S1C6P366

4-bit Single Chip Microcomputer

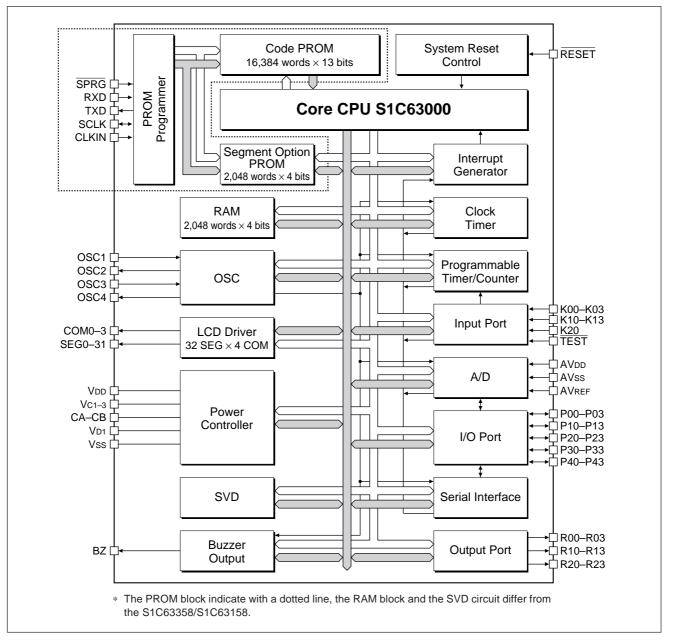
- Function Evaluation Flash built-in
- Compatible with S1C63358 and 158
- On-board writing supported

DESCRIPTION

The S1C6P366 is a microcomputer which has a high-performance 4-bit CPU S1C63000 as the core CPU, rewritable PROM, RAM, serial interface, watchdog timer, programmable timer, time base counter (1 system), SVD circuit, a segment type LCD driver (32 segments \times 4 commons), A/D converter and a special input port that can implement key position discrimination function using with the A/D converter. The S1C6P366 has a built-in large capacity PROM (16K \times 13 bits) and RAM (2K \times 4 bits) that are compatible with the S1C63358 and S1C63158, it can therefore be used for program development.

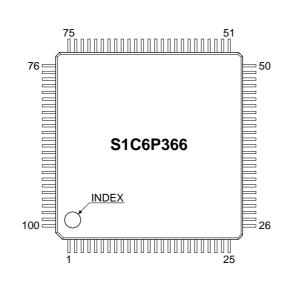
FEATURES

 OSC1 oscillation circuit OSC3 oscillation circuit Instruction set 	1.8 MHz (Typ.) CR or	4 MHz (Max.) ceramic oscillation circuit (*1)								
	Addressing mode: 8 ty	/pes								
Instruction execution time	At 32.768 kHz operation: Min. 61 µsec									
	At 4 MHz operation:	Min. 0.5 µsec								
PROM capacity	Code PROM:	16,384 words $ imes$ 13 bits								
	Segment option PROM	<i>I</i> : 2,048 words \times 4 bits								
	Programming method:	Parallel or serial programming (exclusive PROM writer is used)								
	Rewriting:	100 times								
RAM capacity	Data memory:	2,048 words \times 4 bits								
	Display memory:	32 words \times 4 bits								
Input port	9 bits 8 bits (with p	ull-up resistors)								
	1 bit (for key	position sensing interrupt by A/D)								
Output port	12 bits (2 special out	tputs are available *2)								
● I/O port	20 bits (4 serial inputs/outputs are available *2)									
	(4 A/D inputs are available *2)									
 Serial interface 	1 port (8-bit clock s	ynchronous system)								
LCD driver	32 segments \times 4, 3 or	2 commons (*2), 1/3 bias drive								
 Time base counter 										
Programmable timer										
	with event counter fun	ction								
 Watchdog timer 										
● A/D converter										
		B, A/D clock: OSC1, OSC3 (2.7 V to 5.5 V)								
		Hz or 4 kHz (*2), 2 Hz interval output (*2)								
 Supply voltage detection (SVD) circuit 		le (2.7 V, 2.8 V)								
External interrupt		2 systems								
	Key sensing interrupt:	-								
 Internal interrupt 		4 systems								
	Programmable timer in									
	Serial interface interru									
	A/D converter:	1 system								


SEIKO EPSON CORPORATION

S1C6P366

- Power supply voltage2.7 V to 5.5 V
- Operating temperature range-20°C to 70°C
- Current consumption (Typ.) Single clock:


	During HALT (32 kHz)	3.0 V (LCD power OFF)	2.5 µA
		3.0 V (LCD power ON)	37 µA
	During operation (32 kHz)	3.0 V (LCD power ON)	120 µA
	Twin clock:		
	During operation (4 MHz)	3.0 V (LCD power ON)	800 µA
Package	QFP15-100pin (plastic) or chip)	
	*1: Can be selected with mask op	tion *2: Can be selected wit	h software

BLOCK DIAGRAM

■ PIN CONFIGURATION

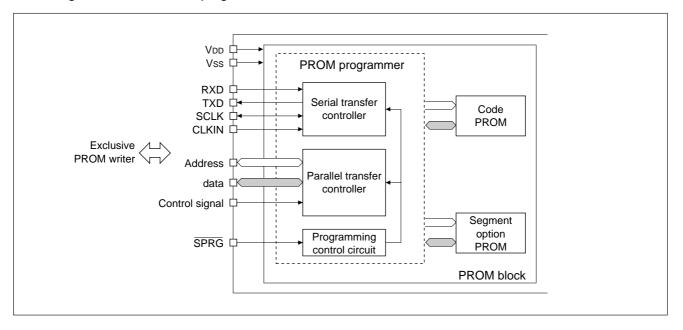
No.	Pin r	ame	No.	Pin r	ame	No.	Pin r	ame		Pin r	name
INO.	S1C6P366	S1C63358	INO.	S1C6P366	S1C63358	INO.	S1C6P366	S1C63358	No.	S1C6P366	S1C63358
1	SEG7	SEG7	26	CLKIN	N.C.	51	SCLK	N.C.	76	R13	R13
2	SEG8	SEG8	27	SPRG	N.C.	52	P43	P43	77	R12	R12
3	SEG9	SEG9	28	COM0	COM0	53	P42	P42	78	R11	R11
4	SEG10	SEG10	29	COM1	COM1	54	P41	P41	79	R10	R10
5	SEG11	SEG11	30	COM2	COM2	55	P40	P40	80	R03	R03
6	SEG12	SEG12	31	COM3	COM3	56	P33	P33	81	R02	R02
7	SEG13	SEG13	32	CB	CB	57	P32	P32	82	R01	R01
8	SEG14	SEG14	33	CA	CA	58	P31	P31	83	R00	R00
9	SEG15	SEG15	34	Vсз	Vc3	59	P30	P30	84	BZ	BZ
10	SEG16	SEG16	35	VC2	VC2	60	P23	P23	85	K00	K00
11	SEG17	SEG17	36	VC1	VC1	61	P22	P22	86	K01	K01
12	SEG18	SEG18	37	Vss	Vss	62	P21	P21	87	K02	K02
13	SEG19	SEG19	38	OSC1	OSC1	63	P20	P20	88	K03	K03
14	SEG20	SEG20	39	OSC2	OSC2	64	P13	P13	89	K10	K10
15	SEG21	SEG21	40	Vd1	Vd1	65	P12	P12	90	K11	K11
16	SEG22	SEG22	41	OSC3	OSC3	66	P11	P11	91	K12	K12
17	SEG23	SEG23	42	OSC4	OSC4	67	P10	P10	92	K13	K13
18	SEG24	SEG24	43	Vdd	Vdd	68	P03	P03	93	K20	K20
19	SEG25	SEG25	44	RESET	RESET	69	P02	P02	94	SEG0	SEG0
20	SEG26	SEG26	45	TEST	TEST	70	P01	P01	95	SEG1	SEG1
21	SEG27	SEG27	46	AVREF	AVREF	71	P00	P00	96	SEG2	SEG2
22	SEG28	SEG28	47	AVdd	AVdd	72	R23	R23	97	SEG3	SEG3
23	SEG29	SEG29	48	AVss	AVss	73	R22	R22	98	SEG4	SEG4
24	SEG30	SEG30	49	RXD	N.C.	74	R21	R21	99	SEG5	SEG5
25	SEG31	SEG31	50	TXD	N.C.	75	R20	R20	100	SEG6	SEG6

N.C. : No Connection

■ PIN DESCRIPTION

Pin name	Pin No.	In/Out	Function
Vdd	43	_	Power (+) supply pin
Vss	37	_	Power (–) supply pin
Vd1	40	_	Oscillation system regulated voltage output pin
Vc1–Vc3	36–34	_	LCD system power supply pin 1/3 bias
CA, CB	33, 32	_	LCD system boosting/reducing capacitor connecting pin
OSC1	38	I	Crystal oscillation input pin
OSC2	39	0	Crystal oscillation output pin
OSC3	41	I	Ceramic or CR oscillation input pin (selected by mask option)
OSC4	42	0	Ceramic or CR oscillation output pin (selected by mask option)
K00–K03	85–88	I	Input port
K10–K13	89–92	I	Input port
K20	93	I	Input port with control
P00-P03	71–68	I/O	I/O port
P10–P13	67–64	I/O	I/O port (switching to serial I/F input/output is possible by software)
P20–P23	63–60	I/O	I/O port
P30–P33	59–56	I/O	I/O port
P40–P43	55–52	I/O	I/O port (can be used as A/D input)
R00	83	0	Output port
R01	82	0	Output port
R02	81	0	Output port (switching to TOUT output is possible by software)
R03	80	0	Output port (switching to FOUT output is possible by software)
R10–R13	79–76	0	Output port
R20–R23	75–72	0	Output port
COM0–COM3	28–31	0	LCD common output pin (1/4, 1/3, 1/2 duty can be selected by software)
SEG0-SEG31	94–100, 1–25	0	LCD segment output pin
AVdd	47	-	Power (+) supply pin for A/D converter
AVss	48	_	Power (–) supply pin for A/D converter
AVREF	46	_	Reference voltage for A/D converter
BZ	84	0	Buzzer output pin
RESET	44	I	Initial reset input pin
TEST	45	I	Testing input pin
RXD *1	49	I	Serial data input pin for Flash programming
TXD *1	50	0	Serial data output pin for Flash programming
SCLK *1	51	I/O	Serial clock input/output pin for Flash programming
CLKIN *1	26	I	Clock input pin for Flash programming
SPRG *1	27	I	Control pin for Flash programming

*1 N.C. in S1C63358


Refer to "PROM Programmer and Operating Mode", for the Flash programming pins.

■ PROM PROGRAMMING AND OPERATING MODE

The S1C6P366 has built-in Flash EEPROMs as the code PROM and the segment option PROM that allow the developer to program the PROM data using the exclusive PROM writer (Universal ROM Writer II (S5U1C88000W1)). This chapter explains the PROM programmer that controls data writing and the writing mode.

• Configuration of PROM Programmer

The configuration of the PROM programmer is shown below.

The PROM programmer supports the following two writing modes.

1) Serial Programming

2) Parallel Programming

Serial programming mode uses the serial communication ports of the PROM writer and S1C6P366 to write data. This mode enables on-board programming by designing the target board with a serial writing function. In parallel programming mode, the on-chip PROM can be directly programmed using the exclusive PROM writer with the adaptor socket installed. Refer to "Operating Mode", for each programming method.

Terminals

The S1C6P366 provides the following terminals for programming the Flash EEPROM.

SPRG: Flash programming control terminal (pull-up resistor built-in)

When set to High ... Normal operation mode (The CPU executes the program in the Flash EEPROM.) When set to Low Programming mode (for writing data to the Flash EEPROM)

- SCLK: Serial transfer clock input/output terminal for Serial Programming (pull-up resistor built-in)
- RXD: Serial data input terminal for Serial Programming (pull-up resistor built-in)
- TXD: Serial data output terminal for Serial Programming

CLKIN: PROM programmer clock input terminal (1 MHz; pull-up resistor built-in)

The five terminals above are provided exclusively for the Flash EEPROM. The S1C63358 and S1C63158 do not have these terminals.

Operating Mode

Three operating modes are available in the S1C6P366: one is for normal operation and the others are for programming.

The operating mode is decided by the terminal setting at power-on or initial reset.

When the SPRG terminal is set to Low, the S1C6P366 enters serial programming mode. To operate the S1C6P366 in normal operation mode (to execute the instruction written to the Flash EEPROM after programming), the SPRG terminal should be set to High or open.

The parallel programming including the mode switching and terminal settings is controlled by the exclusive PROM writer.

The following table lists the operating modes.

Operating mode	SPRG terminal
Normal mode	High or open
Serial programming mode	Set by PROM writer
Parallel programming mode	Set by PROM writer

Normal Operation Mode

In this mode, the S1C63000 core CPU and the peripheral circuits operate by the instructions programmed in the Flash EEPROM. Note that inspection data is written to the PROM at shipment.

In normal operation mode, set the terminals for programming the Flash EEPROM as as below. The board must be designed so that the terminal settings cannot be changed while the IC is operating.

Terminal	Setting
SPRG	High or open
SCLK	High or open
RXD	High or open
TXD	Open
CLKIN	High or open

When the SPRG terminal is set to Low, the S1C6P366 starts operating in serial programming mode after poweron or an initial reset. Be sure not to change the SPRG terminal status during normal operation, because the operating mode may change according to the terminal status.

Serial Programming Mode

Serial programming mode writes data to the Flash EEPROM using a serial communication between the exclusive PROM writer (Universal ROM Writer II) and the S1C6P366. By providing a serial communication port on the target board, the S1C6P366 on the board can be programmed (on-board writing).

Terminal	Setting					
SPRG	Connected to PROM writer					
SCLK	Connected to PROM writer					
RXD	Connected to PROM writer					
TXD	Connected to PROM writer					
CLKIN	Connected to PROM writer					

The serial programming is performed using the 1 MHz clock supplied from the PROM writer to the CLKIN terminal. Take noise measure into consideration so that noise does not affect the clock line input to the CLKIN terminal when designing the target board.

Parallel Programming Mode

The parallel programming can be performed by installing the S1C6P366 to the exclusive PROM writer via the adaptor socket. In this mode, it is not necessary to set up the programming terminals since it is controlled by the exclusive PROM writer.

■ DIFFERENCES FROM THE MASK ROM MODELS

This section explains the differences in functions (except for the Flash EEPROM block) between the S1C6P366 and the mask ROM models (S1C63358 and S1C63158).

Mask Option

The S1C6P366 cannot specify the S1C63358 and S1C63158 mask options individually. The following option combination is provided for the S1C6P366.

Note: Recommended LCD segment option data is include in the S5U1C6P366Y1 package. Modifying the LCD segment option is done at the user's own risk. For the LCD segment specifications, both the segment allocation and the output specification can be selected similarly to the S1C63358. Create segment option data using the segment option generator SOG63358 and write it to the segment option PROM in the S1C6P366. The selected option specifications are automatically set to each segment terminal.

Mask option		S1C6P366E (Type E)	S1C6P366F (Type F)
OSC1 oscillation circuit		Crystal (32.768 kHz)	Crystal (32.768 kHz)
OSC3 oscillation circuit		Ceramic	CR
Multiple key reset combination		Not used	Not used
Multiple key reset time authorize		Not used	Not used
Input port pull-up resistors	K00	With pull-up resistor	With pull-up resistor
	K01	With pull-up resistor	With pull-up resistor
	K02	With pull-up resistor	With pull-up resistor
	K03	With pull-up resistor	With pull-up resistor
	K10	With pull-up resistor	With pull-up resistor
	K11	With pull-up resistor	With pull-up resistor
	K12	With pull-up resistor	With pull-up resistor
	K13	With pull-up resistor	With pull-up resistor
	K20	With pull-up resistor	With pull-up resistor
Output port output specifications	R10–R13	Complementary output	Complementary output
	R20–R23	Complementary output	Complementary output
I/O port output specifications	P10–P13	Complementary output	Complementary output
	P20	Complementary output	Complementary output
	P21	Complementary output	Complementary output
	P22	Complementary output	Complementary output
	P23	Complementary output	Complementary output
	P30	Complementary output	Complementary output
	P31	Complementary output	Complementary output
	P32	Complementary output	Complementary output
	P33	Complementary output	Complementary output
	P40	Complementary output	Complementary output
	P41	Complementary output	Complementary output
	P42	Complementary output	Complementary output
	P43	Complementary output	Complementary output
I/O port pull-up resistors	P10–P13	With pull-up resistor	With pull-up resistor
	P20	With pull-up resistor	With pull-up resistor
	P21	With pull-up resistor	With pull-up resistor
	P22	With pull-up resistor	With pull-up resistor
	P23	With pull-up resistor	With pull-up resistor
	P30	With pull-up resistor	With pull-up resistor
	P31	With pull-up resistor	With pull-up resistor
	P32	With pull-up resistor	With pull-up resistor
	P33	With pull-up resistor	With pull-up resistor
	P40	No pull-up resistor	No pull-up resistor
	P41	No pull-up resistor	No pull-up resistor
	P42	No pull-up resistor	No pull-up resistor
	P43	No pull-up resistor	No pull-up resistor
LCD drive bias		1/3 bias (internal)	1/3 bias (internal)
Serial interface signal polarity		Negative polarity	Negative polarity
Buzzer output specification		Negative polarity	Negative polarity

S	1C6P366	S	1C63158	S1	IC6P366	S1C63158		S	S1C6P366		1C63158	S1C6P366		S1C63158	
No.	Pin name	No.	Pin name	No.	Pin name	No.	Pin name	No.		No.	Pin name	No.	Pin name	No.	Pin name
1	SEG7	-	-	26	CLKIN	-	– (*1)	51	SCLK	-	– (*1)	76	R13	30	R13
2	SEG8	-	-	27	SPRG	-	– (*1)	52	P43	14	P43	77	R12	31	R12
3	SEG9	-	—	28	COM0	-	—	53	P42	15	P42	78	R11	32	R11
4	SEG10	-	-	29	COM1	-	-	54	P41	16	P41	79	R10	33	R10
5	SEG11	-	—	30	COM2	-	—	55	P40	17	P40	80	R03	34	R03
6	SEG12	-	-	31	COM3	-	-	56	P33	-	-	81	R02	35	R02
7	SEG13	-	—	32	CB	11	CB	57	P32	-	—	82	R01	37	R01
8	SEG14	-	_	33	CA	12	CA	58	P31	-	_	83	R00	38	R00
9	SEG15	-	_	34	Vсз	-	_	59	P30	-	_	84	BZ	39	BZ
10	SEG16	-	_	35	VC2	13	VC2	60	P23	18	P23	85	K00	40	K00
11	SEG17	-	_	36	VC1	-	_	61	P22	19	P22	86	K01	41	K01
12	SEG18	-	_	37	Vss	1	Vss	62	P21	20	P21	87	K02	42	K02
13	SEG19	-	_	38	OSC1	2	OSC1	63	P20	21	P20	88	K03	43	K03
14	SEG20	-	-	39	OSC2	3	OSC2	64	P13	22	P13	89	K10	44	K10
15	SEG21	-	_	40	VD1	4	Vd1	65	P12	23	P12	90	K11	45	K11
16	SEG22	-	-	41	OSC3	5	OSC3	66	P11	24	P11	91	K12	46	K12
17	SEG23	-	_	42	OSC4	6	OSC4	67	P10	25	P10	92	K13	47	K13
18	SEG24	-	_	43	Vdd	7	Vdd	68	P03	26	P03	93	K20	48	K20
19	SEG25	-	_	44	RESET	8	RESET	69	P02	27	P02	94	SEG0	-	_
20	SEG26	-	_	45	TEST	9	TEST	70	P01	28	P01	95	SEG1	-	_
21	SEG27	-	_	46	AVREF	10	Vref	71	P00	29	P00	96	SEG2	-	_
22	SEG28	-	-	47	AVdd	_	-	72	R23	-	-	97	SEG3	_	-
23	SEG29	-	_	48	AVss	-	_	73	R22	-	_	98	SEG4	-	_
24	SEG30	-	-	49	RXD	_	– (*1)	74	R21	-	-	99	SEG5	_	-
25	SEG31	-	-	50	TXD	-	- (*1)	75	R20	-	-	100	SEG6	-	-

• Pin Aassignment Comparison List (S1C6P366: QFP15-100pin, S1C63158: QFP12-48pin)

*1 : Pin for serial programming

• Pin Aassignment Comparison List (S1C6P366: QFP15-100pin, S1C63158: QFP13-64pin)

S	1C6P366	S	1C63158	S	1C6P366	S	1C63158	S	1C6P366	S	1C63158	S	1C6P366	S1C63158	
No.	Pin name	No.	Pin name												
1	SEG7	-	-	26	CLKIN	-	– (*1)	51	SCLK	-	– (*1)	76	R13	41	R13
2	SEG8	-	-	27	SPRG	—	– (*1)	52	P43	17	P43	77	R12	42	R12
3	SEG9	-	_	28	COM0	—	_	53	P42	18	P42	78	R11	43	R11
4	SEG10	-	-	29	COM1	—	-	54	P41	19	P41	79	R10	44	R10
5	SEG11	-	-	30	COM2	—	-	55	P40	20	P40	80	R03	45	R03
6	SEG12	-	-	31	COM3	-	-	56	P33	21	P33	81	R02	46	R02
7	SEG13	-	-	32	CB	13	СВ	57	P32	22	P32	82	R01	52	R01
8	SEG14	-	-	33	CA	14	CA	58	P31	23	P31	83	R00	53	R00
9	SEG15	-	-	34	Vсз	—	-	59	P30	24	P30	84	BZ	54	BZ
10	SEG16	-	-	35	VC2	15	Vc2	60	P23	25	P23	85	K00	55	K00
11	SEG17	-	-	36	VC1	—	-	61	P22	26	P22	86	K01	56	K01
12	SEG18	-	-	37	Vss	1	Vss	62	P21	27	P21	87	K02	57	K02
13	SEG19	-	—	38	OSC1	2	OSC1	63	P20	28	P20	88	K03	58	K03
14	SEG20	-	-	39	OSC2	3	OSC2	64	P13	29	P13	89	K10	59	K10
15	SEG21	-	—	40	Vd1	4	Vd1	65	P12	30	P12	90	K11	60	K11
16	SEG22	-	-	41	OSC3	5	OSC3	66	P11	31	P11	91	K12	61	K12
17	SEG23	-	—	42	OSC4	6	OSC4	67	P10	32	P10	92	K13	62	K13
18	SEG24	-	-	43	Vdd	7	Vdd	68	P03	33	P03	93	K20	63	K20
19	SEG25	-	_	44	RESET	8	RESET	69	P02	34	P02	94	SEG0	-	_
20	SEG26	-	-	45	TEST	9	TEST	70	P01	35	P01	95	SEG1	-	—
21	SEG27	-	_	46	AVREF	12	Vref	71	P00	36	P00	96	SEG2	-	_
22	SEG28	-	-	47	AVdd	10	AVdd	72	R23	37	R23	97	SEG3	-	-
23	SEG29	-	-	48	AVss	11	AVss	73	R22	38	R22	98	SEG4	-	-
24	SEG30	-	-	49	RXD	-	– (*1)	74	R21	39	R21	99	SEG5	-	-
25	SEG31	-	_	50	TXD	-	– (*1)	75	R20	40	R20	100	SEG6	-	-

*1 : Pin for serial programming

Power Supply

Since the S1C6P366 is produced using the Flash EEPROM process, the characteristics are different from those of the mask ROM models.

1) Operating voltage range

 S1C6P366:
 2.7 to 5.5V

 S1C63358:
 2.3 to 3.6V (Min. 0.9V when the OSC3 is not used)

 S1C63158:
 2.2 to 3.6V (Min. 0.9V when the OSC3 is not used)

The circuit blocks of the S1C6P366 except for the oscillation circuit and LCD driver (CPU, PROM, RAM and peripheral digital circuits) operate with the source voltage supplied between the VDD and Vss terminals. Therefore, the VDC register (I/O memory address: FF00H, data bit: D0) is invalidated and is used as a general-purpose register. Writing "1" or "0" to this register does not affect the VD1 output voltage level.

S1C63158

Address		Reg	ister					Comment	
Address	D3	D2	D1	D0	Name	Init	1	0	Comment
	0	0000	0		CLKCHG	0	OSC3	OSC1	CPU clock switch
	CLKCHG	OSCC	0	VDC	OSCC	0	On	Off	OSC3 oscillation On/Off
FF00H	_		_		0	-			Unused
	R/	W	R	R/W	VDC	0	2.1 V	1.3 V	CPU operating voltage switch (1.3 V: OSC1, 2.1 V: OSC3)

S1C63358

Address		Reg	ister						Comment					
Address	D3	D2	D1	D0	Name	Init	1	0	Comment					
	01.100.10	0000			CLKCHG	0	OSC3	OSC1	CPU clock switch					
	CLKCHG	USCC	0	VDC	OSCC	0	On	Off	OSC3 oscillation On/Off					
FF00H	_		-		0	-			Unused					
	R/W R		R/W	VDC	0	2.25 V	1.35 V	CPU operating voltage switch (1.35 V: OSC1, 2.25 V: OSC3)						

S1C6P366

	\ ddroool	Register					Commont					
	Address	D3	D2	D1	D0	Name	Init	1	0	Comment		
Γ			0000		VDC	CLKCHG	0	OSC3	OSC1	CPU clock switch		
		CLKCHG	USCC	0		OSCC	0	On	Off	OSC3 oscillation On/Off		
	FF00H			_		0	-			Unused		
		R/	w	R	R/W	VDC	0	(OSC3)	(OSC1)	(Operating voltage switch, CPU clock switch)		

* In the S1C6P366, the VD1 level is fixed at 2.05V regard less of the VDC register value.

2) Operating mode of oscillation system voltage regulator

The operating mode range of the S1C6P366 is different from that of the S1C63358 and S1C63158 because the operable voltage range is different.

S1C63158

Power supply	Operating	VD1 (V)	Supply voltage VDD (V)						
circuit	condition	VDI (V)	0.9–1.35	1.35–2.2	2.2–3.6	3.6–5.5			
Oscillation system	OSC1	1.3	Vc2 mode	Norma	l mode	Not allowed			
voltage regulator	OSC3 (2 MHz)	2.1	Not al	lowed Normal mode		Not allowed			
	<u>.</u>								

S1C63358

Operating		Supply voltage VDD (V)						
condition	VDI (V)	0.9–1.4	1.4–2.3	2.3–3.6	3.6–5.5			
OSC1	1.3	Vc2 mode	Norma	l mode	Not allowed			
OSC3 (4 MHz)	2.25	Not al	lowed	Normal mode	Not allowed			
ŀ	condition OSC1	conditionVD1 (V)OSC11.3	condition VD1 (V) 0.9–1.4 OSC1 1.3 Vc2 mode	condition VD1 (V) 0.9–1.4 1.4–2.3 OSC1 1.3 Vc2 mode Norma	condition VD1 (V) 0.9–1.4 1.4–2.3 2.3–3.6 OSC1 1.3 Vc2 mode Normal mode			

S1C6P366

01001000												
Power supply	Operating	Vd1 (V)	Supply voltage VDD (V)									
circuit	condition	VDI (V)	0.9–1.4	1.4–2.7	2.7–3.6	3.6–5.5						
Oscillation system	OSC1	2.05	Not al	lowed	Normal mode							
voltage regulator	OSC3 (4 MHz)	Vdd	Not al	lowed	Norma	l mode						

 \ast The S1C6P366 does not enter the Vc2 mode.

The internal circuits of the S1C63358 and S1C63158 operate with the oscillation system regulated voltage (VD1). The S1C6P366 internal circuits operate with the supply voltage (VDD).

3) Power supply terminal for the oscillation circuit (VD1)

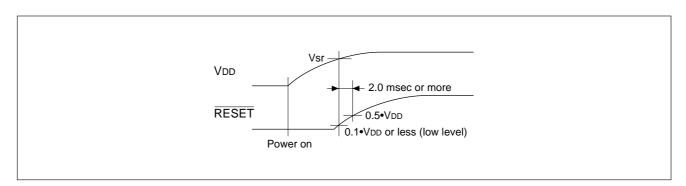
The VD1 voltage that is generated by the internal voltage regulator is used only for the OSC1 oscillation circuit to stabilize the oscillation. As explained in Item 1 above, the VDC register (FF00H•D0) does not affect the VD1 output voltage.

4) Operating mode of LCD system voltage regulator

The operable voltage range is different.

S1C63358: VDD = 0.9V to 1.4V VC1 = VDDVDD = 1.4V to 3.6V VC1 = 1.05V (Typ.) S1C6P366: VDD = 2.7V to 5.5V VC1 = 1.05V (Typ.)

* The S1C6P366 operation is guaranteed within the above voltage range.


5) Operating mode of A/D converter power supply

The A/D converter operating mode range of the S1C6P366 is different from that of the S1C63358 and S1C63158 because the operable voltage range is different.

S1C63158								
Circuit	Supply voltage VDD (V)							
Circuit	0.9–2.2	2.2–3.6	3.6–5.5					
A/D converter	Vc2 mode	Normal mode	Not allowed					
S1C63358								
Circuit	Supply voltage VDD (V)							
Circuit	0.9–1.6	1.6–3.6	3.6–5.5					
A/D converter	Vc2 mode	Normal mode	Not allowed					
S1C6P366								
Circuit	Sup	ply voltage VDD) (V)					
Circuit	0.9–2.7	2.7–3.6	3.6–5.5					
A/D converter	Not allowed	Norma	l mode					

Initial Reset

When the power is turned on, the reset terminal must be set at Low level until the supply voltage rises to the Vsr level.

The Vsr voltage level is different:

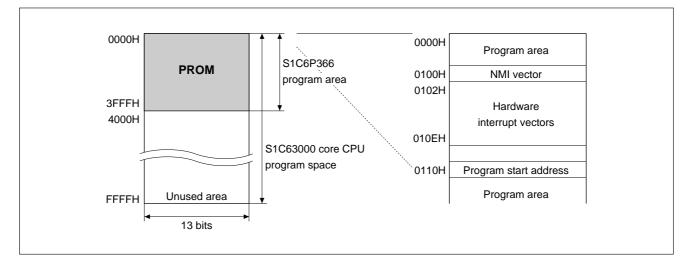
 S1C63158:
 Vsr = 1.3 V

 S1C63358:
 Vsr = 1.4 V

 S1C6P366:
 Vsr = 2.7 V

Furthermore, S1C6P366 uses the initial reset signal as a trigger for setting either the normal operation mode or the programming mode. Therefore, design the reset input circuit so that the IC will be reset for sure. Initial resetting during operation is the same as the S1C63358.

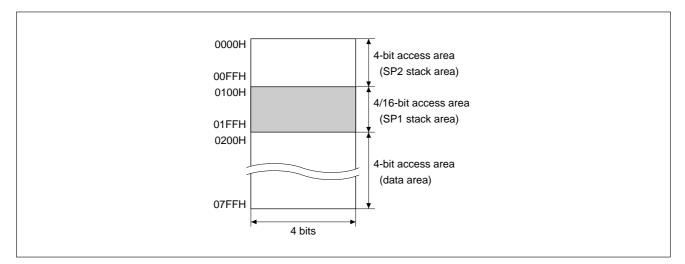
When resetting the IC in the normal operation mode, make sure to fix the SPRG terminal at High level or leave open.


• PROM, RAM

The S1C6P366 employs a Flash EEPROM for the internal PROM. The Flash EEPROM can be rewritten up to 100 times. Rewriting data is done at the user's own risk.

1) Code PROM

The built-in code PROM is a Flash EEPROM for loading programs, and has a capacity of 16,384 steps \times 13 bits. The core CPU can linearly access the program space up to step FFFFH from step 0000H, however, the program area of the S1C6P366 is step 0000H to step 3FFFH. The program start address after initial reset is assigned to step 0110H. The non-maskable interrupt (NMI) vector and hardware interrupt vectors are allocated to step 0100H and steps 0102H–010EH, respectively.


Note: Pay attention to the application program size since the code PROM of the S1C63358/S1C63158 is smaller (8,192 steps × 13 bits, 0000H–1FFFH) than that of the S1C6P366.

2) RAM

The RAM is a data memory for storing various kinds of data, and has a capacity of 2,048 words × 4 bits. The RAM area is assigned to addresses 0000H to 07FFH on the data memory map. Addresses 0100H to 01FFH are 4-bit/16-bit data accessible areas and in other areas it is only possible to access 4-bit data. When programming, refer to the "Technical Manual" of the S1C63358 or S1C63158.

Note: Pay attention to the application data size since the RAM of the S1C63358/S1C63158 is smaller (512 words \times 4 bits) than that of the S1C6P366.

Oscillation Circuit

In the S1C6P366, only crystal oscillation is available for the OSC1 oscillation circuit and either ceramic or CR oscillation is available for the OSC3 oscillation circuit. Furthermore, pay attention to the difference on the oscillation start time according to the supply voltage. Be sure to have enough margin especially for stabilizing the OSC3 oscillation when controlling the peripheral circuit that uses the OSC3 clock.

* The S1C6P366 has differences in its production process from the mask ROM models (S1C63358 and S1C63158). The constant must be decided according to the characteristics of the mask ROM model.

• SVD Circuit

The S1C6P366 has a built-in SVD (supply voltage detection) circuit the same as the S1C63358 and S1C63158. However, the detection levels are different from those of the S1C63358 and S1C63158. Furthermore, there is a great restriction on the operable detection levels in the S1C6P366. When using the SVD function, check the available detection level.

Detection		S1C63158			S1C63358			S1C6P366			
level	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.		
SVDS3-0 = "0"	0.95	1.05	1.15	0.95	1.05	1.15		Not allowed			
SVDS3-0 = "1"	1.05	1.10	1.15	1.02	1.10	1.18		Not allowed			
SVDS3-0 = "2"	1.10	1.15	1.20	1.07	1.15	1.23		Not allowed			
SVDS3-0 = "3"	1.15	1.20	1.25	1.12	1.20	1.28		Not allowed			
SVDS3-0 = "4"	1.20	1.25	1.30	1.16	1.25	1.34		Not allowed			
SVDS3-0 = "5"	1.25	1.30	1.35	1.21	1.30	1.39	Not allowed				
SVDS3-0 = "6"	1.35	1.40	1.45	1.30	1.40	1.50	Not allowed				
SVDS3-0 = "7"	1.55	1.60	1.65	1.49	1.60	1.71		Not allowed			
SVDS3-0 = "8"	1.90	1.95	2.00	1.81	1.95	2.09		Not allowed			
SVDS3-0 = "9"	1.95	2.00	2.05	1.86	2.00	2.14		Not allowed			
SVDS3-0 = "10"	2.00	2.05	2.10	1.91	2.05	2.19		Not allowed			
SVDS3-0 = "11"	2.05	2.10	2.15	1.95	2.10	2.25		Not allowed			
SVDS3-0 = "12"	2.15	2.20	2.25	2.05	2.20	2.35		Not allowed			
SVDS3–0 = "13"	2.25	2.30	2.35	2.14	2.30	2.46		Not allowed			
SVDS3–0 = "14"	2.45	2.50	2.55	2.33	2.50	2.68	2.50 2.70 2.90				
SVDS3-0 = "15"	2.55	2.60	2.65	2.42	2.60	2.78	2.60 2.80 3.00				

A criteria voltage can be set using the SVDS0–SVDS3 register (I/O memory address: FF04H). Since the minimum operating voltage of the S1C6P366 is 2.7V, 2.7V or less criteria voltages are not available. Be aware that the SVD circuit in the S1C6P366 may not operate when a 2.7V or less criteria voltage is selected. For the software control sequence of the SVD circuit, refer to the Technical Manual of the S1C63358 and S1C63158.

ELECTRICAL CHARACTERISTICS

Note: The electrical characteristics of the S1C6P366 are different from those of the S1C63358/S1C63158. The following characteristic values should be used as reference values when the S1C6P366 is used as a development tool.

Absolute Maximum Ratings

		(Vs	s=0V)
Rating	Symbol	Value	Unit
Supply voltage	Vdd	-0.5 to 7.0	V
Input voltage (1)	Vi	-0.5 to VDD + 0.3	V
Input voltage (2)	Viosc	-0.5 to VD1 + 0.3	V
Permissible total output current *1	ΣΙνdd	10	mA
Operating temperature	Topr	-20 to 70	°C
Storage temperature *2	Tstg	-65 to 150	°C
Soldering temperature / time	Tsol	260°C, 10sec (lead section)	-
Permissible dissipation *3	PD	250	mW

*1: The permissible total output current is the sum total of the current (average current) that simultaneously flows from the output pin (or is drawn in). *2: The storage temperature cannot guarantee data holding capability.

*3: In case of plastic package (QFP15-100pin).

• Recommended Operating Conditions

Recommended Oper							
Condition	Symbol		Remark	Min.	Тур.	Max.	Unit
Supply voltage	Vdd	Vss=0V	Normal mode	2.7	3.0	5.5	V
	AVDD	AVss=0V		2.7	3.0	5.5	V
Oscillation frequency	fosc1	Crystal oscillati	on	-	32.768	-	kHz
	fosc3	CR oscillation			1800		kHz
		Ceramic oscilla	ition			4100	kHz

• DC Characteristics

(Unless otherwise specified: VDD=3.0V, Vss=0V, fosc1=32.768kHz, Ta=25°C, VD1/Vc1/Vc2/Vc3 are internal voltage, C1-C5=0.2µF)

Characteristic	Symbol		Condition	Min.	Тур.	Max.	Unit
High level input voltage (1)	VIH1		K00–03, K10–13, K20, P00–03, P10–13, P20–23	0.8·Vdd		Vdd	V
			P30–33, P40–43, RXD, SCLK, CLKIN, SPRG				
High level input voltage (2)	VIH2		RESET, TEST	0.9.Vdd		Vdd	V
Low level input voltage (1)	VIL1		K00–03, K10–13, K20, P00–03, P10–13, P20–23	0		0.2-Vdd	V
			P30–33, P40–43, RXD, SCLK, CLKIN, SPRG				
Low level input voltage (2)	VIL2		RESET, TEST	0		0.1.Vdd	V
High level input current	Ін	VIH=3.0V	K00–03, K10–13, K20, P00–03, P10–13, P20–23	0		0.5	μΑ
			P30–33, P40–43, RXD, SCLK, CLKIN, SPRG				
			RESET, TEST				
Low level input current (1)	lı∟1	VIL1=VSS	K00–03, K10–13, K20, P00–03	-0.5		0	μΑ
		No Pull-up	P10–13, P20–23, P30–33, P40–43				
Low level input current (2)	IIL2	VIL2=VSS	K00–03, K10–13, K20, P00–03, P10–13, P20–23	-16	-10	-5	μA
		With Pull-up	P30–33, P40–43, RXD, SCLK, CLKIN, SPRG				
			RESET, TEST				
High level output current (1)	IOH1	VOH1=0.9-VDD	R00–03, R10–13, R20–23, P00–03, P10–13			-1.5	mA
			P20–23, P30–33, P40–43, TXD, SCLK				
High level output current (2)	Іон2	Voh2=0.9.Vdd	BZ			-1.5	mA
Low level output current (1)	IOL1	Vol1=0.1.Vdd	R00–03, R10–13, R20–23, P00–03, P10–13	3			mA
			P20–23, P30–33, P40–43, TXD, SCLK				
Low level output current (2)	IOL2	Vol2=0.1.VDD	BZ	3			mA
Common output current	Іонз	Voнз=Vc5-0.05V	COM0-3			-10	μA
	IOL3	Vol3=Vss+0.05V		10			μΑ
Segment output current	Іон4	Voн4=Vc5-0.05V	SEG0–31			-10	μΑ
(during LCD output)	IOL4	Vol4=Vss+0.05V		10			μΑ
Segment output current	Іон5	Voh5=0.9.Vdd	SEG0–31			-220	μΑ
(during DC output)	IOL5	Vol5=0.1.Vdd		220			μA

Characteristic	Symbol		Condition	Min.	Typ.	Max.	Unit
High level input voltage (1)	VIH1		K00–03, K10–13, K20, P00–03, P10–13, P20–23	0.8-Vdd		Vdd	V
			P30–33, P40–43, RXD, SCLK, CLKIN, SPRG				
High level input voltage (2)	VIH2		RESET, TEST	0.9-Vdd		Vdd	V
Low level input voltage (1)	VIL1		K00–03, K10–13, K20, P00–03, P10–13, P20–23	0		0.2.Vdd	V
			P30–33, P40–43, RXD, SCLK, CLKIN, SPRG				
Low level input voltage (2)	VIL2		RESET, TEST	0		0.1.Vdd	V
High level input current	Іін	VIH=5.0V	K00–03, K10–13, K20, P00–03, P10–13, P20–23	0		0.5	μA
			P30–33, P40–43, RXD, SCLK, CLKIN, SPRG				
			RESET, TEST				
Low level input current (1)	IIL1	VIL1=VSS	K00–03, K10–13, K20, P00–03	-0.5		0	μΑ
		No Pull-up	P10–13, P20–23, P30–33, P40–43				
Low level input current (2)	IIL2	VIL2=VSS	K00–03, K10–13, K20, P00–03, P10–13, P20–23	-25	-15	-10	μA
		With Pull-up	P30–33, P40–43, RXD, SCLK, CLKIN, SPRG				
		-	RESET, TEST				
High level output current (1)	Іон1	Voh1=0.9-Vdd	R00–03, R10–13, R20–23, P00–03, P10–13			-3	mA
			P20–23, P30–33, P40–43, TXD, SCLK				
High level output current (2)	Іон2	Voh2=0.9·Vdd	BZ			-3	mA
Low level output current (1)	IOL1	Vol1=0.1.Vdd	R00–03, R10–13, R20–23, P00–03, P10–13	6			mA
			P20–23, P30–33, P40–43, TXD, SCLK				
Low level output current (2)	IOL2	Vol2=0.1.Vdd	BZ	6			mA
Common output current	Іонз	Voнз=Vc5-0.05V	COM0-3			-10	μA
	IOL3	Vol3=Vss+0.05V		10			μA
Segment output current	Іон4	Voн4=Vc5-0.05V	SEG0-31			-10	μA
(during LCD output)	IOL4	Vol4=Vss+0.05V		10			μA
Segment output current	Іон5	Voh5=0.9·Vdd	SEG0-31			-660	μA
(during DC output)	IOL5	Vol5=0.1.Vdd		660			μA

• Analog Circuit Characteristics and Current Consumption

(Unless otherwise specified: VDD=3.0V, Vss=0V, fosc1=32.768kHz, Cg=25pF, Ta=25°C, VD1/Vc1/Vc2/Vc3 are internal voltage, C1-C5=0.2µF)

Characteristic	Symbol	·	Condition	Min.	Тур.	Max.	Unit
LCD drive voltage	VC1	Connect 1MΩ load resi	stor between Vss and Vc1	1/2-Vc2		1/2-Vc2	V
		(without panel load)		×0.95		-0.1	
	VC2	Connect 1MΩ load resi	stor between Vss and Vc2	Тур.	2.10	Тур.	V
		(without panel load)		×0.88		×1.12	
	Vсз	Connect 1MΩ load resi	stor between Vss and Vc3	3/2-Vc2		3/2.Vc2	V
		(without panel load)		×0.95			
SVD voltage	Vsvd	SVDS0-3="0"		-	-	-	V
		SVDS0-3="1"		-	-	-	
		SVDS0-3="2"		-	-	-	
		SVDS0-3="3"		-	-	-	
		SVDS0-3="4"		-	-	-	
		SVDS0-3="5"		-	-	-	
		SVDS0-3="6"		-	-	-	
		SVDS0-3="7"		-	-	-	
		SVDS0-3="8"		-	-	-	
		SVDS0-3="9"		-	-	-	
		SVDS0-3="10"	-	-	-		
		SVDS0-3="11"	-	-	-		
		SVDS0-3="12"	-	-	-		
		SVDS0-3="13"		-	-	-	
		SVDS0-3="14"		2.50	2.70	2.90	
		SVDS0-3="15"		2.60	2.80	3.00	
SVD circuit response time	tsvd					100	μS
Current consumption	IOP	During HALT	32.768kHz		2.5	6	μA
		Normal mode					
		LCD power OFF					
		During HALT	32.768kHz		37	60	μA
		Normal mode *1					
		LCD power ON					
		During execution	32.768kHz (Crystal oscillation)		120	200	μA
		Normal mode *1	1.8MHz (CR oscillation)		0.6	0.9	mA
		LCD power ON	4MHz (Ceramic oscillation)		0.8	1.2	mA

*1: Without panel load. The SVD circuit and the A/D converter are OFF. AVREF is open.

A/D Converter Characteristics

		(Unless otherwise specified: AVDD=VDD=2.7 to 3.6V, A	AVss=Vs	s=0V, Ta	a=-25 to	75°C)
Characteristic	Symbol	Condition	Min.	Тур.	Max.	Unit
Resolution			8	8	8	bit
Error		3.6V≤VDD≤5.5V Fconv=OSC3/2 or OSC1	-3		3	LSB
		2.7V≤VDD≤3.6V Fconv=OSC3/2 or OSC1	-3		3	LSB
Convertion time	tconv	Fconv=OSC3/2=2MHz			10.5	μS
		Fconv=OSC1=32kHz			641	μS
Input voltage			AVss		AVREF	V
Reference voltage	AVREF		0.9		AVdd	V
AVREF resistance			15	50		kΩ

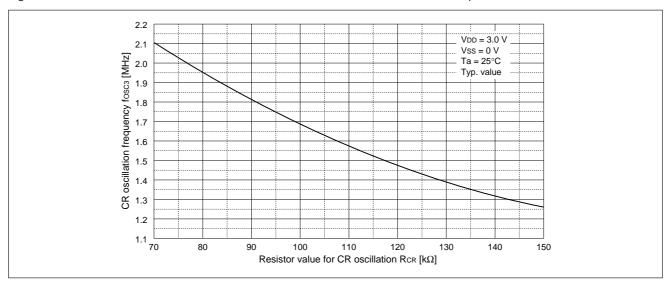
• Oscillation Characteristics

The oscillation characteristics change depending on the conditions (components used, board pattern, etc.). Use the following characteristics as reference values.

(Unless otherwise specified: VDD=3.0V, VSS=0V, fosc1=32.768kHz, CG=25pF, CD=built-in, Ta=-20 to 70°C) Characteristic Symbol Condition Min. Typ. Max. Unit Oscillation start voltage Vsta tsta≤3sec (VDD) 2.7 V V Oscillation stop voltage Vstp tstp≤10sec (VDD) 2.7 V											
Characteristic	Symbol	Condition	Min.	Тур.	Max.	Unit					
Oscillation start voltage	Vsta	tsta≤3sec (Vpd)	2.7			V					
Oscillation stop voltage	Vstp	tstp≤10sec (Voo)	2.7			V					
Built-in capacitance (drain)	CD	Including the parasitic capacitance inside the IC (in chip)		18		рF					
Frequency/voltage deviation	∂f/∂V	VDD=2.7 to 5.5V			5	ppm					
Frequency/IC deviation	∂f/∂IC		-10		10	ppm					
Frequency adjustment range	∂f/∂Cg	CG=5 to 25pF		50		ppm					
Harmonic oscillation start voltage	e Vhho	Cg=5pF (VDD)	5.5			V					
Permitted leak resistance	Rleak	Between OSC1 and VDD, Vss	200			MΩ					

OSC1 Crystal Oscillation Circuit

OSC3 Ceramic Oscillation Circuit


(Unless otherwise specified: VDD=3.0V, Vss=0V, Ceramic oscillator: 4MHz, CGC=CDC=100pF, Ta=-20 to 70°C) Characteristic Symbol Condition Min. Typ. Max. Unit Oscillation start voltage Vsta Normal mode (VDD) 2.7 V V						
Characteristic	Symbol	Condition	Min.	Тур.	Max.	Unit
Oscillation start voltage	Vsta	Normal mode (VDD)	2.7			V
Oscillation start time	tsta	VDD=2.7 to 5.5V			5	mS
Oscillation stop voltage	Vstp	Normal mode (VDD)	2.7			V

OSC3 CR Oscillation Circuit

		(Unless otherwise specified: VDD=3.0V, Vss=0	V, Rcr=	91kΩ, Ta	a=-20 to	70°C)
Characteristic	Symbol	Condition	Min.	Тур.	Max.	Unit
Oscillation frequency dispersion	fosc3		-30	1.8MHz	30	%
Oscillation start voltage	Vsta	Normal mode (VDD)	2.7			V
Oscillation start time	tsta	VDD=2.7 to 5.5V			3	mS
Oscillation stop voltage	Vstp	Normal mode (VDD)	2.7			V

OSC1 CR oscillation frequency-resistance characteristic

The oscillation characteristics change depending on the conditions (components used, board pattern, etc.). Use the following characteristics as reference values and evaluate the characteristics on the actual product.

• Serial Interface AC Characteristics Clock Synchronous Master Mode

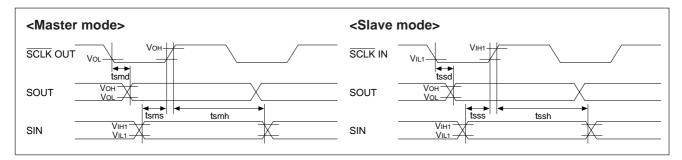
• During 32 kHz operation

	(Condition: VDD=	=3.0V, Vss=0V, Ta=25°	C, VIH1=0.8VDD, VIL1=0.2	/dd, Voh=0.8Vdd, Vol=0	.2Vdd)
Characteristic	Symbol	Min.	Тур.	Max.	Unit
Transmitting data output delay time	tsmd			5	μS
Receiving data input set-up time	tsms	10			μS
Receiving data input hold time	tsmh	5			μS

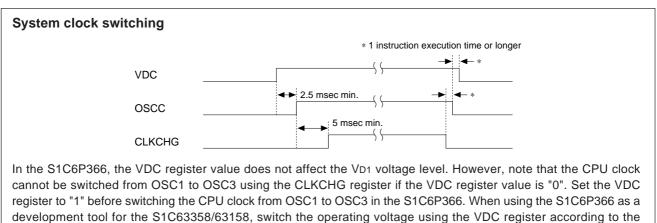
• During 1 MHz operation

	(Condition: VDD=3.	0V, Vss=0V, Ta=25°	C, VIH1=0.8VDD, VIL1=0.2	/dd, Voh=0.8Vdd, Vol=	0.2Vdd)
Characteristic	Symbol	Min.	Тур.	Max.	Unit
Transmitting data output delay time	tsmd			200	nS
Receiving data input set-up time	tsms	400			nS
Receiving data input hold time	tsmh	200			nS

Clock Synchronous Slave Mode

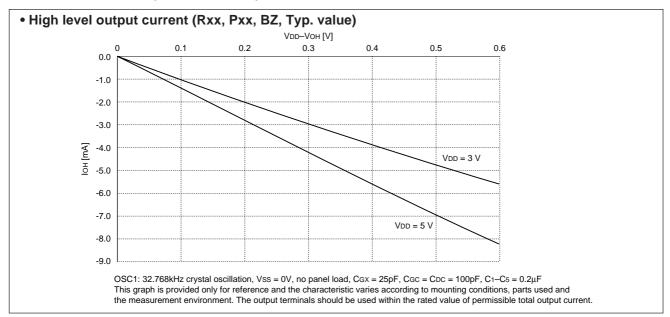

• During 32 kHz operation

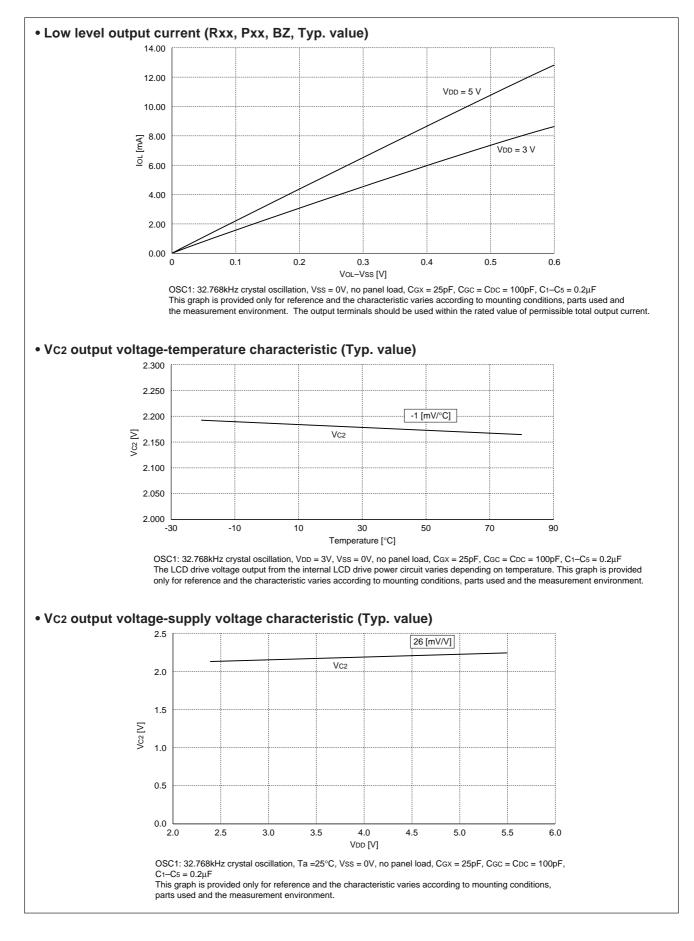
5	(Condition: VDD=	3.0V, Vss=0V, Ta=25°	C, VIH1=0.8VDD, VIL1=0.2	/dd, Voh=0.8Vdd, Vol:	=0.2Vdd)
Characteristic	Symbol	Min.	Тур.	Max.	Unit
Transmitting data output delay time	tssd			10	μS
Receiving data input set-up time	tsss	10			μS
Receiving data input hold time	tssh	5			μS

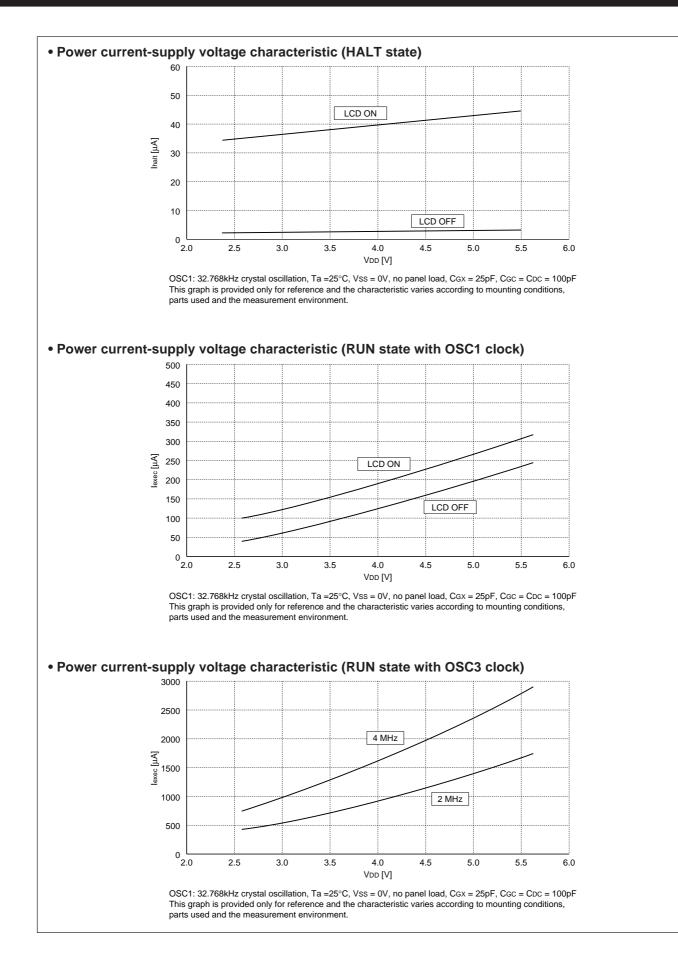


• During 1 MHz operation

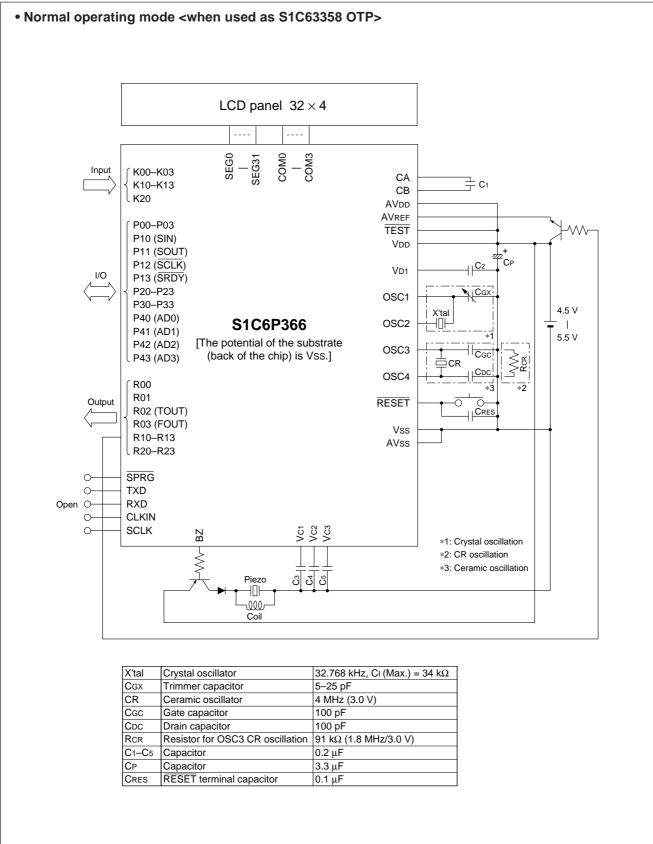
	(Condition: VDD=3.	0V, Vss=0V, Ta=25°	C, VIH1=0.8VDD, VIL1=0.2	/dd, Voh=0.8Vdd, Vol=	=0.2Vdd)
Characteristic	Symbol	Min.	Тур.	Max.	Unit
Transmitting data output delay time	tssd			500	nS
Receiving data input set-up time	tsss	400			nS
Receiving data input hold time	tssh	200			nS

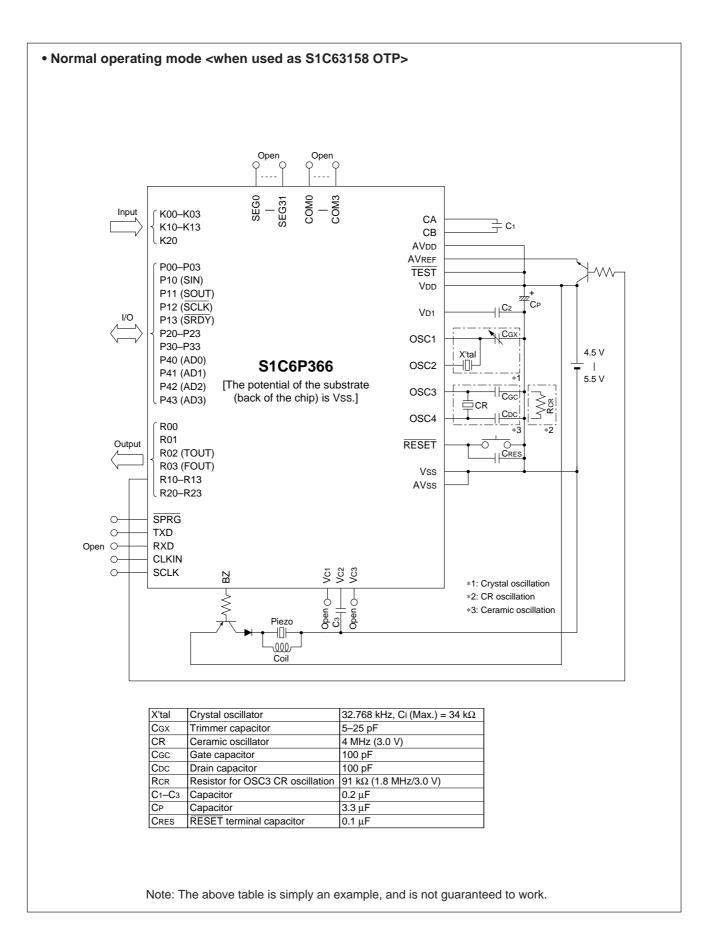


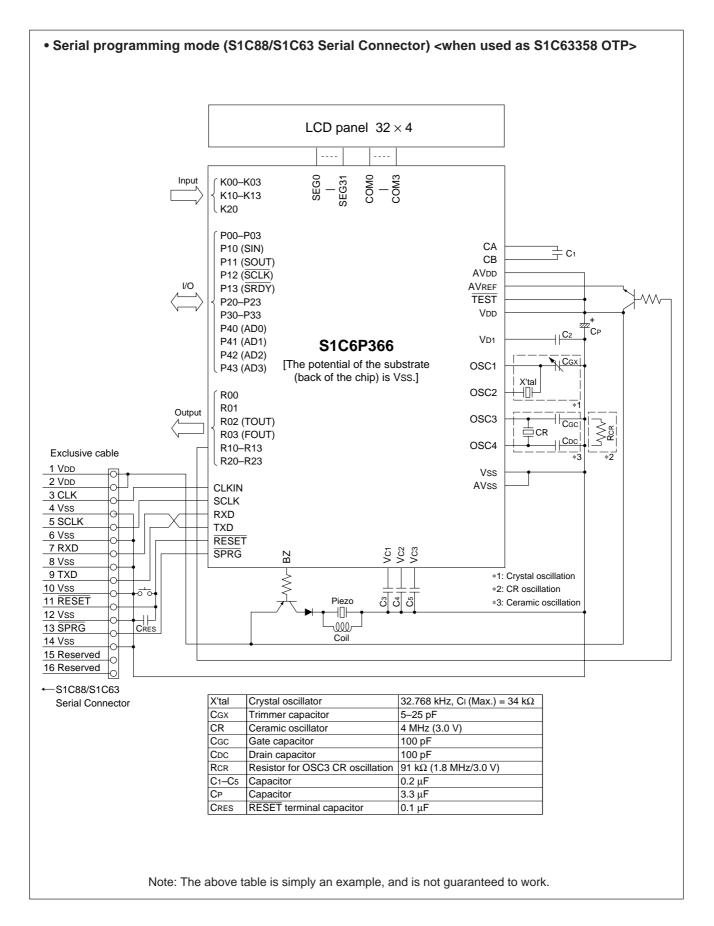

• Timing Chart

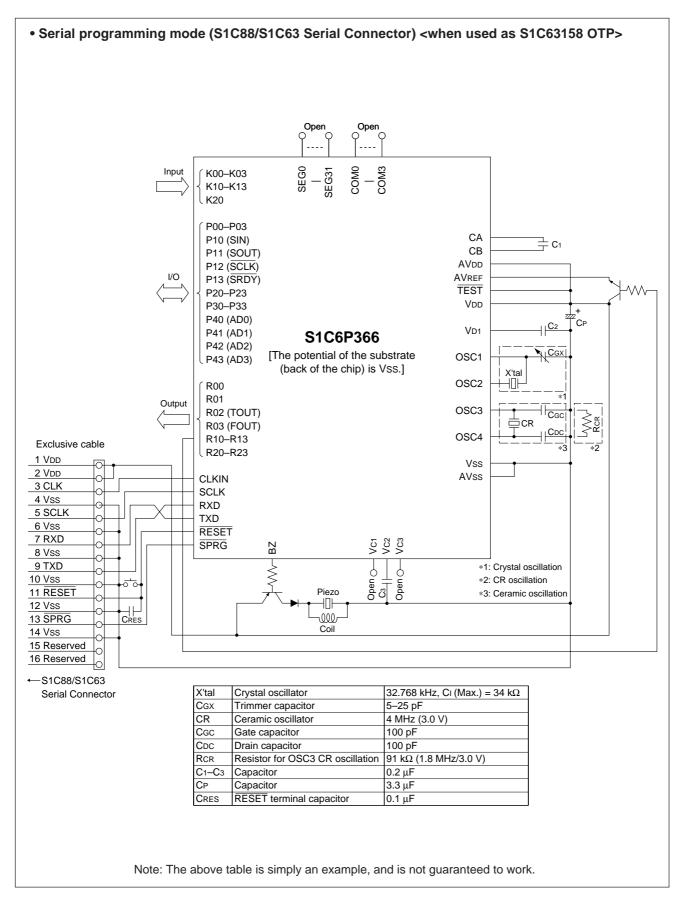


• Characteristic Curves (reference value)

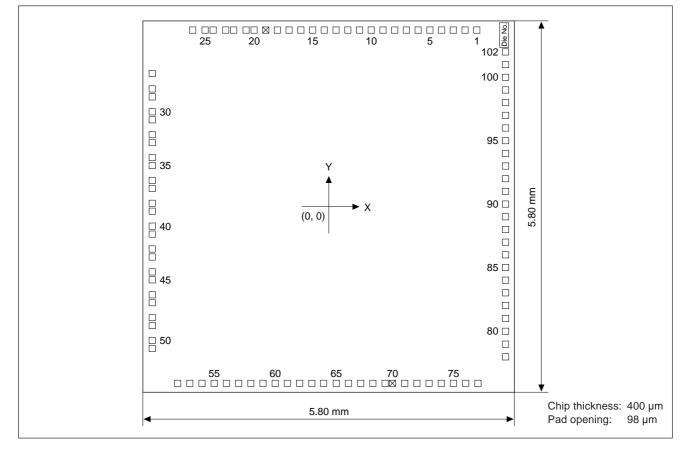

control sequence of the model (refer to the "Technical Manual").






■ BASIC EXTERNAL CONNECTION DIAGRAM

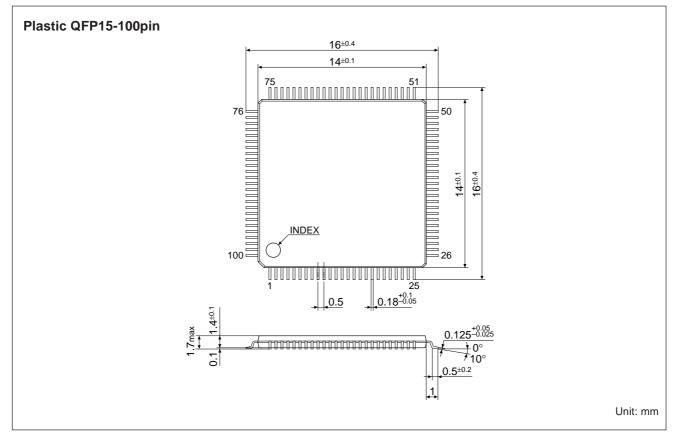
Note: The above table is simply an example, and is not guaranteed to work.



■ PAD LAYOUT

• Diagram of Pad Layout

Pad Coordinates


No.	Pad name	Х	Y	No.	Pad name	Х	Y	No.	Pad name	Х	Y	No.	Pad name	Х	Υ
1	R13	2,309	2,759	27	SEG7	-2,757	2,079	53	SPRG	-2,171	-2,759	79	P43	2,759	-2,147
2	R12	2,126	2,759	28	SEG8	-2,757	1,839	54	COM0	-1,980	-2,759	80	P42	2,759	-1,946
3	R11	1,943	2,759	29	SEG9	-2,757	1,715	55	COM1	-1,790	-2,759	81	P41	2,759	-1,745
4	R10	1,760	2,759	30	SEG10	-2,757	1,482	56	COM2	-1,599	-2,759	82	P40	2,759	-1,544
5	R03	1,577	2,759	31	SEG11	-2,757	1,357	57	COM3	-1,409	-2,759	83	P33	2,759	-1,346
6	R02	1,394	2,759	32	SEG12	-2,757	1,125	58	СВ	-1,218	-2,759	84	P32	2,759	-1,148
7	R01	1,211	2,759	33	SEG13	-2,757	1,000	59	CA	-1,028	-2,759	85	P31	2,759	-950
8	R00	1,028	2,759	34	SEG14	-2,757	767	60	Vсз	-837	-2,759	86	P30	2,759	-752
9	BZ	845	2,759	35	SEG15	-2,757	643	61	VC2	-647	-2,759	87	P23	2,759	-554
10	K00	662	2,759	36	SEG16	-2,757	410	62	Vc1	-456	-2,759	88	P22	2,759	-356
11	K01	479	2,759	37	SEG17	-2,757	286	63	Vss	-266	-2,759	89	P21	2,759	-158
12	K02	296	2,759	38	SEG18	-2,757	53	64	OSC1	-83	-2,759	90	P20	2,759	41
13	K03	113	2,759	39	SEG19	-2,757	-71	65	OSC2	116	-2,759	91	P13	2,759	239
14	K10	-71	2,759	40	SEG20	-2,757	-304	66	Vd1	306	-2,759	92	P12	2,759	437
15	K11	-254	2,759	41	SEG21	-2,757	-429	67	OSC3	497	-2,759	93	P11	2,759	635
16	K12	-437	2,759	42	SEG22	-2,757	-661	68	OSC4	687	-2,759	94	P10	2,759	833
17	K13	-620	2,759	43	SEG23	-2,757	-786	69	Vdd	878	-2,759	95	P03	2,759	1,031
18	K20	-803	2,759	44	SEG24	-2,757	-1,019	70	N.C.	993	-2,759	96	P02	2,759	1,229
19	N.C.	-986	2,759	45	SEG25	-2,757	-1,143	71	RESET	1,184	-2,759	97	P01	2,759	1,427
20	SEG0	-1,167	2,759	46	SEG26	-2,757	-1,376	72	TEST	1,374	-2,759	98	P00	2,759	1,625
21	SEG1	-1,292	2,759	47	SEG27	-2,757	-1,500	73	AVREF	1,565	-2,759	99	R23	2,759	1,823
22	SEG2	-1,487	2,759	48	SEG28	-2,757	-1,733	74	AVdd	1,755	-2,759	100	R22	2,759	2,021
23	SEG3	-1,611	2,759	49	SEG29	-2,757	-1,857	75	AVss	1,946	-2,759	101	R21	2,759	2,219
24	SEG4	-1,806	2,759	50	SEG30	-2,757	-2,090	76	RXD	2,136	-2,759	102	R20	2,759	2,417
25	SEG5	-1,931	2,759	51	SEG31	-2,757	-2,215	77	TXD	2,327	-2,759				
26	SEG6	-2,126	2,759	52	CLKIN	-2,361	-2,759	78	SCLK	2,759	-2,346				

N.C. : No Connection

Unit: µm

■ PACKAGE

NOTICE:

No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from the Ministry of International Trade and Industry or other approval from another government agency.

This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

© Seiko Epson Corporation 2003, All right reserved.

SEIKO EPSON CORPORATION

ELECTRONIC DEVICES MARKETING DIVISION
IC Marketing & Engineering Group

ED International Marketing Department 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone : 042-587-5814 FAX : 042-587-5117 EPSON Electronic Devices Website