

ASICS

Gate Arrays / Embedded Arrays / Standard Cells

2025

Business Concept

The widespread of smartphones and tablets make improvements of broadband and wireless communications, then the advanced information and telecommunications network society has become a reality. In particular, semiconductors for use in portable devices, information terminals, in-vehicle devices and FA devices are expected to provide higher performance in terms of thinner structure, lighter weight, and longer operation with limited power supply. We have been focusing on the creation of compact, low-power semiconductors since we started the development of CMOS LSI for watches in 1969. Since then, we have steadily built up our expertise in energy-saving, space-saving, and time-saving designs. This has enabled us to quickly obtain the semiconductor development technology needed to meet the demands of the new era of the advanced information and telecommunications network society. Our concept is to develop "saving technologies" to reduce power consumption, development times, and implementation space. Our goal is to be a true partner for you, providing you with strategic advantages, enhancing your customer value based on our "saving technologies" and mixed analog/digital technologies that we have cultivated, as well as our design capabilities, manufacturing capabilities and stable supply that can satisfy your detailed requirements.

Environmental Responsibility

Epson semiconductor technology provides environmental value to customers by creating and manufacturing eco-friendly products.

1) We Epson's products are surely complying with the Eu-RoHS (2011/65/EU) Directive.

2) We are releasing information about the containing chemical substances of products at web-site. Product of QFP & BGA are described in the following URL.

global.epson.com/products_and_drivers/semicon/information/package_lineup.html *Some products are excluded.

Environmental management system third party certification status ISO14001 Type of certification : ISO 14001: 2015, JIS Q 14001: 2015 Awarded to : TOHOKU EPSON CORPORATION, SELKO EPSON CORPORATION,

SEIKO EPSON CORPORATION (Fujimi Plant, Suwa Minami Plant) Certified by : Bureau Veritas Certification

Date of certification : April 3, 1999 Type of certification : ISO 14001: 2015 Awarded to : Singapore Epson Industrial Pte. Ltd. Certified by : SGS Date of certification : Jan 12, 1999

Epson's Quality Policy

Keeping the customer in mind at all times, we make the quality of our products and services our highest priority. In oder to continue to creating products and services that please our customers and earn their trust. Epson's Semiconductor Business has acquired ISO9001 and IATF16949 certification with its IC, module and their application products.

Type of Certification : IATF16949:2016 Awarded to : Singapore Epson Industrial Pte. Ltd. Certified by : SGS Initial Date of Certification : May 2, 2018

ASICs

C O N T E N T S

History of Epson semiconductor	4-5	Package Lineup	17-19
ASIC Product Lineup	6-7	Gate Array Package List	20-22
Gate Arrays	8-9	Package's Thermal Resistance	23
Embedded Arrays	10	User Interface	24
Standard Cells	11	Development Flow	25
Macro Cells	12-13	Epson ASIC Website	26
Epson Originals	14-16		

ASICs History of Epson semiconductor

History of Epson Semiconductor's Technology

As the semiconductor division of "worldwide watch maker Seiko", semiconductor business has expanded into LCD Drivers, ASICs and MCUs from IC for Watches. These businesses are all based on Epson's energy-saving technology.

Epson Semiconductor's History

Development of CMOS IC for watches started CMOS IC production started in Headquarter Fujimi plant (B-wing, 4 inch) operation started A-wing (5 inch) operation started D-wing (6 inch) operation started Sakata plant (S-wing,6 inch) operation started ISO9000 series certified Singapore assembly plant (SEP) operation started T-wing (8 inch, Sakata) operation started ISO14001 certified T-wing manufacturing line expanded

ISO/TS16949 certified

Microdevices Operations Division started IATF16949 certified

ASICs

History of Epson semiconductor **ASICs**

ASICs

ASIC Product Lineup

Epson's ASIC offerings aim to provide the best overall solution thus enabling our customers to get products to market successfully. Epson ASIC products include gate arrays that address the need for fast turnaround, at low IC development costs; Standard Cells, that make system solutions possible at the lowest unit price, and embedded arrays that combine the fast turnaround time of gate arrays with the ability to implement system level functionality on chips available with standard cells.

Base arrays are prefabricated with different numbers of transistors giving customers a wide range of choices to implement their circuits. This offers flexibility to customers by giving them the choice of adding or subtracting functionality from the design.

ASIC Product Lineup

Embedded Arrays

S1X80000	0.15µm	Core 1.8V 3.3V single power supply with LDO
S1X60000	0.25µm	Core 1.8V, 2.0V, 2.5V 5V interface
S1X50000	0.35µm	Core 2.0V, 2.5V, 3.3V 5V interface
S1X5V000	0.35µm	Core 3.3V, 5.0V 5V single power supply

The embedded array combines the fast turnaround time of gate arrays with the ability to implement system level functionality available in standard cells. The fast turnaround is accomplished by starting some of the wafer fabrication processes in parallel with the embedded array design process. In selecting an embedded array approach, the designer trades off the ability to change the base array in the last minute, possible with a gate array, with the need to implement system level functionality, with gate array like turnaround.

By offering gate arrays, standard cells, and embedded arrays; Epson offers a choice to meet the individual needs of our customers.

Standard Cells

S1K80000	0.15um	Core 1.8V 3.3V single power supply with LDO
31100000	0.15pm	

Standard cells (cell-based ASICs) are semi-custom ICs that enable optimally designed internal logic cells, memories such as ROM and RAM, CPU, and analog circuits to be implemented all on the same chip. As such, standard cells enable more design flexibility than gate arrays, offer more advanced functionality and higher integration, and can be developed as system LSI optimized for the customer's needs. Such optimization enables the achieving of ever more advanced functionality and lower power consumption.

Epson's Gate Array is a suitable solution for replacing existing devices because this Gate Array option gives flexibility to adapt the power supply and layouts of other various signals. Furthermore Epson has invested on the new Gate Array series called "S1L5V000" which supports 5V single power supply with 0.35µm process. Since it is a new series, it is also suitable for long life time applications.

S1L50000	Sorios													Core	I/O
51250000	Juou Jerres													2.0V	2.0V
Se	ries	S1L50	000 Seri	es										2.07	3.3V
		• Ultra la	• Ultra large scale integration (0.35µm CMOS, using 2-, 3- or 4-layer interconnect process)								2.5V	2.5V			
		• High-speed operation (0.14ns delay at 3.3V, with 2-input power NAND Typ.)								2.50	3.3V				
F		• Low po	• Low power consumption (Internal cell: 0.7µW/MHz/gate at 3.3V)									3.3V	3.3V		
Fea	tures	• Drivab	ility (lo∟ =	0.1, 1, 3, 8	8, 12, 24m	A, PCI at	5.0 V, Iol =	= 0.1, 1, 2,	6, 12mA,	PCI at 3.3	V,			5.5V	5.0V
			Iol	= 0.1, 0.5,	1, 3, 6mA	at 2.5V,	IOL = 0.05,	0.3, 0.6, 2	, 4mA at	2.0V)					
	Double layer	S1L50062	S1L50122	S1L50282	S1L50552	S1L50752	S1L50992	S1L51252	S1L51772	S1L52502	S1L53352	S1L54422	\$1L55062	S1L56682	S1L58152
Model	Triple layer	S1L50063	S1L50123	S1L50283	S1L50553	S1L50753	S1L50993	S1L51253	S1L51773	S1L52503	S1L53353	S1L54423	S1L55063	S1L56683	S1L58153
	Quadruple layer	S1L50064	S1L50124	S1L50284	S1L50554	S1L50754	S1L50994	S1L51254	S1L51774	S1L52504	S1L53354	S1L54424	S1L55064	S1L56684	S1L58154
Total BC (Row gates)	5.8k	12.0k	28.8k	55.5k	75.8k	99.2k	125.8k	177.1k	250.2k	335.9k	442.2k	506.7k	668.6k	815.5k
	Double layer	2.9k	6.0k	14.4k	26.1k	35.7k	46.7k	56.6k	79.7k	112.6k	144.5k	176.9k	202.7k	267.5k	326.2k
Usable gates	Triple layer	5.1k	10.6k	25.3k	47.2k	64.4k	84.4k	100.7k	132.8k	187.7k	251.9k	309.5k	354.7k	468.0k	570.9k
gutes	Quadruple layer	5.5k	11.4k	27.3k	52.8k	72.0k	94.3k	119.5k	168.2k	237.7k	319.1k	397.9k	456.1k	601.7k	734.0k
Total Lead	80µm	-	56	88	124	144	168	188	224	264	308	352	376	432	480
Count	70µm	48	64	104	144	168	192	216	-	-	-	-	-	-	-
	Internal gates			tpd	= 0.14ns	(3.3V, F/C	2, typica	l wire loa	d), 0.21n	s (2.0V, F/	O 2, typic	al wire lo	ad)		
Delay Time	Input buffer	$t_{pd} = 0$.38ns (5.0	V, F/O 2, t	ypical wir	e load) Le	vel shifter	r: 0.4ns (3.	3V, F/O 2,	typical w	ire load),	1.3ns (2.0)	V, F/O 2, t	ypical wire	e load)
	Output buffer				$t_{pd} = 2$	2.12ns (5.0	V) Level	shifter: 2.	02ns (3.3	V), 3.9ns (2.0V) CL =	= 15pF			
I/O	level	CMOS, LVTTL, PCI-5V, PCI-3.3V													
Input	modes				L	VTTL, CN	IOS, Pull-ι	up/Pull-do	wn, Schn	nitt, Fail-s	afe, Gate	d			
Output	m odes				N	ormal, O	pen drain	, 3-state,	Bidirectio	nal, Fail-s	safe, Gate	d			

Note: Figures shown for usable gates are approximations. The actual number of usable gates varies according to the implemented circuitry.

S1L5V000 Series

Se	eries	S1L5V000 se	ries						5.0V	5.0V	1	
Fea	itures	High speed opLow power co	2 Large scale integration (0.35µm CMOS, using 2-, 3-, 4-layer interconnect process) 3.3V 9 High speed operation (internal gate delay: 0.19ns at 5V, 0.29ns at 3.3V, 2-input power NAND Typ.) 2.000 power consumption (Internal cell: 5V 1.3µW/MHz/BC, 3.3V 0.54µW/MHz/BC) 9 Drive capacity (IoL = 0.1, 1, 3, 8, 12mA at 5.0V, IoL = 0.1, 1, 2, 6, 10mA at 3.3V) 3.3V									
	Double layer	S1L5V012	S1L5V042	-	S1L5V112	-	\$1L5V252	-	S	1L5V482		
Model	Triple layer	S1L5V013	S1L5V043	\$1X5V513*	S1L5V113	\$1X5V523*	S1L5V253	\$1X5V533*	S	1L5V483		
	Quadruple layer	S1L5V014	S1L5V044	\$1X5V514*	S1L5V114	\$1X5V524*	S1L5V254	\$1X5V534*	S	1L5V484		
Total BC	(Row gates)	8.8k	42.0k	26.0k	109.2k	90.3k	254.3k	235.0k		479.9k		
	Double layer	2.6k	12.6k	-	32.7k	-	63.5k	-		119.9k		
Usable gates	Triple layer	5.3k	25.2k	14.3k	65.5k	49.7k	139.8k	129.3k		239.9k		
gatte	Quadruple layer	6.1k	29.4k	16.9k	76.4k	58.7k	165.3k	152.8k		287.9k		
Total Le	ead Count	48	10)4	16	58	25	56		308		
	Internal Gates	$t_{pd} = 0.$	19ns (5.0V opera	tion, F/O 2, typic	cal wiring load), t	apd = 0.29ns (3.3V	operation, F/O	2, typical wirir	g load)			
Delay Time	Input Buffer	t _{pd} =	0.45 ns (5.0V ope	ration, F/O 2, typ	ical wiring load),	tpd = 0.55ns (3.3V	operation, F/O 2,	typical wiring	load)			
	Output Buffer		tpd = 2.0	7ns (5.0V operat	tion, CL = 15pF), t	apd = 2.95ns (3.3V	operation, CL =	15pF)				
I/O	level				CMOS, TTI	L, LVTTL						
Input	modes	TTL, LVTTL, CMOS, Pull-up/Pull-down, Schmitt, Fail-safe, Gated										
Output	tm odes		Normal, Open-drain, 3-state, Bidirectional, Fail safe, Gated									

I/O

Core

Note: Figures shown for usable gates are approximations. The actual number of usable gates varies according to the implemented circuitry. *: Analog PLL built in master

ASICs

Gate Arrays

ASICs

Core

I/O

											Core	I/O	
S1L60000	51L60000 Series										1.8V	1.8V	
Se	ries	S1L60000) Series								1.0V	3.3V	
											2.0V	2.0V	
		5	 Ultra large scale integration (0.25µm CMOS, using 3-, 4-layer interconnect process) High-speed operation (107ps internal gate delay at 2.5V, with 2-input NAND Typ.) 									3.3V	
Feat	Features			on (Internal ce	5 ,			21.7			2.5V	2.5V	
Teat	ures	• Drivabilit	y (IoL = 0.1, 1,	3, 6, 12, 24mA	, A at 3.3V, lo∟ =	: 0.1, 1, 3, 6, 9	,18mA at 2.5\	Ι,			2.50	3.3V	
		IoL = 0.05, 0.3, 1, 2, 3, 6mA at 2.0V, IoL = 0.045, 0.27, 0.9, 1.8, 2.7, 5.4mA at 1.8V)											
Model	Triple layer	S1L60093	S1L60173	S1L60283	S1L60403	S1L60593	S1L60833	S1L61233	S1L61583	S1L	.61903	S1L62513	
woder	Quadruple layer	S1L60094	S1L60174	S1L60284	S1L60404	S1L60594	S1L60834	S1L61234	S1L61584	S1L	.61904	S1L62514	
Total BC (F	low gates)	99.2k	171.8k	284.4k	400.3k	595.4k	831.6k	1,234.9k	1,587.8k	1,9	03.0k	2,519.6k	
Usable	Triple layer	59.6k	103.1k	142.2k	200.2k	297.7k	332.7k	494.0k	635.1k	7	61.2k	1,007.9k	
gates	Quadruple layer	69.5k	120.2k	184.9k	260.2k	387.0k	415.8k	617.5k	793.9k	9	51.5k	1,259.8k	
Total Lead	80µm	-	-	-	-	-	284	344	388		424	488	
Count	70µm	112	148	188	224	272	-	-	-		-	-	
	Internal gates				tpd = 107ps (2.5V, F/O 1, t	ypical wire lo	ad)					
Delay Time	Input buffer				tpd = 270ps (2	2.5V, F/O 2, ty	pical wire lo	ad)					
	Output buffer				$t_{pd} = 1$	600ps (2.5V,	CL = 15pF)						
I/O le	evels				CM	OS, LVTTL, P	CI-3.3V						
Input	modes	CMOS, LVTTL, Pull-up/Pull-down, Schmitt, Level shifter, Fail-safe, Gated											
Output	modes	Normal, Open drain, 3-state, Bidirectional, Level shifter, Fail-safe, Gated											

Note: Figures shown for usable gates are approximations. The actual number of usable gates varies according to the implemented circuitry.

S1L80000 Series	(Under development)
-----------------	---------------------

9	Series	S1L80000 Series		1.8V LDO	3.3V 3.3V	1				
Features		 Internal gate delay: 34.5ps/1.8 Low power consumption (Internal sector) 	 Based on 0.15µm CMOS process technology using 4-, 5-layer interconnect process Internal gate delay: 34.5ps/1.8V, 2-input NAND Typ. Low power consumption (Internal cell: 0.063µW//MHz/gate 2-input NAND Typ.) Drive performance (Io_L = 2, 4, 8, 12mA at 3.3V) 							
Model	4-layer metal	S1L80104	S1L80154	S1L80204		S1L80304				
woder	5-layer metal	S1L80105	S1L80155	S1L80205		S1L80305				
Usable	4-layer metal	120k	230k	315k		650k		650k		
gates	5-layer metal	135k	255k	350k		720k				
Total L	ead Count	100	180	256		280				
LDO (Requires	external capacitors)	1	-	-		-				
	PLL	1	2	2		2				
LV	'DS IO	-	Tx 4 pairs/Rx 4 pairs	Tx 8 pairs/Rx 8 pairs	Tx 8 pairs/Rx 8 pair		pairs			
Dual Port S	SRAM (2R+2W)	-	-	256w x 16b x 4pcs	25	256w x 16b x 4pcs				
Status		Under development	Under development	Under development	Und	der develop	ment			

Note: Figures shown for usable gates are approximations. The actual number of usable gates varies according to the implemented circuitry.

ASICs

Embedded Arrays

Creating hard macros for cells that are highly integrated and have advanced functionality enables development of system-on-a-chip designs, and utilization of the sea-of-gates structure in the logic means that the development period subsequent to the interconnection process is roughly equivalent to that for gate array chips.

In addition, the base array for LSI can be reused allowing only the logic block to be modified in development lead time equivalent to that for gate array chips.

Embedded array technology also facilitates circuit design changes and thereby helps avoid the risks associated with product modifications.

S1X5V000 Series

S1X5V000 Series		Core	I/O	-
Series	S1X5V000 Series	3.3V	3.3V	
	• High-density integration (0.35µm CMOS process technology and 2/3/4-layer interconnect process)	5.0V	5.0V	I
Features	 High-speed operation (Internal gate delay: 0.19ns ps/5.0 V, 0.29ns/3.3 V, 2-input power NAND Typ.) Low power consumption (Internal cell: 1.3µW/MHz/gate, 5.0V, 0.54µW/MHz/gate, 3.3V, 2-input NAND Typ.) Drivability (IoL = 0.1, 1, 3, 8, 12 mA at 5.0 V, 0.1, 1, 2, 6, 10 mA at 3.3 V 	yp.)		

S1X50000 Series

		Core	1/0	-
Series	S1X50000 Series	2.0V	2.0V	
	• High-density integration (0.35µm CMOS process technology and 3/4-layer interconnect process)		3.3V	
	 High-speed operation (Internal gate delay: 150 ps/3.3 V, 2-input power NAND Typ.) Low power consumption (Internal cell: 0.37µW/MHz/gate, 3.3V, Typ.) Drivability (low = 0.1.1, 3.8, 13, 24mA at 5.0) (low = 0.1.1, 3.6, 13mA at 3.3) 	2.5V	2.5V	
Features			3.3V	
	 Drivability (IoL = 0.1, 1, 3, 8, 12, 24mA at 5.0V, IoL=0.1, 1, 2, 6, 12mA at 3.3V, IoL = 0.1, 0.5, 1, 3, 6mA at 2.5V, IoL=0.05, 0.3, 0.6, 2, 4mA at 2.0V) 		3.3V	
	10L = 0.1, 0.3, 1, 3, 011A at 2.3 v, 10L=0.03, 0.3, 0.0, 2, 411A at 2.0 v	3.3V	5.0V	-

....

S1X60000 Series

			Core	1/0	I - 1
	Series	S1X60000 Series	core		41.
			2.0V	2.0V	
		 High-density integration (0.25µm CMOS process technology and 3/4/5-layer interconnect process, number of raw gates: 2,500,000 Max.) High-speed operation (Internal gate delay: 107 ps/2.5 V, 2-input power NAND Typ.) 	2.00	3.3V	
	Features		2.5V	2.5V	
		 Low power consumption (Internal cell: 0.18µW/MHz/gate, 2.5V, Typ.) Drivability (IoL = 0.1, 1, 3, 6, 12, 24mA at 3.3V, IoL = 0.1, 1, 3, 6, 12, 24mA at 2.5V, 		3.3V	
		$I_{OL} = 0.05, 0.3, 1, 2, 4, 8$ mA at 2.0V)			

S1X80000 Series

			Core	I/O	1 -
	Series	S1X80000 Series	1.8V	3.3V	
		• Based on 0.15µm CMOS process technology using 4/5-layer interconnect process	1.8V	5.0V	
	Features	Internal gate delay: 34.5ps/1.8V, 2-input NAND Typ.		3.3V	
	reatures	 Low power consumption (Internal cell: 0.063µW /MHz/gate 2-input NAND Typ.) Drive performance (IoL = 2, 4, 8, 12mA at 3.3V) 			
		- Drive performance (iot = 2, 4, 0, 12m/at 3.57)			

Standard Cells

I/O

3.3V

Core

1.8V

Standard cells (cell-based ASICs) are semi-custom ICs that enable optimally designed internal logic cells, memories such as ROM and RAM, CPU peripherals, and analog circuits to be implemented all on the same chip. As such, standard cells enable more design flexibility than do gate arrays, offer more advanced functionality and higher integration, and can be developed as a system-on-a-chip optimized for the customer's needs.

Such optimization leads to ever more compact, power-conserving devices.

S1K80000 Series

Series	S1K80000 Series	1.8V	5.0V
Features	 Based on 0.15µm CMOS process technology using 4/5-layer interconnect process Internal gate delay: 42.9ps/1.8V, 2-input NAND Typ. Low power consumption (Internal cell: 0.039µW /MHz/gate 2-input NAND Typ.) Drive performance (IoL = 2, 4, 8, 12mA at 3.3V) 	LDO	3.3V

ASICs

Macro Cells

1. PLL

Series	\$1X5V000	\$1X50000	
Macro Type	A35M	A35K	A35M
Operation Voltage	4.5 to 5.5V	3.0 to	3.6V
Input Frequency	5MHz to 40MHz	32kHz	5MHz to 40MHz
Multiplication Ratio	x2 to x26	x610 to x4096	x2 to x26
Output Frequency	20MHz to 135MHz	20MHz to 135MHz	
Period Jitter	±3%	±3%	±2%
Output Duty	50%±10%	50%±	:10%
Lock Up Time	100µs	100msec	100µs
Low Pass Filter	On chip	On chip	
Temperature Range	-40 to 110°C	-40 to 85°C	
Layer	3	3	

Series	S1X60000		\$1X80000/	S1K80000
Macro Type	A25K	A25M	A15K	A15M
Operation Voltage	2.3 to 2.7V		1.65 to	1.95V
Input Frequency	32kHz	5MHz to 150MHz	32kHz	5MHz to 150MHz
Multiplication Ratio	Max. 16000	x1 to x16	x571 to x6667	x1 to x16
Output Frequency	20MHz to 200MHz		20MHz to 200MHz	
Period Jitter	±2%	±200ps	POUT≤100MHz ±2%	
renou sitter	±2.00 ±200ps		POUT>100M	1Hz ±200ps
Output Duty	50%=	£5%	50%±400ps	
Lock Up Time	100msec	100µs	100msec	200µs
Low Pass Filter	On chip		On chip	
Temperature Range	-40 to 85°C		-40 to 110°C	
Layer	3		4	ļ

2. ROM

Series	S1X50000	S1X60000	S1X80000/S1K80000
Macro Type	Standard	Standard	Standard
Memory Size/Module	1k to 256K-bit	1k to 256K-bit	1k to 512K-bit
Data Bus Width	x1 to x64 1-bit step	x1 to x64 1-bit step	x1 to x64 1-bit step
Operate Voltage	2.0V, 2.5V, 3.0V, 3.3V	2.0V, 2.5V	1.8V
Operate Frequensy (Max.)	50MHz	66MHz	56MHz
Layer	3	3	3

Macro Cells

ASICs

3. SRAM

Series	S1X5V000	
Macro Type	Standard	
Port	1-port 2-port (1R+1\	
Memory Size/Module	128 to 16K-bit	
Data Bus Width (bit)	x1 to x32 1-bit step	
Operating Voltage	3.3V, 5.0V	
Operation Frequency (Max.)	50MHz/5.0V	
Layer	3	

Series	S1X50000					
Macro Type	Stan	dard	High-Density	High Speed		
Port	1-port	Dual port (2R+2W)	1-port	1-port	2-port (1R+1W)	Dual port (2R+2W)
Memory Size/Module	128 to 64K-bit	1K to 64K-bit	32K to 512K-bit	32K to 72K-bit		
Data Bus Width (bit)	x1 to x32 1-bit step	x8, x16, x24, x32	x8, x16, x32	x1 to x144 1-bit step		
Write Option	Byte	Write	-	Byte Write		
Operating Voltage	2.0V, 2.5V,	3.0V, 3.3V	2.0V, 3.0V, 3.3V	3.3V		
Operation Frequency (Max.)	711	ЛНz	76MHz	125MHz 110MHz		
Layer	:	3	3	3		

Series	S1X60000				
Macro Type	Standard		High-Density	High Speed	
Port	1-port	Dual port (2R+2W)	1-port	1-port	2-port (1R+1W)
Memory Size/Module	128 to 64K-bit	1K to 64K-bit	32K to 512K-bit	128 to 64K-bit	
Data Bus Width (bit)	x1 to x32 1-bit step	x1 to x32 1-bit step x8, x16, x24, x32 x8, x16, x32 x4 to		x4 to x64	1-bit step
Write Option	Byte	Write	Byte Write	Byte Write	
Operating Voltage	2.0V, 2.5V		2.0V, 2.5V	2.5V	
Operation Frequency (Max.)	125MHz 119MHz 71MHz		71MHz	179MHz	
Layer	1	3	3	3	

Series	S1X80000/S1K80000				
Macro Type		Large Scale			
Port	1-port	2-port (1R+1W)	Dual port (2R+2W)	1-port	
Memory Size/Module	128 to 64K-bit	64 to 16K-bit	1K to 32K-bit	128K to 1M-bit	
Data Bus Width (bit)	x1 to x32 1-bit step	x1 to x32 1-bit step	x8, x16, x24, x32	x8, x16, x32	
Write Option	Byte Write – Byte Write			1-bit Write	
Operating Voltage		1.8V			
Operation Frequency (Max.)	125MHz	119MHz	116MHz	74MHz	
Layer	3	4	3	3	

Ask our sales department regarding Gate Array SRAM.

Epson Originals

Epson Originals -1- Replacement of existing devices

Epson Originals

3.3V

3.3V Device

 \overline{m}

3.3V

3.3V Device

 \overline{m}

Internal input (L) Gated control term

Epson Originals -2- Power System Interface

Development of low-voltage system power supplies continues as part of the trend toward reducing power consumption. However, in cases where not all system components can run on a single low-voltage power supply, multiple power supplies are used for the same system. Consequently, many of today's portable electronic devices include dual (5 V/3.3 V) power supplies, each with its own signals.

5 V/3.3 V Dual Power Supply System

3.3 V Single Power Supply System

Failsafe I/O Buffer Even when system constraints preclude the implementation of a dual power supply system, it is still possible to provide an interface between a 3.3 V single power supply chip and a 5 V chip by implementing an input buffer that does not include a forward diode (in the VDD direction), which also provides failsafe support for output.

Hi-Z state (Pin

Power separation suitable for low voltage power supply and low power consumption

ASICs Epson Originals

Epson Originals -3- Macro examples for embedded use

Epson ASICs can utilize various macros from Epson ASSPs or MCUs. Ask our sales department for details.

Package Lineup

ASICs

WL-CSP

(Top surface) (Botto

	IC Chip

РКС Тур	e	Pin	Body Size (mm)	Ball Pitch (mm)
WL-CSP (S1L5012)	000000000000000000000000000000000000000	16	2.4 X 2.4 X 0.8	0.5
WL-CSP (S1L5028)	00000 00000 000000	25	3.0 X 3.0 X 0.8	0.5
WL-CSP (S1L5075)	00000000 00000000 00000000000000000000	49	4.2 X 4.2 X 0.8	0.5
WL-CSP (S1L5125)		81	5.0 X 5.0 X 0.8	0.5
WL-CSP (S1L60093)		49	3.0 X 3.0 X 0.8	0.4

Quad Flat Non-leaded Package (QFN)

-

Plastic Ball Grid Array (PBGA)

(Top surface) (Top surface)		IC Chip
PKG Type (JEITA PKG Name)	Body Size (mm)	Lead Pitch (mm)
SQFN4-24 (P-VQFN024-0404-0.50)	4 X 4 X 1.0	0.5
SQFN5-32 (P-VQFN032-0505-0.50)	5 X 5 X 1.0	0.5
SQFN7-48 (P-VQFN048-0707-0.50)	7 X 7 X 1.0	0.5
SQFN9-64 (P-VQFN064-0909-0.50)	9 X 9 X 1.0	0.5

Package Lineup

Plastic Fine-pitch Ball Grid Array (PFBGA)

ASICs

Plastic Fine-pitch Ball	IC Chi		
(Top surface) (Bottom		older Ball	Interposer
PKG Type (JEITA PKG Name	9	Body Size (mm)	Ball Pitch (mm)
PFBGA5U-60 (P-TFBGA-060-0505-0.50)		5 X 5 X 1.2	0.5
PFBGA6U-96 (P-TFBGA-096-0606-0.50)		6 X 6 X 1.2	0.5
PFBGA7U-144 (P-TFBGA-144-0707-0.50)		7 X 7 X 1.2	0.5
PFBGA8U-161 (P-TFBGA-161-0808-0.50)		8 X 8 X 1.2	0.5
PFBGA8U-181 (P-TFBGA-181-0808-0.50)		8 X 8 X 1.2	0.5
PFBGA7U-100 (P-TFBGA-100-0707-0.65)		7 X 7 X 1.2	0.65
PFBGA8U-112 (P-TFBGA-112-0808-0.65)		8 X 8 X 1.2	0.65
PFBGA8U-121 (P-TFBGA-121-0808-0.65)		8 X 8 X 1.2	0.65
PFBGA10U-160 (P-TFBGA-160-1010-0.65)		10 X 10 X 1.2	0.65
PFBGA10U-180 (P-TFBGA-180-1010-0.65)		10 X 10 X 1.2	0.65
PFBGA12U-208 (P-TFBGA-208-1212-0.65)		12 X 12 X 1.2	0.65
PFBGA7U-48 (P-TFBGA-048-0707-0.80)		7 X 7 X 1.2	0.8
PFBGA8U-81 (P-TFBGA-081-0808-0.80)		8 X 8 X 1.2	0.8
PFBGA10U-121 (P-TFBGA-121-1010-0.80)	$\begin{smallmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$	10 X 10 X 1.2	0.8
PFBGA10U-144 (P-TFBGA-144-1010-0.80)	$\begin{smallmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$	10 X 10 X 1.2	0.8
PFBGA12U-180 (P-TFBGA-180-1212-0.80)		12 X 12 X 1.2	0.8

Very Thin Fine-pitch Ball Grid Array (VFBGA) IC Chip

Solder Ball

(Top surface)	(Bottom

PKG Type (JEITA PKG Name	Body Size (mm)	Ball Pitch (mm)
VFBGA4H-49 (P-VFBGA-049-0404-0.50)	4 X 4 X 1.0	0.5
VFBGA5H-81 (P-VFBGA-081-0505-0.50)	5 X 5 X 1.0	0.5
VFBGA6H-96 (P-VFBGA-096-0606-0.50)	6 X 6 X 1.0	0.5
VFBGA6H-121 (P-VFBGA-121-0606-0.50)	6 X 6 X 1.0	0.5
VFBGA7H-144 (P-VFBGA-144-0707-0.50)	7 X 7 X 1.0	0.5
VFBGA7H-161 (P-VFBGA-161-0707-0.50)	7 X 7 X 1.0	0.5
VFBGA8H-181 (P-VFBGA-181-0808-0.50)	8 X 8 X 1.0	0.5
VFBGA10H-240 (P-VFBGA-240-1010-0.50)	10 X 10 X 1.0	0.5
VFBGA10H-121 (P-VFBGA-121-1010-0.80)	10 X 10 X 1.0	0.8
VFBGA10H-144 (P-VFBGA-144-1010-0.80)	10 X 10 X 1.0	0.8

Package Lineup

ASICs

QFP & TQFP

	PKG Type (JEITA PKG Nar	Body Size (mm)	Lead Pitch (mm)	
	TQFP12-48 (P-TQFP048-0707-0.50)		7 X 7 X 1.2	0.5
*	QFP12-48 (P-LQFP048-0707-0.50)		7 X 7 X 1.7	0.5
	TQFP13-64 (P-TQFP064-1010-0.50)		10 X 10 X 1.2	0.5
*	QFP13-64 (P-LQFP064-1010-0.50)		10 X 10 X 1.7	0.5
*	QFP14-80 (P-LQFP080-1212-0.50)		12 X 12 X 1.7	0.5
*	TQFP15-100 (P-TQFP100-1414-0.50)		14 X 14 X 1.2	0.5
*	QFP15-100 (P-LQFP100-1414-0.50)		14 X 14 X 1.7	0.5
*	TQFP15-128 (P-TQFP128-1414-0.40)		14 X 14 X 1.2	0.4
*	QFP15-128 (P-LQFP128-1414-0.40)		14 X 14 X 1.7	0.4

* Can be on automobile

	PKG Type (JEITA PKG Name)	Body Size (mm)	Lead Pitch (mm)
*	QFP20-144 (P-LQFP144-2020-0.50)	20 X 20 X 1.7	0.5
*	QFP21-176 (P-LQFP176-2424-0.50)	24 X 24 X 1.7	0.5
*	QFP22-208 (P-LQFP208-2828-0.50)	28 X 28 X 1.7	0.5
	QFP21-216 (P-LQFP216-2424-0.40)	24 X 24 X 1.7	0.4
	QFP22-256 (P-LQFP256-2828-0.40)	28 X 28 X 1.7	0.4

Epson's Gate Array Series offers various packages for each base array. Please select the most suitable package, based on the circuit specifications and number of input/output terminals.

Gate Array Package List is subject to change due to the preparation condition of the lead frame and the improvement of production efficiency. Please consult Epson sales office when you are choosing packages.

S1L5V000 Series

	А	L2-Series	S1L5V012	S1L5V042	-	S1L5V112	-	S1L5V252	-	S1L5V482
	A	L3-Series	S1L5V013	S1L5V043	\$1X5V513*	S1L5V113	S1X5V523*	S1L5V253	\$1X5V533*	S1L5V483
	A	L4-Series	S1L5V014	S1L5V044	S1X5V514*	S1L5V114	\$1X5V524*	S1L5V254	\$1X5V534*	S1L5V484
	Ra	aw Gates	8.9k	42.0k	26.0k	109.3k	90.3k	254.4k	235.0k	479.9k
A	L2-Usabl	e Gates	2.7k	12.6k	-	32.8k	-	63.6k	-	119.9k
A	L3-Usabl	e Gates	5.4k	25.2k	14.3k	65.6k	49.7k	139.9k	129.3k	239.9k
A	L4-Usabl	e Gates	6.2k	29.4k	16.9k	76.5k	58.7k	165.4k	152.8k	287.9k
		Pads	48	10	04	16	58	25	56	308
PKG	Pin	PKG Type								
TQFP	48	TQFP12-48	А	,	4	ŀ	4			
QFP	48	QFP12-48	А	/	4	ŀ	А			
TQFP	64	TQFP13-64		,	4	А		А		Ν
QFP	64	QFP13-64		,	4	А		А		Ν
QFP	80	QFP14-80		,	4	А		А		А
TQFP	100	TQFP15-100		,	4	А		А		LQ
QFP	100	QFP15-100		,	4	А		А		А
TQFP	128	TQFP15-128		A (1	04)	А		А		А
QFP	128	QFP15-128		A (1	04)	А		А		А
QFP	144	QFP20-144				1	Ą	ŀ	4	А
QFP	176	QFP21-176	Ν	I	N	A (1	68)	ŀ	4	А
QFP	208	QFP22-208	Ν	I	N	1	4	ł	4	А
QFP	216	QFP21-216	Ν	I	N	1	4	ł	4	А
QFP	256	QFP22-256	Ν	Ν		1	4	L	Q	А
QFN	24	SQFN4-24	А	Ν		1	Ν		N	Ν
QFN	32	SQFN5-32	А	А		1	Ν		Ν	
QFN	48	SQFN7-48	Ν	А		А		Ν		Ν
QFN	64	SQFN9-64	Ν		4	ł	4	ł	4	Ν

A: Available for mass production

LQ: Quality assurance required (Lead frame required to be developed)

N: Not available A(): Usable up to the numbers of pins in the parenthesis

*: Analog PLL built in master

Gate Array Package List

S1L50000 Series

		AL2-Series	S1L50062	S1L5	0122	S1L5	0282	S1L5	0552	S1L5	0752	S1L5	50992	S1L!	51252	S1L51772	S1L52502	S1L53352	S1L54422	S1L55062	S1L56682	S1L58152
		AL3-Series	S1L50063	S1L5	0123	S1L5	0283	S1L5	0553	S1L5	0753	S1L5	50993	S1L!	51253	S1L51773	S1L52503	S1L53353	S1L54423	S1L55063	S1L56683	S1L58153
		AL4-Series	S1L50064	S1L5	0124	S1L5	0284	\$1L5	0554	S1L5	0754	S1L5	50994	S1L5	51254	S1L51774	S1L52504	S1L53354	S1L54424	S1L55064	S1L56684	S1L58154
		Raw Gates	5.8k	12	.0k	28.	.8k	55.	5k	75	.8k	99	.2k	12	5.8k	177.1k	250.2k	335.9k	442.2k	506.7k	668.6k	815.5k
	AL2-Us	able Gates	2.9k	6.	0k	14.	.4k	26.	.1k	35	.7k	46	i.7k	56	.6k	79.7k	112.6k	144.5k	176.9k	202.7k	267.5k	326.2k
	AL3-Us	able Gates	5.1k	10	.6k	25.	.3k	47.	2k	64	.4k	84	.4k	10	0.7k	132.8k	187.7k	251.9k	309.5k	354.7k	468.0k	570.9k
	AL4-Us	able Gates	5.5k	11	.4k	27.	.3k	52.	8k	72	.0k	94	.3k	119	9.5k	168.2k	237.7k	319.1k	397.9k	456.1k	601.7k	734.0k
		Pads	48	64	56	104	88	144	124	168	144	192	168	216	188	224	264	308	352	376	432	480
		Pad Pitch	70 µ	70 µ	80 µ																	
PKG	Pin	PKG Type																				
TQFP	48	TQFP12-48	А	А	А		А		А		А		А	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
QFP	48	QFP12-48	А	А	А		А		А		А		А	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
TQFP	64	TQFP13-64		А	A(56)		А	А	А		А		А		А	А	А	Ν	Ν	Ν	Ν	Ν
QFP	64	QFP13-64		А	A(56)		А	А	А		А		А		А	А	А	Ν	Ν	Ν	Ν	Ν
QFP	80	QFP14-80				А	А	А	А		А		А		А	А	А	А	Ν	Ν	Ν	Ν
TQFP	100	TQFP15-100				А		А	А		А		А		А	А	А	LQ	LQ	Ν	Ν	Ν
QFP	100	QFP15-100				А		А	А		А		А		А	А	А	А	А	Ν	Ν	Ν
TQFP	128	TQFP15-128						А			А		А		А	А	А	А	LQ	Ν	Ν	Ν
QFP	128	QFP15-128						А			А		А		А	А	А	А	А	Ν	Ν	Ν
QFP	144	QFP20-144						А			А		А		А	А	А	А	А	А	LQ	Ν
QFP	176	QFP21-176	Ν	Ν	Ν	Ν	Ν	Ν		A(168)		А			А	А	А	А	А	А	А	N
QFP	208	QFP22-208	N	Ν	Ν	Ν	Ν	Ν		Ν		Ν	Ν	Ν		А	А	А	А	Ν	Ν	N
QFP	216	QFP21-216	Ν	Ν	Ν	Ν	Ν	Ν		Ν	Ν	Ν	Ν	А		А	А	А	LQ	Ν	Ν	N
QFP	256	QFP22-256	N	Ν	Ν	Ν	Ν	Ν		Ν	Ν	Ν	Ν				А	А	А	LQ	LQ	N
QFN	24	SQFN4-24	А	А	А	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	N	Ν	Ν	Ν	N
QFN	32	SQFN5-32	А	А	А	А	А	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	N	Ν	Ν	Ν	N
QFN	48	SQFN7-48	А	А	А	А	А	А	А	А	А	А	А	А	А	Ν	Ν	N	Ν	Ν	Ν	N
QFN	64	SQFN9-64		А		А	А	А	А	А	А	А	А	А	А	А	Ν	Ν	Ν	Ν	Ν	Ν

A: Available for mass production

LQ: Quality assurance required (Lead frame required to be developed) N: Not available A(): Usable up to the numbers of pins in the parenthesis

Gate Array Package List

S1L60000 Series

		AL3-Series	S1L60093	S1L60173	S1L60283	S1L60403	S1L60593	S1L60833	S1L61233	S1L61583	S1L61903	S1L62513
		AL4-Series	S1L60094	S1L60174	S1L60284	S1L60404	S1L60594	S1L60834	S1L61234	S1L61584	S1L61904	S1L62514
		Raw Gates	99.2k	171.8k	284.4k	400.3k	595.4k	831.6k	1,234.9k	1,587.8k	1,903.0k	2,519.6k
	AL	-Usable Gates	59.6k	103.1k	142.2k	200.2k	297.7k	332.7k	494.0k	635.1k	761.2k	1,007.9k
	AL4	-Usable Gates	69.5k	120.2k	184.9k	260.2k	387.0k	415.8k	617.5k	793.9k	951.5k	1,259.8k
		70µm Pads	112	148	188	224	272	-	-	-	-	-
		80µm Pads	-	-	-	-	-	284	344	388	424	488
PKG	Pin	PKG Type										
TQFP	48	TQFP12-48	А	А	А	Ν	Ν	Ν	Ν	Ν	Ν	Ν
QFP	48	QFP12-48	А	А	А	Ν	Ν	Ν	Ν	Ν	Ν	Ν
TQFP	64	TQFP13-64	А	А	А	А	А	А	Ν	Ν	Ν	Ν
QFP	64	QFP13-64	А	А	А	А	А	А	Ν	Ν	Ν	Ν
QFP	80	QFP14-80	А	А	А	А	А	А	А	Ν	Ν	Ν
TQFP	100	TQFP15-100	А	А	А	А	А	LQ	LQ	Ν	Ν	Ν
QFP	100	QFP15-100	А	А	А	А	А	А	А	Ν	Ν	Ν
TQFP	128	TQFP15-128	A(112)	А	А	А	А	А	А	Ν	Ν	Ν
QFP	128	QFP15-128	A(112)	А	А	А	А	А	А	Ν	Ν	Ν
QFP	144	QFP20-144	Ν	А	А	А	А	А	А	А	Ν	Ν
QFP	176	QFP21-176	Ν	А	А	А	А	А	А	А	А	LQ
QFP	208	QFP22-208	Ν	Ν	А	А	А	А	А	LQ	LQ	Ν
QFP	216	QFP21-216	Ν	Ν	Ν	А	А	А	LQ	LQ	LQ	Ν
QFP	256	QFP22-256	Ν	Ν	Ν	Ν	А	А	А	LQ	LQ	Ν
QFN	24	SQFN4-24	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
QFN	32	SQFN5-32	А	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
QFN	48	SQFN7-48	А	А	А	А	Ν	Ν	Ν	Ν	Ν	Ν
QFN	64	SQFN9-64	А	А	А	А	А	Ν	Ν	Ν	Ν	Ν

A: Available for mass production

LQ: Quality assurance required (Lead frame required to be developed)

N: Not available A(): Usable up to the numbers of pins in the parenthesis

Package's Thermal Resistance

Among LSIs, chip temperatures (Tj) rise as power consumption increases. The chip temperature of a packaged IC can be calculated based on the ambient temperature Ta, the package's thermal resistance θ_{j-a} , and the power dissipation PD as shown below.

Chip temperature (Tj) = Ta + (PD x θ j-a) (°C)

As a general rule, the chip temperature(Tj) should be kept under 125°C. Note also that the package's thermal resistance varies widely depending on the chip size and substrates, the mounting method, the forced cooling.

Q	P	

Package	$ heta_{j-a}$ (°C/W)						
Туре	0m/sec	1m/sec	2m/sec				
QFP12	51	46	44				
QFP13	48	45	43				
QFP14	44	41	39				
QFP15	41	39	37				
QFP20	36	33	31				
QFP21	34	31	29				
QFP22	27	24	23				
TQFP12	53	47	45				
TQFP13	47	44	42				
TQFP15	42	36	34				

SQFN

Package	$ heta_{ ext{j-a}}(^\circ extsf{C/W})$							
Туре	0m/sec	1m/sec	2m/sec					
SQFN4	42	39	37					
SQFN5	40	37	35					
SQFN7	31	28	25					
SQFN9	26	23	21					

PFBGA

Package	θ _{j-a} (°C/W)							
Туре	0m/sec	1m/sec	2m/sec					
PFBGA5	60	55	54					
PFBGA6	54	49	48					
PFBGA7	49	44	43					
PFBGA8	44	39	38					
PFBGA10	37	32	30					
PFBGA12	33	29	27					
PFBGA13	30	26	24					
PFBGA14	24	20	19					
PFBGA16	21	18	17					

VFBGA

Package	$ heta_{ ext{j-a}}(^{\circ}C/W)$						
Туре	0m/sec	1m/sec	2m/sec				
VFBGA4	66	61	60				
VFBGA5	60	55	54				
VFBGA6	54	49	48				
VFBGA7	49	44	43				
VFBGA8	44	39	38				
VFBGA10	37	32	30				

PBGA

Package	θj-a (°C∕W)		
Туре	0m/sec	1m/sec	2m/sec
PBGA1U	24	21	20

Values listed above are typical values using following evaluation boards, but the thermal resistance can easily vary depending on conditions. - QFP, SQFN, PBGA : JEDEC STD board (114.3x76.2x1.6mm 4layer)

- PFBGA, VFBGA : JEDEC STD board (114.5x101.5x1.6mm 4layer)

ASICs User Interface

In order to flexibly comply with the customer's design stages, Epson offers two types of user interfaces. The development lead time and development costs are determined by the interface of your choice.

Design of Embedded Array Chips

Development Flow

ASICs

Supported series

Technology	0.35µm	0.25µm	0.15µm
Gate Array	S1L50000 S1L5V000	S1L60000	
Embedded Array	S1X5V000 S1X50000	S1X60000	S1X80000
Standard cell	-	-	S1K80000

Supported tools

Category	Tool name
Synthesis	Design Compiler
Formal verification	Formality
RTL check	SpyGlass
Static timing analysis	Primetime
Simulation	Verilog-XL, NC-Verilog, ModelSim(Verilog), ModelSim(VHDL) [*]

*: Not available for S1L5V000, S1X5V000, S1X80000, S1K80000 series

Library Pack

ASICs Epson ASIC Website

Epson Website Presents ASIC product information

<global.epson.com/products_and_drivers/semicon/products/asic/>

<ASIC HP>

ASICs

NOTICE: PLEASE READ THE FOLLOWING NOTICE CAREFULLY BEFORE USING THIS DOCUMENT

The contents of this document are subject to change without notice.

- 1. This document may not be copied, reproduced, or used for any other purpose, in whole or in part, without the consent of the Seiko Epson Corporation ("Epson").
- 2. Before purchasing or using Epson products, please contact our sales representative for the latest information and always be sure to check the latest information published on Epson's official web sites and other sources.
- 3. Information provided in this document such as application circuits, programs, usage, etc., are for reference purposes only. Using the application circuits, programs, usage, etc. in the design of your equipment or systems is your own responsibility. Epson makes no guarantees against any infringements or damages to any third parties' intellectual property rights or any other rights resulting from the information. This document does not grant you any licenses, intellectual property rights or any other rights owned by Epson or any third parties.
- 4. Epson is committed to constantly improving quality and reliability, but semiconductor products in general are subject to malfunction and failure. By using Epson products, you shall be responsible for your hardware. Software and systems must be designed well enough to prevent death or injury as well as any property damage even if any of the malfunctions or failures might be caused by Epson products. When designing your products using Epson products, please be sure to check and comply with the latest information regarding Epson products (this document, specifications, data sheets, manuals, Epson's web site, etc.). When using the information included above materials such as product data, charts, technical contents, programs, algorithms and application circuit examples, you shall evaluate your products both on a stand-alone basis as well as within your overall systems. You shall be solely responsible for deciding whether or not to adopt and use Epson products.
- 5. Epson has prepared this document and programs provided in this document carefully to be accurate and dependable, but Epson does not guarantee that the information and the programs are always accurate and complete. Epson assumes no responsibility for any damages which you incur due to misinformation in this document and the programs.
- 6. No dismantling, analysis, reverse engineering, modification, alteration, adaptation, reproduction, etc., of Epson products is allowed.
- 7. Epson products have been designed, developed and manufactured to be used in general electronic applications (office equipment, communications equipment, measuring instruments, home electronics, etc.) ("General Purpose") and applications which is individually listed in this document or designated by Epson ("Designated Purpose"). Epson products are NOT intended for any use beyond the General Purpose and Designated Purpose uses that requires particular/ higher quality or reliability in order to refrain from causing any malfunction or failure leading to death, injury, serious property damage or severe impact on society, including, but not limited to those listed below ("Particular Purpose"). Therefore, you are advised to use Epson products only for General Purpose and Designated Purpose uses. Should you desire to buy and use Epson products for a Particular Purpose, Epson makes no warranty and disclaims with respect to Epson products, whether express or implied, including without limitation any implied warranty of merchantability or fitness for any Particular Purpose. Please be sure to contact our sales representative and obtain approval in advance.

[Examples of Particular Purpose]

- Space equipment (artificial satellites, rockets, etc.) /
- Transportation vehicles and their control equipment (automobiles, aircraft, trains, ships, etc.) /
- Medical equipment / Relay equipment to be placed on ocean floor /
- Power station control equipment / Disaster or crime prevention equipment / Traffic control equipment / Financial equipment

Other applications requiring similar levels of reliability as those listed above. Please be sure to contact our sales representative for details of the other applications.

- 8. Epson products listed in this document and our associated technologies shall not be used in any equipment or systems that laws and regulations in Japan or any other countries prohibit to manufacture, use or sell. Furthermore, Epson products and our associated technologies shall not be used for developing weapons of mass destruction, or any other military purposes or applications. If exporting Epson products or our associated technologies, you shall comply with the Foreign Exchange and Foreign Trade Control Act in Japan, Export Administration Regulations in the U.S.A. (EAR) and other export-related laws and regulations in Japan and any other countries and follow the required procedures as provided by the relevant laws and regulations.
- 9. Epson assumes no responsibility for any damages (whether direct or indirect) caused by or in relation with your non-compliance with the terms and conditions in this document.
- 10. Epson assumes no responsibility for any damages (whether direct or indirect) incurred by any third party that you assign, transfer, loan, etc., Epson products to.
- 11. For more details or other concerns about this document, please contact our sales representative.
- 12. Company names and product names listed in this document are trademarks or registered trademarks of their respective companies.

Evaluation board/kit and Development tool important notice

- 1. Epson evaluation board/kit or development tool is designed for use for engineering evaluation, demonstration, or development purposes only. Do not use it for other purposes. It is not intended to meet the requirements of design for finished products.
- 2. Epson evaluation board/kit or development tool is intended for use by an electronic engineer and is not a consumer product. The user should use it properly and in a safe manner. Epson dose not assume any responsibility or liability of any kind of damage and/or fire coursed by the use of it. The user should cease to use it when any abnormal issue occurs even during proper and safe use.
- 3. The part used for Epson evaluation board/kit or development tool may be changed without any notice.

©2025 Seiko Epson Corporation All rights reserved.

[Registered trademarks, trademarks, and company names]

Design Compiler[®] : Synopsys Inc. in U.S.A.

NC-Verilog[®] : Cadence Design Systems Inc. in U.S.A.

SuperFlash[®] : Silicon Storage Technology, Inc., in the U.S.A.

Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

Other brand names and product names are trademarks or registered trademarks of their respective owners.

MMP Technology

Supply of this implementation of TPL's MMP technology does not convey a license nor imply a right under any patent, or any other industrial or intellectual property right of TPL, to use this implementation in any finished end-user final product. You are hereby notified that a license for such use is required from TPL. Contact: "mmp-licensing@tplgroup.net"

America

Epson America, Inc. Headquarter: 3131 Katella Ave. Los Alamitos, CA 90720, USA Phone: +1-800-463-7766

San Jose Office: 2860 Zanker Road Suite 204 San Jose, CA 95134, USA Phone: +1-800-463-7766

Europe

Epson Europe Electronics GmbH Riesstrasse 15, 80992 Munich, Germany Phone: +49-89-14005-0

Epson (China) Co., Ltd.

4th Floor, Tower 1 of China Central Place, 81 Jianguo Road, Chaoyang District, Beijing 100025 China Phone: +86-10-8522-1199

Shanghai Branch

Room 601-603, Building A One East, No.325 East Longhua Road, Shanghai 200023, China Phone: +86-21-5330-4888

Shenzhen Branch

Room 603/604, 6 Floor, Tower 7, One Shenzhen Bay, No.3008 Center Rd, Shenzhen 518054, China Phone: +86-755-3299-0588

Epson Taiwan Technology & Trading Ltd. 15F., No. 100, Songren Rd., Sinyi Dist., Taipei City 110. Taiwan Phone: +886-2-8786-6688

Epson Singapore Pte., Ltd. 438B Alexandra Road, Block B Alexandra TechnoPark, #04-01/04, Singapore 119968 Phone: +65-6586-5500

Epson Korea Co., Ltd. 10F Posco Tower Yeoksam, Teheranro 134 Gangnam-gu, Seoul, 06235, Korea Phone: +82-2-3420-6695

Seiko Epson Corp. **Sales & Marketing Division**

MD Sales & Marketing Department

421-8, Hino, Hino-shi , Tokyo 191-8501, Japan

Document code : 701077830 First Issue April 2006 Revised March 2025 in JAPAN (L)