
CMOS 32-BIT SINGLE CHIP MICROCOMPUTER

Core Manual
S1C33 Family C33 PE

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written permission
of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not
assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or
use in any product or circuit and, further, there is no representation that this material is applicable to products requir-
ing high level reliability, such as medical products. Moreover, no license to any intellectual property rights is granted by
implication or otherwise, and there is no representation or warranty that anything made in accordance with this mate-
rial will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain
technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade
Law of Japan and may require an export license from the Ministry of International Trade and Industry or other approval
from another government agency.

© SEIKO EPSON CORPORATION 2006, All rights reserved.

Devices
S1 C 33209 F 00E1

Packing specifications
00 : Besides tape & reel
0A : TCP BL 2 directions
0B : Tape & reel BACK
0C : TCP BR 2 directions
0D : TCP BT 2 directions
0E : TCP BD 2 directions
0F : Tape & reel FRONT
0G: TCP BT 4 directions
0H : TCP BD 4 directions
0J : TCP SL 2 directions
0K : TCP SR 2 directions
0L : Tape & reel LEFT
0M: TCP ST 2 directions
0N : TCP SD 2 directions
0P : TCP ST 4 directions
0Q: TCP SD 4 directions
0R : Tape & reel RIGHT
99 : Specs not fixed

Specification

Package
D: die form; F: QFP, B: BGA

Model number

Model name
C: microcomputer, digital products

Product classification
S1: semiconductor

Development tools
S5U1 C 33000 H2 1

Packing specifications
00: standard packing

Version
1: Version 1

Tool type
Hx : ICE
Dx : Evaluation board
Ex : ROM emulation board
Mx: Emulation memory for external ROM
Tx : A socket for mounting

Cx : Compiler package
Sx : Middleware package

Corresponding model number
33L01: for S1C33L01

Tool classification
C: microcomputer use

Product classification
S5U1: development tool for semiconductor products

00

00

Configuration of product number

CONTENTS

S1C33 FAMILY C33 PE CORE MANUAL EPSON i

– Contents –

1 Summary .. 1
1.1 Features .. 1

1.2 Summary of Added/Changed Functions of the C33 PE .. 2

1.2.1 Instructions ... 2
1.2.2 Registers ... 3
1.2.3 Address Space and Other .. 3

2 Registers .. 4
2.1 General-Purpose Registers (R0–R15) .. 4

2.2 Program Counter (PC) .. 4

2.3 Processor Status Register (PSR) .. 5

2.4 Stack Pointer (SP) ... 7

2.4.1 About the Stack Area .. 7
2.4.2 SP Operation during Execution of Push-Related Instructions 7
2.4.3 SP Operation during Execution of Pop-Related Instructions 8
2.4.4 SP Operation during Execution of a Call Instruction .. 8
2.4.5 SP Operation when an Interrupt or Exception Occurs .. 9

2.5 Trap Table Base Register (TTBR) ... 10

2.6 Arithmetic Operation Registers (ALR and AHR) .. 10

2.7 Processor Identification Register (IDIR) ... 10

2.8 Debug Base Register (DBBR) .. 10

2.9 Register Notation and Register Numbers .. 11

2.9.1 General-Purpose Registers ... 11
2.9.2 Special Registers ... 12

3 Data Formats ... 13
3.1 Unsigned 8-Bit Transfer (Register → Register) .. 13

3.2 Signed 8-Bit Transfer (Register → Register) .. 13

3.3 Unsigned 8-Bit Transfer (Memory → Register) ... 14

3.4 Signed 8-Bit Transfer (Memory → Register) ... 14

3.5 8-Bit Transfer (Register → Memory) ... 14

3.6 Unsigned 16-Bit Transfer (Register → Register) .. 14

3.7 Signed 16-Bit Transfer (Register → Register) .. 15

3.8 Unsigned 16-Bit Transfer (Memory → Register) ... 15

3.9 Signed 16-Bit Transfer (Memory → Register) ... 15

3.10 16-Bit Transfer (Register → Memory) ... 15

3.11 32-Bit Transfer (Register → Register) .. 16

3.12 32-Bit Transfer (Memory → Register) ... 16

3.13 32-Bit Transfer (Register → Memory) ... 16

4 Address Map ... 17

5 Instruction Set .. 18
5.1 S1C33-Series-Compatible Instructions .. 18

5.2 Function Extended Instructions .. 20

5.3 Instructions Added to the C33 PE Core ... 21

5.4 Instructions Removed .. 21

CONTENTS

ii EPSON S1C33 FAMILY C33 PE CORE MANUAL

5.5 Addressing Modes (without ext extension) ... 22

5.5.1 Immediate Addressing ... 22
5.5.2 Register Direct Addressing .. 22
5.5.3 Register Indirect Addressing .. 23
5.5.4 Register Indirect Addressing with Postincrement .. 23
5.5.5 Register Indirect Addressing with Displacement ... 24
5.5.6 Signed PC Relative Addressing .. 24

5.6 Addressing Modes with ext ... 25

5.6.1 Extension of Immediate Addressing .. 25
5.6.2 Extension of Register Indirect Addressing ... 26
5.6.3 Exception Handling for ext Instructions .. 30

5.7 Data Transfer Instructions .. 31

5.8 Logical Operation Instructions .. 32

5.9 Arithmetic Operation Instructions ... 33

5.10 Multiply Instructions .. 34

5.11 Shift and Rotate Instructions .. 35

5.12 Bit Manipulation Instructions .. 36

5.13 Push and Pop Instructions ... 37

5.14 Branch and Delayed Branch Instructions ... 39

5.14.1 Types of Branch Instructions .. 39
5.14.2 Delayed Branch Instructions .. 42

5.15 System Control Instructions ... 44

5.16 Swap Instructions ... 45

5.17 Other Instructions ... 46

6 Functions .. 47
6.1 Transition of the Processor Status .. 47

6.1.1 Reset State .. 47
6.1.2 Program Execution State ... 47
6.1.3 Exception Handling .. 47
6.1.4 Debug Exception .. 47
6.1.5 HALT and SLEEP Modes ... 47

6.2 Program Execution ... 48

6.2.1 Instruction Fetch and Execution ... 48
6.2.2 Execution Cycles and Flags ... 49

6.3 Interrupts and Exceptions .. 52

6.3.1 Priority of Exceptions ... 52
6.3.2 Vector Table .. 53
6.3.3 Exception Handling .. 54
6.3.4 Reset ... 54
6.3.5 Address Misaligned Exception ... 54
6.3.6 NMI .. 55
6.3.7 Software Exceptions .. 55
6.3.8 Maskable External Interrupts ... 55
6.3.9 Undefined Instruction Exception .. 56
6.3.10 ext Exception .. 56

6.4 Power-Down Mode ... 57

6.5 Debug Circuit ... 58

6.6 Coprocessor Interface .. 59

CONTENTS

S1C33 FAMILY C33 PE CORE MANUAL EPSON iii

7 Details of Instructions .. 60
adc %rd, %rs ...61
add %rd, %rs ...62
add %rd, imm6 ..63
add %sp, imm10 ...64
and %rd, %rs ...65
and %rd, sign6 ..66
bclr [%rb], imm3 ...67
bnot [%rb], imm3 ..68
brk ...69
bset [%rb], imm3 ..70
btst [%rb], imm3 ...71
call %rb / call.d %rb ..72
call sign8 / call.d sign8 ...73
cmp %rd, %rs ..74
cmp %rd, sign6 ...75
do.c imm6 ...76
ext imm13 ..77
halt ..78
int imm2 ..79
jp %rb / jp.d %rb ..80
jp sign8 / jp.d sign8 ...81
jpr %rb / jpr.d %rb ...82
jreq sign8 / jreq.d sign8 ..83
jrge sign8 / jrge.d sign8 ..84
jrgt sign8 / jrgt.d sign8 ..85
jrle sign8 / jrle.d sign8 ..86
jrlt sign8 / jrlt.d sign8 ..87
jrne sign8 / jrne.d sign8 ..88
jruge sign8 / jruge.d sign8 ...89
jrugt sign8 / jrugt.d sign8 ...90
jrule sign8 / jrule.d sign8 ..91
jrult sign8 / jrult.d sign8 ..92
ld.b %rd, %rs ...93
ld.b %rd, [%rb] ..94
ld.b %rd, [%rb]+ ..95
ld.b %rd, [%sp + imm6] ..96
ld.b [%rb], %rs ..97
ld.b [%rb]+, %rs ..98
ld.b [%sp + imm6], %rs ..99
ld.c %rd, imm4 ...100
ld.c imm4, %rs ...101
ld.cf ..102
ld.h %rd, %rs ..103
ld.h %rd, [%rb] ...104
ld.h %rd, [%rb]+ ...105
ld.h %rd, [%sp + imm6] ...106
ld.h [%rb], %rs ...107
ld.h [%rb]+, %rs ...108
ld.h [%sp + imm6], %rs ...109
ld.ub %rd, %rs ...110
ld.ub %rd, [%rb] ...111
ld.ub %rd, [%rb]+ ...112
ld.ub %rd, [%sp + imm6] ...113
ld.uh %rd, %rs ...114
ld.uh %rd, [%rb] ...115
ld.uh %rd, [%rb]+ ...116
ld.uh %rd, [%sp + imm6] ...117

CONTENTS

iv EPSON S1C33 FAMILY C33 PE CORE MANUAL

ld.w %rd, %rs ...118
ld.w %rd, %ss ..119
ld.w %rd, [%rb] ..120
ld.w %rd, [%rb]+ ..121
ld.w %rd, [%sp + imm6] ..122
ld.w %rd, sign6 ..123
ld.w %sd, %rs ..124
ld.w [%rb], %rs ...125
ld.w [%rb]+, %rs ...126
ld.w [%sp + imm6], %rs ...127
mlt.h %rd, %rs ...128
mlt.w %rd, %rs ...129
mltu.h %rd, %rs ...130
mltu.w %rd, %rs ...131
nop ...132
not %rd, %rs ..133
not %rd, sign6 ..134
or %rd, %rs ..135
or %rd, sign6 ..136
pop %rd ..137
popn %rd ..138
pops %sd ...139
psrclr imm5 ..140
psrset imm5 ...141
push %rs ..142
pushn %rs ..143
pushs %ss ...144
ret / ret.d ..145
retd ..146
reti ..147
rl %rd, %rs ..148
rl %rd, imm5 ...149
rr %rd, %rs ...150
rr %rd, imm5 ..151
sbc %rd, %rs ..152
sla %rd, %rs ...153
sla %rd, imm5 ..154
sll %rd, %rs ..155
sll %rd, imm5 ...156
slp ..157
sra %rd, %rs ...158
sra %rd, imm5 ..159
srl %rd, %rs ..160
srl %rd, imm5 ...161
sub %rd, %rs ..162
sub %rd, imm6 ...163
sub %sp, imm10 ..164
swap %rd, %rs ...165
swaph %rd, %rs ...166
xor %rd, %rs ..167
xor %rd, sign6 ..168

Appendix Instruction Code List (in Order of Codes) .. 169

1 SUMMARY

S1C33 FAMILY C33 PE CORE MANUAL EPSON 1

1 Summary
The C33 PE is a RISC type processor in the S1C33 series of Seiko Epson 32-bit microcomputers.
The C33 PE (Processor Element) Core is a Seiko Epson original 32-bit RISC-type core processor for the S1C33
Family microprocessors. Based on the C33 STD Core CPU features, some useful C33 ADV Core functions/
instructions were added and some of the infrequently used ones in general applications are removed to realize a
high cost-performance core unit with high processing speed.
The C33 PE Core has been designed with optimization for embedded applications (full RTL design) in mind to
short development time and to reduce cost.
As the principal instructions are object-code compatible with the C33 STD Core CPU, the software assets that the
user has accumulated in the past can be effectively utilized.

1.1 Features

Processor type
• Seiko Epson original 32-bit RISC processor
• 32-bit internal data processing
• Contains a 32-bit × 16-bit multiplier

Operating-clock frequency
• DC to 66 MHz or higher (depending on the processor model and process technology)

Instruction set
• Code length 16-bit fixed length
• Number of instructions 125
• Execution cycle Main instructions executed in one cycles
• Extended immediate instructions Immediate extended up to 32 bits
• Multiplication instructions Multiplications for 16 × 16 and 32 × 32 bits supported

Register set
• 32-bit general-purpose registers
• 32-bit special registers

Memory space and external bus
• Instruction, data, and I/O coexisting linear space
• Up to 4G bytes of memory space
• Harvard architecture using separated instruction bus and data bus

Interrupts
• Reset, NMI, and 240 external interrupts supported
• Four software exceptions
• Three instruction execution exceptions
• Direct branching from vector table to interrupt handler routine

Power-down mode
• HALT mode
• SLEEP mode

1 SUMMARY

2 EPSON S1C33 FAMILY C33 PE CORE MANUAL

1.2 Summary of Added/Changed Functions of the C33 PE
The functions below have been added to or changed for the C33 PE Core, based on functions of the C33 STD Core
CPU (S1C33000). For details, see the description of each function in subsequent sections of this manual.

1.2.1 Instructions
The C33 PE Core instruction set is compatible with the C33 STD Core CPU, note, however, that some existing
instructions have been function extended or removed and new instructions have been added for high-performance
operations and cost reduction.

Function-extended instructions
 The C33 PE Core has the following function-extended instructions. For details, see the description of each

instruction in subsequent sections of this manual.

 1. The number of bits shifted by shift/rotate instructions has been increased from 8 to 32.
shift %rd,imm5 * 0–8 bits shift → 0–32 bits shift, shift = srl, sll, sra, sla, rr, rl
shift %rd,%rs 0–8 bits shift → 0–32 bits shift, shift = srl, sll, sra, sla, rr, rl

∗ Although the “shift %rd,imm5” instruction uses two actual instruction codes, they are each counted
as one in the number of instructions shown on the preceding page.

2. The data transfer instructions between a general-purpose register and a special register have been modified
to support newly added special registers.
ld.w %sd,%rs Special register specifiable in %sd added
ld.w %rd,%ss Special register specifiable in %ss added

Added instructions
 The instructions added to the C33 PE Core are listed below. For details, see the description of each instruction

in subsequent sections of this manual.

1. Instructions specifically designed to save and restore single or special registers have been added.
push %rs Pushes single register
pop %rd Pops single register
pushs %ss Pushes special registers successively
pops %sd Pops special registers successively

2. Instructions specifically designed for use with the coprocessor interface have been added.
ld.c %rd,imm4 Coprocessor data transfer
ld.c imm4,%rs Coprocessor data transfer
do.c imm6 Coprocessor execution
ld.cf Coprocessor flag transfer

3. Other special instructions have been added.
swaph %rd,%rs Switches between big and little endians
psrset imm5 Sets the PSR bit
psrclr imm5 Clears the PSR bit
jpr %rb Register indirect unconditional relative branch

Instructions removed
 In the C33 PE Core, the instructions listed below have been removed from the instruction set of the C33 STD

Core CPU.
 div0s Preprocessing for signed step division
 div0u Preprocessing for unsigned step division
 div1 Step division
 div2s Correction of the result of signed step division, 1
 div3s Correction of the result of signed step division, 2
 mac Multiply-accumulate operation
 scan0 Scan bits for 0
 scan1 Scan bits for 1
 mirror Mirroring

 These functions can be realized using the software library provided or by other means.

1 SUMMARY

S1C33 FAMILY C33 PE CORE MANUAL EPSON 3

1.2.2 Registers
The general-purpose registers (R0 to R15) are basically the same as in the C33 STD Core CPU.
The special registers have been functionally extended as described below.

PC
 All 32 bits can now be used.
 Moreover, the PC can now be read out to enable high-speed leaf calls.

Trap table base register
 A trap table base register (TTBR) has been added.
 TTBR, which was mapped at address 0x48134 in the C33 STD Core CPU, is incorporated in the C33 PE Core

as a special register. The initial value (boot address) has not changed from 0xC00000.

Processor identification register
 A processor identification register (IDIR) has been added for identifying the core type and version.

Debug base register
 A debug base register (DBBR) has been added. This register indicates the start address of the debug area. It

normally is fixed to 0x60000.

Processor status register
 The following flags in PSR have been removed as have the related instructions:
 MO flag (bit 7) Mac overflow flag
 DS flag (bit 6) Divide sign

1.2.3 Address Space and Other

Address space
 The C33 PE Core supports a 4G-byte space based on a 32-bit address bus.

Other
1. Interrupt/exception processing
 The Trap Table Base Register (TTBR) now serves as an internal special register of the processor.
 Furthermore, this processor has come to generate an exception when an undefined instruction (an object

code not defined in the instruction set) is executed or more than two ext instructions are described.

2. Pipeline
 The 3-stage pipeline in the C33 STD Core CPU has been modified to a 2-stage pipeline in the C33 PE Core

(consisting of fetch/decode and execute/access/write back).

2 REGISTERS

4 EPSON S1C33 FAMILY C33 PE CORE MANUAL

2 Registers
The C33 PE Core contains 16 general-purpose registers and 8 special registers.

R15
R14
R13
R12
R11
R10

R4
R5
R6
R7
R8
R9

R3
R2
R1
R0

bit 31 bit 0

General-purpose registers

PC

TTBR

bit 31
#15
#11
#10
#8
#3
#2
#1
#0

#15
#14
#13
#12
#11
#10
#9
#8
#7
#6
#5
#4
#3
#2
#1
#0

bit 0

AHR
ALR

PSR
SP

IDIR
DBBR

Special registers

Figure 2.1 Registers

2.1 General-Purpose Registers (R0–R15)
Symbol
R0–R15

Size
32 bits

Initial value
Indeterminate

Register name
General-Purpose Register

R/W
R/W

The 16 registers R0–R15 (r0–r15) are the 32-bit general-purpose registers that can be used for data manipulation,
data transfer, memory addressing, or other general purposes. The contents of all of these registers are handled as
32-bit data or addresses, so 8- or 16-bit data is sign- or zero-extended to a 32-bit quantity when it is loaded into one
of these registers depending on the instruction used. When these registers are used for address references in the C33
PE Core, 32-bit space can be accessed directly.
During initialization at power-on, the contents of the general-purpose registers are indeterminate.

2.2 Program Counter (PC)
Symbol

PC
Size

32 bits
Initial value

Indeterminate
Register name

Program Counter
R/W
R

The Program Counter (hereinafter referred to as the “PC”) is a 32-bit counter for holding the address of an
instruction to be executed. More specifically, the PC value indicates the address of the next instruction to be
executed.
As the instructions in the C33 PE Core are fixed at 16 bits in length, the low-order one bit of the PC (bit 0) is always 0.
Although the C33 PE Core allows the PC to be referenced in a program, the user cannot alter it. Note, however,
that the value actually loaded into the register when a ld.w %rd,%pc instruction (can be executed as a delayed
instruction) is executed is the “PC value for the ld instruction + 2.”
During reset, the address written at the reset vector in the vector table indicated by TTBR is loaded into the PC, and
the processor starts executing a program from the address indicated by the PC.
During cold reset, TTBR is initialized to “0xC00000,” so that the address written at the address “0xC00000” is the
start address of the program.

Effective address 0
0131

Figure 2.2.1 Program Counter (PC)

2 REGISTERS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 5

2.3 Processor Status Register (PSR)
Symbol
PSR

Size
32 bits

Initial value
0x00000000

Register name
Processor Status Register

R/W
R/W

The Processor Status Register (hereinafter referred to as the “PSR”) is a 32-bit register for storing the internal status
of the processor.
The PSR stores the internal status of the processor when the status has been changed by instruction execution. It is
referenced in arithmetic operations or branch instructions, and therefore constitutes an important internal status in
program composition. The PSR can be altered by a program.
As the PSR affects program execution, whenever an interrupt or exception occurs, the PSR is saved to the stack,
except for debug exceptions, to maintain the PSR value. The IE flag (bit 4) in it is cleared to 0. The reti
instruction is used to return from interrupt handling, and the PSR value is restored from the stack at the same time.

IL[3:0] –
7891011

–
6

–
5

IE
4

C
3

V
2

Z
1

N
0

–
31 12

0
R

0
R/W

0
R/W

0
R/W

0
R/W

0
R

0
R

0
R/W

0
R/W

0
R/W

0
R/W

0
R/W

0
R

Initial value
R/W

. 0
R

Figure 2.3.1 Processor Status Register (PSR)

The dash “–” in the above diagram indicates unused bits. Writing to these bits has no effect, and their value when
read out is always 0.

IL[3:0] (bits 11–8): Interrupt Level
 These bits indicate the priority levels of the processor interrupts. Maskable interrupt requests are accepted only

when their priority levels are higher than that set in the IL bit field. When an interrupt request is accepted, the
IL bit field is set to the priority level of that interrupt, and all interrupt requests generated thereafter with the
same or lower priority levels are masked, unless the IL bit field is set to a different level or the interrupt handler
routine is terminated by the reti instruction.

IE (bit 4): Interrupt Enable
 This bit controls maskable external interrupts by accepting or disabling them. When IE bit = 1, the processor

enables maskable external interrupts. When IE bit = 0, the processor disables maskable external interrupts.
 When an interrupt or exception is accepted, the PSR is saved to the stack and this bit is cleared to 0. However,

the PSR is not saved to the stack for debug exceptions, nor is this bit cleared to 0.

C (bit 3): Carry
 This bit indicates a carry or borrow. More specifically, this bit is set to 1 when, in an add or subtract instruction

in which the result of operation is handled as an unsigned 32-bit integer, the execution of the instruction
resulted in exceeding the range of values representable by an unsigned 32-bit integer, or is reset to 0 when the
result is within the range of said values.

 The C flag is set under the following conditions:

(1) When an addition executed by an add instruction resulted in a value greater than the maximum value
0xFFFFFFFF representable by an unsigned 32-bit integer

(2) When a subtraction executed by a subtract instruction resulted in a value smaller than the minimum value
0x00000000 representable by an unsigned 32-bit integer

V (bit 2): OVerflow
 This bit indicates that an overflow or underflow occurred in an arithmetic operation. More specifically, this bit

is set to 1 when, in an add or subtract instruction in which the result of operation is handled as a signed 32-bit
integer, the execution of the instruction resulted in an overflow or underflow, or is reset to 0 when the result of
the add or subtract operation is within the range of values representable by a signed 32-bit integer. This flag is
also reset to 0 by executing a logical operation instruction.

2 REGISTERS

6 EPSON S1C33 FAMILY C33 PE CORE MANUAL

 The V flag is set under the following conditions:

(1) When negative integers are added together, the operation produced a 0 (positive) in the sign bit (most
significant bit of the result)

(2) When positive integers are added together, the operation resulted in a 1 (negative) in the sign bit (most
significant bit of the result)

(3) When a negative integer is subtracted from a positive integer, the operation resulted in producing a 1
(negative) in the sign bit (most significant bit of the result)

(4) When a positive integer is subtracted from a negative integer, the operation resulted in producing a 0 (positive)
in the sign bit (most significant bit of the result)

Z (bit 1): Zero
 This bit indicates that an operation resulted in 0. More specifically, this bit is set to 1 when the execution of a

logical operation, arithmetic operation, or shift instruction resulted in 0, or is otherwise reset to 0.

N (bit 0): Negative
 This bit indicates a sign. More specifically, the most significant bit (bit 31) of the result of a logical operation,

arithmetic operation, or shift instruction is copied to this N flag. If the operation being executed is step division,
the sign bit of the division is set in the N flag, which affects the execution of the division.

2 REGISTERS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 7

2.4 Stack Pointer (SP)
Symbol

SP
Size

32 bits
Initial value

Indeterminate
Register name

Stack Pointer
R/W
R/W

The Stack Pointer (hereinafter referred to as the “SP”) is a 32-bit register for holding the start address of the stack.
The stack is an area locatable at any place in the system RAM, the start address of which is set in the SP during the
initialization process. The 2 low-order bits of the SP are fixed to 0 and cannot be accessed for writing. Therefore,
the addresses specifiable by the SP are those that lie on word boundaries.

Word boundary address 0 0
01231

Fixed
(read only)

Figure 2.4.1 Stack Pointer (SP)

2.4.1 About the Stack Area

The size of an area usable as the stack is limited according to the RAM size available for the system and the size of
the area occupied by ordinary RAM data. Care must be taken to prevent the stack and data area from overlapping.
Furthermore, as the SP becomes indeterminate when it is initialized upon reset, “last stack address + 4, with 2 low-
order bits = 0” must be written to the SP in the beginning part of the initialization routine. A load instruction may
be used to write this address. If an interrupt or exception occurs before the stack is set up, it is possible that the PC
or PSR will be saved to an indeterminate location, and normal operation of a program cannot be guaranteed. To
prevent such a problem, NMIs (nonmaskable interrupts) that cannot be controlled in software are masked out in
hardware until the SP is initialized.

2.4.2 SP Operation during Execution of Push-Related Instructions

In a push-related instruction, first the stack pointer indicated by the SP is decremented by 4 to move the SP to a
lower address location.
 SP = SP - 4

Next, the content of the register specified in the push instruction is stored at the address pointed to by the SP.
 rs → [SP]

Example: pushn %r2

SP
31 0

0xFFFFFFFF

0x00000000

SP = SP - 12

31 0

0xFFFFFFFF

r2
r1
r0

0x00000000

Figure 2.4.2.1 SP and Stack (1)

2 REGISTERS

8 EPSON S1C33 FAMILY C33 PE CORE MANUAL

2.4.3 SP Operation during Execution of Pop-Related Instructions

In a pop-related instruction, first data is restored from the address indicated by the SP into the register.
 [SP] → rs

Next, the SP is incremented by 4 to move the pointer to a higher address location.
 SP = SP + 4

Example: popn %r2

SP

31 0

0xFFFFFFFF

0x00000000

SP = SP + 12
31 0

0xFFFFFFFF

r2
r1
r0

r2
r1
r0

0x00000000

Figure 2.4.3.1 SP and Stack (2)

2.4.4 SP Operation during Execution of a Call Instruction

A subroutine call instruction, call, uses one word (32 bits) of the stack. The call instruction pushes the content
of the PC (return address) onto the stack before branching to a subroutine. The pushed address is restored into the
PC by the ret instruction, and the program is returned to the address next to that of the call instruction.

SP operation by the call instruction
 (1) SP = SP - 4
 (2) PC → [SP]

SP
31 0

0xFFFFFFFF

0x00000000

SP = SP - 4

31 0

0xFFFFFFFF

PC[31:0]

0x00000000

Figure 2.4.4.1 SP and Stack (3)

SP operation by the ret instruction
 (1) [SP] → PC
 (2) SP = SP + 4

SP

31 0

0xFFFFFFFF

0x00000000

SP = SP + 4
31 0

0xFFFFFFFF

PC[31:0]PC[31:0]

0x00000000

Figure 2.4.4.2 SP and Stack (4)

2 REGISTERS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 9

2.4.5 SP Operation when an Interrupt or Exception Occurs

If an interrupt or software exception resulting from the int instruction occurs, the processor enters an exception
handling process.
The processor pushes the contents of the PC and PSR onto the stack indicated by the SP before branching to
the relevant interrupt handler routine. This is to save the contents of the two registers before they are altered by
interrupt or exception handling. The PC and PSR data is pushed onto the stack as shown in the diagram below.
For returning from the handler routine, the reti instruction is used to pop the contents of the PC and PSR off the
stack. In the reti instruction, unlike in ordinary pop operation, the PC and PSR are read out of the stack in that
order, and the SP address is altered as shown in the diagram below.

SP operation when an interrupt occurred
 (1) SP = SP - 4
 (2) PC → [SP]
 (3) SP = SP - 4
 (4) PSR → [SP]

SP
31 0

0xFFFFFFFF

0x00000000

SP = SP - 8

31 0

0xFFFFFFFF

PC
PSR

0x00000000

Figure 2.4.5.1 SP and Stack (5)

SP operation when the reti instruction is executed
 (1) [SP + 4] → PC
 (2) [SP] → PSR
 (3) SP = SP + 8

SP

31 0

0xFFFFFFFF

0x00000000

SP = SP + 8
31 0

0xFFFFFFFF

PC
PSR

PC
PSR

0x00000000

Figure 2.4.5.2 SP and Stack (6)

2 REGISTERS

10 EPSON S1C33 FAMILY C33 PE CORE MANUAL

2.5 Trap Table Base Register (TTBR)
Symbol
TTBR

Size
32 bits

Initial value
0x00C00000*

Register name
Trap Table Base Register

R/W
R/W

The Trap Table Base Register (hereinafter referred to as the “TTBR”) is a 32-bit register that is used to store the
start address of the vector table to be referenced when an interrupt or exception occurs. During cold reset, the
TTBR is initialized to 0x00C00000*, and the program is executed from the address indicated by the reset vector.
TTBR is a read/writable register, and can be set to any address in the software. However, bits 9–0 in the TTBR are
fixed at 0 and cannot be accessed for writing. Therefore, the addresses that can be set in the TTBR are those that lie
on 1K-byte boundaries.

1K-byte boundary address 0000000000
091031

Fixed
(read only)

Figure 2.5.1 Trap Table Base Register (TTBR)

∗ The initial value (0xC00000 by default) can be changed by configuring the hardware parameters.

2.6 Arithmetic Operation Registers (ALR and AHR)
Symbol

ALR
AHR

Size
32 bits
32 bits

Initial value
Indeterminate
Indeterminate

Register name
Arithmetic Operation Low Register
Arithmetic Operation High Register

R/W
R/W
R/W

One of the special registers included in the C33 PE Core is the arithmetic operation register used in multiply
operations, which consists of the Arithmetic Operation Low Register (hereinafter referred to as the “ALR”) and the
Arithmetic Operation High Register (hereinafter referred to as the “AHR”). Each is a 32-bit data register that allows
data to be transferred to and from the general-purpose registers using load instructions. Multiply instructions use
the ALR and the AHR to store the 32 low-order bits and 32 high-order bits of the result of operation, respectively.
When initialized upon reset, the ALR and AHR become indeterminate.

2.7 Processor Identification Register (IDIR)
Symbol

IDIR
Size

32 bits
Initial value

0x06XXXXXX
Register name

Processor Identification Register
R/W
R

The Processor Identification Register (hereinafter referred to as the “IDIR”) is a 32-bit register that contains the
processor type, revision, and other information. The IDIR is a read-only register, and its readout value varies by
model.
The bit configuration in the IDIR is detailed below.

Processor type
01531 24

Revision Undefined instruction code
0x06 Varies by model 0xXXXX

23 16

Indicates
C33 PE.

Varies depending on
the processor revision

and installed model.

Indicates the object code
when an undefined instruction

exception has occurred.

Readout value

Figure 2.7.1 Processor Identification Register (IDIR)

2.8 Debug Base Register (DBBR)
Symbol
DBBR

Size
32 bits

Initial value
0x00060000

Register name
Debug Base Register

R/W
R

The Debug Base Register (hereinafter referred to as the “DBBR”) is a 32-bit register that contains the base address
of a memory area used for debugging. The DBBR is a read-only register which, in the C33 PE Core, is fixed to
0x00060000.

2 REGISTERS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 11

2.9 Register Notation and Register Numbers
The following describes the register notation and register numbers in the C33 PE Core instruction set.
In the instruction code, a register is specified using a 4-bit field, with the register number entered in that field. In the
mnemonic, a register is specified by prefixing the register name with “%.”

2.9.1 General-Purpose Registers
%rs rs is a metasymbol indicating the general-purpose register that holds the source data to be operated on or

transferred. The register is actually written as %r0, %r1, ... or %r15.

%rd rd is a metasymbol indicating the general-purpose register that is the destination in which the result of

operation is to be stored or data is to be loaded. The register is actually written as %r0, %r1, ... or %r15.

%rb rb is a metasymbol indicating the general-purpose register that holds the base address of memory to be

accessed. In this case, the general-purpose registers serve as an index register. The register is actually
written as [%r0], [%r1], ... or [%r15], with each register name enclosed in brackets “[]” to denote
register indirect addressing. In register indirect addressing, the post-increment function provided for
continuous memory addresses can be used. In such a case, the register name is suffixed by “+,” as in [%r0]+.
When post-increment is specified, each time memory is accessed, the base address is incremented by an
amount equal to the accessed size.

 rb is also used as a symbol indicating the register that contains the jump address for the call or jp
instruction. In this case, the brackets “[]” are unnecessary, and the register is written as %r0, %r1, ... or
%r15.

The bit field that specifies a register in the instruction code contains the code corresponding to a given register
number. The relationship between the general-purpose registers and the register numbers is listed in the table below.

Table 2.9.1.1 General-Purpose Registers

General-purpose register
R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15

Register number
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Register notation
%r0
%r1
%r2
%r3
%r4
%r5
%r6
%r7
%r8
%r9
%r10
%r11
%r12
%r13
%r14
%r15

2 REGISTERS

12 EPSON S1C33 FAMILY C33 PE CORE MANUAL

2.9.2 Special Registers
%ss ss is a metasymbol indicating the special register that holds the source data to be transferred to a general-

purpose register. The instruction that operates on a special register as the source is as follows:
 ld.w %rd,%ss

%sd sd is a metasymbol indicating the special register to which data is to be loaded from a general-purpose

register. The instruction that operates on a special register as the destination is as follows:
 ld.w %sd,%rs

The bit field that specifies a register in the instruction code contains the code corresponding to a given register
number. The relationship between the special registers and the register numbers is listed in the table below.

Table 2.9.2.1 Special Registers

Special register
PSR
SP
ALR
AHR
TTBR *
IDIR *
DBBR *
PC

Register number
0
1
2
3
8

10
11
15

Register notation
%psr
%sp
%alr
%ahr
%ttbr
%idir
%dbbr
%pc

The new registers added to the C33 PE Core are marked with * in the above table.

3 DATA FORMATS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 13

3 Data Formats
The C33 PE Core can handle data of 8, 16, and 32 bits in length. In this manual, data sizes are expressed as follows:
 8-bit data Byte, B, or b
 16-bit data Halfword, H, or h
 32-bit data Word, W, or w

Data sizes can be selected only in data transfer (load instruction) between memory and a general-purpose register,
and between one general-purpose register and another.
As all internal processing in the processor is performed in 32 bits, in a 16-bit or 8-bit data transfer with a general-
purpose register as the destination, the data is sign- or zero-extended to 32 bits before being loaded into the register.
Whether the data will be sign- or zero-extended is determined by the load instruction used.
In a 16-bit or 8-bit data transfer using a general-purpose register as the source, the data to be transferred is stored in
the low-order halfword or the 1 low-order byte of the source register.

Memory is accessed in little endian format one byte, halfword, or word at a time.
If memory is to be accessed in halfword or word units, the specified base address must be on a halfword boundary
(least significant address bit = 0) or word boundary (2 low-order address bits = 00), respectively. Unless this
condition is satisfied, an address-misaligned exception is generated.

Byte 38-bit data
31 24

Byte 2
23 16

Byte 1
15 8

Byte 0
7 0

Halfword 116-bit data
31 16

Halfword 0
15 0

Word32-bit data
31 0

Figure 3.1 Little Endian Format

The data transfer sizes and types are described below.

3.1 Unsigned 8-Bit Transfer (Register → Register)
Example: ld.ub %rd,%rs

X%rs
31 24

X
23 16

X
15 8

Byte
7 0

00000000
31 24 23 16 15 8

Byte
7 0

0

%rd 00000000 00000000

Figure 3.1.1 Unsigned 8-Bit Transfer (Register → Register)

Bits 31–8 in the destination register are zero-extended.

3.2 Signed 8-Bit Transfer (Register → Register)
Example: ld.b %rd,%rs

X%rs
31 24

X
23 16

X
15 8 7 0

SSSSSSSS
31 24 23 16 15 8

Byte
7 0

%rd SSSSSSSS S

S

SSSSSSSS

Byte

Figure 3.2.1 Signed 8-Bit Transfer (Register → Register)

Bits 31–8 in the destination register are sign-extended.

3 DATA FORMATS

14 EPSON S1C33 FAMILY C33 PE CORE MANUAL

3.3 Unsigned 8-Bit Transfer (Memory → Register)
Example: ld.ub %rd,[%rb]

[%rb] Byte
7 0

00000000
31 24 23 16 15 8

Byte
7 0

0

%rd 00000000 00000000

Figure 3.3.1 Unsigned 8-Bit Transfer (Memory → Register)

Bits 31–8 in the destination register are zero-extended.

3.4 Signed 8-Bit Transfer (Memory → Register)
Example: ld.b %rd,[%rb]

[%rb]
7 0

SSSSSSSS
31 24 23 16 15 8

Byte
7 0

%rd SSSSSSSS S

S

SSSSSSSS

Byte

Figure 3.4.1 Signed 8-Bit Transfer (Memory → Register)

Bits 31–8 in the destination register are sign-extended.

3.5 8-Bit Transfer (Register → Memory)
Example: ld.b [%rb],%rs

X%rs
31 24

X
23 16

X
15 8

Byte
7 0

Byte
7 0

[%rb]

Figure 3.5.1 8-Bit Transfer (Register → Memory)

3.6 Unsigned 16-Bit Transfer (Register → Register)
Example: ld.uh %rd,%rs

X%rs
31 16 15

Halfword
0

00000000
31 16 15

Halfword
0

0

%rd 00000000

Figure 3.6.1 Unsigned 16-Bit Transfer (Register → Register)

Bits 31–16 in the destination register are zero-extended.

3 DATA FORMATS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 15

3.7 Signed 16-Bit Transfer (Register → Register)
Example: ld.h %rd,%rs

X%rs
31 16 15 0

SSSSSSSS
31 16

Halfword
0

%rd SSSSSSSS

S

S

Halfword

Figure 3.7.1 Signed 16-Bit Transfer (Register → Register)

Bits 31–16 in the destination register are sign-extended.

3.8 Unsigned 16-Bit Transfer (Memory → Register)
Example: ld.uh %rd,[%rb]

[%rb] 0x∗∗∗∗∗∗∗0 Byte 0

7

78

0

00000000
31 16 15

Byte 0Byte 1
0

0

0x∗∗∗∗∗∗∗1 Byte 1

%rd 00000000

Figure 3.8.1 Unsigned 16-Bit Transfer (Memory → Register)

Bits 31–16 in the destination register are zero-extended.

3.9 Signed 16-Bit Transfer (Memory → Register)
Example: ld.h %rd,[%rb]

S

[%rb] 0x∗∗∗∗∗∗∗0 Byte 0

7

78

0

31 16 15

Byte 0Byte 1
0

0x∗∗∗∗∗∗∗1 Byte 1

%rd SSSSSSSS SSSSSSSS

S

Figure 3.9.1 Signed 16-Bit Transfer (Memory → Register)

Bits 31–16 in the destination register are sign-extended.

3.10 16-Bit Transfer (Register → Memory)
Example: ld.h [%rb],%rs

X%rs
31 16

[%rb] 0x∗∗∗∗∗∗∗0 Byte 0

7 0

7815

Byte 0Byte 1
0

0x∗∗∗∗∗∗∗1 Byte 1

Figure 3.10.1 16-Bit Transfer (Register → Memory)

3 DATA FORMATS

16 EPSON S1C33 FAMILY C33 PE CORE MANUAL

3.11 32-Bit Transfer (Register → Register)
Example: ld.w %rd,%rs

%rs
31

Word
0

31

Word
0

%rd

Figure 3.11.1 32-Bit Transfer (Register → Register)

3.12 32-Bit Transfer (Memory → Register)
Example: ld.w %rd,[%rb]

[%rb] 0x∗∗∗∗∗∗00 Byte 0

7

78

0

31 16 15

Byte 0Byte 1
2324

Byte 2Byte 3
0

0x∗∗∗∗∗∗01 Byte 1
0x∗∗∗∗∗∗10 Byte 2
0x∗∗∗∗∗∗11 Byte 3

%rd

Figure 3.12.1 32-Bit Transfer (Memory → Register)

3.13 32-Bit Transfer (Register → Memory)
Example: ld.w [%rb],%rs

[%rb] 0x∗∗∗∗∗∗00 Byte 0

7

78

0

31 16 15

Byte 0Byte 1
2324

Byte 2Byte 3
0

0x∗∗∗∗∗∗01 Byte 1
0x∗∗∗∗∗∗10 Byte 2
0x∗∗∗∗∗∗11 Byte 3

%rs

Figure 3.13.1 32-Bit Transfer (Register → Memory)

4 ADDRESS MAP

S1C33 FAMILY C33 PE CORE MANUAL EPSON 17

4 Address Map
The C33 PE Core has a 4GB address space. Figure 4.1 shows the C33 PE Core address map.

0xFFFF FFFF

0x00C0 0000
0x00BF FFFF

0x0008 0000
0x0007 FFFF

0x0006 0000
Reserved for debug unit

0x0005 FFFF

0x0004 0300
0x0004 02FF

0x0004 02E0
Reserved for debug unit

0x0004 02DF

0x0000 0000

DBBR

TTBR

Figure 4.1 C33 PE Address Map

Memories or I/O devices can be mapped anywhere in the address space. Note, however, that the addresses shown
below cannot be used for user applications as they are reserved.

0xC00000
This is the default reset vector address (TTBR initial value). The C33 PE Core starts executing the program
from the boot address written to this address.

0x402E0–0x402FF, 0x4812D (byte), 0x48134 (word), 0x60000–0x7FFFF
These areas and addresses are reserved for debugging functions. Do not allocate these addresses to memories
and I/O devices.

5 INSTRUCTION SET

18 EPSON S1C33 FAMILY C33 PE CORE MANUAL

5 Instruction Set
The C33 PE Core instruction set consists of the function-extended instruction set of the C33 STD Core CPU and
the new instructions, in addition to the conventional S1C33-series instructions. Some instructions of the C33 STD
Core CPU are deleted. As the C33 PE Core is object-code compatible with the C33 STD Core CPU, software assets
can be transported from the S1C33 series to the C33 PE model easily, with minimal modifications required.
All of the instruction codes are fixed to 16 bits in length which, combined with pipelined processing, allows most
important instructions to be executed in one cycle. For details, refer to the description of each instruction in the
latter sections of this manual.

5.1 S1C33-Series-Compatible Instructions

Table 5.1.1 S1C33-Series-Compatible Instructions

Classification
Arithmetic operation

Branch

Function
Addition between general-purpose registers
Addition of a general-purpose register and immediate
Addition of SP and immediate (with immediate zero-extended)
Addition with carry between general-purpose registers
Subtraction between general-purpose registers
Subtraction of general-purpose register and immediate
Subtraction of SP and immediate (with immediate zero-extended)
Subtraction with carry between general-purpose registers
Arithmetic comparison between general-purpose registers
Arithmetic comparison of general-purpose register and immediate
(with immediate zero-extended)
Signed integer multiplication (16 bits × 16 bits → 32 bits)
Unsigned integer multiplication (16 bits × 16 bits → 32 bits)
Signed integer multiplication (32 bits × 32 bits → 64 bits)
Unsigned integer multiplication (32 bits × 32 bits → 64 bits)
PC relative conditional jump Branch condition: !Z & !(N ^ V)
Delayed branching possible
PC relative conditional jump Branch condition: !(N ^ V)
Delayed branching possible
PC relative conditional jump Branch condition: N ^ V
Delayed branching possible
PC relative conditional jump Branch condition: Z | N ^ V
Delayed branching possible
PC relative conditional jump Branch condition: !Z & !C
Delayed branching possible
PC relative conditional jump Branch condition: !C
Delayed branching possible
PC relative conditional jump Branch condition: C
Delayed branching possible
PC relative conditional jump Branch condition: Z | C
Delayed branching possible
PC relative conditional jump Branch condition: Z
Delayed branching possible
PC relative conditional jump Branch condition: !Z
Delayed branching possible
PC relative jump Delayed branching possible
Absolute jump Delayed branching possible
PC relative subroutine call Delayed call possible
Absolute subroutine call Delayed call possible
Subroutine return
Delayed return possible
Return from interrupt or exception handling
Return from the debug processing routine
Software exception
Debug exception

add

adc

sub

sbc

cmp

mlt.h

mltu.h

mlt.w

mltu.w

jrgt

jrgt.d

jrge

jrge.d

jrlt

jrlt.d

jrle

jrle.d

jrugt

jrugt.d

jruge

jruge.d

jrult

jrult.d

jrule

jrule.d

jreq

jreq.d

jrne

jrne.d

jp

jp.d

call

call.d

ret

ret.d

reti

retd

int

brk

%rd,%rs

%rd,imm6

%sp,imm10

%rd,%rs

%rd,%rs

%rd,imm6

%sp,imm10

%rd,%rs

%rd,%rs

%rd,sign6

%rd,%rs

%rd,%rs

%rd,%rs

%rd,%rs

sign8

sign8

sign8

sign8

sign8

sign8

sign8

sign8

sign8

sign8

sign8

%rb

sign8

%rb

imm2

Mnemonic

5 INSTRUCTION SET

S1C33 FAMILY C33 PE CORE MANUAL EPSON 19

Classification
Data transfer

System control

Immediate extension
Bit manipulation

Other

Function
General-purpose register (byte) → general-purpose register (sign-extended)
Memory (byte) → general-purpose register (sign-extended)
Postincrement possible
Stack (byte) → general-purpose register (sign-extended)
General-purpose register (byte) → memory
Postincrement possible
General-purpose register (byte) → stack
General-purpose register (byte) → general-purpose register (zero-extended)
Memory (byte) → general-purpose register (zero-extended)
Postincrement possible
Stack (byte) → general-purpose register (zero-extended)
General-purpose register (halfword) → general-purpose register (sign-extended)
Memory (halfword) → general-purpose register (sign-extended)
Postincrement possible
Stack (halfword) → general-purpose register (sign-extended)
General-purpose register (halfword) → memory
Postincrement possible
General-purpose register (halfword) → stack
General-purpose register (halfword) → general-purpose register (zero-extended)
Memory (halfword) → general-purpose register (zero-extended)
Postincrement possible
Stack (halfword) → general-purpose register (zero-extended)
General-purpose register (word) → general-purpose register
Immediate → general-purpose register (sign-extended)
Memory (word) → general-purpose register
Postincrement possible
Stack (word) → general-purpose register
General-purpose register (word) → memory
Postincrement possible
General-purpose register (word) → stack
No operation
HALT
SLEEP
Extend operand in the following instruction
Test a specified bit in memory data
Clear a specified bit in memory data
Set a specified bit in memory data
Invert a specified bit in memory data
Bytewise swap on byte boundary in word
Push general-purpose registers %rs–%r0 onto the stack
Pop data for general-purpose registers %rd–%r0 off the stack

ld.b

ld.ub

ld.h

ld.uh

ld.w

nop

halt

slp

ext

btst

bclr

bset

bnot

swap

pushn

popn

%rd,%rs

%rd,[%rb]

%rd,[%rb]+

%rd,[%sp+imm6]

[%rb],%rs

[%rb]+,%rs

[%sp+imm6],%rs

%rd,%rs

%rd,[%rb]

%rd,[%rb]+

%rd,[%sp+imm6]

%rd,%rs

%rd,[%rb]

%rd,[%rb]+

%rd,[%sp+imm6]

[%rb],%rs

[%rb]+,%rs

[%sp+imm6],%rs

%rd,%rs

%rd,[%rb]

%rd,[%rb]+

%rd,[%sp+imm6]

%rd,%rs

%rd,sign6

%rd,[%rb]

%rd,[%rb]+

%rd,[%sp+imm6]

[%rb],%rs

[%rb]+,%rs

[%sp+imm6],%rs

imm13

[%rb],imm3

[%rb],imm3

[%rb],imm3

[%rb],imm3

%rd,%rs

%rs

%rd

Mnemonic

The symbols in the above table each have the meanings specified below.

Table 5.1.2 Symbol Meanings

Symbol
%rs
%rd
%ss
%sd
[%rb]
[%rb]+
%sp
imm2,imm4,imm3,
imm5,imm6,imm10,
imm13
sign6,sign8

Description
General-purpose register, source
General-purpose register, destination
Special register, source
Special register, destination
General-purpose register, indirect addressing
General-purpose register, indirect addressing with postincrement
Stack pointer
Unsigned immediate (numerals indicating bit length)
However, numerals in shift instructions indicate the number of bits
shifted, while those in bit manipulation indicate bit positions.
Signed immediate (numerals indicating bit length)

5 INSTRUCTION SET

20 EPSON S1C33 FAMILY C33 PE CORE MANUAL

5.2 Function Extended Instructions

Table 5.2.1 Function Extended Instructions

Classification
Logical operation

Shift and rotate

Data transfer

Function
Logical AND between general-purpose
registers
Logical AND of general-purpose register and
immediate
Logical OR between general-purpose registers

Logical OR of general-purpose register and
immediate
Exclusive OR between general-purpose
registers
Exclusive OR of general-purpose register and
immediate
Logical inversion between general-purpose
registers (1's complement)
Logical inversion of general-purpose register
and immediate (1's complement)
Logical shift to the right
(Bits 0–31 shifted as specified by the register)
Logical shift to the right
(Bits 0–31 shifted as specified by immediate)
Logical shift to the left
(Bits 0–31 shifted as specified by the register)
Logical shift to the left
(Bits 0–31 shifted as specified by immediate)
Arithmetic shift to the right
(Bits 0–31 shifted as specified by the register)
Arithmetic shift to the right
(Bits 0–31 shifted as specified by immediate)
Arithmetic shift to the left
(Bits 0–31 shifted as specified by the register)
Arithmetic shift to the left
(Bits 0–31 shifted as specified by immediate)
Rotate to the right
(Bits 0–31 rotated as specified by the register)
Rotate to the right
(Bits 0–31 rotated as specified by immediate)
Rotate to the left
(Bits 0–31 rotated as specified by the register)
Rotate to the left
(Bits 0–31 rotated as specified by immediate)
Special register (word)
→ general-purpose register
General-purpose register (word)
→ special register

Extended function
The V flag is cleared after the
instruction has been executed.

For rotate/shift operation, it has
been made possible to shift
9–31 bits.

The number of special registers
that can be used to load data
has been increased.

and

or

xor

not

srl

sll

sra

sla

rr

rl

ld.w

%rd,%rs

%rd,sign6

%rd,%rs

%rd,sign6

%rd,%rs

%rd,sign6

%rd,%rs

%rd,sign6

%rd,%rs

%rd,imm5

%rd,%rs

%rd,imm5

%rd,%rs

%rd,imm5

%rd,%rs

%rd,imm5

%rd,%rs

%rd,imm5

%rd,%rs

%rd,imm5

%rd,%ss

%sd,%rs

Mnemonic

5 INSTRUCTION SET

S1C33 FAMILY C33 PE CORE MANUAL EPSON 21

5.3 Instructions Added to the C33 PE Core

Table 5.3.1 Instructions Added to the C33 PE Core

Classification
Branch

System control

Coprocessor control

Other

Function
PC relative jump
Delayed branching possible
Set a specified bit in PSR
Clear a specified bit in PSR
Load data from coprocessor
Store data in coprocessor
Execute coprocessor
Load C, V, Z, and N flags from coprocessor
Bytewise swap on halfword boundary in word
Push single general-purpose register
Pop single general-purpose register
Push special registers %ss–ALR onto the stack
Pop data for special registers %sd–ALR off the stack

jpr

jpr.d

psrset

psrclr

ld.c

ld.c

do.c

ld.cf

swaph

push

pop

pushs

pops

%rb

imm5

imm5

%rd,imm4

imm4,%rs

imm6

%rd,%rs

%rs

%rd

%ss

%sd

Mnemonic

5.4 Instructions Removed

Table 5.4.1 Instructions Removed

Classification
Arithmetic operation

Other

Function
First step in signed integer division
First step in unsigned integer division
Execution of step division
Data correction for the result of signed integer division 1
Data correction for the result of signed integer division 2
Bitwise swap every byte in word
Multiply-accumulate operation 16 bits × 16 bits + 64 bits → 64 bits
Search for bits whose value = 0
Search for bits whose value = 1

div0s

div0u

div1

div2s

div3s

mirror

mac

scan0

scan1

%rs

%rs

%rs

%rs

%rd,%rs

%rs

%rd,%rs

%rd,%rs

Mnemonic

5 INSTRUCTION SET

22 EPSON S1C33 FAMILY C33 PE CORE MANUAL

5.5 Addressing Modes (without ext extension)
The instruction set of the C33 PE Core, as with the S1C33 series, has six discrete addressing modes, as described
below. The processor determines the addressing mode according to the operand in each instruction before it
accesses data.
(1) Immediate addressing
(2) Register direct addressing
(3) Register indirect addressing
(4) Register indirect addressing with postincrement
(5) Register indirect addressing with displacement
(6) Signed PC relative addressing

5.5.1 Immediate Addressing

The immediate included in the instruction code that is indicated as immX (unsigned immediate) or signX (signed
immediate) is used as the source data. The immediate size specifiable in each instruction is indicated by a numeral
in the symbol (e.g., imm4 = unsigned 4 bits; sign6 = signed 6 bits). For signed immediates such as sign6, the most
significant bit is the sign bit, which is extended to 32 bits when the instruction is executed.
Example: ld.w %r0,0x30

 Before execution r0 = 0xXXXXXXXX
 After execution r0 = 0xFFFFFFF0

 The immediate sign6 can represent values in the range of +31 to -32 (0b011111 to 0b100000).

Except in the case of shift-related and bit-manipulating instructions, immediate data can be extended to a maximum
of 32 bits by a combined use of the operand value and the ext instruction.
Example: ext imm13 (1)
 ext imm13 (2)
 ld.w %r0,sign6

 r0 after execution

 imm13 (1)r0
31 19 18

imm13 (2)
6

sign6
5 0

5.5.2 Register Direct Addressing

The content of a specified register is used directly as the source data. Furthermore, if this addressing mode is
specified as the destination for an instruction that loads the result in a register, the result is loaded in this specified
register. The instructions that have the following symbols as the operand are executed in this addressing mode.

%rs rs is a metasymbol indicating the general-purpose register that holds the source data to be operated on or

transferred. The register is actually written as %r0, %r1, ... or %r15.

%rd rd is a metasymbol indicating the general-purpose register that is the destination for the result of operation.

The register is actually written as %r0, %r1, ... or %r15. Depending on the instruction, it will also be used
as the source data.

%ss ss is a metasymbol indicating the special register that holds the source data to be transferred to a general-

purpose register.

%sd sd is a metasymbol indicating the special register to which data is to be loaded from a general-purpose

register.

5 INSTRUCTION SET

S1C33 FAMILY C33 PE CORE MANUAL EPSON 23

Actual special register names are written as follows:
 Processor status register %psr

 Stack pointer %sp

 Arithmetic operation low register %alr

 Arithmetic operation high register %ahr
 Trap table base register %ttbr

The register names are always prefixed by “%” to discriminate them from symbol names, label names, and the like.

5.5.3 Register Indirect Addressing

In this mode, memory is accessed indirectly by specifying a general-purpose register that holds the address needed.
This addressing mode is used only for load instructions that have [%rb] as the operand. Actually, this general-
purpose register is written as [%r0], [%r1], ... or [%r15], with the register name enclosed in brackets “[].”
The processor refers to the content of a specified register as the base address, and transfers data in the format that is
determined by the type of load instruction.
Examples: Memory → Register
 ld.b %r0,[%r1]
 ld.h %r0,[%r1]

 ld.w %r0,[%r1]

 Register → Memory
 ld.b [%r1],%r0
 ld.h [%r1],%r0

 ld.w [%r1],%r0

 In this example, the address indicated by r1 is the memory address from or to which data is to be
transferred.

In halfword and word transfers, the base address that is set in a register must be on a halfword boundary (least
significant address bit = 0) or word boundary (2 low-order address bits = 0), respectively. Otherwise, an address-
misaligned exception will be generated.

5.5.4 Register Indirect Addressing with Postincrement

As in register indirect addressing, the memory location to be accessed is specified indirectly by a general-purpose
register. When a data transfer finishes, the base address held in a specified register is incremented* by an amount
equal to the transferred data size. In this way, data can be read from or written to continuous addresses in memory
only by setting the start address once at the beginning.

∗ Increment size
 Byte transfer (ld.b, ld.ub): rb → rb + 1
 Halfword transfer (ld.h, ld.uh): rb → rb + 2
 Word transfer (ld.w): rb → rb + 4

This addressing mode is specified by enclosing the register name in brackets “[],” which is then suffixed by “+.”
The register name is actually written as [%r0]+, [%r1]+, ... or [%r15]+.

5 INSTRUCTION SET

24 EPSON S1C33 FAMILY C33 PE CORE MANUAL

5.5.5 Register Indirect Addressing with Displacement

In this mode, memory is accessed beginning with the address that is derived by adding a specified immediate
(displacement) to the register content. Unless ext instructions are used, this addressing mode can only be used for
load instructions that have [%sp+imm6] as the operand.
Examples: ld.b %r0,[%sp+0x10]
 The byte data at the address derived by adding 0x10 to the content of the current SP is loaded into the

R0 register. For byte data transfers, the 6-bit immediate is added directly as the displacement.

 ld.h %r0,[%sp+0x10]

 The halfword data at the address derived by adding 0x20 to the content of the current SP is loaded into
the R0 register. For halfword data transfers, because halfword boundary addresses are accessed, twice
the 6-bit immediate (least significant bit always 0) is the displacement.

 ld.w %r0,[%sp+0x10]

 The word data at the address derived by adding 0x40 to the content of the current SP is loaded into the
R0 register. For word data transfers, because word boundary addresses are accessed, four times the 6-bit
immediate (2 low-order bits always 0) is the displacement.

If ext instructions described in Section 5.6 are used, ordinary register indirect addressing ([%rb]) becomes a
special addressing mode in which the immediate specified by the ext instruction constitutes the displacement.
Example: ext imm13
 ld.b %rd,[%rb] The memory address to be accessed is “%rb+imm13.”

5.5.6 Signed PC Relative Addressing

This addressing mode is used for branch instructions that have a signed 8-bit immediate (sign8) in their operand.
When these instructions are executed, the program branches to the address derived by adding twice the sign8 value
(halfword boundary) to the current PC.
Example: PC + 0 jrne 0x04 The program branches to the PC + 8 address when the jrne branch
 : : condition holds true.
 : : (PC + 0) + 0x04 ∗ 2 → PC + 8
 PC + 8

5 INSTRUCTION SET

S1C33 FAMILY C33 PE CORE MANUAL EPSON 25

5.6 Addressing Modes with ext
The immediate specifiable in 16-bit, fixed-length instruction code is specified in a bit field of a length ranging
from 4 bits to 8 bits, depending on the instruction used. The ext instructions are used to extend the size of this
immediate.
The ext instructions are used in combination with data transfer or arithmetic/logic instructions, and is placed
directly before the instruction whose immediate needs to be extended. The instruction is expressed in the form
ext imm13, in which the immediate size extendable by one ext instruction is 13 bits and up to two ext

instructions can be written in succession to extend the immediate further.
The ext instructions are effective only for the instructions for which the immediate extension written directly
after ext is possible, and have no effect for all other instructions. When three or more ext instructions have been
described sequentially, an undefined instruction exception (ext exception) occurs before executing the extension
target instruction.
When an instruction, which does not support the extension in the ext instruction, follows an ext, the ext
instruction will be executed as a nop instruction.

5.6.1 Extension of Immediate Addressing

Extension of imm6
 The imm6 immediate is extended to a 19-bit or 32-bit immediate.

 Extending to a 19-bit immediate
 To extend the immediate to 19-bit quantity, enter one ext instruction directly before the target instruction.

Example: ext imm13
 add %rd,imm6

 Extended immediate

0 0 0 0 0 00000000
31 19 18

imm13
6

imm6
5 0

 Bits 31–19 are filled with 0 (zero-extension).

 Extending to a 32-bit immediate
 To extend the immediate to 32-bit quantity, enter two ext instructions directly before the target instruction.

Example: ext imm13 (1)
 ext imm13 (2)
 sub %rd,imm6

 Extended immediate

imm13 (1)
31 19 18

imm13 (2)
6

imm6
5 0

Extension of sign6
 The sign6 immediate is extended to a sign-extended 19-bit or 32-bit immediate.

 Extending to a 19-bit immediate
 To extend the immediate to 19-bit quantity, enter one ext instruction directly before the target instruction.

Example: ext imm13
 ld.w %rd,sign6

 Extended immediate

SS S S S S SSSSSSSS
31 19 18

imm13
6

sign6
5 0

 The most significant bit “S” in imm13 that has been extended by the ext instruction is the sign,
with which bits 31–19 are extended to become signed 19-bit data. The most significant bit in sign6 is
handled as the MSB data of 6-bit data, and not as the sign.

5 INSTRUCTION SET

26 EPSON S1C33 FAMILY C33 PE CORE MANUAL

 Extending to a 32-bit immediate
 To extend the immediate to 32-bit quantity, enter two ext instructions directly before the target instruction.

Example: ext imm13 (1)
 ext imm13 (2)
 and %rd,sign6

 Extended immediate

imm13 (1)
31 19 18

imm13 (2)
6

sign6
5 0

S

 The MSB (bit 12) in the first ext instruction is the sign, with the immediate extended to become
signed 32-bit data.

5.6.2 Extension of Register Indirect Addressing

Adding displacement to [%rb]
 Memory is accessed at the address derived by adding the immediate specified by an ext instruction to the

address that is indirectly referenced by [%rb].

 Adding a 13-bit immediate
 Memory is accessed at the address derived by adding the 13-bit immediate specified by imm13 to the address

specified by the rb register. During address calculation, imm13 is zero-extended to 32-bit quantity.
Example: ext imm13
 ld.b %rd,[%rb]

0 0 0 0 0 0 0 0

+

0 0 0 00000000
31 13 12

imm13
0

Immediate

31

Memory address pointer
0

rb

 Adding a 26-bit immediate
 Memory is accessed at the address derived by adding the 26-bit immediate specified by imm26 to the address

specified by the rb register. During address calculation, imm26 is zero-extended to 32-bit quantity.
Example: ext imm13 (1)
 ext imm13 (2)
 ld.uh %rd,[%rb]

+

000000
31 13 1226 25

imm13 (2)imm13 (1)
0

Immediate

31

Memory address pointer
0

rb

5 INSTRUCTION SET

S1C33 FAMILY C33 PE CORE MANUAL EPSON 27

Extending [%sp+imm6] displacement
 The immediate (imm6) in displacement-added register indirect addressing instructions is extended. Be aware

that imm6 is handled differently in single instructions with no ext instructions added.
 Displacement-added register indirect addressing instructions, when used singly, automatically calculate a

boundary address according to the data size to be transferred by the instruction.
Example: ld.h %rd,[%sp+imm6]

 The address referenced in this example is the “%sp+imm6∗2” address on a halfword boundary.

 For addressing with ext instructions added, refer to the description below.

 Extending to a 19-bit immediate
 To extend the immediate to 19-bit quantity, enter one ext instruction directly before the target instruction.

The immediate that is extended to 19-bit quantity has its low-order bits fixed to “0” or “00” according to the
transferred data size. (This applies to other than byte transfers.)
Examples: ext imm13
 ld.b %rd,[%sp+imm6]

 ext imm13

 ld.h [%sp+imm6],%rs

 Extended immediate

0 0 0 0 0 00000000
31 19 18

imm13
6

imm6
5 0

0 0 0 0 0 0

0 0

00000000 imm13 imm6 [5:1]

0 0 0 0 0 00000000 imm13 imm6 [5:2]

Byte transfer

Halfword transfer

 Word transfer

 The extended data and the sp are added to comprise the source or destination address of transfer.

 Extending to a 32-bit immediate
 To extend the immediate to 32-bit quantity, enter two ext instructions directly before the target instruction.

The immediate that is extended to 32-bit quantity has its low-order bits fixed to “0” or “00” according to the
transferred data size. (This applies to other than byte transfers.)
Examples: ext imm13 (1)
 ext imm13 (2)
 ld.b %rd,[%sp+imm6]

 ext imm13 (1)
 ext imm13 (2)
 ld.h [%sp+imm6],%rs

 Extended immediate
31 19 18

imm13 (2)
6

imm6
5 0

0

0 0

imm13 (2) imm6 [5:1]

imm13 (2)

imm13 (1)

imm13 (1)

imm13 (1) imm6 [5:2]

Byte transfer

Halfword transfer

 Word transfer

 The extended data and the sp are added to comprise the source or destination address of transfer.

5 INSTRUCTION SET

28 EPSON S1C33 FAMILY C33 PE CORE MANUAL

Extending register-to-register operation instructions
 Register-to-register operation instructions are extended by one or two ext instructions. Unlike data transfer

instructions, these instructions add or subtract the content of the rs register and the immediate specified by
an ext instruction according to the arithmetic operation to be performed. They then store the result in the rd
register. The content of the rd register does not affect the arithmetic operation performed. An example of how to
extend for an add operation is shown below.

 Extending to rs + imm13
 To extend to rs + imm13, enter one ext instruction directly before the target instruction.

Example: ext imm13
 add %rd,%rs

 If not extended, rd = rd + rs
 When extended by one ext instruction, rd = rs + imm13

0 0 0 0 0 0 0 0

+

0 0 0 00000000
31 13 12

imm13
0

Immediate

31

Data
0

rs

31

Data + imm13
0

rd

 Extending to rs + imm26
 To extend to rs + imm26, enter two ext instructions directly before the target instruction.

Example: ext imm13 (1)
 ext imm13 (2)
 add %rd,%rs

 If not extended, rd = rd + rs
 When extended by two ext instructions, rd = rs + imm26

+

000000
31 13 1226 25

imm13 (2)imm13 (1)
0

Immediate

31

Data
0

rs

31

Data + imm26
0

rd

5 INSTRUCTION SET

S1C33 FAMILY C33 PE CORE MANUAL EPSON 29

Extending the displacement of PC relative branch instructions
 The sign8 immediate in PC relative branch instructions is extended to a signed 22-bit or a signed 32-bit

immediate. The sign8 immediate in PC relative branch instructions is multiplied by 2 for conversion to a
relative value for the jump address, and the derived value is then added to PC to determine the jump address.
The ext instructions extend this relative jump address value.

 Extending to a 22-bit immediate
 To extend the sign8 immediate to a 22-bit immediate, enter one ext instruction directly before the target

instruction.
Example: ext imm13
 jrgt sign8

S S S S

+

0

0

0

SSSSSSS
31 22 21 9 8

imm13 sign8
0

Immediate

31

Current address
0

pc

31

New address
0

1

pc

 The most significant bit “S” in the immediate that has been extended by the ext instruction is the sign, with
which bits 31–22 are extended to become signed 22-bit data. The most significant bit in sign8 is handled as the
MSB data of 8-bit data, and not as the sign.

 Extending to a 32-bit immediate
 To extend the sign8 immediate to a 32-bit immediate, enter two ext instructions directly before the target

instruction.
Example: ext imm13 (1)
 ext imm13 (2)
 jrgt sign8

+

0

0

0

31 22 21 9 8

imm13 (2)S imm13 [12:3] (1) sign8
0

Immediate

31

Current address
0

pc

31

New address
0

1

pc

 The most significant bit “S” in the immediate that has been extended by ext instructions is the sign. Bits 2–0
in the first ext instruction are unused.

5 INSTRUCTION SET

30 EPSON S1C33 FAMILY C33 PE CORE MANUAL

5.6.3 Exception Handling for ext Instructions

For exceptions associated with ext instructions, exception handling is started immediately for reset and debug
break, but is not started for other exceptions until after the target instruction to be extended is executed. This is
intended to simplify operation for the compression of ext instructions in prefetch. Furthermore, as the address to
which the program is returned by reti or retd at the end of exception handling is the ext instruction, in no case
will the ext instructions operate erratically due to exception handling. (For two ext instructions, control returns
to the first ext.)

5 INSTRUCTION SET

S1C33 FAMILY C33 PE CORE MANUAL EPSON 31

5.7 Data Transfer Instructions
The transfer instructions in the C33 PE Core support data transfer between one register and another, as well as
between a register and memory. A transfer data size and data extension format can be specified in the instruction
code. In mnemonics, this specification is classified as follows:

 ld.b Signed byte data transfer
 ld.ub Unsigned byte data transfer
 ld.h Signed halfword data transfer
 ld.uh Unsigned halfword data transfer
 ld.w Word data transfer

In signed byte or halfword transfers to registers, the source data is sign-extended to 32 bits. In unsigned byte or
halfword transfers, the source data is zero-extended to 32 bits.
In transfers in which data is transferred from registers, data of a specified size on the lower side of the register is the
data to be transferred.

If the destination of transfer is a general-purpose register, the register content after a transfer is as follows:

Signed byte data transfer

SSSSSSSS
31 24

Extended with the sign in bit 7 of the byte data

23 16 15 8

Byte data
7 0

SSSSSSSS S SSSSSSSSrd

Unsigned byte data transfer

00000000
31 24 23 16 15 8

Byte data
7 0

00000000 00000000rd

Signed halfword data transfer

SSSSSSSS
31

Extended with the sign in bit 15 of the halfword data

16 15

Halfword data
0

SSSSSSSS Srd

Unsigned halfword data transfer

00000000
31 16 15

Halfword data
0

00000000rd

5 INSTRUCTION SET

32 EPSON S1C33 FAMILY C33 PE CORE MANUAL

5.8 Logical Operation Instructions
Four discrete logical operation instructions are available for use with the C33 PE Core.

 and Logical AND
 or Logical OR
 xor Exclusive-OR
 not Logical NOT

All logical operations are performed in a specified general-purpose register (R0–R15). The source is one of two,
either 32-bit data in a specified general-purpose register or signed immediate data (6, 19, or 32 bits).

Differences from the C33 STD Core CPU
 When a logical operation is performed, the V flag (bit 2) in the PSR is cleared.

5 INSTRUCTION SET

S1C33 FAMILY C33 PE CORE MANUAL EPSON 33

5.9 Arithmetic Operation Instructions
The instruction set of the C33 PE Core supports add/subtract, compare, and multiply instructions for arithmetic
operations. (The multiply instructions are described in the next section.)

 add Addition
 adc Addition with carry
 sub Subtraction
 sbc Subtraction with borrow
 cmp Comparison

The above arithmetic operations are performed between one general-purpose register and another (R0–R15), or
between a general-purpose register and an immediate. Furthermore, the add and sub instructions can perform
operations between the SP and immediate. Immediates in sizes smaller than word, except for the cmp instruction,
are zero-extended when operation is performed.
The cmp instruction compares two operands, and may alter a flag, depending on the comparison result. Basically, it
is used to set conditions for conditional jump instructions. If an immediate smaller than word in size is specified as
the source, it is sign-extended when comparison is performed.

5 INSTRUCTION SET

34 EPSON S1C33 FAMILY C33 PE CORE MANUAL

5.10 Multiply Instructions
The instruction set of the C33 PE Core includes four multiplication instructions.

 mlt.h 16 bits × 16 bits → 32 bits (signed)
 mltu.h 16 bits × 16 bits → 32 bits (unsigned)
 mlt.w 32 bits × 32 bits → 64 bits (signed)
 mltu.w 32 bits × 32 bits → 64 bits (unsigned)

The data in the specified general-purpose registers (R0–R15) is used for the multiplier and the multiplicand,
respectively. For 16-bit multiplications, the 16 low-order bits in the specified register are used. The signed
multiplication instructions use the MSB in the multiplier and multiplicand as the sign bit.
The result of a 16-bit × 16-bit operation is loaded into the ALR. The result of a 32-bit × 32-bit operation is loaded
into the AHR and ALR, with the 32 high-order bits stored in the former and the 32 low-order bits stored in the
latter.
The C33 PE Core executes 16-bit × 16-bit multiplication in five cycle and 32-bit × 32-bit multiplication in seven
cycles.

5 INSTRUCTION SET

S1C33 FAMILY C33 PE CORE MANUAL EPSON 35

5.11 Shift and Rotate Instructions
The instruction set of the C33 PE Core supports instructions to shift or rotate the register data.

 srl Logical shift right
 sll Logical shift left
 sra Arithmetic shift right
 sla Arithmetic shift left
 rr Rotate right
 rl Rotate left

The number of bits that can be shifted has been increased from the conventional 8 bits to 32 bits. Because 32-bit
shift is supported, new instructions have been added with extended functions. The number of bits to be shifted can
be specified in the range of 0 to 31 using the operand imm5 or the rs register.
Example: srl %rd,imm5 Bits 0–31 logically shifted to the right
 srl %rd,%rs Bits 0–31 logically shifted to the right

31 0 Crd
srl Logical shift right

0

0

31C rd 0
sll Logical shift left

31 0 C

MSB
Sign bit

rd
sra Arithmetic shift right

0
31C rd 0

sla Arithmetic shift left

31 0 Crd

rr Rotate right

31C rd 0

rl Rotate left

The table below lists the number of bits shifted as specified by the rs register or the operand imm5.

Table 5.11.1 Number of Bits Shifted as Specified by imm5 or rs
imm5
rs[5:0]
00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111

Number of bits
to be shifted

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

imm5
rs[5:0]
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111

Number of bits
to be shifted

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Bits 5–31 in the rs are not used.

5 INSTRUCTION SET

36 EPSON S1C33 FAMILY C33 PE CORE MANUAL

5.12 Bit Manipulation Instructions
The following four instructions are provided for manipulating the data in memory bitwise or one bit at a time.
These instructions allow the display memory or I/O map control bits to be altered directly.

 btst [%rb],imm3 Set the Z flag if a specified bit = 0
 bclr [%rb],imm3 Clear a specified bit to 0
 bset [%rb],imm3 Set a specified bit to 1
 bnot [%rb],imm3 Invert a specified bit (1 ↔ 0)

Bit manipulation is performed on the memory address specified by the rb (general-purpose) register. imm3 specifies
a bit number (bits 0–7) in the byte data stored in that address location.
Although the content of memory data altered by these instructions (except btst) is only the specified bit, the
specified address is rewritten because memory is accessed bytewise. Therefore, if the addresses to be manipulated
have any I/O control bits mapped whose function is enabled by a bit write operation, use of these instructions
requires caution.

5 INSTRUCTION SET

S1C33 FAMILY C33 PE CORE MANUAL EPSON 37

5.13 Push and Pop Instructions
The push and pop instructions are provided to temporarily save the contents of general-purpose or special registers
to the stack, and to restore the saved register data from the stack.

 Push instructions pushn %rs
 push %rs

 pushs %ss

The pushn instruction saves a range of general-purpose registers from rs to R0 to the stack successively. The
push instruction saves the general-purpose register specified by rs to the stack singly. The pushs instruction

saves the special registers (ALR only or AHR and ALR).

 Pop instructions popn %rd
 pop %rd

 pops %sd

The popn instruction restores the saved data from the stack to the general-purpose registers R0 to rd successively.
The pop instruction restores the saved data from the stack to the general-purpose register specified by rd singly.
The pops instruction restores the saved data from the stack to the special registers (ALR only or ALR and AHR).

The push and pop instructions must have the same register specification in pairs. These instructions alter the
SP depending on the number of pieces of data that are saved and restored. Because in addition to the push/pop
instructions, load instructions are available for register indirect addressing with displacement ([%sp+imm6])
where the SP is the base address, individual store/load operations on each register can be performed with respect to
the SP. In this case, however, the SP is not altered.

A specific register number is assigned to each register (refer to Chapter 2, “Registers”). When general-purpose or
special registers are successively pushed, their data is saved to the stack in descending order of register numbers
beginning with the one specified by rs or ss. In successive pop operations, conversely, the register data is restored in
ascending order from R0 or ALR up to the specified register.

Differences from the C33 STD Core CPU
• General-purpose-register single push/pop instructions have been added.

 push %rs pop %rd

• Special-register successive push/pop instructions have been added.
 pushs %ss pops %sd

Example 1: pushn %r15 Push all general-purpose registers onto the stack
 popn %r15 Pop all general-purpose registers off the stack

31 0

Before execution of pushn

low address

31 0

After execution of pushn

r15
r14
r13
r12

:
:

r1
r0

low address

SP

SP

The stack pointer is updated before the register data is pushed onto the stack.

SP = SP - 4, rs → [SP]

Figure 5.13.1 Successive Push of General-Purpose Registers

5 INSTRUCTION SET

38 EPSON S1C33 FAMILY C33 PE CORE MANUAL

31 0

Before execution of popn

low address

31 0

After execution of popn

r15
r14
r13
r12

:
:

r1
r0

low address

r15
r14
r13
r12

:
:

r1
r0SP

SP

Data is popped off the stack into the registers before the stack pointer is updated.

[SP] → rd, SP = SP + 4

Figure 5.13.2 Successive Pop of General-Purpose Registers

Example 2: pushs %ahr Push special registers onto the stack successively
 pops %ahr Pop special registers off the stack successively

31 0

Before execution of pushs

low address

31 0

After execution of pushs

ahr
alr

low address

SP

SP

Figure 5.13.3 Successive Push of Special Registers

31 0

Before execution of pops

low address

31 0

After execution of pops

ahr
alr

ahr
alr

low address

SP

SP

Figure 5.13.4 Successive Pop of Special Registers

Example 3: push %rs Push any general-purpose register onto the stack
 pop %rd Pop any general-purpose register off the stack

31 0

Before execution of push

low address

31 0

After execution of push

rs

low address

SP
SP

Figure 5.13.5 Single Push of a General-Purpose Register

31 0

Before execution of pop

low address

31 0

After execution of pop

rdrd

low address

SP
SP

Figure 5.13.6 Single Pop of a General-Purpose Register

5 INSTRUCTION SET

S1C33 FAMILY C33 PE CORE MANUAL EPSON 39

5.14 Branch and Delayed Branch Instructions

5.14.1 Types of Branch Instructions

(1) PC relative jump instructions
 PC relative jump instructions include the following:

 jr* sign8
 jp sign8

 jpr %rb

 PC relative jump instructions are provided for relocatable programming, so that the program branches to an
address that is the same as the address indicated by the current PC (the address at which the branch instruction
is located) plus a signed displacement specified by the operand.

 The number of instruction steps to the jump address is specified for sign8 or rb. However, since the instruction
length in the C33 PE Core is fixed to 16 bits, the value of sign8 or rb is doubled to become a halfword address
in 16-bit units. Therefore, the displacement actually added to the PC is a signed 9-bit quantity derived by
doubling sign8 (least significant bit always 0).

 The specifiable displacement can be extended by the ext instruction, as shown below.

 For branch instructions used singly
 jp sign8 Functions as “jp sign9” (sign9 = {sign8, 0})

 For branch instructions that are used singly, a signed 8-bit displacement (sign8) can be specified.

S 0
9 8

sign8
0

sign9 S S S S S S S S S S S S S S S SSSSSSSS
31 1

+
0

0

Current addressPC

Branch destination addressPC

 Since sign8 is a relative value in 16-bit units, the range of addresses to which jumped is (PC - 256) to (PC +
254).

 When extended by one ext instruction
 ext imm13
 jp sign8 Functions as “jp sign22” (sign22 = {imm13, sign8, 0})

 The imm13 specified by the ext instruction is extended as the 13 high-order bits of sign22.

S 0
21 9 8

imm13 sign8
0

sign22 S S SSSSSSSS
31 22 1

+
0

0

Current addressPC

Branch destination addressPC

 The range of addresses to which jumped is (PC - 2,097,152) to (PC + 2,097,150).

5 INSTRUCTION SET

40 EPSON S1C33 FAMILY C33 PE CORE MANUAL

 When extended by two ext instructions
 ext imm13
 ext imm13'

 jp sign8 Functions as “jp sign32”

 The imm13 specified by the first ext instruction is effective for only 10 bits, from bit 12 to bit 3 (with the 3
low-order bits ignored), so that sign32 is configured as follows:

 sign32 = {imm13[12:3], imm13', sign8, 0}

0
31 22 21 9 8

imm13'S imm13 [12:3] sign8
0

sign32
1

+
0

0

Current addressPC

Branch destination addressPC

 The range of addresses to which jumped is (PC - 2,147,483,648) to (PC + 2,147,483,646).
 The above range of addresses to which jumped is a theoretical value, and is actually limited by the range of

memory areas used.

 For jpr branch
 jpr %rb

 A signed 32-bit relative value is specified for rb.
 The jump address is configured as follows:
 {rb[31:1], 0}

31

S W[31:1]

01

[%rb]

+
0

X

0

Current addressPC

Branch destination addressPC

 The least significant bit in the rb register is always handled as 0.
 The range of addresses to which jumped is (PC - 2,147,483,648) to (PC + 2,147,483,646).
 The above range of addresses to which jumped is a theoretical value, and is actually limited by the range of

memory areas used.

 Branch conditions
 The jp and jpr instructions are unconditional jump instructions that always cause the program to branch.
 Instructions with names beginning with jr are conditional jump instructions for which the respective branch

conditions are set by a combination of flags, so that only when the conditions are satisfied do they cause the
program to branch to a specified address. The program does not branch unless the conditions are satisfied.

 The conditional jump instructions basically use the result of the comparison of two values by the cmp
instruction to determine whether to branch. For this reason, the name of each instruction includes a character
that represents relative magnitude.

 The types of conditional jump instructions and branch conditions are listed in Table 5.14.1.1.

Table 5.14.1.1 Conditional Jump Instructions and Branch Conditions

jrgt
jrge
jrlt
jrle
jrugt
jruge
jrult
jrule
jreq
jrne

Greater Than
Greater or Equal
Less Than
Less or Equal
Unsigned, Greater Than
Unsigned, Greater or Equal
Unsigned, Less Than
Unsigned, Less or Equal
Equal
Not Equal

Instruction Flag condition
!Z & !(N ^ V)

!(N ^ V)
N ^ V

Z | (N ^ V)
!Z & !C

!C
C

Z | C
Z
!Z

Comparison of A:B
A > B
A ≥ B
A < B
A ≤ B
A > B
A ≥ B
A < B
A ≤ B
A = B
A ≠ B

Remark
Used to compare
signed data

Used to compare
unsigned data

Comparison of A:B made when “cmp A,B”

5 INSTRUCTION SET

S1C33 FAMILY C33 PE CORE MANUAL EPSON 41

(2) Absolute jump instructions
 The absolute jump instruction jp %rb causes the program to unconditionally branch to the location indicated

by the content of a specified general-purpose register (rb) as the absolute address. When the content of the rb
register is loaded into the PC, its least significant bit is always made 0.

31

W[31:1]

01

rb X

0Branch destination addressPC

(3) PC relative call instructions
 The PC relative call instruction call sign8 is a subroutine call instruction that is useful for relocatable

programming, as it causes the program to unconditionally branch to a subroutine starting from an address that
is the same as the address indicated by the current PC (the address at which the branch instruction is located)
plus a signed displacement specified by the operand. During branching, the program saves the address of the
instruction next to the call instruction (for delayed branching, the address of the second instruction following
call) to the stack as the return address. When the ret instruction is executed at the end of the subroutine, this
address is loaded into the PC, and the program returns to it from the subroutine.

 Note that because the instruction length is fixed to 16 bits, the least significant bit of the displacement is always
handled as 0 (sign8 doubled), causing the program to branch to an even address.

 As with the PC relative jump instructions, the specifiable displacement can be extended by the ext instruction.
For details on how to extend the displacement, refer to the “(1) PC relative jump instructions.”

(4) Absolute call instructions
 The absolute call instruction call %rb causes the program to unconditionally call a subroutine starting from

the location indicated by the content of a specified general-purpose register (rb) as the absolute address. When
the content of the rb register is loaded into the PC, its least significant bit is always made 0. (Refer to the “(2)
Absolute jump instructions.”)

(5) Software exceptions
 The software exception int imm2 is an instruction that causes the software to generate an exception, by

which a specified exception handler routine can be executed. Four distinct exception handler routines can be
created, with the respective vector numbers specified by imm2. When a software exception occurs, the processor
saves the PSR and the instruction address next to int to the stack, and reads a specified vector from the vector
table in order to execute an exception handler routine. Therefore, to return from the exception handler routine,
the reti instruction must be used, as it restores the PSR as well as the PC from the stack. For details on the
software exception, refer to Section 6.3, “Interrupts and Exceptions.”

(6) Return instructions
 The ret instruction, which is a return instruction for the call instruction, loads the saved return address from

the stack into the PC as it terminates the subroutine. Therefore, the value of the SP when the ret instruction is
executed must be the same as when the subroutine was executed (i.e., one that indicates the return address).

 The reti instruction is a return instruction for the exception handler routine. Since the PSR is saved to the
stack along with the return address in exception handling, the content of the PSR must be restored from the
stack using the reti instruction. In the reti instruction, the PC and the PSR are read out of the stack in that
order. As in the case of the ret instruction, the value of the SP when the reti instruction is executed must be
the same as when the subroutine was executed.

(7) Debug exceptions
 The brk and retd instructions are used to call a debug exception handler routine, and to return from that

routine. Since these instructions are basically provided for the debug firmware, please do not use them in
application programs. For details on the functionality of these instructions, refer to Section 6.5, “Debug
Circuit.”

Differences from the C33 STD Core CPU
 Register indirect relative branch instructions have been added.

5 INSTRUCTION SET

42 EPSON S1C33 FAMILY C33 PE CORE MANUAL

5.14.2 Delayed Branch Instructions

The C33 PE Core uses pipelined instruction processing, in which instructions are executed while other instructions
are being fetched. In a branch instruction, because the instruction that follows it has already been fetched when it
is executed, the execution cycles of the branch instruction can be reduced by one cycle by executing the prefetched
instruction before the program branches. This is referred to as a delayed branch function, and the instruction
executed before branching (i.e., the instruction at the address next to the branch instruction) is referred to as a
delayed slot instruction.
The delayed branch function can be used in the instructions listed below, which in mnemonics is identified by the
extension “.d” added to the branch instruction name.

Delayed branch instructions
 jrgt.d jrge.d jrlt.d jrle.d jrugt.d jruge.d jrult.d

jrule.d jreq.d jrne.d call.d jp.d ret.d jpr.d

Delayed slot instructions
 It is necessary that the delayed slot instructions satisfy all of the following conditions:
 • 1-cycle instruction
 • Do not access memory
 • Not extended by an ext instruction

 The instructions listed below can be used as delayed slot instructions:

ld.b %rd,%rs

ld.ub %rd,%rs

ld.h %rd,%rs

ld.uh %rd,%rs

ld.w %rd,%rs ld.w %rd,sign6

add %rd,%rs add %rd,imm6 add %sp,imm10

adc %rd,%rs

sub %rd,%rs sub %rd,imm6 sub %sp,imm10

sbc %rd,%rs

cmp %rd,%rs cmp %rd,sign6

and %rd,%rs and %rd,sign6

or %rd,%rs or %rd,sign6

xor %rd,%rs xor %rd,sign6

not %rd,%rs not %rd,sign6

srl %rd,%rs srl %rd,imm5

sll %rd,%rs sll %rd,imm5

sra %rd,%rs sra %rd,imm5

sla %rd,%rs sla %rd,imm5

rr %rd,%rs rr %rd,imm5

rl %rd,%rs rl %rd,imm5

swap %rd,%rs swaph %rd,%rs

ld.c %rd,imm4

ld.c imm4,%rs

Note: Unless the above conditions are satisfied, the instruction may operate unstably. Therefore, it is
prohibited to use such instructions as delayed slot instructions.

5 INSTRUCTION SET

S1C33 FAMILY C33 PE CORE MANUAL EPSON 43

 A delayed slot instruction is always executed regardless of whether the delayed branch instruction used is
conditional or unconditional and whether it branches.

 In “non-delayed” branch instructions (those not followed by the extension “.d”), the instruction at the address
next to the branch instruction is not executed if the program branches; however, if it is a conditional jump and
the program does not branch, the instruction at the next address is executed as the one that follows the branch
instruction.

 The return address saved to the stack by the call.d instruction becomes the address for the next instruction
following the delayed slot instruction, so that the delayed slot instruction is not executed when the program
returns from the subroutine.

 No interrupts or exceptions occur in between a delayed branch instruction and a delayed slot instruction, as they
are masked out by hardware.

Application for leaf subroutines
 The following shows an example application of delayed branch instructions for achieving a fast leaf subroutine

call.
 Example:
 jp.d SUB ; Jumps to a subroutine by a delayed branch instruction
 ld.w %r8,%pc ; Loads the return address into a general-purpose register by
 ; a delayed slot instruction
 add %r1,%r2 ; Return address
 : :

 SUB:

 : :

 jp %r8 ; Return

Note: The ld.w %rd,%pc instruction must be executed as a delayed slot instruction. If it does not
follow a delayed branch instruction, the PC value that is loaded into the rd register may not be the
next instruction address to the ld.w instruction.

5 INSTRUCTION SET

44 EPSON S1C33 FAMILY C33 PE CORE MANUAL

5.15 System Control Instructions
The following three instructions are used to control the system. They do not affect the registers or memory.

 nop Only increments the PC, with no other operations performed
 halt Places the processor in HALT mode
 slp Places the processor in SLEEP mode

For details on HALT and SLEEP modes, refer to Section 6.4, “Power-Down Mode,” and the Technical Manual for
each S1C33 model.

5 INSTRUCTION SET

S1C33 FAMILY C33 PE CORE MANUAL EPSON 45

5.16 Swap Instructions
The swap instructions replace the contents of general-purpose registers with each other, as shown below.

swap %rd,%rs

 Big and little endians are converted on a word boundary.

8 716 1524 23

Byte 0Byte 1Byte 2Byte 3
0

rs
31

8 716 1524 23
Byte 3Byte 2Byte 1Byte 0

0
rd

31

swaph %rd,%rs

 The 32-bit data in general-purpose registers has its big and little endians converted on a halfword boundary.

8 716 1524 23

Byte 0Byte 1Byte 2Byte 3
0

rs
31

8 716 1524 23
Byte 1Byte 0Byte 3Byte 2

0
rd

31

Differences from the C33 STD Core CPU
 The swaph instruction has been added.
 swaph %rd,%rs

5 INSTRUCTION SET

46 EPSON S1C33 FAMILY C33 PE CORE MANUAL

5.17 Other Instructions

Flag control instructions
 The C33 PE Core has had new instructions added that enable the PSR flags to be manipulated directly. As

these flag control instructions can set and clear flags bitwise, it is possible to control interrupts by enabling or
disabling in one instruction.

 psrset imm5 Sets the PSR bit specified by imm5[2:0] (0–4) to 1
 psrclr imm5 Clears the PSR bit specified by imm5[2:0] (0–4) to 0
 The contents of PSR are not altered when the imm5 is 5 or more.

6 FUNCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 47

6 Functions
This chapter describes the processing status of the C33 PE Core and outlines the operation.

6.1 Transition of the Processor Status
The diagram below shows the transition of the operating status in the C33 PE Core.

Program execution state

Exception
handling

Debug
exception
handling

Sleep mode

Reset state

Halt mode

slp
instruction

trap

Debug
exception

retd
instruction

Exception

reti
instruction

halt
instruction

trap

Figure 6.1.1 Processor Status Transition Diagram

6.1.1 Reset State

The processor is initialized when the reset signal is asserted, and then starts processing from the reset vector when
the reset signal is deasserted.

6.1.2 Program Execution State

This is a state in which the processor executes the user program sequentially. The processor state transits to another
when an exception occurs or the slp or halt instruction is executed.

6.1.3 Exception Handling

When a software or other exception occurs, the processor enters an exception handling state. The following are the
possible causes of the need for exception handling:

(1) External interrupt
(2) Software exception
(3) Address misaligned exception
(4) Zero division
(5) NMI
(6) Undefined instruction exception/ext exception

6.1.4 Debug Exception

The C33 PE Core incorporates a debugging assistance facility to increase the efficiency of software development.
To use this facility, a dedicated mode known as “debug mode” is provided. The processor can be switched from user
mode to this mode by the brk instruction or a debug exception. The processor does not normally enter this mode.

6.1.5 HALT and SLEEP Modes

The processor is placed in HALT or SLEEP mode to reduce power consumption by executing the halt or slp
instruction in the software (see Section 6.4). Normally the processor can be taken out of HALT or SLEEP mode by
NMI or an external interrupt as well as initial reset.

6 FUNCTIONS

48 EPSON S1C33 FAMILY C33 PE CORE MANUAL

6.2 Program Execution
Following initial reset, the processor loads the reset vector address into the PC and starts executing instructions
beginning with the address that was stored in the reset vector. As the instructions in the C33 PE Core are fixed to 16
bits in length, the PC is incremented by 2 each time an instruction is fetched from the address indicated by the PC.
In this way, instructions are executed successively.

When a branch instruction is executed, the processor checks the PSR flags and whether the branch conditions have
been satisfied, and loads the jump address into the PC.

When an interrupt or exception occurs, the processor loads the address for the interrupt or exception handler routine
from the vector table into the PC.
The vector table is a table of vectors that begin with the reset vector. Following initial reset, the vector table is
located at the address “0xC00000.” The exception vector table address can be determined by referencing the special
register TTBR. Alternatively, any desired address can be set for the exception vector table address in the software.
In this case, the addresses set in the TTBR must be aligned with the 1K-byte boundary (TTBR[9:0] = fixed to 00
0000 0000).

6.2.1 Instruction Fetch and Execution

Internally in the C33 PE Core, instructions are processed in two pipelined stages, so that data transfer between
registers and general arithmetic/logic instructions can be executed in one clock cycle.
Pipelining speeds up instruction processing by executing one instruction while fetching another. In the 2-stage
pipeline, each instruction is processed in two stages, with processing of instructions occurring in parallel, for faster
instruction execution.

Basic instruction stages
Instruction fetch / Instruction decode Instruction execution / Memory access / Register write

 Hereinafter, each stage is represented by the following symbols:
 F (for Fetch): Instruction fetch, instruction decode
 E (for Execute): Instruction execution, memory access, register write

Pipelined operation

F E

F E

F E

Clock

PC

PC + 2

PC + 4

Figure 6.2.1.1 Pipelined Operation

Note: The pipelined operation shown above uses the internal memory. If external memory or low-speed
external devices are used, one or more wait cycles may be inserted depending on the devices
used, with the E stage kept waiting.

6 FUNCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 49

6.2.2 Execution Cycles and Flags

The instructions in the C33 PE Core are processed in parallel at two pipelined stages as described above, so most
instructions are executed in one clock cycle. This comprises the basic execution cycle in the C33 PE Core.
Although instructions to transfer data between registers as in register direct addressing are executed in one clock
cycle, one or more wait cycles are inserted for accesses to external memory and low-speed external peripheral
circuits. These include clock cycles spent for the arbitration by the bus control unit, and wait cycles inherent in the
external devices connected to the chip. Note, however, that accesses to the internal RAM and caches are completed
in one clock cycle.

The number of clock cycles required for accesses to the internal RAM and caches, as well as flag changes that
occur pursuant to memory accesses, are given below.

C33 STD Core CPU compatible instructions

Table 6.2.2.1 Number of Instruction Execution Cycles and Flag Status (C33 STD Compatible Instructions)

Classification

Arithmetic operation

Branch

Remark

PSR change

IE = 0
IE no change

Cycle

1
1
1
1
1
1
1
1
1
1
5
5
7
7

2–3
(∗1, ∗3)

2–3
(∗1, ∗3)

2–3
(∗1, ∗3)

2–3
(∗1, ∗3)

2–3
(∗1, ∗3)

2–3
(∗1, ∗3)

2–3
(∗1, ∗3)

2–3
(∗1, ∗3)

2–3
(∗1, ∗3)

2–3
(∗1, ∗3)
2–3 (∗3)
2–3 (∗3)
3–4 (∗3)
3–4 (∗3)
3–4 (∗3)

5
5
7
9

C
↔
↔
–
↔
↔
↔
–
↔
↔
↔
–
–
–
–
–

–

–

–

–

–

–

–

–

–

–
–
–
–
–

↔
–
–
–

V
↔
↔
–
↔
↔
↔
–
↔
↔
↔
–
–
–
–
–

–

–

–

–

–

–

–

–

–

–
–
–
–
–

↔
–
–
–

Z
↔
↔
–
↔
↔
↔
–
↔
↔
↔
–
–
–
–
–

–

–

–

–

–

–

–

–

–

–
–
–
–
–

↔
–
–
–

N
↔
↔
–
↔
↔
↔
–
↔
↔
↔
–
–
–
–
–

–

–

–

–

–

–

–

–

–

–
–
–
–
–

↔
–
–
–

add

adc

sub

sbc

cmp

mlt.h

mltu.h

mlt.w

mltu.w

jrgt

jrgt.d

jrge

jrge.d

jrlt

jrlt.d

jrle

jrle.d

jrugt

jrugt.d

jruge

jruge.d

jrult

jrult.d

jrule

jrule.d

jreq

jreq.d

jrne

jrne.d

jp

jp.d

call

call.d

ret

ret.d

reti

retd

int

brk

%rd,%rs

%rd,imm6

%sp,imm10

%rd,%rs

%rd,%rs

%rd,imm6

%sp,imm10

%rd,%rs

%rd,%rs

%rd,sign6

%rd,%rs

%rd,%rs

%rd,%rs

%rd,%rs

sign8

sign8

sign8

sign8

sign8

sign8

sign8

sign8

sign8

sign8

sign8

%rb

sign8

%rb

imm2

Mnemonic
Flag

6 FUNCTIONS

50 EPSON S1C33 FAMILY C33 PE CORE MANUAL

Classification

Data transfer

System control

Immediate extension
Bit manipulation

Other

ld.b

ld.ub

ld.h

ld.uh

ld.w

nop

halt

slp

ext

btst

bclr

bset

bnot

swap

pushn

popn

%rd,%rs

%rd,[%rb]

%rd,[%rb]+

%rd,[%sp+imm6]

[%rb],%rs

[%rb]+,%rs

[%sp+imm6],%rs

%rd,%rs

%rd,[%rb]

%rd,[%rb]+

%rd,[%sp+imm6]

%rd,%rs

%rd,[%rb]

%rd,[%rb]+

%rd,[%sp+imm6]

[%rb],%rs

[%rb]+,%rs

[%sp+imm6],%rs

%rd,%rs

%rd,[%rb]

%rd,[%rb]+

%rd,[%sp+imm6]

%rd,%rs

%rd,sign6

%rd,[%rb]

%rd,[%rb]+

%rd,[%sp+imm6]

[%rb],%rs

[%rb]+,%rs

[%sp+imm6],%rs

imm13

[%rb],imm3

[%rb],imm3

[%rb],imm3

[%rb],imm3

%rd,%rs

%rs

%rd

Mnemonic Remark

Cycle

1
1–2 (∗4)

2
2

1–2 (∗4)
2
2
1

1–2 (∗4)
2
2
1

1–2 (∗4)
2
2

1–2 (∗4)
2
2
1

1–2 (∗4)
2
2
1
1

1–2 (∗4)
2
2

1–2 (∗4)
2
2
1
5
5

0–1 (∗2)
2–3 (∗4)
3–4 (∗4)
3–4 (∗4)
3–4 (∗4)

1
N+1
N+1

C
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

V
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

Z
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
↔
–
–
–
–
–
–

N
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

Flag

Function-extended instructions

Table 6.2.2.2 Number of Instruction Execution Cycles and Flag Status (Function-Extended Instructions)

Classification

Logical operation

Shift and rotate

Data transfer

and

or

xor

not

srl

sll

sra

sla

rr

rl

ld.w

%rd,%rs

%rd,sign6

%rd,%rs

%rd,sign6

%rd,%rs

%rd,sign6

%rd,%rs

%rd,sign6

%rd,%rs

%rd,imm5

%rd,%rs

%rd,imm5

%rd,%rs

%rd,imm5

%rd,%rs

%rd,imm5

%rd,%rs

%rd,imm5

%rd,%rs

%rd,imm5

%rd,%ss

%sd,%rs

RemarkCycle

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1–3 (∗5)

C
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

V
0
0
0
0
0
0
0
0
–
–
–
–
–
–
–
–
–
–
–
–
–
–

Z
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
–
–

N
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
–
–

Mnemonic
Flag

6 FUNCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 51

Added instructions

Table 6.2.2.3 Number of Instruction Execution Cycles and Flag Status (Added Instructions)

Classification

Branch

System control

Coprocessor control

Other

jpr

jpr.d

psrset

psrclr

ld.c

ld.c

do.c

ld.cf

swaph

push

pop

pushs

pops

%rb

imm5

imm5

%rd,imm4

imm4,%rs

imm6

%rd,%rs

%rs

%rd

%ss

%sd

Mnemonic RemarkCycle

2–3 (∗3)

3
3
1
1
1
3
1
2
1

2–3 (∗6)
2–3 (∗6)

C
–

↔
↔
–
–
–
↔
–
–
–
–
–

V
–

↔
↔
–
–
–
↔
–
–
–
–
–

Z
–

↔
↔
–
–
–
↔
–
–
–
–
–

N
–

↔
↔
–
–
–
↔
–
–
–
–
–

Flag

∗1 Three cycles when the branch conditions are satisfied and the instruction is not a delayed branch instruction
∗2 Zero cycles when lookahead decoding is possible
∗3 When a branch instruction does not involve a delayed branch (not accompanied by the extension “.d”),

a 1-instruction equivalent blank time occurs, as no instructions are executed during a branch; therefore,
apparently +1 cycle.

∗4 +1 cycle when ext is used
∗5 Three cycles when %psr is specified
∗6 Two cycles when %alr is specified or three cycles when %ahr is specified

In the C33 PE Core, no interlock cycle is generated.

6 FUNCTIONS

52 EPSON S1C33 FAMILY C33 PE CORE MANUAL

6.3 Interrupts and Exceptions
When an external interrupt or exception occurs during program execution, the processor enters an exception
handling state. The exception handling state is a process by which the processor branches to the corresponding
user’s service routine for the interrupt or exception that occurred. The processor returns after branching and starts
executing the program from where it left off.

6.3.1 Priority of Exceptions

The following exception handlings are supported by the C33 PE Core:

(1) Reset, internal exceptions of the processor, and external interrupts for which the processor branches to the
relevant exception handler routine by referencing the vector table

(2) Debug exceptions such as breaks that are provided to support debugging by the user

The priority of these exceptions is listed in the table below.

Table 6.3.1.1 Vector Address and Priority of Exceptions

Exception
Reset
Address misaligned exception
Undefined instruction exception
ext exception
Debug exception
NMI
Software exception
Maskable external interrupt

Vector address (Hex)
TTBR + 0x00
TTBR + 0x18
TTBR + 0x0C
TTBR + 0x08
0x00060000

TTBR + 0x1C
TTBR + 0x30 to TTBR + 0x3C

TTBR + 0x40 to TTBR + 0x3FC

Priority
High

Low

When two or more exceptions occur simultaneously, they are processed in order of priority beginning with the one
that has the highest priority.

When an exception occurs, the processor disables interrupts that would occur thereafter and performs exception
handling. To support multiple interrupts (or another interrupt from within an interrupt), set the IE flag in the PSR
to 1 in the exception handler routine to enable interrupts during exception handling. Basically, even when multiple
interrupts are enabled, interrupts and exceptions whose priorities are below the one set by the IL[3:0] bits in the
PSR are not accepted.

The debug exception has its vector located at the specific addresses, and the vector table is not referenced for this
exception. Nor is the stack used for the PC, and the PC is saved in a specific area along with R0.
The table below shows the addresses that are referenced when a debug exception occurs.

Table 6.3.1.2 Debug Exception Vector Address and PC/R0 Save Area

Address
0x00060000
0x00060008
0x0006000C

Content
Debug exception handler vector

PC save area
R0 save area

During debug exception handling, neither other exceptions nor multiple debug exceptions are accepted. They are
kept pending until the debug exception handling currently underway finishes.

6 FUNCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 53

6.3.2 Vector Table

Vector table in the C33 PE Core
 The table below lists the exceptions and interrupts for which the vector table is referenced during exception

handling. The priorities of these exceptions and interrupts are managed by the interrupt controller (ITC).

Table 6.3.2.1 Vector List

Exception

Reset
reserved
ext exception
Undefined instruction exception
reserved
Address misaligned exception
NMI
reserved
Software exception 0
Software exception 1
Software exception 2
Software exception 3
Maskable external interrupt 0

:
Maskable external interrupt 239

Vector No.

0
1
2
3

4–5
6
7

8–11
12
13
14
15
16
:

255

Synchronous/
asynchronous
Asynchronous

–
Synchronous
Synchronous

–
Synchronous
Asynchronous

–
Synchronous
Synchronous
Synchronous
Synchronous
Asynchronous

:
Asynchronous

Classification

Interrupt
–

Exception
Exception

–
Exception
Interrupt

–
Exception
Exception
Exception
Exception
Interrupt

:
Interrupt

Vector address

TTBR + 0x00
–

TTBR + 0x08
TTBR + 0x0C

–
TTBR + 0x18
TTBR + 0x1C

–
TTBR + 0x30
TTBR + 0x34
TTBR + 0x38
TTBR + 0x3C
TTBR + 0x40

:
TTBR + 0x3FC

 The sources of exceptions in the C33 PE Core are shown in Table 6.3.2.1.

 The Synchronous/Asynchronous column of the table indicates whether the relevant exception is generated
synchronously or asynchronously with the program execution. Those that occur synchronously with the
program execution are classified as “exceptions,” and those that occur asynchronously are classified as
“interrupts.” In this manual, the internal processing performed by the processor for interrupts and exceptions
that occurred is referred to collectively as “exception handling.”

 The vector address is one that contains a vector (or the jump address) for the user’s exception handler routine
that is provided for each exception and is executed when the relevant exception occurs. Because an address
value is stored, each vector address is located at a word boundary. The memory area in which these vectors are
stored is referred to as the “vector table.” The “TTBR” in the Vector Address column represents the base (start)
address of the vector table.

 In the C33 PE Core, the TTBR is provided as a special register, and because this register can be written to in the
software, the vector table can be mapped into any desired area in the RAM.

TTBR (Trap Table Base Register)

00000000000000000000000000000100
091031

Fixed
(R only)

TTBR

1K-byte boundary address
(R/W)

 The initial value of the TTBR, or the value to which the TTBR is initialized when cold reset, is “0x00C00000.”

Referenced vector-table addresses
 When an exception occurs, the vector table is referenced from the TTBR value and a 10-bit vector code that

is assigned to each exception source. As only bits 31–10 in the TTBR are referenced, the vector table must be
located in a 1K-byte boundary RAM area.

TTBR[31:10] Vector code (10 bits)

Vector code is generated by the processor.

+

6 FUNCTIONS

54 EPSON S1C33 FAMILY C33 PE CORE MANUAL

6.3.3 Exception Handling

When an interrupt or exception occurs, the processor starts exception handling. (This exception handling does not
apply for reset and debug exceptions.)

The exception handling performed by the processor is outlined below.

(1) Suspends the instruction currently being executed.
 An interrupt or exception is generated synchronously with the rising edge of the system clock at the end of the

cycle of the currently executed instruction.

(2) Saves the contents of the PC and PSR to the stack (SP), in that order.

(3) Clears the IE (interrupt enable) bit in the PSR to disable maskable interrupts that would occur thereafter. If
the generated exception is a maskable interrupt, the IL (interrupt level) in the PSR is rewritten to that of the
generated interrupt.

(4) Reads the vector for the generated exception from the vector table, and sets it in the PC. The processor thereby
branches to the user’s exception handler routine.

After branching to the user’s exception handler routine, when the reti instruction is executed at the end of
exception handling, the saved data is restored from the stack in order of the PC and PSR, and the processing returns
to the suspended instruction.

6.3.4 Reset

The processor is reset by applying a low-level pulse to its #RESET pin. All bits of the PSR are thereby cleared to 0,
and the contents of other registers become indeterminate.
The processor starts operating at the rising edge of the #RESET pulse to perform a reset sequence. In this reset
sequence, the reset vector is read out from the top of the vector table and set in the PC. The processor thereby
branches to the user’s initialization routine, in which it starts executing the program. The reset sequence has priority
over all other processing.

6.3.5 Address Misaligned Exception

The load instructions that access memory or I/O areas are characteristic in that the data size to be transferred is
predetermined for each instruction used, and that the accessed addresses must be aligned with the respective data-
size boundaries.

Instruction Transfer data size Address

ld.b/ld.ub Byte (8 bits) Byte boundary (applies to all addresses)
ld.h/ld.uh Halfword (16 bits) Halfword boundary (least significant address bit = 0)
ld.w Word (32 bits) Word boundary (two least significant address bits = 00)

If the specified address in a load instruction does not satisfy this condition, the processor assumes an address
misaligned exception and performs exception handling. In this case, the load instruction is not executed. The PC
value saved to the stack in exception handling is the address of the load instruction that caused the exception.

In the load instructions that use the SP as the base address, no address misaligned exceptions will occur, as the
addresses are aligned properly according to the data size.

Nor does this exception occur in the instructions that involve branching of the program flow (e.g., call %rb or
jp %rb), as the least significant bit of the PC is always fixed to 0. The same applies to the vector for exception

handling.

6 FUNCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 55

6.3.6 NMI

An NMI is generated when the #NMI input on the processor is asserted low. When an NMI occurs, the processor
performs exception handling after it has finished executing the instruction currently underway. The PC value saved
to the stack in exception handling is the address of the instruction that was being executed.
During an NMI exception, other new NMI exceptions are disabled and not accepted (multiple NMI exceptions
prohibited). To prevent another NMI from being serviced during a current NMI exception, the processor masks
NMIs before it starts executing the NMI exception handler routine. NMIs are unmasked by executing the reti
instruction, so that it is possible that if another exception occurs in an NMI handler routine and reti is executed
in that routine, NMIs will be unmasked. In such a case, the NMI handler routine may not be executed correctly.
Therefore, make sure that no other exceptions will occur during an NMI handler routine.
NMIs are nonmaskable interrupts, but because if an NMI occurs before SP is set after the processor is reset (either
cold start or hot start), the program may run out of control, the #NMI input on the processor is therefore masked in
the hardware until the SP is set by the ld.w %sp,%rs instruction.

6.3.7 Software Exceptions

A software exception is generated by executing the int imm2 instruction. The PC value saved to the stack in this
exception handling is the address of the next instruction. The operand imm2 in the int instruction specifies the
vector address for one of four distinct software exceptions. The processor reads the vector for the exception from
the address that is equal to TTBR + 48 (vector address for software exception 0) plus 4 × imm2, before branching to
the handler routine.

6.3.8 Maskable External Interrupts

The C33 PE Core can accept up to 240 types of maskable external interrupts. It is only when the IE (interrupt
enable) flag in the PSR is set that the processor accepts a maskable external interrupt. Furthermore, their acceptable
interrupt levels are limited by the IL (interrupt level) field in the PSR. The interrupt levels (0–15) in the IL field
dictate the interrupt levels that can be accepted by the processor, and only interrupts with priority levels higher than
that are accepted.
The IE flag and the IL field can be set in the software. When an exception occurs, the IE flag is cleared to 0 (interrupts
disabled) after the PSR is saved to the stack, and the maskable interrupts remain disabled until the IE flag is set
in the handler routine or the handler routine is terminated by the reti instruction that restores the PSR from the
stack. The IL field is set to the priority level of the interrupt that occurred.
Multiple interrupts or the ability to accept another interrupt during exception handling if its priority is higher than
that of the currently serviced interrupt can easily be realized by setting the IE flag in the interrupt handler routine.
When the processor is reset, the PSR is initialized to 0 and the maskable interrupts are therefore disabled, and the
interrupt level is set to 0 (interrupts with priority levels 1–15 enabled).

The following describes how the maskable interrupts are accepted and processed by the processor.

(1) Suspends the instruction currently being executed.
 The interrupt is accepted synchronously with the rising edge of the system clock at the end of the cycle of the

currently executed instruction.

(2) Saves the contents of the PC and PSR to the stack (SP), in that order.

(3) Clears the IE flag in the PSR and copy the priority level of the accepted interrupt to the IL field.

(4) Reads the vector for the interrupt from the vector address in the vector table, and sets it in the PC. The processor
then branches to the interrupt handler routine.

In the interrupt handler routine, the reti instruction should be executed at the end of processing. In the reti
instruction, the saved data is restored from the stack in order of the PC and PSR, and the processing returns to the
suspended instruction.

6 FUNCTIONS

56 EPSON S1C33 FAMILY C33 PE CORE MANUAL

6.3.9 Undefined Instruction Exception

When an instruction, which does not exist in the C33 PE instruction set, is executed, an undefined instruction
exception occurs. The object code is loaded into the 16 low-order bits of the IDIR register and is processed similar
to the nop instruction. In this case, the PC value that is saved into the stack by the exception processing is the
instruction address that follows the undefined instruction executed.
Address TTBR + 12 is used to store the undefined instruction exception vector.

6.3.10 ext Exception

If three or more ext instructions are described sequentially, an ext exception occurs when the third ext
instruction is detected. In this case, the PC value that is saved into the stack by the exception processing is the first
ext instruction address.

Address TTBR + 8 is used to store the ext exception vector.
When an instruction, which does not support the extension in the ext instruction, follows an ext, the ext
instruction will be executed as a nop instruction.

6 FUNCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 57

6.4 Power-Down Mode
The C33 PE Core supports two power-down modes: HALT and SLEEP modes.

HALT mode
 Program execution is halted at the same time that the C33 PE Core executes the halt instruction, and the

processor enters HALT mode.
 HALT mode commonly turns off only the C33 PE Core operation, note, however that modules to be turned off

depend on the implementation of the clock control circuit outside the core. Refer to the technical manual of
each model for details.

SLEEP mode
 Program execution is halted at the same time the C33 PE Core executes the slp instruction, and the processor

enters SLEEP mode.
 SLEEP mode commonly turns off the C33 PE Core and on-chip peripheral circuit operations, thereby it

significantly reduces the current consumption in comparison to the HALT mode. However, modules to be
turned off depend on the implementation of the clock control circuit outside the core. Refer to the technical
manual of each model for details.

Canceling HALT or SLEEP mode
 Initial reset is one cause that can be bring the processor out of HALT or SLEEP mode. Other causes depend on

the implementation of the clock control circuit outside the C33 PE Core.
 Initial reset, maskable external interrupts, NMI, and debug exceptions are commonly used for canceling HALT

and SLEEP modes.

 The interrupt enable/disable status set in the processor does not affect the cancellation of HALT or SLEEP
modes even if an interrupt signal is used as the cancellation. In other words, interrupt signals are able to cancel
HALT and SLEEP modes even if the IE flag in PSR or the interrupt enable bits in the interrupt controller
(depending on the implementation) are set to disable interrupts.

 When the processor is taken out of HALT or SLEEP mode using an interrupt that has been enabled (by the
interrupt controller and IE flag), the corresponding interrupt handler routine is executed. Therefore, when the
interrupt handler routine is terminated by the reti instruction, the processor returns to the instruction next to
halt or slp.

 When the interrupt has been disabled, the processor restarts the program from the instruction next to halt or
slp after the processor is taken out of HALT or SLEEP mode.

6 FUNCTIONS

58 EPSON S1C33 FAMILY C33 PE CORE MANUAL

6.5 Debug Circuit
The C33 PE Core has a debug circuit to assist in software development by the user.
The debug circuit provides the following functions:

• Instruction break
 A debug exception is generated before the set instruction address is executed. An instruction break can be set at

three addresses.

• Data break
 A debug exception is generated when the set address is accessed for read or write. A data break can be set at

only one address.

• Single step
 A debug exception is generated every instruction executed.

• Forcible break
 A debug exception is generated by an external input signal.

• Software break
 A debug exception is generated when the brk instruction is executed.

• PC trace
 The status of instruction execution by the processor is traced.

When a debug exception occurs, the processor performs the following processing:

(1) Suspends the instruction currently being executed.
 A debug exception is generated at the end of the E stage of the currently executed instruction, and is accepted at

the next rise of the system clock.

(2) Saves the contents of the PC and R0, in that order, to the addresses specified below.
 PC → 0x00060008
 R0 → 0x0006000C

(3) Loads the debug exception vector located at the address 0x00060000 to PC and branches to the debug exception
handler routine.

In the exception handler routine, the retd instruction should be executed at the end of processing to return to the
suspended instruction. When returning from the exception by the retd instruction, the processor restores the saved
data in order of the R0 and the PC.
Neither hardware interrupts nor NMI interrupts are accepted during a debug exception.

6 FUNCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 59

6.6 Coprocessor Interface
The C33 PE Core incorporates a coprocessor interface. This interface has dedicated coprocessor instructions
available for use, allowing various data processors such as an FPU or DSP to be connected to the chip, and is
configured as a simple interface (consisting of only a 16-bit instruction bus and 32-bit input and output data buses).

Dedicated coprocessor instructions
 ld.c %rd,imm4 Transfer data from the coprocessor
 ld.c imm4,%rs Transfer data to the coprocessor
 do.c imm6 Execute the coprocessor
 ld.cf Transfer C, V, Z, and N flags from the coprocessor

The concrete commands and status of the coprocessor vary with each coprocessor connected to the chip. Please
refer to the user’s manual for the coprocessor used.

7 DETAILS OF INSTRUCTIONS

60 EPSON S1C33 FAMILY C33 PE CORE MANUAL

7 Details of Instructions
This section explains all the instructions in alphabetical order.

Symbols in the instruction reference
%rd, rd General-purpose registers (R0–R15) or their contents used as the destination
%rs, rs General-purpose registers (R0–R15) or their contents used as the source
%rb, rb General-purpose registers (R0–R15) or their contents that hold the base address to be accessed in

register indirect addressing
%sd, sd Special registers or their contents used as the destination
%ss, ss Special registers or their contents used as the source
%sp, sp Stack pointer (SP) or its content

The register field (rd, rs, sd, or ss) in the code contains a register number.
General-purpose registers (rd, rs) R0 = 0b0000, R1 = 0b0001 . . . R15 = 0b1111
Special registers (sd, ss) PSR = 0b0000, SP = 0b0001, ALR = 0b0010, AHR = 0b0011,

TTBR = 0b1000, IDIR = 0b1010, DBBR = 0b1011, PC = 0b1111

immX Unsigned immediate X bits in length. The X contains a number representing the bit length of the
immediate.

signX Signed immediate X bits in length. The X contains a number representing the bit length of the
immediate. Furthermore, the most significant bit is handled as the sign bit.

IL[3:0] Interrupt level field
IE Interrupt enable flag
C Carry flag
V Overflow flag
Z Zero flag
N Negative flag
– Indicates that the bit is not changed by instruction execution
↔ Indicates that the bit is set (= 1) or reset (= 0) by instruction execution
0 Indicates that the bit is reset (= 0) by instruction execution

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 61

adc %rd, %rs
Function Addition with carry
 Standard) rd ← rd + rs + C
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 1 1 1 0 0 0 r s r d 0xB8__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – ↔ ↔ ↔ ↔

 | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 adc %rd,%rs ; rd ← rd + rs + C

 The content of the rs register and C (carry) flag are added to the rd register.

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit.

Example (1) adc %r0,%r1 ; r0 = r0 + r1 + C

 (2) Addition of 64-bit data
 data 1 = {r2, r1}, data2 = {r4, r3}, result = {r2, r1}
 add %r1,%r3 ; Addition of the low-order word
 adc %r2,%r4 ; Addition of the high-order word

7 DETAILS OF INSTRUCTIONS

62 EPSON S1C33 FAMILY C33 PE CORE MANUAL

add %rd, %rs
Function Addition
 Standard) rd ← rd + rs
 Extension 1) rd ← rs + imm13
 Extension 2) rd ← rs + imm26

Code 15 12 11 8 7 4 3 0

 0 0 1 0 0 0 1 0 r s r d 0x22__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – ↔ ↔ ↔ ↔

 | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 add %rd,%rs ; rd ← rd + rs

 The content of the rs register is added to the rd register.

 (2) Extension 1
 ext imm13

 add %rd,%rs ; rd ← rs + imm13

 The 13-bit immediate imm13 is added to the content of the rs register after being zero-extended,
and the result is loaded into the rd register. The content of the rs register is not altered.

 (3) Extension 2
 ext imm13 ; = imm26(25:13)

 ext imm13 ; = imm26(12:0)

 add %rd,%rs ; rd ← rs + imm26

 The 26-bit immediate imm26 is added to the content of the rs register after being zero-extended,
and the result is loaded into the rd register. The content of the rs register is not altered.

 (4) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit. In this case, extension of the immediate by the ext instruction
cannot be performed.

Example (1) add %r0,%r0 ; r0 = r0 + r0

 (2) ext 0x1
 ext 0x1fff

 add %r1,%r2 ; r1 = r2 + 0x3fff

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 63

add %rd, imm6
Function Addition
 Standard) rd ← rd + imm6
 Extension 1) rd ← rd + imm19
 Extension 2) rd ← rd + imm32

Code 15 12 11 10 9 4 3 0

 0 1 1 0 0 0 imm6 r d 0x60__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – ↔ ↔ ↔ ↔

 | | | |

Mode Src: Immediate data (unsigned)
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 add %rd,imm6 ; rd ← rd + imm6

 The 6-bit immediate imm6 is added to the rd register after being zero-extended.

 (2) Extension 1
 ext imm13 ; = imm19(18:6)

 add %rd,imm6 ; rd ← rd + imm19, imm6 = imm19(5:0)

 The 19-bit immediate imm19 is added to the rd register after being zero-extended.

 (3) Extension 2
 ext imm13 ; = imm32(31:19)

 ext imm13 ; = imm32(18:6)

 add %rd,imm6 ; rd ← rd + imm32, imm6 = imm32(5:0)

 The 32-bit immediate imm32 is added to the rd register.

 (4) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit. In this case, extension of the immediate by the ext instruction
cannot be performed.

Example (1) add %r0,0x3f ; r0 = r0 + 0x3f

 (2) ext 0x1fff
 ext 0x1fff

 add %r1,0x3f ; r1 = r1 + 0xffffffff

7 DETAILS OF INSTRUCTIONS

64 EPSON S1C33 FAMILY C33 PE CORE MANUAL

add %sp, imm10
Function Addition
 Standard) sp ← sp + imm10 × 4
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 10 9 0

 1 0 0 0 0 0 imm10 0x80__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Src: Immediate data (unsigned)
 Dst: Register direct (SP)

CLK One cycle

Description (1) Standard
 Quadruples the 10-bit immediate imm10 and adds it to the stack pointer SP. The imm10 is zero-

extended into 32 bits prior to the operation.

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit.

Example add %sp,0x100 ; sp = sp + 0x400

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 65

and %rd, %rs
Function Logical AND
 Standard) rd ← rd & rs
 Extension 1) rd ← rs & imm13
 Extension 2) rd ← rs & imm26

Code 15 12 11 8 7 4 3 0

 0 0 1 1 0 0 1 0 r s r d 0x32__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – 0 ↔ ↔

 | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 and %rd,%rs ; rd ← rd & rs

 The content of the rs register and that of the rd register are logically AND’ed, and the result is
loaded into the rd register.

 (2) Extension 1
 ext imm13

 and %rd,%rs ; rd ← rs & imm13

 The content of the rs register and the zero-extended 13-bit immediate imm13 are logically
AND’ed, and the result is loaded into the rd register. The content of the rs register is not altered.

 (3) Extension 2
 ext imm13 ; = imm26(25:13)

 ext imm13 ; = imm26(12:0)

 and %rd,%rs ; rd ← rs & imm26

 The content of the rs register and the zero-extended 26-bit immediate imm26 are logically
AND’ed, and the result is loaded into the rd register. The content of the rs register is not altered.

 (4) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit. In this case, extension of the immediate by the ext instruction
cannot be performed.

Example (1) and %r0,%r0 ; r0 = r0 & r0

 (2) ext 0x1
 ext 0x1fff

 and %r1,%r2 ; r1 = r2 & 0x00003fff

7 DETAILS OF INSTRUCTIONS

66 EPSON S1C33 FAMILY C33 PE CORE MANUAL

and %rd, sign6
Function Logical AND
 Standard) rd ← rd & sign6
 Extension 1) rd ← rd & sign19
 Extension 2) rd ← rd & sign32

Code 15 12 11 10 9 4 3 0

 0 1 1 1 0 0 sign6 r d 0x70__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – 0 ↔ ↔

 | | | |

Mode Src: Immediate data (signed)
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 and %rd,sign6 ; rd ← rd & sign6

 The content of the rd register and the sign-extended 6-bit immediate sign6 are logically AND’
ed, and the result is loaded into the rd register.

 (2) Extension 1
 ext imm13 ; = sign19(18:6)

 and %rd,sign6 ; rd ← rd & sign19, sign6 = sign19(5:0)

 The content of the rd register and the sign-extended 19-bit immediate sign19 are logically
AND’ed, and the result is loaded into the rd register.

 (3) Extension 2
 ext imm13 ; = sign32(31:19)

 ext imm13 ; = sign32(18:6)

 and %rd,sign6 ; rd ← rd & sign32, sign6 = sign32(5:0)

 The content of the rd register and the 32-bit immediate sign32 are logically AND’ed, and the
result is loaded into the rd register.

 (4) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit. In this case, extension of the immediate by the ext instruction
cannot be performed.

Example (1) and %r0,0x3e ; r0 = r0 & 0xfffffffe

 (2) ext 0x7ff
 and %r1,0x3f ; r1 = r1 & 0x0001ffff

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 67

bclr [%rb], imm3
Function Bit clear
 Standard) B[rb](imm3) ← 0
 Extension 1) B[rb + imm13](imm3) ← 0
 Extension 2) B[rb + imm26](imm3) ← 0

Code 15 12 11 8 7 4 3 2 0

 1 0 1 0 1 1 0 0 r b 0 imm3 0xAC__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Src: Immediate data (unsigned)
 Dst: Register indirect %rb = %r0 to %r15

CLK Three cycles (four cycles when ext is used)

Description (1) Standard
 bclr [%rb],imm3 ; B[rb](imm3) ← 0

 Clears a data bit of the byte data in the address specified with the rb register. The 3-bit
immediate imm3 specifies the bit number to be cleared (7–0).

 (2) Extension 1
 ext imm13

 bclr [%rb],imm3 ; B[rb + imm13](imm3) ← 0

 The ext instruction changes the addressing mode to register indirect addressing with
displacement. The extended instruction clears the data bit specified with the imm3 in the address
specified by adding the 13-bit immediate imm13 to the contents of the rb register. It does not
change the contents of the rb register.

 (3) Extension 2
 ext imm13 ; = imm26(25:13)

 ext imm13 ; = imm26(12:0)

 bclr [%rb],imm3 ; B[rb + imm26](imm3) ← 0

 The ext instructions change the addressing mode to register indirect addressing with
displacement. The extended instruction clears the data bit specified with the imm3 in the address
specified by adding the 26-bit immediate imm26 to the contents of the rb register. It does not
change the contents of the rb register.

Example (1) ld.w %r0,[%sp+0x10] ; Sets the memory address to be accessed
 ; to the R0 register.

 bclr [%r0],0x0 ; Clears Bit 0 of data in the specified

 ; address.

 (2) ext 0x1
 bclr [%r0],0x7 ; Clears Bit 7 of data in the following

 ; address.

7 DETAILS OF INSTRUCTIONS

68 EPSON S1C33 FAMILY C33 PE CORE MANUAL

bnot [%rb], imm3
Function Bit negation
 Standard) B[rb](imm3) ← !B[rb](imm3)
 Extension 1) B[rb + imm13](imm3) ← !B[rb + imm13](imm3)
 Extension 2) B[rb + imm26](imm3) ← !B[rb + imm26](imm3)

Code 15 12 11 8 7 4 3 2 0

 1 0 1 1 0 1 0 0 r b 0 imm3 0xB4__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Src: Immediate data (unsigned)
 Dst: Register indirect %rb = %r0 to %r15

CLK Three cycles (four cycles when ext is used)

Description (1) Standard
 bnot [%rb],imm3 ; B[rb](imm3) ← !B[rb](imm3)

 Reverses a data bit of the byte data in the address specified with the rb register. The 3-bit
immediate imm3 specifies the bit number to be reversed (7–0).

 (2) Extension 1
 ext imm13

 bnot [%rb],imm3 ; B[rb + imm13](imm3) ← !B[rb + imm13](imm3)

 The ext instruction changes the addressing mode to register indirect addressing with
displacement. The extended instruction reverses the data bit specified with the imm3 in the
address specified by adding the 13-bit immediate imm13 to the contents of the rb register. It
does not change the contents of the rb register.

 (3) Extension 2
 ext imm13 ; = imm26(25:13)

 ext imm13 ; = imm26(12:0)

 bnot [%rb],imm3 ; B[rb + imm26](imm3) ← !B[rb + imm26](imm3)

 The ext instructions change the addressing mode to register indirect addressing with
displacement. The extended instruction reverses the data bit specified with the imm3 in the
address specified by adding the 26-bit immediate imm26 to the contents of the rb register. It
does not change the contents of the rb register.

Example (1) ld.w %r0,[%sp+0x10] ; Sets the memory address to be accessed
 ; to the R0 register.

 bnot [%r0],0x0 ; Reverses Bit 0 of data in the specified

 ; address.

 (2) ext 0x1
 bnot [%r0],0x7 ; Reverses Bit 7 of data in the following

 ; address.

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 69

brk
Function Debugging exception
 Standard) W[0x60008] ← pc + 2, W[0x6000C] ← r0, pc ← W[0x60000]
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0x0400

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode –

CLK Nine cycles

Description Calls a debugging handler routine.
 The brk instruction stores the address that follows this instruction and the contents of the R0

register into the stack for debugging, then reads the vector for the debug-handler routine from the
debug-vector address (0x0060000) and sets it to the PC. Thus the program branches to the debug-
handler routine. Furthermore the processor enters the debug mode.

 The retd instruction must be used for return from the debug-handler routine.
 This instruction is provided for debug firmware. Do not use it in general programs.

Example brk ; Executes the debug-handler routine

7 DETAILS OF INSTRUCTIONS

70 EPSON S1C33 FAMILY C33 PE CORE MANUAL

bset [%rb], imm3
Function Bit set
 Standard) B[rb](imm3) ← 1
 Extension 1) B[rb + imm13](imm3) ← 1
 Extension 2) B[rb + imm26](imm3) ← 1

Code 15 12 11 8 7 4 3 2 0

 1 0 1 1 0 0 0 0 r b 0 imm3 0xB0__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Src: Immediate data (unsigned)
 Dst: Register indirect %rb = %r0 to %r15

CLK Three cycles (four cycles when ext is used)

Description (1) Standard
 bset [%rb],imm3 ; B[rb](imm3) ← 1

 Sets a data bit of the byte data in the address specified with the rb register. The 3-bit immediate
imm3 specifies the bit number to be cleared (7–0).

 (2) Extension 1
 ext imm13

 bset [%rb],imm3 ; B[rb + imm13](imm3) ← 1

 The ext instruction changes the addressing mode to register indirect addressing with
displacement. The extended instruction sets the data bit specified with the imm3 in the address
specified by adding the 13-bit immediate imm13 to the contents of the rb register. It does not
change the contents of the rb register.

 (3) Extension 2
 ext imm13 ; = imm26(25:13)

 ext imm13 ; = imm26(12:0)

 bset [%rb],imm3 ; B[rb + imm26](imm3) ← 1

 The ext instructions change the addressing mode to register indirect addressing with
displacement. The extended instruction sets the data bit specified with the imm3 in the address
specified by adding the 26-bit immediate imm26 to the contents of the rb register. It does not
change the contents of the rb register.

Example (1) ld.w %r0,[%sp+0x10]; Sets the memory address to be accessed
 ; to the R0 register.

 bset [%r0],0x0 ; Sets Bit 0 of data in the specified

 ; address.

 (2) ext 0x1
 bset [%r0],0x7 ; Sets Bit 7 of data in the following

 ; address.

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 71

btst [%rb], imm3
Function Bit test
 Standard) Z flag ← 1 if B[rb](imm3) = 0 else Z flag ← 0
 Extension 1) Z flag ← 1 if B[rb + imm13](imm3) = 0 else Z flag ← 0
 Extension 2) Z flag ← 1 if B[rb + imm26](imm3) = 0 else Z flag ← 0

Code 15 12 11 8 7 4 3 2 0

 1 0 1 0 1 0 0 0 r b 0 imm3 0xA8__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – ↔ –

 | | | |

Mode Src: Immediate data (unsigned)
 Dst: Register indirect %rb = %r0 to %r15

CLK Two cycles (three cycles when ext is used)

Description (1) Standard
 btst [%rb],imm3 ; Z flag ← 1 if B[rb](imm3) = 0

 ; else Z flag ← 0

 Tests a data bit of the byte data in the address specified with the rb register and sets the Z (zero)
flag if the bit is 0. The 3-bit immediate imm3 specifies the bit number to be tested (7–0).

 (2) Extension 1
 ext imm13

 btst [%rb],imm3 ; Z flag ← 1 if B[rb + imm13](imm3) = 0

 ; else Z flag ← 0

 The ext instruction changes the addressing mode to register indirect addressing with
displacement. The extended instruction tests the data bit specified with the imm3 in the address
specified by adding the 13-bit immediate imm13 to the contents of the rb register. It does not
change the contents of the rb register.

 (3) Extension 2
 ext imm13 ; = imm26(25:13)

 ext imm13 ; = imm26(12:0)

 btst [%rb],imm3 ; Z flag ← 1 if B[rb + imm26](imm3) = 0

 ; else Z flag ← 0

 The ext instructions change the addressing mode to register indirect addressing with
displacement. The extended instruction tests the data bit specified with the imm3 in the address
specified by adding the 26-bit immediate imm26 to the contents of the rb register. It does not
change the contents of the rb register.

Example ld.w %r0,[%sp+0x10] ; Sets the memory address to be accessed
 ; to the R0 register.

 btst [%r0],0x7 ; Tests Bit 7 of data in the specified

 ; address.

 jreq POSITIVE ; Jumps if the bit is 0.

7 DETAILS OF INSTRUCTIONS

72 EPSON S1C33 FAMILY C33 PE CORE MANUAL

call %rb / call.d %rb
Function Subroutine call
 Standard) sp ← sp - 4, W[sp] ← pc + 2, pc ← rb
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 0 0 0 1 1 d 0 0 0 0 r b 0x060_, 0x070_

 | | | | | | | | | | | | | | |

 call %rb when d bit (bit 8) = 0
 call.d %rb when d bit (bit 8) = 1

Flag IE C V Z N

 – – – – –

 | | | |

Mode Register direct %rb = %r0 to %r15

CLK call Four cycles
 call.d Three cycles

Description (1) Standard
 call %rb

 Stores the address of the following instruction into the stack, then sets the contents of the rb
register to the PC for calling the subroutine that starts from the address set to the PC. The LSB
of the rb register is invalid and is always handled as 0. When the ret instruction is executed in
the subroutine, the program flow returns to the instruction following the call instruction.

 (2) Delayed branch (d bit = 1)
 call.d %rb

 When call.d is specified, the d bit in the instruction code is set and the following instruction
becomes a delayed instruction.

 The delayed instruction is executed before branching to the subroutine. Therefore the address (PC
+ 4) of the instruction that follows the delayed instruction is stored into the stack as the return
address.

 When the call.d instruction is executed, interrupts and exceptions cannot occur because traps
are masked between the call.d and delayed instructions.

Example call %r0 ; Calls the subroutine that starts from the
 ; address stored in the R0 register.

Caution When the call.d instruction (delayed branch) is used, be careful to ensure that the next
instruction is limited to those that can be used as a delayed instruction. If any other instruction
is executed, the program may operate indeterminately. For the usable instructions, refer to the
instruction list in the Appendix.

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 73

call sign8 / call.d sign8
Function Subroutine call
 Standard) sp ← sp - 4, W[sp] ← pc + 2, pc ← pc + sign8 × 2
 Extension 1) sp ← sp - 4, W[sp] ← pc + 2, pc ← pc + sign22
 Extension 2) sp ← sp - 4, W[sp] ← pc + 2, pc ← pc + sign32

Code 15 12 11 8 7 0

 0 0 0 1 1 1 0 d sign8 0x1C__, 0x1D__

 | | | | | | | | | | | | | | |

 call sign8 when d bit (bit 8) = 0
 call.d sign8 when d bit (bit 8) = 1

Flag IE C V Z N

 – – – – –

 | | | |

Mode Signed PC relative

CLK call Four cycles
 call.d Three cycles

Description (1) Standard
 call sign8 ; = "call sign9", sign8 = sign9(8:1), sign9(0) = 0

 Stores the address of the following instruction into the stack, then doubles the signed 8-bit
immediate sign8 and adds it to the PC for calling the subroutine that starts from the address.
The sign8 specifies a halfword address in 16-bit units. When the ret instruction is executed in
the subroutine, the program flow returns to the instruction following the call instruction.

 The sign8 (×2) allows branches within the range of PC - 0x100 to PC + 0xFE.

 (2) Extension 1
 ext imm13 ; = sign22(21:9)

 call sign8 ; = "call sign22", sign8 = sign22(8:1), sign22(0) = 0

 The ext instruction extends the displacement into 22 bits using its 13-bit immediate imm13.
The 22-bit displacement is sign-extended and added to the PC.

 The sign22 allows branches within the range of PC - 0x200000 to PC + 0x1FFFFE.

 (3) Extension 2
 ext imm13 ; imm13(12:3)= sign32(31:22)

 ext imm13 ; = sign32(21:9)

 call sign8 ; = "call sign32", sign8 = sign32(8:1), sign32(0) = 0

 The ext instructions extend the displacement into 32 bits using their two 13-bit immediates
(imm13 × 2). The displacement covers the entire address space.

 (4) Delayed branch (d bit = 1)
 call.d sign8

 When call.d is specified, the d bit in the instruction code is set and the following instruction
becomes a delayed instruction. The delayed instruction is executed before branching to the
subroutine. Therefore the address (PC + 4) of the instruction that follows the delayed instruction
is stored into the stack as the return address.

 When the call.d instruction is executed, interrupts and exceptions cannot occur because traps
are masked between the call.d and delayed instructions.

Example ext 0x1fff
 call 0x0 ; Calls the subroutine that starts from the

 ; address specified by PC - 0x200.

Caution When the call.d instruction (delayed branch) is used, be careful to ensure that the next
instruction is limited to those that can be used as a delayed instruction. If any other instruction
is executed, the program may operate indeterminately. For the usable instructions, refer to the
instruction list in the Appendix.

7 DETAILS OF INSTRUCTIONS

74 EPSON S1C33 FAMILY C33 PE CORE MANUAL

cmp %rd, %rs
Function Comparison
 Standard) rd - rs
 Extension 1) rs - imm13
 Extension 2) rs - imm26

Code 15 12 11 8 7 4 3 0

 0 0 1 0 1 0 1 0 r s r d 0x2A__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – ↔ ↔ ↔ ↔

 | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 cmp %rd,%rs ; rd - rs

 Subtracts the contents of the rs register from the contents of the rd register, and sets or resets the
flags (C, V, Z and N) according to the results. It does not change the contents of the rd register.

 (2) Extension 1
 ext imm13

 cmp %rd,%rs ; rs - imm13

 Subtracts the 13-bit immediate imm13 from the contents of the rs register, and sets or resets the
flags (C, V, Z and N) according to the results. It does not change the contents of the rd and rs
registers.

 (3) Extension 2
 ext imm13 ; = imm26(25:13)

 ext imm13 ; = imm26(12:0)

 cmp %rd,%rs ; rs - imm26

 Subtracts the 26-bit immediate imm26 from the contents of the rs register, and sets or resets the
flags (C, V, Z and N) according to the results. It does not change the contents of the rd and rs
registers.

 (4) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit. In this case, extension of the immediate by the ext instruction
cannot be performed.

Example (1) cmp %r0,%r1 ; Changes the flags according to the results of
 ; r0 - r1.

 (2) ext 0x1
 ext 0x1fff

 cmp %r1,%r2 ; Changes the flags according to the results of

 ; r2 - 0x3fff.

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 75

cmp %rd, sign6
Function Comparison
 Standard) rd - sign6
 Extension 1) rd - sign19
 Extension 2) rd - sign32

Code 15 12 11 10 9 4 3 0

 0 1 1 0 1 0 sign6 r d 0x68__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – ↔ ↔ ↔ ↔

 | | | |

Mode Src: Immediate data (signed)
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 cmp %rd,sign6 ; rd - sign6

 Subtracts the signed 6-bit immediate sign6 from the contents of the rd register, and sets or resets
the flags (C, V, Z and N) according to the results. The sign6 is sign-extended into 32 bits prior
to the operation. It does not change the contents of the rd register.

 (2) Extension 1
 ext imm13 ; = sign19(18:6)

 cmp %rd,sign6 ; rd - sign19, sign6 = sign19(5:0)

 Subtracts the signed 19-bit immediate sign19 from the contents of the rd register, and sets or
resets the flags (C, V, Z and N) according to the results. The sign19 is sign-extended into 32 bits
prior to the operation. It does not change the contents of the rd register.

 (3) Extension 2
 ext imm13 ; = sign32(31:19)

 ext imm13 ; = sign32(18:6)

 cmp %rd,sign6 ; rd - sign32, sign6 = sign32(5:0)

 Subtracts the signed 32-bit immediate sign32 extended with the ext instruction from the
contents of the rd register, and sets or resets the flags (C, V, Z and N) according to the results. It
does not change the contents of the rd register.

 (4) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit. In this case, extension of the immediate by the ext instruction
cannot be performed.

Example (1) cmp %r0,0x3f ; Changes the flags according to the results of
 ; r0 - 0x3f.

 (2) ext 0x1fff
 ext 0x1fff

 cmp %r1,0x3f ; Changes the flags according to the results of

 ; r1 - 0xffffffff.

7 DETAILS OF INSTRUCTIONS

76 EPSON S1C33 FAMILY C33 PE CORE MANUAL

do.c imm6
Function Coprocessor execution
 Standard) W[CA(imm6)]
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 6 5 0

 1 0 1 1 1 1 1 1 0 0 imm6 0xBF0_

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Immediate (unsigned)

CLK One cycle

Description The command specified by imm6 is issued to the coprocessor. imm6 is output to the dedicated
coprocessor address bus.

Example do.c 0x1a ; coprocessor execute command 1A

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 77

ext imm13
Function Immediate extension
 Standard) Extends the immediate data/operand of the following instruction
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 13 12 0

 1 1 0 imm13 0xC0__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Immediate data (unsigned)

CLK Zero or One cycle (depending on the instruction queue status)

Description Extends the immediate data or operand of the following instruction.
 When extending an immediate data, the immediate data in the ext instruction will be placed on the

high-order side and the immediate data in the target instruction to be extended is placed on the low-
order side.

 Up to two ext imm3 instructions can be used sequentially. In this case, the immediate data in the
first ext instruction is placed on the most upper part. If three or more ext imm13 instructions are
described sequentially, an undefined instruction exception (ext exception) will occur.

 See descriptions of each instruction for the extension contents and the usage.

 Exceptions for the ext instruction (not including reset and debug break) are masked in the
hardware, and exception handling is determined when the target instruction to be extended is
executed. In this case, the return address from exception handling is the beginning of the ext
instruction.

Example ext 0x1000
 ext 0x1fff

 add %r1,0x3f ; r1 = r1 + 0x8007ffff

Caution When a load instruction that transfers data between memory and a register follows the ext
instruction, an address misaligned exception may occur before executing the load instruction (if the
address that is specified with the immediate data in the ext instruction as the displacement is not
a boundary address according to the transfer data size). When an address misaligned exception occurs,
the trap handling saves the address of the load instruction into the stack as the return address. If
the trap handler routine is returned by simply executing the reti instruction, the previous ext
instruction is invalidated. Therefore, it is necessary to modify the return address in that case.

7 DETAILS OF INSTRUCTIONS

78 EPSON S1C33 FAMILY C33 PE CORE MANUAL

halt
Function HALT
 Standard) Sets the processor to HALT mode
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0x0080

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode –

CLK Five cycles

Description Sets the processor to HALT mode for power saving.
 Program execution is halted at the same time that the C33 PE Core executes the halt instruction,

and the processor enters HALT mode.
 HALT mode commonly turns off only the C33 PE Core operation, note, however that modules to be

turned off depend on the implementation of the clock control circuit outside the core.

 Initial reset is one cause that can bring the processor out of HALT mode. Other causes depend on
the implementation of the clock control circuit outside the C33 PE Core.

 Initial reset, maskable external interrupts, NMI, and debug exceptions are commonly used for
canceling HALT mode.

 The interrupt enable/disable status set in the processor does not affect the cancellation of HALT
mode even if an interrupt signal is used as the cancellation. In other words, interrupt signals are
able to cancel HALT mode even if the IE flag in PSR or the interrupt enable bits in the interrupt
controller (depending on the implementation) are set to disable interrupts.

 When the processor is taken out of HALT mode using an interrupt that has been enabled (by the
interrupt controller and IE flag), the corresponding interrupt handler routine is executed. Therefore,
when the interrupt handler routine is terminated by the reti instruction, the processor returns to
the instruction next to halt.

 When the interrupt has been disabled, the processor restarts the program from the instruction next
to halt after the processor is taken out of HALT mode.

 Refer to the technical manual of each model for details of HALT mode.

Example halt ; Sets the processor in HALT mode.

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 79

int imm2
Function Software exception
 Standard) sp ← sp - 4, W[sp] ← pc + 2, sp ← sp - 4, W[sp] ← psr,
 pc ← Software exception vector
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 2 1 0

 0 0 0 0 0 1 0 0 1 0 0 0 0 0 imm2 0x048_

 | | | | | | | | | | | | | |
 |

Flag IE C V Z N

 0 – – – –

 | | | |

Mode Immediate data (unsigned)

CLK Seven cycles

Description Generates a software exception.
 The int instruction saves the address of the next instruction and the contents of the PSR into the

stack, then reads the software exception vector from the trap table and sets it to the PC. By this
processing, the program flow branches to the specified software exception handler routine.

 The C33 PE supports four types of software exceptions and the software exception number (0 to 3)
is specified by the 2-bit immediate imm2.

 imm2 Vector address
 Software exception 0: 0 Base + 48
 Software exception 1: 1 Base + 52
 Software exception 2: 2 Base + 56
 Software exception 3: 3 Base + 60

 The Base is the trap table beginning address set in the TTBR register (default: 0xC00000).
 The reti instruction should be used for return from the handler routine.

Example int 2 ; Executes the software exception 2 handler routine.

7 DETAILS OF INSTRUCTIONS

80 EPSON S1C33 FAMILY C33 PE CORE MANUAL

jp %rb / jp.d %rb
Function Unconditional jump
 Standard) pc ← rb
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 0 0 0 1 1 d 1 0 0 0 r b 0x068_, 0x078_

 | | | | | | | | | | | | | | |

 jp %rb when d bit (bit 8) = 0
 jp.d %rb when d bit (bit 8) = 1

Flag IE C V Z N

 – – – – –

 | | | |

Mode Register direct %rb = %r0 to %r15

CLK jp Three cycles
 jp.d Two cycles

Description (1) Standard
 jp %rb

 The content of the rb register is loaded to the PC, and the program branches to that address. The
LSB of the rb register is ignored and is always handled as 0.

 (2) Delayed branch (d bit = 1)
 jp.d %rb

 For the jp.d instruction, the next instruction becomes a delayed instruction. A delayed
instruction is executed before the program branches. Exceptions are masked in intervals
between the jp.d instruction and the next instruction, so no interrupts or exceptions occur.

Example jp %r0 ; Jumps to the address specified by the R0 register.

Caution When the jp.d instruction (delayed branch) is used, be careful to ensure that the next instruction
is limited to those that can be used as a delayed instruction. If any other instruction is executed, the
program may operate indeterminately. For the usable instructions, refer to the instruction list in the
Appendix.

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 81

jp sign8 / jp.d sign8
Function Unconditional PC relative jump
 Standard) pc ← pc + sign8 × 2
 Extension 1) pc ← pc + sign22
 Extension 2) pc ← pc + sign32

Code 15 12 11 8 7 0

 0 0 0 1 1 1 1 d sign8 0x1E__, 0x1F__

 | | | | | | | | | | | | | | |

 jp sign8 when d bit (bit 8) = 0
 jp.d sign8 when d bit (bit 8) = 1

Flag IE C V Z N

 – – – – –

 | | | |

Mode Signed PC relative

CLK jp Three cycles
 jp.d Two cycles

Description (1) Standard
 jp sign8 ; = "jp sign9", sign8 = sign9(8:1), sign9(0)=0

 Doubles the signed 8-bit immediate sign8 and adds it to the PC. The program flow branches to
the address. The sign8 specifies a halfword address in 16-bit units.

 The sign8 (×2) allows branches within the range of PC - 0x100 to PC + 0xFE.

 (2) Extension 1
 ext imm13 ; = sign22(21:9)

 jp sign8 ; = "jp sign22", sign8 = sign22(8:1), sign22(0)=0

 The ext instruction extends the displacement to be added to the PC into signed 22 bits using its
13-bit immediate data imm13. The sign22 allows branches within the range of PC - 0x200000
to PC + 0x1FFFFE.

 (3) Extension 2
 ext imm13 ; imm13(12:3)= sign32(31:22)

 ext imm13 ; = sign32(21:9)

 jp sign8 ; = "jp sign32", sign8 = sign32(8:1), sign32(0)=0

 The ext instructions extend the displacement to be added to the PC into signed 32 bits using
their 13-bit immediates (imm13 × 2). The displacement covers the entire address space. Note
that the low-order 3 bits of the first imm13 are ignored.

 (4) Delayed branch (d bit = 1)
 jp.d sign8

 For the jp.d instruction, the next instruction becomes a delayed instruction. A delayed
instruction is executed before the program branches. Exceptions are masked in intervals
between the jp.d instruction and the next instruction, so no interrupts or exceptions occur.

Example ext 0x8
 ext 0x0

 jp 0x80 ; Jumps to the address specified by PC + 0x400100.

Caution When the jp.d instruction (delayed branch) is used, be careful to ensure that the next instruction
is limited to those that can be used as a delayed instruction. If any other instruction is executed, the
program may operate indeterminately. For the usable instructions, refer to the instruction list in the
Appendix.

7 DETAILS OF INSTRUCTIONS

82 EPSON S1C33 FAMILY C33 PE CORE MANUAL

jpr %rb / jpr.d %rb
Function Unconditional PC relative jump
 Standard) pc ← pc + rb
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 0 0 0 0 1 d 1 1 0 0 r b 0x02C_, 0x03C_

 | | | | | | | | | | | | | | |

 jpr %rb when d bit (bit 8) = 0
 jpr.d %rb when d bit (bit 8) = 1

Flag IE C V Z N

 – – – – –

 | | | |

Mode Register direct %rb = %r0 to %r15

CLK jpr Three cycles
 jpr.d Two cycles

Description (1) Standard
 jpr %rb

 The content of the rb register is added to the PC, and the program branches to that address.

 (2) Delayed branch (d bit = 1)
 jpr.d %rb

 For the jpr.d instruction, the next instruction becomes a delayed instruction. A delayed
instruction is executed before the program branches. Exceptions are masked in intervals
between the jpr.d instruction and the next instruction, so no interrupts or exceptions occur.

Example jpr %r0 ; PC ← PC + R0

Caution When the jpr.d instruction (delayed branch) is used, be careful to ensure that the next instruction
is limited to those that can be used as a delayed instruction. If any other instruction is executed, the
program may operate indeterminately. For the usable instructions, refer to the instruction list in the
Appendix.

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 83

jreq sign8 / jreq.d sign8
Function Conditional PC relative jump
 Standard) pc ← pc + sign8 × 2 if Z is true
 Extension 1) pc ← pc + sign22 if Z is true
 Extension 2) pc ← pc + sign32 if Z is true

Code 15 12 11 8 7 0

 0 0 0 1 1 0 0 d sign8 0x18__, 0x19__

 | | | | | | | | | | | | | | |

 jreq sign8 when d bit (bit 8) = 0
 jreq.d sign8 when d bit (bit 8) = 1

Flag IE C V Z N

 – – – – –

 | | | |

Mode Signed PC relative

CLK jreq Two cycles (when not branched), Three cycles (when branched)
 jreq.d Two cycles

Description (1) Standard
 jreq sign8 ; = "jreq sign9", sign8 = sign9(8:1), sign9(0)=0

 If the condition below has been met, this instruction doubles the signed 8-bit immediate sign8
and adds it to the PC for branching the program flow to the address. It does not branch if the
condition has not been met.

 • Z flag = 1 (e.g. “A = B” has resulted by cmp A,B)
 The sign8 specifies a halfword address in 16-bit units.
 The sign8 (×2) allows branches within the range of PC - 0x100 to PC + 0xFE.

 (2) Extension 1
 ext imm13 ; = sign22(21:9)

 jreq sign8 ; = "jreq sign22", sign8 = sign22(8:1), sign22(0)=0

 The ext instruction extends the displacement to be added to the PC into signed 22 bits using its
13-bit immediate data imm13. The sign22 allows branches within the range of PC - 0x200000
to PC + 0x1FFFFE.

 (3) Extension 2
 ext imm13 ; imm13(12:3)= sign32(31:22)

 ext imm13 ; = sign32(21:9)

 jreq sign8 ; = "jreq sign32", sign8 = sign32(8:1), sign32(0)=0

 The ext instructions extend the displacement to be added to the PC into signed 32 bits using
their 13-bit immediates (imm13 × 2). The displacement covers the entire address space. Note
that the low-order 3 bits of the first imm13 are ignored.

 (4) Delayed branch (d bit = 1)
 jreq.d sign8

 For the jreq.d instruction, the next instruction becomes a delayed instruction. A delayed
instruction is executed before the program branches. Exceptions are masked in intervals
between the jreq.d instruction and the next instruction, so no interrupts or exceptions occur.

Example cmp %r0,%r1
 jreq 0x2 ; Skips the next instruction if r1 = r0.

Caution When the jreq.d instruction (delayed branch) is used, be careful to ensure that the next
instruction is limited to those that can be used as a delayed instruction. If any other instruction
is executed, the program may operate indeterminately. For the usable instructions, refer to the
instruction list in the Appendix.

7 DETAILS OF INSTRUCTIONS

84 EPSON S1C33 FAMILY C33 PE CORE MANUAL

jrge sign8 / jrge.d sign8
Function Conditional PC relative jump (for judgment of signed operation results)
 Standard) pc ← pc + sign8 × 2 if !(N^V) is true
 Extension 1) pc ← pc + sign22 if !(N^V) is true
 Extension 2) pc ← pc + sign32 if !(N^V) is true

Code 15 12 11 8 7 0

 0 0 0 0 1 0 1 d sign8 0x0A__, 0x0B__

 | | | | | | | | | | | | | | |

 jrge sign8 when d bit (bit 8) = 0
 jrge.d sign8 when d bit (bit 8) = 1

Flag IE C V Z N

 – – – – –

 | | | |

Mode Signed PC relative

CLK jrge Two cycles (when not branched), Three cycles (when branched)
 jrge.d Two cycles

Description (1) Standard
 jrge sign8 ; = "jrge sign9", sign8 = sign9(8:1), sign9(0)=0

 If the condition below has been met, this instruction doubles the signed 8-bit immediate sign8
and adds it to the PC for branching the program flow to the address. It does not branch if the
condition has not been met.

 • N flag = V flag (e.g. “A ≥ B” has resulted by cmp A,B)
 The sign8 specifies a halfword address in 16-bit units.
 The sign8 (×2) allows branches within the range of PC - 0x100 to PC + 0xFE.

 (2) Extension 1
 ext imm13 ; = sign22(21:9)

 jrge sign8 ; = "jrge sign22", sign8 = sign22(8:1), sign22(0)=0

 The ext instruction extends the displacement to be added to the PC into signed 22 bits using its
13-bit immediate data imm13. The sign22 allows branches within the range of PC - 0x200000
to PC + 0x1FFFFE.

 (3) Extension 2
 ext imm13 ; imm13(12:3)= sign32(31:22)

 ext imm13 ; = sign32(21:9)

 jrge sign8 ; = "jrge sign32", sign8 = sign32(8:1), sign32(0)=0

 The ext instructions extend the displacement to be added to the PC into signed 32 bits using
their 13-bit immediates (imm13 × 2). The displacement covers the entire address space. Note
that the low-order 3 bits of the first imm13 are ignored.

 (4) Delayed branch (d bit = 1)
 jrge.d sign8

 For the jrge.d instruction, the next instruction becomes a delayed instruction. A delayed
instruction is executed before the program branches. Exceptions are masked in intervals
between the jrge.d instruction and the next instruction, so no interrupts or exceptions occur.

Example cmp %r0,%r1 ; r0 and r1 contain signed data.
 jrge 0x2 ; Skips the next instruction if r0 ≥ r1.

Caution When the jrge.d instruction (delayed branch) is used, be careful to ensure that the next
instruction is limited to those that can be used as a delayed instruction. If any other instruction
is executed, the program may operate indeterminately. For the usable instructions, refer to the
instruction list in the Appendix.

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 85

jrgt sign8 / jrgt.d sign8
Function Conditional PC relative jump (for judgment of signed operation results)
 Standard) pc ← pc + sign8 × 2 if !Z&!(N^V) is true
 Extension 1) pc ← pc + sign22 if !Z&!(N^V) is true
 Extension 2) pc ← pc + sign32 if !Z&!(N^V) is true

Code 15 12 11 8 7 0

 0 0 0 0 1 0 0 d sign8 0x08__, 0x09__

 | | | | | | | | | | | | | | |

 jrgt sign8 when d bit (bit 8) = 0
 jrgt.d sign8 when d bit (bit 8) = 1

Flag IE C V Z N

 – – – – –

 | | | |

Mode Signed PC relative

CLK jrgt Two cycles (when not branched), Three cycles (when branched)
 jrgt.d Two cycles

Description (1) Standard
 jrgt sign8 ; = "jrgt sign9", sign8 = sign9(8:1), sign9(0)=0

 If the condition below has been met, this instruction doubles the signed 8-bit immediate sign8
and adds it to the PC for branching the program flow to the address. It does not branch if the
condition has not been met.

 • Z flag = 0 and N flag = V flag (e.g. “A > B” has resulted by cmp A,B)
 The sign8 specifies a halfword address in 16-bit units.
 The sign8 (×2) allows branches within the range of PC - 0x100 to PC + 0xFE.

 (2) Extension 1
 ext imm13 ; = sign22(21:9)

 jrgt sign8 ; = "jrgt sign22", sign8 = sign22(8:1), sign22(0)=0

 The ext instruction extends the displacement to be added to the PC into signed 22 bits using its
13-bit immediate data imm13. The sign22 allows branches within the range of PC - 0x200000
to PC + 0x1FFFFE.

 (3) Extension 2
 ext imm13 ; imm13(12:3)= sign32(31:22)

 ext imm13 ; = sign32(21:9)

 jrgt sign8 ; = "jrgt sign32", sign8 = sign32(8:1), sign32(0)=0

 The ext instructions extend the displacement to be added to the PC into signed 32 bits using
their 13-bit immediates (imm13 × 2). The displacement covers the entire address space. Note
that the low-order 3 bits of the first imm13 are ignored.

 (4) Delayed branch (d bit = 1)
 jrgt.d sign8

 For the jrgt.d instruction, the next instruction becomes a delayed instruction. A delayed
instruction is executed before the program branches. Exceptions are masked in intervals
between the jrgt.d instruction and the next instruction, so no interrupts or exceptions occur.

Example cmp %r0,%r1 ; r0 and r1 contain signed data.
 jrgt 0x2 ; Skips the next instruction if r0 > r1.

Caution When the jrgt.d instruction (delayed branch) is used, be careful to ensure that the next
instruction is limited to those that can be used as a delayed instruction. If any other instruction
is executed, the program may operate indeterminately. For the usable instructions, refer to the
instruction list in the Appendix.

7 DETAILS OF INSTRUCTIONS

86 EPSON S1C33 FAMILY C33 PE CORE MANUAL

jrle sign8 / jrle.d sign8
Function Conditional PC relative jump (for judgment of signed operation results)
 Standard) pc ← pc + sign8 × 2 if Z | (N^V) is true
 Extension 1) pc ← pc + sign22 if Z | (N^V) is true
 Extension 2) pc ← pc + sign32 if Z | (N^V) is true

Code 15 12 11 8 7 0

 0 0 0 0 1 1 1 d sign8 0x0E__, 0x0F__

 | | | | | | | | | | | | | | |

 jrle sign8 when d bit (bit 8) = 0
 jrle.d sign8 when d bit (bit 8) = 1

Flag IE C V Z N

 – – – – –

 | | | |

Mode Signed PC relative

CLK jrle Two cycles (when not branched), Three cycles (when branched)
 jrle.d Two cycles

Description (1) Standard
 jrle sign8 ; = "jrle sign9", sign8 = sign9(8:1), sign9(0)=0

 If the condition below has been met, this instruction doubles the signed 8-bit immediate sign8
and adds it to the PC for branching the program flow to the address. It does not branch if the
condition has not been met.

 • Z flag = 1 or N flag ≠ V flag (e.g. “A ≤ B” has resulted by cmp A,B)
 The sign8 specifies a halfword address in 16-bit units.
 The sign8 (×2) allows branches within the range of PC - 0x100 to PC + 0xFE.

 (2) Extension 1
 ext imm13 ; = sign22(21:9)

 jrle sign8 ; = "jrle sign22", sign8 = sign22(8:1), sign22(0)=0

 The ext instruction extends the displacement to be added to the PC into signed 22 bits using its
13-bit immediate data imm13. The sign22 allows branches within the range of PC - 0x200000
to PC + 0x1FFFFE.

 (3) Extension 2
 ext imm13 ; imm13(12:3)= sign32(31:22)

 ext imm13 ; = sign32(21:9)

 jrle sign8 ; = "jrle sign32", sign8 = sign32(8:1), sign32(0)=0

 The ext instructions extend the displacement to be added to the PC into signed 32 bits using
their 13-bit immediates (imm13 × 2). The displacement covers the entire address space. Note
that the low-order 3 bits of the first imm13 are ignored.

 (4) Delayed branch (d bit = 1)
 jrle.d sign8

 For the jrle.d instruction, the next instruction becomes a delayed instruction. A delayed
instruction is executed before the program branches. Exceptions are masked in intervals
between the jrle.d instruction and the next instruction, so no interrupts or exceptions occur.

Example cmp %r0,%r1 ; r0 and r1 contain signed data.
 jrle 0x2 ; Skips the next instruction if r0 ≤ r1.

Caution When the jrle.d instruction (delayed branch) is used, be careful to ensure that the next
instruction is limited to those that can be used as a delayed instruction. If any other instruction
is executed, the program may operate indeterminately. For the usable instructions, refer to the
instruction list in the Appendix.

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 87

jrlt sign8 / jrlt.d sign8
Function Conditional PC relative jump (for judgment of signed operation results)
 Standard) pc ← pc + sign8 × 2 if N^V is true
 Extension 1) pc ← pc + sign22 if N^V is true
 Extension 2) pc ← pc + sign32 if N^V is true

Code 15 12 11 8 7 0

 0 0 0 0 1 1 0 d sign8 0x0C__, 0x0D__

 | | | | | | | | | | | | | | |

 jrlt sign8 when d bit (bit 8) = 0
 jrlt.d sign8 when d bit (bit 8) = 1

Flag IE C V Z N

 – – – – –

 | | | |

Mode Signed PC relative

CLK jrlt Two cycles (when not branched), Three cycles (when branched)
 jrlt.d Two cycles

Description (1) Standard
 jrlt sign8 ; = "jrlt sign9", sign8 = sign9(8:1), sign9(0)=0

 If the condition below has been met, this instruction doubles the signed 8-bit immediate sign8
and adds it to the PC for branching the program flow to the address. It does not branch if the
condition has not been met.

 • N flag ≠ V flag (e.g. “A < B” has resulted by cmp A,B)
 The sign8 specifies a halfword address in 16-bit units.
 The sign8 (×2) allows branches within the range of PC - 0x100 to PC + 0xFE.

 (2) Extension 1
 ext imm13 ; = sign22(21:9)

 jrlt sign8 ; = "jrlt sign22", sign8 = sign22(8:1), sign22(0)=0

 The ext instruction extends the displacement to be added to the PC into signed 22 bits using its
13-bit immediate data imm13. The sign22 allows branches within the range of PC - 0x200000
to PC + 0x1FFFFE.

 (3) Extension 2
 ext imm13 ; imm13(12:3)= sign32(31:22)

 ext imm13 ; = sign32(21:9)

 jrlt sign8 ; = "jrlt sign32", sign8 = sign32(8:1), sign32(0)=0

 The ext instructions extend the displacement to be added to the PC into signed 32 bits using
their 13-bit immediates (imm13 × 2). The displacement covers the entire address space. Note
that the low-order 3 bits of the first imm13 are ignored.

 (4) Delayed branch (d bit = 1)
 jrlt.d sign8

 For the jrlt.d instruction, the next instruction becomes a delayed instruction. A delayed
instruction is executed before the program branches. Exceptions are masked in intervals
between the jrlt.d instruction and the next instruction, so no interrupts or exceptions occur.

Example cmp %r0,%r1 ; r0 and r1 contain signed data.
 jrlt 0x2 ; Skips the next instruction if r0 < r1.

Caution When the jrlt.d instruction (delayed branch) is used, be careful to ensure that the next
instruction is limited to those that can be used as a delayed instruction. If any other instruction
is executed, the program may operate indeterminately. For the usable instructions, refer to the
instruction list in the Appendix.

7 DETAILS OF INSTRUCTIONS

88 EPSON S1C33 FAMILY C33 PE CORE MANUAL

jrne sign8 / jrne.d sign8
Function Conditional PC relative jump
 Standard) pc ← pc + sign8 × 2 if !Z is true
 Extension 1) pc ← pc + sign22 if !Z is true
 Extension 2) pc ← pc + sign32 if !Z is true

Code 15 12 11 8 7 0

 0 0 0 1 1 0 1 d sign8 0x1A__, 0x1B__

 | | | | | | | | | | | | | | |

 jrne sign8 when d bit (bit 8) = 0
 jrne.d sign8 when d bit (bit 8) = 1

Flag IE C V Z N

 – – – – –

 | | | |

Mode Signed PC relative

CLK jrne Two cycles (when not branched), Three cycles (when branched)
 jrne.d Two cycles

Description (1) Standard
 jrne sign8 ; = "jrne sign9", sign8 = sign9(8:1), sign9(0)=0

 If the condition below has been met, this instruction doubles the signed 8-bit immediate sign8
and adds it to the PC for branching the program flow to the address. It does not branch if the
condition has not been met.

 • Z flag = 0 (e.g. “A ≠ B” has resulted by cmp A,B)
 The sign8 specifies a halfword address in 16-bit units.
 The sign8 (×2) allows branches within the range of PC - 0x100 to PC + 0xFE.

 (2) Extension 1
 ext imm13 ; = sign22(21:9)

 jrne sign8 ; = "jrne sign22", sign8 = sign22(8:1), sign22(0)=0

 The ext instruction extends the displacement to be added to the PC into signed 22 bits using its
13-bit immediate data imm13. The sign22 allows branches within the range of PC - 0x200000
to PC + 0x1FFFFE.

 (3) Extension 2
 ext imm13 ; imm13(12:3)= sign32(31:22)

 ext imm13 ; = sign32(21:9)

 jrne sign8 ; = "jrne sign32", sign8 = sign32(8:1), sign32(0)=0

 The ext instructions extend the displacement to be added to the PC into signed 32 bits using
their 13-bit immediates (imm13 × 2). The displacement covers the entire address space. Note
that the low-order 3 bits of the first imm13 are ignored.

 (4) Delayed branch (d bit = 1)
 jrne.d sign8

 For the jrne.d instruction, the next instruction becomes a delayed instruction. A delayed
instruction is executed before the program branches. Exceptions are masked in intervals
between the jrne.d instruction and the next instruction, so no interrupts or exceptions occur.

Example cmp %r0,%r1
 jrne 0x2 ; Skips the next instruction if r0 ≠ r1.

Caution When the jrne.d instruction (delayed branch) is used, be careful to ensure that the next
instruction is limited to those that can be used as a delayed instruction. If any other instruction
is executed, the program may operate indeterminately. For the usable instructions, refer to the
instruction list in the Appendix.

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 89

jruge sign8 / jruge.d sign8
Function Conditional PC relative jump (for judgment of unsigned operation results)
 Standard) pc ← pc + sign8 × 2 if !C is true
 Extension 1) pc ← pc + sign22 if !C is true
 Extension 2) pc ← pc + sign32 if !C is true

Code 15 12 11 8 7 0

 0 0 0 1 0 0 1 d sign8 0x12__, 0x13__

 | | | | | | | | | | | | | | |

 jruge sign8 when d bit (bit 8) = 0
 jruge.d sign8 when d bit (bit 8) = 1

Flag IE C V Z N

 – – – – –

 | | | |

Mode Signed PC relative

CLK jruge Two cycles (when not branched), Three cycles (when branched)
 jruge.d Two cycles

Description (1) Standard
 jruge sign8 ; = "jruge sign9", sign8 = sign9(8:1), sign9(0)=0

 If the condition below has been met, this instruction doubles the signed 8-bit immediate sign8
and adds it to the PC for branching the program flow to the address. It does not branch if the
condition has not been met.

 • C flag = 0 (e.g. “A ≥ B” has resulted by cmp A,B)
 The sign8 specifies a halfword address in 16-bit units.
 The sign8 (×2) allows branches within the range of PC - 0x100 to PC + 0xFE.

 (2) Extension 1
 ext imm13 ; = sign22(21:9)

 jruge sign8 ; = "jruge sign22", sign8 = sign22(8:1), sign22(0)=0

 The ext instruction extends the displacement to be added to the PC into signed 22 bits using its
13-bit immediate data imm13. The sign22 allows branches within the range of PC - 0x200000
to PC + 0x1FFFFE.

 (3) Extension 2
 ext imm13 ; imm13(12:3)= sign32(31:22)

 ext imm13 ; = sign32(21:9)

 jruge sign8 ; = "jruge sign32", sign8 = sign32(8:1), sign32(0)=0

 The ext instructions extend the displacement to be added to the PC into signed 32 bits using
their 13-bit immediates (imm13 × 2). The displacement covers the entire address space. Note
that the low-order 3 bits of the first imm13 are ignored.

 (4) Delayed branch (d bit = 1)
 jruge.d sign8

 For the jruge.d instruction, the next instruction becomes a delayed instruction. A delayed
instruction is executed before the program branches. Exceptions are masked in intervals
between the jruge.d instruction and the next instruction, so no interrupts or exceptions occur.

Example cmp %r0,%r1 ; r0 and r1 contain unsigned data.
 jruge 0x2 ; Skips the next instruction if r0 ≥ r1.

Caution When the jruge.d instruction (delayed branch) is used, be careful to ensure that the next
instruction is limited to those that can be used as a delayed instruction. If any other instruction
is executed, the program may operate indeterminately. For the usable instructions, refer to the
instruction list in the Appendix.

7 DETAILS OF INSTRUCTIONS

90 EPSON S1C33 FAMILY C33 PE CORE MANUAL

jrugt sign8 / jrugt.d sign8
Function Conditional PC relative jump (for judgment of unsigned operation results)
 Standard) pc ← pc + sign8 × 2 if !Z&!C is true
 Extension 1) pc ← pc + sign22 if !Z&!C is true
 Extension 2) pc ← pc + sign32 if !Z&!C is true

Code 15 12 11 8 7 0

 0 0 0 1 0 0 0 d sign8 0x10__, 0x11__

 | | | | | | | | | | | | | | |

 jrugt sign8 when d bit (bit 8) = 0
 jrugt.d sign8 when d bit (bit 8) = 1

Flag IE C V Z N

 – – – – –

 | | | |

Mode Signed PC relative

CLK jrugt Two cycles (when not branched), Three cycles (when branched)
 jrugt.d Two cycles

Description (1) Standard
 jrugt sign8 ; = "jrugt sign9", sign8 = sign9(8:1), sign9(0)=0

 If the condition below has been met, this instruction doubles the signed 8-bit immediate sign8
and adds it to the PC for branching the program flow to the address. It does not branch if the
condition has not been met.

 • Z flag = 0 and C flag = 0 (e.g. “A > B” has resulted by cmp A,B)
 The sign8 specifies a halfword address in 16-bit units.
 The sign8 (×2) allows branches within the range of PC - 0x100 to PC + 0xFE.

 (2) Extension 1
 ext imm13 ; = sign22(21:9)

 jrugt sign8 ; = "jrugt sign22", sign8 = sign22(8:1), sign22(0)=0

 The ext instruction extends the displacement to be added to the PC into signed 22 bits using its
13-bit immediate data imm13. The sign22 allows branches within the range of PC - 0x200000
to PC + 0x1FFFFE.

 (3) Extension 2
 ext imm13 ; imm13(12:3)= sign32(31:22)

 ext imm13 ; = sign32(21:9)

 jrugt sign8 ; = "jrugt sign32", sign8 = sign32(8:1), sign32(0)=0

 The ext instructions extend the displacement to be added to the PC into signed 32 bits using
their 13-bit immediates (imm13 × 2). The displacement covers the entire address space. Note
that the low-order 3 bits of the first imm13 are ignored.

 (4) Delayed branch (d bit = 1)
 jrugt.d sign8

 For the jrugt.d instruction, the next instruction becomes a delayed instruction. A delayed
instruction is executed before the program branches. Exceptions are masked in intervals
between the jrugt.d instruction and the next instruction, so no interrupts or exceptions occur.

Example cmp %r0,%r1 ; r0 and r1 contain unsigned data.
 jrugt 0x2 ; Skips the next instruction if r0 > r1.

Caution When the jrugt.d instruction (delayed branch) is used, be careful to ensure that the next
instruction is limited to those that can be used as a delayed instruction. If any other instruction
is executed, the program may operate indeterminately. For the usable instructions, refer to the
instruction list in the Appendix.

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 91

jrule sign8 / jrule.d sign8
Function Conditional PC relative jump (for judgment of unsigned operation results)
 Standard) pc ← pc + sign8 × 2 if Z | C is true
 Extension 1) pc ← pc + sign22 if Z | C is true
 Extension 2) pc ← pc + sign32 if Z | C is true

Code 15 12 11 8 7 0

 0 0 0 1 0 1 1 d sign8 0x16__, 0x17__

 | | | | | | | | | | | | | | |

 jrule sign8 when d bit (bit 8) = 0
 jrule.d sign8 when d bit (bit 8) = 1

Flag IE C V Z N

 – – – – –

 | | | |

Mode Signed PC relative

CLK jrule Two cycles (when not branched), Three cycles (when branched)
 jrule.d Two cycles

Description (1) Standard
 jrule sign8 ; = "jrule sign9", sign8 = sign9(8:1), sign9(0)=0

 If the condition below has been met, this instruction doubles the signed 8-bit immediate sign8
and adds it to the PC for branching the program flow to the address. It does not branch if the
condition has not been met.

 • Z flag = 1 or C flag = 1 (e.g. “A ≤ B” has resulted by cmp A,B)
 The sign8 specifies a halfword address in 16-bit units.
 The sign8 (×2) allows branches within the range of PC - 0x100 to PC + 0xFE.

 (2) Extension 1
 ext imm13 ; = sign22(21:9)

 jrule sign8 ; = "jrule sign22", sign8 = sign22(8:1), sign22(0)=0

 The ext instruction extends the displacement to be added to the PC into signed 22 bits using its
13-bit immediate data imm13. The sign22 allows branches within the range of PC - 0x200000
to PC + 0x1FFFFE.

 (3) Extension 2
 ext imm13 ; imm13(12:3)= sign32(31:22)

 ext imm13 ; = sign32(21:9)

 jrule sign8 ; = "jrule sign32", sign8 = sign32(8:1), sign32(0)=0

 The ext instructions extend the displacement to be added to the PC into signed 32 bits using
their 13-bit immediates (imm13 × 2). The displacement covers the entire address space. Note
that the low-order 3 bits of the first imm13 are ignored.

 (4) Delayed branch (d bit = 1)
 jrule.d sign8

 For the jrule.d instruction, the next instruction becomes a delayed instruction. A delayed
instruction is executed before the program branches. Exceptions are masked in intervals
between the jrule.d instruction and the next instruction, so no interrupts or exceptions occur.

Example cmp %r0,%r1 ; r0 and r1 contain unsigned data.
 jrule 0x2 ; Skips the next instruction if r0 ≤ r1.

Caution When the jrule.d instruction (delayed branch) is used, be careful to ensure that the next
instruction is limited to those that can be used as a delayed instruction. If any other instruction
is executed, the program may operate indeterminately. For the usable instructions, refer to the
instruction list in the Appendix.

7 DETAILS OF INSTRUCTIONS

92 EPSON S1C33 FAMILY C33 PE CORE MANUAL

jrult sign8 / jrult.d sign8
Function Conditional PC relative jump (for judgment of unsigned operation results)
 Standard) pc ← pc + sign8 × 2 if C is true
 Extension 1) pc ← pc + sign22 if C is true
 Extension 2) pc ← pc + sign32 if C is true

Code 15 12 11 8 7 0

 0 0 0 1 0 1 0 d sign8 0x14__, 0x15__

 | | | | | | | | | | | | | | |

 jrult sign8 when d bit (bit 8) = 0
 jrult.d sign8 when d bit (bit 8) = 1

Flag IE C V Z N

 – – – – –

 | | | |

Mode Signed PC relative

CLK jrult Two cycles (when not branched), Three cycles (when branched)
 jrult.d Two cycles

Description (1) Standard
 jrult sign8 ; = "jrult sign9", sign8 = sign9(8:1), sign9(0)=0

 If the condition below has been met, this instruction doubles the signed 8-bit immediate sign8
and adds it to the PC for branching the program flow to the address. It does not branch if the
condition has not been met.

 • C flag = 1 (e.g. “A < B” has resulted by cmp A,B)
 The sign8 specifies a halfword address in 16-bit units.
 The sign8 (×2) allows branches within the range of PC - 0x100 to PC + 0xFE.

 (2) Extension 1
 ext imm13 ; = sign22(21:9)

 jrult sign8 ; = "jrult sign22", sign8 = sign22(8:1), sign22(0)=0

 The ext instruction extends the displacement to be added to the PC into signed 22 bits using its
13-bit immediate data imm13. The sign22 allows branches within the range of PC - 0x200000
to PC + 0x1FFFFE.

 (3) Extension 2
 ext imm13 ; imm13(12:3)= sign32(31:22)

 ext imm13 ; = sign32(21:9)

 jrult sign8 ; = "jrult sign32", sign8 = sign32(8:1), sign32(0)=0

 The ext instructions extend the displacement to be added to the PC into signed 32 bits using
their 13-bit immediates (imm13 × 2). The displacement covers the entire address space. Note
that the low-order 3 bits of the first imm13 are ignored.

 (4) Delayed branch (d bit = 1)
 jrult.d sign8

 For the jrult.d instruction, the next instruction becomes a delayed instruction. A delayed
instruction is executed before the program branches. Exceptions are masked in intervals
between the jrult.d instruction and the next instruction, so no interrupts or exceptions occur.

Example cmp %r0,%r1 ; r0 and r1 contain unsigned data.
 jrult 0x2 ; Skips the next instruction if r0 < r1.

Caution When the jrult.d instruction (delayed branch) is used, be careful to ensure that the next
instruction is limited to those that can be used as a delayed instruction. If any other instruction
is executed, the program may operate indeterminately. For the usable instructions, refer to the
instruction list in the Appendix.

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 93

ld.b %rd, %rs
Function Signed byte data transfer
 Standard) rd(7:0) ← rs(7:0), rd(31:8) ← rs(7)
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 1 0 0 0 0 1 r s r d 0xA1__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 The 8 low-order bits of the rs register are transferred to the rd register after being sign-extended

to 32 bits.

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit.

Example ld.b %r0,%r1 ; r0 ← r1(7:0) sign-extended

7 DETAILS OF INSTRUCTIONS

94 EPSON S1C33 FAMILY C33 PE CORE MANUAL

ld.b %rd, [%rb]
Function Signed byte data transfer
 Standard) rd(7:0) ← B[rb], rd(31:8) ← B[rb](7)
 Extension 1) rd(7:0) ← B[rb + imm13], rd(31:8) ← B[rb + imm13](7)
 Extension 2) rd(7:0) ← B[rb + imm26], rd(31:8) ← B[rb + imm26](7)

Code 15 12 11 8 7 4 3 0

 0 0 1 0 0 0 0 0 r b r d 0x20__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Src: Register indirect %rb = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle (two cycles when ext is used)

Description (1) Standard
 ld.b %rd,[%rb] ; memory address = rb

 The byte data in the specified memory location is transferred to the rd register after being sign-
extended to 32 bits. The rb register contains the memory address to be accessed.

 (2) Extension 1
 ext imm13

 ld.b %rd,[%rb] ; memory address = rb + imm13

 The ext instruction changes the addressing mode to register indirect addressing with
displacement. As a result, the content of the rb register with the 13-bit immediate imm13 added
comprises the memory address, the byte data in which is transferred to the rd register. The
content of the rb register is not altered.

 (3) Extension 2
 ext imm13 ; = imm26(25:13)

 ext imm13 ; = imm26(12:0)

 ld.b %rd,[%rb] ; memory address = rb + imm26

 The addressing mode changes to register indirect addressing with displacement, so the content
of the rb register with the 26-bit immediate imm26 added comprises the memory address, the
byte data in which is transferred to the rd register. The content of the rb register is not altered.

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 95

ld.b %rd, [%rb]+
Function Signed byte data transfer
 Standard) rd(7:0) ← B[rb], rd(31:8) ← B[rb](7), rb ← rb + 1
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 1 0 0 0 0 1 r b r d 0x21__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Src: Register indirect with post-increment %rb = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK Two cycles

Description The byte data in the specified memory location is transferred to the rd register after being sign-
extended to 32 bits. The rb register contains the memory address to be accessed. Following data
transfer, the address in the rb register is incremented by 1.

7 DETAILS OF INSTRUCTIONS

96 EPSON S1C33 FAMILY C33 PE CORE MANUAL

ld.b %rd, [%sp + imm6]
Function Signed byte data transfer
 Standard) rd(7:0) ← B[sp + imm6], rd(31:8) ← B[sp + imm6](7)
 Extension 1) rd(7:0) ← B[sp + imm19], rd(31:8) ← B[sp + imm19](7)
 Extension 2) rd(7:0) ← B[sp + imm32], rd(31:8) ← B[sp + imm32](7)

Code 15 12 11 10 9 4 3 0

 0 1 0 0 0 0 imm6 r d 0x40__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Src: Register indirect with displacement
 Dst: Register direct %rd = %r0 to %r15

CLK Two cycles

Description (1) Standard
 ld.b %rd,[%sp + imm6] ; memory address = sp + imm6

 The byte data in the specified memory location is transferred to the rd register after being sign-
extended to 32 bits. The content of the current SP with the 6-bit immediate imm6 added as
displacement comprises the memory address to be accessed.

 (2) Extension 1
 ext imm13 ; = imm19(18:6)

 ld.b %rd,[%sp + imm6] ; memory address = sp + imm19,

 ; imm6 ← imm19(5:0)

 The ext instruction extends the displacement to a 19-bit quantity. As a result, the content of
the SP with the 19-bit immediate imm19 added comprises the memory address, the byte data in
which is transferred to the rd register.

 (3) Extension 2
 ext imm13 ; = imm32(31:19)

 ext imm13 ; = imm32(18:6)

 ld.b %rd,[%sp + imm6] ; memory address = sp + imm32,

 ; imm6 ← imm32(5:0)

 The two ext instructions extend the displacement to a 32-bit quantity. As a result, the content
of the SP with the 32-bit immediate imm32 added comprises the memory address, the byte data
in which is transferred to the rd register.

Example ext 0x1
 ld.b %r0,[%sp + 0x1] ; r0 ← [sp + 0x41] sign-extended

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 97

ld.b [%rb], %rs
Function Signed byte data transfer
 Standard) B[rb] ← rs(7:0)
 Extension 1) B[rb + imm13] ← rs(7:0)
 Extension 2) B[rb + imm26] ← rs(7:0)

Code 15 12 11 8 7 4 3 0

 0 0 1 1 0 1 0 0 r b r s 0x34__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register indirect %rb = %r0 to %r15

CLK One cycle (two cycles when ext is used)

Description (1) Standard
 ld.b [%rb],%rs ; memory address = rb

 The 8 low-order bits of the rs register are transferred to the specified memory location. The rb
register contains the memory address to be accessed.

 (2) Extension 1
 ext imm13

 ld.b [%rb],%rs ; memory address = rb + imm13

 The ext instruction changes the addressing mode to register indirect addressing with
displacement. As a result, the 8 low-order bits of the rs register are transferred to the address
indicated by the content of the rb register with the 13-bit immediate imm13 added. The content
of the rb register is not altered.

 (3) Extension 2
 ext imm13 ; = imm26(25:13)

 ext imm13 ; = imm26(12:0)

 ld.b [%rb],%rs ; memory address = rb + imm26

 The addressing mode changes to register indirect addressing with displacement, so the 8 low-
order bits of the rs register are transferred to the address indicated by the content of the rb
register with the 26-bit immediate imm26 added. The content of the rb register is not altered.

7 DETAILS OF INSTRUCTIONS

98 EPSON S1C33 FAMILY C33 PE CORE MANUAL

ld.b [%rb]+, %rs
Function Signed byte data transfer
 Standard) B[rb] ← rs(7:0), rb ← rb + 1
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 1 1 0 1 0 1 r b r s 0x35__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register indirect with post-increment %rb = %r0 to %r15

CLK Two cycles

Description The 8 low-order bits of the rs register are transferred to the specified memory location. The rb
register contains the memory address to be accessed. Following data transfer, the address in the rb
register is incremented by 1.

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 99

ld.b [%sp + imm6], %rs
Function Signed byte data transfer
 Standard) B[sp + imm6] ← rs(7:0)
 Extension 1) B[sp + imm19] ← rs(7:0)
 Extension 2) B[sp + imm32] ← rs(7:0)

Code 15 12 11 10 9 4 3 0

 0 1 0 1 0 1 imm6 r s 0x54__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register indirect with displacement

CLK Two cycle

Description (1) Standard
 ld.b [%sp + imm6],%rs ; memory address = sp + imm6

 The 8 low-order bits of the rs register are transferred to the specified memory location. The
content of the current SP with the 6-bit immediate imm6 added as displacement comprises the
memory address to be accessed.

 (2) Extension 1
 ext imm13 ; = imm19(18:6)

 ld.b [%sp + imm6],%rs ; memory address = sp + imm19,

 ; imm6 = imm19(5:0)

 The ext instruction extends the displacement to a 19-bit quantity. As a result, The 8 low-order
bits of the rs register are transferred to the address indicated by the content of the SP with the
19-bit immediate imm19 added.

 (3) Extension 2
 ext imm13 ; = imm32(31:19)

 ext imm13 ; = imm32(18:6)

 ld.b [%sp + imm6],%rs ; memory address = sp + imm32,

 ; imm6 = imm32(5:0)

 The two ext instructions extend the displacement to a 32-bit quantity. As a result, The 8 low-
order bits of the rs register are transferred to the address indicated by the content of the SP with
the 32-bit immediate imm32 added.

Example ext 0x1
 ld.b [%sp + 0x1],%r0 ; B[sp + 0x41] ← 8 low-order bits of r0

7 DETAILS OF INSTRUCTIONS

100 EPSON S1C33 FAMILY C33 PE CORE MANUAL

ld.c %rd, imm4
Function Transfer data from the coprocessor
 Standard) rd(7:0) ← W[CA(imm4)]
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 1 1 0 0 0 1 imm4 r d 0xB1__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Src: Immediate (unsigned)
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 The contents of the coprocessor register specified by imm4 is transferred to the general-purpose

register rd. imm4 is output to the dedicated coprocessor address bus.

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit.

Example ld.c %r1,0x3 ; r1 ← coprocessor reg3

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 101

ld.c imm4, %rs
Function Transfer data to the coprocessor
 Standard) W[CA(imm4)] ← rs(7:0)
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 1 1 0 1 0 1 imm4 r s 0xB5__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Immediate (unsigned)

CLK One cycle

Description (1) Standard
 The contents of the general-purpose register rs is transferred to the coprocessor register

specified by imm4. imm4 is output to the dedicated coprocessor address bus.

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit.

Example ld.c 0x5,%r2 ; coprocessor reg5 ← r2

7 DETAILS OF INSTRUCTIONS

102 EPSON S1C33 FAMILY C33 PE CORE MANUAL

ld.cf
Function Transfer C, V, Z, and N flags from the coprocessor
 Standard) PSR(3:0) ← coprocessor flag
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0x01D0

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – ↔ ↔ ↔ ↔

 | | | |

Mode –

CLK Three cycles

Description The C, V, Z, and N flags are transferred from the coprocessor to the PSR(3:0).

Example ld.cf ; copy coprocessor flag

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 103

ld.h %rd, %rs
Function Signed halfword data transfer
 Standard) rd(15:0) ← rs(15:0), rd(31:16) ← rs(15)
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 1 0 1 0 0 1 r s r d 0xA9__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 The 16 low-order bits of the rs register are transferred to the rd register after being sign-

extended to 32 bits.

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit.

Example ld.h %r0,%r1 ; r0 ← r1(15:0) sign-extended

7 DETAILS OF INSTRUCTIONS

104 EPSON S1C33 FAMILY C33 PE CORE MANUAL

ld.h %rd, [%rb]
Function Signed halfword data transfer
 Standard) rd(15:0) ← H[rb], rd(31:16) ← H[rb](15)
 Extension 1) rd(15:0) ← H[rb + imm13], rd(31:16) ← H[rb + imm13](15)
 Extension 2) rd(15:0) ← H[rb + imm26], rd(31:16) ← H[rb + imm26](15)

Code 15 12 11 8 7 4 3 0

 0 0 1 0 1 0 0 0 r b r d 0x28__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Src: Register indirect %rb = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle (two cycles when ext is used)

Description (1) Standard
 ld.h %rd,[%rb] ; memory address = rb

 The halfword data in the specified memory location is transferred to the rd register after being
sign-extended to 32 bits. The rb register contains the memory address to be accessed.

 (2) Extension 1
 ext imm13

 ld.h %rd,[%rb] ; memory address = rb + imm13

 The ext instruction changes the addressing mode to register indirect addressing with
displacement. As a result, the content of the rb register with the 13-bit immediate imm13 added
comprises the memory address, the halfword data in which is transferred to the rd register. The
content of the rb register is not altered.

 (3) Extension 2
 ext imm13 ; = imm26(25:13)

 ext imm13 ; = imm26(12:0)

 ld.h %rd,[%rb] ; memory address = rb + imm26

 The addressing mode changes to register indirect addressing with displacement, so the content
of the rb register with the 26-bit immediate imm26 added comprises the memory address, the
halfword data in which is transferred to the rd register. The content of the rb register is not
altered.

Caution The rb register and the displacement must specify a halfword boundary address (least significant bit
= 0). Specifying an odd address causes an address misaligned exception.

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 105

ld.h %rd, [%rb]+
Function Signed halfword data transfer
 Standard) rd(15:0) ← H[rb], rd(31:16) ← H[rb](15), rb ← rb + 2
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 1 0 1 0 0 1 r b r d 0x29__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Src: Register indirect with post-increment %rb = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK Two cycles

Description The halfword data in the specified memory location is transferred to the rd register after being sign-
extended to 32 bits. The rb register contains the memory address to be accessed. Following data
transfer, the address in the rb register is incremented by 2.

Caution (1) The rb register must specify a halfword boundary address (least significant bit = 0). Specifying
an odd address causes an address misaligned exception.

 (2) If the same register is specified for rd and rb, the incremented address after transferring data is
loaded to the rd register.

7 DETAILS OF INSTRUCTIONS

106 EPSON S1C33 FAMILY C33 PE CORE MANUAL

ld.h %rd, [%sp + imm6]
Function Signed halfword data transfer
 Standard) rd(15:0) ← H[sp + imm6 × 2], rd(31:16) ← H[sp + imm6 × 2](15)
 Extension 1) rd(15:0) ← H[sp + imm19], rd(31:16) ← H[sp + imm19](15)
 Extension 2) rd(15:0) ← H[sp + imm32], rd(31:16) ← H[sp + imm32](15)

Code 15 12 11 10 9 4 3 0

 0 1 0 0 1 0 imm6 r d 0x48__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Src: Register indirect with displacement
 Dst: Register direct %rd = %r0 to %r15

CLK Two cycles

Description (1) Standard
 ld.h %rd,[%sp + imm6] ; memory address = sp + imm6 × 2

 The halfword data in the specified memory location is transferred to the rd register after being
sign-extended to 32 bits. The content of the current SP with twice the 6-bit immediate imm6
added as displacement comprises the memory address to be accessed. The least significant bit
of the displacement is always 0.

 (2) Extension 1
 ext imm13 ; = imm19(18:6)

 ld.h %rd,[%sp + imm6] ; memory address = sp + imm19,

 ; imm6 = imm19(5:0)

 The ext instruction extends the displacement to a 19-bit quantity. As a result, the content of the
SP with the 19-bit immediate imm19 added comprises the memory address, the halfword data in
which is transferred to the rd register. Make sure the imm6 specified here resides on a halfword
boundary (least significant bit = 0).

 (3) Extension 2
 ext imm13 ; = imm32(31:19)

 ext imm13 ; = imm32(18:6)

 ld.h %rd,[%sp + imm6] ; memory address = sp + imm32,

 ; imm6 = imm32(5:0)

 The two ext instructions extend the displacement to a 32-bit quantity. As a result, the content
of the SP with the 32-bit immediate imm32 added comprises the memory address, the halfword
data in which is transferred to the rd register. Make sure the imm6 specified here resides on a
halfword boundary (least significant bit = 0).

Example ext 0x1
 ld.h %r0,[%sp + 0x2] ; r0 ← [sp + 0x42] sign-extended

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 107

ld.h [%rb], %rs
Function Signed halfword data transfer
 Standard) H[rb] ← rs(15:0)
 Extension 1) H[rb + imm13] ← rs(15:0)
 Extension 2) H[rb + imm26] ← rs(15:0)

Code 15 12 11 8 7 4 3 0

 0 0 1 1 1 0 0 0 r b r s 0x38__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register indirect %rb = %r0 to %r15

CLK One cycle (two cycles when ext is used)

Description (1) Standard
 ld.h [%rb],%rs ; memory address = rb

 The 16 low-order bits of the rs register are transferred to the specified memory location. The rb
register contains the memory address to be accessed.

 (2) Extension 1
 ext imm13

 ld.h [%rb],%rs ; memory address = rb + imm13

 The ext instruction changes the addressing mode to register indirect addressing with
displacement. As a result, the 16 low-order bits of the rs register are transferred to the address
indicated by the content of the rb register with the 13-bit immediate imm13 added. The content
of the rb register is not altered.

 (3) Extension 2
 ext imm13 ; = imm26(25:13)

 ext imm13 ; = imm26(12:0)

 ld.h [%rb],%rs ; memory address = rb + imm26

 The addressing mode changes to register indirect addressing with displacement, so the 16 low-
order bits of the rs register are transferred to the address indicated by the content of the rb
register with the 26-bit immediate imm26 added. The content of the rb register is not altered.

Caution The rb register and the displacement must specify a halfword boundary address (least significant bit
= 0). Specifying an odd address causes an address misaligned exception.

7 DETAILS OF INSTRUCTIONS

108 EPSON S1C33 FAMILY C33 PE CORE MANUAL

ld.h [%rb]+, %rs
Function Signed halfword data transfer
 Standard) H[rb] ← rs(15:0), rb ← rb + 2
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 1 1 1 0 0 1 r b r s 0x39__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register indirect with post-increment %rb = %r0 to %r15

CLK Two cycles

Description The 16 low-order bits of the rs register are transferred to the specified memory location. The rb
register contains the memory address to be accessed. Following data transfer, the address in the rb
register is incremented by 2.

Caution The rb register and the displacement must specify a halfword boundary address (least significant bit
= 0). Specifying an odd address causes an address misaligned exception.

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 109

ld.h [%sp + imm6], %rs
Function Signed halfword data transfer
 Standard) H[sp + imm6 × 2] ← rs(15:0)
 Extension 1) H[sp + imm19] ← rs(15:0)
 Extension 2) H[sp + imm32] ← rs(15:0)

Code 15 12 11 10 9 4 3 0

 0 1 0 1 1 0 imm6 r s 0x58__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register indirect with displacement

CLK Two cycles

Description (1) Standard
 ld.h [%sp + imm6],%rs ; memory address = sp + imm6 × 2

 The 16 low-order bits of the rs register are transferred to the specified memory location. The
content of the current SP with twice the 6-bit immediate imm6 added as displacement comprises
the memory address to be accessed. The least significant bit of the displacement is always 0.

 (2) Extension 1
 ext imm13 ; = imm19(18:6)

 ld.h [%sp + imm6],%rs ; memory address = sp + imm19,

 ; imm6 = imm19(5:0)

 The ext instruction extends the displacement to a 19-bit quantity. As a result, the 16 low-
order bits of the rs register are transferred to the address indicated by the content of the SP with
the 19-bit immediate imm19 added. Make sure the imm6 specified here resides on a halfword
boundary (least significant bit = 0).

 (3) Extension 2
 ext imm13 ; = imm32(31:19)

 ext imm13 ; = imm32(18:6)

 ld.h [%sp + imm6],%rs ; memory address = sp + imm32,

 ; imm6 = imm32(5:0)

 The two ext instructions extend the displacement to a 32-bit quantity. As a result, the 16 low-
order bits of the rs register are transferred to the address indicated by the content of the SP with
the 32-bit immediate imm32 added. Make sure the imm6 specified here resides on a halfword
boundary (least significant bit = 0).

Example ext 0x1
 ld.h [%sp + 0x2],%r0 ; H[sp + 0x42] ← 16 low-order bits of r0

7 DETAILS OF INSTRUCTIONS

110 EPSON S1C33 FAMILY C33 PE CORE MANUAL

ld.ub %rd, %rs
Function Unsigned byte data transfer
 Standard) rd(7:0) ← rs(7:0), rd(31:8) ← 0
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 1 0 0 1 0 1 r s r d 0xA5__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 The 8 low-order bits of the rs register are transferred to the rd register after being zero-extended

to 32 bits.

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit.

Example ld.ub %r0,%r1 ; r0 ← r1(7:0) zero-extended

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 111

ld.ub %rd, [%rb]
Function Unsigned byte data transfer
 Standard) rd(7:0) ← B[rb], rd(31:8) ← 0
 Extension 1) rd(7:0) ← B[rb + imm13], rd(31:8) ← 0
 Extension 2) rd(7:0) ← B[rb + imm26], rd(31:8) ← 0

Code 15 12 11 8 7 4 3 0

 0 0 1 0 0 1 0 0 r b r d 0x24__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Src: Register indirect %rb = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle (two cycles when ext is used)

Description (1) Standard
 ld.ub %rd,[%rb] ; memory address = rb

 The byte data in the specified memory location is transferred to the rd register after being zero-
extended to 32 bits. The rb register contains the memory address to be accessed.

 (2) Extension 1
 ext imm13

 ld.ub %rd,[%rb] ; memory address = rb + imm13

 The ext instruction changes the addressing mode to register indirect addressing with
displacement. As a result, the content of the rb register with the 13-bit immediate imm13 added
comprises the memory address, the byte data in which is transferred to the rd register. The
content of the rb register is not altered.

 (3) Extension 2
 ext imm13 ; = imm26(25:13)

 ext imm13 ; = imm26(12:0)

 ld.ub %rd,[%rb] ; memory address = rb + imm26

 The addressing mode changes to register indirect addressing with displacement, so the content
of the rb register with the 26-bit immediate imm26 added comprises the memory address, the
byte data in which is transferred to the rd register. The content of the rb register is not altered.

7 DETAILS OF INSTRUCTIONS

112 EPSON S1C33 FAMILY C33 PE CORE MANUAL

ld.ub %rd, [%rb]+
Function Unsigned byte data transfer
 Standard) rd(7:0) ← B[rb], rd(31:8) ← 0, rb ← rb + 1
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 1 0 0 1 0 1 r b r d 0x25__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Src: Register indirect with post-increment %rb = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK Two cycles

Description The byte data in the specified memory location is transferred to the rd register after being zero-
extended to 32 bits. The rb register contains the memory address to be accessed. Following data
transfer, the address in the rb register is incremented by 1.

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 113

ld.ub %rd, [%sp + imm6]
Function Unsigned byte data transfer
 Standard) rd(7:0) ← B[sp + imm6], rd(31:8) ← 0
 Extension 1) rd(7:0) ← B[sp + imm19], rd(31:8) ← 0
 Extension 2) rd(7:0) ← B[sp + imm32], rd(31:8) ← 0

Code 15 12 11 10 9 4 3 0

 0 1 0 0 0 1 imm6 r d 0x44__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Src: Register indirect with displacement
 Dst: Register direct %rd = %r0 to %r15

CLK Two cycles

Description (1) Standard
 ld.ub %rd,[%sp + imm6] ; memory address = sp + imm6

 The byte data in the specified memory location is transferred to the rd register after being zero-
extended to 32 bits. The content of the current SP with the 6-bit immediate imm6 added as
displacement comprises the memory address to be accessed.

 (2) Extension 1
 ext imm13 ; = imm19(18:6)

 ld.ub %rd,[%sp + imm6] ; memory address = sp + imm19,

 ; imm6 ← imm19(5:0)

 The ext instruction extends the displacement to a 19-bit quantity. As a result, the content of
the SP with the 19-bit immediate imm19 added comprises the memory address, the byte data in
which is transferred to the rd register.

 (3) Extension 2
 ext imm13 ; = imm32(31:19)

 ext imm13 ; = imm32(18:6)

 ld.ub %rd,[%sp + imm6] ; memory address = sp + imm32,

 ; imm6 ← imm32(5:0)

 The two ext instructions extend the displacement to a 32-bit quantity. As a result, the content
of the SP with the 32-bit immediate imm32 added comprises the memory address, the byte data
in which is transferred to the rd register.

Example ext 0x1
 ld.ub %r0,[%sp + 0x1] ; r0 ← [sp + 0x41] zero-extended

7 DETAILS OF INSTRUCTIONS

114 EPSON S1C33 FAMILY C33 PE CORE MANUAL

ld.uh %rd, %rs
Function Unsigned halfword data transfer
 Standard) rd(15:0) ← rs(15:0), rd(31:16) ← 0
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 1 0 1 1 0 1 r s r d 0xAD__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 The 16 low-order bits of the rs register are transferred to the rd register after being zero-

extended to 32 bits.

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit.

Example ld.uh %r0,%r1 ; r0 ← r1(15:0) zero-extended

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 115

ld.uh %rd, [%rb]
Function Unsigned halfword data transfer
 Standard) rd(15:0) ← H[rb], rd(31:16) ← 0
 Extension 1) rd(15:0) ← H[rb + imm13], rd(31:16) ← 0
 Extension 2) rd(15:0) ← H[rb + imm26], rd(31:16) ← 0

Code 15 12 11 8 7 4 3 0

 0 0 1 0 1 1 0 0 r b r d 0x2C__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Src: Register indirect %rb = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle (two cycles when ext is used)

Description (1) Standard
 ld.uh %rd,[%rb] ; memory address = rb

 The halfword data in the specified memory location is transferred to the rd register after being
zero-extended to 32 bits. The rb register contains the memory address to be accessed.

 (2) Extension 1
 ext imm13

 ld.uh %rd,[%rb] ; memory address = rb + imm13

 The ext instruction changes the addressing mode to register indirect addressing with
displacement. As a result, the content of the rb register with the 13-bit immediate imm13 added
comprises the memory address, the halfword data in which is transferred to the rd register. The
content of the rb register is not altered.

 (3) Extension 2
 ext imm13 ; = imm26(25:13)

 ext imm13 ; = imm26(12:0)

 ld.uh %rd,[%rb] ; memory address = rb + imm26

 The addressing mode changes to register indirect addressing with displacement, so the content
of the rb register with the 26-bit immediate imm26 added comprises the memory address, the
halfword data in which is transferred to the rd register. The content of the rb register is not
altered.

Caution The rb register and the displacement must specify a halfword boundary address (least significant bit
= 0). Specifying an odd address causes an address misaligned exception.

7 DETAILS OF INSTRUCTIONS

116 EPSON S1C33 FAMILY C33 PE CORE MANUAL

ld.uh %rd, [%rb]+
Function Unsigned halfword data transfer
 Standard) rd(15:0) ← H[rb], rd(31:16) ← 0, rb ← rb + 2
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 1 0 1 1 0 1 r b r d 0x2D__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Src: Register indirect with post-increment %rb = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK Two cycles

Description The halfword data in the specified memory location is transferred to the rd register after being zero-
extended to 32 bits. The rb register contains the memory address to be accessed. Following data
transfer, the address in the rb register is incremented by 2.

Caution (1) The rb register must specify a halfword boundary address (least significant bit = 0). Specifying
an odd address causes an address misaligned exception.

 (2) If the same register is specified for rd and rb, the incremented address after transferring data is
loaded to the rd register.

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 117

ld.uh %rd, [%sp + imm6]
Function Unsigned halfword data transfer
 Standard) rd(15:0) ← H[sp + imm6 × 2], rd(31:16) ← 0
 Extension 1) rd(15:0) ← H[sp + imm19], rd(31:16) ← 0
 Extension 2) rd(15:0) ← H[sp + imm32], rd(31:16) ← 0

Code 15 12 11 10 9 4 3 0

 0 1 0 0 1 1 imm6 r d 0x4C__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Src: Register indirect with displacement
 Dst: Register direct %rd = %r0 to %r15

CLK Two cycles

Description (1) Standard
 ld.uh %rd,[%sp + imm6] ; memory address = sp + imm6 × 2

 The halfword data in the specified memory location is transferred to the rd register after being
zero-extended to 32 bits. The content of the current SP with twice the 6-bit immediate imm6
added as displacement comprises the memory address to be accessed. The least significant bit
of the displacement is always 0.

 (2) Extension 1
 ext imm13 ; = imm19(18:6)

 ld.uh %rd,[%sp + imm6] ; memory address = sp + imm19,

 ; imm6 = imm19(5:0)

 The ext instruction extends the displacement to a 19-bit quantity. As a result, the content of the
SP with the 19-bit immediate imm19 added comprises the memory address, the halfword data in
which is transferred to the rd register. Make sure the imm6 specified here resides on a halfword
boundary (least significant bit = 0).

 (3) Extension 2
 ext imm13 ; = imm32(31:19)

 ext imm13 ; = imm32(18:6)

 ld.uh %rd,[%sp + imm6] ; memory address = sp + imm32,

 ; imm6 = imm32(5:0)

 The two ext instructions extend the displacement to a 32-bit quantity. As a result, the content
of the SP with the 32-bit immediate imm32 added comprises the memory address, the halfword
data in which is transferred to the rd register. Make sure the imm6 specified here resides on a
halfword boundary (least significant bit = 0).

Example ext 0x1
 ld.uh %r0,[%sp + 0x2] ; r0 ← [sp + 0x42] zero-extended

7 DETAILS OF INSTRUCTIONS

118 EPSON S1C33 FAMILY C33 PE CORE MANUAL

ld.w %rd, %rs
Function Word data transfer
 Standard) rd ← rs
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 1 0 1 1 1 0 r s r d 0x2E__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 The content of the rs register (word data) is transferred to the rd register.

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit.

Example ld.w %r0,%r1 ; r0 ← r1

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 119

ld.w %rd, %ss
Function Word data transfer
 Standard) rd ← ss
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 1 0 0 1 0 0 s s r d 0xA4__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Src: Register direct %ss = %psr, %sp, %alr, %ahr, %ttbr, %idir, %dbbr, %pc
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description The content of a special register (word data) is transferred to the rd register.

Example ld.w %r0,%psr ; r0 ← psr

Caution (1) When a ld.w %rd,%pc instruction is executed, a value equal to the PC of this ld.w
instruction plus 2 is loaded into the register. This instruction must be executed as a delayed slot
instruction. If it does not follow a delayed branch instruction, the PC value that is loaded into
the rd register may not be the next instruction address to the ld.w instruction.

 (2) When a special register other than the source registers listed above is specified as %ss, the
ld.w instruction will be executed as a nop instruction.

7 DETAILS OF INSTRUCTIONS

120 EPSON S1C33 FAMILY C33 PE CORE MANUAL

ld.w %rd, [%rb]
Function Word data transfer
 Standard) rd ← W[rb]
 Extension 1) rd ← W[rb + imm13]
 Extension 2) rd ← W[rb + imm26]

Code 15 12 11 8 7 4 3 0

 0 0 1 1 0 0 0 0 r b r d 0x30__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Src: Register indirect %rb = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle (two cycles when ext is used)

Description (1) Standard
 ld.w %rd,[%rb] ; memory address = rb

 The word data in the specified memory location is transferred to the rd register. The rb register
contains the memory address to be accessed.

 (2) Extension 1
 ext imm13

 ld.w %rd,[%rb] ; memory address = rb + imm13

 The ext instruction changes the addressing mode to register indirect addressing with
displacement. As a result, the content of the rb register with the 13-bit immediate imm13 added
comprises the memory address, the word data in which is transferred to the rd register. The
content of the rb register is not altered.

 (3) Extension 2
 ext imm13 ; = imm26(25:13)

 ext imm13 ; = imm26(12:0)

 ld.w %rd,[%rb] ; memory address = rb + imm26

 The addressing mode changes to register indirect addressing with displacement, so the content
of the rb register with the 26-bit immediate imm26 added comprises the memory address, the
word data in which is transferred to the rd register. The content of the rb register is not altered.

Caution The rb register and the displacement must specify a word boundary address (two least significant
bits = 0). Specifying other addresses causes an address misaligned exception.

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 121

ld.w %rd, [%rb]+
Function Word data transfer
 Standard) rd ← W[rb], rb ← rb + 4
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 1 1 0 0 0 1 r b r d 0x31__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Src: Register indirect with post-increment %rb = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK Two cycles

Description The word data in the specified memory location is transferred to the rd register. The rb register
contains the memory address to be accessed. Following data transfer, the address in the rb register
is incremented by 4.

Caution (1) The rb register and the displacement must specify a word boundary address (two least
significant bits = 0). Specifying other addresses causes an address misaligned exception.

 (2) If the same register is specified for rd and rb, the incremented address after transferring data is
loaded to the rd register.

7 DETAILS OF INSTRUCTIONS

122 EPSON S1C33 FAMILY C33 PE CORE MANUAL

ld.w %rd, [%sp + imm6]
Function Word data transfer
 Standard) rd ← W[sp + imm6 × 4]
 Extension 1) rd ← W[sp + imm19]
 Extension 2) rd ← W[sp + imm32]

Code 15 12 11 10 9 4 3 0

 0 1 0 1 0 0 imm6 r d 0x50__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Src: Register indirect with displacement
 Dst: Register direct %rd = %r0 to %r15

CLK Two cycles

Description (1) Standard
 ld.w %rd,[%sp + imm6] ; memory address = sp + imm6 × 4

 The word data in the specified memory location is transferred to the rd register. The content
of the current SP with 4 times the 6-bit immediate imm6 added as displacement comprises the
memory address to be accessed. The two least significant bits of the displacement are always 0.

 (2) Extension 1
 ext imm13 ; = imm19(18:6)

 ld.w %rd,[%sp + imm6] ; memory address = sp + imm19,

 ; imm6 = imm19(5:0)

 The ext instruction extends the displacement to a 19-bit quantity. As a result, the content of
the SP with the 19-bit immediate imm19 added comprises the memory address, the word data
in which is transferred to the rd register. Make sure the imm6 specified here resides on a word
boundary (two least significant bits = 0).

 (3) Extension 2
 ext imm13 ; = imm32(31:19)

 ext imm13 ; = imm32(18:6)

 ld.w %rd,[%sp + imm6] ; memory address = sp + imm32,

 ; imm6 = imm32(5:0)

 The two ext instructions extend the displacement to a 32-bit quantity. As a result, the content
of the SP with the 32-bit immediate imm32 added comprises the memory address, the word data
in which is transferred to the rd register. Make sure the imm6 specified here resides on a word
boundary (two least significant bits = 0).

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 123

ld.w %rd, sign6
Function Word data transfer
 Standard) rd(5:0) ← sign6(5:0), rd(31:6) ← sign6(5)
 Extension 1) rd(18:0) ← sign19(18:0), rd(31:19) ← sign19(18)
 Extension 2) rd ← sign32

Code 15 12 11 10 9 4 3 0

 0 1 1 0 1 1 sign6 r d 0x6C__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Src: Immediate data (signed)
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 ld.w %rd,sign6 ; rd ← sign6 (sign-extended)

 The 6-bit immediate sign6 is loaded to the rd register after being sign-extended.

 (2) Extension 1
 ext imm13 ; = sign19(18:6)

 ld.w %rd,sign6 ; rd ← sign19 (sign-extended),

 ; sign6 = sign19(5:0)

 The immediate data is extended into a 19-bit quantity by the ext instruction and it is loaded to
the rd register after being sign-extended.

 (3) Extension 2
 ext imm13 ; = sign32(31:19)

 ext imm13 ; = sign32(18:6)

 ld.w %rd,sign6 ; rd ← sign32, sign6 = sign32(5:0)

 The immediate data is extended into a 32-bit quantity by the ext instruction and it is loaded to
the rd register.

 (4) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit. In this case, extension of the immediate by the ext instruction
cannot be performed.

Example ld.w %r0,0x3f ; r0 ← 0xffffffff

7 DETAILS OF INSTRUCTIONS

124 EPSON S1C33 FAMILY C33 PE CORE MANUAL

ld.w %sd, %rs
Function Word data transfer
 Standard) sd ← rs
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 1 0 0 0 0 0 r s s d 0xA0__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |
 If sd is the PSR, the content of rs is copied.

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %sd = %psr, %sp, %alr, %ahr, %ttbr, %pc

CLK One cycle (three cycles when %sd = %psr)

Description The content of the rs register (word data) is transferred to a special register.

Example ld.w %sp,%r0 ; sp ← r0

Caution When a special register other than the destination registers listed above is specified as %sd, the
ld.w instruction will be executed as a nop instruction.

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 125

ld.w [%rb], %rs
Function Word data transfer
 Standard) W[rb] ← rs
 Extension 1) W[rb + imm13] ← rs
 Extension 2) W[rb + imm26] ← rs

Code 15 12 11 8 7 4 3 0

 0 0 1 1 1 1 0 0 r b r s 0x3C__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register indirect %rb = %r0 to %r15

CLK One cycle (two cycles when ext is used)

Description (1) Standard
 ld.w [%rb],%rs ; memory address = rb

 The content of the rs register (word data) is transferred to the specified memory location. The
rb register contains the memory address to be accessed.

 (2) Extension 1
 ext imm13

 ld.w [%rb],%rs ; memory address = rb + imm13

 The ext instruction changes the addressing mode to register indirect addressing with
displacement. As a result, the content of the rs register is transferred to the address indicated
by the content of the rb register with the 13-bit immediate imm13 added. The content of the rb
register is not altered.

 (3) Extension 2
 ext imm13 ; = imm26(25:13)

 ext imm13 ; = imm26(12:0)

 ld.w [%rb],%rs ; memory address = rb + imm26

 The addressing mode changes to register indirect addressing with displacement, so the content
of the rs register is transferred to the address indicated by the content of the rb register with the
26-bit immediate imm26 added. The content of the rb register is not altered.

Caution The rb register and the displacement must specify a word boundary address (two least significant
bits = 0). Specifying an odd address causes an address misaligned exception.

7 DETAILS OF INSTRUCTIONS

126 EPSON S1C33 FAMILY C33 PE CORE MANUAL

ld.w [%rb]+, %rs
Function Word data transfer
 Standard) W[rb] ← rs, rb ← rb + 4
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 1 1 1 1 0 1 r b r s 0x3D__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register indirect with post-increment %rb = %r0 to %r15

CLK Two cycles

Description The content of the rs register (word data) is transferred to the specified memory location. The rb
register contains the memory address to be accessed. Following data transfer, the address in the rb
register is incremented by 4.

Caution The rb register and the displacement must specify a word boundary address (two least significant
bits = 0). Specifying an odd address causes an address misaligned exception.

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 127

ld.w [%sp + imm6], %rs
Function Word data transfer
 Standard) W[sp + imm6 × 4] ← rs
 Extension 1) W[sp + imm19] ← rs
 Extension 2) W[sp + imm32] ← rs

Code 15 12 11 10 9 4 3 0

 0 1 0 1 1 1 imm6 r s 0x5C__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register indirect with displacement

CLK Two cycle

Description (1) Standard
 ld.w [%sp + imm6],%rs ; memory address = sp + imm6 × 4

 The content of the rs register is transferred to the specified memory location. The content of
the current SP with four times the 6-bit immediate imm6 added as displacement comprises the
memory address to be accessed. The two least significant bits of the displacement are always 0.

 (2) Extension 1
 ext imm13 ; = imm19(18:6)

 ld.w [%sp + imm6],%rs ; memory address = sp + imm19,

 ; imm6 = imm19(5:0)

 The ext instruction extends the displacement to a 19-bit quantity. As a result, the content of
the rs register is transferred to the address indicated by the content of the SP with the 19-bit
immediate imm19 added. Make sure the imm6 specified here resides on a word boundary (two
least significant bits = 0).

 (3) Extension 2
 ext imm13 ; = imm32(31:19)

 ext imm13 ; = imm32(18:6)

 ld.w [%sp + imm6],%rs ; memory address = sp + imm32,

 ; imm6 = imm32(5:0)

 The two ext instructions extend the displacement to a 32-bit quantity. As a result, the content
of the rs register is transferred to the address indicated by the content of the SP with the 32-bit
immediate imm32 added. Make sure the imm6 specified here resides on a word boundary (two
least significant bits = 0).

7 DETAILS OF INSTRUCTIONS

128 EPSON S1C33 FAMILY C33 PE CORE MANUAL

mlt.h %rd, %rs
Function Signed 16-bit × 16-bit multiplication
 Standard) alr ← rd(15:0) × rs(15:0)
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 1 0 0 0 1 0 r s r d 0xA2__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK Five cycles

Description The 16 low-order bits of the rd register and the 16 low-order bits of the rs register are multiplied
together with the signs, and the 32-bit product resulting from the operation is loaded into the ALR
register.

Example mlt.h %r0,%r1 ; alr ← r0(15:0) × r1(15:0)
 ; signed multiplication

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 129

mlt.w %rd, %rs
Function Signed 32-bit × 32-bit multiplication
 Standard) {ahr, alr} ← rd × rs
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 1 0 1 0 1 0 r s r d 0xAA__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK Seven cycles

Description The content of the rd register and the content of the rs register are multiplied together with the
signs, and the 64-bit product resulting from the operation is loaded into the AHR and ALR register
pair.

Example mlt.w %r0,%r1 ; {ahr,alr} ← r0 × r1 signed multiplication

7 DETAILS OF INSTRUCTIONS

130 EPSON S1C33 FAMILY C33 PE CORE MANUAL

mltu.h %rd, %rs
Function Unsigned 16-bit × 16-bit multiplication
 Standard) alr ← rd(15:0) × rs(15:0)
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 1 0 0 1 1 0 r s r d 0xA6__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK Five cycles

Description The 16 low-order bits of the rd register and the 16 low-order bits of the rs register are multiplied
together without signs, and the 32-bit product resulting from the operation is loaded into the ALR
register.

Example mltu.h %r0,%r1 ; alr ← r0(15:0) × r1(15:0)
 ; unsigned multiplication

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 131

mltu.w %rd, %rs
Function Unsigned 32-bit × 32-bit multiplication
 Standard) {ahr, alr} ← rd × rs
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 1 0 1 1 1 0 r s r d 0xAE__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK Seven cycles

Description The content of the rd register and the content of the rs register are multiplied together without signs,
and the 64-bit product resulting from the operation is loaded into the AHR and ALR register pair.

Example mltu.w %r0,%r1 ; {ahr,alr} ← r0 × r1 unsigned multiplication

7 DETAILS OF INSTRUCTIONS

132 EPSON S1C33 FAMILY C33 PE CORE MANUAL

nop
Function No operation
 Standard) No operation
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0x0000

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode –

CLK One cycle

Description The nop instruction just takes 1 cycle and no operation results. The PC is incremented (+2).

Example nop
 nop ; Waits 2 cycles

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 133

not %rd, %rs
Function Logical negation
 Standard) rd ← !rs
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 1 1 1 1 1 0 r s r d 0x3E__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – 0 ↔ ↔

 | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 All the bits of the rs register are reversed, and the result is loaded into the rd register.

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit.

Example When r1 = 0x55555555
 not %r0,%r1 ; r0 = 0xAAAAAAAA

7 DETAILS OF INSTRUCTIONS

134 EPSON S1C33 FAMILY C33 PE CORE MANUAL

not %rd, sign6
Function Logical negation
 Standard) rd ← !sign6
 Extension 1) rd ← !sign19
 Extension 2) rd ← !sign32

Code 15 12 11 10 9 4 3 0

 0 1 1 1 1 1 sign6 r d 0x7C__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – 0 ↔ ↔

 | | | |

Mode Src: Immediate data (signed)
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 not %rd,sign6 ; rd ← !sign6

 All the bits of the sign-extended 6-bit immediate sign6 are reversed, and the result is loaded into
the rd register.

 (2) Extension 1
 ext imm13 ; = sign19(18:6)
 not %rd,sign6 ; rd ← !sign19, sign6 = sign19(5:0)

 All the bits of the sign-extended 19-bit immediate sign19 are reversed, and the result is loaded
into the rd register.

 (3) Extension 2
 ext imm13 ; = sign32(31:19)

 ext imm13 ; = sign32(18:6)

 not %rd,sign6 ; rd ← !sign32, sign6 = sign32(5:0)

 All the bits of the sign-extended 32-bit immediate sign32 are reversed, and the result is loaded
into the rd register.

 (4) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit. In this case, extension of the immediate by the ext instruction
cannot be performed.

Example (1) not %r0,0x1f ; r0 = 0xffffffe0

 (2) ext 0x7ff
 not %r1,0x3f ; r1 = 0xfffe0000

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 135

or %rd, %rs
Function Logical OR
 Standard) rd ← rd | rs
 Extension 1) rd ← rs | imm13
 Extension 2) rd ← rs | imm26

Code 15 12 11 8 7 4 3 0

 0 0 1 1 0 1 1 0 r s r d 0x36__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – 0 ↔ ↔

 | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 or %rd,%rs ; rd ← rd | rs

 The content of the rs register and that of the rd register are logically OR’ed, and the result is
loaded into the rd register.

 (2) Extension 1
 ext imm13

 or %rd,%rs ; rd ← rs | imm13

 The content of the rs register and the zero-extended 13-bit immediate imm13 are logically OR’
ed, and the result is loaded into the rd register. The content of the rs register is not altered.

 (3) Extension 2
 ext imm13 ; = imm26(25:13)

 ext imm13 ; = imm26(12:0)

 or %rd,%rs ; rd ← rs | imm26

 The content of the rs register and the zero-extended 26-bit immediate imm26 are logically OR’
ed, and the result is loaded into the rd register. The content of the rs register is not altered.

 (4) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit. In this case, extension of the immediate by the ext instruction
cannot be performed.

Example (1) or %r0,%r0 ; r0 = r0 | r0

 (2) ext 0x1
 ext 0x1fff

 or %r1,%r2 ; r1 = r2 | 0x00003fff

7 DETAILS OF INSTRUCTIONS

136 EPSON S1C33 FAMILY C33 PE CORE MANUAL

or %rd, sign6
Function Logical OR
 Standard) rd ← rd | sign6
 Extension 1) rd ← rd | sign19
 Extension 2) rd ← rd | sign32

Code 15 12 11 10 9 4 3 0

 0 1 1 1 0 1 sign6 r d 0x74__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – 0 ↔ ↔

 | | | |

Mode Src: Immediate data (signed)
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 or %rd,sign6 ; rd ← rd | sign6

 The content of the rd register and the sign-extended 6-bit immediate sign6 are logically OR’ed,
and the result is loaded into the rd register.

 (2) Extension 1
 ext imm13 ; = sign19(18:6)

 or %rd,sign6 ; rd ← rd | sign19, sign6 = sign19(5:0)

 The content of the rd register and the sign-extended 19-bit immediate sign19 are logically OR’
ed, and the result is loaded into the rd register.

 (3) Extension 2
 ext imm13 ; = sign32(31:19)

 ext imm13 ; = sign32(18:6)

 or %rd,sign6 ; rd ← rd | sign32, sign6 = sign32(5:0)

 The content of the rd register and the sign-extended 32-bit immediate sign32 are logically OR’
ed, and the result is loaded into the rd register.

 (4) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit. In this case, extension of the immediate by the ext instruction
cannot be performed.

Example (1) or %r0,0x3e ; r0 = r0 | 0xfffffffe

 (2) ext 0x7ff
 or %r1,0x3f ; r1 = r1 | 0x0001ffff

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 137

pop %rd
Function Pop
 Standard) rd ← W[sp], sp ← sp + 4
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 0 0 0 0 0 0 0 1 0 1 r d 0x005_

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Register direct %rd = %r0 to %r15

CLK One cycle

Description The data of a general-purpose register that has been saved to the stack by a push instruction is
restored from the stack. The pop instruction restores word data from the stack with an address
indicated by the current SP to the rd register, and increments the SP by an amount equivalent to 1
word (4 bytes).

 Stack operation when pop %rd is executed

SP

31 0

rd ← Data

SP

31 0

DataData

Example pop %r3 ; r3 ← W[sp], sp ← sp + 4

7 DETAILS OF INSTRUCTIONS

138 EPSON S1C33 FAMILY C33 PE CORE MANUAL

popn %rd
Function Pop
 Standard) “rN ← W[sp], sp ← sp + 4” repeated for rN = r0 to rd
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 0 0 0 0 1 0 0 1 0 0 r d 0x024_

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Register direct %rd = %r0 to %r15

CLK N + 1 cycles, where N = number of registers to be restored

Description The data of general-purpose registers that have been saved to the stack by a pushn instruction is
restored from the stack. The popn instruction restores word data from the stack with its address
indicated by the current SP to the r0 register, and increments the SP by an amount equivalent to 1
word (4 bytes). This operation is repeated until a register that matches rd is reached. The rd must be
the same register as specified in the corresponding pushn instruction.

 Stack operation when popn %rd (where %rd = %r3) is executed

SP

31 0

r0 ← Data 0
r1 ← Data 1
r2 ← Data 2
r3 ← Data 3

SP
31 0

Data 3
Data 2
Data 1
Data 0

Data 3
Data 2
Data 1
Data 0

Example popn %r3 ; r0, r1, r2, and r3 are restored

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 139

pops %sd
Function Pop
 Standard) When sd = ahr: alr ← W[sp], sp ← sp + 4, ahr ← W[sp], sp ← sp + 4
 When sd = alr: alr ← W[sp], sp ← sp + 4
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 0 0 0 0 0 0 1 1 0 1 s d 0x00D_

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Register direct %sd = %alr or %ahr

CLK Two cycles (when sd = alr), Three cycles (when sd = ahr)

Description This instruction restores the data of special registers that have been saved to the stack by a pushs
instruction back to each register.

 (1) When the sd register is the ALR register
 The word data at the address indicated by the current SP is restored to the ALR register, and the

SP is incremented by an amount equivalent to 1 word (4 bytes).

 (2) When the sd register is the AHR register
 The word data at the address indicated by the current SP is restored to the ALR register, and

the SP is incremented by an amount equivalent to 1 word (4 bytes). Next, the word data at the
address indicated by the current SP is restored to the AHR register, and the SP is incremented
by an amount equivalent to 1 word (4 bytes). The sd must be the same register as specified in
the corresponding pushs instruction.

 Stack operation when pops %sd (where %sd = %ahr) is executed

SP

31 0

alr ← Data 0
ahr ← Data 1

SP
31 0

Data 1
Data 0

Data 1
Data 0

Example (1) pops %alr ; alr is restored singly

 (2) pops %ahr ; registers are restored in order of alr and ahr

Caution When a register other than ALR or AHR is specified as the sd register, the pops instruction does
not pop data from the stack.

7 DETAILS OF INSTRUCTIONS

140 EPSON S1C33 FAMILY C33 PE CORE MANUAL

psrclr imm5
Function Clear PSR bit
 Standard) psr ← psr & !imm5
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 5 4 0

 1 0 1 1 1 1 1 1 1 0 0 imm5 0xBF8_

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 ↔ ↔ ↔ ↔ ↔

 | | | |

Mode Immediate

CLK Three cycles

Description Clear the bit in the PSR specified by the immediate imm5 to 0. The value of imm5 indicates a
bit number, with values 0, 1, 2, 3, and 4 representing bits 0 (N), 1 (Z), 2 (V), 3 (C), and 4 (IE),
respectively. An imm5 of more than 4 is not effective and does not alter the contents of PSR.

Example psrclr 2 ; V ← 0 (V flag cleared)

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 141

psrset imm5
Function Set PSR bit
 Standard) psr ← psr | imm5
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 5 4 0

 1 0 1 1 1 1 1 1 0 1 0 imm5 0xBF4_

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 ↔ ↔ ↔ ↔ ↔

 | | | |

Mode Immediate

CLK Three cycles

Description Set the bit in the PSR specified by the immediate imm5 to 1. The value of imm5 indicates a
bit number, with values 0, 1, 2, 3, and 4 representing bits 0 (N), 1 (Z), 2 (V), 3 (C), and 4 (IE),
respectively. An imm5 of more than 4 is not effective and does not alter the contents of PSR.

Example psrset 2 ; V ← 1 (V flag set)

7 DETAILS OF INSTRUCTIONS

142 EPSON S1C33 FAMILY C33 PE CORE MANUAL

push %rs
Function Push
 Standard) sp ← sp - 4, W[sp] ← rs
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 0 0 0 0 0 0 0 0 0 1 r s 0x001_

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Register direct %rs = %r0 to %r15

CLK Two cycles

Description Save the data of a general-purpose register to the stack.
 The push instruction first decrements the current SP by an amount equivalent to 1 word (4 bytes),

and saves the content of the rs register to that address.

 Stack operation when push %rs is executed

SP

31 0

SP

31 0

rs data

Example push %r3 ; sp ← sp - 4, W[sp] ← r3

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 143

pushn %rs
Function Push
 Standard) “sp ← sp - 4, W[sp] ← rN” repeated for rN = rs to r0
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 0 0 0 0 1 0 0 0 0 0 r s 0x020_

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Register direct %rs = %r0 to %r15

CLK N + 1 cycles, where N = number of registers to be saved

Description Save the data of general-purpose registers to the stack.
 The pushn instruction first decrements the current SP by an amount equivalent to 1 word (4 bytes),

and saves the content of the rs register to that address. This operation is repeated successively until
the r0 register is reached.

 Stack operation when pushn %rs (where %rs = %r3) is executed

SP
31 0

SP

31 0

r3 data
r2 data
r1 data
r0 data

Example pushn %r3 ; r3, r2, r1, and r0 are saved

7 DETAILS OF INSTRUCTIONS

144 EPSON S1C33 FAMILY C33 PE CORE MANUAL

pushs %ss
Function Push
 Standard) When ss = ahr: sp ← sp - 4, W[sp] ← ahr, sp ← sp - 4, W[sp] ← alr
 When ss = alr: sp ← sp - 4, W[sp] ← alr
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 0 0 0 0 0 0 1 0 0 1 s s 0x009_

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Register direct %ss = %alr or %ahr

CLK Two cycles (when ss = alr), Three cycles (when ss = ahr)

Description Save the data of special registers to the stack.

 (1) When the ss register is the ALR register
 The current SP is decremented by an amount equivalent to 1 word (4 bytes), and the content of

the ALR register is saved to that address.

 (2) When the ss register is the AHR register
 The current SP is decremented by an amount equivalent to 1 word (4 bytes), and the content of

the AHR register is saved to that address. Next, SP is decremented by an amount equivalent to 1
word (4 bytes), and the content of the ALR register is saved to that address.

 Stack operation when pushs %ss (where %ss = %ahr) is executed

SP
31 0

The ahr and alr registers are saved

SP

31 0

ahr data
alr data

Example (1) pushs %alr ; alr is saved singly

 (2) pushs %ahr ; registers are saved in order of ahr and alr

Caution When a register other than ALR or AHR is specified as the ss register, the pushs instruction does
not save the register data to the stack.

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 145

ret / ret.d
Function Return from subroutine
 Standard) pc ← W[sp], sp ← sp + 4
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 0 0 0 1 1 d 0 1 0 0 0 0 0 0 0x0640, 0x0740

 | | | | | | | | | | | | | | |

 ret when d bit (bit 8) = 0
 ret.d when d bit (bit 8) = 1

Flag IE C V Z N

 – – – – –

 | | | |

Mode –

CLK ret Four cycles
 ret.d Three cycles

Description (1) Standard
 ret

 Restores the PC value (return address) that was saved into the stack when the call instruction
was executed for returning the program flow from the subroutine to the routine that called the
subroutine. The SP is incremented by 1 word.

 If the SP has been modified in the subroutine, it is necessary to return the SP value before
executing the ret instruction.

 (2) Delayed branch (d bit = 1)
 ret.d

 For the ret.d instruction, the next instruction becomes a delayed instruction. A delayed
instruction is executed before the program returns from the subroutine. Exceptions are masked
in intervals between the ret.d instruction and the next instruction, so no interrupts or
exceptions occur.

Example ret.d
 add %r0,%r1 ; Executed before return from the subroutine

Caution When the ret.d instruction (delayed branch) is used, be careful to ensure that the next instruction
is limited to those that can be used as a delayed instruction. If any other instruction is executed, the
program may operate indeterminately. For the usable instructions, refer to the instruction list in the
Appendix.

7 DETAILS OF INSTRUCTIONS

146 EPSON S1C33 FAMILY C33 PE CORE MANUAL

retd
Function Return from a debug-exception handler routine
 Standard) r0 ← W[0x6000C], pc ← W[0x60008]
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0x0440

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode –

CLK Five cycles

Description Restore the contents of the R0 and PC that were saved to the debug exception memory space
when an debug exception occurred to the respective registers, and return from the debug exception
handler routine.

Example retd ; Return from a debug exception handler routine

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 147

reti
Function Return from trap handler routine
 Standard) pc ← W[sp + 4], psr ← W[sp], sp ← sp + 8
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0x04C0

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 ↔ ↔ ↔ ↔ ↔

 | | | |

Mode –

CLK Five cycles

Description Restore the contents of the PC and PSR that were saved to the stack when an exception or interrupt
occurred to the respective registers, and return from the trap handler routine. The SP is incremented
by an amount equivalent to 2 words.

Example reti ; Return from a trap handler routine

7 DETAILS OF INSTRUCTIONS

148 EPSON S1C33 FAMILY C33 PE CORE MANUAL

rl %rd, %rs
Function Rotate to the left
 Standard) Rotate the content of rd to the left as many bits as specified by rs (0 to 31),
 LSB ← MSB
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 0 1 1 1 0 1 r s r d 0x9D__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – ↔ ↔

 | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 The rd register is rotated as shown in the diagram below. The number of bits to be shifted can

be specified in the range of 0 to 31 by the 5 low-order bits of the rs register. The value in the
most significant bit of the rd register is placed in the least significant bit.

31

rd register

(after execution)

0

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit included.

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 149

rl %rd, imm5
Function Rotate to the left
 Standard) Rotate the content of rd to the left as many bits as specified by imm5 (0 to 31),
 LSB ← MSB
 Extension 1) Unusable
 Extension 2) Unusable

Code When imm5(4) = 0, rotated to the left by 0 to 15 bits
 15 12 11 8 7 4 3 0
 1 0 0 1 1 1 0 0 imm5(3:0) r d 0x9C__

 | | | | | | | | | | | | | | |

 When imm5(4) = 1, rotated to the left by 16 to 31 bits
 15 12 11 8 7 4 3 0
 0 0 1 1 0 1 1 1 imm5(3:0) r d 0x37__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – ↔ ↔

 | | | |

Mode Src: Immediate (unsigned)
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 The rd register is rotated as shown in the diagram below. The number of bits to be shifted can be

specified in the range of 0 to 31 by the 5-bit immediate imm5. The value in the most significant
bit of the rd register is placed in the least significant bit.

31

rd register

(after execution)

0

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit included.

7 DETAILS OF INSTRUCTIONS

150 EPSON S1C33 FAMILY C33 PE CORE MANUAL

rr %rd, %rs
Function Rotate to the right
 Standard) Rotate the content of rd to the right as many bits as specified by rs (0 to 31),
 MSB ← LSB
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 0 1 1 0 0 1 r s r d 0x99__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – ↔ ↔

 | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 The rd register is rotated as shown in the diagram below. The number of bits to be shifted can

be specified in the range of 0 to 31 by the 5 low-order bits of the rs register. The value in the
least significant bit of the rd register is placed in the most significant bit.

31

rd register

(after execution)

0

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit included.

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 151

rr %rd, imm5
Function Rotate to the right
 Standard) Rotate the content of rd to the right as many bits as specified by imm5 (0 to 31),
 MSB ← LSB
 Extension 1) Unusable
 Extension 2) Unusable

Code When imm5(4) = 0, rotated to the right by 0 to 15 bits
 15 12 11 8 7 4 3 0
 1 0 0 1 1 0 0 0 imm5(3:0) r d 0x98__

 | | | | | | | | | | | | | | |

 When imm5(4) = 1, rotated to the right by 16 to 31 bits
 15 12 11 8 7 4 3 0
 0 0 1 1 0 0 1 1 imm5(3:0) r d 0x33__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – ↔ ↔

 | | | |

Mode Src: Immediate (unsigned)
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 The rd register is rotated as shown in the diagram below. The number of bits to be shifted can be

specified in the range of 0 to 31 by the 5-bit immediate imm5. The value in the least significant
bit of the rd register is placed in the most significant bit.

31

rd register

(after execution)

0

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit included.

7 DETAILS OF INSTRUCTIONS

152 EPSON S1C33 FAMILY C33 PE CORE MANUAL

sbc %rd, %rs
Function Subtraction with borrow
 Standard) rd ← rd - rs - C
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 1 1 1 1 0 0 r s r d 0xBC__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – ↔ ↔ ↔ ↔

 | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 sbc %rd,%rs ; rd ← rd - rs - C

 The content of the rs register and C (carry) flag are subtracted from the rd register.

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit.

Example (1) sbc %r0,%r1 ; r0 = r0 - r1 - C

 (2) Subtraction of 64-bit data
 data 1 = {r2, r1}, data2 = {r4, r3}, result = {r2, r1}
 sub %r1,%r3 ; Subtraction of the low-order word
 sbc %r2,%r4 ; Subtraction of the high-order word

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 153

sla %rd, %rs
Function Arithmetic shift to the left
 Standard) Shift the content of rd to left as many bits as specified by rs (0 to 31), LSB ← 0
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 0 1 0 1 0 1 r s r d 0x95__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – ↔ ↔

 | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 The rd register is shifted as shown in the diagram below. The number of bits to be shifted can be

specified in the range of 0 to 31 by the 5 low-order bits of the rs register. Data “0” is placed in
the least significant bit of the rd register.

31

rd register

(after execution)

0

0

0

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit included.

7 DETAILS OF INSTRUCTIONS

154 EPSON S1C33 FAMILY C33 PE CORE MANUAL

sla %rd, imm5
Function Arithmetic shift to the left
 Standard) Shift the content of rd to left as many bits as specified by imm5 (0 to 31), LSB ← 0
 Extension 1) Unusable
 Extension 2) Unusable

Code When imm5(4) = 0, arithmetic shift to the left by 0 to 15 bits
 15 12 11 8 7 4 3 0
 1 0 0 1 0 1 0 0 imm5(3:0) r d 0x94__

 | | | | | | | | | | | | | | |

 When imm5(4) = 1, arithmetic shift to the left by 16 to 31 bits
 15 12 11 8 7 4 3 0
 0 0 1 0 1 1 1 1 imm5(3:0) r d 0x2F__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – ↔ ↔

 | | | |

Mode Src: Immediate (unsigned)
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 The rd register is shifted as shown in the diagram below. The number of bits to be shifted can

be specified in the range of 0 to 31 by the 5-bit immediate imm5. Data “0” is placed in the least
significant bit of the rd register.

31

rd register

(after execution)

0

0

0

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit included.

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 155

sll %rd, %rs
Function Logical shift to the left
 Standard) Shift the content of rd to left as many bits as specified by rs (0 to 31), LSB ← 0
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 0 0 1 1 0 1 r s r d 0x8D__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – ↔ ↔

 | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 The rd register is shifted as shown in the diagram below. The number of bits to be shifted can be

specified in the range of 0 to 31 by the 5 low-order bits of the rs register. Data “0” is placed in
the least significant bit of the rd register.

31

rd register

(after execution)

0

0

0

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit included.

7 DETAILS OF INSTRUCTIONS

156 EPSON S1C33 FAMILY C33 PE CORE MANUAL

sll %rd, imm5
Function Logical shift to the left
 Standard) Shift the content of rd to left as many bits as specified by imm5 (0 to 31), LSB ← 0
 Extension 1) Unusable
 Extension 2) Unusable

Code When imm5(4) = 0, logical shift to the left by 0 to 15 bits
 15 12 11 8 7 4 3 0
 1 0 0 0 1 1 0 0 imm5(3:0) r d 0x8C__

 | | | | | | | | | | | | | | |

 When imm5(4) = 1, logical shift to the left by 16 to 31 bits
 15 12 11 8 7 4 3 0
 0 0 1 0 0 1 1 1 imm5(3:0) r d 0x27__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – ↔ ↔

 | | | |

Mode Src: Immediate (unsigned)
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 The rd register is shifted as shown in the diagram below. The number of bits to be shifted can

be specified in the range of 0 to 31 by the 5-bit immediate imm5. Data “0” is placed in the least
significant bit of the rd register.

31

rd register

(after execution)

0

0

0

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit included.

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 157

slp
Function SLEEP
 Standard) Place the processor in SLEEP mode
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0x0040

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode –

CLK Five cycles

Description Places the processor in SLEEP mode for power saving.
 Program execution is halted at the same time that the C33 PE Core executes the slp instruction,

and the processor enters SLEEP mode.
 SLEEP mode commonly turns off the C33 PE Core and on-chip peripheral circuit operations,

thereby it significantly reduces the current consumption in comparison to the HALT mode.

 Initial reset is one cause that can bring the processor out of SLEEP mode. Other causes depend on
the implementation of the clock control circuit outside the C33 PE Core.

 Initial reset, maskable external interrupts, NMI, and debug exceptions are commonly used for
canceling SLEEP mode.

 The interrupt enable/disable status set in the processor does not affect the cancellation of SLEEP
mode even if an interrupt signal is used as the cancellation. In other words, interrupt signals are
able to cancel SLEEP mode even if the IE flag in PSR or the interrupt enable bits in the interrupt
controller (depending on the implementation) are set to disable interrupts.

 When the processor is taken out of SLEEP mode using an interrupt that has been enabled (by the
interrupt controller and IE flag), the corresponding interrupt handler routine is executed. Therefore,
when the interrupt handler routine is terminated by the reti instruction, the processor returns to
the instruction next to slp.

 When the interrupt has been disabled, the processor restarts the program from the instruction next
to slp after the processor is taken out of SLEEP mode.

 Refer to the technical manual of each model for details of SLEEP mode.

Example slp ; The processor is placed in SLEEP mode.

7 DETAILS OF INSTRUCTIONS

158 EPSON S1C33 FAMILY C33 PE CORE MANUAL

sra %rd, %rs
Function Arithmetic shift to the right
 Standard) Shift the content of rd to right as many bits as specified by rs (0 to 31), MSB ← MSB
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 0 1 0 0 0 1 r s r d 0x91__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – ↔ ↔

 | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 The rd register is shifted as shown in the diagram below. The number of bits to be shifted can be

specified in the range of 0 to 31 by the 5 low-order bits of the rs register. The sign bit is copied
to the most significant bit of the rd register.

31

rd register

(after execution)

0

Sign bit

S ... S

S

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit included.

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 159

sra %rd, imm5
Function Arithmetic shift to the right
 Standard) Shift the content of rd to right as many bits as specified by imm5 (0 to 31),
 MSB ← MSB
 Extension 1) Unusable
 Extension 2) Unusable

Code When imm5(4) = 0, arithmetic shift to the right by 0 to 15 bits
 15 12 11 8 7 4 3 0
 1 0 0 1 0 0 0 0 imm5(3:0) r d 0x90__

 | | | | | | | | | | | | | | |

 When imm5(4) = 1, arithmetic shift to the right by 16 to 31 bits
 15 12 11 8 7 4 3 0
 0 0 1 0 1 0 1 1 imm5(3:0) r d 0x2B__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – ↔ ↔

 | | | |

Mode Src: Immediate (unsigned)
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 The rd register is shifted as shown in the diagram below. The number of bits to be shifted can be

specified in the range of 0 to 31 by the 5-bit immediate imm5. The sign bit is copied to the most
significant bit of the rd register.

31

rd register

(after execution)

0

Sign bit

S ... S

S

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit included.

7 DETAILS OF INSTRUCTIONS

160 EPSON S1C33 FAMILY C33 PE CORE MANUAL

srl %rd, %rs
Function Logical shift to the right
 Standard) Shift the content of rd to right as many bits as specified by rs (0 to 31), MSB ← 0
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 0 0 1 0 0 1 r s r d 0x89__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – ↔ ↔

 | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 The rd register is shifted as shown in the diagram below. The number of bits to be shifted can be

specified in the range of 0 to 31 by the 5 low-order bits of the rs register. Data “0” is placed in
the most significant bit of the rd register.

31

rd register

(after execution)

0

0

0

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit included.

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 161

srl %rd, imm5
Function Logical shift to the right
 Standard) Shift the content of rd to right as many bits as specified by imm5 (0 to 31), MSB ← 0
 Extension 1) Unusable
 Extension 2) Unusable

Code When imm5(4) = 0, logical shift to the right by 0 to 15 bits
 15 12 11 8 7 4 3 0
 1 0 0 0 1 0 0 0 imm5(3:0) r d 0x88__

 | | | | | | | | | | | | | | |

 When imm5(4) = 1, logical shift to the right by 16 to 31 bits
 15 12 11 8 7 4 3 0
 0 0 1 0 0 0 1 1 imm5(3:0) r d 0x23__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – ↔ ↔

 | | | |

Mode Src: Immediate (unsigned)
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 The rd register is shifted as shown in the diagram below. The number of bits to be shifted can

be specified in the range of 0 to 31 by the 5-bit immediate imm5. Data “0” is placed in the most
significant bit of the rd register.

31

rd register

(after execution)

0

0

0

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit included.

7 DETAILS OF INSTRUCTIONS

162 EPSON S1C33 FAMILY C33 PE CORE MANUAL

sub %rd, %rs
Function Subtraction
 Standard) rd ← rd - rs
 Extension 1) rd ← rs - imm13
 Extension 2) rd ← rs - imm26

Code 15 12 11 8 7 4 3 0

 0 0 1 0 0 1 1 0 r s r d 0x26__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – ↔ ↔ ↔ ↔

 | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 sub %rd,%rs ; rd ← rd - rs

 The content of the rs register is subtracted from the rd register.

 (2) Extension 1
 ext imm13

 sub %rd,%rs ; rd ← rs - imm13

 The 13-bit immediate imm13 is subtracted from the content of the rs register after being zero-
extended, and the result is loaded into the rd register. The content of the rs register is not
altered.

 (3) Extension 2
 ext imm13 ; = imm26(25:13)

 ext imm13 ; = imm26(12:0)

 sub %rd,%rs ; rd ← rs - imm26

 The 26-bit immediate imm26 is subtracted from the content of the rs register after being zero-
extended, and the result is loaded into the rd register. The content of the rs register is not
altered.

 (4) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit. In this case, extension of the immediate by the ext instruction
cannot be performed.

Example (1) sub %r0,%r0 ; r0 = r0 - r0

 (2) ext 0x1
 ext 0x1fff

 sub %r1,%r2 ; r1 = r2 - 0x3fff

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 163

sub %rd, imm6
Function Subtraction
 Standard) rd ← rd - imm6
 Extension 1) rd ← rd - imm19
 Extension 2) rd ← rd - imm32

Code 15 12 11 10 9 4 3 0

 0 1 1 0 0 1 imm6 r d 0x64__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – ↔ ↔ ↔ ↔

 | | | |

Mode Src: Immediate data (unsigned)
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 sub %rd,imm6 ; rd ← rd - imm6

 The 6-bit immediate imm6 is subtracted from the rd register after being zero-extended.

 (2) Extension 1
 ext imm13 ; = imm19(18:6)

 sub %rd,imm6 ; rd ← rd - imm19, imm6 = imm19(5:0)

 The 19-bit immediate imm19 is subtracted from the rd register after being zero-extended.

 (3) Extension 2
 ext imm13 ; = imm32(31:19)

 ext imm13 ; = imm32(18:6)

 sub %rd,imm6 ; rd ← rd - imm32, imm6 = imm32(5:0)

 The 32-bit immediate imm32 is subtracted from the rd register.

 (4) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit. In this case, extension of the immediate by the ext instruction
cannot be performed.

Example (1) sub %r0,0x3f ; r0 = r0 - 0x3f

 (2) ext 0x1fff
 ext 0x1fff

 sub %r1,0x3f ; r1 = r1 - 0xffffffff

7 DETAILS OF INSTRUCTIONS

164 EPSON S1C33 FAMILY C33 PE CORE MANUAL

sub %sp, imm10
Function Subtraction
 Standard) sp ← sp - imm10 × 4
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 10 9 0

 1 0 0 0 0 1 imm10 0x84__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Src: Immediate data (unsigned)
 Dst: Register direct (SP)

CLK One cycle

Description (1) Standard
 Quadruples the 10-bit immediate imm10 and subtracts it from the stack pointer SP. The imm10

is zero-extended into 32 bits prior to the operation.

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit.

Example sub %sp,0x100 ; sp = sp - 0x400

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 165

swap %rd, %rs
Function Swap
 Standard) rd(31:24) ← rs(7:0), rd(23:16) ← rs(15:8), rd(15:8) ← rs(23:16), rd(7:0) ← rs(31:24)
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 0 1 0 0 1 0 r s r d 0x92__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 Swaps the byte order of the rs register high and low and loads the results to the rd register.

8 716 1524 23

Byte 0Byte 1Byte 2Byte 3
0

rs register
31

8 716 1524 23
Byte 3Byte 2Byte 1Byte 0

0
rd register

31

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit.

Example When r1 = 0x87654321
 swap %r0,%r1 ; r0 ← 0x21436587

7 DETAILS OF INSTRUCTIONS

166 EPSON S1C33 FAMILY C33 PE CORE MANUAL

swaph %rd, %rs
Function Swap
 Standard) rd(31:24) ← rs(23:16), rd(23:16) ← rs(31:24), rd(15:8) ← rs(7:0), rd(7:0) ← rs(15:8)
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 0 1 1 0 1 0 r s r d 0x9A__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 Converts the 32-bit data in a general-purpose register between big and little endians at halfword

boundaries.

8 716 1524 23

Byte 0Byte 1Byte 2Byte 3
0

rs register
31

8 716 1524 23
Byte 1Byte 0Byte 3Byte 2

0
rd register

31

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit.

Example When r1 = 0x12345678
 swaph %r2,%r1 ; 0x34127856 → r2

7 DETAILS OF INSTRUCTIONS

S1C33 FAMILY C33 PE CORE MANUAL EPSON 167

xor %rd, %rs
Function Exclusive OR
 Standard) rd ← rd ^ rs
 Extension 1) rd ← rs ^ imm13
 Extension 2) rd ← rs ^ imm26

Code 15 12 11 8 7 4 3 0

 0 0 1 1 1 0 1 0 r s r d 0x3A__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – 0 ↔ ↔

 | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 xor %rd,%rs ; rd ← rd ^ rs

 The content of the rs register and that of the rd register are exclusively OR’ed, and the result is
loaded into the rd register.

 (2) Extension 1
 ext imm13

 xor %rd,%rs ; rd ← rs ^ imm13

 The content of the rs register and the zero-extended 13-bit immediate imm13 are exclusively
OR’ed, and the result is loaded into the rd register. The content of the rs register is not altered.

 (3) Extension 2
 ext imm13 ; = imm26(25:13)

 ext imm13 ; = imm26(12:0)

 xor %rd,%rs ; rd ← rs ^ imm26

 The content of the rs register and the zero-extended 26-bit immediate imm26 are exclusively
OR’ed, and the result is loaded into the rd register. The content of the rs register is not altered.

 (4) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit. In this case, extension of the immediate by the ext instruction
cannot be performed.

Example (1) xor %r0,%r0 ; r0 = r0 ^ r0

 (2) ext 0x1
 ext 0x1fff

 xor %r1,%r2 ; r1 = r2 ^ 0x00003fff

7 DETAILS OF INSTRUCTIONS

168 EPSON S1C33 FAMILY C33 PE CORE MANUAL

xor %rd, sign6
Function Exclusive OR
 Standard) rd ← rd ^ sign6
 Extension 1) rd ← rd ^ sign19
 Extension 2) rd ← rd ^ sign32

Code 15 12 11 10 9 4 3 0

 0 1 1 1 1 0 sign6 r d 0x78__

 | | | | | | | | | | | | | | |

Flag IE C V Z N

 – – 0 ↔ ↔

 | | | |

Mode Src: Immediate data (signed)
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 xor %rd,sign6 ; rd ← rd ^ sign6

 The content of the rd register and the sign-extended 6-bit immediate sign6 are exclusively OR’
ed, and the result is loaded into the rd register.

 (2) Extension 1
 ext imm13 ; = sign19(18:6)

 xor %rd,sign6 ; rd ← rd ^ sign19, sign6 = sign19(5:0)

 The content of the rd register and the sign-extended 19-bit immediate sign19 are exclusively
OR’ed, and the result is loaded into the rd register.

 (3) Extension 2
 ext imm13 ; = sign32(31:19)

 ext imm13 ; = sign32(18:6)

 xor %rd,sign6 ; rd ← rd ^ sign32, sign6 = sign32(5:0)

 The content of the rd register and the sign-extended 32-bit immediate sign32 are exclusively
OR’ed, and the result is loaded into the rd register.

 (4) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit. In this case, extension of the immediate by the ext instruction
cannot be performed.

Example (1) xor %r0,0x3e ; r0 = r0 ^ 0xfffffffe

 (2) ext 0x7ff
 xor %r1,0x3f ; r1 = r1 ^ 0x0001ffff

APPENDIX INSTRUCTION CODE LIST (IN ORDER OF CODES)

S1C33 FAMILY C33 PE CORE MANUAL EPSON 169

Appendix Instruction Code List (in Order of Codes)

Class 0 (1)

×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1

0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
1
1

0
0
1
0
0
1
1
0
0
1
1
0
0
1
0
0
1

0
1
0
0
1
1
1
0
1
0
1
0
1
0
0
1
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0

0
0
0
0

0

0

0
0
0

0
0
0
0

0

0

0
0
0

0
0

0

0

0

0
0
0

0
0

0

0

0

nop

slp

halt

pushn %rs

popn %rd

jpr %rb

jpr.d %rb

brk

retd

int imm2

reti

call %rb

ret

jp %rb

call.d %rb

ret.d

jp.d %rb

15
Class op1 imm2,rd,rs,rbop2d

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Mnemonic Extension

×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×

Delayed S
0 0

rs
rd
rb
rb

rb

rb
rb

rb

imm2

1
5
5

N+1
N+1

3
2
9
5
7
5
4
4
3
3
3
2

Cycle

Class 0 (2)

×
×
×
×
×

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
1

0
0
1
1
1

0
1
0
1
1

0
0
0
0
0

1
1
1
1
1 0 0 0 0

push %rs

pop %rd

pushs %ss

pops %sd

ld.cf

15
Class op1 rs,rd,ss,sdop2

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Mnemonic Extension

×
×
×
×
×

Delayed S
0 1

rs
rd
ss
sd

2
1

2(alr),3(ahr)
2(alr),3(ahr)

3

Cycle

Class 0 (3)

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

jrgt sign8

jrgt.d sign8

jrge sign8

jrge.d sign8

jrlt sign8

jrlt.d sign8

jrle sign8

jrle.d sign8

jrugt sign8

jrugt.d sign8

jruge sign8

jruge.d sign8

jrult sign8

jrult.d sign8

jrule sign8

jrule.d sign8

jreq sign8

jreq.d sign8

jrne sign8

jrne.d sign8

call sign8

call.d sign8

jp sign8

jp.d sign8

15
Class op1 sign8d

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Mnemonic Extension

×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×

Delayed S

sign8
sign8
sign8
sign8
sign8
sign8
sign8
sign8
sign8
sign8
sign8
sign8
sign8
sign8
sign8
sign8
sign8
sign8
sign8
sign8
sign8
sign8
sign8
sign8

3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
4
3
3
2

Cycle

APPENDIX INSTRUCTION CODE LIST (IN ORDER OF CODES)

170 EPSON S1C33 FAMILY C33 PE CORE MANUAL

Class 1

×

×

×

×

×

×

×
×
×

×

×

×

×

×

×
×

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
1
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
0
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1
0

ld.b %rd,[%rb]

ld.b %rd,[%rb]+

add %rd,%rs

srl %rd,imm5

ld.ub %rd,[%rb]

ld.ub %rd,[%rb]+

sub %rd,%rs

sll %rd,imm5

ld.h %rd,[%rb]

ld.h %rd,[%rb]+

cmp %rd,%rs

sra %rd,imm5

ld.uh %rd,[%rb]

ld.uh %rd,[%rb]+

ld.w %rd,%rs

sla %rd,imm5

ld.w %rd,[%rb]

ld.w %rd,[%rb]+

and %rd,%rs

rr %rd,imm5

ld.b [%rb],%rs

ld.b [%rb]+,%rs

or %rd,%rs

rl %rd,imm5

ld.h [%rb],%rs

ld.h [%rb]+,%rs

xor %rd,%rs

ld.w [%rb],%rs

ld.w [%rb]+,%rs

not %rd,%rs

15
Class op1 imm5,rb,rs rs,rdop2

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Mnemonic Extension

×
×

×
×

×
×

×
×

×
×

×
×

×
×

×
×

Delayed S

rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rs
rs
rd
rd
rs
rs
rd
rs
rs
rd

rb
rb
rs

imm5(3:0)
rb
rb
rs

imm5(3:0)
rb
rb
rs

imm5(3:0)
rb
rb
rs

imm5(3:0)
rb
rb
rs

imm5(3:0)
rb
rb
rs

imm5(3:0)
rb
rb
rs
rb
rb
rs

1,2(ext)
2
1
1

1,2(ext)
2
1
1

1,2(ext)
2
1
1

1,2(ext)
2
1
1

1,2(ext)
2
1
1

1,2(ext)
2
1
1

1,2(ext)
2
1

1,2(ext)
2
1

Cycle

Class 2

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0

ld.b %rd,[%sp+imm6]

ld.ub %rd,[%sp+imm6]

ld.h %rd,[%sp+imm6]

ld.uh %rd,[%sp+imm6]

ld.w %rd,[%sp+imm6]

ld.b [%sp+imm6],%rs

ld.h [%sp+imm6],%rs

ld.w [%sp+imm6],%rs

15
Class op1 imm6 rs,rd

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Mnemonic Extension

×
×
×
×
×
×
×
×

Delayed S

imm6
imm6
imm6
imm6
imm6
imm6
imm6
imm6

rd
rd
rd
rd
rd
rs
rs
rs

2
2
2
2
2
2
2
2

Cycle

Class 3

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1

add %rd,imm6

sub %rd,imm6

cmp %rd,sign6

ld.w %rd,sign6

and %rd,sign6

or %rd,sign6

xor %rd,sign6

not %rd,sign6

15
Class op1 imm6,sign6 rd

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Mnemonic Extension Delayed S

imm6
imm6
sign6
sign6
sign6
sign6
sign6
sign6

rd
rd
rd
rd
rd
rd
rd
rd

1
1
1
1
1
1
1
1

Cycle

APPENDIX INSTRUCTION CODE LIST (IN ORDER OF CODES)

S1C33 FAMILY C33 PE CORE MANUAL EPSON 171

Class 4 (1)

×
×

0
0

0
0

0
1

1
1

0
0

0
0

add %sp,imm10

sub %sp,imm10

15
Class op1 imm10

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Mnemonic Extension Delayed S

imm10
imm10

1
1

Cycle

Class 4 (2)

×
×
×
×
×
×
×
×
×
×
×
×
×
×

0
0
0
0
1
1
1
1
1
1
1
1
1
1

1
1
1
1
0
0
0
0
0
1
1
1
1
1

0
0
1
1
0
0
0
1
1
0
0
0
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
1
0
0
0
0
1
0
0

0
1
0
1
0
1
0
0
1
0
1
0
0
1

srl %rd,imm5

srl %rd,%rs

sll %rd,imm5

sll %rd,%rs

sra %rd,imm5

sra %rd,%rs

swap %rd,%rs

sla %rd,imm5

sla %rd,%rs

rr %rd,imm5

rr %rd,%rs

swaph %rd,%rs

rl %rd,imm5

rl %rd,%rs

15
Class op1 imm5,rs rdop2

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Mnemonic Extension Delayed S

rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd

imm5(3:0)
rs

imm5(3:0)
rs

imm5(3:0)
rs
rs

imm5(3:0)
rs

imm5(3:0)
rs
rs

imm5(3:0)
rs

1
1
1
1
1
1
1
1
1
1
1
1
1
1

Cycle

Class 5 (1)

×
×
×
×
×
×

×
×

×
×

×

×
×
×

0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1

0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
1
1

0
0
0
1
1
1
0
0
0
1
1
1
0
0
1
1
0
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
0
0
0

0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
1
0
0

0 imm3

0 imm3

0 imm3

0 imm3

ld.w %sd,%rs

ld.b %rd,%rs

mlt.h %rd,%rs

ld.w %rd,%ss ∗1
ld.ub %rd,%rs

mltu.h %rd,%rs

btst [%rb],imm3

ld.h %rd,%rs

mlt.w %rd,%rs

bclr [%rb],imm3

ld.uh %rd,%rs

mltu.w %rd,%rs

bset [%rb],imm3

ld.c %rd,imm4

bnot [%rb],imm3

ld.c imm4,%rs

adc %rd,%rs

sbc %rd,%rs

15
Class op1 imm4,r,s imm3,r,sop2

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Mnemonic Extension

×

×
×

×
×

×
×

×
×

×

Delayed S

sd
rd
rd
rd
rd
rd

rd
rd

rd
rd

rd

rs
rd
rd

rs
rs
rs
ss
rs
rs
rb
rs
rs
rb
rs
rs
rb

imm4
rb

imm4
rs
rs

1,3(psr)
1
5
1
1
5

2,3(ext)
1
7

3,4(ext)
1
7

3,4(ext)
1

3,4(ext)
1
1
1

Cycle

Class 5 (2)

×
×
×

1
1
1

1
1
1

1
1
1

1
1
1

0
0
0

1
1
1

1
1
1

1
1
1

0
0

imm5
imm5

do.c imm6

psrset imm5

psrclr imm5

15
Class op1 imm5,imm6op2

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Mnemonic Extension

×
×
×

Delayed S

imm60
0
1

0
1
0

op3
1
3
3

Cycle

Class 6

×1 1 0 ext imm13

15
Class imm13

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Mnemonic Extension

×

Delayed S

imm13 0,1

Cycle

Inst Function-Extended Instructions

 Inst Added Instructions

∗1 The ld.w %rd,%pc instruction must be executed as a delayed slot instruction. If it does not follow a delayed
branch instruction, the PC value that is loaded into the rd register may not be the next instruction address to the
ld.w instruction.

AMERICA

EPSON ELECTRONICS AMERICA, INC.

HEADQUARTERS
150 River Oaks Parkway
San Jose, CA 95134, U.S.A.
Phone: +1-800-228-3964 Fax: +1-408-922-0238

SALES OFFICE
Northeast
301 Edgewater Place, Suite 210
Wakefield, MA 01880, U.S.A.
Phone: +1-800-922-7667 Fax: +1-781-246-5443

EUROPE
EPSON EUROPE ELECTRONICS GmbH

HEADQUARTERS
Riesstrasse 15
80992 Munich, GERMANY
Phone: +49-89-14005-0 Fax: +49-89-14005-110

DÜSSELDORF BRANCH OFFICE
Altstadtstrasse 176
51379 Leverkusen, GERMANY
Phone: +49-2171-5045-0 Fax: +49-2171-5045-10

FRENCH BRANCH OFFICE
1 Avenue de l’ Atlantique, LP 915 Les Conquerants
Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE
Phone: +33-1-64862350 Fax: +33-1-64862355

UK & IRELAND BRANCH OFFICE
8 The Square, Stockley Park, Uxbridge
Middx UB11 1FW, UNITED KINGDOM
Phone: +44-1295-750-216/+44-1342-824451
Fax: +44-89-14005 446/447

Scotland Design Center
Integration House, The Alba Campus
Livingston West Lothian, EH54 7EG, SCOTLAND
Phone: +44-1506-605040 Fax: +44-1506-605041

ASIA
EPSON (CHINA) CO., LTD.
23F, Beijing Silver Tower 2# North RD DongSanHuan
ChaoYang District, Beijing, CHINA
Phone: +86-10-6410-6655 Fax: +86-10-6410-7320

SHANGHAI BRANCH
7F, High-Tech Bldg., 900, Yishan Road
Shanghai 200233, CHINA
Phone: +86-21-5423-5522 Fax: +86-21-5423-5512

EPSON HONG KONG LTD.
20/F, Harbour Centre, 25 Harbour Road
Wanchai, Hong Kong
Phone: +852-2585-4600 Fax: +852-2827-4346
Telex: 65542 EPSCO HX

EPSON Electronic Technology Development
(Shenzhen) LTD.
12/F, Dawning Mansion, Keji South 12th Road
Hi- Tech Park, Shenzhen
Phone: +86-755-2699-3828 Fax: +86-755-2699-3838

EPSON TAIWAN TECHNOLOGY & TRADING LTD.
14F, No. 7, Song Ren Road
Taipei 110
Phone: +886-2-8786-6688 Fax: +886-2-8786-6677

EPSON SINGAPORE PTE., LTD.
1 HarbourFront Place
#03-02 HarbourFront Tower One, Singapore 098633
Phone: +65-6586-5500 Fax: +65-6271-3182

SEIKO EPSON CORPORATION
KOREA OFFICE
50F, KLI 63 Bldg., 60 Yoido-dong
Youngdeungpo-Ku, Seoul, 150-763, KOREA
Phone: +82-2-784-6027 Fax: +82-2-767-3677

GUMI OFFICE
2F, Grand B/D, 457-4 Songjeong-dong
Gumi-City, KOREA
Phone: +82-54-454-6027 Fax: +82-54-454-6093

SEIKO EPSON CORPORATION
SEMICONDUCTOR OPERATIONS DIVISION

IC Sales Dept.
IC International Sales Group
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-42-587-5814 Fax: +81-42-587-5117

International Sales Operations

http://www.epsondevice.com

EPSON Electronic Devices Website

SEMICONDUCTOR OPERATIONS DIVISION

Issue July, 2006
Printed in Japan AL

Core Manual
S1C33 Family C33 PE

Document code: 410755500

	1 Summary
	1.1 Features
	1.2 Summary of Added/Changed Functions of the C33 PE
	1.2.1 Instructions
	1.2.2 Registers
	1.2.3 Address Space and Other

	2 Registers
	2.1 General-Purpose Registers (R0–R15)
	2.2 Program Counter (PC)
	2.3 Processor Status Register (PSR)
	2.4 Stack Pointer (SP)
	2.4.1 About the Stack Area
	2.4.2 SP Operation during Execution of Push-Related Instructions
	2.4.3 SP Operation during Execution of Pop-Related Instructions
	2.4.4 SP Operation during Execution of a Call Instruction
	2.4.5 SP Operation when an Interrupt or Exception Occurs

	2.5 Trap Table Base Register (TTBR)
	2.6 Arithmetic Operation Registers (ALR and AHR)
	2.7 Processor Identification Register (IDIR)
	2.8 Debug Base Register (DBBR)
	2.9 Register Notation and Register Numbers
	2.9.1 General-Purpose Registers
	2.9.2 Special Registers

	3 Data Formats
	3.1 Unsigned 8-Bit Transfer (Register → Register)
	3.2 Signed 8-Bit Transfer (Register → Register)
	3.3 Unsigned 8-Bit Transfer (Memory → Register)
	3.4 Signed 8-Bit Transfer (Memory → Register)
	3.5 8-Bit Transfer (Register → Memory)
	3.6 Unsigned 16-Bit Transfer (Register → Register)
	3.7 Signed 16-Bit Transfer (Register → Register)
	3.8 Unsigned 16-Bit Transfer (Memory → Register)
	3.9 Signed 16-Bit Transfer (Memory → Register)
	3.10 16-Bit Transfer (Register → Memory)
	3.11 32-Bit Transfer (Register → Register)
	3.12 32-Bit Transfer (Memory → Register)
	3.13 32-Bit Transfer (Register → Memory)

	4 Address Map
	5 Instruction Set
	5.1 S1C33-Series-Compatible Instructions
	5.2 Function Extended Instructions
	5.3 Instructions Added to the C33 PE Core
	5.4 Instructions Removed
	5.5 Addressing Modes (without ext extension)
	5.5.1 Immediate Addressing
	5.5.2 Register Direct Addressing
	5.5.3 Register Indirect Addressing
	5.5.4 Register Indirect Addressing with Postincrement
	5.5.5 Register Indirect Addressing with Displacement
	5.5.6 Signed PC Relative Addressing

	5.6 Addressing Modes with ext
	5.6.1 Extension of Immediate Addressing
	5.6.2 Extension of Register Indirect Addressing
	5.6.3 Exception Handling for ext Instructions

	5.7 Data Transfer Instructions
	5.8 Logical Operation Instructions
	5.9 Arithmetic Operation Instructions
	5.10 Multiply Instructions
	5.11 Shift and Rotate Instructions
	5.12 Bit Manipulation Instructions
	5.13 Push and Pop Instructions
	5.14 Branch and Delayed Branch Instructions
	5.14.1 Types of Branch Instructions
	5.14.2 Delayed Branch Instructions

	5.15 System Control Instructions
	5.16 Swap Instructions
	5.17 Other Instructions

	6 Functions
	6.1 Transition of the Processor Status
	6.1.1 Reset State
	6.1.2 Program Execution State
	6.1.3 Exception Handling
	6.1.4 Debug Exception
	6.1.5 HALT and SLEEP Modes

	6.2 Program Execution
	6.2.1 Instruction Fetch and Execution
	6.2.2 Execution Cycles and Flags

	6.3 Interrupts and Exceptions
	6.3.1 Priority of Exceptions
	6.3.2 Vector Table
	6.3.3 Exception Handling
	6.3.4 Reset
	6.3.5 Address Misaligned Exception
	6.3.6 NMI
	6.3.7 Software Exceptions
	6.3.8 Maskable External Interrupts
	6.3.9 Undefined Instruction Exception
	6.3.10 ext Exception

	6.4 Power-Down Mode
	6.5 Debug Circuit
	6.6 Coprocessor Interface

	7 Details of Instructions
	adc %rd, %rs
	add %rd, %rs
	add %rd, imm6
	add %sp, imm10
	and %rd, %rs
	and %rd, sign6
	bclr [%rb], imm3
	bnot [%rb], imm3
	brk
	bset [%rb], imm3
	btst [%rb], imm3
	call %rb / call.d %rb
	call sign8 / call.d sign8
	cmp %rd, %rs
	cmp %rd, sign6
	do.c imm6
	ext imm13
	halt
	int imm2
	jp %rb / jp.d %rb
	jp sign8 / jp.d sign8
	jpr %rb / jpr.d %rb
	jreq sign8 / jreq.d sign8
	jrge sign8 / jrge.d sign8
	jrgt sign8 / jrgt.d sign8
	jrle sign8 / jrle.d sign8
	jrlt sign8 / jrlt.d sign8
	jrne sign8 / jrne.d sign8
	jruge sign8 / jruge.d sign8
	jrugt sign8 / jrugt.d sign8
	jrule sign8 / jrule.d sign8
	jrult sign8 / jrult.d sign8
	ld.b %rd, %rs
	ld.b %rd, [%rb]
	ld.b %rd, [%rb]+
	ld.b %rd, [%sp + imm6]
	ld.b [%rb], %rs
	ld.b [%rb]+, %rs
	ld.b [%sp + imm6], %rs
	ld.c %rd, imm4
	ld.c imm4, %rs
	ld.cf
	ld.h %rd, %rs
	ld.h %rd, [%rb]
	ld.h %rd, [%rb]+
	ld.h %rd, [%sp + imm6]
	ld.h [%rb], %rs
	ld.h [%rb]+, %rs
	ld.h [%sp + imm6], %rs
	ld.ub %rd, %rs
	ld.ub %rd, [%rb]
	ld.ub %rd, [%rb]+
	ld.ub %rd, [%sp + imm6]
	ld.uh %rd, %rs
	ld.uh %rd, [%rb]
	ld.uh %rd, [%rb]+
	ld.uh %rd, [%sp + imm6]
	ld.w %rd, %rs
	ld.w %rd, %ss
	ld.w %rd, [%rb]
	ld.w %rd, [%rb]+
	ld.w %rd, [%sp + imm6]
	ld.w %rd, sign6
	ld.w %sd, %rs
	ld.w [%rb], %rs
	ld.w [%rb]+, %rs
	ld.w [%sp + imm6], %rs
	mlt.h %rd, %rs
	mlt.w %rd, %rs
	mltu.h %rd, %rs
	mltu.w %rd, %rs
	nop
	not %rd, %rs
	not %rd, sign6
	or %rd, %rs
	or %rd, sign6
	pop %rd
	popn %rd
	pops %sd
	psrclr imm5
	psrset imm5
	push %rs
	pushn %rs
	pushs %ss
	ret / ret.d
	retd
	reti
	rl %rd, %rs
	rl %rd, imm5
	rr %rd, %rs
	rr %rd, imm5
	sbc %rd, %rs
	sla %rd, %rs
	sla %rd, imm5
	sll %rd, %rs
	sll %rd, imm5
	slp
	sra %rd, %rs
	sra %rd, imm5
	srl %rd, %rs
	srl %rd, imm5
	sub %rd, %rs
	sub %rd, imm6
	sub %sp, imm10
	swap %rd, %rs
	swaph %rd, %rs
	xor %rd, %rs
	xor %rd, sign6

	Appendix Instruction Code List (in Order of Codes)

