
CMOS 8-BIT SINGLE CHIP MICROCOMPUTER

(S1C8F626 Self-Programming Library)
S5U1C8F626Y4 Manual

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written permission
of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not
assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or
use in any product or circuit and, further, there is no representation that this material is applicable to products requir-
ing high level reliability, such as medical products. Moreover, no license to any intellectual property rights is granted by
implication or otherwise, and there is no representation or warranty that anything made in accordance with this mate-
rial will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain
technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade
Law of Japan and may require an export license from the Ministry of Economy, Trade and Industry or other approval
from another government agency.

© SEIKO EPSON CORPORATION 2007, All rights reserved.

Devices
S1 C 88104 F 0A01

Packing specifications
00 : Besides tape & reel
0A : TCP BL 2 directions
0B : Tape & reel BACK
0C : TCP BR 2 directions
0D : TCP BT 2 directions
0E : TCP BD 2 directions
0F : Tape & reel FRONT
0G: TCP BT 4 directions
0H : TCP BD 4 directions
0J : TCP SL 2 directions
0K : TCP SR 2 directions
0L : Tape & reel LEFT
0M: TCP ST 2 directions
0N : TCP SD 2 directions
0P : TCP ST 4 directions
0Q: TCP SD 4 directions
0R : Tape & reel RIGHT
99 : Specs not fixed

Specification

Package
D: die form; F: QFP, B: BGA

Model number

Model name
C: microcomputer, digital products

Product classification
S1: semiconductor

Development tools
S5U1 C 88348 D1 1

Packing specifications
00: standard packing

Version
1: Version 1

Tool type
Hx : ICE
Ex : EVA board
Px : Peripheral board
Wx: Flash ROM writer for the microcomputer
Xx : ROM writer peripheral board

Cx : C compiler package
Ax : Assembler package
Dx : Utility tool by the model
Qx : Soft simulator

Corresponding model number
88348: for S1C88348

Tool classification
C: microcomputer use

Product classification
S5U1: development tool for semiconductor products

00

00

Configuration of product number

COnTEnTS

S5U1C8F626Y4 ManUal EPSOn i
(S1C8F626 Self-Programming library)

– Contents –

1 Overview ... 1

2 Installation .. 2
2.1 Items in the Package ... 2

2.2 Working Environment .. 2

2.3 How to Install the Library ... 3

2.4 Installed Files .. 5

3 Features of the library.. 6
3.1 Configuration of the Library Files .. 6

3.2 List of Library Facilities .. 6

3.3 Library Size and Number of Processing Cycles .. 7

4 Usage Directions for the library .. 8
4.1 Adding Files into Project ... 8

4.2 Locating the Library Object in the Memory .. 11

5 Creating a Program .. 12
5.1 Self-Program Processing Flow ... 12

5.2 Data Buffer ... 13

5.3 Error Structure spl88_err_str .. 13

5.4 Constant Definitions ... 13

5.5 Programming Notes ... 14

6 library Functions ... 16
6.1 Erase Sector Function (spl88_erase) ... 16

6.2 Program Function (spl88_write) ... 18

6.3 Verify Function (spl88_verify) ... 20

6.4 Blank Check Function (spl88_blank) .. 23

7 Precautions on Debugging .. 25

8 Restrictions ... 26

appendix Sample Programs ... 27
A.1 List of Sample Programs.. 27

A.2 Functions in the Sample Program.. 29

A.2.1 _start (Initialize Function) .. 29
A.2.2 main (Main Function) ... 29
A.2.3 spl88_wait (Wait Function) .. 31
A.2.4 spl88_setwritedat (Write Data Setup Function) ... 31
A.2.5 spl88_finish_proc (Termination Process Function) .. 32

1 OVERVIEW

S5U1C8F626Y4 ManUal EPSOn 1
(S1C8F626 Self-Programming library)

1 Overview
The S5U1C8F626Y4 is a program library for the Seiko Epson 8-bit microcomputer S1C8F626 and it provides
the program modules allowing the application program to rewrite the program code and data stored in the Flash
EEPROM built into the S1C8F626. The application program with the library linked can execute sector erase, pro-
gram, verify, and blank check processes by calling the functions. This makes it possible to simply implement a self-
programming feature into the S1C8F626 embedded applications.

2 InSTallaTIOn

2 EPSOn S5U1C8F626Y4 ManUal
 (S1C8F626 Self-Programming library)

2 Installation

2.1 Items in the Package
The S1C8F626 Self-Programming Library Package contains one CD-ROM in which the library files, installer and
PDF manuals are included.

2.2 Working Environment
To use the S1C8F626 Self-Programming Library, the following conditions are necessary:

Personal computer
 An IBM PC/AT or a compatible machine is required. Minimum operating conditions are a 200 MHz Pentium or

a later model and 64M-byte RAM.
 A PC which is equipped with a faster CPU than a 1 GHz and 256M bytes or more RAM is recommended.

Hard disk drive and CD-ROM drive
 A CD-ROM drive and a hard disk drive (at least 10M bytes of free space) are required for installing the

S1C8F626 Self-Programming Library.

Display
 An SVGA (800 × 600 pixels) or larger display is required.

System software
 The library and tools support Microsoft Windows 2000 Professional or Windows XP (English or Japanese ver-

sion).

Development software tool
 The S5U1C88000C1 (S1C88 Family Integrated Tool Package) is required.

Development hardware tools
 The S5U1C88000H5, S5U1C88000P1, S5U1C88655P2, S5U1C8F626F1, and S5U1C8F626D4 tools are re-

quired.

2 InSTallaTIOn

S5U1C8F626Y4 ManUal EPSOn 3
(S1C8F626 Self-Programming library)

2.3 How to Install the library
To install the library, run the installer (Setup.exe) found on the CD-ROM provided.
Before installing the S1C8F626 Self-Programming Library, make sure that the S5U1C88000C1 (S1C88 Family In-
tegrated Tool Package) has been installed.

(1) Start Windows. If Windows is already running, close all other programs that are currently open.

(2) Insert the CD-ROM into the drive and open the root directory to display its contents.

(3) Double-click “Setup.exe” to launch the installer.

You will see the install wizard start screen.

(4) Click the [Next >] button to go to the next step.

Read the end user software license agreement displayed on
the following screen.

(5) If you agree to the terms of the license, select “I accept
the terms of the license agreement” and click the [Next >]
button. If you do not agree, click the [Cancel] button to
close the installer.

The screen displayed allows you to select the directory into
which the S1C8F626 Self-Programming Library is to be in-
stalled.

(6) Check the destination directory in which the tool will
be installed. To switch to a different directory, use the
[Browse...] button to bring up a directory selection
dialog box. From the list in this dialog box, select the
directory in which you want to install the library. Click
the [OK] button.

 If you specify the directory in which an old version
library exists, you are prompted to choose either unin-
stalling the old library or changing the install directory
by a warning message displayed. The existing library
may be left on the disk by specifying another directory.

(7) Click the [Next >] button.

2 InSTallaTIOn

4 EPSOn S5U1C8F626Y4 ManUal
 (S1C8F626 Self-Programming library)

This is the install start screen.

(8) Click the [Install] button to begin installing.

When installation is completed, a complete screen is dis-
played.

 (9) Click the [Finish] button to quit the installer.

Canceling installation
 All dialog boxes that appear during installation have a [Cancel] button. Click it to terminate the installer before

installation has completed.

Uninstalling the library
 To uninstall the library, use “Add/Remove Programs” on the Control Panel.

2 InSTallaTIOn

S5U1C8F626Y4 ManUal EPSOn 5
(S1C8F626 Self-Programming library)

2.4 Installed Files
The following lists the configuration of directories and files after copying.

\EPSON\SPL88
 ReadMe.txt readme file (Read this file first.)

 \lib
 \Large Library directory for large memory model
 selfprog.obj Self-programming object file
 spl88_def.inc External declaration/definition file (for assembler)
 spl88_def.h External declaration/definition file (for C)

 \CompactData Library directory for compact data memory model
 selfprog.obj Self-programming object file
 spl88_def.inc External declaration/definition file (for assembler)
 spl88_def.h External declaration/definition file (for C)

 \CompactCode Library directory for compact code memory model
 selfprog.obj Self-programming object file
 spl88_def.inc External declaration/definition file (for assembler)
 spl88_def.h External declaration/definition file (for C)

 \Small Library directory for small memory model
 selfprog.obj Self-programming object file
 spl88_def.inc External declaration/definition file (for assembler)
 spl88_def.h External declaration/definition file (for C)

 \sample
 \ASM Assembler sample directory
 \Large Self-programming sample (for large memory model)

 \CompactData Self-programming sample (for compact data memory model)

 \CompactCode Self-programming sample (for compact code memory model)

 \Small Self-programming sample (for small memory model)

 \C C sample directory
 \Large Self-programming sample (for large memory model)

 \CompactData Self-programming sample (for compact data memory model)

 \CompactCode Self-programming sample (for compact code memory model)

 \Small Self-programming sample (for small memory model)

 \doc
 \english English document directory
 manual_e.pdf Manual
 rel_note_e.txt Release note

 \japanese Japanese document directory
 manual_j.pdf Manual
 rel_note_j.txt Release note

3 FEaTURES OF THE lIBRaRY

6 EPSOn S5U1C8F626Y4 ManUal
 (S1C8F626 Self-Programming library)

3 Features of the Library
The library provides an object file that includes the functions required for self-programming of the S1C8F626 Flash
EEPROM and header files in which various symbols are defined.

* Conditions on use
1. The self-programming library is designed specifically for the EPSON 8-bit microcomputer S1C8F626.
2. The library can be used for program development using the S5U1C88000C1 (S1C88 Family Integrated

Tool Package).
3. A 2.7 V or more power source voltage must be supplied to the S1C8F626 while the library functions are

executed. (Refer to the “S1C8F626 Technical Manual.”)

3.1 Configuration of the library Files

selfprog.obj: Object file
 This object file contains the functions to process erasing, programming, verifying, and performing a blank

check of the Flash EEPROM. Link this object to the application program to implement a self-programming fa-
cility.

spl88_def.inc: External declaration/definition file for assembler sources
 This file contains the symbols decelerated with EXTERN used for calling the functions from an assembler

source. Include this file when creating a self-programming module as an assembler source.

spl88_def.h: External declaration/definition file for C sources
 This file contains the various definitions used for calling the functions from a C source.
 Include this file when creating a self-programming module as a C source.

The library provides different object files to support four memory models (large, compact code, compact data, and
small), and they are installed with the external declaration/definition files into the directories for each different
memory model (see Section 2.4). Select an appropriate object file according to the memory configuration of the ap-
plication system.

3.2 list of library Facilities
The object file provides the facilities listed below.

(1) Erasing sector (function name: spl88_erase)
 This function erases a specified sector (4096 bytes) in the S1C8F626 Flash EEPROM.

(2) Programming (function name: spl88_write)
 This function writes data stored in the RAM to the specified sector in the Flash EEPROM. Data size from 1

byte to 4096 bytes can be specified.

(3) Verification (function name: spl88_verify)
 This function compares Flash EEPROM data in the specified sector with data stored in the RAM to verify the

data that has been programmed. Data size from 1 byte to 4096 bytes can be specified.

(4) Blank check (function name: spl88_blank)
 This function performs a blank check of the specified sector in the Flash EEPROM.

For details of the functions, see Chapter 6, “Library Functions.”

3 FEaTURES OF THE lIBRaRY

S5U1C8F626Y4 ManUal EPSOn 7
(S1C8F626 Self-Programming library)

3.3 library Size and number of Processing Cycles

Table 3.3.1 Library Size and Number of Processing Cycles

Size/number of cycles
library memory model

Small, compact code Compact data, large

Object file size 834 bytes 981 bytes
Library work area size
(RAM)

Stack 34 bytes 34 bytes
Error structure 6 bytes 6 bytes
Data buffer Max. 4,096 bytes Max. 4,096 bytes

Number of command
processing cycles
(per 1 sector)

Write 151,836 cycles 168,250 cycles
Erase 227 cycles 249 cycles
Verify 73,999 cycles 106,797 cycles
Blank check 61,626 cycles 94,416 cycles

4 USaGE DIRECTIOnS FOR THE lIBRaRY

8 EPSOn S5U1C8F626Y4 ManUal
 (S1C8F626 Self-Programming library)

4 Usage Directions for the Library

4.1 adding Files into Project
To use the S1C8F626 Self-Programming Library from an application program, the library files should be added to
the project.

(1) Copying the files
 Copy the object file and a header file into the folders shown below.

selfprog.obj Copy this file into the OBJ folder for the project (\<project name>\OBJ directory).
 Use a “selfprog.obj” object file according to the memory model of the application system.

spl88_def.inc Copy this file into the SRC folder for the project (\<project name>\SRC directory). (This
file is necessary only when creating assembler sources for the self-programming module.)

spl88_def.h Copy this file into the SRC folder for the project (\<project name>\SRC directory). (This
file is necessary only when creating C sources for the self-programming module.)

(2) Specifying the include file
 Not only can the header file (spl88_def.inc or spl88_def.h) be directly included in source files, but it can also be

specified as an include file for the project using the work bench (WB88) as follows.

 When including the header file into the project

1. Select [Insert file into Project] from the [Source] menu.

 A dialog box for selecting an include file is displayed.

2. Change the [Files of type:] to “Include Files (*.h, *.inc)” and select the file to be included.
 The selected file is included into the project by clicking [Open].

4 USaGE DIRECTIOnS FOR THE lIBRaRY

S5U1C8F626Y4 ManUal EPSOn 9
(S1C8F626 Self-Programming library)

 When the library functions are called from assembler sources

1. Open the [ASM Options] page in the option view.

2. Click the [Reference] button to display a file select dialog box and select the “spl88_def.inc” file that has
been copied in Step (1) above. The file name will be inserted in the [Include Files] field. The file name can
also be entered directly into the [Include Files] field.

 When the library functions are called from C sources

1. Open the [C Options] page in the option view.

2. Click the [Reference] button to display a file select dialog box and select the “spl88_def.h” file that has
been copied in Step (1) above. The file name will be inserted in the [Include Files] field. The file name can
also be entered directly into the [Include Files] field.

4 USaGE DIRECTIOnS FOR THE lIBRaRY

10 EPSOn S5U1C8F626Y4 ManUal
 (S1C8F626 Self-Programming library)

(3) Specifying linker options
 Select linker options so that the copied object file (selfprog.obj) will be linked. The following shows an operat-

ing procedure using WB88:

1. Open the [Linker Options] page in the option view.

2. Select the memory model to be used from the [Memory Model] list.

3. Enter “selfprog.obj” in the [Linking with user libraries] field.

4 USaGE DIRECTIOnS FOR THE lIBRaRY

S5U1C8F626Y4 ManUal EPSOn 11
(S1C8F626 Self-Programming library)

4.2 locating the library Object in the Memory
Memory location to place the library object must be defined in a locator description file (*.dsc). The following
shows how to define the object location into a locator description file using WB88:

Example: when locating the S1C8F626 Self-Programming Library module beginning at address 1000H

1000H .SelfProgramming

0100H .program
0000H

Figure 4.2.1 Example of Memory Layout

1. Open the [Sect Options] page in the WB88 option view.

2. In the [Add Symbol (Rom)] field, click the [Addr] cell in a blank line and enter the address (e.g. 1000).

3. Enter “.SelfProgramming” in the [Name] field.

4. Click the [Kind] cell to display a pull-down list and select “Sect” from the list.

5. Enter other symbols for the application program as necessary.

The WB88 will generate a locator description file and send it to the locator.

The self-programming library module has been designed so that it can be placed at any location in the S1C8F626
internal memory. Note, however, that the area where the library can actually be located depends on the CPU mode
to be used. For more information, see Section 5.5, “Programming Notes.”

5 CREaTInG a PROGRaM

12 EPSOn S5U1C8F626Y4 ManUal
 (S1C8F626 Self-Programming library)

5 Creating a Program

5.1 Self-Program Processing Flow
Figure 5.1.1 shows a flowchart for the self-programming routine to be created in the application program.
For program examples, open the sample programs included in the library package (\SPL88\sample directory) or see
Appendix.

Set VD1

1.8 V → 2.5 V

Wait 5 ms or more

Preparation for issuing a command

Set VD1

2.5 V → 1.8 V

Error handling

Command error?

Quit command?

SVD ≥ 2.7 V?

spl88_write
Program

Start self-programming routine

End self-programming routine

spl88_verify
Verify

spl88_blank
Blank check

spl88_erase
Erase sector

yes

no

no

yes

yes

no

Library functions

Wait 500 µs or more

Set SVD criteria voltage to 2.7 V
Turn SVD On

Turn SVD Off

Figure 5.1.1 Self-Program Processing Flow

5 CREaTInG a PROGRaM

S5U1C8F626Y4 ManUal EPSOn 13
(S1C8F626 Self-Programming library)

5.2 Data Buffer
The application program must allocate a RAM area for the data buffer (max. 4,096 bytes) that is used to pass the
code and data to be written to the Flash EEPROM to the library function. The data buffer is also used for storing
the original data to be compared with the Flash EEPROM data during verification. It can be placed at any location
in the RAM. Pass the start address to the library function as an argument when calling the function.

5.3 Error Structure spl88_err_str
If an error occurs during verification or blank check, the library function will write the error information to an error
structure spl88_err_str. The structure members are shown below.

 struct spl88_err_str{

 unsigned long spl88_err_adr; Address where an error has occurred
 unsigned char spl88_org_dat; Original data to be compared
 unsigned char spl88_err_dat; Data in which an error has occurred
 };

5.4 Constant Definitions
The constants shown below have been defined in the header files and they can be used in user programs.

Return values from the functions
 The library functions return their execution results as an unsigned char type return value. In assembler pro-

grams, they can be read from the A register.
 The return values from the functions have been defined as below.

Table 5.4.1 List of Return Values from the Functions
Defined name Value Description

SPL88_ERR_NON 0 Terminated normally
SPL88_ERR_SCTNUM 1 Sector number error

The specified sector number is 0CH, 0DH, 0EH, 0FH, or a 40H or more
value.

SPL88_ERR_DATSIZ 2 Data size error
The specified data size is 0 or a value more than 1000H.

SPL88_ERR_BLANK 3 Blank error
An error has occurred in the blank check.

SPL88_ERR_VERIFY 4 Verify error
An error has occurred in the verify check.

SPL88_ERR_VD1 5 VD1 error
The currently set VD1 voltage is 1.8 V.

Constants for specifying sectors
 The default write/verify data size and the start and end sector numbers within the default sector range are de-

fined as below.

Table 5.4.2 Default Values for Specifying Sectors
Defined name Value Description

SPL88_DAT_SIZ 1000H Write or verify data size
SPL88_START_SCTNUM 4 Start sector number for erasing, blank check, writing or verification
SPL88_END_SCTNUM 5 End sector number for erasing, blank check, writing or verification

5 CREaTInG a PROGRaM

14 EPSOn S5U1C8F626Y4 ManUal
 (S1C8F626 Self-Programming library)

5.5 Programming notes
When creating a self-programming routine, take the notes below into consideration.

(1) Reserved word
 The S1C8F626 Self-Programming Library uses the section name and global label/function names listed below.

These names cannot be used in the user program.

 Section name: .SelfProgramming
 Global label names (assembler): _spl88_erase, _spl88_write, _spl88_verify, _spl88_blank
 Global function names (C): spl88_erase, spl88_write, spl88_verify, spl88_blank

(2) Code efficiency
 The code size and execution speed of the assembled object generated from a C source using the C compiler

and assembler is about two (small model) to four times (large model) larger and slower than the code gener-
ated from an assembler source using the assembler only. Therefore, assembler program development is recom-
mended to achieve a higher execution speed or compact code size. (The comparison result above is an index of
performance, as code size depends on processing.)

(3) Combination of compiler memory model and CPU mode
 In the S1C88 system, the code memory size and data memory size that can be accessed vary depending on the

CPU mode and bus mode settings. The C compiler provides four memory models to support these modes.

Table 5.5.1 Compiler Memory Model
Compiler memory model Code size Data size CPU mode Bus mode
Small model Code < 64K bytes Data < 64K bytes Minimum Single chip mode (MCU)

Extended 64K mode (MPU)
Compact code model Code < 64K bytes Data ≥ 64K bytes Minimum Extended 512K minimum mode
Compact data model Code ≥ 64K bytes Data < 64K bytes Maximum Extended 512K maximum mode
Large model Code ≥ 64K bytes Data ≥ 64K bytes Maximum Extended 512K maximum mode

 When minimum mode is set as the CPU mode, for example, the CARL instruction pushes a two-byte return ad-
dress onto the stack. In maximum mode, the CARL instruction must push a three-byte return address.

 Therefore, an appropriate compiler memory model must be selected according to the CPU mode and data mem-
ory size. Do not use a combination other than one listed in the table.

 The self-programming library provides four object files corresponding to each compiler memory model. Use
an appropriate object file according to the application system, not only in C programming but also in assembler
programming.

(4) library allocatable area and area from which the function can be called
 The pages in which the library can be allocated and pages from which the library functions can be called de-

pend on the compiler memory model used. The small or compact code model does not allow the application to
allocate the program code outside page 0.

Page 3
(Can be allocated/called.)

Page 2
(Can be allocated/called.)

Page 1
(Can be allocated/called.)

Internal memory
(RAM, display memory, I/O memory)

Page 0
(Can be allocated/called.)

Large/compact data model

03FFFFH

030000H
02FFFFH

020000H
01FFFFH

010000H
00FFFFH
00C000H
00BFFFH

000000H

Cannot be allocated

Internal memory
(RAM, display memory, I/O memory)

Page 0
(Can be allocated/called.)

Small/Compact code model

03FFFFH

010000H
00FFFFH
00C000H
00BFFFH

000000H

Figure 5.5.1 Library Allocatable Area

5 CREaTInG a PROGRaM

S5U1C8F626Y4 ManUal EPSOn 15
(S1C8F626 Self-Programming library)

(5) Relationship between sector numbers and addresses
 Table 5.5.2 lists the relationship between sector numbers and addresses. Sectors 0CH to 0FH (0C000H–0FFFFH)

and Sector 40H and subsequent sectors (40000H–) cannot be specified.

Table 5.5.2 Relationship between Sector Numbers and Addresses
Sector number address Sector number address

00H 00000H–00FFFH 20H 20000H–20FFFH
01H 01000H–01FFFH 21H 21000H–21FFFH
02H 02000H–02FFFH 22H 22000H–22FFFH
03H 03000H–03FFFH 23H 23000H–23FFFH
04H 04000H–04FFFH 24H 24000H–24FFFH
05H 05000H–05FFFH 25H 25000H–25FFFH
06H 06000H–06FFFH 26H 26000H–26FFFH
07H 07000H–07FFFH 27H 27000H–27FFFH
08H 08000H–08FFFH 28H 28000H–28FFFH
09H 09000H–09FFFH 29H 29000H–29FFFH
0AH 0A000H–0AFFFH 2AH 2A000H–2AFFFH
0BH 0B000H–0BFFFH 2BH 2B000H–2BFFFH

(0CH)* 0C000H–0CFFFH 2CH 2C000H–2CFFFH
(0DH)* 0D000H–0DFFFH 2DH 2D000H–2DFFFH
(0EH)* 0E000H–0EFFFH 2EH 2E000H–2EFFFH
(0FH)* 0F000H–0FFFFH 2FH 2F000H–2FFFFH

10H 10000H–10FFFH 30H 30000H–30FFFH
11H 11000H–11FFFH 31H 31000H–31FFFH
12H 12000H–12FFFH 32H 32000H–32FFFH
13H 13000H–13FFFH 33H 33000H–33FFFH
14H 14000H–14FFFH 34H 34000H–34FFFH
15H 15000H–15FFFH 35H 35000H–35FFFH
16H 16000H–16FFFH 36H 36000H–36FFFH
17H 17000H–17FFFH 37H 37000H–37FFFH
18H 18000H–18FFFH 38H 38000H–38FFFH
19H 19000H–19FFFH 39H 39000H–39FFFH
1AH 1A000H–1AFFFH 3AH 3A000H–3AFFFH
1BH 1B000H–1BFFFH 3BH 3B000H–3BFFFH
1CH 1C000H–1CFFFH 3CH 3C000H–3CFFFH
1DH 1D000H–1DFFFH 3DH 3D000H–3DFFFH
1EH 1E000H–1EFFFH 3EH 3E000H–3EFFFH
1FH 1F000H–1FFFFH 3FH 3F000H–3FFFFH

* Cannot be specified.

6 lIBRaRY FUnCTIOnS

16 EPSOn S5U1C8F626Y4 ManUal
 (S1C8F626 Self-Programming library)

6 Library Functions
This chapter explains each library function.

note: This chapter describes the function names in the C format. When writing them in assembler
sources, ‘_’ must be prefixed to the function names.

 Example: C stat = spl88_erase(sectornum);

 Assembler CARL _spl88_erase

6.1 Erase Sector Function (spl88_erase)
Function unsigned char spl88_erase(unsigned int sector_num);

Description Erases a specified sector in the S1C8F626 Flash EEPROM.
While this function is being executed, the watchdog timer and all interrupts are disabled.

Argument BA register
(unsigned int sector_num)

Sector number (see Table 5.5.2.)
00H–0BH, 10H–3FH

Return value A register
(unsigned char)

Status (see Table 5.4.1.)
SPL88_ERR_NON: Terminated normally
SPL88_ERR_SCTNUM: Sector number error
SPL88_ERR_VD1: VD1 error

Output data None

Usage ex-
ample

[ASM]
LD BA,#001H ; Sets the sector No. to be erased (BA). Sector No. = 1
CARL _spl88_erase ; Calls the erase sector function.
CP A,#000H ; Checks the status bits.

[C]
unsigned char stat; // Status (= A)
unsigned int sectornum; // Sector No. (= BA)

sectornum = 0x1; // Sets the sector No. to be erased (sector No. = 1).
stat = spl88_erase(sectornum); // Calls the erase sector function.
if(stat != 0){ // Checks the status bits.

6 lIBRaRY FUnCTIOnS

S5U1C8F626Y4 ManUal EPSOn 17
(S1C8F626 Self-Programming library)

Erase sector processing flow
 The following shows a procedure to erase a sector.

Set VD1

1.8 V → 2.5 V

Wait 5 ms or more

Preparation for issuing a command

Set VD1

2.5 V → 1.8 V

Error handling

Command error?

Quit command?

SVD ≥ 2.7 V?

Start erase sector routine

End erase sector routine

spl88_erase
Erase sector

yes

no

no

yes

yes
no

Library function call

Turn SVD Off

5.

4.

1.

6.

Wait 500 µs or more
2.

7.

8.

9.

3.

10. 11.

12.

13.

Set SVD criteria voltage to 2.7 V
Turn SVD On

1. Set the SVD criteria voltage to 2.7 V and turn the SVD circuit on to check the supply voltage.
2. Wait 500 µs or more.
3. Check if the supply voltage is 2.7 V or more using the SVD circuit. Branch to Step 4 when the supply volt-

age is 2.7 V or more, or branch to Step 11 if it is less than 2.7 V.
4. Turn the SVD circuit off.
5. Switch the VD1 voltage from 1.8 V to 2.5 V.
6. Wait 5 ms or more before calling the spl88_erase function after switching the VD1 voltage.
7. In an assembler source, set the sector number to be erased to the BA register.
 In a C source, declare the (unsigned int)sectornum variable and substitute the sector number to be

erased for it.
8. In an assembler source, call _spl88_erase.
 In a C source, call the spl88_erase function with sectornum as its argument.
 The called function starts processing to erase the specified sector.
9. In an assembler source, check the results of the erase sector processing by reading the A register.
 In a C source, check the return value from the spl88_erase function.
 Branch to Step 10 when the function has terminated normally, or branch to Step 11 if an error has occurred.
10. Branch to Step 12 to terminate the command processing, or branch to Step 7 to continue.
11. Perform an error handling.
12. Switch the VD1 voltage from 2.5 V to 1.8 V.
13. Terminate the erase sector processing routine.

6 lIBRaRY FUnCTIOnS

18 EPSOn S5U1C8F626Y4 ManUal
 (S1C8F626 Self-Programming library)

6.2 Program Function (spl88_write)
Function unsigned char spl88_write(unsigned char* pdata, unsigned int sector_num, unsigned int size);

Description Writes data specified with a pointer to the specified sector in the S1C8F626 Flash EEPROM. Data size
from 1 byte to 4096 bytes can be specified.
While this function is being executed, the watchdog timer and all interrupts are disabled.

Arguments YP and IY registers
(unsigned char* pdata)

Pointer to data to be written (RAM)
YP: one high-order byte of address
IY: two low-order bytes of address

BA register
(unsigned int sector_num)

Sector number (see Table 5.5.2.)
00H–0BH, 10H–3FH

HL register
(unsigned int size)

Data size to be written
1–4096

Return value A register
(unsigned char)

Status (see Table 5.4.1.)
SPL88_ERR_NON: Terminated normally
SPL88_ERR_SCTNUM: Sector number error
SPL88_ERR_DATSIZ: Data size error
SPL88_ERR_VD1: VD1 error

Output data None

Usage ex-
ample

[ASM]
LD YP,#@DPAG(spl88_rxp_dat) ; Sets one high-order byte of the pointer to the write data (YP).
LD IY,#@DOFF(spl88_rxp_dat) ; Sets two low-order bytes of the pointer to the write data (IY).
LD BA,#001H ; Sets the write sector No. (BA). Sector No. = 1
LD HL,#01000H ; Sets the write data size (HL). 4096 bytes
CARL _spl88_write ; Calls the program function.
CP A,#000H ; Checks the status bits.

[C]
unsigned char stat; // Status (= A)
unsigned char* pdat; // Pointer to the write data (= YP-IY)
unsigned int sectornum; // Write sector No. (= BA)
unsigned int datasize; // Write data size (= HL)

pdat = (unsigned char*)malloc(0x1000); // Allocates a write data area.
 . . . // Sets data to the area.
sectornum = 0x1; // Sets the write sector No. (1).
datasize = 0x1000; // Sets the write data size.
stat = spl88_write(pdat, sectornum, datasize); // Calls the program function.
if(stat != 0){ // Checks the status bits.
 . . . // Error handling
}
free(pdat); // Deallocates the write data area.

6 lIBRaRY FUnCTIOnS

S5U1C8F626Y4 ManUal EPSOn 19
(S1C8F626 Self-Programming library)

Program processing flow
 The following shows a procedure to write data.

Set VD1

1.8 V → 2.5 V

Wait 5 ms or more

Preparation for issuing a command

Set VD1

2.5 V → 1.8 V

Command error?

Quit command?

Start program routine

SVD ≥ 2.7 V?
no

yes

Turn SVD Off

Set SVD criteria voltage to 2.7 V
Turn SVD On

End program routine

spl88_write
Program

yes

no

yes
no

Library function call

Error handling

5.

4.

1.

6.

Wait 500 µs or more
2.

7.

8.

9.

3.

10. 11.

12.

13.

1. Set the SVD criteria voltage to 2.7 V and turn the SVD circuit on to check the supply voltage.
2. Wait 500 µs or more.
3. Check if the supply voltage is 2.7 V or more using the SVD circuit. Branch to Step 4 when the supply volt-

age is 2.7 V or more, or branch to Step 11 if it is less than 2.7 V.
4. Turn the SVD circuit off.
5. Switch the VD1 voltage from 1.8 V to 2.5 V.
6. Wait 5 ms or more before calling the spl88_write function after switching the VD1 voltage.
7. In an assembler source, set the pointer (start address) to the write data to the YP and IY registers, the write

sector number to the BA register, and the write data size to the HL register.
 In a C source, set the pointer to the write data, the write sector number, and the write data size to the (un-

signed char*)pdat, (unsigned int)sectornum, and (unsigned int)datasize vari-
ables, respectively.

8. In an assembler source, call _spl88_write.
 In a C source, call the spl88_write function with pdat, sectornum, and datasize as its arguments.
 The called function starts processing to write data.
9. In an assembler source, check the results of the program processing by reading the A register.
 In a C source, check the return value from the spl88_write function.
 Branch to Step 10 when the function has terminated normally, or branch to Step 11 if an error has occurred.
10. Branch to Step 12 to terminate the command processing, or branch to Step 7 to continue.
11. Perform an error handling.
12. Switch the VD1 voltage from 2.5 V to 1.8 V.
13. Terminate the erase sector processing routine.

6 lIBRaRY FUnCTIOnS

20 EPSOn S5U1C8F626Y4 ManUal
 (S1C8F626 Self-Programming library)

6.3 Verify Function (spl88_verify)
Function unsigned char spl88_verify(unsigned char* pdata, unsigned int sector_num, unsigned int size,

spl88_err_str* pSpl88_err_str);

Description Compares S1C8F626 Flash EEPROM data in the specified sector with data specified with a pointer to
verify the data that has been programmed. Verification size from 1 byte to 4096 bytes can be specified.
While this function is being executed, the watchdog timer and all interrupts are disabled.

Arguments YP and IY registers
(unsigned char* pdata)

Pointer to the original data for comparison (RAM)
YP: one high-order byte of address
IY: two low-order bytes of address

BA register
(unsigned int sector_num)

Sector number (see Table 5.5.2.)
00H–0BH, 10H–3FH

HL register
(unsigned int size)

Verification size
1–4096

IX register
(spl88_err_str* pSpl88_err_str)

Pointer to the error structure (spl88_err_str)

Return value A register
(unsigned char)

Status (see Table 5.4.1.)
SPL88_ERR_NON: Terminated normally
SPL88_ERR_SCTNUM: Sector number error
SPL88_ERR_DATSIZ: Data size error
SPL88_ERR_VERIFY: Verify error
SPL88_ERR_VD1: VD1 error

Output data (unsigned long)
spl88_err_str.spl88_err_adr

Address where an error has occurred (Flash EEPROM)

(unsigned char)
spl88_err_str.spl88_org_dat

Original data for comparison (RAM)

(unsigned char)
spl88_err_str.spl88_err_dat

Data in which an error has occurred (Flash EEPROM)

Usage ex-
ample

[ASM]
LD XP,#@DPAG(spl88_err_str) ; Sets the page address of the structure pointer.
LD IX,#@DOFF(spl88_err_str) ; Sets the address of the structure pointer.
PUSH IX
LD IX,SP ; Stack pointer (structure pointer on the stack)
LD YP,#@DPAG(spl88_rxp_dat) ; Sets one high-order byte of the pointer to the original
 ; comparison data (YP).
LD IY,#@DOFF(spl88_rxp_dat) ; Sets two low-order bytes of the pointer to the original
 ; comparison data (IY).
LD BA,#001H ; Sets the verification sector No. (BA). Sector No. = 1
LD HL,#01000H ; Sets the verification size (HL).
CARL _spl88_verify ; Calls the verify function.
CP A,#000H ; Checks the status bits.
POP IX

6 lIBRaRY FUnCTIOnS

S5U1C8F626Y4 ManUal EPSOn 21
(S1C8F626 Self-Programming library)

Usage ex-
ample

[C]
unsigned char stat; // Status (= A)
unsigned char* pdat; // Pointer to the original data (= YP-IY)
unsigned int sectornum; // Verification sector No. (= BA)
unsigned int datasize; // Verification size (= HL)
spl88_err_str* pSpl88errstr; // Error structure (= IX)

pdat = (unsigned char*) malloc(0x1000); // Allocates an original data area.
 . . . // Sets data to the area.
pSpl88errstr = (spl88_err_str*) malloc(sizeof(spl88_err_str));
 // Allocates an area for the error structure.
sectornum = 0x1; // Sets the verification sector No. (1).
datasize = 0x1000; // Sets the verification size.
stat = spl88_verify(pdat, sectornum, datasize, (spl88_err_str*) &pSpl88errstr);

 // Calls the verify function.
if(stat != 0){ // Checks the status bits.
 . . . // Error handling
}
free(pdat); // Deallocates the original data area.
free(pSpl88errstr); // Deallocates the error structure area.

Verify processing flow
 The following shows a procedure to verify data.

Set VD1

1.8 V → 2.5 V

Wait 5 ms or more

Preparation for issuing a command

Set VD1

2.5 V → 1.8 V

Command error?

Quit command?

Start verify routine

End verify routine

spl88_verify
Verify

yes

no

yes
no

Library function call

SVD ≥ 2.7 V?
no

yes

Turn SVD Off

Set SVD criteria voltage to 2.7 V
Turn SVD On

Error handling

5.

4.

1.

6.

Wait 500 µs or more
2.

7.

8.

9.

3.

10. 11.

12.

13.

6 lIBRaRY FUnCTIOnS

22 EPSOn S5U1C8F626Y4 ManUal
 (S1C8F626 Self-Programming library)

1. Set the SVD criteria voltage to 2.7 V and turn the SVD circuit on to check the supply voltage.
2. Wait 500 µs or more.
3. Check if the supply voltage is 2.7 V or more using the SVD circuit. Branch to Step 4 when the supply volt-

age is 2.7 V or more, or branch to Step 11 if it is less than 2.7 V.
4. Turn the SVD circuit off.
5. Switch the VD1 voltage from 1.8 V to 2.5 V.
6. Wait 5 ms or more before calling the spl88_verify function after switching the VD1 voltage.
7. In an assembler source, set the pointer (start address) to the original comparison data to the YP and IY

registers, the verification sector number to the BA register, the verification size to the HL register, and the
pointer to the error structure to the IX register.

 In a C source, set the pointer to the original comparison data, the verification sector number, the verification
size, and the pointer to the error structure to the (unsigned char*)pdat, (unsigned int)

sectornum, (unsigned int)datasize, and (spl88_err_str*)pSpl88errstr variables,
respectively.

8. In an assembler source, call _spl88_verify.
 In a C source, call the spl88_verify function with pdat , sectornum , datasize , and

pSpl88errstr as its arguments.
 The called function starts processing to verify data.
9. In an assembler source, check the results of the verify processing by reading the A register.
 In a C source, check the return value from the spl88_verify function.
 Branch to Step 10 when the function has terminated normally, or branch to Step 11 if an error has occurred.
10. Branch to Step 12 to terminate the command processing, or branch to Step 7 to continue.
11. Perform an error handling.
12. Switch the VD1 voltage from 2.5 V to 1.8 V.
13. Terminate the erase sector processing routine.

6 lIBRaRY FUnCTIOnS

S5U1C8F626Y4 ManUal EPSOn 23
(S1C8F626 Self-Programming library)

6.4 Blank Check Function (spl88_blank)
Function unsigned char spl88_blank(unsigned int sector_num, spl88_err_str* pSpl88_err_str);

Description Performs a blank check (checks if data is 0FFH) of the specified sector (4096 bytes) in the S1C8F626
Flash EEPROM.
While this function is being executed, the watchdog timer and all interrupts are disabled.

Argument BA register
(unsigned int sector_num)

Sector number (see Table 5.5.2.)
00H–0BH, 10H–3FH

IY register
(spl88_err_str* pSpl88_err_str)

Pointer to the error structure (spl88_err_str)

Return value A register
(unsigned char)

Status (see Table 5.4.1.)
SPL88_ERR_NON: Terminated normally
SPL88_ERR_SCTNUM: Sector number error
SPL88_ERR_BLANK: Blank error
SPL88_ERR_VD1: VD1 error

Output data (unsigned long)
spl88_err_str.spl88_err_adr

Address where an error has occurred (Flash EEPROM)

(unsigned char)
spl88_err_str.spl88_org_dat

Original data (0FFH)

(unsigned char)
spl88_err_str.spl88_err_dat

Data in which an error has occurred (Flash EEPROM)

Usage ex-
ample

[ASM]
LD YP,#@DPAG(spl88_err_str) ; Sets the page address of the structure pointer.
LD IY,#@DOFF(spl88_err_str) ; Sets the address of the structure pointer.
PUSH IY
LD IY,SP ; Stack pointer (structure pointer on the stack)
LD BA,#001H ; Sets the blank check sector No. (BA). Sector No. = 1
CARL _spl88_blank ; Calls the blank check function.
CP A,#000H ; Checks the status bits.
POP IY

[C]
unsigned char stat; // Status (= A)
unsigned int sectornum; // Blank check sector No. (= BA)
spl88_err_str* pSpl88errstr; // Error structure (= IY)

pSpl88errstr = (spl88_err_str*) malloc(sizeof(spl88_err_str));
 // Allocates an area for the error structure.
sectornum = 0x1; // Sets the blank check sector No. (1).
stat = spl88_blank(sectornum, (spl88_err_str*) &pSpl88errstr);

 // Calls the blank check function.
if(stat != 0){ // Checks the status bits.
 . . . // Error handling
}
free(pSpl88errstr); // Deallocates the error structure area.

6 lIBRaRY FUnCTIOnS

24 EPSOn S5U1C8F626Y4 ManUal
 (S1C8F626 Self-Programming library)

Blank check processing flow
 The following shows a procedure for blank check.

Set VD1

1.8 V → 2.5 V

Wait 5 ms or more

Preparation for issuing a command

Set VD1

2.5 V → 1.8 V

Command error?

Quit command?

Start blank check routine

SVD ≥ 2.7 V?
no

yes

Turn SVD Off

Set SVD criteria voltage to 2.7 V
Turn SVD On

End blank check routine

spl88_blank
Blank check

yes

no

yes
no

Library function call

Error handling

5.

4.

1.

6.

Wait 500 µs or more
2.

7.

8.

9.

3.

10. 11.

12.

13.

1. Set the SVD criteria voltage to 2.7 V and turn the SVD circuit on to check the supply voltage.
2. Wait 500 µs or more.
3. Check if the supply voltage is 2.7 V or more using the SVD circuit. Branch to Step 4 when the supply volt-

age is 2.7 V or more, or branch to Step 11 if it is less than 2.7 V.
4. Turn the SVD circuit off.
5. Switch the VD1 voltage from 1.8 V to 2.5 V.
6. Wait 5 ms or more before calling the spl88_blank function after switching the VD1 voltage.
7. In an assembler source, set the sector number of the Flash EEPROM to be blank checked to the BA register

and the pointer to the error structure to the IY register.
 In a C source, set the blank check sector number and the pointer to the error structure to the (unsigned

int)sectornum and(spl88_err_str*)pSpl88errstr variables, respectively.
8. In an assembler source, call _spl88_blank.
 In a C source, call the spl88_blank function with sectornum and pSpl88errstr as its arguments.
 The called function starts blank check processing.
9. In an assembler source, check the results of the blank check processing by reading the A register.
 In a C source, check the return value from the spl88_blank function.
 Branch to Step 10 when the function has terminated normally, or branch to Step 11 if an error has occurred.
10. Branch to Step 12 to terminate the command processing, or branch to Step 7 to continue.
11. Perform an error handling.
12. Switch the VD1 voltage from 2.5 V to 1.8 V.
13. Terminate the erase sector processing routine.

7 PRECaUTIOnS On DEBUGGInG

S5U1C8F626Y4 ManUal EPSOn 25
(S1C8F626 Self-Programming library)

7 Precautions on Debugging
Take the following precautions when debugging the program in which the self-programming library is linked.

• Edit the “Internal ROM” parameters in the parameter file (8F626.par) as follows before debugging the program:
 Map0=000000 00BFFF U W → Map0=000000 00BFFF U
 Map1=010000 03FFFF U W → Map1=010000 03FFFF U

• The erase sector and program functions in the library will always be executed without any prompt even if the
self-programming library, C library, or user code is located in the specified sector. Make sure that the correct sec-
tor is specified when calling the erase sector or program function.

• The library functions do not run if the supply voltage is less than 2.7 V. Evaluate the program using an actual ap-
plication system in addition to debugging with development tools.

• The library uses 34 bytes in the stack area. Note that the library functions will not be executed normally if this
area is overwritten.

• Note that all the interrupts and the watchdog timer are disabled while the library function is being executed.

8 RESTRICTIOnS

26 EPSOn S5U1C8F626Y4 ManUal
 (S1C8F626 Self-Programming library)

8 Restrictions
• The library functions cannot be run in a built-in Flash EEPROM processors other than the S1C8F626.

• The library functions may not operate normally if the S1C8F626 CPU mode and compiler memory model are not
matched correctly.

Table 8.1 Combination of Compiler Memory Model and CPU Mode

Compiler memory model
CPU mode

Minimum mode Maximum mode
Small model ×
Compact code model ×
Compact data model ×
Large model ×

(: can be used, ×: cannot be used)

• The watchdog timer is disabled while the library function is being executed.

• All interrupts are disabled while the library function is being executed.

• When creating the self-programming module in assembler, the library functions use and overwrite the general-
purpose registers. Therefore, be sure to save the general-purpose register values before calling the library func-
tions.

• Do not switch the VD1 level (1.8 V → 2.5 V, 2.5 V → 1.8 V) every time the sector to be programmed is changed.

• A 2.7 V or more supply voltage is required to execute the library functions. Refer to the “S1C8F626 Technical
Manual” for more information.

• The self-programming library supports only writing the code and data stored in the S1C8F626 RAM to the Flash
EEPROM, and it does not support loading code and data from a PC to the RAM. Prepare a user program and cir-
cuits to transfer code and data from a PC if it is required.

aPPEnDIX SaMPlE PROGRaMS

S5U1C8F626Y4 ManUal EPSOn 27
(S1C8F626 Self-Programming library)

Appendix Sample Programs
The S1C8F626 Self-Programming Library Package includes sample programs that perform the processing listed
below.

1. Controlling SVD (check if the supply voltage is 2.7 V or more)
2. Controlling the VD1 voltage (set it to 2.5 V during self-programming)
3. Erasing a sector (address range to be erased: 4000H–4FFFH)
4. Blank check for a sector (blank check address range: 4000H–4FFFH)
5. Programming a sector (program address range: 4000H–4FFFH, write data: 04H)
6. Verify check for a sector (verification address range 4000H–4FFFH)
7. Function error handling and termination processing

a.1 list of Sample Programs
The sample programs are copied into the C:\EPSON\SPL88\sample directory (default) during installation of the
library. The sample directory contains subdirectories for different source language and memory models as shown
below. Each program located in the subdirectories has the same facilities.

C:\EPSON
 \SPL88
 \sample

 \ASM Assembler sample directory

 \Small Assembler sample program for small model
 \SRC
 boot.asm Startup routine source file
 sample.asm Main routine source file
 spl88_def.inc External symbol declaration/definition file
 \OBJ
 selfprog.obj Self-programming library object file

 \CompactCode Assembler sample program for compact code model
 \SRC
 boot.asm Startup routine source file
 sample.asm Main routine source file
 spl88_def.inc External symbol declaration/definition file
 \OBJ
 selfprog.obj Self-programming library object file

 \CompactData Assembler sample program for compact data model
 \SRC
 boot.asm Startup routine source file
 sample.asm Main routine source file
 spl88_def.inc External symbol declaration/definition file
 \OBJ
 selfprog.obj Self-programming library object file

 \Large Assembler sample program for large model
 \SRC
 boot.asm Startup routine source file
 sample.asm Main routine source file
 spl88_def.inc External symbol declaration/definition file
 \OBJ
 selfprog.obj Self-programming library object file

aPPEnDIX SaMPlE PROGRaMS

28 EPSOn S5U1C8F626Y4 ManUal
 (S1C8F626 Self-Programming library)

 \C C sample directory

 \Small C sample program for small model
 \SRC
 cstart.s Startup routine source file
 sample.c Main routine source file
 spl88_def.h External symbol declaration/definition file
 \OBJ
 selfprog.obj Self-programming library object file

 \CompactCode C sample program for compact code model
 \SRC
 cstart.s Startup routine source file
 sample.c Main routine source file
 spl88_def.h External symbol declaration/definition file
 \OBJ
 selfprog.obj Self-programming library object file

 \CompactData C sample program for compact data model
 \SRC
 cstart.s Startup routine source file
 sample.c Main routine source file
 spl88_def.h External symbol declaration/definition file
 \OBJ
 selfprog.obj Self-programming library object file

 \Large C sample program for large model
 \SRC
 cstart.s Startup routine source file
 sample.c Main routine source file
 spl88_def.h External symbol declaration/definition file
 \OBJ
 selfprog.obj Self-programming library object file

aPPEnDIX SaMPlE PROGRaMS

S5U1C8F626Y4 ManUal EPSOn 29
(S1C8F626 Self-Programming library)

a.2 Functions in the Sample Program
The sample program contains the functions shown below.

(1) _start Initialize function
(2) main Main function
(3) spl88_wait Wait function
(4) spl88_setwritedat Write data setup function
(5) spl88_finish_proc Termination process function

a.2.1 _start (Initialize Function)
Function void _start(void);

Description This function is executed by the CPU after an initial reset to initialize some I/O registers.
First, the function sets the CPU mode through I/O address FF00H. The sample program for the small
or compact code model sets the CPU to minimum mode. The sample program for the compact data or
large model sets the CPU to maximum mode.
Next, the function sets the stack page to 0 through I/O address FF01H, and then sets the stack pointer.
Finally, it sets the CPU clock to OSC3 through I/O address FF02H and calls the main function.

Arguments None

Return value None

Set CPU clock

_start

Call main function

Set stack pointer

Set CPU mode

Small or compact code model
Set the CPU mode to minimum mode.

Compact data or large model
Set the CPU mode to maximum mode.

Select OSC3 as the CPU clock.

Figure A.2.1.1 _start Flowchart

a.2.2 main (Main Function)
Function void main(void);

Description This is the main routine of the sample program and is executed in the ROM.
First, this function sets up the stopwatch timer to generate wait times for SVD and VD1. Next, it controls
the SVD circuit to check if a 2.7 V or more power voltage is supplied. If the supply voltage is less than
2.7 V, this function calls the spl88_finish_proc function to terminate the self-programming routine with
an error. When the supply voltage is 2.7 V or more, it switches VD1 to 2.5 V for Flash programming. After
waiting for stabilization of the VD1 voltage, it performs erasing, blank check, writing data (04H), and a
verify check for Flash sector 4 (4000H–4FFFH) sequentially.
If an error occurs during processing, it calls the spl88_finish_proc function to terminate the self-pro-
gramming routine with an error.
When the verify check is completed normally, it calls the spl88_finish_proc function to terminate the
self-programming routine with no error.

Arguments None

Return value None

aPPEnDIX SaMPlE PROGRaMS

30 EPSOn S5U1C8F626Y4 ManUal
 (S1C8F626 Self-Programming library)

spl88_wait
Wait (10 ms)

spl88_wait
Wait (10 ms)

main

Normal termination process

Set up SVD

Set up stopwatch timer Initialize the 100 Hz stopwatch timer to run.

Set the criteria voltage to 2.7 V and activate the SVD.
* Flash programming cannot be performed if VDD < 2.7 V.

Switch VD1 from 1.8 V to 2.5 V.
* Flash programming cannot be performed if

VD1 = 1.8 V.

Check the SVD result.

Check the spl88_erase function return value.

Check the spl88_blank function return value.

Check the spl88_write function return value.

Check the spl88_verify function return value.

The sample program finishes only after
sector 04H is completed.

Call the spl88_finish_proc
 function.

Wait for the SVD to stabilize.
* At least 500 µs wait time is required after the

SVD is activated.

Wait for VD1 to stabilize.
* At least 5 ms wait time is required after VD1

is switched.

Set the Flash sector number.
The sample program sets 04H.

Call the spl88_erase function with the sector
number specified.

Call the spl88_blank function with the sector
number and error structure specified.

Set the write data to the specified RAM area
(4096 bytes).

Call the spl88_write function with the write data,
sector number, and data size specified.

Call the spl88_verify function with the original
comparison data, sector number, data size, and
error structure specified.

SVD ≥ 2.7 V?
no

yes

Set VD1

Set sector number

Error?
yes

no

Error?
yes

no
spl88_setwritedat
Set up write data

Error?
yes

no

no

Error?
yes

no

Completed?

yes

Error termination process

spl88_erase
Erase sector

spl88_write
Program

spl88_blank
Blank check

spl88_verify
Verify

Figure A.2.2.1 main Flowchart

aPPEnDIX SaMPlE PROGRaMS

S5U1C8F626Y4 ManUal EPSOn 31
(S1C8F626 Self-Programming library)

a.2.3 spl88_wait (Wait Function)
Function void spl88_wait(void);

Description This function is called by the main routine to wait until the SVD or VD1 operation has stabilized using
the stopwatch timer. This function returns to the caller function after the 100 Hz stopwatch timer has
counted up for about 10 ms.

Arguments None

Return value None

Note • Before this function can be used, the 100 Hz stopwatch timer must be set up (refer to the source of
the main function).

• It is not necessary to use the stopwatch timer to generate wait times. However, a wait time that
exceeds the stability time is required when the SVD circuit activates or VD1 is switched. Generate ap-
propriate wait times using a method possible in the application system.

spl88_wait

RET

Read stopwatch timer
100 Hz interrupt factor flag

Reset stopwatch timer
100 Hz interrupt factor flag

Perform polling until the 100 Hz
interrupt factor flag in the I/O
register FF26H goes 1.

Write 0 to the interrupt factor
flag to reset.

no
Flag = 1?

yes

Figure A.2.3.1 spl88_wait Flowchart

a.2.4 spl88_setwritedat (Write Data Setup Function)
Function void spl88_setwritedat(unsigned char* spl88_rxp_dat, unsigned int sectornum);

Description This function sets data in the 4096-byte data buffer (RAM area) specified with the pointer. The sample
program fills the 4096-byte area with 04H.

Arguments YP and IY registers
(unsigned char* spl88_rxp_dat)

Pointer to data buffer (RAM)
YP: one high-order byte of address
IY: two low-order bytes of address

BA register
(unsigned int sectornum)

Sector number

Return value None

Note This function is created just for the sample program use and it sets a fixed value to a RAM area. Note
that a feature that can be used for applications is not implemented.

aPPEnDIX SaMPlE PROGRaMS

32 EPSOn S5U1C8F626Y4 ManUal
 (S1C8F626 Self-Programming library)

spl88_setwritedat

RET

The sample program finishes only after
sector 04H is completed.

Set the Flash sector number.
The sample program sets 04H.

Set data (04H) to the location in the
data buffer indicated by the pointer.

Set the sector number

Write data to the pointed location

Change the pointer to the next address.Increment pointer

no
Sectors finished?

yes

no
4096 bytes finished?

yes

Figure A.2.4.1 spl88_setwritedat Flowchart

a.2.5 spl88_finish_proc (Termination Process Function)
Function void spl88_finish_proc(unsigned char* spl88_rxp_dat, spl88_err_str* pSpl88_err_str);

Description This function performs processing for termination after the library functions are executed.
It disables SVD and returns VD1 to 1.8 V for normal mode. Also it deallocates the memory areas for the
4096-byte data buffer and the error structure. Finally, it sets the CPU to HALT mode.

Arguments YP and IY registers
(unsigned char* spl88_rxp_dat)

Pointer to data buffer (RAM)
YP: one high-order byte of address
IY: two low-order bytes of address

XP and IX registers
(spl88_err_str* pSpl88_err_str)

Pointer to the error structure (spl88_err_str)
XP: one high-order byte of address
IX: two low-order bytes of address

Return value None

spl88_finish_proc

Deactivate the SVD operation after
erasing and writing have been completed.

Deallocate the memory area (4096 bytes)
for the data buffer.

Turn SVD Off

Deallocate memory for spl88_rxp_dat

Deallocate the memory area (6 bytes)
for the error structure.

Set the CPU to HALT mode.

Deallocate memory for pSpl88_err_str

HALT

Switch VD1 from 2.5 V to 1.8 V after
erasing and writing have been completed.

Set VD1

Figure A.2.5.1 spl88_finish_proc Flowchart

AMERICA

EPSON ELECTRONICS AMERICA, INC.

HEADQUARTERS
2580 Orchard Parkway
San Jose, CA 95131, U.S.A.
Phone: +1-800-228-3964 Fax: +1-408-922-0238

SALES OFFICE
Northeast
301 Edgewater Place, Suite 210
Wakefield, MA 01880, U.S.A.
Phone: +1-800-922-7667 Fax: +1-781-246-5443

EUROPE
EPSON EUROPE ELECTRONICS GmbH

HEADQUARTERS
Riesstrasse 15
80992 Munich, GERMANY
Phone: +49-89-14005-0 Fax: +49-89-14005-110

ASIA
EPSON (CHINA) CO., LTD.
23F, Beijing Silver Tower 2# North RD DongSanHuan
ChaoYang District, Beijing, CHINA
Phone: +86-10-6410-6655 Fax: +86-10-6410-7320

SHANGHAI BRANCH
7F, High-Tech Bldg., 900, Yishan Road
Shanghai 200233, CHINA
Phone: +86-21-5423-5522 Fax: +86-21-5423-5512

EPSON HONG KONG LTD.
20/F, Harbour Centre, 25 Harbour Road
Wanchai, Hong Kong
Phone: +852-2585-4600 Fax: +852-2827-4346
Telex: 65542 EPSCO HX

EPSON Electronic Technology Development
(Shenzhen) LTD.
12/F, Dawning Mansion, Keji South 12th Road
Hi- Tech Park, Shenzhen
Phone: +86-755-2699-3828 Fax: +86-755-2699-3838

EPSON TAIWAN TECHNOLOGY & TRADING LTD.
14F, No. 7, Song Ren Road
Taipei 110
Phone: +886-2-8786-6688 Fax: +886-2-8786-6660

EPSON SINGAPORE PTE., LTD.
1 HarbourFront Place
#03-02 HarbourFront Tower One, Singapore 098633
Phone: +65-6586-5500 Fax: +65-6271-3182

SEIKO EPSON CORPORATION
KOREA OFFICE
50F, KLI 63 Bldg., 60 Yoido-dong
Youngdeungpo-Ku, Seoul, 150-763, KOREA
Phone: +82-2-784-6027 Fax: +82-2-767-3677

GUMI OFFICE
2F, Grand B/D, 457-4 Songjeong-dong
Gumi-City, KOREA
Phone: +82-54-454-6027 Fax: +82-54-454-6093

SEIKO EPSON CORPORATION
SEMICONDUCTOR OPERATIONS DIVISION

IC Sales Dept.
IC International Sales Group
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-42-587-5814 Fax: +81-42-587-5117

International Sales Operations

Issue July, 2007
Printed in Japan AL

(S1C8F626 Self-Programming Library)
S5U1C8F626Y4 Manual

EPSON Electronic Devices Website

SEMICONDUCTOR OPERATIONS DIVISION

http://www.epson.jp/device/semicon_e

Document code: 411090300

	1 Overview
	2 Installation
	2.1 Items in the Package
	2.2 Working Environment
	2.3 How to Install the Library
	2.4 Installed Files

	3 Features of the Library
	3.1 Configuration of the Library Files
	3.2 List of Library Facilities
	3.3 Library Size and Number of Processing Cycles

	4 Usage Directions for the Library
	4.1 Adding Files into Project
	4.2 Locating the Library Object in the Memory

	5 Creating a Program
	5.1 Self-Program Processing Flow
	5.2 Data Buffer
	5.3 Error Structure spl88_err_str
	5.4 Constant Definitions
	5.5 Programming Notes

	6 Library Functions
	6.1 Erase Sector Function (spl88_erase)
	6.2 Program Function (spl88_write)
	6.3 Verify Function (spl88_verify)
	6.4 Blank Check Function (spl88_blank)

	7 Precautions on Debugging
	8 Restrictions
	Appendix Sample Programs
	A.1 List of Sample Programs
	A.2 Functions in the Sample Program
	A.2.1 _start (Initialize Function)
	A.2.2 main (Main Function)
	A.2.3 spl88_wait (Wait Function)
	A.2.4 spl88_setwritedat (Write Data Setup Function)
	A.2.5 spl88_finish_proc (Termination Process Function)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

