - as the makefile argument denotes the standard
input.

-i
Ignore error codes returned by commands. This is equivalent to the special target .IGNORE:.

-k
When a nonzero error status is returned by a command, abandon work on the current target, but
continue with other branches that do not depend on this target.

CHAPTER 6 UTILITIES

216 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

-n
Perform a dry run. Print commands, but do not execute them. Even lines beginning with an @ are
printed. However, if a command line is an invocation of mk88, that line is always executed.

-q
Question mode. mk88 returns a zero or non-zero status code, depending on whether or not the
target file is up to date.

-r
Do not read in the default file 'mk88.mk'.

-s
Silent mode. Do not print command lines before executing them. This is equivalent to the special
target .SILENT:.

-t
Touch the target files, bringing them up to date, rather than performing the rules to reconstruct
them.

-w
Redirect warnings and errors to standard output. Without, mk88 and the commands it executes
use standard error for this purpose.

macro=value
Macro definition. This definition remains fixed for the mk88 invocation. It overrides any regular
definitions for the specified macro within the makefiles and from the environment. It is inherited
by subordinate mk88's but act as an environment variable for these. That is, depending on the -e
setting, it may be overridden by a makefile definition.

Usage

Makefiles

The first makefile read is 'mk88.mk', which is looked for at the following places (in this order):

- in the current working directory

- in the directory pointed to by the HOME environment variable

- in the etc directory relative to the directory where mk88 is located

Example:
when mk88 is installed in \C88\BIN the directory \C88\ETC is searched for makefiles.

It typically contains predefined macros and implicit rules.

The default name of the makefile is 'makefile' in the current directory. Alternate makefiles can be
specified using one or more -f options on the command line. Multiple -f options act as if all the
makefiles were concatenated in a left-to-right order.

The makefile(s) may contain a mixture of comment lines, macro definitions, include lines, and target
lines. Lines may be continued across input lines by escaping the NEWLINE with a backslash (\). If a
line must end with a backslash then an empty macro should be appended. Anything after a "#" is
considered to be a comment, and is stripped from the line, including spaces immediately before the
"#". If the "#" is inside a quoted string, it is not treated as a comment. Completely blank lines are
ignored.

An include line is used to include the text of another makefile. It consists of the word "include" left
justified, followed by spaces, and followed by the name of the file that is to be included at this line.
Macros in the name of the included file are expanded before the file is included. Include files may be
nested.

An export line is used for exporting a macro definition to the environment of any command executed
by mk88. Such a line starts with the word "export", followed by one or more spaces and the name of
the macro to be exported. Macros are exported at the moment an export line is read. This implies that
references to forward macro definitions are equivalent to undefined macros.

CHAPTER 6 UTILITIES

S5U1C88000C MANUAL I EPSON 217
C COMPILER/ASSEMBLER/LINKER

Conditional Processing

Lines containing ifdef, ifndef, else or endif are used for conditional processing of the makefile.
They are used in the following way:

ifdef macroname
if-lines
else
else-lines
endif

The if-lines and else-lines may contain any number of lines or text of any kind, even other ifdef,
ifndef, else and endif lines, or no lines at all. The else line may be omitted, along with the else-
lines following it.

First the macroname after the if command is checked for definition. If the macro is defined then the if-
lines are interpreted and the else-lines are discarded (if present). Otherwise the if-lines are discarded;
and if there is an else line, the else-lines are interpreted; but if there is no else line, then no lines are
interpreted.

When using the ifndef line instead of ifdef, the macro is tested for not being defined. These
conditional lines can be nested up to 6 levels deep.

Macros

Macros have the form 'WORD = text and more text'. The WORD need not be uppercase, but this is an
accepted standard. Spaces around the equal sign are not significant. Later lines which contain
$(WORD) or ${WORD} will have this replaced by 'text and more text'. If the macro name is a single
character, the parentheses are optional. Note that the expansion is done recursively, so the body of a
macro may contain other macro invocations. The right side of a macro definition is expanded when
the macro is actually used, not at the point of definition.

Example:

FOOD = $(EAT) and $(DRINK)
EAT = meat and/or vegetables
DRINK = water
export FOOD

'$(FOOD)' becomes 'meat and/or vegetables and water' and the environment variable FOOD is set
accordingly by the export line. However, when a macro definition contains a direct reference to the
macro being defined then those instances are expanded at the point of definition. This is the only case
when the right side of a macro definition is (partially) expanded. For example, the line

DRINK = $(DRINK) or beer

after the export line affects '$(FOOD)' just as the line

DRINK = water or beer

would do. However, the environment variable FOOD will only be updated when it is exported again.

Special Macros

MAKE
This normally has the value mk88. Any line which invokes MAKE temporarily overrides the -n
option, just for the duration of the one line. This allows nested invocations of MAKE to be tested
with the -n option.

MAKEFLAGS
This macro has the set of options provided to mk88 as its value. If this is set as an environment
variable, the set of options is processed before any command line options. This macro may be
explicitly passed to nested mk88's, but it is also available to these invocations as an environment
variable. The -f and -d flags are not recorded in this macro.

CHAPTER 6 UTILITIES

218 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

PRODDIR
This macro expands the name of the directory where mk88 is installed without the last path
component. The resulting directory name will be the root directory of the installed S1C package,
unless mk88 is installed somewhere else. This macro can be used to refer to files belonging to the
product, for example a library source file.

Example:

DOPRINT = $(PRODDIR)/lib/src/_doprint.c

When mk88 is installed in the directory /c88/bin this line expands to:

DOPRINT = /c88/lib/src/_doprint.c

SHELLCMD
This contains the default list of commands which are local to the SHELL. If a rule is an invocation
of one of these commands, a SHELL is automatically spawned to handle it.

TMP_CCPROG
This macro contains the name of the control program. If this macro and the TMP_CCOPT macro
are set and the command line argument list for the control program exceeds 127 characters then
mk88 will create a temporary file filled with the command line arguments. mk88 will call the
control program with the temporary file as command input file.

TMP_CCOPT
This macro contains the option for the control program which tells the control program to read a
file as command arguments.

Example:

TMP_CCPROG = cc88
TMP_CCOPT = -f

$ This macro translates to a dollar sign. Thus you can use "$$" in the makefile to represent a single
"$".

There are several dynamically maintained macros that are useful as abbreviations within rules. It is
best not to define them explicitly.

$* The basename of the current target.

$< The name of the current dependency file.

$@ The name of the current target.

$? The names of dependents which are younger than the target.

$! The names of all dependents.

The $< and $* macros are normally used for implicit rules. They may be unreliable when used within
explicit target command lines. All macros may be suffixed with F to specify the Filename components
(e.g. ${*F}, ${@F}). Likewise, the macros $*, $< and $@ may be suffixed by D to specify the directory
component.

Functions

A function not only expands but also performs a certain operation. Functions syntactically look like
macros but have embedded spaces in the macro name, e.g. '$(match arg1 arg2 arg3)'. All functions are
built-in and currently there are five of them: match, separate, protect, exist and nexist.

The match function yields all arguments which match a certain suffix:

$(match .obj prog.obj sub.obj mylib.a)

will yield

prog.obj sub.obj

CHAPTER 6 UTILITIES

S5U1C88000C MANUAL I EPSON 219
C COMPILER/ASSEMBLER/LINKER

The separate function concatenates its arguments using the first argument as the separator. If the
first argument is enclosed in double quotes then '\n' is interpreted as a newline character, '\t' is
interpreted as a tab, '\ooo' is interpreted as an octal value (where, ooo is one to three octal digits), and
spaces are taken literally. For example:

$(separate "\n" prog.obj sub.obj)

will result in

prog.obj
sub.obj

Function arguments may be macros or functions themselves. So,

$(separate "\n" $(match .obj $!))

will yield all object files the current target depends on, separated by a newline string.

The protect function adds one level of quoting. This function has one argument which can contain
white space. If the argument contains any white space, single quotes, double quotes, or backslashes, it
is enclosed in double quotes. In addition, any double quote or backslash is escaped with a backslash.

Example:

echo $(protect I'll show you the "protect" function)

will yield

echo "I'll show you the \"protect\" function"

The exist function expands to its second argument if the first argument is an existing file or direc-
tory.

Example:

$(exist test.c cc88 test.c)

When the file test.c exists it will yield:

cc88 test.c

When the file test.c does not exist nothing is expanded.

The nexist function is the opposite of the exist function. It expands to its second argument if the
first argument is not an existing file or directory.

Example:

$(nexist test.src cc88 test.c)

Targets

A target entry in the makefile has the following format:

target ... : [dependency ...] [; rule]
[rule]
...

Any line which does not have leading white space (other than macro definitions) is a 'target' line.
Target lines consist of one or more filenames (or macros which expand into same) called targets,
followed by a colon (:). The ':' is followed by a list of dependent files. The dependency list may be
terminated with a semicolon (;) which may be followed by a rule or shell command.

Special allowance is made on MS-DOS for the colons which are needed to specify files on other drives,
so for example, the following will work as intended:

c:foo.obj : a:foo.c

If a target is named in more than one target line, the dependencies are added to form the target's
complete dependency list.

The dependents are the ones from which a target is constructed. They in turn may be targets of other
dependents. In general, for a particular target file, each of its dependent files is 'made', to make sure
that each is up to date with respect to it's dependents.

CHAPTER 6 UTILITIES

220 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

The modification time of the target is compared to the modification times of each dependent file. If the
target is older, one or more of the dependents have changed, so the target must be constructed. Of
course, this checking is done recursively, so that all dependents of dependents of dependents of ... are
up-to-date.

To reconstruct a target, mk88 expands macros and functions, strips off initial white space, and either
executes the rules directly, or passes each to a shell or COMMAND.COM for execution.

For target lines, macros and functions are expanded on input. All other lines have expansion delayed
until absolutely required (i.e. macros and functions in rules are dynamic).

Special Targets

.DEFAULT:
The rule for this target is used to process a target when there is no other entry for it, and no
implicit rule for building it. mk88 ignores all dependencies for this target.

.DONE:
This target and its dependencies are processed after all other targets are built.

.IGNORE:
Non-zero error codes returned from commands are ignored. Encountering this in a makefile is the
same as specifying -i on the command line.

.INIT:
This target and its dependencies are processed before any other targets are processed.

.SILENT:
Commands are not echoed before executing them. Encountering this in a makefile is the same as
specifying -s on the command line.

.SUFFIXES:
The suffixes list for selecting implicit rules. Specifying this target with dependents adds these to
the end of the suffixes list. Specifying it with no dependents clears the list.

.PRECIOUS:
Dependency files mentioned for this target are not removed. Normally, mk88 removes a target file
if a command in its construction rule returned an error or when target construction is interrupted.

Rules

A line in a makefile that starts with a TAB or SPACE is a shell line or rule. This line is associated with
the most recently preceding dependency line. A sequence of these may be associated with a single
dependency line. When a target is out of date with respect to a dependent, the sequence of commands
is executed. Shell lines may have any combination of the following characters to the left of the com-
mand:

@ will not echo the command line, except if -n is used.

- mk88 will ignore the exit code of the command, i.e. the ERRORLEVEL of MS-DOS. Without this,
mk88 terminates when a non-zero exit code is returned.

+ mk88 will use a shell or COMMAND.COM to execute the command.

If the '+' is not attached to a shell line, but the command is a DOS command or if redirection is used
(<, |, >), the shell line is passed to COMMAND.COM anyway.

mk88 can generate inline temporary files. If a line contains '<<WORD' then all subsequent lines up to
a line starting with WORD, are placed in a temporary file. Next, '<<WORD' is replaced by the name of
the temporary file.

Example:

lk88 -o $@ -f <<EOF
$(separate "\n" $(match .obj $!))
$(separate "\n" $(match .a $!))
$(LKFLAGS)

EOF

The three lines between the tags (EOF) are written to a temporary file (e.g. "\tmp\mk2"), and the
command line is rewritten as "lk88 -o $@ -f \tmp\mk2".

CHAPTER 6 UTILITIES

S5U1C88000C MANUAL I EPSON 221
C COMPILER/ASSEMBLER/LINKER

Implicit Rules

Implicit rules are intimately tied to the .SUFFIXES: special target. Each entry in the .SUFFIXES: list
defines an extension to a filename which may be used to build another file. The implicit rules then
define how to actually build one file from another. These files are related, in that they must share a
common basename, but have different extensions.

If a file that is being made does not have an explicit target line, an implicit rule is looked for. Each
entry in the .SUFFIXES: list is combined with the extension of the target, to get the name of an implicit
target. If this target exists, it gives the rules used to transform a file with the dependent extension to
the target file. Any dependents of the implicit target are ignored.

If a file that is being made has an explicit target, but no rules, a similar search is made for implicit
rules. Each entry in the .SUFFIXES: list is combined with the extension of the target, to get the name of
an implicit target. If such a target exists, then the list of dependents is searched for a file with the
correct extension, and the implicit rules are invoked to create the target.

Examples

This makefile says that prog.out depends on two files prog.obj and sub.obj, and that they in
turn depend on their corresponding source files (prog.c and sub.c) along with the common file
inc.h.

LIB = -ls

prog.out: prog.obj sub.obj
lk88 prog.obj sub.obj $(LIB) -o prog.out

prog.obj: prog.c inc.h
c88 prog.c
as88 prog.src

sub.obj: sub.c inc.h
c88 sub.c
as88 sub.src

The following makefile uses implicit rules (from mk88.mk) to perform the same job.

LDFLAGS = -ls
prog.out: prog.obj sub.obj
prog.obj: prog.c inc.h
sub.obj: sub.c inc.h

Files

makefile Description of dependencies and rules.

mk88.mk Default dependencies and rules.

Diagnostics

mk88 returns an exit status of 1 when it halts as a result of an error. Otherwise it returns an exit status
of 0.

CHAPTER 6 UTILITIES

222 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

6.5 pr88
Name

pr88 IEEE object reader
Displays the contents of a relocatable object file or an absolute file

Synopsis

pr88 [option]... file
pr88 -V
pr88 -?

Description

pr88 gives you a high level view of an object file which has been created by a tool from the S1C tool
chain. Note that pr88 is not a disassembler.

Options

Options start with a '-' sign and can be combined after a single '-'. There are options to print a specific
part of an object file. For example, with option -h you can display the header part, the environment
part and the AD/extension part as a whole. These parts are small, and you cannot display these parts
separately. If you do not specify a part, the default is -hscegd0i0 (all parts, the debug part and the
image part displayed as a table of contents).

Furthermore, there are some additional options by which you can control the output.

Input Control Option

-f file
Read command line information from file. If file is a '-', the information is read from standard
input.
Use file for command line processing. To get around the limits on the size of the command line, it
is possible to use command files. These command files contain the options that could not be part
of the real command line. Command files can also be generated on the fly, for example by the
make utility.
More than one -f option is allowed.
Some simple rules apply to the format of the command file:

1. It is possible to have multiple arguments on the same line in the command file.

2. To include whitespace in the argument, surround the argument with either single or double
quotes.

3. If single or double quotes are to be used inside a quoted argument, we have to go by the
following rules:

a. If the embedded quotes are only single or double quotes, use the opposite quote around the
argument. Thus, if a argument should contain a double quote, surround the argument with
single quotes.

b. If both types of quotes are used, we have to split the argument in such a way that each
embedded quote is surrounded by the opposite type of quote.

Example:
"This has a single quote ' embedded"

or
'This has a double quote " embedded'

or
'This has a double quote " and a single quote '"' embedded"

4. Some operating systems impose limits on the length of lines within a text file. To circumvent
this limitation it is possible to use continuation lines. These lines end with a backslash and
newline. In a quoted argument, continuation lines will be appended without stripping any
whitespace on the next line. For non-quoted arguments, all whitespace on the next line will be
stripped.

CHAPTER 6 UTILITIES

S5U1C88000C MANUAL I EPSON 223
C COMPILER/ASSEMBLER/LINKER

Example:
"This is a continuation \
line"

→ "This is a continuation line"

control(file1(mode,type),\
file2(type))

→ control(file1(mode,type),file2(type))

5. It is possible to nest command line files up to 25 levels.

Output Control Options

-H or -?
Display an explanation of options at stdout.

-V
Display version information at stderr.

-Wn
Set output width to n columns. Default 128, minimum 78.

-ln
Level control, see Section 6.5.3.

-ofile
Name of the output file, default stdout.

-v
Print the selected parts in a verbose form.

-vn
Print level n verbose, see Section 6.5.3.

-wn
Suppress messages above warning level n.

Display Options

-c
Print call graphs.

-d
Print all debug info except for the global types.

-d0
Print table of contents for the debug part.

-dn
Print debug info from file number n.

-e
Print variables with external scope.

-e1
Print variables with external scope and precede symbol name with name of the object file.

-g
Print global types.

-h
Print general file info.

-i
Print all section images.

-i0
Print table of contents for the image part.

-in
Print image of section n.

-s
Print section info.

CHAPTER 6 UTILITIES

224 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

6.5.1 Preparing the Demo Files
There are three files which are used in this chapter to show how you can use pr88. These files are:

calc.obj
calc.out
calc.abs

If you want to try the examples yourself, prepare these files by copying the calc example files to a work-
ing directory. Be sure that the S1C tools can be found via a search path. Make the files with the following
command:

cc88 -Ms -nolib startup.asm _copytbl.asm calc.asm -o calc.abs
 s1c88316.dsc -tmp

6.5.2 Displaying Parts of an Object File

6.5.2.1 Option -h, display general file info
The -h option gives you general information of the file. The invocation:

pr88 -h calc.out

Gives the following information:

File name = calc.out:
Format = Relocatable
Produced by = S1C object linker
Date = jan 23, 1997 16:35:40h

This output speaks for itself. You may combine the -h switch with the verbose option:

pr88 -hv calc.out

The output is extended with more general information of less importance:

File name = calc.out:
Format = Relocatable
Produced by = S1C object linker
Date = jan 23, 1997 16:35:40h
Obj version = 1.1
Processor = S1Cs
Address size = 24 bits
Byte order = Least significant byte at lowest address
Host = Sun

Part File offset Length
--
Header part 0x00000000 0x00000055
AD Extension part 0x00000055 0x00000033
Environment part 0x00000088 0x0000002b
Section part 0x000000b3 0x0000009b
External part 0x0000014e 0x00000098
Debug/type part 0x000001e6 0x000002b8
Data part 0x0000049e 0x000002b8
Module end 0x00000756

The table gives you the file offsets and the length of the main object parts.

CHAPTER 6 UTILITIES

S5U1C88000C MANUAL I EPSON 225
C COMPILER/ASSEMBLER/LINKER

6.5.2.2 Option -s, display section info
With the -s option, you can obtain the section information from an object module. The section contents
can be obtained with the -i option, see Section 6.5.2.7.

pr88 -s calc.out

Section Size

.startup_vector 0x000002
.startup 0x000063
.watchdog_vector 0x000002
.watchdog 0x000001
.text 0x00002d
.data 0x000003
.zdata 0x000001

Note that the section information is not available any more in a located file. Once located, the separate
sections are combined to new clusters. For an absolute file 'pr88 -s' will give the cluster information:

pr88 -s calc.abs

Section Size

rom 0x0000b9
ram 0x00f800

The locate map shows you which section is located in which cluster. Of course, you can also use the
verbose option to see all section information available:

pr88 -sv calc.out

Section Size Address Align PageSize Mau Attributes
--
.startup_vector 0x000002 0x000000 0x001 - - ReadOnly Execute ZeroPage Space 1 Abs Separate
.startup 0x000063 - 0x001 - - ReadOnly Execute ZeroPage Space 1 Cumulate
.watchdog_vector 0x000002 0x000004 0x001 - - ReadOnly Execute ZeroPage Space 1 Abs Separate
.watchdog 0x000001 - 0x001 - - ReadOnly Execute ZeroPage Space 1 Cumulate
.text 0x00002d - 0x001 - - ReadOnly Execute ZeroPage Space 1 Cumulate
.data 0x000003 - 0x001 - - Write Space 2 Initialized Cumulate
.zdata 0x000001 - 0x001 - - Write Space 2 Cleared Cumulate

The first two columns give you the section name and the section size. The column 'Address' gives you the
section address, or a '-' if the section is still relocatable. The section alignment is always 1 for the S1C. The
page size is valid only for the short sections. MAU is the minimum addressable unit of an address space
(in bits). There are two main groups of section attributes, the allocation attributes, used by the locator and
the overlap attributes, used by the linker:

Write
ReadOnly
Execute
Space num
Abs
Cleared
Initialized
Scratch

Allocation attributes
Must be located in ram
May be located in rom
May be located in rom
Must be located in addressing mode num
Already located by the assembler
Section must be initialized to '0'
Section must be copied from ram to rom
Section is not filled or cleared

MaxSize
Unique
Cumulate

Overlay

Separate

Overlap attributes
Use largest length encountered
Only one section with this name allowed
Concatenate sections with the same name to one
bigger section
Sections with the name name@func must be
combined to one section name, according to the rules
for func obtained from the call graph.
Sections are not linked

CHAPTER 6 UTILITIES

226 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

6.5.2.3 Option -c, display call graphs
The call graph is used by the linker overlaying algorithm. Once a file is linked and overlaying is done, the
call graph information is removed from the object file. If you try to see the call graph in calc.out you
will get the message 'No call graph found'.

The file calc.obj is not yet linked. You can use this file to see what a call graph looks like:

pr88 -c calc.obj

Because the calc example does not contain any sections which need to be overlaid you will again get the
message 'No call graph found'. The following is just an example of what a call graph could look like:

Call graph(s)
=============

Call graph 0:

main()
 ->See call graph 1
 ->See call graph 4
 ->See call graph 2
 _exit()
 print_str()
 clear_screen()

Call graph 1:

queens?find_legal_row()
 ->See call graph 1
 ->See call graph 2
 abs()
 ->See call graph 3

Each call graph consists of a function (main in graph 0), followed by a list of functions and/or other
graphs, which are called by the first function. The functions and call graphs called by this function are
indented by two spaces. If a function calls other functions, those functions are listed again with another
indentation of two spaces.

As you can see, there are references from one call graph to another. Call graph 1 even calls itself!! This
means that function find_legal_row() is a recursive function. If you use the verbose switch the
output is somewhat nicer:

main()
 |
 +--->See call graph 1
 |
 +--->See call graph 4
 |
 +--->See call graph 2
 |
 +--exit()
 |
 +--print_str()
 |
 +--clear_screen()

The function find_legal_row from call graph 1 is a static function. In order to avoid name conflicts,
the source name is added to this function name.

If you want a call graph with resolved call graph references, you can use the linker to generate one:

lk88 -o call.out -Mcr calc.obj

Option -M tells the linker to generate a .lnl file. This file contains the call graph in the verbose layout.
Option -c causes the linker to generate a .cal file. This file contains also the (same) call graph, but in the
compact (non verbose) layout. Option -r tells the linker that this is an incremental link.

CHAPTER 6 UTILITIES

S5U1C88000C MANUAL I EPSON 227
C COMPILER/ASSEMBLER/LINKER

6.5.2.4 Option -e, display external part
In the external part of an object file, you can find all symbols used at link time. These symbols have an
external scope. With the -e option (or -e0) pr88 displays the external symbols:

pr88 -e calc.out

Variable S Address/Size

__start_cpt I .startup + 0x00
__START I .startup + 0x00
__exit I .startup + 0x20
__copytable I .startup + 0x22
_main I .text + 0x20
__lc_es X -
__lc_cp X -

With option -e1 also the name of the output object file is displayed.

pr88 -e1 calc.out

Variable S Address/Size

calc.out:__start_cpt I .startup + 0x00
calc.out:__START I .startup + 0x00
calc.out:__exit I .startup + 0x20
calc.out:__copytable I .startup + 0x22
calc.out:_main I .text + 0x20
calc.out:__lc_es X -
calc.out:__lc_cp X -

The first column contains the name of the symbol. In general, this symbol is a high level symbol with an
'F' added at the front. The next column gives you the symbol status. This can be I for a defined symbol,
and X for a symbol which is referred to, but which is not yet defined. In the last column you can find the
symbols address. If this address is still relocatable, the section offsets are printed in the form 'section +
offset'. If a symbol has already received an absolute address, this address is printed. Symbols that are not
yet defined (marked with a X) have a dash printed as address, indicating unknown.

You can add the verbose option as usual. With verbose on more information is printed:

pr88 -ev calc.out

Variable S Type Attrib MAU Amod Address/Size

__start_cpt I - - 8 1 .startup + 0x00
__START I - - 8 1 .startup + 0x00
__exit I - - 8 1 .startup + 0x20
__copytable I - - 8 1 .startup + 0x22
_main I - - 8 1 .text + 0x20
__lc_es X - - 8 2 -
__lc_cp X - - 8 2 -

Four additional columns appear. The Type column gives you the symbol type, if available. You can find
the meaning of the types in the global type part, Section 6.5.2.5. The global types are used to type check
the symbols during linking. The Attribute column specifies the attribute of the symbol, if available. For
example, the attribute value 0x0020 indicates that the symbol is generated by the assembler. The MAU
column indicates the minimum addressable unit in bits. So, MAU 8 means the symbol is 8-bit address-
able. The Amod column lists the addressing mode of the symbol.

CHAPTER 6 UTILITIES

228 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

6.5.2.5 Option -g, display global type information
The linker uses the global type information to check on type mismatches of the symbols in the external
part. This information is always available, unless you explicitly suppress the generation of these types
with option -gn at compile time. Of course, type checking can only be done if the types are available. The
global types in calc.out:

pr88 -g calc.out

In this example you will get the message 'No global types available'. The following is just an example of
what the global type information could look like:

Tp# Mnem Name Entry

101 X - 0, T10, 0, 0
102 X - 0, T1, 0, 0
103 X - 0, T1, 0, 1, T104
104 P - T105
105 n - T2, 1
106 X - 0, T1, 0, 1, T10
107 X - 0, T10, 0, 1, T10
108 X - 0, T1, 0, 2, T109, T109
109 T Byte T3
10a X - 0, T1, 0, 1, T109
...
10f X - 0, T1, 0, 3, T12, T110, T12
110 O - T111
111 n - T2, 0
112 Z - T2, 13
113 Z - T2, 7

In the first column you find the type index. This is the number by which the type is referred to. This
number is always a hexadecimal number. Numbering starts at 0x101, because the indices less than 0x100
are reserved for, so-called, 'basic types'. The second column contains the type mnemonic. This mnemonic
defines the new 'high level' type. In the Name column you will find the name for the type, if any.

The last column contains type parameters. They tell you which (basic) types a high level type is based on
and give other parameters such as modes and sizes. Types are preceded by a T. So, in the example above,
type 105 is based upon type 2 (T2 in the parameter list) and type 103 is based upon type 1 and type 104.

In the next table you can find an overview of the basic types:

Type index
1
2
3
4
5
6
7
10
11
16
17

Type
void
char
unsigned char
short
unsigned short
long
unsigned long
float
double
int
unsigned int

Meaning
-
8 bits signed
8 bits unsigned
16 bits signed
16 bits unsigned
32 bits signed
32 bits unsigned
32 bit floating point
64 bit floating point
16 bits signed
16 bits unsigned

CHAPTER 6 UTILITIES

S5U1C88000C MANUAL I EPSON 229
C COMPILER/ASSEMBLER/LINKER

The type mnemonics define the class of the newly created type. The next table shows the type mnemonics
with a short description:

Mnemonic
G
N
n
O
P
Q
S
T
t
U
X
Z
g

Description
generalized structure
enumerated type
pointer qualifier
small pointer
large pointer
type qualifier
structure
typedef
compiler generated type
union
function
array
bit type

Parameters
size, [member, Tindex, offset, size]...
[name, value]...
Tindex, memspace
Tindex
Tindex
q-bits, Tindex
size, [member, Tindex, offset]...
Tindex
Tindex
size, [member, Tindex, offset]...
x-bits, Tindex, 0, nbr-arg, [Tindex]...
Tindex, upper-bound
sign, nbr-of-bits

The Tindex for mnemonic n, O, P, Q, T, t and Z are the types upon which the new type is built. The Tindex
for the union and the structures are the type indices for the members. For the function type, the first
Tindex is the return type of the function. The second Tindex is repeated for each parameter, and gives the
type of each parameter. The value -1 (0xffffffff) always means 'unknown'. This can occur with a function
type if the number of parameters is unknown, or with an array if the upper bound in unknown. The sizes
and offset for the generalized structure are in bits. The first size is the size of the structure, the second size
is the size for the member.

The type information obtained with the -g switch has no verbose equivalent.

6.5.2.6 Option -d, display debug information
The -d switch has two variants. With -d0 you get a table of contents:

pr88 -d0 calc.out

Choose option -d with the number of the file:
 1 - startup
 2 - _copytbl
 3 - calc

Now, you can use -dn to examine a single (linked) file. For instance, -d3 shows you only the debug info of
calc.obj. It is also possible to see all debug info, by using option -d without a value.

The -d switch without the verbose option -v shows you only local variables and procedure information. If
you combine the -d switch with the verbose switch -v, also local type info, line numbers, stack update
information and more procedure information is displayed.

In the example you are using the verbose switch. Where required, the remark 'Only with verbose on' will
be given.

pr88 -d3v calc.out

The object reader starts with a header, followed by the local type information:

* O b j e c t c a l c *

M o d u l e i n f o
=====================

Type info calc:
===============

No local types available

This type info is only printed if you use the verbose option -v. The information found in this table is
exactly the same as the information explained for the global type information, see Section 6.5.2.5.

CHAPTER 6 UTILITIES

230 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

After the local types, you will find the local symbols.

Symbols calc:
=============

Variable S Type Attrib MAU Amod Address/Size

_MODEL N - 0x0010 0 0 -
_MODEL N - 0x0010 0 0 -
_factorial N - 0x0020 8 1 -
_compute N - 0x0020 8 1 -
_val N - 0x0020 8 2 -
_zero N - 0x0020 8 2 -
_cll N - 0x0020 8 2 -

The value for the symbol status in the external part was an I or an X. Here, you can see a new letter. The
N stands for a local symbol. Other possible entries can have the letter G or S. They are no symbols, but
procedures. These procedures are printed at this place in order to define their relative position. The actual
procedure information is given in the next block of information. Here you can find the additional proce-
dure information. The procedure block is printed only if you use the verbose switch:

Procedures calc:
================

No procedures

The following is an example of some procedures:

Name S Additional information

main G 0x00, 0x00, T101, QUEENS_PR + 0x00,

 (QUEENS_PR + 0x49) - 0x01
find_legal_row S 0x00, 0x00, T120, QUEENS_PR + 0x49,

 (QUEENS_PR + 0x156) - 0x01
display_board S 0x00, 0x00, T10a, QUEENS_PR + 0x156,

 (QUEENS_PR + 0x2a4) - 0x01
display_field S 0x00, 0x00, T121, QUEENS_PR + 0x2a4,

 (QUEENS_PR + 0x302) - 0x01
display_status S 0x00, 0x00, T103, QUEENS_PR + 0x302,

 (QUEENS_PR + 0x31d) - 0x01

The first two columns are the same as those in the local variable table. The G stands for an external
(global) function, the S for a static (local) function.

Each function has 5 parameters with the following meaning:

param #1 Frame type, not used

param #2 Frame size, the distance from the stack pointer before the function call to the stack
position just after the local variables.

param #3 The type of the function

param #4 The start address of the function. In a relocatable object the syntax 'section + offset' is used.

param #5 The last function address. See also param #4.

Next in the debug info is the line number information and the stack information. Both items are only
printed if you had turned the verbose switch on:

Lines include/stdarg.h:
=======================
No line info available

Lines include/stdio.h:
======================
No line info available

CHAPTER 6 UTILITIES

S5U1C88000C MANUAL I EPSON 231
C COMPILER/ASSEMBLER/LINKER

Lines queens.c:
===============

Address | Line Address | Line Address ...
--------------------------- --------------------------- -----------------
QUEENS_PR + 0x000000 | 52 QUEENS_PR + 0x0000c2 | 90 QUEENS_PR + ...
QUEENS_PR + 0x000000 | 53 QUEENS_PR + 0x0000d9 | 101 QUEENS_PR + ...
QUEENS_PR + 0x000006 | 55 QUEENS_PR + 0x0000d9 | 103 QUEENS_PR + ...
 . . .
 . . .
 . . .
QUEENS_PR + 0x0000bd | 98 QUEENS_PR + 0x00018e | 133 QUEENS_PR + ...
QUEENS_PR + 0x0000c0 | 99 QUEENS_PR + 0x000190 | 136 QUEENS_PR + ...
QUEENS_PR + 0x0000c2 | 100 QUEENS_PR + 0x00019f | 137

Stack info include/stdarg.h:
============================
No stack info available

Stack info include/stdio.h:
===========================
No stack info available

Stack info queens.c:
====================
No stack info available

The stack info gives the actual stack position for each executable address. This value is measured from the
start position, just after the functions local variables to the actual stack position. If you push one byte on
stack, the delta will be increased by one.

The debug info per module ends with a block for each function. Within this block the local variables per
function are displayed:

P r o c e d u r e i n f o
===========================

Procedure find_legal_row:
=========================

Symbols find_legal_row:
=======================

Variable S Type Attrib Mau Amod Address/Size

accepted N 0x0109 0x0004 0 0 QUEENS_DA + 0x09
row N 0x0109 0x0805 0 0 0x02
col N 0x0109 0x0805 0 0 0x03
chk_row N 0x0109 0x0005 0 0 0x01
chk_col N 0x0109 0x0005 0 0 0x00

E n d o f p r o c e d u r e i n f o
===

CHAPTER 6 UTILITIES

232 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

6.5.2.7 Option -i, display the section images
As with the -d option, you can ask a table with available section images by specifying option -i0:

pr88 -i0 calc.out

Choose option -i with the number of the section:
 1 - .startup_vector
 2 - .startup
 3 - .watchdog_vector
 4 - .watchdog
 5 - .text
 6 - .data
 7 - .zdata

You can select the image to display by specifying the image number:

pr88 -i5 calc.out

Section .text:
==============

02 32 05 e3 ce 00 01 c4 f8 b0 cf 88 f3 f0 50 b4
cf d8 ce a1 51 d8 ce e1 cf 00 b1 cc a9 01 cf f8
rr rr rr rr rr rr rr rr rr rr rr rr rr

It is also possible to get the section offsets or absolute addresses by specifying the verbose flag:

pr88 -i5v calc.out

Section .text:
==============

000000 02 32 05 e3 ce 00 01 c4 f8 b0 cf 88 f3 f0 50 b4 .2............P.
000010 cf d8 ce a1 51 d8 ce e1 cf 00 b1 cc a9 01 cf f8Q...........
000020 rr rr rr rr rr rr rr rr rr rr rr rr rr

The dump always shows the hexadecimal byte value per address. Sometimes however, this is not pos-
sible. First of all, it is possible that a certain byte cannot be determined because it is not yet relocated. In
this case the byte is represented as rr.

Secondly, it is possible that there is no section image allowed. This is for instance the case for sections that
are cleared during startup. After the invocation (verbose on) the reader prints:

pr88 -i7v calc.out

Section .zdata:
===============

No image allowed, cleared during startup

It is possible that you read an absolute file. In the absolute file it is possible to combine different sections
to new clusters. These clusters do not have the same attributes as the sections and the reader does no
longer know where the overlay area is positioned:

pr88 -v -i1 calc.abs

Section rom:
============

000000 00 53 f9 ss 00 02 02 00 f0 00 00 00 00 00 00 00 .S..............
000010 01 01 00 f0 01 00 00 b6 00 00 00 03 00 ss ss ss2........
000020 ss ss ss ss ss ss 02 32 05 e3 ce 00 01 c4 f8 b0P.....Q.....
000030 cf 88 f3 f0 50 b4 cf d8 ce a1 51 d8 ce e1 cf 00
....

As you see, the reader only prints bytes that it actually can read from the object file. The ss in the dump
means scratch memory. It may or may not be initialized by the start-up code. This information is not
available anymore to the reader. The start-up code can use a locator generated table to get the informa-
tion. See Chapter 4, "Locator".

CHAPTER 6 UTILITIES

S5U1C88000C MANUAL I EPSON 233
C COMPILER/ASSEMBLER/LINKER

6.5.3 Viewing an Object at Lower Level

6.5.3.1 Object Layers
As with the well known OSI layer model for communication, you can also distinguish layers in an object
file. The object file is a medium for the compiler which lets the compiler communicate with the debugger
or the target board. The lowest level can be classified as mass storage, mostly the disc. The lowest view-
able level for the readers concern are the raw bytes.

pr88 knows this layer as level 0.

Of course, the bytes in level 0 have a meaning. Because the object format is an format according to IEEE
695, the object file is a collection of MUFOM commands. The general idea is, that an object producing tool
sends commands to a object consuming tool. These commands are described in detail by the official IEEE
standard1. The raw bytes from level 0 appear to be encoded MUFOM commands. The MUFOM com-
mands are interpreted in a layer just above the raw bytes layer.

pr88 knows this layer as level 1.

The next layer is the MUFOM environment, the type and section tables are built, values are assigned,
attributes are set just by performing the MUFOM commands. The IEEE document describes also some
predefined meanings about scope, section attributes naming conventions for MUFOM variables. This
knowledge is available in the highest MUFOM layer.

pr88 knows this layer as level 2.

With these first layers, the compiler and debugger/target board have a perfect communication channel.
The next layers (not supported by the reader at this moment) define a protocol between compiler and
debugger about target and language specific information.

In the next sections you can find some examples about the use of the reader at lower levels. Until now,
you used the default level of the reader, level 2.

6.5.3.2 The Level Option -ln

Level 1

Switching to another level is simple. You can use the -l option with the level you want to see. As an
example, the section part of calc.out at level 1:

pr88 -l1 -s calc.out

ST: 1, RXAZS, .startup_vector
AS: L1, 0x0
AS: S1, 0x2
ST: 2, RXZC, .startup
AS: S2, 0x63
ST: 3, RXAZS, .watchdog_vector
AS: L3, 0x4
AS: S3, 0x2
ST: 4, RXZC, .watchdog
AS: S4, 0x1
ST: 5, RXZC, .text
AS: S5, 0x2d
ST: 6, WIY2C, .data
AS: S6, 0x3
ST: 7, WBY2C, .zdata
AS: S7, 0x1

1 IEEE Trial Use Standard for Microprocessor Universal Format for Object Modules (IEEE std. 695), IEEE Technical Committee on
Microcomputers and Microprocessors of the IEEE Computer Society, 1990.

CHAPTER 6 UTILITIES

234 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

If you are not familiar with the MUFOM commands, you can use the verbose switch. The abbreviated
commands such as AS, SA or ST are expanded to Assignment, Section alignment and Section type:

pr88 -v -l1 -s calc.out

ST: Section type:
Nbr = 1, type = RXAZS, name = .startup_vector

AS: Assignment:
Variable = L1, expression = 0x0

AS: Assignment:
Variable = S1, expression = 0x2

.

.
ST: Section type:

Nbr = 7, type = WBY2C, name = .zdata
AS: Assignment:

Variable = S7, expression = 0x1

The Ln and Sn MUFOM variables are defined as the address and the size of section n. At level 2 you saw
(refer to Section 6.5.2.2) that the level 2 view did not mention the L and S variables, because at level 2 the
meaning of the L and S variables are known!

Level 0

Switching to level 0 is accomplished by using -l0 (as you expected):

pr88 -l0s calc.out

e6 01 d2 d8 c1 da d3 0f 2e 73 74 61 72 74 75 70 5f
76 65 63 74 6f 72
e2 cc 01 81 00
e2 d3 01 02
...
e6 07 d7 c2 d9 02 c3 06 2e 7a 64 61 74 61
e2 d3 07 01

The bytes are printed in the MUFOM command structure. It should be easy to find the encoding for the
used MUFOM commands. You can use the verbose switch if you want to see file offsets:

pr88 -l0vs calc.out

0000b3 e6 01 d2 d8 c1 da d3 0f 2e 73 74 61 72 74 75 70 5fstartup_
76 65 63 74 6f 72 vector

0000ca e2 cc 01 81 00
0000cf e2 d3 01 02
....
00013c e6 07 d7 c2 d9 02 c3 06 2e 7a 64 61 74 61 zdata
00014a e2 d3 07 01

CHAPTER 6 UTILITIES

S5U1C88000C MANUAL I EPSON 235
C COMPILER/ASSEMBLER/LINKER

Viewing Mixed Levels

You can also mix the levels. It is for instance possible to see level 0 and 1 together by specifying option
-l01 (equivalent to -l10 or -l0 -l1):

pr88 -sl01 calc.out

ST: 1, RXAZS, .startup_vector
e6 01 d2 d8 c1 da d3 0f 2e 73 74 61 72 74 75 70 5f
76 65 63 74 6f 72

AS: L1, 0x0
e2 cc 01 81 00

AS: S1, 0x2
e2 d3 01 02

.

.

.
ST: 7, WBY2C, .zdata

e6 07 d7 c2 d9 02 c3 06 2e 7a 64 61 74 61
AS: S7, 0x1

e2 d3 07 01

And of course, you can turn on the verbose switch. The switch between level 0 and level 1 is done per
MUFOM command. This is because a MUFOM command is the smallest unit at level 1.

If you should display level 1 and 2, the switch is made per object part, because the object parts are the
smallest units at level 2. It is not possible to show the results of all section related commands before all
these commands are executed:

pr88 -s -l1 -l2 calc.out

ST: 1, RXAZS, .startup_vector
AS: L1, 0x0
AS: S1, 0x2
.
.
.
ST: 7, WBY2C, .zdata
AS: S7, 0x1

Section Size

.startup_vector 0x000002
.startup 0x000063
.watchdog_vector 0x000002
.watchdog 0x000001
.text 0x00002d
.data 0x000003
.zdata 0x000001

CHAPTER 6 UTILITIES

236 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

6.5.3.3 The Verbose Option -vn
As you have read in Section 6.5.3.2, you can switch to a lower level with the level switch -ln. If you want
a verbose printout, you can use the -v option.

It is also possible to specify -v0 to see a verbose output of level 0, option -vn is a shorthand for options -v
-ln (or -vln). The new notation has the advantage that if you want a mixed level output, you are able to
choose the verbose option per level. You may specify -l0 -v1, and you get a non verbose level 0 and a
verbose level 1:

pr88 -sl0v1 calc.out

ST: Section type:
Nbr = 1, type = RXAZS, name = .startup_vector
e6 01 d2 d8 c1 da d3 0f 2e 73 74 61 72 74 75 70 5f
76 65 63 74 6f 72

AS: Assignment:
Variable = L1, expression = 0x0
e2 cc 01 81 00

AS: Assignment:
Variable = S1, expression = 0x2
e2 d3 01 02

.

.

.
ST: Section type:

Nbr = 7, type = WBY2C, name = .zdata
e6 07 d7 c2 d9 02 c3 06 2e 7a 64 61 74 61

AS: Assignment:
Variable = S7, expression = 0x1
e2 d3 07 01

The general verbose switch -v (without a number) makes all selected levels verbose. The verbose switch
-vn selects level n and makes only level n verbose.

APPENDIX A C COMPILER ERROR MESSAGES

S5U1C88000C MANUAL I EPSON 237
C COMPILER/ASSEMBLER/LINKER

APPENDIX A C COMPILER ERROR MESSAGES
Errors start with an error type, followed by a number and a message. The error type is indicated by a
letter:

I information
E error
F fatal error
S internal compiler error
W warning

Frontend

F 1: evaluation expired
Your product evaluation period has expired.

W 2: unrecognized option: 'option'
The option you specified does not exist. Check the invocation syntax for the correct option.

E 4: expected number more '#endif'
The preprocessor part of the compiler found the '#if', '#ifdef' or '#ifndef' directive but did not
find a corresponding '#endif' in the same source file. Check your source file that each '#if',
'#ifdef' or '#ifndef' has a corresponding '#endif'.

E 5: no source modules
You must specify at least one source file to compile.

F 6: cannot create "file"
The output file or temporary file could not be created. Check if you have sufficient disk space
and if you have write permissions in the specified directory.

F 7: cannot open "file"
Check if the file you specified really exists. Maybe you misspelled the name, or the file is in
another directory.

F 8: attempt to overwrite input file "file"
The output file must have a different name than the input file.

E 9: unterminated constant character or string
This error can occur when you specify a string without a closing double-quote (") or when you
specify a character constant without a closing single-quote ('). This error message is often
preceded by one or more E 19 error messages.

F 11: file stack overflow
This error occurs if the maximum nesting depth (50) of file inclusion is reached. Check for
#include files that contain other #include files. Try to split the nested files into simpler files.

F 12: memory allocation error
All free space has been used. Free up some memory by removing any resident programs,
divide the file into several smaller source files, break expressions into smaller subexpressions
or put in more memory.

W 13: prototype after forward call or old style declaration - ignored
Check that a prototype for each function is present before the actual call.

E 14: ';' inserted
An expression statement needs a semicolon. For example, after ++i in { int i; ++i }.

E 15: missing filename after -o option
The -o option must be followed by an output filename.

APPENDIX A C COMPILER ERROR MESSAGES

238 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

E 16: bad numerical constant
A constant must conform to its syntax. For example, 08 violates the octal digit syntax. Also, a
constant may not be too large to be represented in the type to which it was assigned. For
example, int i = 0x1234567890; is too large to fit in an integer.

E 17: string too long
This error occurs if the maximum string size (1500) is reached. Reduce the size of the string.

E 18: illegal character (0xhexnumber)
The character with the hexadecimal ASCII value 0xhexnumber is not allowed here. For example,
the '#' character, with hexadecimal value 0x23, to be used as a preprocessor command, may not
be preceded by non-white space characters. The following is an example of this error:

char *s = #S ; // error

E 19: newline character in constant
The newline character can appear in a character constant or string constant only when it is
preceded by a backslash (\). To break a string that is on two lines in the source file, do one of
the following:

• End the first line with the line-continuation character, a backslash (\).

• Close the string on the first line with a double quotation mark, and open the string on the
next line with another quotation mark.

E 20: empty character constant
A character constant must contain exactly one character. Empty character constants ('') are not
allowed.

E 21: character constant overflow
A character constant must contain exactly one character. Note that an escape sequence (for
example, \t for tab) is converted to a single character.

E 22: '#define' without valid identifier
You have to supply an identifier after a '#define'.

E 23: '#else' without '#if'
'#else' can only be used within a corresponding '#if', '#ifdef' or '#ifndef' construct. Make sure
that there is a '#if', '#ifdef' or '#ifndef' statement in effect before this statement.

E 24: '#endif' without matching '#if'
'#endif' appeared without a matching '#if', '#ifdef' or '#ifndef' preprocessor directive. Make sure
that there is a matching '#endif' for each '#if', '#ifdef' and '#ifndef' statement.

E 25: missing or zero line number
'#line' requires a non-zero line number specification.

E 26: undefined control
A control line (line with a '#identifier') must contain one of the known preprocessor directives.

W 27: unexpected text after control
'#ifdef' and '#ifndef' require only one identifier. Also, '#else' and '#endif' only have a newline.
'#undef' requires exactly one identifier.

W 28: empty program
The source file must contain at least one external definition. A source file with nothing but
comments is considered an empty program.

E 29: bad '#include' syntax
A '#include' must be followed by a valid header name syntax. For example, #include
<stdio.h misses the closing '>'.

E 30: include file "file" not found
Be sure you have specified an existing include file after a '#include' directive. Make sure you
have specified the correct path for the file.

APPENDIX A C COMPILER ERROR MESSAGES

S5U1C88000C MANUAL I EPSON 239
C COMPILER/ASSEMBLER/LINKER

E 31: end-of-file encountered inside comment
The compiler found the end of a file while scanning a comment. Probably a comment was not
terminated. Do not forget a closing comment '*/' when using ANSI-C style comments.

E 32: argument mismatch for macro "name"
The number of arguments in invocation of a function-like macro must agree with the number
of parameters in the definition. Also, invocation of a function-like macro requires a terminating
")" token. The following are examples of this error:

#define A(a) 1
int i = A(1,2); /* error */
#define B(b) 1
int j = B(1; /* error */

E 33: "name" redefined
The given identifier was defined more than once, or a subsequent declaration differed from a
previous one. The following examples generate this error:

int i;
char i; /* error */
main()
{
}
main()
{

int j;
int j; /* error */

}

W 34: illegal redefinition of macro "name"
A macro can be redefined only if the body of the redefined macro is exactly the same as the
body of the originally defined macro.
This warning can be caused by defining a macro on the command line and in the source with a
'#define' directive. It also can be caused by macros imported from include files. To eliminate
the warning, either remove one of the definitions or use an '#undef' directive before the second
definition.

E 35: bad filename in '#line'
The string literal of a #line (if present) may not be a "wide-char" string. So, #line 9999
L"t45.c" is not allowed.

W 36: 'debug' facility not installed
'#pragma debug' is only allowed in the debug version of the compiler.

W 37: attempt to divide by zero
A divide or modulo by zero was found. Adjust the expression or test if the second operand of a
divide or modulo is zero.

E 38: non integral switch expression
A switch condition expression must evaluate to an integral value. So, char *p = 0;
switch (p) is not allowed.

F 39: unknown error number: number
This error may not occur. If it does, contact your local Seiko Epson office and provide them
with the exact error message.

W 40: non-standard escape sequence
Check the spelling of your escape sequence (a backslash, \, followed by a number or letter), it
contains an illegal escape character. For example, \c causes this warning.

E 41: '#elif' without '#if'
The '#elif' directive did not appear within an '#if', '#ifdef or '#ifndef' construct. Make sure that
there is a corresponding '#if', '#ifdef' or '#ifndef' statement in effect before this statement.

APPENDIX A C COMPILER ERROR MESSAGES

240 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

E 42: syntax error, expecting parameter type/declaration/statement
A syntax error occurred in a parameter list a declaration or a statement. This can have many
causes, such as, errors in syntax of numbers, usage of reserved words, operator errors, missing
parameter types, missing tokens.

E 43: unrecoverable syntax error, skipping to end of file
The compiler found an error from which it could not recover. This error is in most cases
preceded by another error. Usually, error E 42.

I 44: in initializer "name"
Informational message when checking for a proper constant initializer.

E 46: cannot hold that many operands
The value stack may not exceed 20 operands.

E 47: missing operator
An operator was expected in the expression.

E 48: missing right parenthesis
')' was expected.

W 49: attempt to divide by zero - potential run-time error
An expression with a divide or modulo by zero was found. Adjust the expression or test if the
second operand of a divide or modulo is zero.

E 50: missing left parenthesis
'(' was expected.

E 51: cannot hold that many operators
The state stack may not exceed 20 operators.

E 52: missing operand
An operand was expected.

E 53: missing identifier after 'defined' operator
An identifier is required in a #if defined(identifier).

E 54: non scalar controlling expression
Iteration conditions and 'if' conditions must have a scalar type (not a struct, union or a
pointer). For example, after static struct {int i;} si = {0}; it is not allowed to
specify while (si) ++si.i;.

E 55: operand has not integer type
The operand of a '#if' directive must evaluate to an integral constant. So, #if 1. is not allowed.

W 56: '<debugoption><level>' no associated action
This warning can only appear in the debug version of the compiler. There is no associated
debug action with the specified debug option and level.

W 58: invalid warning number: number
The warning number you supplied to the -w option does not exist. Replace it with the correct
number.

F 59: sorry, more than number errors
Compilation stops if there are more than 40 errors.

E 60: label "label" multiple defined
A label can be defined only once in the same function. The following is an example of this
error:

f()
{
lab1:
lab1: /* error */
}

APPENDIX A C COMPILER ERROR MESSAGES

S5U1C88000C MANUAL I EPSON 241
C COMPILER/ASSEMBLER/LINKER

E 61: type clash
The compiler found conflicting types. For example, a long is only allowed on int or double,
no specifiers are allowed with struct, union or enum. The following is an example of this
error:

unsigned signed int i; /* error */

E 62: bad storage class for "name"
The storage class specifiers auto and register may not appear in declaration specifiers of
external definitions. Also, the only storage class specifier allowed in a parameter declaration is
register.

E 63: "name" redeclared
The specified identifier was already declared. The compiler uses the second declaration. The
following is an example of this error:

struct T { int i; };
struct T { long j; }; /* error */

E 64: incompatible redeclaration of "name"
The specified identifier was already declared. All declarations in the same function or module
that refer to the same object or function must specify compatible types. The following is an
example of this error:

f()
{

int i;
char i; /* error */

}

W 66: function "name": variable "name" not used
A variable is declared which is never used. You can remove this unused variable or you can use
the -w66 option to suppress this warning.

W 67: illegal suboption: option
The suboption is not valid for this option. Check the invocation syntax for a list of all available
suboptions.

W 68: function "name": parameter "name" not used
A function parameter is declared which is never used. You can remove this unused parameter
or you can use the -w68 option to suppress this warning.

E 69: declaration contains more than one basic type specifier
Type specifiers may not be repeated. The following is an example of this error:

int char i; /* error */

E 70: 'break' outside loop or switch
A break statement may only appear in a switch or a loop (do, for or while). So, if (0)
break; is not allowed.

E 71: illegal type specified
The type you specified is not allowed in this context. For example, you cannot use the type
void to declare a variable. The following is an example of this error:

void i; /* error */

W 72: duplicate type modifier
Type qualifiers may not be repeated in a specifier list or qualifier list. The following is an
example of this warning:

{ long long i; } /* error */

E 73: object cannot be bound to multiple memories
Use only one memory attribute per object. For example, specifying both rom and ram to the
same object is not allowed.

APPENDIX A C COMPILER ERROR MESSAGES

242 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

E 74: declaration contains more than one class specifier
A declaration may contain at most one storage class specifier. So, register auto i; is not
allowed.

E 75: 'continue' outside a loop
continue may only appear in a loop body (do, for or while). So, switch (i)
{default: continue;} is not allowed.

E 76: duplicate macro parameter "name"
The given identifier was used more than one in the formatl parameter list of a macro defini-
tion. Each macro parameter must be uniquely declared.

E 77: parameter list should be empty
An identifier list, not part of a function definition, must be empty.
For example, int f (i, j, k); is not allowed on declaration level.

E 78: 'void' should be the only parameter
Within a function prototype of a function that does not except any arguments, void may be
the only parameter. So, int f(void, int); is not allowed.

E 79: constant expression expected
A constant expression may not contain a comma. Also, the bit field width, an expression that
defines an enum, array-bound constants and switch case expressions must all be integral
constant expressions.

E 80: '#' operator shall be followed by macro parameter
The '#' operator must be followed by a macro argument.

E 81: '##' operator shall not occur at beginning or end of a macro
The '##' (token concatenation) operator is used to paste together adjacent preprocessor tokens,
so it cannot be used at the beginning or end of a macro body.

W 86: escape character truncated to 8 bit value
The value of a hexadecimal escape sequence (a backslash, \, followed by a 'x' and a number)
must fit in 8 bits storage. The number of bits per character may not be greater than 8. The
following is an example of this warning:

char c = '\xabc'; /* error */

E 87: concatenated string too long
The resulting string was longer than the limit of 1500 characters.

W 88: "name" redeclared with different linkage
The specified identifier was already declared. This warning is issued when you try to redeclare
an object with a different basic storage class, and both objects are not declared extern or static.
The following is an example of this warning:

int i;
int i(); /* error E 64 and warning */

E 89: illegal bitfield declarator
A bit field may only be declared as an integer, not as a pointer or a function for example. So,
struct {int *a:1;} s; is not allowed.

E 90: #error message
The message is the descriptive text supplied in a '#error' preprocessor directive.

W 91: no prototype for function "name"
Each function should have a valid function prototype.

W 92: no prototype for indirect function call
Each function should have a valid function prototype.

I 94: hiding earlier one
Additional message which is preceded by error E 63. The second declaration will be used.

APPENDIX A C COMPILER ERROR MESSAGES

S5U1C88000C MANUAL I EPSON 243
C COMPILER/ASSEMBLER/LINKER

F 95: protection error: message
Something went wrong with the protection key initialization. The message could be: "Key is
not present or printer is not correct.", "Can't read key.", "Can't initialize key.", or "Can't set key-
model".

E 96: syntax error in #define
#define id(requires a right-parenthesis ')'.

E 97: "..." incompatible with old-style prototype
If one function has a parameter type list and another function, with the same name, is an old-
style declaration, the parameter list may not have ellipsis. The following is an example of this
error:

int f(int, ...);
int f(); /* error, old-style */

E 98: function type cannot be inherited from a typedef
A typedef cannot be used for a function definition. The following is an example of this error:

typedef int INTFN();
INTFN f {return (0);} /* error */

F 99: conditional directives nested too deep
'#if', '#ifdef' or '#ifndef' directives may not be nested deeper than 50 levels.

E 100: case or default label not inside switch
The case: or default: label may only appear inside a switch.

E 101: vacuous declaration
Something is missing in the declaration. The declaration could be empty or an incomplete
statement was found. You must declare array declarators and struct, union, or enum
members. The following are examples of this error:

int ; /* error */
static int a[2] = { }; /* error */

E 102: duplicate case or default label
Switch case values must be distinct after evaluation and there may be at most one
default: label inside a switch.

E 103: may not subtract pointer from scalar
The only operands allowed on subtraction of pointers is pointer - pointer, or pointer - scalar.
So, scalar - pointer is not allowed. The following is an example of this error:

int i;
int *pi = &i;
ff(1 - pi); /* error */

E 104: left operand of operator has not struct/union type
The first operand of a '.' or '->' must have a struct or union type.

E 105: zero or negative array size - ignored
Array bound constants must be greater than zero. So, char a[0]; is not allowed.

E 106: different constructors
Compatible function types with parameter type lists must agree in number of parameters and
in use of ellipsis. Also, the corresponding parameters must have compatible types. This error is
usually followed by informational message I 111. The following is an example of this error:

int f(int);
int f(int, int); /* error different parameter list */

E 107: different array sizes
Corresponding array parameters of compatible function types must have the same size. This
error is usually followed by informational message I 111.

APPENDIX A C COMPILER ERROR MESSAGES

244 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

The following is an example of this error:

int f(int [][2]);
int f(int [][3]); /* error */

E 108: different types
Corresponding parameters must have compatible types and the type of each prototype param-
eter must be compatible with the widened definition parameter. This error is usually followed
by informational message I 111. The following is an example of this error:

int f(int);
int f(long); /* error different type in parameter list */

E 109: floating point constant out of valid range
A floating point constant must have a value that fits in the type to which it was assigned. See
Section 1.2.3, "Data Types", for the valid range of a floating point constant. The following is an
example of this error:

float d = 10E9999; /* error, too big */

E 110: function cannot return arrays or functions
A function may not have a return type that is of type array or function. A pointer to a function
is allowed. The following are examples of this error:

typedef int F(); F f(); /* error */
typedef int A[2]; A g(); /* error */

I 111: parameter list does not match earlier prototype
Check the parameter list or adjust the prototype. The number and type of parameters must
match. This message is preceded by error E 106, E 107 or E 108.

E 112: parameter declaration must include identifier
If the declarator is a prototype, the declaration of each parameter must include an identifier.
Also, an identifier declared as a typedef name cannot be a parameter name. The following are
examples of this error:

int f(int g, int) {return (g);} /* error */

typedef int int_type;
int h(int_type) {return (0);} /* error */

E 114: incomplete struct/union type
The struct or union type must be known before you can use it. The following is an example
of this error:

extern struct unknown sa, sb;
sa = sb; /* 'unknown' does not have a defined type */

The left side of an assignment (the lvalue) must be modifiable.

E 115: label "name" undefined
A goto statement was found, but the specified label did not exist in the same function or
module. The following is an example of this error:

f1() { a: ; } /* W 116 */
f2() { goto a; } /* error, label 'a:' is not defined in f2() */

W 116: label "name" not referenced
The given label was defined but never referenced. The reference of the label must be within the
same function or module. The following is an example of this warning:

f() { a: ; } /* 'a' is not referenced */

E 117: "name" undefined
The specified identifier was not defined. A variable's type must be specified in a declaration
before it can be used. This error can also be the result of a previous error. The following is an
example of this error:

unknown i; /* error, 'unknown' undefined */
i = 1; /* as a result, 'i' is also undefined */

APPENDIX A C COMPILER ERROR MESSAGES

S5U1C88000C MANUAL I EPSON 245
C COMPILER/ASSEMBLER/LINKER

W 118: constant expression out of valid range
A constant expression used in a case label may not be too large. Also when converting a
floating point value to an integer, the floating point constant may not be too large. This warn-
ing is usually preceded by error E 16 or E 109. The following is an example of this warning:

int i = 10E88; /* error and warning */

E 119: cannot take 'sizeof' bitfield or void type
The size of a bit field or void type is not known. So, the size of it cannot be taken.

E 120: cannot take 'sizeof' function
The size of a function is not known. So, the size of it cannot be taken.

E 121: not a function declarator
This is not a valid function. This may be due to a previous error. The following is an example
of this error:

int f() return 0; /* missing '{ }' */
int g() { } /* error, 'g' is not a formal parameter and

 therefore, this is not a valid function
 declaration */

E 122: unnamed formal parameter
The parameter must have a valid name.

W 123: function should return something
A return in a non-void function must have an expression.

E 124: array cannot hold functions
An array of functions is not allowed.

E 125: function cannot return anything
A return with an expression may not appear in a void function.

W 126: missing return (function "name")
A non-void function with a non-empty function body must have a return statement.

E 129: cannot initialize "name"
Declarators in the declarator list may not contain initializations. Also, an extern declaration
may have no initializer. The following are examples of this error:

{ extern int i = 0; } /* error */
int f(i) int i=0; /* error */

W 130: operands of operator are pointers to different types
Pointer operands of an operator or assignment ('='), must have the same type. For example, the
following code generates this warning:

long *pl;
int *pi = 0;
pl = pi; /* warning */

E 131: bad operand type(s) of operator
The operator needs an operand of another type. The following is an example of this error:

int *pi;
pi += 1.; /* error, pointer on left; needs

integral value on right */

W 132: value of variable "name" is undefined
This warning occurs if a variable is used before it is defined. For example, the following code
generates this warning:

int a,b;
a = b; /* warning, value of b unknown */

E 133: illegal struct/union member type
A function cannot be a member of a struct or union. Also, bit fields may only have type int
or unsigned.

APPENDIX A C COMPILER ERROR MESSAGES

246 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

E 134: bitfield size out of range - set to 1
The bit field width may not be greater than the number of bits in the type and may not be
negative. The following example generates this error:

struct i { unsigned i : 999; }; /* error */

W 135: statement not reached
The specified statement will never be executed. This is for example the case when statements
are present after a return.

E 138: illegal function call
You cannot perform a function call on an object that is not a function. The following example
generates this error:

int i, j;
j = i(); /* error, i is not a function */

E 139: operator cannot have aggregate type
The type name in a (cast) must be a scalar (not a struct, union or a pointer) and also the
operand of a (cast) must be a scalar. The following are examples of this error:

static union ui {int a;} ui ;
ui = (union ui)9; /* cannot cast to union */
ff((int)ui); /* cannot cast a union to something else */

E 140: type cannot be applied to a register/bit/bitfield object or builtin/inline function
For example, the '&' operator (address) cannot be used on registers and bit fields. So,
func(&r6); and func(&bitf.a); are invalid.

E 141: operator requires modifiable lvalue
The operand of the '++', or '--' operator and the left operand of an assignment or compound
assignment (lvalue) must be modifiable. The following is an example of this error:

const int i = 1;
i = 3; /* error, const cannot be modified */

E 143: too many initializers
There may be no more initializers than there are objects. The following is an example of this
error:

static int a[1] = {1, 2}; /* error, only one object
can be initialized */

W 144: enumerator "name" value out of range
An enum constant exceeded the limit for an int. The following is an example of this warning:

enum { A = INT_MAX, B }; /* warning, B does not fit
in an int anymore */

E 145: requires enclosing curly braces
A complex initializer needs enclosing curly braces. For example, int a[] = 2; is not valid,
but int a[] = {2}; is.

E 146: argument #number: memory spaces do not match
With prototypes, the memory spaces of arguments must match.

W 147: argument #number: different levels of indirection
With prototypes, the types of arguments must be assignment compatible. The following code
generates this warning:

int i; void func(int,int);
func(1, &i); /* warning, argument 2 */

APPENDIX A C COMPILER ERROR MESSAGES

S5U1C88000C MANUAL I EPSON 247
C COMPILER/ASSEMBLER/LINKER

W 148: argument #number: struct/union type does not match
With prototypes, both the prototyped function argument and the actual argument was a
struct or union, but they have different tags. The tag types should match.
The following is an example of this warning:

f(struct s); /* prototype */
main()
{
 struct { int i; } t;
 f(t); /* t has other type than s */
}

E 149: object "name" has zero size
A struct or union may not have a member with an incomplete type. The following is an
example of this error:

struct { struct unknown m; } s; /* error */

W 150: argument #number: pointers to different types
With prototypes, the pointer types of arguments must be compatible. The following example
generates this warning:

int f(int*);
long *l;
f(l); /* warning */

W 151: ignoring memory specifier
Memory specifiers for a struct, union or enum are ignored.

E 152: operands of operator are not pointing to the same memory space
Be sure the operands point to the same memory space. This error occurs, for example, when
you try to assign a pointer to a pointer from a different memory space.

E 153: 'sizeof' zero sized object
An implicit or explicit sizeof operation references an object with an unknown size. This error
is usually preceded by error E 119 or E 120, cannot take 'sizeof'.

E 154: argument #number: struct/union mismatch
With prototypes, only one of the prototyped function argument or the actual argument was a
struct or union. The types should match. The following is an example of this error:

f(struct s); /* prototype */

main()
{
 int i;
 f(i); /* i is not a struct */
}

E 155: casting lvalue 'type' to 'type' is not allowed
The operand of the '++', or '--' operator or the left operand of an assignment or compound
assignment (lvalue) may not be cast to another type.
The following is an example of this error:

int i = 3;
++(unsigned)i; /* error, cast expression is not an lvalue */

E 157: "name" is not a formal parameter
If a declarator has an identifier list, only its identifiers may appear in the declarator list. The
following is an example of this error:

int f(i) int a; /* error */

E 158: right side of operator is not a member of the designated struct/union
The second operand of '.' or '->' must be a member of the designated struct or union.

APPENDIX A C COMPILER ERROR MESSAGES

248 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

E 160: pointer mismatch at operator
Both operands of operator must be a valid pointer. The following example generates this error:

int *pi = 44; /* right side not a pointer */

E 161: aggregates around operator do not match
The contents of the structs, unions or arrays on both sides of the operator must be the same. The
following example causes this error:

struct {int a; int b;} s;
struct {int c; int d; int e;} t;
s = t; /* error */

E 162: operator requires an lvalue or function designator
The '&' (address) operator requires an lvalue or function designator. The following is an
example of this error:

int i;
i = &(i = 0);

W 163: operands of operator have different level of indirection
The types of pointers or addresses of the operator must be assignment compatible. The follow-
ing is an example of this warning:

char **a;
char *b;
a = b; /* warning */

E 164: operands of operator may not have type 'pointer to void'
The operands of operator may not have operand (void *).

W 165: operands of operator are incompatible: pointer vs. pointer to array
The types of pointers or addresses of the operator must be assignment compatible. A pointer
cannot be assigned to a pointer to array. The following is an example of this warning:

main()
{

typedef int array[10];
array a;
array *ap = a; /* warning */

}

E 166: operator cannot make something out of nothing
Casting type void to something else is not allowed. The following example generates this
error:

void f(void);
main()
{

int i;

i = (int)f(); /* error */
}

E 170: recursive expansion of inline function "name"
An _inline function may not be recursive. The following example generates this error:

_inline int a (int i)
{

a(i); /* recursive call */
return i;

}
main()
{

a(1); /* error */
}

APPENDIX A C COMPILER ERROR MESSAGES

S5U1C88000C MANUAL I EPSON 249
C COMPILER/ASSEMBLER/LINKER

E 171: too much tail-recursion in inline function "name"
If the function level is greater than or equal to 40 this error is given. The following example
generates this error:

_inline void a ()
{

a();
}
main()
{

a();
}

W 172: adjacent strings have different types
When concatenating two strings, they must have the same type. The following example
generates this warning:

char b[] = L"abc""def"; /* strings have different types */

E 173: 'void' function argument
A function may not have an argument with type void.

E 174: not an address constant
A constant address was expected. Unlike a static variable, an automatic variable does not have
a fixed memory location and therefore, the address of an automatic is not a constant. The
following is an example of this error:

int *a;
static int *b = a; /* error */

E 175: not an arithmetic constant
In a constant expression no assignment operators, no '++' operator, no '--' operator and no
functions are allowed. The following is an example of this error:

int a;
static int b = a++; /* error */

E 176: address of automatic is not a constant
Unlike a static variable, an automatic variable does not have a fixed memory location and
therefore, the address of an automatic is not a constant. The following is an example of this
error:

int a; /* automatic */
static int *b = &a; /* error */

W 177: static variable "name" not used
A static variable is declared which is never used. To eliminate this warning remove the unused
variable.

W 178: static function "name" not used
A static function is declared which is never called. To eliminate this warning remove the
unused function.

E 179: inline function "name" is not defined
Possibly only the prototype of the inline function was present, but the actual inline function
was not. The following is an example of this error:

_inline int a(void); /* prototype */

main()
{

int b;
b = a(); /* error */

};

E 180: illegal target memory (memory) for pointer
The pointer may not point to memory. For example, a pointer to bitaddressable memory is not
allowed.

APPENDIX A C COMPILER ERROR MESSAGES

250 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

W 182: argument #number: different types
With prototypes, the types of arguments must be compatible.

I 185: (prototype synthesized at line number in "name")
This is an informational message containing the source file position where an old-style proto-
type was synthesized. This message is preceded by error E 146, W 147, W 148, W 150, E 154, W
182 or E 203.

E 186: array of type bit is not allowed
An array cannot contain bit type variables.

E 187: illegal structure definition
A structure can only be defined (initialized) if its members are known.
So, struct unknown s = { 0 }; is not allowed.

E 188: structure containing bit-type fields is forced into bitaddressable area
This error occurs when you use a bitaddressable storage type for a structure containing bit-
type members.

E 189: pointer is forced to bitaddressable, pointer to bitaddressable is illegal
A pointer to bitaddressable memory is not allowed.

W 190: "long float" changed to "float"
In ANSI C floating point constants are treated having type double, unless the constant has the
suffix 'f'. If you have specified an option to use float constants, a long floating point constant
such as 123.12fl is changed to a float.

E 191: recursive struct/union definition
A struct or union cannot contain itself. The following example generates this error:

struct s { struct s a; } b; /* error */

E 192: missing filename after -f option
The -f option requires a filename argument.

E 194: cannot initialize typedef
You cannot assign a value to a typedef variable. So, typedef i=2; is not allowed.

F 199: demonstration package limits exceeded
The demonstration package has certain limits which are not present in the full version. Contact
Seiko Epson for a full version.

W 200: unknown pragma - ignored
The compiler ignores pragmas that are not known. For example, #pragma unknown.

W 201: name cannot have storage type - ignored
A register variable or an automatic/parameter cannot have a storage type. To eliminate this
warning, remove the storage type or place the variable outside a function.

E 202: 'name' is declared with 'void' parameter list
You cannot call a function with an argument when the function does not accept any (void
parameter list). The following is an example of this error:

int f(void); /* void parameter list */

main()
{

int i;
i = f(i); /* error */
i = f(); /* OK */

}

E 203: too many/few actual parameters
With prototyping, the number of arguments of a function must agree with the prototype of the
function. The following is an example of this error:

APPENDIX A C COMPILER ERROR MESSAGES

S5U1C88000C MANUAL I EPSON 251
C COMPILER/ASSEMBLER/LINKER

int f(int); /* one parameter */

main()
{

int i;
i = f(i,i); /* error, one too many */
i = f(i); /* OK */

}

W 204: U suffix not allowed on floating constant - ignored
A floating point constant cannot have a 'U' or 'u' suffix.

W 205: F suffix not allowed on integer constant - ignored
An integer constant cannot have a 'F' or 'f' suffix.

E 206: 'name' named bit-field cannot have 0 width
A bit field must be an integral constant expression with a value greater than zero.

E 212: "name": missing static function definition
A function with a static prototype misses its definition.

W 303: variable 'name' uninitialized
Possibly an initialization statement is not reached, while a function should return something.
The following is an example of this warning:

int a;

int f(void)
{
 int i;

 if (a)
 {

i = 0; /* statement not reached */
 }
 return i; /* warning */
}

E 327: too many arguments to pass in registers for _asmfunc 'name'
An _asmfunc function uses a fixed register-based interface between C and assembly, but the
number of arguments that can be passed is limited by the number of available registers. With
function name this limit was reached.

Backend

W 501: function qualifier used on non-function
A function qualifier can only be used on functions.

E 502: Intrinsic function '_int()' needs an immediate value as parameter
The argument of the _int() intrinsic function must be an integral constant expression rather
than any type of integral expression.

E 503: Intrinsic function '_jrsf()' needs an immediate value 0..3
The given number must be a constant value between 0 and 3.

W 508: function qualifier duplicated
Only one function qualifier is allowed.

E 511: interrupt function must have void result and void parameter list
A function declared with _interrupt(n) may not accept any arguments and may not return
anything.

W 512: 'number' illegal interrupt number (0, or 3 to 251) - ignored
The interrupt vector number must be 0, or in the range 3 to 251. Any other number is illegal.

E 513: calling an interrupt routine, use '_swi()'
An interrupt function cannot be called directly, you must use the intrinsic function _swi().

APPENDIX A C COMPILER ERROR MESSAGES

252 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

E 514: conflict in '_interrupt'/'_asmfunc' attribute
The attributes of the current function qualifier declaration and the previous function qualifier
declaration are not the same.

E 515: different '_interrupt' number
The interrupt number of the current function qualifier declaration and the previous function
qualifier declaration are not the same.

E 516: 'memory_type' is illegal memory for function
The storage type is not valid for this function.

W 517: conversion of long address to short address
This warning is issued when pointer conversion is needed, for example, when you assign a
_huge pointer to a _near pointer.

F 524: illegal memory model
See the compiler usage for valid arguments of the -M option.

E 526: function qualifier '_asmfunc' not allowed in function definition
_asmfunc is only allowed in the function prototype.

E 528: _at() requires a numerical address
You can only use an expression that evaluates to a numerical address.

E 529: _at() address out of range for this type of object
The absolute address is not present in the specified memory space.

E 530: _at() only valid for global variables
Only global variables can be placed on absolute addresses.

E 531: _at() only allowed for uninitialized variables
Absolute variables cannot be initialized.

E 532: _at() has no effect on external declaration
When declared extern the variable is not allocated by the compiler.

W 533: c88 language extension keyword used as identifier
A language extension keyword is a reserved word, and reserved words cannot be used as an
identifier.

E 536: illegal syntax used for default section name 'name' in -R option
See the description of the -R option for the correct syntax.

E 537: default section name 'name' not allowed
See the description of the -R option for the correct syntax.

W 538: default section name 'name' already renamed to 'new_name'
Only use one of the -R option or the renamesect pragma or use another name.

W 542: optimization stack underflow, no optimization options are saved with #pragma optimize
This warning occurs if you use a #pragma endoptimize while there were no options saved
by a previous #pragma optimize.

W 555: current optimization level could reduce debugging comfort (-g)
You could have HLL debug conflicts with these optimization settings.

E 560: Float/Double: not yet implemented
Floating point will be supported in a following version.

APPENDIX B ASSEMBLER ERROR MESSAGES

S5U1C88000C MANUAL I EPSON 253
C COMPILER/ASSEMBLER/LINKER

APPENDIX B ASSEMBLER ERROR MESSAGES
The assembler produces error messages on standard error output. If the list option of the assembler is
effective, error messages will be included in the list file as well, when the assembler has started list file
generation. Error messages have the following layout:

[E|F|W] error_number: filename line number : error_message

Example:

as88 E214: \tmp\tst.src line 17 : illegal addressing mode

The example reports the error, starting with the severity (E: error, F: fatal error, W: warning) and the error
number followed by the source filename and the line number. The last part of the line shows the error
message text.

All warnings (W), errors (E), and fatal errors (F) of as88 are described below.

WARNINGS (W)

The assembler may generate the following warnings:

W 101: use option at the start of the source; ignored
Primary options must be used at the start of the source.

W 102: duplicate attribute "attribute" found
An attribute of an EXTERN directive is used twice or more. Remove one of the duplicate
attributes.

W 104: expected an attribute but got attribute; ignored

W 105: section activation expected, use name directive
Use the SECT directive to activate a section.

W 106: conflicting attributes specified "attributes"
You used two conflicting attributes in an EXTERN statement directive. For example EXTERN
and INTERN. Choose which one you want to use and remove the other.

W 107: memory conflict on object "name"
A label or other object is explicit or implicit defined using incompatible memory types. Check
all usages and definitions of the object name to remove this conflict.

W 108: object attributes redefinition "attributes"
A label or other object is explicit or implicit defined using incompatible attributes. For example
INTERN and EXTERN. Check all usages and definitions of the object to remove the conflict.

W 109: label "label" not used
The label label is defined with the GLOBAL directive and neither defined nor referred, or the
label is defined with the LOCAL directive and not referenced. You can remove this label and its
definitions (in the case of a LOCAL label).

W 110: extern label "label" defined in module, made global
The label label is defined with an EXTERN directive and defined as a label in the source. The
label will be handled as a global label. Change the EXTERN definition into GLOBAL or one of
the identifiers.

W 111: unknown $LIST control flag "flag"
You supplied an unknown flag to the $LIST control. See the description of the $LIST control for
the possible arguments.

W 112: text found after END; ignored
An END directive designates the end of the source file. All text after the END directive will be
ignored. Remove the text.

APPENDIX B ASSEMBLER ERROR MESSAGES

254 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

W 113: unknown $MODEL specifier; ignored
You supplied an unknown model. See the description of the $MODEL control for all possible
models.

W 114: $MODEL may only be specified once, it remains "model"; ignored
You supplied more than one model. See the description of the $MODEL control for all possible
models.

W 115: use ON or OFF after control name
The control you specified must have either ON or OFF after the control name. See the descrip-
tion of the control for details.

W 116: unknown parameter "parameter" for control-name control
See the description of the control for the allowed parameters.

W 118: inserted "extern name"
The symbol name is used inside an expression, but not defined with an EXTERN directive. The
assembler inserts an EXTERN definition of the offending symbol. Add an EXTERN definition.

W 119: "name" section has not the MAX attribute; ignoring RESET

W 120: assembler debug information: cannot emit non-tiof expression for label
The SYMB record contains an expression with operations that are not supported by the IEEE-
695 object format. When the SYMB record is generated by the C compiler, please fill out the
error report and send it to Seiko Epson.

W 121: changed alignment size to size

W 123: expression: type-error
The expression performs an illegal operation on an address or combines incompatible memory
spaces. Check the expression, and change it.

W 124: cannot purge macro during its own definition

W 125: "symbol" is not a defined symbol
You tried to UNDEF a symbol that was not previously DEFINEd or was already undefined.
Check all DEFINE/UNDEF combinations of the offending symbol.

W 126: redefinition of "define-symbol"
The symbol is already DEFINEd in the current scope. The symbol is redefined according to this
DEFINE. UNDEF any symbol before redefining it.

W 127: redefinition of macro "macro"
The macro is already defined. The macro is redefined according to this macro definition. Purge
any macro using PMACRO before redefining it.

W 128: number of macro arguments is less than definition
You supplied less arguments to the macro than when defining it. Check your macro definition
with this macro call. The undefined macro arguments are left empty (as in DEFINE def '').

W 129: number of macro arguments is greater than definition
You supplied more arguments to the macro than when defining it. Check your macro defini-
tion with this macro call. The superfluous macro arguments are ignored.

W 130: DUPA needs at least one value argument
The DUPA directive needs at least two arguments, the dummy parameter and a value param-
eter. Add one or more value-parameters.

W 131: DUPF increment value gives empty macro
The step value supplied with the DUPF macro will skip the DUPF macro body. Check the step
value.

W 132: IF started in previous file "file", line line
The ENDIF or ELSE pre-processor directive matches with an IF directive in another file. Check
on any missing ENDIF or ELSE directives in that file.

APPENDIX B ASSEMBLER ERROR MESSAGES

S5U1C88000C MANUAL I EPSON 255
C COMPILER/ASSEMBLER/LINKER

W 133: currently no macro expansion active
The @CNT() and @ARG() functions can only be used inside a macro expansion. Check your
macro definitions or expression.

W 134: "directive" is not supported, skipped
The supplied directive is not supported by this assembler. Remove all uses of this directive.

W 135: define symbol of "define-symbol" is not an identifier; skipped definition
You supplied an illegal identifier with the -D option on the command line. An identifier should
start with a letter, followed by any number of letters, digits or underscores.

W 137: label "label" defined attribute and attribute
The label is defined with an EXTERN and a GLOBAL directive. The EXTERN directive is
removed, leaving the label global.

W 138: warning: WARN-directive-arguments
Output from the WARN directive.

W 139: expression must be between hex-value and hex-value

W 140: expression must be between value and value

W 141: global/local label "name" not defined in this module; made extern
The label is declared and used but not defined in the source file. Check the current scope of the
label and its usage, change the declaration to EXTERN or add a label definition.

W 170: code address maps to zero page
The code offset you specified to the @CPAG function is in the zero page.

W 171: address offset must be between 0 and FFFF
The offset you specified in the @CADDR or @DADDR function was too large. The offset must
be between 0 and 0FFFFh.

W 172: page number must be between 0 and FF
The page number you specified in the @CADDR or @DADDR function was too large. The page
number must be between 0 and 0FFh.

ERRORS (E)
The assembler generates the following error messages when a user error situation occurs. These errors do
not terminate assembly immediate. If one or more of these errors occur, assembly stops at the end of the
active pass.

E 200: message; halting assembly
The assembler stops the further processing of your source file. This is only an informative
message. Remove all errors reported earlier and try again.

E 201: unexpected newline or line delimiter
The syntax checker found a newline or line delimiter that does not confirm to the assembler
grammar. Check the line for syntax errors or remove the offending newline or line delimiter.

E 202: unexpected character: 'character'
The syntax checker found a character that does not confirm to the assembler grammar. Check
the line for syntax errors or remove the offending character.

E 203: illegal escape character in string constant
The syntax checker found an illegal escape character in the string constant that does not
confirm to the assembler grammar. Check the line for syntax errors or remove the offending
escape character.

E 204: I/O error: open intermediate file failed (file)
The assembler opens an intermediate file to optimize the lexical scanning phase. The assembler
cannot open this file. The assembler checks if the environment symbol TMPDIR is set. If so, this
directory is used for opening the file. Otherwise the file is opened in the current directory.

APPENDIX B ASSEMBLER ERROR MESSAGES

256 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

E 205: syntax error: expected token at token
The syntax checker expected to find a token but found another token. The expected token is
inserted instead of the found token. Check the line for syntax errors.

E 206: syntax error: token unexpected
The syntax checker found an unexpected token. The offending token is removed from the input
and assembling continues. Check the line for syntax errors.

E 207: syntax error: missing ':'
The syntax checker found a label definition or memory space modifier but missed the ap-
pended semi-colon. Check the line for syntax errors, for example misspelled mnemonics.

E 208: syntax error: missing ')'
The syntax checker expected to find a closing parentheses. Check the expression syntax for
missing operators and nesting of parentheses.

E 209: invalid radix value, should be 2, 8, 10 or 16
The RADIX directive accepts only 2, 8, 10 or 16.

E 210: syntax error
The syntax checker found an error. Check the line for syntax errors.

E 211: unknown model
Substitute the correct model, one of s, c, d or l.

E 212: syntax error: expected token
The syntax checker expected to find a token but found nothing. The expected token is inserted.
Check the line for syntax errors.

E 213: label "label" defined attribute and attribute
The label is defined with a LOCAL and a GLOBAL or EXTERN directive. Check your label
scoping or change the label declarations.

E 214: illegal addressing mode
The mnemonic used an illegal addressing mode. Check the register usage of address con-
structs.

E 215: not enough operands
The mnemonic needs more operands. Check the source line and change the instruction.

E 216: too many operands
The mnemonic needs less operands. Check the source line and change the instruction.

E 217: description
There was an error found during assembly of the mnemonic. Check the instruction.

E 218: unknown mnemonic: "name"
The assembler found an unknown mnemonic. Check the instruction. It could be that you
specified a label but forgot the ':'.

E 219: this is not a hardware instruction (use $OPTIMIZE OFF "H")
The assembler found a generic instruction, but the -Oh (hardware only) option or the $OPTI-
MIZE ON "H" control was specified.

E 223: unknown section "name"
The section name specified with a SECT directive has not (yet) been defined with a DEFSECT
directive. Check the SECT name and the corresponding DEFSECT name.

E 224: unknown label "name"
A label was used which was not defined. Check that the label and its definition have the same
name.

E 225: invalid memory type
You supplied an invalid memory modifier.

E 226: unknown symbol attribute: attribute

APPENDIX B ASSEMBLER ERROR MESSAGES

S5U1C88000C MANUAL I EPSON 257
C COMPILER/ASSEMBLER/LINKER

E 227: invalid memory attribute
The assembler found an unknown location counter or memory mapping attribute.

E 228: attr attribute needs a number
The attribute attr needs an extra parameter. For example, the FIT attribute.

E 229: only one of the name attributes may be specified

E 230: invalid section attribute: name
The assembler found an unknown section attribute.

E 231: absolute section, expected "AT" expression
An absolute section must be specified using an 'AT address' expression.

E 232: MAX/OVERLAY sections need to be named sections
Sections with the MAX or OVERLAY attribute must have a name, otherwise the locator cannot
overlay the sections.

E 233: type section cannot have attribute attribute
Code sections may not have the CLEAR or OVERLAY attribute.

E 234: section attributes do not match earlier declaration
In an previous definition of the same section other attributes were used. Check all section
definitions with the same name.

E 235: redefinition of section
An absolute section of the same name can only be located once.

E 236: cannot evaluate expression of descriptor
Some functions and directives must evaluate their arguments during assembly. Change the
expression so that it can be evaluated. It could have cyclic dependencies on symbol locations.

E 237: descriptor directive must have positive value
Some directives need to have a positive argument. Check the expression so that is evaluates to
a positive number.

E 238: Floating point numbers not allowed with DB directive
The DB directive does not accept floating point numbers. Convert the expressions or use the
DW directive instead.

E 239: byte constant out of range
The DB directive stores expressions in bytes. A byte can only hold numbers between 0 and 255.

E 240: word constant out of range
The DW directive stores expressions in words. A word can hold 16 bit numbers. Check the
range of the expression.

E 241: Cannot emit non tiof functions, replaced with integral value '0'
Floating point expressions and some functions can not be represented in the IEEE-695 object
format. When an expression contains unknown symbols it cannot be evaluated and not emitted
to the object file. Change these expressions to integral expressions, or make sure they can be
evaluated during assembly.

E 242: the name attribute must be specified
A section must have the CODE or DATA attribute.

E 243: use $OBJECT OFF or $OBJECT "object-file"

E 244: unknown control "name"
The specified control does not exist. See Section 2.7, "Assembler Controls", for a description of
all available controls.

E 246: ENDM within IF/ENDIF
The assembler found an ENDM directive within an IF/ENDIF pair. Check the macro and DUP
definitions or remove this directive.

APPENDIX B ASSEMBLER ERROR MESSAGES

258 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

E 247: illegal condition code
The assembler encountered an illegal condition code within an instruction. Check your input
line.

E 248: cannot evaluate origin expression of org "name: address"
All origins of absolute sections must be evaluated before creation of the object file. Check the
address expression on the usage of undefined or location dependant symbols.

E 249: incorrect argument types for function "function"
The supplied argument(s) evaluated to a different type than expected. Change the argument
expressions to the correct type.

E 250: tiof function not yet implemented: "function"
The supplied object format function is not yet implemented.

E 251: @POS(,,start) start argument past end of string
The start argument is larger than the length of the string in the first parameter. Change start to
the correct range.

E 252: second definition of label "label"
The label is defined twice in the same scope. Check the label definitions and rename of remove
duplicate definitions.

E 253: recursive definition of symbol "symbol"
The evaluation of the symbol depends on its own value. Change the symbol value exclude this
cyclic definition.

E 254: missing closing '>' in include directive
The syntax checker missed the closing '>' bracket in the include directive. Add a closing '>'.

E 255: could not open include file include-file
The assembler could not open the given include-file. Check the current search path for the
presence of the include file and if it may be read.

E 256: integral divide by zero
The expression contains an divide by zero. This is not defined. Change the expression to
exclude a division by zero.

E 257: unterminated string
All strings must end on the same line as they are started. Check for a missing ending quote.

E 258: unexpected characters after macro parameters, possible illegal white space
Spaces are not permitted between macro parameters. Check the syntax of the macro call.

E 259: COMMENT directive not permitted within a macro definition and conditional assembly
This assembler does not permit the usage of the COMMENT directive within MACRO/DUP
definitions or IF/ELSE/ENDIF constructs. Replace the offending COMMENTs with comments
starting with a semicolon.

E 260: definition of "macro" unterminated, missing "endm"
The macro definition is not terminated with an ENDM directive. Check the macro definition.

E 261: macro argument name may not start with an '_'
MACRO and DUP arguments may not start with an underscore. Replace the offending param-
eter names with non-underscore names.

E 262: cannot find "symbol"
Could not find a definition of the argument of a '%' or '?' operator within a macro expansion.
Check for a definition of the offending symbol.

E 263: cannot evaluate: "symbol", value is unknown at this point
The symbol used with a '%' or '?' operator within a macro expansion has not been defined.
Insert a definition of the offending identifier.

APPENDIX B ASSEMBLER ERROR MESSAGES

S5U1C88000C MANUAL I EPSON 259
C COMPILER/ASSEMBLER/LINKER

E 264: cannot evaluate: "symbol", value depends on an unknown symbol
Could not evaluate the argument of a '%' or '?' operator within a macro expansion. Check the
definition of the offending symbol.

E 265: cannot evaluate argument of dup (unknown or location dependant symbols)
The arguments of the DUP directive could not be evaluated. Check the argument expressions
on forward references or unknown symbols.

E 266: dup argument must be integral
The argument of the DUP directive must be integral. Change the expression so that it evaluates
to an integral number.

E 267: dup needs a parameter
Check the syntax of the DUP directive.

E 268: ENDM without a corresponding MACRO or DUP definition
The assembler found an ENDM directive without an corresponding MACRO or DUP defini-
tion. Check the macro and dup definitions or remove this directive.

E 269: ELSE without a corresponding IF
The assembler found an ELSE directive without an corresponding IF directive. Check the IF/
ELSE/ENDIF nesting or remove this directive.

E 270: ENDIF without a corresponding IF
The assembler found an ENDIF directive without an corresponding IF directive. Check the IF/
ELSE/ENDIF nesting or remove this directive.

E 271: missing corresponding ENDIF
The assembler found an IF or ELSE directive without an corresponding ENDIF directive.
Check the IF/ELSE/ENDIF nesting or remove this directive.

E 272: label not permitted with this directive
Some directives do not accept labels. Move the label to a line before or after this line.

E 273: wrong number of arguments for function
The function needs more or less arguments. Check the function definition and add or remove
arguments.

E 274: illegal argument for function
An argument has the wrong type. Check the function definition and change the arguments
accordingly.

E 275: expression not properly aligned

E 276: immediate value must be between value and value
The immediate operand of the instruction does only accept values in the given range. Use the
'&' operator to force a value within the needed range or use '#>' to force a long immediate
operand.

E 277: address must be between $address and $address
The address operand is not in the range mentioned. Change the address expression.

E 278: operand must be an address
The operand must be an address but has no address attributes. Use an address modifier or
change the address expression.

E 279: address must be short

E 280: address must be short
The operand must be an address in the short range. The expression evaluated to a long address
or an address in an unknown range.

E 281: illegal option "option"
The assembler found an unknown or misspelled command line option. The option will be
ignored.

APPENDIX B ASSEMBLER ERROR MESSAGES

260 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

E 282: "Symbols:" part not found in map file "name"
The map file may be incomplete. Check if it is correctly produced by the locator.

E 283: "Sections:" part not found in map file "name"
The map file may be incomplete. Check if it is correctly produced by the locator.

E 284: module "name" not found in map file "name"
The map file may be incomplete. Check if it is correctly produced by the locator.

E 285: file-kind file will overwrite file-kind file
The assembler warns when one of its output files will overwrite the source file you gave on the
command line or another output file. Change the name of the source file, use the -o option to
change the name of the output file or remove the -err option to suppress the generation of the
error file.

E 286: $CASE options must be given before any symbol definition
The $CASE options may only be given before any symbol is defined. Move the options to the
start of the first source file.

E 287: symbolic debug error: message
The assembler found an error in a symbolic debug (SYMB) instruction. When the SYMB
instruction is generated by the C compiler, please fill out the error report form and send it to
Seiko Epson. As a work around you could disable the symbolic debug information of this
module (remove the -g option).

E 288: error in PAGE directive: message
The arguments supplied to the PAGE directive do not conform to the restrictions. Check the
PAGE directive restrictions in the manual and change the arguments accordingly.

E 290: fail: message
Output of the FAIL directive. This is an user generated error. Check the source code to see why
this FAIL directive is executed.

E 291: generated check: message
Integrity check for the coupling between the C compiler and assembler. You should not see this
error message, unless there are errors in user inserted assembly (using the "#pragma asm"
construct).

E 293: expression out of range
An instruction operand must be in a specified address range. Check the address expression,
change it.

E 294: expression must be between hexvalue and hexvalue

E 295: expression must be between value and value

E 296: optimizer error: message
The optimizer found an error. Try to change the instruction or turn off the optimizer.

E 297: jump address must be a code address
Jumps and jump-subroutines must have a target address in code memory. Check the address
expression or use a memory modifier to force the expression into code memory.

E 298: size depends on location, cannot evaluate
The size of some constructions (notably the align directives) depend on the memory address.
Change the offending construction.

FATAL ERRORS (F)

The following errors cause the assembler to terminate immediately. Fatal errors are usually due to user errors.

F 401: memory allocation error
A request for free memory is denied by the system. All memory has been used. You may have
to break your program down into smaller pieces.

APPENDIX B ASSEMBLER ERROR MESSAGES

S5U1C88000C MANUAL I EPSON 261
C COMPILER/ASSEMBLER/LINKER

F 402: duplicate input filename "file" and "file"
The assembler requires one input filename on the command line. Two or more filenames is
erroneous.

F 403: error opening file-kind file: "file-name"
The assembler could not open the given file. When this is a source file, check if the file you
specified at the command line exists and if it is readable. When the file is a temporary file,
check if the environment symbol TMPDIR has been set correctly.

F 404: protection error: message
No protection key or not a IBM compatible PC.

F 405: I/O error
The assembler cannot write its output to a file. Check if you have enough free disk space.

F 406: parser stack overflow

F 407: symbolic debug output error
The symbolic debug information is incorrectly written in the object file. Please fill out the error
report form and send it to Seiko Epson.

F 408: illegal operator precedence
The operator priority table is corrupt. Please fill out the error report form and send it to Seiko
Epson.

F 409: Assembler internal error
The assembler encountered internal inconsistencies. Please fill out the error report form and
send it to Seiko Epson.

F 410: Assembler internal error: duplicate mufom "symbol" during rename
The assembler renames all symbols local to a scope to unique symbols. In this case the assem-
bler did not succeed into making an unique name. Please fill out the error report form and
send it to Seiko Epson.

F 411: symbolic debug error: "message"
An error occurred during the parsing of the SYMB directive. When this SYMB directive is
generated by the C compiler, please fill out the error report form and send it to Seiko Epson.

F 412: macro calls nested too deep (possible endless recursive call)
There is a limit to the number of nested macro expansions. Currently this limit is set to 1000.
Check for recursive definitions or try to simplify your source when you encounter this restric-
tion.

F 413: cannot evaluate "function"
A function call is encountered although it should have been processed. As a work-around, try
to locate the offending function call and remove it from your source. Please fill out the error
report form and send it to Seiko Epson.

F 414: cannot recover from previous errors, stopped
Due to earlier errors the assembler internal state got corrupted and stops assembling your
program. Remove the errors reported earlier and retry.

F 415: error opening temporary file
The assembler uses temporary files for the debug information and list file generation. It could
not open or create one of those temporary files. Check if the environment symbol TMPDIR has
been set correctly.

F 416: internal error in optimizer
The optimizer found a deadlock situation. Try to assemble without any optimization options.
Please fill out the error report form and send it to Seiko Epson.

APPENDIX C LINKER ERROR MESSAGES

262 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

APPENDIX C LINKER ERROR MESSAGES
Error and warning messages of the linker start with a letter followed by a number and an informational
text. The error letter indicates the error type:

W warning
E error
F fatal error
V verbose message

WARNINGS (W)

W 100: Cannot create map file filename, turned off -M option
The given file could not be created.

W 101: Illegal filename (filename) detected
A filename with an illegal extension was detected.

W 102: Incomplete type specification, type index = Thexnumber
An unknown type reference. Arises if a pointer to an unspecified structure is defined.

W 103: Object name (name) differs from filename
Internal name of object file not the same as the filename. The file was probably renamed.

W 104: '-o filename' option overwrites previous '-o filename'
Second -o option encountered, previous name is lost.

W 105: No object files found
No files where specified at the invocation.

W 106: No search path for system libraries. Use -L or env "variable"
System library files (those given with the -l option) must have a search path, either supplied by
means of the environment, or by means of the option -L.

W 108: Illegal option: option (-H or -\? for help)
An illegal option was detected.

W 109: Type not completely specified for symbol <symbol> in file
Not a complete type specification in either the current file or the mentioned file. This could be
an array with unknown depth, or a function with unknown parameters.

W 110: Compatible types, different definitions for symbol <symbol> in file
Name conflict between compatible types. This could be a member name, tag name for a struct,
or a different type name for equal sized basic types (int, long). Note that a basic type conflict is
a non portable construct.

W 111: Signed/unsigned conflict for symbol <symbol> in file
Size of both types is correct, but one of the types contains an unsigned where the other uses a
signed type.

W 112: Type conflict for symbol <symbol> in file
A real type conflict.

W 113: Table of contents of file out of date, not searched. (Use ar ts <name>)
The ar library has a symbol table which is not up to date. Generate a new one with 'ar ts'.

W 114: No table of contents in file, not searched. (Use ar ts <name>)
The ar library has no symbol table. Generate one with 'ar ts'.

W 115: Library library contains ucode which is not supported
Ucode is not supported by the linker.

W 116: Not all modules are translated with the same threshold (-G value)
The library file has an unknown format, or is corrupted.

APPENDIX C LINKER ERROR MESSAGES

S5U1C88000C MANUAL I EPSON 263
C COMPILER/ASSEMBLER/LINKER

W 117: No type found for <symbol>. No type check performed
No type has been generated for the symbol.

W 118: Variable <name>, has incompatible external addressing modes with file <filename>
A variable is not yet allocated but two external references are made by non overlapping
addressing modes. This is always an error.

W 119: error from the Embedded Environment: message, switched off relaxed addressing mode check
If the embedded environment is readable for the linker, the addressing mode check is relaxed.
For instance, a variable defined as data may be accessed as huge. For an overview of the
embedded environment error messages, see Appendix F, "Embedded Environment Error
Messages".

ERRORS (E)

E 200: Illegal object, assignment of non existing var var
The MUFOM variable did not exist. Corrupted object file.

E 201: Bad magic number
The magic number of a supplied library file was not ok.

E 202: Section name does not have the same attributes as already linked files
Named section with different attributes encountered. Use -t flag to see which files are already
linked. It is possible that a previously linked file started a .out section with wrong attributes.

E 203: Cannot open filename
A given file was not found.

E 204: Illegal reference in address of name
Illegal MUFOM variable used in value expression of a variable. Corrupted object file.

E 205: Symbol 'name' already defined in <name>
A symbol was defined twice. The message gives the files involved.

E 206: Illegal object, multi assignment on var
The MUFOM variable was assigned more than once probably due to a previous error 'already
defined', E 205.

E 207: Object for different processor characteristics
Bits per MAU, MAU per address or endian for this object differs with the first linked object.

E 208: Found unresolved external(s):
There were some symbols not found. If -r is not set, this is an error.

E 209: Object format in file not supported
The object file has an unknown format, or is corrupted.

E 210: Library format in file not supported
The library file has an unknown format, or is corrupted.

E 211: Function <function> cannot be added to the already built overlay pool <name>
The overlay pool has already been built in a previous linker action. Use option -r to prevent
this.

E 212: Duplicate absolute section name <name>
Absolute sections begin on a fixed address. They cannot be linked.

E 213: Section <name> does not have the same size as the already linked one
A section with the EQUAL attribute does not have the same size as other, already linked,
sections.

E 214: Missing section address for absolute section <name>
Each absolute section must have a section address command in the object. Corrupted object
file.

APPENDIX C LINKER ERROR MESSAGES

264 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

E 215: Section <name> has a different address from the already linked one
Two absolute sections may be linked (overlaid) on some conditions. They must have the same
address.

E 216: Variable <name>, name <name> has incompatible external addressing modes
A variable is allocated outside a referencing addressing space. For instance, the variable was
not allocated in the zero page and this variable was referenced with the zero page addressing
mode. This is always an error.

E 217: Variable <name>, has incompatible external addressing modes with file <filename>
A variable is not yet allocated but two external references are made by non overlapping
addressing modes. This is always an error.

E 218: Variable <name>, also referenced in <name> has an incompatible address format
Addresses are often expressed in bytes. In some special cases, the address is expressed in bits.
This is necessary for bit variables. An attempt was made to link different address formats
between the current file and the mentioned file.

E 219: Not supported/illegal feature in object format format
An option/feature is not supported or illegal in given object format.

E 220: page size (0xhexvalue) overflow for section <name> with size 0xhexvalue
Section is too big to fit into the page.

E 221: message
Error generated by the object. These errors are in fact generated by the assembler.

E 222: Address of <name> not defined
No address was assigned to the variable. Corrupted object file.

FATAL ERRORS (F)

F 400: Cannot create file filename
The given file could not be created.

F 401: Illegal object: Unknown command at offset offset
An unknown command was detected in the object file. Corrupted object file.

F 402: Illegal object: Corrupted hex number at offset offset
Wrong byte count in hex number. Corrupted object file.

F 403: Illegal section index
A section index out of range was detected. Corrupted object file.

F 404: Illegal object: Unknown hex value at offset offset
An unknown variable was detected in the object file. Corrupted object file.

F 405: Internal error number
Internal fatal error. Passed number will give more information!

F 406: message
No key no IBM compatible PC.

F 407: Missing section size for section <name>
Each section must have a section size command in the object. Corrupted object file.

F 408: Out of memory
An attempt to allocate more memory failed.

F 409: Illegal object, offset offset
Inconsistency found in the object module.

F 410: Illegal object
Inconsistency found in the object module at unknown offset.

APPENDIX C LINKER ERROR MESSAGES

S5U1C88000C MANUAL I EPSON 265
C COMPILER/ASSEMBLER/LINKER

F 413: Only name object can be linked
It is not possible to link object for other processors.

F 414: Input file file same as output file
Input file and output file cannot be the same.

F 415: Demonstration package limits exceeded
One of the limits in this demo version was exceeded.

VERBOSE (V)

V 000: Abort !
The program was aborted by the user.

V 001: Extracting files
Verbose message extracting file from library.

V 002: File currently in progress:
Verbose message file currently processed.

V 003: Starting pass number
Verbose message, start of given pass.

V 004: Rescanning....
Verbose message rescanning library. Rescanning is done if there were new unsatisfied externals
during the last scan.

V 005: Removing file file
Verbose message cleaning up. Temp files are always removed, map file and .out file are
removed if switch -e is on and the exit code is unequal to zero.

V 006: Object file file format format
Named object file does not have the standard tool chain object format TIOF-695.

V 007: Library file format format
Named library file does not have the standard tool chain ar88 format.

V 008: Embedded environment name read, relaxed addressing mode check enabled
Embedded environment successfully read.

APPENDIX D LOCATOR ERROR MESSAGES

266 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

APPENDIX D LOCATOR ERROR MESSAGES
Error and warning messages of the locator start with a letter followed by a number and an informational
text. The error letter indicates the error type:

W warning
E error
F fatal error
V verbose message

WARNINGS (W)

W 100: Maximum buffer size for name is size (Adjusted)
For the given format, a maximum buffer size is defined.

W 101: Cannot create map file filename, turned off -M option
The given file could not be created.

W 102: Only one -g switch allowed, ignored -g before name
Only one .out file can be debugged.

W 104: Found a negative length for section name, made it positive
Only stack sections can have a negative length.

W 107: Inserted 'name' keyword at line line
A missing keyword in the description file was inserted.

W 108: Object name (name) differs from filename
Internal name of object file not the same as the filename. Maybe renamed?

W 110: Redefinition of system start point
Usually only one load module will access the system table (__lc_pm).

W 111: Two -o options, output name will be name
Second -o option, the message gives the effective name.

W 112: Copy table not referenced, initial data is not copied
If you use a copy statement in the layout part, the initial data is located in rom. Your start-up
code should copy this data to their ram location.

W 113: No .out files found to locate
No files where specified at the invocation.

W 114: Cannot find start label label
No start point found.

W 116: Redefinition of name at line line
Identifier was defined twice.

W 119: File filename not found in the argument list
All files to be located must be given as an argument.

W 120: unrecognized name option <name> at line line (inserted 'name')
Wrong option assignment. Check the manual for possibilities.

W 121: Ignored illegal sub-option 'name' for name
An illegal format sub option was detected. See the format description for this format in the
manual.

W 122: Illegal option: option (-H or -\? for help)
An illegal option was detected.

W 123: Inserted character at line line
The given character was missing in the description file.

APPENDIX D LOCATOR ERROR MESSAGES

S5U1C88000C MANUAL I EPSON 267
C COMPILER/ASSEMBLER/LINKER

W 124: Attribute attribute at line line unknown
An unknown attribute was specified in the description file.

W 125: Copy table not referenced, blank sections are not cleared
Sections with attribute blank are detected, but the copy table is not referenced. The locator
generates info for the startup module in the copy table for clearing blank sections at startup.
See __lc_cp in the manual.

W 127: Layout name not found
The used layout in the named file must be defined in the layout part.

W 130: Physical block name assigned for the second time to a layout
It is not possible to assign a block more than once to a layout block.

W 136: Removed character at line line
The character is not needed here.

W 137: Cluster name declared twice (layout part)
The named cluster is declared twice. Duplicate cluster names are allowed in the layout part
under conditions, because the clusters are referred only. In the layout part the cluster is de-
clared, which may be done only once.

W 138: Absolute section name at non-existing memory address 0xhexnumber
Absolute section with an address outside physical memory. Either the address is not correct, or
the memory description for your target is not consistent.

W 139: message
Warning message from the embedded environment. For an overview of the embedded envi-
ronment error messages, see Appendix F, "Embedded Environment Error Messages".

W 140: File filename not found as a parameter
All processes defined in the locator description file (software part) must be specified on the
invocation line.

W 141: Unknown space <name> in -S option
An unknown space name was specified with a -S option.

W 142: No room for section name in read-only memory, trying writable memory ...
A section with attribute read-only could not be placed in read-only memory, the section will be
placed in writable memory.

ERRORS (E)

E 200: Absolute address 0xhexnumber occupied
An absolute address was requested, but the address was already occupied by another section.

E 201: No physical memory available for section name
An absolute address was requested, but there is no physical memory at this address.

E 202: Section name with mau size size cannot be located in an addressing mode with mau size size
A bit section cannot be located in a byte oriented addressing mode.

E 203: Illegal object, assignment of non existing var var
The MUFOM variable did not exist. For some variables this is an error.

E 204: Cannot duplicate section 'name' due to hardware limitations
The process must be located more than once, but the section is mapped to a virtual space
without memory management possibilities.

E 205: Cannot find section for name
Found a variable without a section, should not be possible.

E 206: Size limit for the section group containing section name exceeded by 0xhexnumber bytes
Small sections do not fit in a page any more.

APPENDIX D LOCATOR ERROR MESSAGES

268 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

E 207: Cannot open filename
A given file was not found.

E 208: Cannot find a cluster for section name
No writable memory available, or unknown addressing mode. Often this error occurs due to
an error in the description file.

E 210: Unrecognized keyword <name> at line line
An unknown keyword was used in the description file.

E 211: Cannot find 0xhexnumber bytes for section name (fixed mapping)
One of virtual or physical memory was occupied, or there was no physical memory at all!

E 213: The physical memory of name cannot be addressed in space name
A mapping failed. There was no virtual address space left.

E 214: Cannot map section name, virtual memory address occupied
An absolute mapping failed. The memory on the virtual target address was already occupied.

E 215: Available space within name exceeded by number bytes for section name
The available addressing space for an addressing mode has been exceeded.

E 217: No room for section name in cluster name
The size of the cluster as defined in the .dsc file is too small.

E 218: Missing identifier at line line
This identifier must be specified.

E 219: Missing ')' at line line
Matching bracket missing.

E 220: Symbol 'symbol' already defined in <name>
A symbol was defined twice.

E 221: Illegal object, multi assignment on var
The MUFOM variable was assigned more than once, probably due to an error of the object
producer.

E 223: No software description found
Each input file must be described in the software description in the .dsc file.

E 224: Missing <length> keyword in block 'name' at line line
No length definition found in hardware description.

E 225: Missing <keyword> keyword in space 'name' at line line
For the given mapping, the keyword must be specified.

E 227: Missing <start> keyword in block 'name' at line line
No start definition found in hardware description.

E 230: Cannot locate section name, requested address occupied
An absolute address was requested, but the address was already occupied by another process
or section.

E 232: Found file filename not defined in the description file
All files to be located need a definition record in the description file.

E 233: Environment variable too long in line line
Found environment variable in the dsc file contains too many characters.

E 235: Unknown section size for section name
No section size found in this .out file. In fact a corrupted .out file.

E 236: Unrecoverable specification at line line
An unrecoverable error was made in the description file.

APPENDIX D LOCATOR ERROR MESSAGES

S5U1C88000C MANUAL I EPSON 269
C COMPILER/ASSEMBLER/LINKER

E 238: Found unresolved external(s):
At locate time all externals should be satisfied.

E 239: Absolute address addr.addr not found
In the given space the absolute address was not found.

E 240: Virtual memory space name not found
In the description files software part for the given file, a non existing memory space was
mentioned.

E 241: Object for different processor characteristics
Bits per MAU, MAU per address or endian for this object differs with the first linked object.

E 242: message
Error generated by the object. These errors are in fact generated by the assembler. It has been
caused by a jump instruction which is out of range.

E 244: Missing name part
The given part was not found in the description file, possibly due to a previous error.

E 245: Illegal name value at line line
A non valid value was found in the description file.

E 246: Identifier cannot be a number at line line
A non valid identifier was found in the description file.

E 247: Incomplete type specification, type index = Thexnumber
An unknown type was referenced by the given file. Corrupted object file.

E 250: Address conflict between block block1 and block2 (memory part)
Overlapping addresses in the memory part of the description file.

E 251: Cannot find 0xhexnumber bytes for section section in block block
No room in the physical block in which the section must be located.

E 255: Section 'name' defined more than once at line line
Sections cannot be declared more than once in one layout/loadmod part.

E 258: Cannot allocate reserved space for process number
The memory for a reserved piece of space was occupied.

E 261: User assert: message
User-programmed assertion failed. These assertions can be programmed in the layout part of
the description file.

E 262: Label 'name' defined more than once in the software part
Labels defined in the description file must be unique.

E 264: message
Error from the embedded environment. For an overview of the embedded environment error
messages, see Appendix F, "Embedded Environment Error Messages".

E 265: Unknown section address for absolute section name
No section address found in this .out file. In fact a corrupted .out file.

E 266: %s %s not (yet) supported
The requested functionality is not (yet) supported in this release.

FATAL ERRORS (F)

F 400: Cannot create file filename
The given file could not be created.

F 401: Cannot open filename
A given file was not found.

APPENDIX D LOCATOR ERROR MESSAGES

270 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

F 402: Illegal object: Unknown command at offset offset
An unknown command was detected in the object file. Corrupted object file.

F 403: Illegal filename (name) detected
A filename with an illegal extension was detected on the command line.

F 404: Illegal object: Corrupted hex number at offset offset
Wrong byte count in hex number. Corrupted object file.

F 405: Illegal section index
A section index out of range was detected. This could be a corrupted object file, but also a
previous error like E 231 (Missing section) is responsible for this message.

F 406: Illegal object: Unknown hex value at offset offset
An unknown variable was detected in the object file. Corrupted object file.

F 407: No description file found
The locator must have a description file with the description of the hardware and the software
of your system.

F 408: message
No protection key or not an IBM compatible PC.

F 410: Only one description file allowed
The locator accepts only one description file.

F 411: Out of memory
An attempt to allocate more memory failed.

F 412: Illegal object, offset offset
Inconsistency found in the object module.

F 413: Illegal object
Inconsistency found in the object module at unknown offset.

F 415: Only name .out files can be located
It is not possible to locate object for other processors.

F 416: Unrecoverable error at line line, name
An unrecoverable error was made in the description file in the given part.

F 417: Overlaying not yet done
Overlaying is not yet done for this .out file, link it first without -r flag!

F 418: No layout found, or layout not consistent
If there are syntax errors in the layout, it may occur that the layout is not usable for the locator.
Syntax errors in the description file must be resolved!

F 419: message
Fatal from the embedded environment. For an overview of the embedded environment error
messages, see Appendix F, "Embedded Environment Error Messages".

F 420: Demonstration package limits exceeded
One of the limits in this demo version was exceeded.

VERBOSE (V)

V 000: File currently in progress:
Verbose message. On the next lines single filenames are printed as they are processed.

V 001: Output format: name
Verbose message for the generated output format.

V 002: Starting pass number
Verbose message, start of given pass.

APPENDIX D LOCATOR ERROR MESSAGES

S5U1C88000C MANUAL I EPSON 271
C COMPILER/ASSEMBLER/LINKER

V 003: Abort !
The program was aborted by the user.

V 004: Warning level number
Verbose message, report the used warning level.

V 005: Removing file file
Verbose message cleaning up. Temporary files are always removed, map file and .out file are
removed if switch -e is on and the exit code is unequal zero.

V 006: Found file <filename> via path pathname
The description (include) file was not found in the standard directory. The locator searches also
in the install directory etc, in which the file was found.

V 007: message
Verbose message from the embedded environment. For an overview of the embedded environ-
ment error messages, see Appendix F, "Embedded Environment Error Messages".

APPENDIX E ARCHIVER ERROR MESSAGES

272 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

APPENDIX E ARCHIVER ERROR MESSAGES
This appendix contains all warnings (W), errors (E) and fatal errors (F) of the archiver ar88.

WARNINGS (W)

W 100: Illegal warning level: level
Warning level is a single digit.

W 101: Member name not found
Library member not found, warning only.

W 102: Can't modify modification time for name
The archiver cannot access the file name to change the modification time.

W 103: creating archive name
The q option was used while archive file did not exist (r option would be more appropriate).

W 104: Option -a or -b only allowed with key option 'r' or 'm'. Ignored!
Option a or b, which specifies a position in the archive can only be applied with replace or
move actions.

W 105: Only one position specification allowed, ignored '-a or -b file_offset'
It is not possible to specify more than one position in the archive. The options -a and -b are
both used to specify a position.

W 106: Option -o only allowed with key option 'x'. Ignored!
Library date can only be preserved with extraction of a library member.

W 107: Option -u only allowed with key option 'r'. Ignored!
Objects newer than the archive are only replaced with key option r.

W 108: Option -z only allowed with key option 'r'. Ignored!
Only objects which are moved to the archive can be checked.

W 109: Option -v has no meaning with key option 'p' or 't'. Ignored!
For options p and t the verbose switch is meaningless.

ERRORS (E)

E 200: filename too long
The filename was too long to fit into the internal buffer.

E 201: Member name not found
Library member not found.

E 204: Can't obtain file-status information filename
Cannot access filename to obtain file status information.

E 207: illegal option: option
An illegal option was detected.

FATAL ERRORS (F)

F 300: user abort
The library manager is aborted by the user.

F 301: too much errors
The maximum number of errors is exceeded.

F 302: protection error: error
Error message received from ky_init.

APPENDIX E ARCHIVER ERROR MESSAGES

S5U1C88000C MANUAL I EPSON 273
C COMPILER/ASSEMBLER/LINKER

F 303: can't create "filename"
Cannot create the file with the mentioned name.

F 304: can't open "filename"
Cannot open the file with the mentioned name.

F 305: can't reopen 'filename'
The file filename could not be reopened.

F 306: read error while reading "filename"
A read error occurred while reading named file.

F 307: write error
A write error occurred while writing to the output file. This error also occurs under DOS when
using -p and printing the (binary) output to the screen.

F 308: out of memory
An attempt to allocate memory failed.

F 309: illegal character
A character which is not allowed was found.

F 310: filename not in archive format
The archive file given is not in the proper format.

F 311: specification of more than one key {rxdmpt} is not permitted
More than one key was given.

F 312: no one of the keys {rxdmpt} was specified
No key was given.

F 313: error in the invocation. Use option -? or -H to get help.
Show usage. For more help, use option -?.

F 314: name does not exist
Library will only be created in case the r key-option is specified.

F 315: IEEE violation for object module name at address address
IEEE violation detected (z option enabled).

F 316: corrupted object module name
The object module name does not conform to the IEEE object specification.

F 317: name: illegal byte count in hex number, offset = offset
Illegal byte count in hex number (IEEE violation).

F 318: evaluation date expired !!

APPENDIX F EMBEDDED ENVIRONMENT ERROR MESSAGES

274 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

APPENDIX F EMBEDDED ENVIRONMENT

ERROR MESSAGES
Error and warning messages from the embedded environment are part of the linker and/or locator error
messages. The error numbers mentioned below are not part of the message.

E error
W warning

ERRORS (E)

E 1: Conflicting attributes attributes at line number
Conflicting attributes.

E 2: Unknown attribute 'character' at line number
Unknown attribute.

E 3: Unknown keyword 'name' at line number
Unknown keyword.

E 4: Illegal character 'character' at line number
Illegal character.

E 5: Page size only allowed in a space definition at line number
Page size only allowed in space definition.

E 6: Page size must be a power of 2 at line number
Page size must be a power of 2.

E 7: Mau size must be a power of 2 at line name
Mau size must be a power of 2.

E 8: Cannot synchronize any more line number
Cannot synchronize any more.

E 9: Illegal value 'value' at line number
Illegal value.

E 10: Illegal hex value 'value' at line number
Illegal hex value.

E 11: Illegal octal value 'value' at line number
Illegal octal value.

E 12: Missing value at line number
Missing value.

E 13: Illegal identifier at line number
Illegal identifier.

E 14: Wrong attribute 'attribute' at line number
Attribute not allowed.

E 15: Unknown identifier 'name' at line number
Unknown identifier.

E 16: Inserted 'character' at line number
Inserted character.

E 17: Cannot find bus/space 'name' in definition for space 'name'
Error in the destination of mapping from space.

E 18: Cannot find space/amode 'name' in definition for amode 'name'
Map error.

APPENDIX F EMBEDDED ENVIRONMENT ERROR MESSAGES

S5U1C88000C MANUAL I EPSON 275
C COMPILER/ASSEMBLER/LINKER

E 19: Cannot find chip 'name' in definition for bus 'name'
Map error.

E 20: Cannot find space/amode 'name' in layout definition for segment 'name'
Map error.

E 21: Cannot find bus 'name' in definition for mapping 'name'
Map error.

WARNINGS (W)

W 100: Cannot find mapping 'name' in segment definition for space 'name'
Warning in segment mapping.

APPENDIX G DELFEE

276 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

APPENDIX G DELFEE
This appendix describes the Delfee description language.

General
description

partition
description partition

partition
memory_partition
cpu_partition
software_partition

ident_list
ident_list , identifier
identifier

identifier
STRING

file_name
STRING

CPU
cpu_partition

cpu { static_specs_list }
cpu { }
cpu file_name

Memory
memory_partition

memory { static_specs_list }
memory { }
memory file_name

static_specs_list
static_specs_list static_specs
static_specs

static_specs
amod_specs
spce_specs
bus_specs
chips_specs

amod_specs
amode ident_list { amod_list }

spce_specs
space ident_list { spce_list }

bus_specs
bus ident_list { bus_list }

chips_specs
chips ident_list chips_list ;

amod_list
amod_list amod_def
amod_def

spce_list
spce_list spce_def
spce_def

bus_list
bus_list bus_def
bus_def

chips_list
chips_list chips_def
chips_def

amod_def
mau_spec
attribute_spec
map_spec

spce_def
mau_spec
map_spec

bus_def
mau_spec
mem_spec
map_spec

chips_def
mau_equ_spec
attribute_equ_spec
size_spec

mau_spec
mau NUMBER ;

mau_equ_spec
mau = NUMBER

attribute_spec
attribute STRING ;
attribute NUMBER ;
attr STRING ;
attr NUMBER ;

attribute_equ_spec
attribute = STRING
attribute = NUMBER
attr = STRING
attr = NUMBER

map_spec
map map_list ;

APPENDIX G DELFEE

S5U1C88000C MANUAL I EPSON 277
C COMPILER/ASSEMBLER/LINKER

map_list
map_list map_def
map_def

map_def
src_spec
size_spec
dst_spec
align_spec
page_spec
amode_spec
space_spec
bus_spec

mem_spec
mem mem_list ;

mem_list
mem_list mem_def
mem_def

mem_def
addr_spec
chips_spec

src_spec
src = NUMBER

size_spec
size = NUMBER

dst_spec
dst = NUMBER

align_spec
align = NUMBER

page_spec
page = NUMBER

amode_spec
amode = identifier

space_spec
space = identifier

bus_spec
bus = identifier

addr_spec
address = NUMBER
addr = NUMBER

chips_spec
chips = low_chip_list

low_chip_list
low_chip_list , low_chip_pair
low_chip_pair

low_chip_pair
low_chip_pair | low_chip
low_chip

low_chip
identifier

Software
software_partition

software { layout_blocks }
software { }
software file_name

layout_blocks
layout_blocks layout_block
layout_block

layout_block
layout
loadmod

loadmod
load_mod software_specs ;
load_mod identifier software_specs ;

software_specs
software_specs software_spec
software_spec

software_spec
start
process

start
start = identifier ;

process
process = pids

pids
NUMBER
pids , NUMBER

layout
layout { space_blocks }
layout { }
layout file_name

space_blocks
space_blocks space_block
space_block

space_block
space identifier { block_blocks }

block_blocks
block_blocks block_block
block_block

APPENDIX G DELFEE

278 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

block_block
block identifier { cluster_blocks }

cluster_blocks
cluster_blocks cluster_block
cluster_block

cluster_block
cluster_spec
p_gap_spec
p_fixed_spec
p_pool_spec
p_skip_spec
p_label_spec

cluster_spec
cluster identifier { amod_blocks }
cluster ident_list ;

amode_blocks
amode_blocks amode_block
amode_block

amode_block
amode ident_list { section_blocks }
amode ident_list ;
section_block

p_gap_spec
gap length ;
gap ;

p_fixed_spec
fixed address ;

p_pool_spec
pool length ;
pool ;

p_label_spec
label identifier ;

p_skip_spec
skip ;

attribute
attribute_equ_spec

length
length = NUMBER
leng = NUMBER

address
address = NUMBER
addr = NUMBER

section_blocks
section_blocks section_block
section_block

section_block
section_spec
copy_spec
v_fixed_spec
v_gap_spec
v_reserved_spec
stack_spec
heap_spec
table_spec
others
v_label_spec
v_assert_spec
attribute_spec

section_spec
section selection modifiers ;
section selection ;

modifiers
modifiers modifier
modifier

modifier
attribute
address

copy_spec
copy selection attribute ;
copy selection ;
copy ;

selection
selection = STRING
identifier

v_fixed_spec
fixed address ;

v_gap_spec
gap ;

v_reserved_spec
reserved reserved_options ;
reserved ;

reserved_options
reserved_options reserved_option
reserved_option

reserved_option
attribute
address
length
v_label_equ_spec

stack_spec
stack stack_options ;
stack ;

APPENDIX G DELFEE

S5U1C88000C MANUAL I EPSON 279
C COMPILER/ASSEMBLER/LINKER

heap_spec
heap stack_options ;
heap ;

stack_options
stack_options stack_option
stack_option

stack_option
attribute
length

table_spec
table attribute ;
table ;

v_label_spec
label identifier ;

v_label_equ_spec
label = identifier

v_assert_spec
assert (bool_expression , STRING) ;
asse (bool_expression , STRING) ;

others
others ;

bool_expression
termp bool_op termp

termp
term + termp
term - termp
term

term
(term)
identifier
NUMBER

bool_op
<
>
==
!=

A NUMBER is a series of (hex) digits with optional suffixes 'k' 'M' 'G' which stands for 'kilo', 'mega' and
'giga'. Numbers may be given in hex, octal or decimal with the usual prefix. Where applicable numbers
may be preceded by a minus sign.

A STRING is a series of characters that is not a number (089 is a STRING because it is not a valid octal
number) and consists of alphanumeric characters including '_', '.', '-' and the directory separators. ('\', '/'
and ':')

Any (part of a) token may contain environment variables. If the environment variable A contains the text
'foo' then the sequence:

$A/proto.dsc

is translated to:

foo/proto.dsc

Multi character variables must be combined with braces:

window = $(MODE);

There are three methods to write comments in a delfee script. The first one is the 'C' style comment
between '/*' and '*/'. The second form is a '#' in the first column. The second form allows preprocessing
by the C-preprocessor. Any #line or #file directive will be ignored by the locator. The third form is the
'C++' style comment; a double slash '//' anywhere on a line introduces comments until the end of line.

APPENDIX H IEEE-695 OBJECT FORMAT

280 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

APPENDIX H IEEE-695 OBJECT FORMAT

H.1 IEEE-695
The IEEE-695 standard describes MUFOM: Microprocessor Universal Format for Object Modules. It
defines a target independent storage standard for object files. However, this standard does not describe
how symbolic debug information should be encoded according to that standard. Symbolic debug infor-
mation can be a part of an object file. A debugger which reads an object file uses the symbolic debug
information to obtain knowledge about the relation between the executable code and the origination
high-level language source files. Since the IEEE-695 standard does not describe the representation of
debug information, working implementations of this standard show vendor specific and microprocessor
specific solutions for this area.

APPENDIX H IEEE-695 OBJECT FORMAT

S5U1C88000C MANUAL I EPSON 281
C COMPILER/ASSEMBLER/LINKER

H.2 Command Language Concept
Most object formats are record oriented: there are one or more section headers at a fixed position in the
file which describe how many sections are present. A section header contains information like start
address, file offset, etc. The contents of the section is in some data part, which can only be processed after
the header has been read. So the tool that reads such an object uses implicit assumptions how to process
such a file. Seeking through the file to get those records which are relevant is usual.

MUFOM (IEEE-695) uses a different approach. It is designed as a command language which steers the
linker, locator and object reader in the debugger.

An assembler or compiler may create an object module where most of the data contained in it is
relocatable. The next phase in the translation process is linking several object modules into one new
object module. A relocatable object uses relocation expressions at places where the absolute values are not
yet known. An expression evaluator in the locator transforms the relocation expressions into absolute
values.

Finally the object is ready for loading into memory. Since an object file is transformed by several pro-
cesses, MUFOM implements an object file as a sequence of commands which steers this transformation
process.

These commands are created, executed or copied by one of five processes which act on a MUFOM object
file:

1. Creation process
Creation of the object file by an assembler or compiler. The assembler or compiler tells other MUFOM
processes what to do, by emitting commands generated from assembly source text or a high-level
language.

2. Linkage process
Linking of several object modules into one module resolving external references by renaming X
variables into I variables, and by generating new commands (assigning of R variables).

3. Relocation process
Relocation, giving all sections an absolute address by assigning their L variable.

4. Expression evaluation process
Evaluation of loader expressions, generated in one of the three previously mentioned MUFOM
processes.

5. Loader process
Loading the absolute memory image.

The last four processes are in fact command interpreters: the assembler writes an object file which is
basically a large sequence of instructions for the linker. For example, instead of writing the contents of a
section as a sequence of bytes at a specific position in the file, IEEE-695 defines a load command, LR,
which instructs the linker to load a number of bytes. The LR command specifies the number of MAUs
(minimum addressable unit) that will be relocated, followed by the actual data. This data can be a
number of absolute bytes, or an expression which must be evaluated by the linker.

Transforming relocation expressions into new expressions or absolute data and combining sections is the
actual linkage process.

It is possible that one or more of the above MUFOM processes are combined in one tool. For instance, the
locator is built from process 3 and process 4 above.

APPENDIX H IEEE-695 OBJECT FORMAT

282 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

H.3 Notational Conventions
The following conventions are used in this appendix:

| select one of the items listed between '|'

" " literal characters are between " "

[]+ optional item repeats one time or more

[]? optional item repeats zero times or one time

[]* optional item repeats zero times or more

::= can be read as "is defined as"

APPENDIX H IEEE-695 OBJECT FORMAT

S5U1C88000C MANUAL I EPSON 283
C COMPILER/ASSEMBLER/LINKER

H.4 Expressions
An expression in an IEEE-695 file is a combination of variables, operators and absolute data.

The variable name always starts with a non-hexadecimal letter (G...Z), immediately followed by an
optional hexadecimal number. The first non-hexadecimal letter gives the class of the variable. Reading an
object file you encounter the following variables:

G - Start address of a program. If not assigned this address defaults to the address of low-level symbol
_start.

I - An I variable represents a global symbol in an object module.
The I variable is assigned an expression which is to be made available to other modules for the
purpose of linkage edition. The name of an I variable is always composed of the letter 'I', followed
by a hexadecimal number. An I variable is created only by an NI command.

L - Start address of a section. This variable is only used for absolute sections. The 'L' is followed by a
section index, which is an hexadecimal number. L variables are created by an assignment command,
but the section index must have been defined by an ST command.

N - Name of internal symbol. This variable is used to assign values of local symbols, or, to build com-
plex types for use by a high-level language debugger, or for inter-modular type checking during
linkage. The N variable is created with a NN command.

P - Program pointer per section. This variable always contains the current address of the target memory
location. The P variable is followed by a section index, which is a hexadecimal number. The section
index must have been defined with an ST command (section type command). The variable is created
after its first assignment.

R - The R type variable is a relocation reference for a particular section. All references to addresses in
this section must be made relative to the R variable. Linking is accomplished by assigning a new
value to R. The R variable consists of the letter 'R', followed by a section index, which is a hexadeci-
mal number. The section index must have been defined with an ST command. The default value of
an (unassigned) R variable is 0.

S - The S type variable is the section size (in MAUs) for a section. There is one S variable per section.
The 'S' is followed by an section index. An S variable is created by its first assignment.

W - Work variable. This type of variable can be used to assign values to, which can be used in following
MUFOM commands. They serve the purpose of maintaining values in a workspace without any
additional meaning. A work variable consists of the letter 'W' followed by a hexadecimal number. W
variables are created by their first assignment.

X - An X type variable refers to an external reference. X-variables cannot have a value assigned to it. An
X variable consists of the letter 'X' followed by a hexadecimal number.

The MUFOM language uses the following data types to form expressions:

digit ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

hex_letter ::= "A" | "B" | "C" | "D" | "E" | "F"

hex_digit ::= digit | hex_letter

hex_number ::= [hex_digit]+

nonhex_letter ::= "G" | "H" | "I" | "J" | "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" | "S" | "T" |
"U" | "V" | "W" | "X" | "Y" | "Z"

letter ::= hex_letter | nonhex_letter

alpha_num ::= letter | digit

identifier ::= letter [alpha_num]*

character ::= 'value valid within chosen character set'

char_string_length ::= hex_digit hex_digit

char_string ::= char_string_length [character]*

APPENDIX H IEEE-695 OBJECT FORMAT

284 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

The numeric value specified in 'char_string_length' should be followed by an equal number of characters.

Expressions may be formed out of immediate numbers and MUFOM variables. The MUFOM processes 2
to 4, which form the linker and the locator, contain expression evaluators which parse and calculate the
values for the expressions. If a MUFOM process cannot calculate the absolute value of an expression,
because the values of the variable are not yet known, it copies the expression (with modifications) into
the output file.

Expression are coded in reverse Polish notation. (The operator follows the operands.)

expression ::= boolean_function | one_operand_function | two_operand_function |
three_operand_function | four_operand_function | conditional_expr | hex_number |
MUFOM_variable

H.4.1 Functions without Operands
@F : false function
@T : true function

boolean_function ::= "@F" | "@T"

The false and true function produce a boolean result false or true which may be used in logical expres-
sions. Both functions do not have operands.

H.4.2 Monadic Functions
Monadic functions have one operand which precedes the function.

one_operand_function ::= operand "," monop
operand ::= expression
monop ::= "@ABS" | "@NEG" | "@NOT" | "@ISDEF"

@ABS : returns the absolute value of an integer operand.

@NEG : returns the negative value of an integer operand.

@NOT : returns the negation of a boolean operand or the one's complement value if the operand is an
integer

@ISDEF : returns the logical true value if all variable in an expression are defined, return false otherwise.

H.4.3 Dyadic Functions and Operators
Dyadic functions and operators have two operands which precede the operator or function.

two_operand_function ::= operand1 "," operand2 "," dyadop
operand1 ::= expression
operand2 ::= expression
dyadop ::= "@AND" | "@MAX" | "@MIN" | "@MOD" | "@OR" |"@XOR" | "+" | "-" | "/" | "*" | "<"

| ">" | "=" | "#"

@AND : returns boolean true/false result of logical 'and' operation on operands, when both operands
are logical values. When both operands are not logical values the bitwise and is performed.

@MAX : compares both operands arithmetically and returns the largest value.

@MIN : compares both operands arithmetically and returns the smallest value.

@MOD : returns the modulo result of the division of operand1 by operand2. The result is undefined if
either operand is negative, or if operand2 is zero.

@OR : returns boolean true/false result of logical 'or' operation on operands, when both operands are
logical values. When both operands are no logical values the bitwise and is performed.

+, -, *, / : These are the arithmetic operators for addition, subtraction, multiplication and division. The
result is an integer. For division the result is undefined if operand2 equals zero. The result of a
division rounds toward zero.

<, >, =, # : These are operators for the following logical relations: 'less than', 'greater than', 'equals', 'is
unequal'. The result is true or false.

APPENDIX H IEEE-695 OBJECT FORMAT

S5U1C88000C MANUAL I EPSON 285
C COMPILER/ASSEMBLER/LINKER

H.4.4 MUFOM Variables
The meaning of the MUFOM variable is explained in Section H.4. The following syntax rules apply for
the MUFOM variables:

MUFOM_variable ::= MUFOM_var |
MUFOM_var_num
MUFOM_var_optnum

MUFOM_var ::= "G"
MUFOM_var_num ::= "I" | "N" | "W" | "X"

hex_number
MUFOM_var_optnum ::= "L" | "P" | "R" | "S"

[hex_number]?

H.4.5 @INS and @EXT Operator
The @INS operator inserts a bit string.

four_operand_function ::= operand1 "," operand2 "," operand3 "," operand4 "," @INS

operand2 is inserted in operand1 starting at position operand3, and ending at position operand4.

The @EXT operator extracts a bit string.

three_operand_function ::= operand1 "," operand2 "," operand3 "," @EXT

A bit string is extracted from operand1 starting at position operand2 and ending at position operand3.

H.4.6 Conditional Expressions
conditional_expr ::= err_expr | if_else_expr
err_expr ::= value "," condition "," err_num "," "@ERR"
value ::= expression
condition ::= expression
err_num ::= expression
if_else_expr ::= condition "," "@IF" "," expression "," "@ELSE" "," expression "," "@END"

APPENDIX H IEEE-695 OBJECT FORMAT

286 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

H.5 MUFOM Commands

H.5.1 Module Level Commands
At module level there are four commands: one command to start and one to end a module, one command
to set the date and time of creation of the module, and one command to specify address formats.

H.5.1.1 MB Command
The MB command is the first command in a module. It specifies the target machine configuration and an
optional command with the module name.

MB_command ::= "MB" machine_identifier ["," module_name]? "."

Example: MB S1C88.

H.5.1.2 ME Command
The module end command is the last command in an object file. It defines the end of the object module.

ME_command ::= "ME."

H.5.1.3 DT Command
The DT command sets the date and time of creation of an object module.

DT_command ::= "DT" [digit]* "."

Example: DT19930120120432.

The format of display of the date and time is "YYYYMMDDHHMMSS":

4 digits for the year, 2 digits for the month, 2 digits for the day, 2 digits for the hour, 2 digits for the
minutes and 2 digits for the seconds.

H.5.1.4 AD Command
The AD command specifies the address format of the target execution environment.

AD_command ::= "AD" bits_per_MAU ["," MAU_per_address ["," order]?]?
MAU_per_address ::= hex_number
bits_per_MAU ::= hex_number
order ::= "L" | "M"

MAU stands for minimum addressable unit. This is target processor dependant.

L means least significant byte at lowest address (little endian)
M means most significant byte at lowest address (big endian)

Example: AD8,3,L. Specifies a 3-byte addressable 8-bit processor running in little endian mode.

H.5.2 Comment and Checksum Command
The comment command offers the possibility to store information in an object module about the object
module and the translators that created it. The comment may be used to record the file name of the source
file of the object module or the version number of the translator that created it. Because the standard
supports several layers each of which has its own revision number an object module may contain several
comment commands which specify which revision of the standard has been used to create the module.
The contents of a comment is not prescribed by the standard and thus it is implementation defined how a
MUFOM process handles a comment command.

CO_command ::= "CO" [comment_level]? "," comment_text "."
comment_level ::= hex_number
comment_text ::= char_string

The comment levels 0–6 are reserved to pass information about the revision number of the layers in this
standard.
The checksum command starts and checks the checksum calculation of an object module.

APPENDIX H IEEE-695 OBJECT FORMAT

S5U1C88000C MANUAL I EPSON 287
C COMPILER/ASSEMBLER/LINKER

H.5.3 Sections
A section is the smallest unit of code or data that can be controlled separately. Each section has a unique
number which is introduced at the first section begin (SB) command. The contents of a section may follow
its introduction. A section ends at the next SB command with a number different from the current num-
ber. A section resumes at an SB command with a number that has been introduced before.

H.5.3.1 SB Command
SB_command ::= "SB" hex_number "."

The maximum number of sections in an object module is implementation defined.

H.5.3.2 ST Command
The ST command specifies the type of a section.

ST_command ::= "ST" section_number ["," section_type]* ["," section_name]? "."
section_type ::= letter
section_name ::= char_string

A section can be named or unnamed. If section_name is omitted a section is unnamed. A section can be
relocatable or absolute. If the section start address is an absolute number the section is called absolute. If
the section start address is not yet known, the section is called relocatable. In relocatable sections all
addresses are specified relative to the relocation base of that section. The relocation phase of the linker or
locator may map the relocation base of a section onto a fixed address.

During linkage edition the section name and the section attributes identify a section and thus the actions
to be taken. If a section is defined in several modules, the linkage editor must determine how to act on
sections with the same name. This can be either one of the following strategies:

• several sections are to be joined into a single one

• several sections are to be overlapped

• sections are not to coexist

A section type gives additional information to the linkage editor about the section, which may be used to
layout a section in memory. Section type information is encoded with letters, which may be combined in
one ST command. Some combinations of letters are invalid or may be meaningless.

Letter
A
R
W
X
Z

Ynum
B
F
I
E
M
U
C

O

S

N
P

Meaning
absolute
read only
writable
executable
zero page
addressing mode
blank
not filled
initialize
equal
max
unique
cumulative

overlay

separate

now
postpone

Class
access
access
access
access
access
access
access
access
access
overlap
overlap
overlap
overlap

overlap

overlap

when
when

Explanation
section has absolute address assigned to corresponding L-variable
no write access to this section
section may be read and written
section contains executable code
if target has zero page or short addressable page Z-section map into it
section must be located in addressing mode num
section must be initialized to '0' (cleared)
section is not filled or cleared (scratch)
section must be initialized in rom
if sections in two modules have different length an error must be raised
Use largest value as section size
The section name must be unique
Concatenate sections if they appear in several modules. The section
alignment for partial section must be preserved
sections with the name name@func must be combined to one section
name, according to the rules for func obtained from the call graph
multiple sections can have the same name and they may relocated at
unrelated addresses
section is located before normal sections (without N or P)
section is located after normal sections (without N or P)

APPENDIX H IEEE-695 OBJECT FORMAT

288 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

H.5.3.3 SA Command
SA_command ::= "SA" section_number "," [MAU_boundary]? ["," page_size]? ".'
MAU_boundary ::= expression
page_size ::= expression

The MAU boundary value forces the relocator to align a section on the number of MAUs specified. If
page_size is present the relocator checks that the section does not exceed a page boundary limit when it is
relocated.

H.5.4 Symbolic Name Declaration and Type Definition

H.5.4.1 NI Command
The NI command defines an internal symbol. An internal symbol is visible outside the module. Thus it
may resolve an undefined external in another module.

NI_command ::= "N" I_variable "," char_string "."

The NI_command must precede any reference to the I_variable in a module. There may not be more than
one I_variable with the same name or number.

H.5.4.2 NX Command
The NX command defines an external symbol which is undefined in the current module. The NX com-
mand must precede all occurrences of the corresponding X variable.

NX_command ::= "N" X_variable "," char_string "."

The unresolved reference corresponding to an NX-command can be resolved by an internal symbol
definition (NI_command) in another module.

H.5.4.3 NN Command
The NN command defines a local name which may be used for defining a name of a local symbol in a
module or a name in a type definition.

A name defined with an NN command is not visible outside the scope of the module. The NN command
must precede all occurrences of the corresponding N variable.

NN_command ::= "N" N_variable "," char_string "."

H.5.4.4 AT Command
The attribute command may be used to define debugging related information of a symbol, such as the
symbol type number. Level 2 of the standard does not prescribe the contents of the optional fields of the
AT command. The language dependent layer (level 3) describes how these fields can be used to pass
high-level symbol information with the AT command.

AT_command ::= "AT" variable "," type_table_entry ["," lex_level ["," hex_number]*]? "."
variable ::= I_variable | N_variable | X_variable
type_table_entry ::= hex_number
lex_level ::= hex_number

The type_table entry is a type number introduced with a type command (TY). References to type num-
bers in the AT command may precede the definition of the type in the TY command.

The meaning of the lex_level field is defined at layer 3 or higher. The same applies to the optional
hex_number fields.

H.5.4.5 TY Command
The TY-command defines a new type table entry. The type number introduced by the type command can
be seen as a reference index to this type. The TY-command defines the relation between the newly
introduced type and other types that are defined in other places in the object module. It also establishes a
relation between a new type index and symbols (N_variable).

APPENDIX H IEEE-695 OBJECT FORMAT

S5U1C88000C MANUAL I EPSON 289
C COMPILER/ASSEMBLER/LINKER

TY_command ::= "TY" type_table_entry ["," parameter]+ "."
type_table_entry ::= hex_number
parameter ::= hex_number | N_variable | "T" type_table_entry

Level 2 does not define the semantics of the parameters. These are defined at level 3, the language layer.
A linkage editor which does not have knowledge of the semantics of the parameter in a type command
can still perform type comparison: Two types are considered to compare equal when the following
conditions hold:

• both types have an equal number of parameters

• the numeric values in the types are equal

• N_variables in both types have the same name

• the type entries referenced from both types compare equal

Variable N0 is supposed to compare equal to any other name.

Type table entry T0 is supposed to compare equal to any other type.

H.5.5 Value Assignment

H.5.5.1 AS Command
The assignment command assigns a value to a variable.

AS_command ::= "AS" MUFOM_variable "," expression "."

H.5.6 Loading Commands
The contents of a section is either absolute data (code) or relocatable data (code). Absolute data can be
loaded with the LD command. The address where loading takes place depends on the value of the P-
variable belonging to the section. Data which is contiguous in a LD command is supposed to be loaded
contiguously in memory.

If data is not absolute it contains expressions which must be evaluated by the expression evaluator. The
LR command allows a relocation expression to be part of the loading command.

H.5.6.1 LD Command
LD_command ::= "LD" [hex_digit]+ "."

The constants loaded with the LD command are loaded with the most significant part first.

H.5.6.2 IR Command
A relocation base is an expression which can be associated with a relocation letter. This relocation letter
can be used in subsequent load relocate commands.

IR_command ::= "IR" relocation_letter "," relocation_base ["," number_of_bits]? "."
relocation_letter ::= nonhex_letter
relocation_base ::= expression
number_of_bits ::= expression

Example: IRV,X20,16.
ITM,R2,40,+,8.

The number_of_bits must be less than or equal to the number of bits per address, which is the product of
the number of MAUs per address and the number of bits per MAU, both of which are specified in the AD
command. If the number_of_bits is not specified it equals the number of bits per address.

APPENDIX H IEEE-695 OBJECT FORMAT

290 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

H.5.6.3 LR Command
LR_command ::= "LR" [load_item]+ "."
load_item ::= relocation_letter offset "," | load_constant |

"(" expression ["," number_of_MAUs]? ")"
load_constant ::= [hex_digit]+
number_of_MAUs ::= expression

Example:
LR002000400060.
LRT80,0020.
LR(R2,100,+,4).

The first example shows immediate constants which may be loaded as a part of an LR command.
The second example shows the use of the relocation base defined in the previous paragraph, followed by
a constant.
The third example shows how the value of the expression R2 + 100 is used to load 4 MAUs.
The three commands in this example may be combined into one LR command:

LR002000400060T80,0020(R2,100,+,4).

H.5.6.4 RE Command
The replicate command defines the number of times a LR command must be replicated:

RE_command ::= "RE" expression "."

The LR command must immediately follow the RE command.

Example:
RE04.
LR(R2,200,+,4).

The commands above load 16 MAUs: 4 times the 4 MAU value of R2 + 200.

H.5.7 Linkage Commands

H.5.7.1 RI Command
The retain internal symbol command indicates that the symbolic information of an NI command must be
retained in the output file.

RI_command ::= "R" I_variable ["," level_number]? "."
level_number ::= hex_number

H.5.7.2 WX Command
The weak external command flags a previously defined external (NX_command) as weak. This means
that if the external remains unresolved, the value of the expression in the WX command is assigned to the
X variable.

WX_command ::= "W" X_variable ["," default_value]? "."
default_value ::= expression

H.5.7.3 LI Command
The LI command specifies a default library search list. The library names specified in the LI_command
are searched for unresolved references.

LI_command ::= "LI" char_string ["," char_string]* "."

H.5.7.4 LX Command
The LX command specifies a library to search for a named unresolved variable.

LX_command ::= "L" X_variable ["," char_string]+ "."

The paragraphs above showed the commands and operators as ASCII strings. In an object file they are
binary encoded. The following tables show the binary representation.

APPENDIX H IEEE-695 OBJECT FORMAT

S5U1C88000C MANUAL I EPSON 291
C COMPILER/ASSEMBLER/LINKER

H.6 MUFOM Functions
The following table lists the first byte of MUFOM elements. Each value between 0 and 255 classifies the
MUFOM language element that follows, or it is a language element itself. E.g. numbers outside the range
0–127 are preceded by a length field: 0x82 specifies that a 2 byte integer follows. 0xE4 is the function code
for the LR command.

Overview of first byte of MUFOM language elements
0x00–0x7F
0x80
0x81–0x88
0x89–0x8F
0x90–0xA0
0xA0–0xBF
0xC0
0xC1–0xDA
0xDB–0xDF
0xE0–0xF9
0xFA–0xFF

Start of regular string, or one byte numbers ranging from 0–127
Code for omitted optional number field
Numbers outside the range 0–127
Unused
User defined function codes
MUFOM function codes
Unused
MUFOM letters
Unused
MUFOM commands
Unused

Binary encoding of MUFOM letters and function codes

Letter

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

Code

0xC1
0xC2
0xC3
0xC4
0xC5
0xC6
0xC7
0xC8
0xC9
0xCA
0xCB
0xCC
0xCD
0xCE
0xCF
0xD0
0xD1
0xD2
0xD3
OxD4
0xD5
0xD6
0xD7
0xD8
0xD9
0xDA

Function
@F
@T

@ABS
@NEG
@NOT

+
-
/
*

@MAX
@MIN
@MOD

<
>
=

!= <>
@AND
@OR

@XOR
@EXT
@INS
@ERR

@IF
@ELSE
@END

@ISDEF

Function code Identifiers
Code
0xA0
0xA1
0xA2
0xA3
0xA4
0xA5
0xA6
0xA7
0xA8
0xA9
0xAA
0xAB
0xAC
0xAD
0xAE
0xAF
0xB0
0xB1
0xB2
0xB3
0xB4
0xB5
0xB6
0xB7
0xB8
0xB9

APPENDIX H IEEE-695 OBJECT FORMAT

292 EPSON S5U1C88000C MANUAL I
C COMPILER/ASSEMBLER/LINKER

MUFOM command codes
Description

Module begin
Module end
Assign
Initialize relocation base
Load with relocation
Section begin
Section type
Section alignment
Internal name
External name
Comment
Date and time
Address description
Load
Checksum followed by sum value
Checksum (reset sum to 0)
Name
Attribute
Type
Retain internal symbol
Weak external
Library search list
Library external
Replicate
Scope definition
Line number
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined

Command
MB
ME
AS
IR
LR
SB
ST
SA
NI
NX
CO
DT
AD
LD

CS (with sum)
CS
NN
AT
TY
RI

WX
LI
LX
RE
SC
LN

Code
0xE0
0xE1
0xE2
0xE3
0xE4
0xE5
0xE6
0xE7
0xE8
0xE9
0xEA
0xEB
0xEC
0xED
0xEE
0xEF
0xF0
0xF1
0xF2
0xF3
0xF4
0xF5
0xF6
0xF7
0xF8
0xF9
0xFA
0xFB
0xFC
0xFD
0xFE
0xFF

APPENDIX I MOTOROLA S-RECORDS

S5U1C88000C MANUAL I EPSON 293
C COMPILER/ASSEMBLER/LINKER

APPENDIX I MOTOROLA S-RECORDS
The locator generates three types of S-records: S0, S2 and S8. They have the following layout:

S0 - record

'S' '0' <length_byte> <2 bytes 0> <comment> <checksum_byte>

A locator generated S-record file starts with a S0 record with the following contents:

length_byte : 10H
comment : E0C88 locator
checksum : 88H

 E 0 C 8 8 l o c a t o r
S0100000534D433838206C6F6361746F7288

The S0 record is a comment record and does not contain relevant information for program execution.

The length_byte represents the number of bytes in the record, not including the record type and length
byte.

The checksum is calculated by first adding the binary representation of the bytes following the record
type (starting with the length_byte) to just before the checksum. Then the one's complement is calculated
of this sum. The least significant byte of the result is the checksum. The sum of all bytes following the
record type is 0FFH.

S2 - record

The actual program code and data is supplied with S2 records, with the following layout:

'S' '2' <length_byte> <address> <code bytes> <checksum_byte>

For the S1C88 the locator generates 3-byte addresses.

Example:

S213FF002000232222754E00754F04AF4FAE4E22BF

checksum
code
address
length

The length of the output buffer for generating S2 records is 32 code bytes.

The checksum calculation of S2 records is identical to S0.

S8 - record

At the end of an S-record file, the locator generates an S8 record, which contains the program start
address.

Layout:

'S' '8' <length_byte> <address> <checksum_byte>

Example:

S804FF0003F9

checksum
address
length

The checksum calculation of S8 records is identical to S0.

S1C88 Family C Compiler

Quick Reference

C Program Development Flowchart C Development Environment

C source file
.c

C preprocessor
&

C compiler
c88

link map file
.lnl

assembly file
.src

list file
.lst

assembler
as88

locate map file
.map

locator
lc88

debugger
(S5U1C88000H5)

object reader
pr88

S1C88 execution
environment

library maintainer
ar88

control program
cc88

program builder
mk88

relocatable object module
.obj

linker object
.out

absolute load
module
.abs

Motorola S-record
object file
.sre

relocatable object library
.a

locator description file
.dsc

incremental linker
lk88

C Compiler c88 (1) C Development Environment

Options

Error/Warning Messages

I: information E: error F: fatal error S: internal compiler error W: warning

Frontend
F 1: evaluation expired Your product evaluation period has expired.
W 2: unrecognized option: 'option' The option you specified does not exist.
E 4: expected number more The preprocessor part of the compiler found the '#if',

'#endif' '#ifdef' or '#ifndef' directive but did not find a corresponding
'#endif' in the same source file.

E 5: no source modules You must specify at least one source file to compile.
F 6: cannot create "file" The output file or temporary file could not be created.
F 7: cannot open "file" Check if the file you specified really exists.
F 8: attempt to overwrite input The output file must have a different name than the input

file "file" file.
E 9: unterminated constant This error can occur when you specify a string without a

character or string closing double-quote (") or when you specify a character
constant without a closing single-quote (').

F 11: file stack overflow This error occurs if the maximum nesting depth (50) of file
inclusion is reached.

F 12: memory allocation error All free space has been used.
W 13: prototype after forward call Check that a prototype for each function is present before

or old style declaration the actual call.
- ignored

E 14: ';' inserted An expression statement needs a semicolon.
E 15: missing filename after The -o option must be followed by an output filename.

-o option
E 16: bad numerical constant A constant must conform to its syntax. Also, a constant

may not be too large to be represented in the type to which
it was assigned.

E 17: string too long This error occurs if the maximum string size (1500) is
reached.

E 18: illegal character The character with the hexadecimal ASCII value
(0xhexnumber) 0xhexnumber is not allowed here.

E 19: newline character in The newline character can appear in a character constant
constant or string constant only when it is preceded by a backslash

(\).
E 20: empty character constant A character constant must contain exactly one character.

Empty character constants ('') are not allowed.
E 21: character constant overflow A character constant must contain exactly one character.

Note that an escape sequence is converted to a single
character.

E 22: '#define' without valid You have to supply an identifier after a '#define'.
identifier

Include options
-f file Read options from file
-H file Include file before starting compilation
-Idirectory Look in directory for include files

Preprocess options
-Dmacro[=def] Define preprocessor macro

Code generation options
-M{s|c|d|l} Select memory model: small, compact code, compact data or large
-O{0|1} Control optimization

Output file options
-e Remove output file if compiler errors occur
-o file Specify name of output file
-s Merge C-source code with assembly output

Diagnostic options
-V Display version header only
-err Send diagnostics to error list file (.err)
-g Enable symbolic debug information
-w[num] Suppress one or all warning messages

Startup Command

c88 [[option]...[file]...]...

C Compiler c88 (2) C Development Environment

Frontend
E 41: '#elif' without '#if' The '#elif' directive did not appear within an '#if', '#ifdef' or

'#ifndef' construct.
E 42: syntax error, expecting A syntax error occurred in a parameter list a declaration or

parameter type/declaration/ a statement.
statement

E 43: unrecoverable syntax error, The compiler found an error from which it could not
skipping to end of file recover.

I 44: in initializer "name" Informational message when checking for a proper
constant initializer.

E 46: cannot hold that many The value stack may not exceed 20 operands.
operands

E 47: missing operator An operator was expected in the expression.
E 48: missing right parenthesis ')' was expected.
W 49: attempt to divide by zero An expression with a divide or modulo by zero was found.

- potential run-time error
E 50: missing left parenthesis '(' was expected.
E 51: cannot hold that many The state stack may not exceed 20 operators.

operators
E 52: missing operand An operand was expected.
E 53: missing identifier after An identifier is required in a #if defined(identifier).

'defined' operator
E 54: non scalar controlling Iteration conditions and 'if' conditions must have a scalar

expression type (not a struct, union or a pointer).
E 55: operand has not integer type The operand of a '#if' directive must evaluate to an integral

constant.
W 56: '<debugoption><level>' no There is no associated debug action with the specified

associated action debug option and level.
W 58: invalid warning number: The warning number you supplied to the -w option does

number not exist.
F 59: sorry, more than number Compilation stops if there are more than 40 errors.

errors
E 60: label "label" multiple defined A label can be defined only once in the same function.
E 61: type clash The compiler found conflicting types.
E 62: bad storage class for "name" The storage class specifiers auto and register may not

appear in declaration specifiers of external definitions.
Also, the only storage class specifier allowed in a
parameter declaration is register.

E 63: "name" redeclared The specified identifier was already declared. The compiler
uses the second declaration.

Error/Warning Messages

Frontend
E 23: '#else' without '#if' '#else' can only be used within a corresponding '#if',

'#ifdef' or '#ifndef' construct.
E 24: '#endif' without matching '#if' '#endif' appeared without a matching '#if', '#ifdef' or

'#ifndef' preprocessor directive.
E 25: missing or zero line number '#line' requires a non-zero line number specification.
E 26: undefined control A control line (line with a '#identifier') must contain one of

the known preprocessor directives.
W 27: unexpected text after control '#ifdef' and '#ifndef' require only one identifier. Also,

'#else' and '#endif' only have a newline. '#undef' requires
exactly one identifier.

W 28: empty program The source file must contain at least one external
definition. A source file with nothing but comments is
considered an empty program.

E 29: bad '#include' syntax A '#include' must be followed by a valid header name
syntax.

E 30: include file "file" not found Be sure you have specified an existing include file after a
'#include' directive. Make sure you have specified the
correct path for the file.

E 31: end-of-file encountered The compiler found the end of a file while scanning a
inside comment comment. Probably a comment was not terminated.

E 32: argument mismatch for The number of arguments in invocation of a function-like
macro "name" macro must agree with the number of parameters in the

definition. Also, invocation of a function-like macro requires
a terminating ")" token.

E 33: "name" redefined The given identifier was defined more than once, or a
subsequent declaration differed from a previous one.

W 34: illegal redefinition of A macro can be redefined only if the body of the redefined
macro "name" macro is exactly the same as the body of the originally

defined macro.
E 35: bad filename in '#line' The string literal of a #line (if present) may not be a

"wide-char" string.
W 36: 'debug' facility not installed '#pragma debug' is only allowed in the debug version of

the compiler.
W 37: attempt to divide by zero A divide or modulo by zero was found.
E 38: non integral switch A switch condition expression must evaluate to an

expression integral value.
F 39: unknown error number: This error may not occur.

number
W 40: non-standard escape Your escape sequence contains an illegal escape

sequence character.

C Compiler c88 (3) C Development Environment

Frontend
E 89: illegal bitfield declarator A bit field may only be declared as an integer, not as a

pointer or a function for example.
E 90: #error message The message is the descriptive text supplied in a '#error'

preprocessor directive.
W 91: no prototype for function Each function should have a valid function prototype.

"name"
W 92: no prototype for indirect Each function should have a valid function prototype.

function call
I 94: hiding earlier one Additional message which is preceded by error E 63. The

second declaration will be used.
F 95: protection error: message Something went wrong with the protection key initialization.
E 96: syntax error in #define #define id(requires a right-parenthesis ')'.
E 97: "..." incompatible with If one function has a parameter type list and another

old-style prototype function, with the same name, is an old-style declaration,
the parameter list may not have ellipsis.

E 98: function type cannot be A typedef cannot be used for a function definition.
inherited from a typedef

F 99: conditional directives '#if', '#ifdef' or '#ifndef' directives may not be nested
nested too deep deeper than 50 levels.

E 100: case or default label not The case: or default: label may only appear inside a
inside switch switch.

E 101: vacuous declaration Something is missing in the declaration.
E 102: duplicate case or default Switch case values must be distinct after evaluation and

label there may be at most one default: label inside a
switch.

E 103: may not subtract pointer The only operands allowed on subtraction of pointers is
from scalar pointer - pointer, or pointer - scalar.

E 104: left operand of operator has The first operand of a '.' or '->' must have a struct or
not struct/union type union type.

E 105: zero or negative array size Array bound constants must be greater than zero.
- ignored

E 106: different constructors Compatible function types with parameter type lists must
agree in number of parameters and in use of ellipsis. Also,
the corresponding parameters must have compatible
types.

E 107: different array sizes Corresponding array parameters of compatible function
types must have the same size.

E 108: different types Corresponding parameters must have compatible types
and the type of each prototype parameter must be
compatible with the widened definition parameter.

Error/Warning Messages

Frontend
E 64: incompatible redeclaration The specified identifier was already declared.

of "name"
W 66: function "name": variable A variable is declared which is never used.

"name" not used
W 67: illegal suboption: option The suboption is not valid for this option.
W 68: function "name": parameter A function parameter is declared which is never used.

"name" not used
E 69: declaration contains more Type specifiers may not be repeated.

than one basic type specifier
E 70: 'break' outside loop or switch A break statement may only appear in a switch or a

loop (do, for or while).
E 71: illegal type specified The type you specified is not allowed in this context.
W 72: duplicate type modifier Type qualifiers may not be repeated in a specifier list or

qualifier list.
E 73: object cannot be bound to Use only one memory attribute per object.

multiple memories
E 74: declaration contains more A declaration may contain at most one storage class

than one class specifier specifier.
E 75: 'continue' outside a loop continue may only appear in a loop body (do, for or

while).
E 76: duplicate macro parameter The given identifier was used more than one in the format1

"name" parameter list of a macro definition.
E 77: parameter list should be An identifier list, not part of a function definition, must be

empty empty.
E 78: 'void' should be the only Within a function prototype of a function that does not

parameter except any arguments, void may be the only parameter.
E 79: constant expression A constant expression may not contain a comma. Also, the

expected bit field width, an expression that defines an enum, array-
bound constants and switch case expressions must all
be integral constant expressions.

E 80: '#' operator shall be followed The '#' operator must be followed by a macro argument.
by macro parameter

E 81: '##' operator shall not occur The '##' (token concatenation) operator is used to paste
at beginning or end of a together adjacent preprocessor tokens, so it cannot be
macro used at the beginning or end of a macro body.

W 86: escape character truncated The value of a hexadecimal escape sequence (a backslash,
to 8 bit value \, followed by a 'x' and a number) must fit in 8 bits storage.

E 87: concatenated string too long The resulting string was longer than the limit of 1500
characters.

W 88: "name" redeclared with The specified identifier was already declared.
different linkage

C Compiler c88 (4) C Development Environment

Frontend
E 131: bad operand type(s) of The operator needs an operand of another type.

operator
W 132: value of variable "name" This warning occurs if a variable is used before it is

is undefined defined.
E 133: illegal struct/union A function cannot be a member of a struct or union.

member type Also, bit fields may only have type int or unsigned.
E 134: bitfield size out of range The bit field width may not be greater than the number of

- set to 1 bits in the type and may not be negative.
W 135: statement not reached The specified statement will never be executed.
E 138: illegal function call You cannot perform a function call on an object that is not

a function.
E 139: operator cannot have The type name in a (cast) must be a scalar (not a struct,

aggregate type union or a pointer) and also the operand of a (cast) must
be a scalar.

E 140: type cannot be applied to For example, the '&' operator (address) cannot be used on
a register/bit/bitfield object registers and bit fields.
or builtin/inline function

E 141: operator requires The operand of the '++', or '--' operator and the left
modifiable lvalue operand of an assignment or compound assignment

(lvalue) must be modifiable.
E 143: too many initializers There may be no more initializers than there are objects.
W 144: enumerator "name" value An enum constant exceeded the limit for an int.

out of range
E 145: requires enclosing curly A complex initializer needs enclosing curly braces.

braces
E 146: argument #number: With prototypes, the memory spaces of arguments must

memory spaces do not match.
match

W 147: argument #number: With prototypes, the types of arguments must be
different levels of indirection assignment compatible.

W 148: argument #number: With prototypes, both the prototyped function argument
struct/union type does not and the actual argument was a struct or union, but they
match have different tags. The tag types should match.

E 149: object "name" has zero A struct or union may not have a member with an
size incomplete type.

W 150: argument #number: With prototypes, the pointer types of arguments must be
pointers to different types compatible.

W 151: ignoring memory specifier Memory specifiers for a struct, union or enum are ignored.
E 152: operands of operator Be sure the operands point to the same memory space.

are not pointing to the same
memory space

Error/Warning Messages

Frontend
E 109: floating point constant A floating point constant must have a value that fits in the

out of valid range type to which it was assigned.
E 110: function cannot return A function may not have a return type that is of type array

arrays or functions or function. A pointer to a function is allowed.
I 111: parameter list does not Check the parameter list or adjust the prototype. The

match earlier prototype number and type of parameters must match.
E 112: parameter declaration If the declarator is a prototype, the declaration of each

must include identifier parameter must include an identifier. Also, an identifier
declared as a typedef name cannot be a parameter
name.

E 114: incomplete struct/union The struct or union type must be known before you can
type use it.

E 115: label "name" undefined A goto statement was found, but the specified label did
not exist in the same function or module.

W 116: label "name" not referenced The given label was defined but never referenced. The
reference of the label must be within the same function or
module.

E 117: "name" undefined The specified identifier was not defined. A variable's type
must be specified in a declaration before it can be used.

W 118: constant expression out of A constant expression used in a case label may not be too
valid range large. Also when converting a floating point value to an

integer, the floating point constant may not be too large.
E 119: cannot take 'sizeof' bitfield The size of a bit field or void type is not known. So, the

or void type size of it cannot be taken.
E 120: cannot take 'sizeof' function The size of a function is not known. So, the size of it

cannot be taken.
E 121: not a function declarator This is not a valid function.
E 122: unnamed formal parameter The parameter must have a valid name.
W 123: function should return A return in a non-void function must have an expression.

something
E 124: array cannot hold functions An array of functions is not allowed.
E 125: function cannot return A return with an expression may not appear in a void

anything function.
W 126: missing return A non-void function with a non-empty function body must

(function "name") have a return statement.
E 129: cannot initialize "name" Declarators in the declarator list may not contain

initializations. Also, an extern declaration may have no
initializer.

W 130: operands of operator are Pointer operands of an operator or assignment ('='), must
pointers to different types have the same type.

C Compiler c88 (5) C Development Environment

Frontend
E 176: address of automatic is Unlike a static variable, an automatic variable does not

not a constant have a fixed memory location and therefore, the address of
an automatic is not a constant.

W 177: static variable "name" not A static variable is declared which is never used.
used

W 178: static function "name" not A static function is declared which is never called.
used

E 179: inline function "name" is Possibly only the prototype of the inline function was
not defined present, but the actual inline function was not.

E 180: illegal target memory The pointer may not point to memory.
(memory) for pointer

W 182: argument #number: With prototypes, the types of arguments must be
different types compatible.

I 185: (prototype synthesized at This is an informational message containing the source file
line number in "name") position where an old-style prototype was synthesized.

E 186: array of type bit is not An array cannot contain bit type variables.
allowed

E 187: illegal structure definition A structure can only be defined (initialized) if its members
are known.

E 188: structure containing This error occurs when you use a bitaddressable storage
bit-type fields is forced into type for a structure containing bit-type members.
bitaddressable area

E 189: pointer is forced to A pointer to bitaddressable memory is not allowed.
bitaddressable, pointer to
bitaddressable is illegal

W 190: "long float" changed to In ANSI C floating point constants are treated having type
"float" double, unless the constant has the suffix 'f'.

E 191: recursive struct/union A struct or union cannot contain itself.
definition

E 192: missing filename after The -f option requires a filename argument.
-f option

E 194: cannot initialize typedef You cannot assign a value to a typedef variable.
F 199: demonstration package The demonstration package has certain limits which are

limits exceeded not present in the full version.
W 200: unknown pragma - ignored The compiler ignores pragmas that are not known.
W 201: "name" cannot have storage A register variable or an automatic/parameter cannot

type - ignored have a storage type.
E 202: "name" is declared with You cannot call a function with an argument when the

'void' parameter list function does not accept any (void parameter list).
E 203: too many/few actual With prototyping, the number of arguments of a function

parameters must agree with the prototype of the function.

Error/Warning Messages

Frontend
E 153: 'sizeof' zero sized object An implicit or explicit sizeof operation references an

object with an unknown size.
E 154: argument #number: With prototypes, only one of the prototyped function

struct/union mismatch argument or the actual argument was a struct or union.
The types should match.

E 155: casting lvalue 'type' to The operand of the '++', or '--' operator or the left operand
'type' is not allowed of an assignment or compound assignment (lvalue) may

not be cast to another type.
E 157: "name" is not a formal If a declarator has an identifier list, only its identifiers may

parameter appear in the declarator list.
E 158: right side of operator is The second operand of '.' or '->' must be a member of the

not a member of the designated struct or union.
designated struct/union

E 160: pointer mismatch at Both operands of operator must be a valid pointer.
operator

E 161: aggregates around The contents of the structs, unions or arrays on both sides
operator do not match of the operator must be the same.

E 162: operator requires an lvalue The '&' (address) operator requires an lvalue or function
or function designator designator.

W 163: operands of operator have The types of pointers or addresses of the operator must be
different level of indirection assignment compatible.

E 164: operands of operator may The operands of operator may not have operand (void *).
not have type 'pointer to void'

W 165: operands of operator are The types of pointers or addresses of the operator must be
incompatible: pointer vs. assignment compatible. A pointer cannot be assigned to a
pointer to array pointer to array.

E 166: operator cannot make Casting type void to something else is not allowed.
something out of nothing

E 170: recursive expansion of An _inline function may not be recursive.
inline function "name"

E 171: too much tail-recursion in If the function level is greater than or equal to 40 this error
inline function "name" is given.

W 172: adjacent strings have When concatenating two strings, they must have the same
different types type.

E 173: 'void' function argument A function may not have an argument with type void.
E 174: not an address constant A constant address was expected. Unlike a static variable,

an automatic variable does not have a fixed memory
location and therefore, the address of an automatic is not a
constant.

E 175: not an arithmetic constant In a constant expression no assignment operators, no '++'
operator, no '--' operator and no functions are allowed.

C Compiler c88 (6) C Development Environment

Backend
W 517: conversion of long address This warning is issued when pointer conversion is needed.

to short address
F 524: illegal memory model See the compiler usage for valid arguments of the -M

option.
E 526: function qualifier '_asmfunc' _asmfunc is only allowed in the function prototype.

not allowed in function
definition

E 528: _at() requires a numerical You can only use an expression that evaluates to a
address numerical address.

E 529: _at() address out of range The absolute address is not present in the specified
for this type of object memory space.

E 530: _at() only valid for global Only global variables can be placed on absolute
variables addresses.

E 531: _at() only allowed for Absolute variables cannot be initialized.
uninitialized variables

E 532: _at() has no effect on When declared extern the variable is not allocated by the
external declaration compiler.

W 533: c88 language extension A language extension keyword is a reserved word, and
keyword used as identifier reserved words cannot be used as an identifier.

E 536: illegal syntax used for See the description of the -R option for the correct syntax.
default section name
'name' in -R option

E 537: default section name See the description of the -R option for the correct syntax.
'name' not allowed

W 538: default section name Only use one of the -R option or the renamesect pragma or
'name' already renamed to use another name.
'new_name'

W 542: optimization stack underflow, This warning occurs if you use a #pragma endoptimize
no optimization options are while there were no options saved by a previous #pragma
saved with #pragma endoptimize.
optimize

W 555: current optimization level You could have HLL debug conflicts with these
could reduce debugging optimization settings.
comfort (-g)

E 560: Float/Double: not yet Floating point will be supported in a following version.
implemented

Error/Warning Messages

Frontend
W 204: U suffix not allowed on A floating point constant cannot have a 'U' or 'u' suffix.

floating constant - ignored
W 205: F suffix not allowed on An integer constant cannot have a 'F' or 'f' suffix.

integer constant - ignored
E 206: 'name' named bit-field A bit field must be an integral constant expression with a

cannot have 0 width value greater than zero.
E 212: "name": missing static A function with a static prototype misses its definition.

function definition
W 303: variable 'name' possibly Possibly an initialization statement is not reached, while a

uninitialized function should return something.
E 327: too many arguments to An _asmfunc function uses a fixed register-based interface

pass in registers for between C and assembly, but the number of arguments
_asmfunc 'name' that can be passed is limited by the number of available

registers. With function name this limit was reached.

Backend
W 501: function qualifier used on A function qualifier can only be used on functions.

non-function
E 502: Intrinsic function '_int()' The argument of the _int() intrinsic function must be an

needs an immediate value integral constant expression rather than any type of
as parameter integral expression.

E 503: Intrinsic function '_jrsf()' The given number must be a constant value between 0
needs an immediate value 0..3 and 3.

W 508: function qualifier duplicated Only one function qualifier is allowed.
E 511: interrupt function must A function declared with _interrupt(n) may not accept

have void result and void any arguments and may not return anything.
parameter list

W 512: 'number' illegal interrupt The interrupt vector number must be 0, or in the range 3 to
number (0, or 3 to 251) 251. Any other number is illegal.
- ignored

E 513: calling an interrupt routine, An interrupt function cannot be called directly, you must
use '_swi()' use the intrinsic function _swi().

E 514: conflict in '_interrupt'/ The attributes of the current function qualifier declaration
'_asmfunc' attribute and the previous function qualifier declaration are not the

same.
E 515: different '_interrupt' number The interrupt number of the current function qualifier

declaration and the previous function qualifier declaration
are not the same.

E 516: 'memory_type' is illegal The storage type is not valid for this function.
memory for function

C Compiler c88 (7) C Development Environment

Library

<ctype.h> isalnum, isalpha, isascii, iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace,
isupper, isxdigit, toascii, _tolower, tolower, _toupper, toupper

<errno.h> Error numbers
No C functions.

<float.h> Constants for floating-point operation
<limits.h> Limits and sizes of integral types

No C functions.
<locale.h> localeconv, setlocale

Delivered as skeletons.
<math.h> acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod, frexp, ldexp, log,

log10, modf, pow, sin, sinh, sqrt, tan, tanh
<setjmp.h> longjmp, setjmp
<signal.h> raise, signal

Functions are delivered as skeletons.
<simio.h> _simi, _simo
<stdarg.h> va_arg, va_end, va_start
<stddef.h> offsetof, definition of special types
<stdio.h> clearerr, fclose, _fclose, feof, ferror, fflush, fgetc, fgetpos, fgets, fopen, _fopen,

fprintf, fputc, fputs, fread, freopen, fscanf, fseek, fsetpos, ftell, fwrite, getc,
getchar, gets, _ioread, _iowrite, _lseek, perror, printf, putc, putchar, puts, _read,
remove, rename, rewind, scanf, setbuf, setvbuf, sprintf, sscanf, tmpfile, tmpnam,
ungetc, vfprintf, vprintf, vsprintf, _write

<stdlib.h> abort, abs, atexit, atof, atoi, atol, bsearch, calloc, div, exit, free, getenv, labs,
ldiv, malloc, mblen, mbstowcs, mbtowc, qsort, rand, realloc, srand, strtod, strtol,
strtoul, system, wcstombs, wctomb

<string.h> memchr, memcmp, memcpy, memmove, memset, strcat, strchr, strcmp, strcol,
strcpy, strcspn, strerror, strlen, strncat, strncmp, strncpy, strpbrk, strrchr, strspn,
strstr, strtok, strxfrm

<time.h> asctime, clock, ctime, difftime, gmtime, localtime, mktime, strftime, time
All functions are delivered as skeletons.

Assembler as88 (1) C Development Environment

Options

Functions

@function_name(argument[,argument]...)

Mathematical Functions
ABS Absolute value
MAX Maximum value
MIN Minimum value
SGN Return sign

String Functions
CAT Catenate strings
LEN Length of string
POS Position of substring in string
SCP Compare strings
SUB Substring from a string

Macro Functions
ARG Macro argument function
CNT Macro argument count
MAC Macro definition function
MXP Macro expansion function

Assembler Mode Functions
AS88 Assembler executable name
DEF Symbol definition function
LST LIST control flag value
MODEL Selected model of the assembler

Address Handling Functions
CADDR Code address
COFF Code page offset
CPAG Code page number
DADDR Data address
DOFF Data page offset
DPAG Data page number
HIGH 256 byte page number
LOW 256 byte page offset

-C file Include file before source
-Dmacro[=def] Define preprocessor macro
-L[flag...] Remove specified source lines from list file
-M[s|c|d|l] Specify memory model
-V Display version header only
-c Switch to case insensitive mode (default case sensitive)
-e Remove object file on assembly errors
-err Redirect error messages to error file
-f file Read options from file
-i[l|g] Default label style local or global
-l Generate listing file
-o filename Specify name of output file
-t Display section summary
-v Verbose mode. Print the filenames and numbers of the passes while they progress
-w[num] Suppress one or all warning messages

Startup Command

as88 [option]...source-file [map-file]

Assembler as88 (2) C Development Environment

Macros and Conditional Assembly
DUP Duplicate sequence of source lines
DUPA Duplicate sequence with arguments
DUPC Duplicate sequence with characters
DUPF Duplicate sequence in loop
ENDIF End of conditional assembly
ENDM End of macro definition
EXITM Exit macro
IF Conditional assembly directive
MACRO Macro definition
PMACRO Purge macro definition

Assembler Directives

Debugging
CALLS Pass call information to object file. Used to build a call tree at link time for

overlaying overlay sections.
SYMB Pass symbolic debug information

Assembly Control
ALIGN Specify alignment
COMMENT Start comment lines. This directive is not permitted in IF/ELIF/ELSE/ENDIF

constructs and MACRO/DUP definitions.
DEFINE Define substitution string
DEFSECT Define section name and attributes
END End of source program
FAIL Programmer generated error message
INCLUDE Include secondary file
MSG Programmer generated message
RADIX Change input radix for constants
SECT Activate section
UNDEF Undefine DEFINE symbol
WARN Programmer generated warning

Symbol Definition
EQU Equate symbol to a value; accepts forward references
EXTERN External symbol declaration; also permitted in module body
GLOBAL Global symbol declaration; also permitted in module body
LOCAL Local symbol declaration
NAME Identify object file
SET Set symbol to a value; accepts forward references

Data Definition/Storage Allocation
ASCII Define ASCII string
ASCIZ Define NULL padded ASCII string
DB Define constant byte
DS Define storage
DW Define constant word

Assembler as88 (3) C Development Environment

Warnings (W)
W 120: assembler debug The SYMB record contains an expression with operations

information: cannot emit that are not supported by the IEEE-695 object format.
non-tiof expression for label

W 121: changed alignment size to size
W 123: expression: type-error The expression performs an illegal operation on an

address or combines incompatible memory spaces.
W 124: cannot purge macro during

its own definition
W 125: "symbol" is not a DEFINE You tried to UNDEF a symbol that was not previously

symbol DEFINEd or was already undefined.
W 126: redefinition of The symbol is already DEFINEd in the current scope. The

"define-symbol" symbol is redefined according to this DEFINE.
W 127: redefinition of macro The macro is already defined. The macro is redefined

"macro" according to this macro definition.
W 128: number of macro arguments You supplied less arguments to the macro than when

is less than definition defining it.
W 129: number of macro arguments You supplied more arguments to the macro than when

is greater than definition defining it.
W 130: DUPA needs at least one The DUPA directive needs at least two arguments, the

value argument dummy parameter and a value parameter.
W 131: DUPF increment value The step value supplied with the DUPF macro will skip the

gives empty macro DUPF macro body.
W 132: IF started in previous file The ENDIF or ELSE pre-processor directive matches with

"file", line line an IF directive in another file.
W 133: currently no macro The @CNT() and @ARG() functions can only be used

expansion active inside a macro expansion.
W 134: "directive" is not supported, The supplied directive is not supported by this assembler.

skipped
W 135: define symbol of You supplied an illegal identifier with the -D option on the

"define-symbol" is not an command line.
identifier; skipped definition

W 137: label "label" defined The label is defined with an EXTERN and a GLOBAL
attribute and attribute directive.

W 138: warning: WARN-directive- Output from the WARN directive.
arguments

W 139: expression must be between
hex-value and hex-value

W 140: expression must be between
value and value

Error Messages

Warnings (W)
W 101: use option at the start of Primary options must be used at the start of the source.

the source; ignored
W 102: duplicate attribute An attribute of an EXTERN directive is used twice or more.

"attribute" found Remove one of the duplicate attributes.
W 104: expected an attribute but

got attribute; ignored
W 105: section activation expected, Use the SECT directive to activate a section.

use name directive
W 106: conflicting attributes You used two conflicting attributes in an EXTERN

specified "attributes" statement directive.
W 107: memory conflict on object A label or other object is explicit or implicit defined using

"name" incompatible memory types.
W 108: object attributes redefinition A label or other object is explicit or implicit defined using

"attributes" incompatible attributes.
W 109: label "label" not used The label label is defined with the GLOBAL directive and

neither defined nor referred, or the label is defined with the
LOCAL directive and not referenced.

W 110: extern label "label" defined The label label is defined with an EXTERN directive and
in module, made global defined as a label in the source. The label will be handled

as a global label.
W 111: unknown $LIST flag You supplied an unknown flag to the $LIST control.

"flag"
W 112: text found after END; An END directive designates the end of the source file. All

ignored text after the END directive will be ignored.
W 113: unknown $MODEL You supplied an unknown model.

specifier; ignored
W 114: $MODEL may only be You supplied more than one model.

specified once, it remains
"model"; ignored

W 115: use ON or OFF after The control you specified must have either ON or OFF
control name after the control name.

W 116: unknown parameter See the description of the control for the allowed
"parameter" for parameters.
control-name control

W 118: inserted "extern name" The symbol name is used inside an expression, but not
defined with an EXTERN directive.

W 119: "name" section has not the
MAX attribute; ignoring
RESET

Assembler as88 (4) C Development Environment

Errors (E)
E 217: description There was an error found during assembly of the mnemonic.
E 218: unknown mnemonic: "name" The assembler found an unknown mnemonic.
E 219: this is not a hardware The assembler found a generic instruction, but the -Oh

instruction (use $OPTIMIZE (hardware only) option or the $OPTIMIZE ON "H" control
OFF "H") was specified.

E 223: unknown section "name" The section name specified with a SECT directive has not
(yet) been defined with a DEFSECT directive.

E 224: unknown label "name" A label was used which was not defined.
E 225: invalid memory type You supplied an invalid memory modifier.
E 226: unknown symbol attribute:

attribute
E 227: invalid memory attribute The assembler found an unknown location counter or

memory mapping attribute.
E 228: attr attribute needs a number The attribute attr needs an extra parameter.
E 229: only one of the name

attributes may be specified
E 230: invalid section attribute: The assembler found an unknown section attribute.

name
E 231: absolute section, expected An absolute section must be specified using an 'AT

"AT" expression address' expression.
E 232: MAX/OVERLAY sections Sections with the MAX or OVERLAY attribute must have a

need to be named sections name, otherwise the locator cannot overlay the sections.
E 233: type section cannot have Code sections may not have the CLEAR or OVERLAY

attribute attribute attribute.
E 234: section attributes do not In an previous definition of the same section other

match earlier declaration attributes were used.
E 235: redefinition of section An absolute section of the same name can only be located

once.
E 236: cannot evaluate expression Some functions and directives must evaluate their

of descriptor arguments during assembly.
E 237: descriptor directive must Some directives need to have a positive argument.

have positive value
E 238: Floating point numbers not The DB directive does not accept floating point numbers.

allowed with DB directive
E 239: byte constant out of range The DB directive stores expressions in bytes.
E 240: word constant out of range The DW directive stores expressions in words.
E 241: Cannot emit non tiof Floating point expressions and some functions can not be

functions, replaced with represented in the IEEE-695 object format.
integral value '0'

E 242: the name attribute must be A section must have the CODE or DATA attribute.
specified

Error Messages

Warnings (W)
W 141: global/local label "name" The label is declared and used but not defined in the

not defined in this module; source file.
made extern

W 170: code address maps to The code offset you specified to the @CPAG function is in
zero page the zero page.

W 171: address offset must be The offset you specified in the @CADDR or @DADDR
between 0 and FFFF function was too large.

W 172: page number must be The page number you specified in the @CADDR or
between 0 and FF @DADDR function was too large.

Errors (E)
E 200: message; halting assembly The assembler stops the further processing of your source

file.
E 201: unexpected newline or line The syntax checker found a newline or line delimiter that

delimiter does not confirm to the assembler grammar.
E 202: unexpected character: The syntax checker found a character that does not
'character' confirm to the assembler grammar.
E 203: illegal escape character in The syntax checker found an illegal escape character in

string constant the string constant that does not confirm to the assembler
grammar.

E 204: I/O error: open intermediate The assembler opens an intermediate file to optimize the
file failed (file) lexical scanning phase. The assembler cannot open this file.

E 205: syntax error: expected The syntax checker expected to find a token but found
token at token another token.

E 206: syntax error: token The syntax checker found an unexpected token.
unexpected

E 207: syntax error: missing ':' The syntax checker found a label definition or memory
space modifier but missed the appended semi-colon.

E 208: syntax error: missing ')' The syntax checker expected to find a closing parentheses.
E 209: invalid radix value, The RADIX directive accepts only 2, 8, 10 or 16.

should be 2, 8, 10 or 16
E 210: syntax error The syntax checker found an error.
E 211: unknown model Substitute the correct model, one of s, c, d or l.
E 212: syntax error: expected The syntax checker expected to find a token but found

token nothing.
E 213: label "label" defined The label is defined with a LOCAL and a GLOBAL or

attribute and attribute EXTERN directive.
E 214: illegal addressing mode The mnemonic used an illegal addressing mode.
E 215: not enough operands The mnemonic needs more operands.
E 216: too many operands The mnemonic needs less operands.

Assembler as88 (5) C Development Environment

Errors (E)
E 264: cannot evaluate: "symbol", Could not evaluate the argument of a '%' or '?' operator

value depends on an within a macro expansion.
unknown symbol

E 265: cannot evaluate argument of The arguments of the DUP directive could not be
dup (unknown or location evaluated.
dependant symbols)

E 266: dup argument must be The argument of the DUP directive must be integral.
integral

E 267: dup needs a parameter Check the syntax of the DUP directive.
E 268: ENDM without a The assembler found an ENDM directive without an

corresponding MACRO or corresponding MACRO or DUP definition.
DUP definition

E 269: ELSE without a The assembler found an ELSE directive without an
corresponding IF corresponding IF directive.

E 270: ENDIF without a The assembler found an ENDIF directive without an
corresponding IF corresponding IF directive.

E 271: missing corresponding The assembler found an IF or ELSE directive without an
ENDIF corresponding ENDIF directive.

E 272: label not permitted with this Some directives do not accept labels.
directive

E 273: wrong number of arguments The function needs more or less arguments.
for function

E 274: illegal argument for function An argument has the wrong type.
E 275: expression not properly aligned
E 276: immediate value must be The immediate operand of the instruction does only accept

between value and value values in the given range.
E 277: address must be between The address operand is not in the range mentioned.

$address and $address
E 278: operand must be an address The operand must be an address but has no address

attributes.
E 279: address must be short
E 280: address must be short The operand must be an address in the short range.
E 281: illegal option "option" The assembler found an unknown or misspelled command

line option.
E 282: "Symbols:" part not found in The map file may be incomplete.

map file "name"
E 283: "Sections:" part not found in The map file may be incomplete.

map file "name"
E 284: module "name" not found in The map file may be incomplete.

map file "name"

Error Messages

Errors (E)
E 243: use $OBJECT OFF or

$OBJECT "object-file"
E 244: unknown control "name" The specified control does not exist.
E 246: ENDM within IF/ENDIF The assembler found an ENDM directive within an

IF/ENDIF pair.
E 247: illegal condition code The assembler encountered an illegal condition code

within an instruction.
E 248: cannot evaluate origin All origins of absolute sections must be evaluated before

expression of org creation of the object file.
"name: address"

E 249: incorrect argument types The supplied argument(s) evaluated to a different type
for function "function" than expected.

E 250: tiof function not yet The supplied object format function is not yet implemented.
implemented: "function"

E 251: @POS(,,start) start The start argument is larger than the length of the string in
argument past end of string the first parameter.

E 252: second definition of label The label is defined twice in the same scope.
"label"

E 253: recursive definition of The evaluation of the symbol depends on its own
symbol "symbol" value.

E 254: missing closing '>' in The syntax checker missed the closing '>' bracket in the
include directive INCLUDE directive.

E 255: could not open include file The assembler could not open the given include-file.
include-file

E 256: integral divide by zero The expression contains an divide by zero.
E 257: unterminated string All strings must end on the same line as they are started.
E 258: unexpected characters after Spaces are not permitted between macro parameters.

macro parameters, possible
illegal white space

E 259: COMMENT directive not This assembler does not permit the usage of the
permitted within a macro COMMENT directive within MACRO/DUP definitions or
definition and conditional IF/ELSE/ENDIF constructs.
assembly

E 260: definition of "macro" The macro definition is not terminated with an ENDM
unterminated, missing "endm" directive.

E 261: macro argument name may MACRO and DUP arguments may not start with an
not start with an '_' underscore.

E 262: cannot find "symbol" Could not find a definition of the argument of a '%' or '?'
operator within a macro expansion.

E 263: cannot evaluate: "symbol", The symbol used with a '%' or '?' operator within a macro
value is unknown at this point expansion has not been defined.

Assembler as88 (6) C Development Environment

Fatal Error (F)
F 410: Assembler internal error: The assembler renames all symbols local to a scope to

duplicate mufom "symbol" unique symbols. In this case the assembler did not
during rename succeed into making an unique name.

F 411: symbolic debug error: An error occurred during the parsing of the SYMB
"message" directive.

F 412: macro calls nested too deep There is a limit to the number of nested macro expansions.
(possible endless recursive Currently this limit is set to 1000.
call)

F 413: cannot evaluate "function" A function call is encountered although it should have been
processed.

F 414: cannot recover from Due to earlier errors the assembler internal state got
previous errors, stopped corrupted and stops assembling your program.

F 415: error opening temporary file The assembler uses temporary files for the debug
information and list file generation. It could not open or
create one of those temporary files.

F 416: internal error in optimizer The optimizer found a deadlock situation. Try to assemble
without any optimization options. Please fill out the error
report form and send it to Seiko Epson.

Error Messages

Errors (E)
E 285: file-kind file will overwrite The assembler warns when one of its output files will

file-kind file overwrite the source file you gave on the command line or
another output file.

E 286: $CASE options must be The $CASE options may only be given before any symbol
given before any symbol is defined.
definition

E 287: symbolic debug error: The assembler found an error in a symbolic debug (SYMB)
message instruction.

E 288: error in PAGE directive: The arguments supplied to the PAGE directive do not
message conform to the restrictions.

E 290: fail: message Output of the FAIL directive. This is an user generated error.
E 291: generated check: message Integrity check for the coupling between the C compiler

and assembler.
E 293: expression out of range An instruction operand must be in a specified address

range.
E 294: expression must be between

hexvalue and hexvalue
E 295: expression must be between

value and value
E 296: optimizer error: message The optimizer found an error.
E 297: jump address must be a Jumps and jump-subroutines must have a target address

code address in code memory.
E 298: size depends on location, The size of some constructions (notably the align

cannot evaluate directives) depend on the memory address.

Fatal Error (F)
F 401: memory allocation error A request for free memory is denied by the system. All

memory has been used.
F 402: duplicate input filename The assembler requires one input filename on the

"file" and "file" command line.
F 403: error opening file-kind file: The assembler could not open the given file.

"file-name"
F 404: protection error: message No protection key or not a IBM compatible PC.
F 405: I/O error The assembler cannot write its output to a file.
F 406: parser stack overflow
F 407: symbolic debug output error The symbolic debug information is incorrectly written in the

object file.
F 408: illegal operator precedence The operator priority table is corrupt.
F 409: Assembler internal error The assembler encountered internal inconsistencies.

Linker lk88 (1) C Development Environment

Options

Error Messages

-C Link case insensitive (default case sensitive)
-L directory Additional search path for system libraries
-L Skip system library search
-M Produce a link map (.lnl)
-N Turn off overlaying
-O name Specify basename of the resulting map files
-V Display version header only
-c Produce a separate call graph file (.cal)
-e Clean up if erroneous result
-err Redirect error messages to error file (.elk)
-f file Read command line information from file, '-' means stdin
-l x Search also in system library libx.a
-o filename Specify name of output file
-r Suppress undefined symbol diagnostics
-u symbol Enter symbol as undefined in the symbol table
-v or -t Verbose option. Print name of each file as it is processed
-w n Suppress messages above warning level n

Startup Command

lk88 [option]...file... Warnings (W)
W 100: Cannot create map file The given file could not be created.

filename, turned off -M option
W 101: Illegal filename (filename) A filename with an illegal extension was detected.

detected
W 102: Incomplete type specification, An unknown type reference.

type index = Thexnumber
W 103: Object name (name) differs Internal name of object file not the same as the filename.

from filename
W 104: '-o filename' option Second -o option encountered, previous name is lost.

overwrites previous
'-o filename'

W 105: No object files found No files where specified at the invocation.
W 106: No search path for system System library files (those given with the -l option) must

libraries. Use -L or env have a search path, either supplied by means of the
"variable" environment, or by means of the option -L.

W 108: Illegal option: option An illegal option was detected.
(-H or -\? for help)

W 109: Type not completely Not a complete type specification in either the current file
specified for symbol or the mentioned file.
<symbol> in file

W 110: Compatible types, different Name conflict between compatible types.
definitions for symbol
<symbol> in file

W 111: Signed/unsigned conflict for Size of both types is correct, but one of the types contains
symbol <symbol> in file an unsigned where the other uses a signed type.

W 112: Type conflict for symbol A real type conflict.
<symbol> in file

W 113: Table of contents of file out The ar library has a symbol table which is not up to date.
of date, not searched.
(Use ar ts <name>)

W 114: No table of contents in file, The ar library has no symbol table.
not searched.
(Use ar ts <name>)

W 115: Library library contains Ucode is not supported by the linker.
ucode which is not supported

W 116: Not all modules are The library file has an unknown format, or is corrupted.
translated with the same
threshold (-G value)

W 117: No type found for <symbol>. No type has been generated for the symbol.
No type check performed

Linker lk88 (2) C Development Environment

Errors (E)
E 215: Section <name> has a Two absolute sections may be linked (overlaid) on some

different address from the conditions. They must have the same address.
already linked one

E 216: Variable <name>, name A variable is allocated outside a referencing addressing
<name> has incompatible space.
external addressing modes

E 217: Variable <name>, has A variable is not yet allocated but two external references
incompatible external are made by non overlapping addressing modes.
addressing modes with
file <filename>

E 218: Variable <name>, also An attempt was made to link different address formats
referenced in <name> has between the current file and the mentioned file.
an incompatible address
format

E 219: Not supported/illegal feature An option/feature is not supported or illegal in given object
in object format format format.

E 220: page size (0xhexvalue) Section is too big to fit into the page.
overflow for section <name>
with size 0xhexvalue

E 221: message Error generated by the object.
E 222: Address of <name> not No address was assigned to the variable. Corrupted object

defined file.

Fatal Errors (F)
F 400: Cannot create file filename The given file could not be created.
F 401: Illegal object: Unknown An unknown command was detected in the object file.

command at offset offset Corrupted object file.
F 402: Illegal object: Corrupted Wrong byte count in hex number. Corrupted object file.

hex number at offset offset
F 403: Illegal section index A section index out of range was detected. Corrupted

object file.
F 404: Illegal object: Unknown An unknown variable was detected in the object file.

hex value at offset offset Corrupted object file.
F 405: Internal error number Internal fatal error.
F 406: message No key no IBM compatible PC.
F 407: Missing section size for Each section must have a section size command in the

section <name> object. Corrupted object file.
F 408: Out of memory An attempt to allocate more memory failed.
F 409: Illegal object, offset offset Inconsistency found in the object module.

Error Messages

Warnings (W)
W 118: Variable <name>, has A variable is not yet allocated but two external references

incompatible external are made by non overlapping addressing modes.
addressing modes with
file <filename>

W 119: error from the Embedded If the embedded environment is readable for the linker, the
Environment: message, addressing mode check is relaxed. For instance, a variable
switched off relaxed defined as data may be accessed as huge.
addressing mode check

Errors (E)
E 200: Illegal object, assignment The MUFOM variable did not exist. Corrupted object file.

of non existing var var
E 201: Bad magic number The magic number of a supplied library file was not ok.
E 202: Section name does not Named section with different attributes encountered.

have the same attributes
as already linked files

E 203: Cannot open filename A given file was not found.
E 204: Illegal reference in address Illegal MUFOM variable used in value expression of a

of name variable. Corrupted object file.
E 205: Symbol 'name' already A symbol was defined twice.

defined in <name>
E 206: Illegal object, multi The MUFOM variable was assigned more than once

assignment on var probably due to a previous error 'already defined', E 205.
E 207: Object for different Bits per MAU, MAU per address or endian for this object

processor characteristics differs with the first linked object.
E 208: Found unresolved external(s): There were some symbols not found.
E 209: Object format in file not The object file has an unknown format, or is corrupted.

supported
E 210: Library format in file not The library file has an unknown format, or is corrupted.

supported
E 211: Function <function> cannot The overlay pool has already been built in a previous linker

be added to the already action.
built overlay pool <name>

E 212: Duplicate absolute section Absolute sections begin on a fixed address. They cannot
name <name> be linked.

E 213: Section <name> does not A section with the EQUAL attribute does not have the
have the same size as the same size as other, already linked, sections.
already linked one

E 214: Missing section address for Each absolute section must have a section address
absolute section <name> command in the object. Corrupted object file.

Linker lk88 (3) C Development Environment

Error Messages

Fatal Errors (F)
F 410: Illegal object Inconsistency found in the object module at unknown

offset.
F 413: Only name object can be It is not possible to link object for other processors.

linked
F 414: Input file file same as Input file and output file cannot be the same.

output file
F 415: Demonstration package One of the limits in this demo version was exceeded.

limits exceeded

Verbose (V)
V 000: Abort ! The program was aborted by the user.
V 001: Extracting files Verbose message extracting file from library.
V 002: File currently in progress: Verbose message file currently processed.
V 003: Starting pass number Verbose message, start of given pass.
V 004: Rescanning.... Verbose message rescanning library.
V 005: Removing file file Verbose message cleaning up.
V 006: Object file file format format Named object file does not have the standard tool chain

object format TIOF-695.
V 007: Library file format format Named library file does not have the standard tool chain

ar88 format.
V 008: Embedded environment Embedded environment successfully read.

name read, relaxed
addressing mode check
enabled

Locator lc88 (1) C Development Environment

Options

Error Messages

-M Produce a locate map file (.map)
-S space Generate specific space
-V Display version header only
-d file Read description file information from file, '-' means stdin
-e Clean up if erroneous result
-err Redirect error messages (.elc)
-f file Read command line information from file, '-' means stdin
-f format Specify output format
-o filename Specify name of output file
-p Make a proposal for a software part on stdout
-v Verbose option. Print name of each file as it is processed
-w n Suppress messages above warning level n

Startup Command

lC88 [option]...[file]... Warnings (W)
W 100: Maximum buffer size for For the given format, a maximum buffer size is defined.

name is size (Adjusted)
W 101: Cannot create map file The given file could not be created.

filename, turned off -M option
W 102: Only one -g switch allowed, Only one .out file can be debugged.

ignored -g before name
W 104: Found a negative length Only stack sections can have a negative length.

for section name, made it
positive

W 107: Inserted 'name' keyword A missing keyword in the description file was inserted.
at line line

W 108: Object name (name) Internal name of object file not the same as the filename.
differs from filename

W 110: Redefinition of system Usually only one load module will access the system table
start point (__lc_pm).

W 111: Two -o options, output Second -o option, the message gives the effective name.
name will be name

W 112: Copy table not referenced, If you use a copy statement in the layout part, the initial
initial data is not copied data is located in rom.

W 113: No .out files found to locate No files where specified at the invocation.
W 114: Cannot find start label label No start point found.
W 116: Redefinition of name at line Identifier was defined twice.

line
W 119: File filename not found in All files to be located must be given as an argument.

the argument list
W 120: unrecognized name option Wrong option assignment. Check the manual for

<name> at line line possibilities.
(inserted 'name')

W 121: Ignored illegal sub-option An illegal format sub option was detected.
'name' for name

W 122: Illegal option: option An illegal option was detected.
(-H or -\? for help)

W 123: Inserted character at line The given character was missing in the description file.
line

W 124: Attribute attribute at line An unknown attribute was specified in the description file.
line unknown

W 125: Copy table not referenced, Sections with attribute blank are detected, but the copy
blank sections are not table is not referenced. The locator generates info for the
cleared startup module in the copy table for clearing blank sections

at startup.

Locator lc88 (2) C Development Environment

Errors (E)
E 208: Cannot find a cluster for No writable memory available, or unknown addressing

section name mode.
E 210: Unrecognized keyword An unknown keyword was used in the description file.

<name> at line line
E 211: Cannot find 0xhexnumber One of virtual or physical memory was occupied, or there

bytes for section name was no physical memory at all!
(fixed mapping)

E 213: The physical memory of A mapping failed. There was no virtual address space left.
name cannot be addressing
in space name

E 214: Cannot map section name, An absolute mapping failed.
virtual memory address
occupied

E 215: Available space within The available addressing space for an addressing mode
name exceeded by number has been exceeded.
bytes for section name

E 217: No room for section name The size of the cluster as defined in the .dsc file is too
in cluster name small.

E 218: Missing identifier at line line This identifier must be specified.
E 219: Missing ')' at line line Matching bracket missing.
E 220: Symbol 'symbol' already A symbol was defined twice.

defined in <name>
E 221: Illegal object, multi The MUFOM variable was assigned more than once,

assignment on var probably due to an error of the object producer.
E 223: No software description Each input file must be described in the software

found description in the .dsc file.
E 224: Missing <length> keyword No length definition found in hardware description.

in block 'name' at line line
E 225: Missing <keyword> keyword For the given mapping, the keyword must be specified.

in space 'name' at line line
E 227: Missing <start> keyword in No start definition found in hardware description.

block 'name' at line line
E 230: Cannot locate section name, An absolute address was requested, but the address was

requested address occupied already occupied by another process or section.
E 232: Found file filename not All files to be located need a definition record in the

defined in the description file description file.
E 233: Environment variable too Found environment variable in the dsc file contains too

long in line line many characters.
E 235: Unknown section size for No section size found in this .out file. In fact a corrupted

section name .out file.

Error Messages

Warnings (W)
W 127: Layout name not found The used layout in the named file must be defined in the

layout part.
W 130: Physical block name It is not possible to assign a block more than once to a

assigned for the second layout block.
time to a layout

W 136: Removed character at line The character is not needed here.
line

W 137: Cluster name declared The named cluster is declared twice.
twice (layout part)

W 138: Absolute section name at Absolute section with an address outside physical memory.
non-existing memory
address 0xhexnumber

W 139: message Warning message from the embedded environment.
W 140: File filename not found as All processes defined in the locator description file

a parameter (software part) must be specified on the invocation line.
W 141: Unknown space <name> An unknown space name was specified with a -S option.

in -S option
W 142: No room for section name A section with attribute read-only could not be placed in

in read-only memory, trying read-only memory, the section will be placed in writable
writable memory ... memory.

Errors (E)
E 200: Absolute address An absolute address was requested, but the address was

0xhexnumber occupied already occupied by another section.
E 201: No physical memory An absolute address was requested, but there is no

available for section name physical memory at this address.
E 202: Section name with mau A bit section cannot be located in a byte oriented

size size cannot be located addressing mode.
in an addressing mode with
mau size size

E 203: Illegal object, assignment The MUFOM variable did not exist.
of non existing var var

E 204: Cannot duplicate section The process must be located more than once, but the
'name' due to hardware section is mapped to a virtual space without memory
limitations management possibilities.

E 205: Cannot find section for name Found a variable without a section, should not be possible.
E 206: Size limit for the section Small sections do not fit in a page any more.

group containing section
name exceeded by
0xhexnumber bytes

E 207: Cannot open filename A given file was not found.

Locator lc88 (3) C Development Environment

Fatal Errors (F)
F 400: Cannot create file filename The given file could not be created.
F 401: Cannot open filename A given file was not found.
F 402: Illegal object: Unknown An unknown command was detected in the object file.

command at offset offset Corrupted object file.
F 403: Illegal filename (name) A filename with an illegal extension was detected on the

detected command line.
F 404: Illegal object: Corrupted Wrong byte count in hex number. Corrupted object file.

hex number at offset offset
F 405: Illegal section index A section index out of range was detected.
F 406: Illegal object: Unknown An unknown variable was detected in the object file.

hex value at offset offset Corrupted object file.
F 407: No description file found The locator must have a description file with the description

of the hardware and the software of your system.
F 408: message No protection key or not an IBM compatible PC.
F 410: Only one description file The locator accepts only one description file.

allowed
F 411: Out of memory An attempt to allocate more memory failed.
F 412: Illegal object, offset offset Inconsistency found in the object module.
F 413: Illegal object Inconsistency found in the object module at unknown

offset.
F 415: Only name .out files can It is not possible to locate object for other processors.

be located
F 416: Unrecoverable error at line An unrecoverable error was made in the description file in

line, name the given part.
F 417: Overlaying not yet done Overlaying is not yet done for this .out file, link it first

without -r flag!
F 418: No layout found, or layout If there are syntax errors in the layout, it may occur that the

not consistent layout is not usable for the locator.
F 419: message Fatal from the embedded environment.
F 420: Demonstration package One of the limits in this demo version was exceeded.

limits exceeded

Error Messages

Errors (E)
E 236: Unrecoverable specification An unrecoverable error was made in the description file.

at line line
E 238: Found unresolved At locate time all externals should be satisfied.

external(s):
E 239: Absolute address addr.addr In the given space the absolute address was not found.

not found
E 240: Virtual memory space name In the description files software part for the given file, a non

not found existing memory space was mentioned.
E 241: Object for different Bits per MAU, MAU per address or endian for this object

processor characteristics differs with the first linked object.
E 242: message Error generated by the object.
E 244: Missing name part The given part was not found in the description file,

possibly due to a previous error.
E 245: Illegal name value at line line A non valid value was found in the description file.
E 246: Identifier cannot be a A non valid identifier was found in the description file.

number at line line
E 247: Incomplete type specification, An unknown type was referenced by the given file.

type index = Thexnumber Corrupted object file.
E 250: Address conflict between Overlapping addresses in the memory part of the

block block1 and block2 description file.
(memory part)

E 251: Cannot find 0xhexnumber No room in the physical block in which the section must be
bytes for section section in located.
block block

E 255: Section 'name' defined Sections cannot be declared more than once in one
more than once at line line layout/loadmod part.

E 258: Cannot allocate reserved The memory for a reserved piece of space was occupied.
space for process number

E 261: User assert: message User-programmed assertion failed.
E 262: Label 'name' defined more Labels defined in the description file must be unique.

than once in the software part
E 264: message Error from the embedded environment.
E 265: Unknown section address No section address found in this .out file. In fact a

for absolute section name corrupted .out file.
E 266: %s %s not (yet) supported The requested functionality is not (yet) supported in this

release.

Locator lc88 (4) C Development Environment

Error Messages

Verbose (V)
V 000: File currently in progress: Verbose message. On the next lines single filenames are

printed as they are processed.
V 001: Output format: name Verbose message for the generated output format.
V 002: Starting pass number Verbose message, start of given pass.
V 003: Abort ! The program was aborted by the user.
V 004: Warning level number Verbose message, report the used warning level.
V 005: Removing file file Verbose message cleaning up.
V 006: Found file <filename> via The description (include) file was not found in the standard

path pathname directory.
V 007: message Verbose message from the embedded environment.

DELFEE C Development Environment

Keyword

address Specify absolute memory address
amode Specify the addressing modes
assert Error if assertion failed
attribute Assign attributes to clusters, sections, stack or heap
block Define physical memory area
bus Specify address bus
chips Specify cpu chips
cluster Specify the order and placement of clusters
copy Define placement of ROM-copies of data sections
cpu Define cpu part
dst Destination address
fixed Define fixed point in memory map
gap Reserve dynamic memory gap
heap Define heap
label Define virtual address label
layout Start of the layout description
length Length of stack, heap, physical block or reserved space
load_mod Define load module (process)
map Map a source address on a destination address
mau Define minimum addressable unit (in bits)
mem Define physical start address of a chip
memory Define memory part
regsfr Specify register file for use by debugger
reserved Reserve memory
section Define how a section must be located
selection Specify attributes for grouping sections into clusters
size Size of address space or memory
software Define the software part
space Define an addressing space or specify memory blocks
src Source address
stack Define a stack section
start Give an alternative start label
table Define a table section

AMERICA

EPSON ELECTRONICS AMERICA, INC.

HEADQUARTERS
2580 Orchard Parkway
San Jose, CA 95131, U.S.A.
Phone: +1-800-228-3964 Fax: +1-408-922-0238

SALES OFFICE
Northeast
301 Edgewater Place, Suite 210
Wakefield, MA 01880, U.S.A.
Phone: +1-800-922-7667 Fax: +1-781-246-5443

EUROPE
EPSON EUROPE ELECTRONICS GmbH

HEADQUARTERS
Riesstrasse 15 Muenchen Bayern
80992 GERMANY
Phone: +49-89-14005-0 Fax: +49-89-14005-110

ASIA
EPSON (CHINA) CO., LTD.
7F, Jinbao Bldg., No.89 Jinbao St., Dongcheng District
Beijing 100005, CHINA
Phone: +86-10-6410-6655 Fax: +86-10-6410-7320

SHANGHAI BRANCH
7F, Block B, Hi-Tech Bldg., 900, Yishan Road
Shanghai 200233, CHINA
Phone: +86-21-5423-5522 Fax: +86-21-5423-5512

EPSON HONG KONG LTD.
20/F, Harbour Centre, 25 Harbour Road
Wanchai, Hong Kong
Phone: +852-2585-4600 Fax: +852-2827-4346
Telex: 65542 EPSCO HX

EPSON (CHINA) CO., LTD.
SHENZHEN BRANCH
12/F, Dawning Mansion, Keji South 12th Road
Hi-Tech Park, Shenzhen
Phone: +86-755-2699-3828 Fax: +86-755-2699-3838

EPSON TAIWAN TECHNOLOGY & TRADING LTD.
14F, No. 7, Song Ren Road
Taipei 110
Phone: +886-2-8786-6688 Fax: +886-2-8786-6660

EPSON SINGAPORE PTE., LTD.
1 HarbourFront Place
#03-02 HarbourFront Tower One, Singapore 098633
Phone: +65-6586-5500 Fax: +65-6271-3182

SEIKO EPSON CORPORATION
KOREA OFFICE
50F, KLI 63 Bldg., 60 Yoido-dong
Youngdeungpo-Ku, Seoul, 150-763, KOREA
Phone: +82-2-784-6027 Fax: +82-2-767-3677

GUMI OFFICE
2F, Grand B/D, 457-4 Songjeong-dong
Gumi-City, KOREA
Phone: +82-54-454-6027 Fax: +82-54-454-6093

SEIKO EPSON CORPORATION
SEMICONDUCTOR OPERATIONS DIVISION

IC Sales Dept.
IC International Sales Group
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-42-587-5814 Fax: +81-42-587-5117

International Sales Operations

EPSON Electronic Devices Website

SEMICONDUCTOR OPERATIONS DIVISION

First issue October, 2001
Printed March, 2008 in Japan BL

(Integrated Tool Package for S1C88 Family)
C Compiler/Assembler/Linker

S5U1C88000C Manual I

http://www.epson.jp/device/semicon_e

Document code: 411391200

	1 C COMPILER
	1.1 Overview
	1.1.1 Introduction to S1C88 C Cross-Compiler
	1.1.2 General Implementation
	1.1.2.1 Compiler Phases
	1.1.2.2 Frontend Optimizations
	1.1.2.3 Backend Optimizations

	1.1.3 Compiler Structure
	1.1.4 Environment Variables
	1.1.4.1 Using the Control Program
	1.1.4.2 Using the Makefile

	1.2 Language Implementation
	1.2.1 Introduction
	1.2.2 Accessing Memory
	1.2.2.1 Storage Types
	1.2.2.2 Memory Models
	1.2.2.3 The _at() Attribute

	1.2.3 Data Types
	1.2.3.1 ANSI C Type Conversions
	1.2.3.2 Character Arithmetic
	1.2.3.3 Special Function Registers

	1.2.4 Function Parameters
	1.2.5 Parameter Passing
	1.2.6 Automatic Variables
	1.2.7 Register Variables
	1.2.8 Initialized Variables
	1.2.9 Type Qualifier volatile
	1.2.10 Strings
	1.2.11 Pointers
	1.2.12 Function Pointers
	1.2.13 Inline C Functions
	1.2.14 Inline Assembly
	1.2.15 Calling Assembly Functions
	1.2.16 Intrinsic Functions
	1.2.17 Interrupts
	1.2.18 Structure Tags
	1.2.19 Typedef
	1.2.20 Language Extensions
	1.2.21 Portable C Code
	1.2.22 How to Program Smart

	1.3 Run-time Environment
	1.3.1 Startup Code
	1.3.2 Register Usage
	1.3.3 Section Usage
	1.3.4 Stack
	1.3.5 Heap
	1.3.6 Interrupt Functions

	1.4 Compiler Use
	1.4.1 Control Program
	1.4.1.1 Detailed Description of the Control Program Options
	1.4.1.2 Environment Variables

	1.4.2 Compiler
	1.4.2.1 Detailed Description of the Compiler Options

	1.4.3 Include Files
	1.4.4 Pragmas
	1.4.5 Compiler Limits
	1.4.6 Linker Messages
	1.4.7 Return Values

	1.5 Libraries
	1.5.1 Header Files
	1.5.2 C Libraries
	1.5.2.1 C Library Implementation Details
	1.5.2.2 C Library Interface Description
	1.5.2.3 Printf and Scanf Formatting Routines

	1.5.3 Run-time Library

	1.6 Floating Point Arithmetic
	1.6.1 Data Size and Register Usage
	1.6.2 Compiler Option
	1.6.3 Special Floating Point Values
	1.6.4 Trapping Floating Point Exceptions
	1.6.5 Floating Point Trap Handling API
	1.6.6 Floating Point Libraries
	1.6.6.1 Floating Point Arithmetic Routine

	2 ASSEMBLER
	2.1 Description
	2.1.1 Invocation
	2.1.2 Detailed Description of Assembler Options
	2.1.3 Environment Variables used by as88
	2.1.4 List File
	2.1.4.1 Absolute List File Generation
	2.1.4.2 Page Header
	2.1.4.3 Source Listing

	2.1.5 Debug Information
	2.1.6 Instruction Set

	2.2 Software Concept
	2.2.1 Introduction
	2.2.2 Modules
	2.2.2.1 Modules and Symbols

	2.2.3 Sections
	2.2.3.1 Section Names
	2.2.3.2 Absolute Sections
	2.2.3.3 Grouped Sections
	2.2.3.4 Section Examples

	2.3 Assembly Language
	2.3.1 Input Specification
	2.3.2 Assembler Significant Characters
	2.3.3 Registers
	2.3.4 Other Special Names

	2.4 Operands and Expressions
	2.4.1 Operands
	2.4.1.1 Operands and Addressing Modes

	2.4.2 Expressions
	2.4.2.1 Number
	2.4.2.2 Expression String
	2.4.2.3 Symbol
	2.4.2.4 Expression Type

	2.4.3 Operators
	2.4.3.1 Addition and Subtraction
	2.4.3.2 Sign Operators
	2.4.3.3 Multiplication and Division
	2.4.3.4 Shift Operators
	2.4.3.5 Relational Operators
	2.4.3.6 Bitwise Operators
	2.4.3.7 Logical Operators

	2.4.4 Functions
	2.4.4.1 Mathematical Functions
	2.4.4.2 String Functions
	2.4.4.3 Macro Functions
	2.4.4.4 Assembler Mode Functions
	2.4.4.5 Address Handling Functions
	2.4.4.6 Detailed Description

	2.5 Macro Operations
	2.5.1 Introduction
	2.5.2 Macro Operations
	2.5.3 Macro Definition
	2.5.4 Macro Calls
	2.5.5 Dummy Argument Operators
	2.5.5.1 Dummy Argument Concatenation Operator - \
	2.5.5.2 Return Value Operator - ?
	2.5.5.3 Return Hex Value Operator - %
	2.5.5.4 Dummy Argument String Operator - "
	2.5.5.5 Macro Local Label Operator - ^

	2.5.6 DUP, DUPA, DUPC, DUPF Directives
	2.5.7 Conditional Assembly

	2.6 Assembler Directives
	2.6.1 Overview
	2.6.1.1 Debugging
	2.6.1.2 Assembly Control
	2.6.1.3 Symbol Definition
	2.6.1.4 Data Definition/Storage Allocation
	2.6.1.5 Macros and Conditional Assembly

	2.6.2 ALIGN Directive
	2.6.3 ASCII Directive
	2.6.4 ASCIZ Directive
	2.6.5 CALLS Directive
	2.6.6 COMMENT Directive
	2.6.7 DB Directive
	2.6.8 DEFINE Directive
	2.6.9 DEFSECT Directive
	2.6.10 DS Directive
	2.6.11 DUP Directive
	2.6.12 DUPA Directive
	2.6.13 DUPC Directive
	2.6.14 DUPF Directive
	2.6.15 DW Directive
	2.6.16 END Directive
	2.6.17 ENDIF Directive
	2.6.18 ENDM Directive
	2.6.19 EQU Directive
	2.6.20 EXITM Directive
	2.6.21 EXTERN Directive
	2.6.22 FAIL Directive
	2.6.23 GLOBAL Directive
	2.6.24 IF Directive
	2.6.25 INCLUDE Directive
	2.6.26 LOCAL Directive
	2.6.27 MACRO Directive
	2.6.28 MSG Directive
	2.6.29 NAME Directive
	2.6.30 PMACRO Directive
	2.6.31 RADIX Directive
	2.6.32 SECT Directive
	2.6.33 SET Directive
	2.6.34 SYMB Directive
	2.6.35 UNDEF Directive
	2.6.36 WARN Directive

	2.7 Assembler Controls
	2.7.1 Introduction
	2.7.2 Overview Assembler Controls
	2.7.3 Description of Assembler Controls
	2.7.3.1 CASE
	2.7.3.2 IDENT
	2.7.3.3 LIST ON/OFF
	2.7.3.4 LIST
	2.7.3.5 MODEL
	2.7.3.6 STITLE
	2.7.3.7 TITLE
	2.7.3.8 WARNING

	3 LINKER
	3.1 Overview
	3.2 Linker Invocation
	3.2.1 Detailed Description of Linker Options

	3.3 Libraries
	3.3.1 Library Search Path
	3.3.2 Linking with Libraries
	3.3.3 Library Member Search Algorithm

	3.4 Linker Output
	3.5 Overlay Sections
	3.6 Type Checking
	3.6.1 Introduction
	3.6.2 Recursive Type Checking
	3.6.3 Type Checking between Functions
	3.6.4 Missing Types

	3.7 Linker Messages

	4 LOCATOR
	4.1 Overview
	4.2 Invocation
	4.2.1 Detailed Description of Locator Options

	4.3 Getting Started
	4.4 Calling the Locator via the Control Program
	4.5 Locator Output
	4.6 Locator Messages
	4.7 Address Space
	4.8 Copy Table
	4.9 Locator Labels
	4.9.1 Locator Labels Reference

	5 DESCRIPTIVE LANGUAGE FOR EMBEDDED ENVIRONMENTS
	5.1 Introduction
	5.2 Getting Started
	5.2.1 Introduction
	5.2.2 Basic Structure

	5.3 CPU Part
	5.3.1 Introduction
	5.3.2 Address Translation: map and mem
	5.3.3 Address Spaces
	5.3.4 Addressing Modes
	5.3.5 Busses
	5.3.6 Chips
	5.3.7 External Memory

	5.4 Software Part
	5.4.1 Introduction
	5.4.2 Load Module
	5.4.3 Layout Description
	5.4.4 Space Definition
	5.4.5 Block Definition
	5.4.6 Selecting Sections
	5.4.7 Cluster Definition
	5.4.8 Amode Definition
	5.4.9 Manipulating Sections in Amodes
	5.4.10 Section Placing Algorithm

	5.5 Memory Part
	5.5.1 Introduction

	5.6 Delfee Keyword Reference
	5.6.1 Abbreviation of Delfee Keywords
	5.6.2 Delfee Keywords Summary

	6 UTILITIES
	6.1 Overview
	6.2 ar88
	6.3 cc88
	6.4 mk88
	6.5 pr88
	6.5.1 Preparing the Demo Files
	6.5.2 Displaying Parts of an Object File
	6.5.2.1 Option -h, display general file info
	6.5.2.2 Option -s, display section info
	6.5.2.3 Option -c, display call graphs
	6.5.2.4 Option -e, display external part
	6.5.2.5 Option -g, display global type information
	6.5.2.6 Option -d, display debug information
	6.5.2.7 Option -i, display the section images

	6.5.3 Viewing an Object at Lower Level
	6.5.3.1 Object Layers
	6.5.3.2 The Level Option -ln
	6.5.3.3 The Verbose Option -vn

	APPENDIX
	A C COMPILER ERROR MESSAGES
	B ASSEMBLER ERROR MESSAGES
	C LINKER ERROR MESSAGES
	D LOCATOR ERROR MESSAGES
	E ARCHIVER ERROR MESSAGES
	F EMBEDDED ENVIRONMENT ERROR MESSAGES
	G DELFEE
	H IEEE-695 OBJECT FORMAT
	H.1 IEEE-695
	H.2 Command Language Concept
	H.3 Notational Conventions
	H.4 Expressions
	H.4.1 Functions without Operands
	H.4.2 Monadic Functions
	H.4.3 Dyadic Functions and Operators
	H.4.4 MUFOM Variables
	H.4.5 @INS and @EXT Operator
	H.4.6 Conditional Expressions

	H.5 MUFOM Commands
	H.5.1 Module Level Commands
	H.5.1.1 MB Command
	H.5.1.2 ME Command
	H.5.1.3 DT Command
	H.5.1.4 AD Command

	H.5.2 Comment and Checksum Command
	H.5.3 Sections
	H.5.3.1 SB Command
	H.5.3.2 ST Command
	H.5.3.3 SA Command

	H.5.4 Symbolic Name Declaration and Type Definition
	H.5.4.1 NI Command
	H.5.4.2 NX Command
	H.5.4.3 NN Command
	H.5.4.4 AT Command
	H.5.4.5 TY Command

	H.5.5 Value Assignment
	H.5.5.1 AS Command

	H.5.6 Loading Commands
	H.5.6.1 LD Command
	H.5.6.2 IR Command
	H.5.6.3 LR Command
	H.5.6.4 RE Command

	H.5.7 Linkage Commands
	H.5.7.1 RI Command
	H.5.7.2 WX Command
	H.5.7.3 LI Command
	H.5.7.4 LX Command

	H.6 MUFOM Functions

	I MOTOROLA S-RECORDS

	Quick Reference
	C Program Development Flowchart
	C Compiler c88
	Assembler as88
	Linker lk88
	Locator lc88
	DELFEE

