
(Integrated Tool Package for S1C88 Family)

CMOS 8-BIT SINGLE CHIP MICROCOMPUTER

S5U1C88000C Manual II

Workbench/Development Tools/Assembler Package Old Version



NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko
Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any
liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or
circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such
as medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there
is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright
infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic
products under the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from
the Ministry of Economy, Trade and Industry or other approval from another government agency.

The C compiler, assembler and tools explained in this manual are developed by TASKING, Inc.
Windows 2000 and Windows XP are registered trademarks of Microsoft Corporation, U.S.A.
PC/AT and IBM are registered trademarks of International Business Machines Corporation, U.S.A.
All other product names mentioned herein are trademarks and/or registered trademarks of their respective owners.

© SEIKO EPSON CORPORATION  2008, All rights reserved.



Devices
S1 C 88104 F 0A01

Packing specifications
 00 : Besides tape & reel 
 0A : TCP BL 2 directions
 0B : Tape & reel BACK
 0C : TCP BR 2 directions
 0D : TCP BT 2 directions
 0E : TCP BD 2 directions
 0F : Tape & reel FRONT
 0G : TCP BT 4 directions
 0H : TCP BD 4 directions
 0J : TCP SL 2 directions
 0K : TCP SR 2 directions
 0L : Tape & reel LEFT
 0M : TCP ST 2 directions
 0N : TCP SD 2 directions
 0P : TCP ST 4 directions
 0Q : TCP SD 4 directions
 0R : Tape & reel RIGHT
 99 : Specs not fixed

Specification

Package
 D: die form; F: QFP, B: BGA

Model number

Model name
 C: microcomputer, digital products

Product classification
 S1: semiconductor 

Development tools
S5U1 C 88348 D1 1

Packing specifications
 00: standard packing

Version 
 1: Version 1

Tool type
 Hx : ICE
 Ex : EVA board
 Px : Peripheral board
 Wx : Flash ROM writer for the microcomputer
 Xx : ROM writer peripheral board

 Cx : C compiler package
 Ax : Assembler package
 Dx : Utility tool by the model
 Qx : Soft simulator

Corresponding model number
 88348: for S1C88348

Tool classification
 C: microcomputer use

Product classification 
 S5U1: development tool for semiconductor products

00

00

Configuration of product number





MANUAL ORGANIZATION

S5U1C88000C MANUAL II EPSON i
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

MANUAL ORGANIZATION

The S1C88 Family Integrated Tool Package contains the tools required to develop software for the S1C88
Family microcomputers. The S5U1C88000C Manual (S1C88 Family Integrated Tool Package) describes the
tool functions and how to use the tools. The manual is organized into two documents as shown below.

I. C Compiler/Assembler/Linker
Describes the C Compiler and its tool chain ([Main Tool Chain] part shown in the figure on the next
page).

II. Workbench/Development Tools/Assembler Package Old Version (this document)
Describes the Work Bench that provides an integrated development environment, Advanced Locator,
the Mask Data Creation Tools ([Development Tool Chain] part shown in the figure on the next page),
Debugger, and Structured Assembler ([Sub Tool Chain] part shown in the figure on the next page).

This manual assumes that the reader is familiar with C and Assembly languages.

Refer to the following manuals as necessary when developing an S1C88xxx microcomputer:

S1C88xxx Technical Manual
Describes the device specifications, control method and Flash EEPROM programming.

S5U1C88000Q Manual
Describes the operation of the tools included in the Simulator Package.

S5U1C88000H5 Manual
Describes the operation of the ICE (S5U1C88000H5).

S5U1C88xxxP Manual
Describes the operation of the peripheral circuit board installed in the ICE.



MANUAL ORGANIZATION

ii EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

S1
C

88
 F

A
M

IL
Y
 I

N
T

E
G

R
A

T
E

D
 D

E
V

E
L

O
P

M
E

N
T
 E

N
V

IR
O

N
M

E
N

T

ic
e8

8u
r.

ex
e

S
eg

m
en

t o
pt

io
n

ge
ne

ra
to

r 
w

in
so

g.
ex

e

fil
e.

S
S

A

S
eg

m
en

t o
pt

io
n

H
E

X
 fi

le

fil
e.

S
D

C

fil
e.

in
i

M
as

k 
da

ta
 c

he
ck

er

w
in

m
dc

.e
xe

fil
e.

P
A

n
M

as
k

da
ta

 fi
le

F
un

ct
io

n 
op

tio
n

ge
ne

ra
to

r 
w

in
fo

g.
ex

e

fil
e.

F
S

A
fil

e.
F

D
C

F
un

ct
io

n 
op

tio
n

do
cu

m
en

t f
ile

F
un

ct
io

n 
op

tio
n

H
E

X
 fi

le

S
eg

m
en

t o
pt

io
n

do
cu

m
en

t f
ile

P
ro

gr
am

 u
nu

se
d 

ar
ea

fil
lin

g 
ut

ili
ty

 fi
l8

8x
xx

fil
e.

P
S

A
P

ro
gr

am
 

da
ta

 H
E

X
 fi

le

C
 c

om
pi

le
r

c8
8.

ex
e

A
ss

em
bl

er

as
88

.e
xe

O
bj

ec
t r

ea
de

r

pr
88

.e
xe

Li
br

ar
y 

m
ai

nt
ai

ne
r

ar
88

.e
xe

T
ex

t e
di

to
r

(p
re

pa
re

d 
by

 c
us

to
m

er
)

fil
e.

O
U

T

Li
nk

er
ob

je
ct

m
od

ul
e

fil
e.

A
B

S

A
bs

ol
ut

e
lo

ad
m

od
ul

e

M
ot

or
ol

a 
S

ob
je

ct
 fi

le

fil
e.

C
C

 s
ou

rc
e

fil
es

fil
e.

S
R

C
A

ss
em

bl
y

fil
es

fil
e.

O
B

J
O

bj
ec

t
m

od
ul

es

B
itm

ap
 u

til
ity

  B
m

pU
til

.e
xe

(S
im

ul
at

or
 p

ac
ka

ge
)

B
itm

ap
 e

di
to

r

(p
re

pa
re

d 
by

 c
us

to
m

er
)

fil
e.

B
M

P
B

itm
ap

fil
e(

s)

fil
e.

B
M

U

B
itm

ap
de

fin
iti

on
 

fil
e

fil
e.

T
X

T
D

at
a

ta
bl

e 
fil

e

fil
e.

E
R

R
E

rr
or

fil
e

∗1

∗2

∗2
∗2

∗2
∗2

∗2

∗3

∗1

fil
e.

LS
T

Li
st

fil
e

fil
e.

A
O

bj
ec

t
lib

ra
ry

M
ak

e 
pr

og
ra

m

m
k8

8.
ex

e

C
on

tr
ol

 p
ro

gr
am

cc
88

.e
xe

fil
e.

M
A

K
M

ak
e

fil
e

fil
e.

M
E

M
fil

e.
IN

F
fil

e.
C

P
U

fil
e.

D
S

C

Lo
ca

to
r

de
sc

rip
tio

n
fil

es

O
R

fil
e.

E
R

S
E

rr
or

fil
e

fil
e.

M
A

P
Lo

ca
te

m
ap

fil
e

fil
e.

S
YS

ym
bo

lic
 

ta
bl

e
fil

e

∗1

∗4

∗5

∗4

fil
e.

E
LC

E
rr

or
fil

e

Li
nk

er

lk
88

.e
xe

fil
e.

P
R

T

P
or

t
se

tti
ng

fil
e

P
or

t s
et

tin
g 

ut
ili

ty

P
rt

U
til

.e
xe

S
im

ul
at

or

si
m

88
.e

xe

D
eb

ug
ge

r

db
88

.e
xe

 (
un

de
r 

de
ve

lo
pm

en
t)

IC
E

 &
 P

er
ip

he
ra

l c
irc

ui
t b

oa
rd

T
ar

ge
t b

oa
rd

R
O

M
 w

rit
er

 c
on

tr
ol

 s
of

tw
ar

e

fil
e.

W
P

J
P

ro
je

ct
fil

e

W
or

kb
en

ch

w
b8

8.
ex

e

fil
e.

LC
D

LC
D

de
fin

iti
on

fil
e

fil
e.

C
M

P
fil

e.
S

P
J

C
om

po
ne

nt
m

ap
pi

ng
 fi

le
S

im
ul

at
or

pr
oj

ec
t f

ile

m
od

el
.P

A
R

IC
E

 
pa

ra
m

et
er

 
fil

e

m
od

el
.M

O
T

P
er

ip
he

ra
l

ci
rc

ui
t b

oa
rd

F
P

G
A

 d
at

a

ic
e8

8u
r.

in
i

IC
E

 
in

i f
ile

fil
e.

B
M

P
B

itm
ap fil

e

LC
D

 p
an

el
 c

us
to

m
iz

e 
ut

ili
ty

Lc
dU

til
.e

xe

fil
e.

A
xx

R
es

ul
t 

da
ta

 fi
le

fil
e.

C
S

V

C
he

ck
 

sh
ee

t f
ile

fil
e.

M
xx

R
ef

er
en

ce
 

da
ta

 fi
le

fil
e.

T
X

T

C
om

m
an

d 
fil

eA
ut

o 
ev

al
ua

tio
n 

sy
st

em

A
ut

oE
va

.e
xe

fil
e.

S
Y

S
ym

bo
lic

 
ta

bl
e 

fil
e

S
ym

bo
lic

 ta
bl

e 
fil

e 
ge

ne
ra

to
r

sy
88

.e
xe

fil
e.

S
Y

S
ym

bo
lic

 
ta

bl
e 

fil
e

S
ym

bo
lic

 ta
bl

e 
fil

e 
ge

ne
ra

to
r

sy
m

88
.e

xe

∗1

fil
e.

LN
L

Li
nk

m
ap

fil
e

A
dv

an
ce

d 
lo

ca
to

r
de

fin
iti

on
 fi

le

fil
e.

C
A

L

C
al

l
gr

ap
h

fil
e

fil
e.

E
LK

E
rr

or
fil

e

fil
e.

S
A

M
ai

n
 t

o
o

l c
h

ai
n

E
m

b
ed

d
ed

 s
ys

te
m

 s
im

u
la

to
r

P
re

pr
oc

es
so

r

sa
p8

8.
ex

e

A
ss

em
bl

er

as
m

88
.e

xe

fil
e.

S
A

M
ot

or
ol

a 
S

ob
je

ct
 fi

le

fil
e.

A
B

S

A
bs

ol
ut

e
ob

je
ct

fil
e

fil
e.

S
A

ss
em

bl
y

so
ur

ce
 fi

le
s

D
ev

ic
e 

in
fo

rm
at

io
n

de
fin

iti
on

 fi
le

fil
e.

M
S

P
re

pr
oc

es
se

d
so

ur
ce

 fi
le

s

fil
e.

O
O

bj
ec

t
m

od
ul

es

fil
e.

LC
M

Li
nk

 c
om

m
an

d
pa

ra
m

et
er

 fi
le

H
E

X
 c

on
ve

rt
er

he
x8

8.
ex

e

fil
e.

R
E

F

S
ym

bo
l

in
fo

rm
at

io
n

re
fe

re
nc

e 
fil

e

Li
nk

er

lin
k8

8.
ex

e

S
ym

bo
l i

nf
or

m
at

io
n 

ge
ne

ra
to

r

re
l8

8.
ex

e

fil
e.

X
C

ro
ss

re
fe

re
nc

e
fil

e

E
rr

or
lis

t f
ile

fil
e.

LS
T

A
ss

em
bl

y
lis

t f
ile

fil
e.

E

S
u

b
 t

o
o

l c
h

ai
n

D
ev

el
o

p
m

en
t 

to
o

l c
h

ai
n

R
O

M
 w

rit
er

M
an

uf
ac

tu
re

d 
in

 

S
ei

ko
 E

ps
on

F
la

sh
 R

O
M

M
C

U
M

as
k 

R
O

M
M

C
U

W
B

W
B

B
u

ild

B
u

ild

B
u

ild

B
u

ild

A
dv

an
ce

d 
lo

ca
to

r

al
c8

8.
ex

e

B
u

ild
Lo

ca
to

r

lc
88

.e
xe

B
u

ild

B
u

ild

W
B

W
B

W
B

W
B

W
B

W
B

W
B

W
B

∗1
: I

f t
he

 e
rr

or
 fi

le
 is

 g
en

er
at

ed
, w

b8
8 

di
sp

la
ys

 th
e 

co
nt

en
ts

 o
f t

he
 fi

le
 in

 th
e 

m
es

sa
ge

 v
ie

w
 a

nd
 a

llo
w

s 
a 

ta
g 

ju
m

p 
fu

nc
tio

n.
   

 ∗
2:

 C
re

at
ed

 u
si

ng
 a

 te
xt

 e
di

to
r.

   
∗3

: C
re

at
ed

 u
si

ng
 a

 b
itm

ap
 e

di
to

r.
   

∗4
: C

re
at

ed
 u

si
ng

 th
e 

w
b8

8 
se

ct
io

n 
ed

ito
r 

(o
r 

a 
te

xt
 e

di
to

r)
.  

 ∗
5:

 S
el

ec
te

d 
by

 w
b8

8.

W
B

B
u

ild

W
B

C
an

 b
e 

in
vo

ke
d 

fr
om

 th
e 

w
or

kb
en

ch
 w

b8
8.

 
T

oo
ls

 e
xe

cu
te

d 
au

to
m

at
ic

al
ly

 d
ur

in
g 

bu
ild

 p
ro

ce
ss

 b
y 

w
b8

8.
B

u
ild



CONTENTS

S5U1C88000C MANUAL II EPSON iii
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CONTENTS

CHAPTER 1 GENERAL _______________________________________________ 1
1.1 Features ........................................................................................................................ 1

1.2 S1C88 Family Integrated Development Environment ................................................. 2

CHAPTER 2 INSTALLATION ____________________________________________ 5
2.1 Package Components ................................................................................................... 5

2.2 Operating Environment ............................................................................................... 5

2.3 Installation Method ..................................................................................................... 6

2.4 Directories and Files after Installation ....................................................................... 7

2.5 Environment Settings ................................................................................................... 8

CHAPTER 3 WORK BENCH ____________________________________________ 9
3.1 Features ........................................................................................................................ 9

3.2 Starting Up and Terminating the Work Bench............................................................. 9

3.3 Work Bench Windows .................................................................................................. 10

3.4 Toolbar and Buttons ................................................................................................... 12

3.5 Menus .......................................................................................................................... 13
3.5.1 [File] Menu .......................................................................................................... 13
3.5.2 [View] Menu ........................................................................................................ 13
3.5.3 [Source] Menu ..................................................................................................... 14
3.5.4 [Build] Menu ....................................................................................................... 14
3.5.5 [Debug] Menu ..................................................................................................... 14
3.5.6 [Tools] Menu ....................................................................................................... 14
3.5.7 [Help] Menu ........................................................................................................ 15

3.6 Project and Work Space .............................................................................................. 16
3.6.1 Creating a New Project ....................................................................................... 16
3.6.2 Inserting Sources into a Project .......................................................................... 17
3.6.3 Removing a Source from the Project ................................................................... 17
3.6.4 Project View ......................................................................................................... 17
3.6.5 Opening and Closing a Project ........................................................................... 18
3.6.6 Saving the Project ............................................................................................... 18

3.7 Creating/Editing Source Files .................................................................................... 19
3.7.1 Specifying an Editor ............................................................................................ 19
3.7.2 Creating a New Source or Header File .............................................................. 20
3.7.3 Editing Files ........................................................................................................ 20
3.7.4 Tag Jump Function .............................................................................................. 21

3.8 Build Task ................................................................................................................... 22
3.8.1 Preparing a Build Task ........................................................................................ 22
3.8.2 Building an Executable Object ........................................................................... 22
3.8.3 Running only the Compiler or Assembler ........................................................... 23

3.9 Setting Tool Options ................................................................................................... 24
3.9.1 Compiler Options ................................................................................................ 25
3.9.2 Assembler Options ............................................................................................... 27
3.9.3 Linker Options ..................................................................................................... 29
3.9.4 Locator Options ................................................................................................... 30
3.9.5 Section Editor ...................................................................................................... 32

3.10 Debugging ................................................................................................................... 38
3.10.1 Simulator ........................................................................................................... 38
3.10.2 In-circuit Emulator (S5U1C88000H5) and Debugger ..................................... 40



CONTENTS

iv EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

3.11 Executing Other Tools ................................................................................................ 41

3.12 File List ....................................................................................................................... 42

3.13 Error Messages ............................................................................................................ 43

CHAPTER 4 OUTLINE OF THE MAIN TOOL CHAIN ___________________________ 44

CHAPTER 5 ADVANCED LOCATOR <alc88> ________________________________ 45
5.1 Functions of alc88 ...................................................................................................... 45

5.2 Input/output Files ....................................................................................................... 46

5.3 Using alc88 ................................................................................................................. 47

5.4 Error Messages ........................................................................................................... 47

5.5 Precautions ................................................................................................................. 47

CHAPTER 6 OUTLINE OF THE DEVELOPMENT TOOLS _________________________ 48

CHAPTER 7 PROGRAM UNUSED AREA FILLING UTILITY <fil88xxx> _____________ 50
7.1 Outline of fil88xxx ...................................................................................................... 50

7.2 Input/output Files ....................................................................................................... 50

7.3 Using fil88xxx ............................................................................................................. 51

7.4 Error Messages ........................................................................................................... 52

7.5 Example of Input/output Files .................................................................................... 53

CHAPTER 8 FUNCTION OPTION GENERATOR <winfog> _______________________ 54
8.1 Outline of winfog ........................................................................................................ 54

8.2 Input/output Files ....................................................................................................... 54

8.3 Using winfog ............................................................................................................... 55
8.3.1 Starting Up .......................................................................................................... 55
8.3.2 Window ................................................................................................................ 56
8.3.3 Menus and Toolbar Buttons ................................................................................ 57
8.3.4 Operation Procedure ........................................................................................... 58

8.4 Error Messages ........................................................................................................... 61

8.5 Example Output Files ................................................................................................. 62

CHAPTER 9 SEGMENT OPTION GENERATOR <winsog> _______________________ 63
9.1 Outline of winsog ........................................................................................................ 63

9.2 Input/output Files ....................................................................................................... 63

9.3 Using winsog .............................................................................................................. 64
9.3.1 Starting Up .......................................................................................................... 64
9.3.2 Window ................................................................................................................ 66
9.3.3 Menus and Toolbar Buttons ................................................................................ 67
9.3.4 Option Selection Buttons ..................................................................................... 68
9.3.5 Operation Procedure ........................................................................................... 68

9.4 Error Messages ........................................................................................................... 74

9.5 Example Output Files ................................................................................................. 75

CHAPTER 10 MASK DATA CHECKER <winmdc> _____________________________ 76
10.1 Outline of winmdc....................................................................................................... 76

10.2 Input/output Files ....................................................................................................... 76



CONTENTS

S5U1C88000C MANUAL II EPSON v
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

10.3 Using winmdc ............................................................................................................. 77
10.3.1 Starting Up ........................................................................................................ 77
10.3.2 Menus and Toolbar Buttons .............................................................................. 78
10.3.3 Operation Procedure ......................................................................................... 79

10.4 Error Messages ........................................................................................................... 82

10.5 Example Output File ................................................................................................... 83

CHAPTER 11 SELF-DIAGNOSTIC PROGRAM <t88xxx> _________________________ 84
11.1 Outline of t88xxx ......................................................................................................... 84

11.2 File Configuration ...................................................................................................... 84

11.3 Operation Procedure .................................................................................................. 84

CHAPTER 12 88xxx.par FILE __________________________________________ 85
12.1 Contents of 88xxx.par File ......................................................................................... 85

12.2 Description of the Parameters .................................................................................... 86

12.3 Emulation Memory ..................................................................................................... 86

CHAPTER 13 S1C88 FAMILY DEBUGGER __________________________________ 87
13.1 Overview ..................................................................................................................... 87

13.2 Input/output Files ....................................................................................................... 87

13.3 Starting and Terminating the Debugger ..................................................................... 88
13.3.1 Starting the Debugger ....................................................................................... 88
13.3.2 Terminating the Debugger ................................................................................. 89

13.4 Windows ...................................................................................................................... 90
13.4.1 Basic Structure of Window ................................................................................ 90
13.4.2 [Command] Window .......................................................................................... 91
13.4.3 [Source] Window ............................................................................................... 93
13.4.4 [Dump] Window ................................................................................................ 98
13.4.5 [Register] Window ............................................................................................. 99
13.4.6 [Symbol] Window .............................................................................................. 99
13.4.7 [Watch] Window ................................................................................................ 99
13.4.8 [Trace] Window ................................................................................................ 100
13.4.9 [Coverage] Window .......................................................................................... 100

13.5 Menu .......................................................................................................................... 101

13.6 Tool Bar ..................................................................................................................... 105

13.7 Method for Executing Commands ............................................................................. 106
13.7.1 Entering Commands from Keyboard ................................................................ 106
13.7.2 Executing from Menu or Tool Bar ................................................................... 108
13.7.3 Executing from a Command File ..................................................................... 109
13.7.4 Log File ............................................................................................................. 110

13.8 Debug Functions ........................................................................................................ 111
13.8.1 Loading Files .................................................................................................... 111
13.8.2 Source Display and Symbolic Debugging Function ........................................ 112
13.8.3 Displaying/Modifying Memory and Register Data ......................................... 114
13.8.4 Executing Program ........................................................................................... 116
13.8.5 Break Functions ............................................................................................... 120
13.8.6 Trace Functions ................................................................................................ 127
13.8.7 Coverage ........................................................................................................... 131
13.8.8 Writing Data to the FPGA on the Standard Peripheral Circuit Board ........... 133
13.8.9 System Options ................................................................................................. 134



CONTENTS

vi EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

13.9 Command Reference .................................................................................................. 135
13.9.1 Command List ................................................................................................... 135
13.9.2 Reference for Each Command ......................................................................... 136
13.9.3 Memory Operation ........................................................................................... 137

dd  (data dump) ......................................................................................... 137

de  (data enter) .......................................................................................... 140

df  (data fill) .............................................................................................. 142

dm  (data move) ......................................................................................... 143

ds  (data search) ........................................................................................ 144
13.9.4 Register Operation ........................................................................................... 145

rd  (register display) .................................................................................. 145

rs  (register set) ......................................................................................... 146
13.9.5 Program Execution ........................................................................................... 148

g  (go) ........................................................................................................ 148

gr  (go after reset CPU) ............................................................................ 150

s  (step) ...................................................................................................... 151

n  (next) ..................................................................................................... 153

se  (step exit) .............................................................................................. 154
13.9.6 CPU Reset ........................................................................................................ 155

rst  (reset CPU) ......................................................................................... 155
13.9.7 Break ................................................................................................................. 156

bp  (software breakpoint set) ..................................................................... 156

bpa  (software area breakpoint set) ........................................................... 158

bpr / bc / bpc  (software breakpoint clear) ................................................ 160

bas  (sequential break setting) .................................................................. 161

ba  (hardware breakpoint set) ................................................................... 162

bar  (hardware breakpoint clear) .............................................................. 164

bd  (hardware data breakpoint set) ........................................................... 165

bdr  (hardware data breakpoint clear) ...................................................... 167

bl  (breakpoint list) .................................................................................... 168

bac  (break all clear) ................................................................................. 169
13.9.8 Program Display .............................................................................................. 170

u  (unassemble) ......................................................................................... 170

sc  (source code) ........................................................................................ 172

m  (mix) ..................................................................................................... 174
13.9.9 Symbol Information .......................................................................................... 176

sy  (symbol list) ......................................................................................... 176

w  (symbol watch) ...................................................................................... 177
13.9.10 Load File ......................................................................................................... 178

lf  (load file) ............................................................................................... 178

par  (load parameter file) .......................................................................... 179
13.9.11 Trace ............................................................................................................... 180

td  (trace data display) .............................................................................. 180

ts  (trace search) ........................................................................................ 183

tf  (trace file) .............................................................................................. 185
13.9.12 Coverage ......................................................................................................... 186

cv  (coverage) ............................................................................................ 186

cvc  (coverage clear) ................................................................................. 188



CONTENTS

S5U1C88000C MANUAL II EPSON vii
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

13.9.13 Command File ................................................................................................ 189

com  (execute command file) ..................................................................... 189

cmw  (execute command file with wait) .................................................... 190

rec  (record commands to a file) ............................................................... 191
13.9.14 log ................................................................................................................... 192

log  (log) .................................................................................................... 192
13.9.15 Map Information ............................................................................................ 193

ma  (map information) .............................................................................. 193
13.9.16 FPGA Operation ............................................................................................ 194

xfer  (xilinx fpga data erase) ..................................................................... 194

xfwr  (xilinx fpga data write) ..................................................................... 195

xfcp  (xilinx fpga data compare) ............................................................... 196

xdp  (xilinx fpga data dump) ..................................................................... 197
13.9.17 Quit ................................................................................................................. 198

q  (quit) ...................................................................................................... 198
13.9.18 Help ................................................................................................................ 199

?  (help) ..................................................................................................... 199

13.10 Error Messages ......................................................................................................... 200

APPENDIX A ASSEMBLER (Sub tool chain) _______________________________ 203
A.1 Outline of Package ..................................................................................................... 203

A.1.1 Introduction ........................................................................................................ 203
A.1.2 Outline of Software Tools ................................................................................... 203

A.2 Program Development Procedures ............................................................................ 205
A.2.1 Development Flow ............................................................................................. 205
A.2.2 Creating Source File .......................................................................................... 207
A.2.3 Assembly ............................................................................................................. 210

A.2.3.1 Structured preprocessor (sap88) ......................................................... 210

A.2.3.2 Cross assembler (asm88) .................................................................... 210

A.2.3.3 Starting sap88 and asm88 ................................................................... 212

A.2.3.4 Batch processing for relocatable assembly (ra88.bat) ....................... 214

A.2.3.5 Relocatable object file ......................................................................... 218

A.2.3.6 Assembly list file .................................................................................. 218

A.2.3.7 Cross reference list .............................................................................. 219

A.2.3.8 Error list .............................................................................................. 220

A.2.3.9 Example of assembly execution ........................................................... 220
A.2.4 Link ..................................................................................................................... 221

A.2.4.1 Linking modules .................................................................................. 221

A.2.4.2 Section control .................................................................................... 221

A.2.4.3 Module allocation information ........................................................... 223

A.2.4.4 Starting link88 ..................................................................................... 224

A.2.4.5 Batch processing for linking (lk88.bat) ............................................... 224

A.2.4.6 Absolute object file .............................................................................. 229

A.2.4.7 Execution example of linking .............................................................. 229
A.2.5 Creating Program Data HEX File ..................................................................... 230

A.2.5.1 Program data HEX file ....................................................................... 230

A.2.5.2 Creating program data HEX file using hex88 ..................................... 230

A.2.5.3 Motorola S2 format ............................................................................. 231



CONTENTS

viii EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

A.2.6 Symbol Information ........................................................................................... 232

A.2.6.1 Creating symbol information (rel88) .................................................. 232

A.2.6.2 Creating symbolic table file (sym88) .................................................. 234

APPENDIX B CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain) __ 235
B.1 Outline ....................................................................................................................... 235

B.1.1 File Name ........................................................................................................... 235
B.1.2 Source File Differences Depending on sap88 and asm88 ................................ 235
B.1.3 Macro Instructions ............................................................................................. 235

B.2 General Format of Source File .................................................................................. 236
B.2.1 Symbol ................................................................................................................ 237
B.2.2 Mnemonic ........................................................................................................... 237
B.2.3 Operand .............................................................................................................. 237
B.2.4 Comment ............................................................................................................ 237
B.2.5 Numerical Expression ........................................................................................ 238
B.2.6 Characters .......................................................................................................... 238
B.2.7 ASCII Character Set .......................................................................................... 238
B.2.8 Expressions ........................................................................................................ 239
B.2.9 Operators ........................................................................................................... 240
B.2.10 Instruction Set .................................................................................................. 241
B.2.11 Register Name .................................................................................................. 241
B.2.12 Addressing Mode .............................................................................................. 242
B.2.13 Example for Mnemonic Notation .................................................................... 243

B.3 Pseudo-Instructions ................................................................................................... 244
B.3.1 Section Setting Pseudo-Instructions .................................................................. 245
B.3.2 Data Definition Pseudo-Instructions ................................................................ 247
B.3.3 Symbol Definition Pseudo-Instructions ............................................................. 251
B.3.4 Location Counter Control Pseudo-Instruction ................................................. 253
B.3.5 External Definition and External Reference Pseudo-Instructions ................... 254
B.3.6 Source File Insertion Pseudo-Instruction [sap88 only] ................................... 255
B.3.7 Assembly Termination Pseudo-Instruction ........................................................ 256
B.3.8 Macro-Related Pseudo-Instructions [sap88 only] ............................................ 257
B.3.9 Conditional Assembly Pseudo-Instructions [sap88 only] ................................ 266
B.3.10 Output List Control Pseudo-Instructions ........................................................ 270

APPENDIX C ASSEMBLY TOOL REFERENCE (Sub tool chain) __________________ 273
C.1 Structured Preprocessor <sap88> ............................................................................ 274

C.2 Cross Assembler <asm88> ....................................................................................... 276

C.3 Linker <link88> ........................................................................................................ 281

C.4 Symbol Information Generator <rel88>................................................................... 285

C.5 Symbolic Table File Generator <sym88> ................................................................. 288

C.6 Binary/HEX Converter <hex88> .............................................................................. 290

QUICK REFERENCE _________________________________________________ 293



CHAPTER 1  GENERAL

S5U1C88000C MANUAL II EPSON 1
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 1 GENERAL

1.1 Features
The S1C88 Family Integrated Tool Package contains software development tools that are common to all
the models of the S1C88 Family. The package comes as an efficient working environment for develop-
ment tasks, ranging from compiling/assembly source program to debugging.
The principal features are as follows:

Integrated working environment
The work bench wb88, a Windows GUI application,  provides an integrated working environment
that allows management of all files as a project, execution of make process, invocation of tools includ-
ing the editor specified by the user.

Supports C and S1C88 Family assembly languages
This package contains C compiler tools as well as the conventional structured assembler tools.

Supports simulator, auto evaluation system and ICE as debugging tools
The work bench invokes the ICE (S5U1C88000H5) an optional development tool for the S1C88 Family
or the simulator after automatically generating a command file, this makes it possible to debug an
object immediately after building.

Common to all S1C88 chips
The tools included in this package are common to all S1C88 Family models. The chip dependent
information is read from the parameter file and device information definition file for each chip.



CHAPTER 1  GENERAL

2 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

1.2 S1C88 Family Integrated Development Environment

ic
e8

8u
r.

ex
e

S
eg

m
en

t o
pt

io
n

ge
ne

ra
to

r 
w

in
so

g.
ex

e

fil
e.

S
S

A

S
eg

m
en

t o
pt

io
n

H
E

X
 fi

le

fil
e.

S
D

C

fil
e.

in
i

M
as

k 
da

ta
 c

he
ck

er

w
in

m
dc

.e
xe

fil
e.

P
A

n
M

as
k

da
ta

 fi
le

F
un

ct
io

n 
op

tio
n

ge
ne

ra
to

r 
w

in
fo

g.
ex

e

fil
e.

F
S

A
fil

e.
F

D
C

F
un

ct
io

n 
op

tio
n

do
cu

m
en

t f
ile

F
un

ct
io

n 
op

tio
n

H
E

X
 fi

le

S
eg

m
en

t o
pt

io
n

do
cu

m
en

t f
ile

P
ro

gr
am

 u
nu

se
d 

ar
ea

fil
lin

g 
ut

ili
ty

 fi
l8

8x
xx

fil
e.

P
S

A
P

ro
gr

am
 

da
ta

 H
E

X
 fi

le

C
 c

om
pi

le
r

c8
8.

ex
e

A
ss

em
bl

er

as
88

.e
xe

O
bj

ec
t r

ea
de

r

pr
88

.e
xe

Li
br

ar
y 

m
ai

nt
ai

ne
r

ar
88

.e
xe

T
ex

t e
di

to
r

(p
re

pa
re

d 
by

 c
us

to
m

er
)

fil
e.

O
U

T

Li
nk

er
ob

je
ct

m
od

ul
e

fil
e.

A
B

S

A
bs

ol
ut

e
lo

ad
m

od
ul

e

M
ot

or
ol

a 
S

ob
je

ct
 fi

le

fil
e.

C
C

 s
ou

rc
e

fil
es

fil
e.

S
R

C
A

ss
em

bl
y

fil
es

fil
e.

O
B

J
O

bj
ec

t
m

od
ul

es

B
itm

ap
 u

til
ity

  B
m

pU
til

.e
xe

(S
im

ul
at

or
 p

ac
ka

ge
)

B
itm

ap
 e

di
to

r

(p
re

pa
re

d 
by

 c
us

to
m

er
)

fil
e.

B
M

P
B

itm
ap

fil
e(

s)

fil
e.

B
M

U

B
itm

ap
de

fin
iti

on
 

fil
e

fil
e.

T
X

T
D

at
a

ta
bl

e 
fil

e

fil
e.

E
R

R
E

rr
or

fil
e

∗1

∗2

∗2
∗2

∗2
∗2

∗2

∗3

∗1

fil
e.

LS
T

Li
st

fil
e

fil
e.

A
O

bj
ec

t
lib

ra
ry

M
ak

e 
pr

og
ra

m

m
k8

8.
ex

e

C
on

tr
ol

 p
ro

gr
am

cc
88

.e
xe

fil
e.

M
A

K
M

ak
e

fil
e

fil
e.

M
E

M
fil

e.
IN

F
fil

e.
C

P
U

fil
e.

D
S

C

Lo
ca

to
r

de
sc

rip
tio

n
fil

es

O
R

fil
e.

E
R

S
E

rr
or

fil
e

fil
e.

M
A

P
Lo

ca
te

m
ap

fil
e

fil
e.

S
YS

ym
bo

lic
 

ta
bl

e
fil

e

∗1

∗4

∗5

∗4

fil
e.

E
LC

E
rr

or
fil

e

Li
nk

er

lk
88

.e
xe

fil
e.

P
R

T

P
or

t
se

tti
ng

fil
e

P
or

t s
et

tin
g 

ut
ili

ty

P
rt

U
til

.e
xe

S
im

ul
at

or

si
m

88
.e

xe

D
eb

ug
ge

r

db
88

.e
xe

 (
un

de
r 

de
ve

lo
pm

en
t)

IC
E

 &
 P

er
ip

he
ra

l c
irc

ui
t b

oa
rd

T
ar

ge
t b

oa
rd

R
O

M
 w

rit
er

 c
on

tr
ol

 s
of

tw
ar

e

fil
e.

W
P

J
P

ro
je

ct
fil

e

W
or

kb
en

ch

w
b8

8.
ex

e

fil
e.

LC
D

LC
D

de
fin

iti
on

fil
e

fil
e.

C
M

P
fil

e.
S

P
J

C
om

po
ne

nt
m

ap
pi

ng
 fi

le
S

im
ul

at
or

pr
oj

ec
t f

ile

m
od

el
.P

A
R

IC
E

 
pa

ra
m

et
er

 
fil

e

m
od

el
.M

O
T

P
er

ip
he

ra
l

ci
rc

ui
t b

oa
rd

F
P

G
A

 d
at

a

ic
e8

8u
r.

in
i

IC
E

 
in

i f
ile

fil
e.

B
M

P
B

itm
ap fil

e

LC
D

 p
an

el
 c

us
to

m
iz

e 
ut

ili
ty

Lc
dU

til
.e

xe

fil
e.

A
xx

R
es

ul
t 

da
ta

 fi
le

fil
e.

C
S

V

C
he

ck
 

sh
ee

t f
ile

fil
e.

M
xx

R
ef

er
en

ce
 

da
ta

 fi
le

fil
e.

T
X

T

C
om

m
an

d 
fil

eA
ut

o 
ev

al
ua

tio
n 

sy
st

em

A
ut

oE
va

.e
xe

fil
e.

S
Y

S
ym

bo
lic

 
ta

bl
e 

fil
e

S
ym

bo
lic

 ta
bl

e 
fil

e 
ge

ne
ra

to
r

sy
88

.e
xe

fil
e.

S
Y

S
ym

bo
lic

 
ta

bl
e 

fil
e

S
ym

bo
lic

 ta
bl

e 
fil

e 
ge

ne
ra

to
r

sy
m

88
.e

xe

∗1

fil
e.

LN
L

Li
nk

m
ap

fil
e

A
dv

an
ce

d 
lo

ca
to

r
de

fin
iti

on
 fi

le

fil
e.

C
A

L

C
al

l
gr

ap
h

fil
e

fil
e.

E
LK

E
rr

or
fil

e

fil
e.

S
A

M
ai

n
 t

o
o

l c
h

ai
n

E
m

b
ed

d
ed

 s
ys

te
m

 s
im

u
la

to
r

P
re

pr
oc

es
so

r

sa
p8

8.
ex

e

A
ss

em
bl

er

as
m

88
.e

xe

fil
e.

S
A

M
ot

or
ol

a 
S

ob
je

ct
 fi

le

fil
e.

A
B

S

A
bs

ol
ut

e
ob

je
ct

fil
e

fil
e.

S
A

ss
em

bl
y

so
ur

ce
 fi

le
s

D
ev

ic
e 

in
fo

rm
at

io
n

de
fin

iti
on

 fi
le

fil
e.

M
S

P
re

pr
oc

es
se

d
so

ur
ce

 fi
le

s

fil
e.

O
O

bj
ec

t
m

od
ul

es

fil
e.

LC
M

Li
nk

 c
om

m
an

d
pa

ra
m

et
er

 fi
le

H
E

X
 c

on
ve

rt
er

he
x8

8.
ex

e

fil
e.

R
E

F

S
ym

bo
l

in
fo

rm
at

io
n

re
fe

re
nc

e 
fil

e

Li
nk

er

lin
k8

8.
ex

e

S
ym

bo
l i

nf
or

m
at

io
n 

ge
ne

ra
to

r

re
l8

8.
ex

e

fil
e.

X
C

ro
ss

re
fe

re
nc

e
fil

e

E
rr

or
lis

t f
ile

fil
e.

LS
T

A
ss

em
bl

y
lis

t f
ile

fil
e.

E

S
u

b
 t

o
o

l c
h

ai
n

D
ev

el
o

p
m

en
t 

to
o

l c
h

ai
n

R
O

M
 w

rit
er

M
an

uf
ac

tu
re

d 
in

 

S
ei

ko
 E

ps
on

F
la

sh
 R

O
M

M
C

U
M

as
k 

R
O

M
M

C
U

W
B

W
B

B
u

ild

B
u

ild

B
u

ild

B
u

ild

A
dv

an
ce

d 
lo

ca
to

r

al
c8

8.
ex

e

B
u

ild
Lo

ca
to

r

lc
88

.e
xe

B
u

ild

B
u

ild

W
B

W
B

W
B

W
B

W
B

W
B

W
B

W
B

∗1
: I

f t
he

 e
rr

or
 fi

le
 is

 g
en

er
at

ed
, w

b8
8 

di
sp

la
ys

 th
e 

co
nt

en
ts

 o
f t

he
 fi

le
 in

 th
e 

m
es

sa
ge

 v
ie

w
 a

nd
 a

llo
w

s 
a 

ta
g 

ju
m

p 
fu

nc
tio

n.
   

 ∗
2:

 C
re

at
ed

 u
si

ng
 a

 te
xt

 e
di

to
r.

   
∗3

: C
re

at
ed

 u
si

ng
 a

 b
itm

ap
 e

di
to

r.
   

∗4
: C

re
at

ed
 u

si
ng

 th
e 

w
b8

8 
se

ct
io

n 
ed

ito
r 

(o
r 

a 
te

xt
 e

di
to

r)
.  

 ∗
5:

 S
el

ec
te

d 
by

 w
b8

8.

W
B

B
u

ild

W
B

C
an

 b
e 

in
vo

ke
d 

fr
om

 th
e 

w
or

kb
en

ch
 w

b8
8.

 
T

oo
ls

 e
xe

cu
te

d 
au

to
m

at
ic

al
ly

 d
ur

in
g 

bu
ild

 p
ro

ce
ss

 b
y 

w
b8

8.
B

u
ild



CHAPTER 1  GENERAL

S5U1C88000C MANUAL II EPSON 3
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

The following shows the outlines of the software tools included in the package:

Integrated working environment
Work Bench (wb88.exe)
This software provides an integrated development environment with Windows GUI. Creating/editing
source files using an editor, selecting files and the major start-up options for C compiler Tool Chain,
and the start-up of each tool can be made with simple Windows operations.

Main tool chain
C compiler (c88.exe)
Compiles C source files to generate assembly source files.

Assembler (as88.exe)
Assembles the assembly source files generated by the C compiler to convert into relocatable object
files.

Linker (lk88.exe)
Links relocatable object files and libraries to generate a combined relocatable object file.

Locator (lc88.exe)
Relocates the relocatable object file generated by the linker to generate a load module that has abso-
lute address. This file is used for debugging and creating mask data.

Advanced locator (alc88.exe)
Realizes the locator's relocation functions without using description files in DELFEE. Moreover, it
incorporates a new function that helps to optimize branching. See Chapter 5 for details about ad-
vanced locator.

The tools available in the Main tool chain, except advanced locator, are detailed in the document titled
"S5U1C88000C Manual I".

Sub tool chain
Preprocessor (sap88.exe)
Expands the preprocessor instructions in assembly source files into the source codes that can be
assembled.

Assembler (as88.exe)
Assembles the assembly source files generated by the preprocessor to convert into relocatable object
files.

Linker (lk88.exe)
Relocates the relocatable object files generated by the assembler to generate an absolute object file.

Hex converter (hx88.exe)
Converts the absolute object file generated by the linker into a HEX data file in the Motorola S format.
This HEX file is used for debugging and creating mask data.

Refer to Appendix for details of the tools in the Sub tool chain.



CHAPTER 1  GENERAL

4 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Development tool chain
Function option generator (winfog.exe)
This tool creates an ICE function option setup file after selecting the mask options of the S1C88xxx
and the function option document file that is necessary to generate IC mask patterns.

Segment option generator (winsog.exe)
This tool creates an ICE segment option setup file after selecting the segment options of the S1C88xxx
and the segment option document file that is necessary to generate IC mask patterns. The winsog is
used only for the model that has segment options.

Program unused area filling utility (fil88xxx.exe)
This tool extracts the built-in ROM area from a program data HEX file and fills unused areas in the
built-in ROM with FFH. It also sets a system code to the system-reserved area. This processing must
be performed before debugging the program with the ICE as well as before generating a mask data
with winmdc.

Mask data checker (winmdc.exe)
This tool checks the data in development-completed program file and option document files to create
the mask data file that will be presented to Seiko Epson.

Refer to Chapters 6 through 12 for details of the tools in the Development tool chain.

Debug tool
db88 debugger (ice88ur.exe)
Controls the ICE (S5U1C88000H5) provided as a hardware tool for the S1C88 Family to debug pro-
grams. Commands that are used frequently, such as break and step, are registered on the tool bar,
minimizing the necessary keyboard operations. Moreover, sources, registers, and command execution
results can be displayed in multiple windows, with resultant increased efficiency in the debugging
tasks. Refer to Chapter 13 for details of the db88 debugger.

ice88ur debugger (ice88ur.exe)
Controls the ICE (S5U1C88000H5) provided as a hardware tool for the S1C88 Family to debug pro-
grams. The operations are described in a Windows help file (.hlp) that can be opened from the start
menu. (The help file in English can also be opened from the menu/tool bar in ice88ur.)

PROM writing tool
ROM writer control software
Controls the dedicated PROM writer to write data to the PROM in the built-in Flash EEPROM
microcomputer. A different tool and firmware are provided for each microcomputer model and each
type of PROM writer. Refer to the technical manual of each built-in Flash EEPROM microcomputer for
PROM writers and how to write data.



CHAPTER 2  INSTALLATION

S5U1C88000C MANUAL II EPSON 5
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 2 INSTALLATION

2.1 Package Components
The S1C88 Family Integrated Tool Package contains the items listed below. When it is unpacked, make
sure that all items are supplied.

1. CD-ROM (Tools and PDF manuals are included) .................. One
2. Warranty card .......................................................................... One each in English and Japanese
3. Registration card ..................................................................... One each in English and Japanese

2.2 Operating Environment
For each tool to be used, the following operating environment is required:

Personal computer
IBM PC/AT or fully compatibles that can run the system software listed below. A personal computer
using Pentium 200 MHz or greater as the CPU and incorporating 64 MB or more of RAM is recom-
mended. Installation requires a CD-ROM drive.
To use the optional ICE (S5U1C88000H5), the personal computer also requires a USB port and Win-
dows 2000 or Windows XP.

Display
A 800 × 600 dots display unit or higher is required.

System software
Each tool is designed to run under Microsoft Windows 2000 and Windows XP (in English or Japa-
nese).
To use the optional ICE (S5U1C88000H5), Windows 2000 or Windows XP is necessary.

Other
To debug the target program using the in-circuit emulator system, the optional ICE (S5U1C88000H5)
and a Peripheral Circuit Board (S5U1C88xxxP) are needed as the hardware tools.



CHAPTER 2  INSTALLATION

6 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

2.3 Installation Method
To install the development tools, use the installer (Setup.exe) on the CD-ROM included with the package.

To install the tools
(1) Start Windows 2000 or Windows XP. If the OS is already active, close active programs.

(2) Insert the CD-ROM into the drive and display the contents.

(3) Double-click Setup.exe.
When old-version tools are installed, the installer displays a warning message and stops
installation. In this case, uninstall the old-version tools and then run the installer again.

Welcome to ...
The install wizard starts and displays the welcome
dialog box.

(4) Click on the [Next>] button to proceed.

Choose Destination Location
A dialog box for specifying the folder in which to install
the tools appears.

(5) If you do not wish to change the default settings,
simply click the [Next>] button to execute installa-
tion.

To install in another folder
Click [Browse...] to bring up the [Choose Folder]
dialog box. From this dialog box, enter the path or
select the folder in which to install the tools. Click
the [OK] button to finish folder selection and then
click the [Next>] button.

Note: When installing the tools to a folder other than
default, be aware that the folder must satisfy the
following requirements:
- The folder name must be 8 letters or less.
- The folder name cannot contain any spaces.
- When selecting a sub-directory, it must be

located within two levels from the root directory.

The installer will start installing the tools.



CHAPTER 2  INSTALLATION

S5U1C88000C MANUAL II EPSON 7
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

To end installation
All dialog boxes that appear during installation have a [Cancel] button. To prematurely terminate
installation, click [Cancel] in the dialog box when it is displayed.

To uninstall
To uninstall the installed tools, use "Add/Remove Programs" on the Control Panel.

2.4 Directories and Files after Installation
The installer copies the following files in the specified directory (default is "C:\EPSON\S1C88\"):

[EPSON\S1C88]
README_E.TXT ... ReadMe text file (English)
README_J.TXT ... ReadMe text file (Japanese)
ADDPATH.BAT ... Batch file for environment setup

[\BIN] ... S1C88 Family C Compiler Tools
WB88.EXE ... Work bench
C88.EXE ... C compiler
AS88.EXE ... Assembler
LK88.EXE ... Linker
LC88.EXE ... Locator
ALC88.EXE ... Advanced locator
CC88.EXE ... Control program
MK88.EXE ... Make program
AR88.EXE ... Library maintainer
PR88.EXE ... Object reader
SY88.EXE ... Symbolic table file generator
ICE88UR.EXE ... S5U1C88000H control software
ICE88UR.HLP ... S5U1C88000H help file
. . . ... Other related files

[\SAP] ... S1C88 Family Structured Assembler Tools
SAP88.EXE ... Preprocessor
ASM88.EXE ... Assembler
LINK88.EXE ... Linker
HEX88.EXE ... HEX converter
REL88.EXE ... Symbol information generator
SYM88.EXE ... Symbolic table file generator

[\DB88] ... DB88 debugger directory
DB88.EXE ... DB88 debugger
DEFAULT.PAR ... Default parameter file
. . . ... Other related files

[\DEV]
[\BIN] ... S1C88 Family Development Tool for Windows

WINFOG.EXE ... Function option generator
WINSOG.EXE ... Segment option generator
WINMDC.EXE ... Mask data checker

[\88xxx] ... Model-dependent files
S1C88xxx.CPU ... Locator description files
S1C88xxx.DSC
S1C88xxx.MEM
FIL88xxx.EXE ... Program unused area filling utility
S1C88xxx.ini ... Device information definition file
88xxx.PAR ... ICE parameter file
t88xxx.psa ... ICE self-diagnostic files
t88xxx.fsa
t88xxx.fdc

InstallShield Wizard Complete
(6) Click [Finish] to terminate the installer.

"401Comupd.exe" may be executed according to the
system condition.



CHAPTER 2  INSTALLATION

8 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

[\DOC]
[\ENGLISH] ... Document folder (English)

REL_xxxx_E.TXT ... Tool release note
TBD_E.PDF ... Manual (PDF)
TBD_E.PDF ... Quick reference (PDF)
[\HARD] ... Hardware tool document folder (English)

PRC_COMMON_E.PDF ... Standard peripheral circuit board manual (PDF)
ICE88UR_SETUP_E.PDF... ICE manual (PDF)

[\JAPANESE] ... Document folder (Japanese)
REL_xxxx_J.TXT ... Tool release note
TBD_J.PDF ... Manual (PDF)
TBD_J.PDF ... Quick reference (PDF)
[\HARD] ... Hardware tool document folder (Japanese)

PRC_COMMON_J.PDF ... Standard peripheral circuit board manual (PDF)
ICE88UR_SETUP_J.PDF ... ICE manual (PDF)

[\ETC] ... Default locator description files
S1C88.DSC
MK88.MK
S1C88.CPU
S1C88.MEM

[\ICE]
[\FPGA]

C88xxx.MOT ... FPGA data for standard peripheral circuit board

[\INCLUDE] ... C header files

[\LIB] ... C library files
[\LIBCC] ... Library objects for compact code model
[\LIBCD] ... Library objects for compact data mode
[\LIBCL] ... Library objects for large mode
[\LIBCS] ... Library objects for small mode
[\SRC] ... Library source files

[\SAMPLES] ... Sample program sources
Refer to ApplicationNote_J(E).PDF located in this folder for the contents of the sample
programs.

[\WRITER]
[\8xxxx]  (Flash microcomputer name)

[\URW2]
RW8xxxxx.EXE ... Universal ROM Writer II control software
8xxxxx.FRM ... Firmware

[\OBPW]
OBW8xxxx.EXE ... On-board Programming ROM Writer control software
RW8xxxx.INI ... Device information setup file

[\MPRW]
G8xxxxxx.EXE ... Multiple-Programming ROM Writer control software

: ∗ Refer to the technical manual for details of the ROM Writer and PROM programming.

Online manual in PDF format
The online manuals are provided in PDF format, so Adobe Acrobat Reader Ver. 4.0 or later is needed
to read it.

Files for future release models
The files for future release models will be provided in the Microcomputer User's Site of Seiko Epson.
Refer to the Readme file included in the package for installation.

2.5 Environment Settings
The following environment variables must be configured for the tools in this package:

SET PATH=C:\EPSON\S1C88\BIN;%PATH%

SET C88INC=C:\EPSON\S1C88\INCLUDE

SET C88LIB=C:\EPSON\S1C88\LIB

Run addpath.bat in which the above commands are described before using the tools.
When you select another directory at installation, "EPSON\S1C88\" shown above is changed to that
directory name.
However, wb88 automatically configures the environment variables at start-up, so it is not necessary to
run addpath.bat when invoking the tools from wb88.



CHAPTER 3  WORK BENCH

S5U1C88000C MANUAL II EPSON 9
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 3 WORK BENCH
This chapter describes the functions and operating method of the Work Bench wb88.

3.1 Features
The Work Bench wb88 provides an integrated operating environment ranging from editing source files to
debugging. Its functions and features are summarized below:

• Source edit function that supports tag jump from error messages using a user's editor.
• Allows simple management of all necessary files and information as a project.
• General make process to invoke necessary tools and to update the least necessary files.
• Supports all options of the S1C88 Family C compiler tool chain and invocation of each tool.
• Windows GUI interface for simple operation.

3.2 Starting Up and Terminating the Work Bench

To start up the work bench

To terminate the work bench
Select [Exit] from the [File] menu.

Double-click on the wb88.exe icon.

When the work bench starts up, the window shown below appears.



CHAPTER 3  WORK BENCH

10 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

3.3 Work Bench Windows
The work bench window is configured with Project view, Option view and Message view.

Menu bar Toolbar Option view

Project view Message view Status bar

Each view area can be resized by dragging the boundary. A standard scroll bar appears if the display
contents exceed the view area. Use it to scroll the display contents. The arrow keys can also be used.



CHAPTER 3  WORK BENCH

S5U1C88000C MANUAL II EPSON 11
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Project view
This area shows the currently opened work space folder and lists all the files that can be edited by the
user in the project, with a structure similar to Windows Explorer.
The file list is classified into five nodes:
• Project Project name (work space folder name)
• Source Files (C) C source files (.c)
• Source files (ASM) Assembly source files (.asm)
• Header Files Header files (.h/.inc)
• Definition Files Various device information definition files (.cpu/.dsc/.mem/.par) that allow

user to edit

Double-clicking a source file icon invokes the specified editor to open the source file. Definition Files
are displayed only when the check box [Disable Making DELFEE] of the section editor is selected.

Option view
This area displays the selected options of the C compiler, assembler, linker, locator and segment
editor, and also allows option selection. The option view changes its display contents according to the
selection in the project view (whether node or file) as well as clicking a tool name tab. Refer to Section
3.9 for details.

Message view
This area displays the messages delivered from the executed tools in a build or compile process.
Double-clicking a syntax error message with a source line number displayed in this window invokes
the specified editor. The editor opens the corresponding source and displays the source line in which
the error has occurred (available when an editor with the tag jump function that can be specified by
wb88 is used).

Menu bar
Refer to Section 3.5.

Tool bar
Refer to Section 3.4.
The tool bar can be shown or hidden by selecting [Tool Bar] from the [View] menu.
The tool bar can be changed to vertical position by dragging it towards the left edge or right edge of
the window. It can also be made a floating window by dragging it outside the tool bar area.

Status bar
Shows help messages when the mouse cursor is placed on a menu item or a button.
The status bar can be shown or hidden by selecting [Status Bar] from the [View] menu.



CHAPTER 3  WORK BENCH

12 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

3.4 Toolbar and Buttons
The toolbar has the following buttons:

[New Project] button
Creates a new project.

[Save Project] button
Saves the project being edited. The file will be overwritten. This button becomes inactive if a
project is not opened.

[Insert a file] button
Inserts the specified source/header file into the current opened project. This button becomes
inactive if a project is not opened.

[Remove a file] button
Removes the selected file from the project.

[Open] button
Opens a document. A dialog box will appear allowing selection of the file to be opened. When a
source or header file is selected, the specified editor activates and opens the file.

[Compile/Assemble] button
Compiles or assembles the source file selected in the option view according to the source format.

[Build] button
Builds the currently opened project using a general make process.

[Rebuild] button
Builds the currently opened project. All the source files will be compiled/assembled regardless of
whether they are updated or not.

[Stop Build] button
Stops the build process being executed.

[BMPUtil] button
Invokes the bitmap utility BmpUtil.

[WinFOG] button
Invokes the function option generator winfog.

[WinMDC] button
Invokes the mask data checker winmdc.

[PrtUtil] button
Invokes the port setting utility PrtUtil.

[LCDUtil] button
Invokes the LCD panel customize utility LCDUtil.

[Sim88] button
Invokes the simulator Sim88.

[AutoEva] button
Invokes the auto evaluation system AutoEva.

[ICE88UR] button
Invokes the ice88ur debugger.

[DB88] button
Invokes the db88 debugger.

[ROM Writer] button
Invokes the on-board ROM writer control software.

[About] button
Displays the version of wb88.



CHAPTER 3  WORK BENCH

S5U1C88000C MANUAL II EPSON 13
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

3.5 Menus

3.5.1 [File] Menu
[New - C Source File]
Creates a new C source file. When a file name is entered in the
displayed dialog box, the specified editor activates and opens a
new document. The created source file is inserted into the
currently opened project (Source Files (C) node in the project
view).

[New - Asm Source File]
Creates a new assembly source file. When a file name is entered
in the displayed dialog box, the specified editor activates and
opens a new document. The created source file is inserted into the
currently opened project (Source Files (ASM) node in the project
view).

[New - Header File]
Creates a new header file. When a file name is entered in the
displayed dialog box, the specified editor activates and opens a
new document. The created source file is inserted into the
currently opened project (Header Files node in the project view).

[New - Project]
Creates a new project.

[Open] ([Ctrl]+[O])
Opens a source file, header file or project file. A dialog box will
appear allowing selection of the file to be opened. When a source
or header file is selected, the specified editor activates and opens
the file.

[Open Workspace]

Opens a project. A dialog box will appear allowing selection of
the project to be opened.

[Save Workspace]

Saves the currently opened project.

[Close Workspace]
Closes the currently opened project.

[Exit]

Terminates wb88.

3.5.2 [View] Menu
[Tool Bar]

Shows or hides the tool bar.

[Status Bar]
Shows or hides the status bar.

The file names listed in this menu are
recently used source and project files.
Selecting one opens the file.



CHAPTER 3  WORK BENCH

14 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

3.5.3 [Source] Menu
[Insert file into Project]
Adds the specified source file in the currently opened project. A dialog
box will appear allowing selection of the file to be added.

[Remove file from Project]
Removes the source file selected in the Project view from the currently
opened project. The actual file is not deleted.

3.5.4 [Build] Menu
[Compile/Assemble]
Compiles or assembles the source file selected in the Project view
according to the source format.

[Build]
Builds the currently opened project using a general make process.

[ReBuild All]
Builds the currently opened project. All the source files will be com-
piled/assembled regardless of whether they are updated or not.

[Stop Build]
Stops the build process being executed.

3.5.5 [Debug] Menu
[SIM88 Simulator]
Invokes the Sim88 simulator.

[DB88 Debugger]
Invokes the db88 debugger.

[ICE88UR Debugger]
Invokes the ice88ur debugger.

3.5.6 [Tools] Menu

[Simulator Tools - Auto Evaluation System]
Invokes the auto evaluation system AutoEva.

[Simulator Tools - Bitmap Utility]
Invokes the bitmap utility BmpUtil.

[Simulator Tools - LCD Panel Customize Utility]
Invokes the LCD panel customize utility LCDUtil.

[Simulator Tools - Port Setting Utility]
Invokes the port setting utility PrtUtil.



CHAPTER 3  WORK BENCH

S5U1C88000C MANUAL II EPSON 15
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

[Dev Tools - Function Option Generator]
Invokes the function option generator winfog.

[Dev Tools - Mask Data Checker]
Invokes the mask data checker winmdc.

[On-Board ROM Writer]
Invokes the on-board ROM writer control software.

[Sim88 Configuration]
Displays a dialog box for setting the path to the simulator Sim88.exe.

[Editor Configuration]
Displays a dialog box for setting the editor path and the command line
options.

3.5.7 [Help] Menu
[About WB88]
Displays a dialog box showing the version of the work bench.



CHAPTER 3  WORK BENCH

16 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

3.6 Project and Work Space
The work bench manages a program development task using a work space folder and a project file that
contains file and other information necessary for invoking the development tools.

3.6.1 Creating a New Project
A new project file can be created by the following procedure:

1. Select [New | Project] from the [File] menu or click the [New Project] button.

 [New Project] button

The [New Project] dialog box appears.

2. Enter a project name, select a device name and a directory for saving the project, and then click [OK].

   ∗ The [MCU Type] box lists the device names that exist in
the "dev" directory.

The work bench creates the folder (directory) specified in the [Locate] box as a work space, and creates
the project file (<project name>.wpj) and the following folders in the folder.
If a folder which has the same name as that of a specified one already exists in the specified location, the
work bench uses the folder as the work space.
The specified project name will also be used for the absolute object and other files.

Folders created in the work space
def: Folder in which advanced locator definition files and various other definition files are saved.

When a new project is created, a definition file that will be used as a template is copied into this
folder. This file can be reused simply by making the necessary changes, if any.

obj: Folder in which intermediate files generated during building are saved.
src: Folder in which source files and header files created from wb88 are saved. (Source files in other

folders are not copied to this folder, even when they have been added to a project.)
tmp: Folder in which temporary files created during building or tool execution are saved.

For more information on the file types placed in each folder, refer to Section 3.12, "File List".



CHAPTER 3  WORK BENCH

S5U1C88000C MANUAL II EPSON 17
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

3.6.2 Inserting Sources into a Project
The sources created must be inserted into the project.
To insert a source into a project, use one of the two methods shown below:

1. [Source | Insert file into Project] menu item or [Insert a file] button

 [Insert a file] button

A dialog box appears when this menu item is selected or the button is clicked.

After specifying the file format (C source,
assembly source, or header file), select a file
and click the [Open] button. The selected file is
added to the project and displayed in project
view.

Note: Reference information on the selected file is registered to the project. Since files are not copied
into the work space, do not move a file after adding it to the project. If a file is moved, remove the
file from the project (see the section below), then add it back to the project again.

2. [File | New] menu item
If a new source file or header file is created with this menu command, the file is automatically added
to the project that is currently open. For more information on creating new source and header files,
refer to Section 3.7.2.
The newly created files are added to the project and displayed in the Project view.

3.6.3 Removing a Source from the Project
To remove a source or header file from the project, select the file in the Project view and then select
[Remove file from Project] from the [Source] menu, click the [Remove a file] button or press the [Delete]
key. This removes only the file information, and does not delete the actual file.

 [Remove a file] button

3.6.4 Project View
The Project view shows the work space folder and the files that can be edited,
such as source, header and definition files, included in the project that has
been opened.

When a file icon or file name is double-clicked, the specified editor activates
and opens the file. Notepad in Windows is set as the default editor. It can be
changed by selecting [Editor Configuration] from the [Tool] menu.

Note: Note that the list in the [project] window is not the actual directory
structure.



CHAPTER 3  WORK BENCH

18 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

3.6.5 Opening and Closing a Project
To open a project, select [Open Workspace] from the [File] menu.
A dialog box appears allowing selection of a project file.

The work bench allows only one project to be opened at a time. So if a project has been opened, it will be
closed when another project is opened. At this time, a dialog box appears to select whether the current
project file is to be saved or not if it has not already been saved after a modification.

The project file can also be opened by selecting [Open] from the [File] menu or clicking the [Open] button.

 [Open] button

In this case, choose the file type as Project Files (*.wpj) in the file open dialog box.

To close the currently opened project file, select [Close Workspace] from the [File] menu. At this time, a
dialog box appears to select whether the current project file is to be saved or not if it has not already been
saved after a modification. If [Yes] (save) is selected in this dialog box, all the modification items includ-
ing file configuration and tool settings will be saved.

3.6.6 Saving the Project
To save the currently edited project file, select [Save Workspace] from the [File] menu or click the [Save
Project] button.

 [Save Project] button

In addition, if one of the following operations is performed before the project is saved, a dialog box is
displayed to prompt for save confirmation. This allows the project to be saved here.
• Open the project (by selecting the project with [Open Workspace] or [Open] from the [File] menu)
• Close the project ([Close Workspace] on the [File] menu)
• Create a new project ([New | Project] on the [File] menu)
• Compile or assemble ([Compile/Assemble] on the [Build] menu)
• Build ([Build] on the [Build] menu)
• Rebuild ([ReBuild All] on the [Build] menu)



CHAPTER 3  WORK BENCH

S5U1C88000C MANUAL II EPSON 19
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

3.7 Creating/Editing Source Files
Although the Work Bench itself does not include a source editor, it can invoke a specified editor and pass
file information or line number information to the editor. This function makes it possible to create and
edit sources, as well as tag jump from error messages.

3.7.1 Specifying an Editor
When a source/header file is newly created or opened, or when a file name listed in the Project view is
double clicked, the Work Bench invokes an editor and passes file information to it. The default editor is
the Windows Notepad application. To select another editor:

1. Select [Editor Configuration] from the [Tool] menu. The [Editor Configuration] dialog box shown
below is displayed:

Enter the following information in this dialog box:

[Editor Path]
Enter the path to the editor used or select an editor from the file select dialog box displayed by
clicking the [Reference] button.

[Parameter]
Enter the normal representation of command line options to specify a file name and line number
(for tag jump) when invoking the editor. The "%f" and "%l" are replaced with a file name and a line
number, respectively, before being sent to the editor. In the case of the default setting, Notepad is
invoked using the following command line.
C:\Win98\Notepad.exe <specified filename>

For example, if the editor requires specifying a file name in the same way as for Notepad and
specifying a "/j <line number>" option for tag jump in front of the file name, set the parameter as
follows:
/j%1 %f

Note: In the default Notepad application, the tag jump function cannot be used.

2. Click the [OK] button. The editor used is changed.



CHAPTER 3  WORK BENCH

20 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

3.7.2 Creating a New Source or Header File
To create a new source or header file:

1. Select [New | C Source File], [New | Asm Source File] or [New | Header File] from the [File] menu.
The [New Source] dialog box appears.

Example when [C Source File] is selected.

[Source Name]
Enter a source file name. Depending on the source type, use one of the following extensions.
.c C source file
.asm Assembly source file
.h Header file
.inc Include file

[Locate]
Enter a directory in which to create the source file. Select directories from the dialog box displayed by
clicking the [...] button. The src folder in the work space is displayed as the default location. Use this
folder unless you wish to select another folder for a specific reason.

[Copy start up module]
This check box is displayed only when C source file is selected. Leave it checked to copy code from
the C startup module stationery file into the C source file to be created. The stationery file is cstart.c in
the \EPSON\S1C88\LIB\SRC folder.

2. Click the [OK] button.
This creates a specified source file, and the selected editor starts to open that file. The created file is
also added to the project tree displayed in the Project view.

3. In the editor, enter the source codes and save the codes entered.

3.7.3 Editing Files
Correct or print the source file using the selected editor. Use one of the following two methods to open
the source file:

1. Select [Open] from the [File] menu, or click the [Open] button.

 [Open] button

A [Open] dialog box appears. After specifying the file format (C source, assembly source, or header
file), select a file and click the [Open] button.

2. Double-click on the file name displayed in the Project view.
You can also open a definition file from the [Definition Files] list.

In either case, the selected file is opened in the selected editor. In the editor, perform the necessary work.



CHAPTER 3  WORK BENCH

S5U1C88000C MANUAL II EPSON 21
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

3.7.4 Tag Jump Function
If a syntax error occurs during compiling or assembling a source file, an error message is displayed in the
Message view. If the error message includes a source line number, double-click the message to open the
relevant source file in the editor and to jump to the source line with the error.

WB88

xxxxxxx xxxxxx
Double-click 
the error message

Shows the line 
with the error

xxxx     xxxxx

xxxx     xxxxx
          :
          :
          :

Editor

Tag jump

Note: Before using the tag jump function, you must ascertain that your editor supports command line-
based tag jumps, and that the command line option is correctly set in [Tool | Editor Configuration].
(This function cannot be used with the default Notepad.)



CHAPTER 3  WORK BENCH

22 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

3.8 Build Task
The [Build] menu or with the toolbar button is used to build a project using the C compiler tool chain
(i.e., to generate an executable object file from the source file) and to execute compile/assemble opera-
tions from the Work Bench. For detailed information on each tool, refer to the "S5U1C88000C Manual I".

3.8.1 Preparing a Build Task
Before starting a build task, necessary source files should be prepared and tool options should be configured.
1. Create a new project. (Refer to Section 3.6.1.)
2. Create source files and add them into the project. (Refer to Sections 3.7 and 3.6.2.)
3. When alc88 is used, edit the advanced locator definition file using the section editor (Refer to Section 3.9.5.)

When lc88 is used, edit the locator description files (Refer to Section 3.7.3 and "S5U1C88000C Manual I".)
4. Select tool options (Refer to Section 3.9.)

3.8.2 Building an Executable Object
To generate an executable object:

1. Open the project file.

2. Select [Build] from the [Build] menu or click the [Build] button.

 [Build] button

The work bench generates a make file according to the source files in the project and the tool options set
by the user. This file is used to control invocation of tools.
First, the make process invokes the C compiler for each source file to be compiled. If the latest assembly
source file exists in the work space, the corresponding C source file is not compiled to reduce process
time.
Likewise, the assembler is invoked to generate relocatable object files.
Next, the linker is invoked to generate an absolute object file.
Finally, the advanced locator or the locator* is invoked to generate an executable object file.

To rebuild all files including the latest assembly source and relocatable object files, select [ReBuild All]
from the [Build] menu or click the [Rebuild] button.

 [Rebuild] button

The build task can be suspended by selecting [Stop Build] from the [Build] menu or clicking the [Stop
Build] button.

 [Stop Build] button

∗  Selecting Advanced Locator alc88 or Locator lc88
Advanced locator alc88 and locator lc88 both have the function to relocate linked relocatable objects to
absolute addresses in memory. Either type of locator can be used by selecting or deselecting the check
box [Disable branch optimize] (displayed on the [Locator Options] tab screen) for locator options.

When [Disable branch optimize] = OFF (default), alc88 is executed.
When [Disable branch optimize] = ON, lc88 is executed.

The table below summarizes the differences between alc88 and lc88.

Table 3.8.2.1  Differences between alc88 and lc88
Item

Definition file

How definition files are created

CARL instruction branching 
optimization function

Advanced locator alc88
Advanced locator definition file
(.inf)
The section editor of wb88 is used (so 
there is no need to learn DELFEE).
Available

Locator lc88
Locator description files (DELFEE)
(.dec, .mem, .cpu)
The section editor of wb88 is used or the 
user creates files in DELFEE language.
Not available



CHAPTER 3  WORK BENCH

S5U1C88000C MANUAL II EPSON 23
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Except when necessary to use the existing locator description files, such as when upgrading applica-
tion versions, we recommend the use of alc88 with a branching optimization function.
See Section 3.9.5, "Section Editor", for details about and how to create definition files.

3.8.3 Running only the Compiler or Assembler
The source files can also be compiled or assembled individually. To invoke only the compiler or assem-
bler, select the source file to compile or assemble from the Project view, then select [Compile/Assemble]
from the [Build] menu or click the [Compile/Assemble] button.

 [Compile/Assemble] button

Depending on the file type selected, either the compiler or the assembler is launched to process the file.



CHAPTER 3  WORK BENCH

24 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

3.9 Setting Tool Options
Each tool executed in build task has options that can be specified at startup. The Work Bench allows you
to select and set these options from the Option view.

Option view

The options for each tool are displayed by clicking the tab for the intended tool name in the Option view.
The tool options displayed vary, depending on the selection made in the Project view, as shown below:

1. Select a project name Linker options are displayed.
2. Select [Source Files (C)] Default compile options (which apply to all C sources) are displayed.
3. Select a C source file Local compile options (which apply only to the selected C source) are

displayed.
4. Select [Source Files (ASM)] Default assemble options (which apply to all assembly sources) are

displayed.
5. Select an assembly source file Local assemble options (which apply only to the selected assembly

source) are displayed.

The options for each tool selected in the Option view become effective the next time the tool is run.



CHAPTER 3  WORK BENCH

S5U1C88000C MANUAL II EPSON 25
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

3.9.1 Compiler Options

In this screen, you can select the following compiler options:

Preprocessor Macro Definitions "-Dmacro[=def]" option of c88
Define the preprocessor macro. Enter in the text box in the following format:
macro name or macro name = content of definition

Include Files "-H file" option of c88
Specify the file name to be included before compiling. You can also display the files to include from
the dialog box displayed by clicking the [Reference] button.

Include File Directories "-Idirectory" option of c88
Specify the directory in which to search for include files that have unspecified path names. You can
also select this folder from the dialog box displayed by clicking the [...] button.

Merge C-source Code with Assembly Output "-s" option of c88
If this option is selected, C source codes are merged with the assembler output before being output.

Enable Symbolic Debug Information "-g" option of c88
If this option is selected, symbolic debug information is included in the output file.

Set Optimization "-O" option of c88
Selecting this option specifies "-O1" to optimize the code generated. Unchecking this option specifies
"-O0", suppressing optimization of code generation.

Suppress Warning Message(s) "-w[num]" option of c88
Selecting this option suppresses compiler warning messages. To suppress all warning messages, leave
the text box blank. To specify a specific warning message, enter the message number in the text box.
To enter multiple numbers, separate each entry with a comma (,).

Other options
To specify other options (including those listed above), enter the desired option in this text box in
command line format.



CHAPTER 3  WORK BENCH

26 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Notes to be observed when specifying compiler options
If both the -g option (Enable Symbolic Debug Information) and the -O1 option (Set Optimization) are
selected, a -W555 warning message is output during compiling.
If the -O1 option is specified, the symbols written in the source may not actually be used to optimize
the code. In this case, the debugging information for these symbols will not output to the .abs file,
even if the -g option is specified.
Example: int x, y, xy;

x = GLOBAL_X * 100;

y = GLOBAL_Y * 100;

xy = x * y;

In this example, since variable xy become nonexistent for optimization, the contents of xy cannot be
referenced during debugging.
If the executable file is recreated by specifying the -O1 option (optimization ON) after evaluation of
the executable file created with the -O0 option set (optimization OFF), program behavior cannot be
assured. Be sure to reverify the executable file whenever it is recreated this way.

About options that are not displayed
The C compiler options not displayed in the Option view are handled as described below:
-e This option is used in internal processing.
-err C compiler messages are displayed in the message window and output to an error

log file.
-f file This option conflicts with internal processing and cannot be used.
-o file The source file name is also used for the output file.
-V This option is not used in wb88.
-M{s | c | d | l} Specify this option in the linker option setup screen.

Default options and local options
If individual C source files are selected in the Project view, the option setup screen shows only the
local options that are applied only to the selected C source file. If no specific file is selected in the
Project view, or files other than individual C source files are selected, the default options that apply to
all C source files are displayed.
If local options are displayed, the option setup screen will also display the [Use Default] button, as in
the example shown below, to allow you to specify whether or not to apply the default options to the
selected C source file.

To change the compile options for each C source, uncheck the [Use Default] button and set each
option individually again.



CHAPTER 3  WORK BENCH

S5U1C88000C MANUAL II EPSON 27
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

3.9.2 Assembler Options

This screen can be used to select the following assembler options:

Preprocessor Macro Definitions "-Dmacro[=def]" option of as88
Define the preprocessor macro. Enter in the text box in the following format:
macro name or macro name = content of definition

Include Files "-C file" option of as88
Specify the file name to be included before assembly. You can also select the files to include from the
dialog box displayed by clicking the [Reference] button.

Default Label Identifiers "-i[l | g]" option of as88
Specify the default label style as local or global. Select from the pull-down list.

Generate Listing File "-l" option of as88
If this option is selected, the assembler generates a list file.

Contents "-L" option of as88
This button is enabled by selecting [Generate Listing
File]. Click this button to display the dialog box
shown below appears, where you can select the source
type line to be removed from the list file. The default
option setup content is "-LcDElMnPQsWXy".



CHAPTER 3  WORK BENCH

28 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Enable Symbolic Debug Information "-gs" option of as88
If this option is selected, symbolic debug information is included in the output file.

Display Section Size Summary "-t" option of as88
If this option is selected, the assembler displays a section summary in message view when assem-
bling.

Suppress Warning Message(s) "-w[num]" option of as88
If this option is selected, the assembler suppresses warning messages. To suppress all warning
messages, leave the text box blank. To specify a specific warning message to be suppressed, enter the
message number in the text box. Separate multiple numbers with a comma (,).

Other options
To specify other options (including those listed above), enter the desired option in this text box in
command line format.

About options that are not displayed
The assembler options not displayed in the Option view are handled as described below:

-e This option is used in internal processing.
-err Assembler messages are displayed in the Message window and output to an error

log file.
-f file This option conflicts with internal processing and cannot be used.
-o file The source file name is also used for the output file.
-V This option is not used in wb88.
-v This option is not used in wb88.
-c Specify this option in the linker option setup screen.
-M{s | c | d | l} Specify this option in the linker option setup screen.

Default options and local options
If individual assembly source files are
selected in the Project view, the option setup
screen shows the local options that are
applied only to the selected assembly source
file. If no specific file is selected in the
Project view, or files other than individual
assembly source files are selected, the
default options that apply to all assembly
sources are displayed.
If local options are displayed, the option
setup screen will display the [Use Default]
button, as in the example shown below,
allowing you to specify whether or not to
apply the default options to the selected
assembly source file.

To change the assembler options for each
assembly source, uncheck the [Use Default]
button and set each option individually
again.



CHAPTER 3  WORK BENCH

S5U1C88000C MANUAL II EPSON 29
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

3.9.3 Linker Options

This screen can be used to select the following options:

Memory Model "-M{s | c | d | l}" option of c88/as88
Select a memory model from Small, Compact code, Compact data, or Large. This setting is used
during compiling and assembly.

Case Insensitive "-c" option of as88 and "-C" option of lk88
If this option is selected, the assembler and linker do not distinguish between uppercase and lower-
case characters when assembling and linking.

Search for System Libraries "-L" option of lk88
If this option is selected, the linker searches for system libraries. If this option is unchecked, the linker
does not search for system libraries.
If [Additional Search Path] is left blank after selecting this option, only the directory specified in the
environment variable C88LIB is searched. To search other directories, enter the appropriate path in
[Additional Search Path] or select a directory from the list displayed by clicking the [Reference]
button.

Warning Level "-w n" option of lk88
Specify the level to which to suppress warning messages. Levels 0 to 9 can be selected from the pull-
down list. The default setting is 8. Warning messages whose levels are higher than the selected value
are not displayed.

Turn Off Overlaying "-N" option of lk88
Selecting this option disables overlaying.

Generate Link Map "-M" option of lk88
If this option is selected, the linker generates a link map file.

Generate Call Graph File "-c" option of lk88
If this option is selected, the linker generates an independent call graph file.

Suppress Undefined Symbol Diagnostics "-r" option of lk88
If this option is selected, the linker suppresses diagnosis of undefined symbols.

Print Name of Processing File (Verbose) "-v" option of lk88
If this option is selected, the linker displays the currently processed file name when linking.



CHAPTER 3  WORK BENCH

30 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Linking with user libraries
If there is any user library to link, enter the appropriate file name in this text box. To enter multiple
files, separate each entry with a comma (,).

Other Options
To specify other options (including those listed above), enter the desired option in this text box in
command line format.

About options that are not displayed
The linker options not displayed in the Option view are handled as described below:

-e This option is used in internal processing.
-err Linker messages are displayed in the message window and output to an error log

file.
-f file This option conflicts with internal processing and cannot be used.
-l x This option is automatically processed internally in accordance with memory model

settings and system library search settings.
-O file File names are set to the project name.
-o file File names are set to the project name.
-u symbol To specify this option, enter it in [Other Options].
-V This option is not used in wb88.

3.9.4 Locator Options

This screen can be used to select the following options:

Warning Level "-w n" option of lc88
Specify the level to which to suppress warning messages. Levels 0 to 9 can be selected from the pull-
down list. The default setting is 8. Warning messages whose levels are higher than the selected value
are not displayed.

Make Proposal for Software Part "-p" option of lc88
If this option is selected, the locator displays proposals for the software part of a locator description
file.

Print Name of Processing File (Verbose) "-v" option of lc88
If this option is selected, the locator displays the name of the file currently being processed.



CHAPTER 3  WORK BENCH

S5U1C88000C MANUAL II EPSON 31
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Disable branch optimize
Select this option when using lc88. When the check box is deselected (default), alc88 is used to
generate object files in executable format.

Disable Build States Message
When this check box is deselected (default), the dialog box shown below appears when the software
starts building or rebuilding a project.

This dialog box indicates which locator (alc88 or lc88) is to be used (based on whether the [Disable
branch optimize] check box for locator options is selected or deselected), and whether locator descrip-
tion files in DELFEE are to be edited by the section editor (based on whether the [Disable Making
DELFEE] check box of the section editor is selected or deselected).
If the wrong locator or edit mode is selected, use the [Cancel] button in this dialog box to stop build-
ing (or rebuilding) a project.

If this dialog box need not be displayed, click the [Disable Build States Message] check box.

Space Name for Specific Output "-S space" option of lc88
Enter a space name here; the locator then generates a specific output file corresponding to the speci-
fied space.

Other options
To specify other options (including those listed above), enter the desired option in this text box in
command line format.

About options that are not displayed
The locator options not displayed in the Option view are handled as described below:

-d file The dsc file is always specified.
-e This option is used in internal processing.
-err Locator messages are displayed in the Message window and output to an error log file.
-f file This option conflicts with internal processing and cannot be used.
-f format This option always generates IEEE 695 standard (.abs) and Motorola S (.s) files.
-M This option always generates a locate map file.
-o file File names are set to the project name.
-V This option is not used in wb88.



CHAPTER 3  WORK BENCH

32 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

3.9.5 Section Editor

Use this screen to specify where sections, symbols, and external memory should be located.
The absolute address information specified here is referenced by wb88 as it generates the advanced
locator definition file or DELFEE-based locator description files, which are used as input files for ad-
vanced locator alc88 or locator lc88 when executing build.

Chip Mode
From the pulldown list, choose which mode to use for the chip, MCU, or MPU
mode. Choose MCU mode when using internal ROM. Choose MPU mode when
releasing the internal ROM area for external memory (i.e., not using internal
ROM).

Start Symbol
Set a start symbol. The contents set here are referenced as the "load_mod start=" parameter in locator
description file (.dsc).
The default is _START, which can suffice when starting from cstart.c. When starting from another C
routine, set a function name prefixed by "_"; when starting from an assembler routine, set the symbol
name of that routine.
Example:

1. Assembler routine
GLOBAL _main

When starting from _main:, set _main

2. C routine
When starting from void main( ), set _main

Add Symbol (Rom)
Set the name and address of a section, vector table, or label to be located in ROM.
The items to be set in the respective lines are described below.

Addr Enter the start address of a section or vector table, or the address to which to assign a label.
When sections are to be located at contiguous addresses, the start address of only the first
section is required and the start addresses of the second and subsequent sections may be left
blank. When different types of sections generated by the compiler are to be located at contigu-
ous addresses, however, the start address must be specified for each section (as detailed later).



CHAPTER 3  WORK BENCH

S5U1C88000C MANUAL II EPSON 33
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Name Enter the name of a section, vector table, or label (symbol name).

Kind Choose the type of item to be located from the pulldown list:
Vect Vector table
Label Label
Sect Section

Add Symbol (Ram)
Set the name and address of a section or label to be located in RAM.
The items to be set in the respective lines are described below.

Addr Enter the start address of a section or the address to which to assign a label.
When sections are to be located at contiguous addresses, the start address of only the first
section is required and the start addresses of the second and subsequent sections may be left
blank. When different types of sections generated by the compiler are to be located at contigu-
ous addresses, however, the start address must be specified for each section (as detailed later).

Name Enter the name of a section or label (symbol name).

Kind Choose the type of item to be located from the pulldown list:
Label Label
Sect Section

Add External Memory
Set the address and size of memory or a device to be connected to the external bus of the microcom-
puter.
The items to be set in the respective lines are described below.

Addr Enter the start address of external memory or a device.

Mem Choose the type of external memory from the pulldown list:
Rom ROM
Ram RAM
Dev Any memory-mapped device (e.g., LCD controller)

Size Enter the capacity of external memory or the mapped size of a device in bytes.

Disable Making DELFEE
Choose whether you want locator description files in DELFEE language to be generated by the section
editor.

When the check box is deselected (default)
The section editor references the contents set on this screen as it generates the advanced locator
definition file for alc88 or locator description files for lc88.

When the check box is selected
The section editor does not generate locator description files for lc88. To use the existing locator
description files you created, deselect this check box. In this case, an advanced locator definition file
for alc88 is also generated according to the contents set on this screen.

Heap Size
Specify the size of a heap area for which memory is to be allocated by malloc( ), etc. Note that this
setting only becomes effective when heap area is required and malloc( ), etc. actually used.



CHAPTER 3  WORK BENCH

34 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

When using Advanced Locator alc88
When using alc88, make the following settings for locator options and in the section editor.
1. Deselect the [Disable branch optimize] check box on the [Locator Options] tab screen.

The following settings must be made using the section editor:
2. Deselect the [Disable Making DELFEE] check box.
3. Choose the mode to be used for the chip (MCU or MPU mode) from the [Chip Mode] list.
4. Enter the location addresses of sections, etc. in the [Add Symbol (Rom)] and [Add Symbol (Ram)]

boxes. (How to enter will be detailed later.)
5. To use external memory or a device, enter the information on it in the [Add External Memory] box.

(How to enter will be detailed later.)

Because [Disable branch optimize] for locator options has been deselected, alc88 is invoked when
building a project.

When using Locator lc88: Case 1
(Locator description files generated by the section editor are used.)

When you need not use existing locator description files, we recommend using alc88. When necessary
to use lc88, make the following settings:
1. Deselect the [Disable Making DELFEE] check box.

If this check box cannot be deselected, go to the [Locator Options] tab screen and deselect the
[Disable branch optimize] check box on it before making this setting.

2. Choose the mode to be used for the chip (MCU or MPU mode) from the [Chip Mode] list.
3. Enter a start symbol name in [Start Symbol] as necessary. (Normally, leave _START intact.)
4. Enter the location addresses of sections, etc. in the [Add Symbol (Rom)] and [Add Symbol (Ram)]

boxes. (How to enter will be detailed later.)
5. To use external memory or a device, enter the related information in the [Add External Memory]

box. (How to enter will be detailed later.)
6. Select the [Disable branch optimize] check box on the [Locator Options] tab screen.

Because [Disable branch optimize] for locator options has been selected, lc88 is invoked when build-
ing a project.

When using Locator lc88: Case 2
(Existing locator description files are used.)

To use existing locator description files as may be needed when upgrading application versions, make
the following settings:
1. Select the [Disable Making DELFEE] check box.

As a result of this setting, the [Disable branch optimize] check box for locator options is automati-
cally selected.

2. The files stored in the [Definition Files] folder will be listed in project view, so correct any locator
description file as necessary.

Because [Disable branch optimize] for locator options has been selected, lc88 is invoked when build-
ing a project.

Note: When using existing locator description files you need not enter location addresses, etc. in the
section editor. Note, however, that even in this case, an advanced locator definition file even with
incomplete content is generated (i.e., contents of locator description files are not reflected). If you
want to change for processing by alc88, therefore, be sure to correctly recreate an advanced
locator definition file.



CHAPTER 3  WORK BENCH

S5U1C88000C MANUAL II EPSON 35
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

[Add Symbol (Rom/Ram)] – Defining and deleting symbols
To define symbols in [Add Symbol (Rom/Ram)], follow the procedure described below.
1. Click the [Addr] cell on a blank line, and enter an address in it.
2. Enter a symbol in [Name].
3. Click the [Kind] cell to display a pulldown list similar to the one shown below. Select the type of

item to be located from this list.
(Rom)

 

(Ram)

 

4. When three cells are filled in, click the [Enter] key and a blank line will be added below.
5. Repeat the above procedure until you enter all sections, etc. to be located.

When sections of the same kind are to be located at contiguous addresses, you need only specify
[Addr] for the first section and can omit those for the second and subsequent sections. [Name] and
[Kind] cannot be omitted. If the kind of section is different from the immediately preceding section
that you have set, you must enter [Addr] for that section. Otherwise, the line that you are setting
has no effect and you cannot go to the next line. The sections generated by the compiler require
special caution with respect to the difference in kind.

The addresses need not be entered in descending or ascending order.
The definition files are updated for what you have entered or selected when you start building (or
rebuilding) a project, saving a project, or quitting wb88.

To delete the addresses set in [Add Symbol (Rom/Ram)]:
1. Delete all contents of [Addr], [Name] and [Kind] on the address line you want to delete (by using

the [Backspace] or [Delete] key and selecting blank for [Kind]).
2. When three cells have been blanked, click the [Enter] key.

The line will be deleted, with subsequent lines moved up.

[Add External Memory] – Defining and deleting external memory
For systems that have ROM or RAM, or such external devices as an LCD controller connected to the
external bus, you need to assign addresses and set the size of memory or the device in [Add External
Memory].
1. Click the [Addr] cell on a blank line, and enter an address in it.
2. Click the [Mem] cell to display a pulldown list similar to the one shown below. Choose the type of

external memory from this list.

3. Enter the size of external memory in [Size].
4. When three cells are filled in, click the [Enter] key and a blank line will be added below.
5. Repeat the above procedure until defining all the external memory and devices required.

The addresses need not be entered in descending or ascending order.
The definition files are updated for what you have entered or selected when you start building (or
rebuilding) a project, saving a project, or quitting wb88.

To delete the external memory definitions set in [Add External Memory]:
1. Delete all contents of [Addr], [Mem] and [Size] on the line you want to delete (by using the

[Backspace] or [Delete] key and selecting blank for [Mem]).
2. When three cells have been blanked, click the [Enter] key.

The line will be deleted, with subsequent lines moved up.



CHAPTER 3  WORK BENCH

36 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Precautions
1. Limitations on input content

The maximum number of lines and maximum number of characters that can be entered are limited as
follows:
Maximum number of lines entered [Add Symbol (Rom/Ram)] ....... 100 lines

[Add External Memory] ............ 20 lines
Maximum number of characters entered [Addr] ........................................... 8 digits

[Name] .......................................... 30 characters
[Size] ............................................. 8 digits

2. Checking the entered data
When you start building (or rebuilding) a project, saving a project, or quitting wb88, the Work Bench
checks whether all necessary items of the section editor are filled in.
When no problems are found, wb88 continues or terminates processing.
If a deficiency is found, such as when only two of the three necessary items for symbol or external
memory definitions are filled in, the dialog box shown below appears.

Click [OK], and wb88 will delete invalid lines before it
continues or terminates.
Click [Cancel], and wb88 will stop building (or rebuilding) a
project, stop saving a project, or quitting.

Note that wb88 does not check input content for whether the addresses you have entered are within
the implemented memory area or whether there are any duplicate symbol names. Such discrepancies
or errors are checked by alc88 or lc88.

3. About sections generated by the compiler
When user-defined successive sections are to be specified in [Add Symbol (Rom/Ram)], the address
of only the first section need be specified and the addresses of those that follow can be omitted. In
addition to these, sections generated by the compiler can also be specified here. In this case, however,
care must be taken because the compiler generates different types of sections. Even when sections are
to be located at contiguous addresses, the address of a different type of section that follows another
section must be specified.
Several types of sections generated by the compiler are listed below.

ROM area
code_short

.comm

.startup
code

.text

.text_xxxxxxxx
table.......... Address cannot be specified.

data_short
.nrdata

data
.frdata

RAM area
data_short

.nbss

.ndata

.nbssnc
data

.fdata

.fbss

.fbssnc
stack.......... Address cannot be specified.
xvwbuffer ..... Address cannot be specified.



CHAPTER 3  WORK BENCH

S5U1C88000C MANUAL II EPSON 37
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

4. About vectors and labels
Vectors and labels can be defined in [Add Symbol (Rom/Ram)] as matched to the functions of lc88.
The user can access the external (extern) vectors or labels named __lc_u_xxxxx, and the addresses of
those vectors or labels can be defined in the section editor.
When defining vectors or labels in [Add Symbol (Rom/Ram)], you need only enter the name part
"xxxxx".

5. Operations for deselecting the [Disable Making DELFEE] check box while currently selected
Selecting this check box automatically selects the [Disable branch optimize] check box for locator
options. While in this state, the [Disable Making DELFEE] check box cannot be deselected again. To
deselect this check box while it currently is selected, first deselect the [Disable branch optimize] check
box for locator options.

6. About special sections
The following four types of sections cannot be specified in the section editor. If any of these sections
are specified, it will be deleted when you save or build a project.
"heap", "stack", "table" and "xvwbuffer"



CHAPTER 3  WORK BENCH

38 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

3.10 Debugging
Programs can be debugged by invoking the simulator or in-circuit emulator from the Work Bench.

3.10.1 Simulator
This section describes how to invoke the simulator sim88 from the Work Bench. For detailed information
on simulator functions and usage, please refer to the simulator manual.

Setting the path to the simulator
Before simulator sim88 can be invoked, you must set its path. To set the path, select [Sim88 Configura-
tion] from the [Tool] menu to display the dialog box shown below.

Select sim88.exe from the dialog box that is displayed by clicking the [...] button, or enter a path
directly into the text box.

Once a path is set, there is no need to set it again the next time the simulator is run.

Invoking the simulator
To invoke the simulator

1. Select [Sim 88 Simulator] from the [Debug] menu or click the [Sim88] button. The dialog box
shown below is displayed:

 [Sim88] button



CHAPTER 3  WORK BENCH

S5U1C88000C MANUAL II EPSON 39
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

2. Specify the following files needed to invoke the simulator. Select each file from the file select
dialog box displayed by clicking the [Ref] button, or enter a path for each file directly into the text
box.
LCD File: LCD panel definition file
PRT File: Port setting file
CMP File: Component mapping file
FSA File: Function option HEX file

For detailed information on the LCD panel definition file, port setting file, and component map-
ping file, refer to the simulator manual.

Click the [Create] button to launch the tool to create each file.
LCD File: LCD panel customize utility LcdUtil
PRT File: Port setting utility PrtUtil
CMP File: Editor (specified with [Tool | Editor Configuration])
FSA File: Function option generator winfog (see Chapter 8)

For detailed information on the LCD panel customize utility and port setting utility, refer to the
simulator manual. These tools can also be launched from the [Tool] menu or with the toolbar
button.

3. Using the [Load module format] radio button, select the object file format (IEEE 695 or Motorola S)
to be loaded into the simulator.

4. Click the [OK] button to close the dialog box and start the simulator. From the input file informa-
tion, the Work Bench generates a simulator project file (.spj) and a command file to load the
necessary files, then passes these files to the simulator. The simulator is ready to start debugging
as soon as it is started.

The [Accept] button only generates the above files. It does not close the dialog box or launch the
simulator.



CHAPTER 3  WORK BENCH

40 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

3.10.2 In-circuit Emulator (S5U1C88000H5) and Debugger
This section describes how to invoke the debugging system using the ICE (S5U1C88000H5) from the
Work Bench. Refer to Chapter 13 for the db88 debugger and the S5U1C88000H5 manual for detailed
information on ICE and ice88ur debugger usage and functions.
To invoke the S5U1C88000H5 system

1. Check to see that the ICE is connected to the personal computer on which it is running and that its
power is turned on.

2. Start the Work Bench.

3. To start the db88 debugger, select [DB88 Debugger] from the [Debug] menu or click the [DB88] button.

 [DB88] button

To start the ice88ur debugger, select [ICE88UR Debugger] from the [Debug] menu or click the
[ICE88UR] button.

 [ICE88UR] button

The dialog box shown below is displayed:

4. Using the [Load module format] radio button, select the absolute object file format (IEEE 695 or
Motorola S).

5. In [Fsa File], specify a function option HEX file. This is done by selecting a file from the file select
dialog box displayed by clicking the [Ref] button, or by entering a path for the file directly into the
text box. The [Create] button invokes the function option generator winfog that generates a function
option HEX file.

6. Click the [OK] button to close the dialog box and launch the debugger. The Work Bench generates a
command file to load the necessary files from the input information and passes it to the debugger. The
debugger is ready to start debugging as soon as it is started.



CHAPTER 3  WORK BENCH

S5U1C88000C MANUAL II EPSON 41
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

3.11 Executing Other Tools
The following tools can be launched from the [Tool] menu or with the toolbar buttons.

Table 3.11.1  Tools that can be launched from wb88

Tool

1. Auto evaluation system

2. Bitmap utility

3. LCD panel customize utility

4. Port Setting Utility

5. Function option generator

6. Mask data checker

7. On-board ROM writer control software

Menu item

[Tool | Simulator Tools | Auto Evaluation System]

[Tool | Simulator Tools | Bitmap Utility]

[Tool | Simulator Tools | LCD Panel Customize Utility]

[Tool | Simulator Tools | Port Setting Utility]

[Tool | Dev Tools | Function Option Generator]

[Tool | Dev Tools | Mask Data Checker]

[Tool | On-Board ROM Writer]

Button

For information on how to use each tool, refer to the simulator manual for tools 1 to 4, the corresponding
chapters in this manual for tools 5 to 6, and the flash EEPROM-containing microcomputer technical
manual for tool 7.



CHAPTER 3  WORK BENCH

42 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

3.12 File List
The table below lists the types of files handled by the Work Bench, and the locations where the files are
located.

Table 3.12.1  File list
File type

C compiler-related files
C source file
C header file
C startup routine
Assembly source (created by user)
Assembly header file
Bitmap file
Bitmap definition file
Data table
Project management file
Make file
Error log file
Intermediate assembly source file
Assembly list file
Object file
Object library file
Linker object file
Link map file
Call graph file
Advanced locator definition file
Locator definition file
CPU definition file
Memory definition file
Locate map file
Absolute load module
Motorola S module
Symbolic table file
Program data HEX file

Development tool-related files
Device information definition file
Function option HEX file
Function option document file
Mask data file

Automatic evaluation system-related files
Command file
Reference data file
Result data file
Check sheet file

Simulator-related files
LCD panel definition file
Port setting file
Simulator project file
Command file
Component map file

ICE-related files
ICE parameter file
FPGA data file for peripheral circuit boards
INI file for ICE

File name

Option
Option
cstartup
Option
Option
Option
Option
Option
Project name
makefile
Project name
[Source name reference]
[Source name reference]
[Source name reference]
Option
Project name
Project name
Project name
Model name
Model name
Model name
Model name
Project name
Project name
Project name
Project name
Project name

Model name
Option
Option
Option

Option
Option
Option
Option

Option
Option
sim88
debug
Option

Model name
Model name
ice88ur

Extension

.c

.h

.c

.asm

.inc

.bmp

.bmu

.txt

.wpj
–
.err
.src
.lst
.obj
.a
.out
.lnl
.cal
.inf
.dsc
.cpu
.mem
.map
.abs
.sa
.sy
.psa

.ini

.fsa

.fdc

.paN

.txt

.mXX

.aXX

.csv

.ldc

.prt

.spj

.cmd

.cmp

.par

.mot

.ini

Creator/tool

User/text editor
User/text editor
wb88
User/text editor
User/text editor
User/bitmap editor
User/BmpUtil
User/BmpUtil
wb88
wb88
wb88/cc88
wb88/c88
wb88/as88
wb88/as88
User/ar88
wb88/lk88
wb88/lk88
wb88/lk88
wb88
User/text editor
User/text editor
User/text editor
wb88/lc88
wb88/lc88
wb88/lc88
wb88/sy88
wb88/fil88xxx

Seiko Epson
User/WinFOG
User/WinFOG
User/WinMDC

User
User
User
User/AutoEva

User/LCDUtil
User/PrtUtil
wb88
wb88
User/text editor

User/text editor
Seiko Epson
wb88

Folder path (default)

Option (<project>\src)
Option (<project>\src)
<project>\def\
Option (<project>\src)
Option (<project>\src)
Option
Option
Option
<project>\
<project>\tmp\
<project>\tmp\
<project>\obj\
<project>\obj\
<project>\obj\
Option
<project>\obj\
<project>\obj\
<project>\obj\
EPSON\S1C88\Dev\
<project>\def\
<project>\def\
<project>\def\
<project>\obj\
<project>\obj\
<project>\obj\
<project>\obj\
<project>\obj\

EPSON\S1C88\Dev\
Option
Option
Option

Option
Option
Option
Option

Option
Option
<project>\tmp\
<project>\tmp\
Option

<project>\def\

<project>\tmp\



CHAPTER 3  WORK BENCH

S5U1C88000C MANUAL II EPSON 43
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

3.13 Error Messages
The following tables list error messages associated with the Work Bench.

Table 3.13.1  System error messages
Message

not enough memory
Description

There is insufficient memory to run wb88.

Table 3.13.2  Error messages output when generating a project
Message

The file is not a WB88 project file.(<filename>)
The version of the project file is not supported.
(<filename>)
Unable to create a project : cannot access. <filename>

Unable to create a project : Unable to copy DEF 
file.(<filename>)
The project is already existed.(<filename>)

Unable to create a project : Dev Directory of S1C88 
family package does not exist.

Description
The file <filename> is not a wb88 project file.
This version of the project file <filename> is not supported.

Unable to generate a project because the file <filename> could not be 
accessed correctly.
Unable to generate a project because wb88 failed to copy the definition 
file <filename>.
Unable to create a project because the file <filename> already exists.  
Two or more projects with the same name cannot be created in the same 
folder.
Unable to create a project because no DEV directories exist. The DEV 
directory of the package contains various definition files required for 
build task. No projects can be built without this directory.

Table 3.13.3  Error messages output when adding files to the project
Message

The file cannot be added to the project.
It is not a C file.(<filename>)
The file cannot be added to the project.
It is not an ASM file.(<filename>)
The file cannot be added to the project.
It is not a header file.(<filename>)
The file is already existed in the project.
It cannot be added in the project.(<filename>)
WB88 does not support such source file type.(<filename>)

Description
The file <filename> cannot be added to the project because it is not a C 
source file.
The file <filename> cannot be added to the project because it is not an 
assembly source file.
The file <filename> cannot be added to the project because it is not a 
header file.
The file <filename> cannot be added to the project because it already 
exists.
This source type file is not supported by wb88.

Table 3.13.4  File error messages
Message

Failed to access the file.(<filename>)
Unable to open the file.(<filename>)

Description
Failed to operate on the file <filename>.
Failed to open the file <filename>.

Table 3.13.5  Error messages output when starting a tool
Message

Unable to execute ICE88UR.exe : 
Unable to access <filename>.
Unable to execute Sim88 : 
Unable to access the DEF file.(<filename>)
Unable to execute <toolname>.

Description
Cannot start S5U1C88000H5 because wb88 could not access the file 
<filename>.
Cannot start Sim88 because wb88 could not access the definition file.

Unable to start <toolname>.

Table 3.13.6  Error messages output when building
Message

Select a C or an ASM file.

Build Command needs an active project.
No target file is found in the project.

Description
Select a C source or assembly source file. Before source files can be 
compiled, you must select the target file from tree view.
The build target must be project.
No target files to build are found in the project. Source files must be 
registered to a project before they can be built.

Table 3.13.7  Other error messages
Message

The command needs an active project.
Description

The command requires a project. This error message is displayed if, in the 
absence of a project, a function is executed for which a project must be 
present.



CHAPTER 4  OUTLINE OF THE MAIN TOOL CHAIN

44 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 4 OUTLINE OF THE MAIN TOOL CHAIN
The Main tool chain consists of the following tools centered on the C compiler:

1. C compiler <c88.exe>
Compiles C source files to generate assembly source files that can be processed by as88. Note that c88
is an ANSI C-compliant C compiler. Because no special syntax is supported, programs developed for
other types of microcomputers can be easily ported to run on the S1C88. Moreover, because the S1C88
architecture can be efficiently used at the C level to generate compact code, c88 is best suitable for the
development of embedded applications. With the preprocessor, S1C88 C front-end, and code genera-
tor integrated into a single program, c88 operates at high speed as a one-pass compiler without
requiring intermediate files.

2. Assembler <as88.exe>
Assembles the assembly source files output by c88 to convert the mnemonics in those files into S1C88
object (machine language) code. The result of this operation is output as relocatable object files in
IEEE-695 format that can be linked by lk88.

3. Linker <lk88.exe>
Combines two or more relocatable object files generated by as88 with a library module to generate
one new relocatable object file.

4. Locator <lc88.exe>
Relocates the relocatable object created by lk88 to absolute addresses of memory to generate an
executable load image file. The relocation information to be referenced at this time must be written in
DELFEE language in the locator description files that are loaded on the locator.
Note that lc88 can be used to develop applications using existing locator description files. When you
develop new applications, we recommend the use of newly added advanced locator alc88 (beginning
with S5U1C88000C Ver. 3) because it has a new branching optimization function in addition to all the
functions of lc88. You can select whether to use lc88 or alc88 in wb88.

5. Advanced locator <alc88.exe>
Realizes the relocation functions of lc88 without using description files in DELFEE. For memory
models with 64K bytes or more of code area, alc88 should prove especially useful because although
extended instructions for bank specification (e.g., LD NB,xxxx) are added immediately before the call
instruction (CARL) by the assembler, alc88 has a function to delete unnecessary extended instructions
that have been added for intra-bank calls.

Refer to the document titled "S5U1C88000C Manual I" for details about tools 1 to 4. Advanced locator
alc88 in 5 is detailed in this manual. Note that because all of the above tools are executed by the functions
of wb88, you need not operate any tool individually.



CHAPTER 5  ADVANCED LOCATOR <alc88>

S5U1C88000C MANUAL II EPSON 45
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 5 ADVANCED LOCATOR <alc88>
5.1 Functions of alc88
Advanced Locator <alc88> relocates the relocatable object created by linker <lk88> to the absolute
addresses of memory to generate an executable load image file. In addition, alc88 has a branching
optimization function. This function is effective for memory models with 64K bytes or more of code area
(Compact-Data or Large), in which case extended instructions for bank specification (e.g., LD NB,xxxx)
are unconditionally added immediately before the call instruction (CARL) by the assembler. However,
alc88 deletes such extended instructions whenever found in intra-bank calls.
This function enables alc88 to generate more compact executable object files than those generated by
locator <lc88> that has been conventionally used in the Main tool chain.
Moreover, the locator description files in DELFEE language used to provide lc88 with relocation infor-
mation are not required for alc88. Instead, alc88 uses the advanced locator definition file (.inf) that can be
easily generated by the section editor functions of wb88 without any specific concern about details.
Therefore, you have the option of using lc88 when using conventional resources (including locator
definition files) to develop applications or alc88 when developing new applications, or not specifically
requiring existing locator definition files. You can select which tool to use in wb88.

Note: Branching optimization is only useful for the CARL instruction (in the format below) that causes the
CPU to branch off to locations within the same bank (32K-byte area). The extended instructions
added before other branch instructions (e.g., jump instruction) are not deleted even if unnecessary.
Also note that for extended or branch instructions where the address for an object is already fixed
before being entered, the extended instructions are not deleted even if the target of optimization.

LD NB,xxxx

CARL yyyy

When yyyy exists in the same bank as the CARL instruction, the immediately preceding "LD
NB,xxxx" is deleted.
When yyyy exists in a bank different than that of the CARL instruction, the immediately preceding
"LD NB,xxxx" is not deleted.



CHAPTER 5  ADVANCED LOCATOR <alc88>

46 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

5.2 Input/output Files
Figure 5.2.1 shows the input/output files of alc88.

Relocatable objects are relocated to
the absolute addresses of memory.

alc88

Advanced locator
definition file

Relocatable
object file

file.out file.inf

file.abs

file.map

file.sa

Program data
HEX file

(Motorola S2 format)

Absolute
object file

Map
file file.sy

Symbolic 
table file

Fig. 5.2.1  Input/output files of alc88

Relocatable object file (file.out)
This is the relocatable object file in IEEE-695 format that has been output by the linker <lk88>.

Advanced locator definition file (file.inf)
This file contains a description of information referenced by alc88 as it relocates relocatable objects to
absolute addresses of memory. The section editor of wb88 creates this file.

Absolute object file (file.abs)
This is an executable object file output from the relocatable objects supplied to alc88 by being relo-
cated to the absolute addresses of memory. This file is created in IEEE-695 format and contains
debugging information included in the input files.

Program data HEX file (file.sa)
This HEX file is output from absolute objects converted into Motorola S2 format. This file is presented
as an input file the program unused area filling utility <fil88xxx>.

Map file (file.map)
A list of absolute addresses to which sections and labels have been allocated is recorded in this file.

Symbolic table file (file.sy)
This file contains symbol information extracted from the debugging information in the input files.
This file is required for the symbolic debugging to be performed by the debugger or simulator.



CHAPTER 5  ADVANCED LOCATOR <alc88>

S5U1C88000C MANUAL II EPSON 47
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

5.3 Using alc88
All operations including the creation of advanced locator definition files are normally handled by wb88.
Because alc88 is automatically invoked by wb88 as it executes build processing, the user need not start
alc88. The advanced locator definition file is created by using the section editor of wb88. See Chapter 3,
"Work Bench", for details on how to build a project or use the section editor.

To run alc88 independently of wb88, execute the following command from the MS-DOS prompt:

>alc88  <project_path>  <file.out>  <file.inf> 

Denotes entering the return key.
<project_path> Specify the path to the project file (.wpj).
<file.out> Specify the object file name to be supplied to alc88.
<file.inf> Specify the advanced locator definition file to be supplied to alc88.

Example:  C:\epson\s1c88\app1 app1.out app1.inf

When alc88 completes processing, it displays the following message (to stdout) regardless of whether it
terminated normally.

ALC88 Version x.xx

5.4 Error Messages
The error messages of alc88 are listed below.

Table 5.4.1  Error messages
Error message

Illegal Inf File
Duplicate Memory 
-- 0xnnnn ~ 0xnnnn & 0xnnnn ~ 0xnnnn
No physical memory available for xxxx
Duplicate Symbol Name -- xxxx
Cannot find 0xnnnn bytes for xxxx section
Found unresolved external -- xxxx
There is no stack area
Absolute address 0xnnnn occupied

Value out of range to label xx at address 
0xnn

Description
Advanced locator definition file (.inf) is invalid.
Memory allocations in 0xnnnn–0xnnnn and 0xnnnn–0xnnnn are duplicated.

No specified addresses exist to which symbol xxxx can be assigned.
There are duplicates of symbol name xxxx. 
No 0xnnnn bytes of memory are available as needed to map section xxxx.
No information is available for external symbol (Extern) xxxx.
No memory can be allocated for the stack because internal RAM lacks sufficient space.
The absolute address section area beginning with 0xnnnn is already occupied by 
another area.
The branch destination of the short branch instruction (JRS, CARS) is out of the range 
(-128 to 127).

5.5 Precautions
Note that alc88 is subject to the limitations described below.

(1) Of the effective label descriptions of lc88, alc88 only supports user-defined labels (__lc_cp, __lc_es,
__lc_u_xxxx, __lc_b_xxxx, __lc_e_xxxx). The labels __lc_bs, __lc_ub_xxx, __lc_ue_xxx, etc. used in the
source have no effect on alc88. Refer to Section 4.9, "Locator Labels", in the "S5U1C88000C Manual I".

(2) Even when branching is optimized by alc88, the results of such optimization are not reflected in the
list files created by as88, regardless of whether relocatable or absolute.



CHAPTER 6  OUTLINE OF THE DEVELOPMENT TOOLS

48 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 6 OUTLINE OF THE DEVELOPMENT TOOLS
The S1C88 Family Integrated Tool Package contains the tools to create mask option and mask data

files, as well as files that contain descriptions of setup information for each type of microcomputer. The
tools 1 to 3 below are Windows GUI applications that run under Windows 2000 or Windows XP.

1. Function option generator <winfog.exe>
This tool creates an ICE (S5U1C88000H5) function option setup file after selecting the mask options of
the S1C88xxx and the function option document file that is necessary to generate IC mask patterns.
You can create function option data by selecting the appropriate item using the check boxes.

2. Segment option generator <winsog.exe>
This tool creates an ICE segment option setup file after selecting the segment options of the S1C88xxx
and the segment option document file that is necessary to generate IC mask patterns. You can create
segment assignment data by merely clicking on the display memory map and segment decode table
shown on the window.

3. Mask data checker <winmdc.exe>
This tool checks the data in development-completed built-in ROM file and option document files to
create the mask data file that will be presented to Seiko Epson.

4. Device information definition file <s1c88xxx.ini>
This file is used to set information, such as the configuration of options, on each type of microcom-
puter for the three tools described above. This file must be available before each tool can be executed.

5. ICE parameter file <88xxx.par>
This file is used to establish correspondence between the ICE and each type of microcomputer. This
file is required for starting up the ICE.

6. Program unused area filling utility <fil88xxx.exe>
This tool extracts the built-in ROM area from a program data HEX file and fills unused areas in the
built-in ROM with FFH. It also sets a system code to the system-reserved area. This processing must
be performed before debugging the program with the ICE as well as before generating a mask data
with winmdc. This tool can be executed from the MS-DOS prompt.

7. Self-diagnostic program <t88xxx.psa, t88xxx.fsa, t88xxx.fdc, t88xxx.ssa, t88xxx.sdc, readme.txt>

These are the self-diagnostic program and function option data to check the ICE and S5U1C88xxxP
hardware. Download these files to check the ICE. The t88xxx.ssa and t88xxx.sdc files are included
only for microcomputers in which segment options are provided.
The readme.txt file contains the description of the S5U1C88xxxP LED illumination status to check the
operation with the self-diagnostic program.

Notes: • There is no difference between each tool between the different types of microcomputers. There-
fore, the explanations in this manual are for all types of microcomputers using "S1C88xxx" as
the representative name. The contents of the sample screens shown in this manual vary accord-
ing to the type of microcomputer. Note that winsog, t88xxx.ssa and t88xxx.sdc are provided only
for microcomputers with segment options.

• S5U1C88000H3 (previous name: ICE88R) is provided in addition to S5U1C88000H5.



CHAPTER 6  OUTLINE OF THE DEVELOPMENT TOOLS

S5U1C88000C MANUAL II EPSON 49
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Differences between new tools (S5U1C88000P-compliant version) and existing tools
The old peripheral boards (S5U1C88316P and S5U1C88348P) have been replaced by a new standard
peripheral board (S5U1C88000P). Note that tool action and functionality may differ somewhat given
the combination of new and old peripheral boards, and development tools.
For the following types of MPUs, the Integrated Tool Package for the S1C88 Family includes new
development tools, which are useful with the standard peripheral board (S5U1C88000P).
S1C88104, S1C88112, S1C88308, S1C88316, S1C88317, S1C88348, S1C88832, S1C88862

Table 6.1  Functional differences depending on combinations of S5U1C88316P
and S5U1C88348P peripheral boards and development tools

Functions
Combination
Old peripheral board
+ old development tools

New peripheral board
+ new development tools
Old peripheral board
+ new development tools

New peripheral board
+ old development tools

S1C88832/862's BZ (R51) 
and TOUT (R26) outputs
Not available

Available

Not available 
Not considered a problem

Not available
Not considered a problem

Variation of OSC1/3 oscillator frequencies
(OSC1 is for a CR oscillator; OSC3 is for a CR or ceramic oscillator)
Not available (Because OSC1 and OSC3 are respectively fixed to 
32.768 kHz and 4.9152 MHz, clocks from external sources may be 
used for other oscillator frequencies as required.)
Available

Not available (Because OSC1 is fixed to 32.768 kHz (with crystal 
selected) or 32 kHz (with CR selected), and OSC3 is fixed to 8 MHz 
(with ceramic selected) or approx. 8 MHz (with CR selected), clocks 
from external sources may be used for other oscillator frequencies 
as required.)
Not considered a problem
Not available (Because OSC1 and OSC3 are respectively fixed to 
32.768 kHz and 4.9152 MHz, clocks from external sources may be 
used for other oscillator frequencies as required.)
Not considered a problem



CHAPTER 7  PROGRAM UNUSED AREA FILLING UTILITY <fil88xxx>

50 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 7 PROGRAM UNUSED AREA FILLING UTILITY

<fil88xxx>
7.1 Outline of fil88xxx
The Program Unused Area Filling Utility <fil88xxx> loads a Motorola S2 format program data HEX file
and generates the built-in ROM data HEX file after filling the unused area of the built-in ROM (000000H–
00EFFFH) with FFH. The generated file is used to debug the program with the ICE (S5U1C88000H5).
When debugging with the ICE, download this file from the computer.
This file is also used as the program data to generate the mask data for submission to Seiko Epson by the
mask data checker <winmdc>.

7.2 Input/output Files
Figure 7.2.1 shows the input/output files of fil88xxx.

Extract the built-in ROM data and
fill the unused area of the built-in ROM with FFH

fil88xxx

Program data HEX file
(Motorola S2 format)

Debugging with ICE
Mask data creation by mask data checker

zzzzzzzz.sa

Built-in ROM data HEX file
(Motorola S2 format)zzzzzzzz.psa

Fig. 7.2.1  Input/output files of fil88xxx

Program data HEX file (zzzzzzzz.sa)
This is a Motorola S2 format program data HEX file generated by the HEX converter <hex88> or a
third party software tool.

Built-in ROM data HEX file (zzzzzzzz.psa)
This is a Motorola S2 format file that contains the built-in ROM data extracted from the input program
data HEX file. The unused areas in the built-in ROM are filled with FFH and a system code is set to
the system reserved area (see vector table shown in the Technical Manual). When debugging with the
ICE, download this file from the computer. This file is packed along with completed other option files
into a single file by the mask data checker <winmdc>, which we would like to have presented to
Seiko Epson as the mask data file. From this file, Seiko Epson will create the mask patterns for the IC.

∗ 1 The "xxx" in the file name denotes the model name of a microcomputer. For the "zzzzzzzz" part, any
given file name can be specified.

∗ 2 For details on how to download the built-in ROM data HEX file into the ICE, refer to the ICE manual.



CHAPTER 7  PROGRAM UNUSED AREA FILLING UTILITY <fil88xxx>

S5U1C88000C MANUAL II EPSON 51
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

7.3 Using fil88xxx

(1) Starting up
To start fil88xxx, enter the command shown below from the MS-DOS prompt.

>fil88xxx <file name> 

 denotes entering the return key.
Specify a Motorola S2 format program data HEX file as the command line parameter. A path can also
be specified.
Example:  C:\S1C88\DEV88\DEV88xxx_V1>fil88xxx d:\test\c8xxx0a0.sa

(2) Start-up message
When fil88xxx is started, the following message is displayed.

FIL88xxx Unused Area Filling Utility Version X.XX

Copyright (C) SEIKO EPSON CORP. xxxx

(3) End message
When a series of operation are complete, the fil88xxx displays the following message.

When terminated normally
........................................... ... Indicates the proceeding status
Unused Area Filling Completed

System Area Data Set Completed

The converted HEX file (.psa) is generated in the same directory as the input file.

When an error has been occurred
C8xxx0A0.SA 5:         File Format Error ... Example of error message

If an error is generated during fil88xxx execution, it displays the file name producing the error, the
line number and an error message, then terminates the fil88xxx.
Also, when an error has been generated, a post-conversion program data HEX file (.psa) is not
generated. In the event of a warning message, a post-conversion program data HEX file is generated.

(4) In the event of forced termination
To forcibly terminate the execution of the fil88xxx, enter "CTRL" + "C".



CHAPTER 7  PROGRAM UNUSED AREA FILLING UTILITY <fil88xxx>

52 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

7.4 Error Messages
The error and warning messages of fil88xxx are listed below.

Table 7.4.1  Error messages

Message
Can't Find File
Syntax Error: Input File
File Format Error
Can't Open File
Not S Record
Data Length
Too Many Data In One Line
Not 3Byte Address
Check Sum Error
Duplicate Error
Can't Use Vector xxH System Reserve

Insufficient disk space
Write Error

Description
The specified input file does not exist.
An input file name has not been specified.
The input file format is wrong. (∗ 1)
The input file cannot be opened.
The input file is not S record format.
The data length of 1 line is too short.
The data length of 1 line is too long.
The address length is not 3 bytes (including S1, S3, S7 and S9 record).
The check sum does not match.
There is a duplicate definition of data in the same address.
The physical address 0000xxH cannot be used as a vector because they are 
reserved as a system area for the S1C88xxx.
There is no disk space.
An error has occurred while writing data.

∗ 1 A file format error will occur under the following conditions:
- Another record has followed the S8 record.
- Something other than a hexadecimal number is included in the file.
- There is a line that consists of less than 12 characters.
- There is an S8 record that has more or less than 12 characters or of which the byte count is not 04.
- There is an S4, S5 or S6 record included in the file.
- There is no S8 record.

Table 7.4.2  Warning message

Message
Warning: No 00H Address

Description
There is no data in the physical address 000000H.

Note: When there is no data in the physical address 000000H, it will output a warning message and filled
the data FFH.



CHAPTER 7  PROGRAM UNUSED AREA FILLING UTILITY <fil88xxx>

S5U1C88000C MANUAL II EPSON 53
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

7.5 Example of Input/output Files

Input file example
S224000000000123500050235023502350235023502350235023502350235023502350235040
S2080000202350015013
S224000100CF6E00F6B4FFDD0030DD0100D94004C700F0C40000CFDCC30200D700F8E7F7F262
S2240001209300D94004B0FFB104C543F8C700F8CFEB7093CF3BE7FBC10001C20001CFEED725

:       :       :       :       :       :       :       :       :       :

S224007F001818000055AA000101000001000100010002000000401011121314151617181919
S20E007F201A1B1C1D1E1F2F3F0F3FEB
S804000000FB

Output file example
System code (e.g. F1H, FFH) are set in the system reserved area
(e.g. addresses 000024H and 000025H) for S1C88xxx.

S224000000000123500050235023502350235023502350235023502350235023502350235040
S22400002023500150F1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF21
S224000040FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBB
S224000060FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9B
S224000080FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7B
S2240000A0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5B
S2240000C0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF3B
S2240000E0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF1B
S224000100CF6E00F6B4FFDD0030DD0100D94004C700F0C40000CFDCC30200D700F8E7F7F262
S2240001209300D94004B0FFB104C543F8C700F8CFEB7093CF3BE7FBC10001C20001CFEED725
S22400014000FEE7EEC500F8C600F8CFEE1255F5DAB000F23A04DD2003D94009DD22019C3F7C
S224000160B001CED400F0D94004F27A00F29000F2A600F2BC00F2DD00F21703F23F03F2BD28
S22400018003F2F203CED084F1803204E703B000CED484F1CED003F1803214E703B000CED462
S2240001A003F1CEAECED006F332FFE7F7B000CED406F3F1B3D97560CED0007F7810CED00143
S2240001C07F7811D97801CED0027F7844CED0037F7845DD62FFDD6000DD63F5DD613FD9768C
S2240001E010DD4008F8A2A0C60E7FB100CED084F1CF40464C02CEB0FC297802A8AAF8CED0CC
S22400020084F13203E608F2E503B000F106F2D403B0FFCED407F4F8A2A0C6127FB100CED0CB

:       :       :       :       :       :       :       :       :       :

S22400EFA0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF6C
S22400EFC0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF4C
S22400EFE0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF2C

S804000000FB



CHAPTER 8  FUNCTION OPTION GENERATOR <winfog>

54 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 8 FUNCTION OPTION GENERATOR

<winfog>
8.1 Outline of winfog
The S1C88 chip allows several hardware specifications such as I/O port functions to be selected as mask
options. This helps you to configure the hardware of your product by changing the S1C88 chip's mask
patterns according to its specifications.
The Function Option Generator <winfog> is the software tool for creating the files necessary to generate
mask patterns. Its graphical user interface (GUI) ensures easy selection mask options. From the files
created by winfog, Seiko Epson produces the mask patterns for the S1C88 chip.
In addition, simultaneously with this file, winfog can create mask option setup files (Motorola S2 format
data) that are required when debugging programs with the ICE (S5U1C88000H5). When using the ICE to
debug a program, you can download this file from the host computer, making it possible to materialize
optional functions on the ICE that are equivalent to those on the actual IC.

8.2 Input/output Files
Figure 8.2.1 shows the input/output files of winfog.

Selection of 
mask options

winfog

Function option
HEX file

Function option
document file

Device information
definition file

To ICE Mask data creation
by mask data checker

s1c88xxx.ini

zzzzzzzz.fsa zzzzzzzz.fdc

Fig. 8.2.1  Input/output files of winfog

Device information definition file (s1c88xxx.ini)
This file contains option lists for various types of microcomputers and other information. Always be
sure to use the files presented by Seiko Epson. This file is effective for only the type of microcomputer
indicated by the file name. Do not modify the contents of the file or use the file in other types of
microcomputers.

Function option document file (zzzzzzzz.fdc)
This is a text format file in which the contents of selected mask options are stored. You can read this
file into winfog and correct the already selected option settings. This file is packed along with com-
pleted other program/data files into a single file by the mask data checker <winmdc>, which we
would like to have presented to Seiko Epson as the mask data file. From this file, Seiko Epson will
create the mask patterns for the IC.

Function option HEX file (zzzzzzzz.fsa)
This is the Motorola S2 format file necessary to set the selected mask options in the ICE. When you
debug programs with the ICE, download this file into the ICE using an ICE command.

∗ 1 The "xxx" in the file name denotes the model name of a microcomputer. For the "zzzzzzzz" part, any
given file name can be specified.

∗ 2 For details on how to download mask options into the ICE, refer to the ICE manual.



CHAPTER 8  FUNCTION OPTION GENERATOR <winfog>

S5U1C88000C MANUAL II EPSON 55
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

8.3 Using winfog

8.3.1 Starting Up

Startup from Explorer
Double-click on the winfog.exe icon or select winfog from the start menu.
If the device information definition file (s1c88xxx.ini) was loaded into your computer
during previous execution, winfog automatically reads the same file as it starts.
Alternatively, drag the Device information definition file icon into the winfog.exe icon to
start winfog, which will then read the Device information definition file.

Startup by command input
You can also  start winfog from the MS-DOS prompt by entering the command shown below.

>winfog [s1c88xxx.ini] 

 denotes entering the return key.
You can specify the device information definition file (s1c88xxx.ini) as a command option. (You can
also specify a path.)  When you specify the device information definition file here, winfog reads it as it
starts. This specification can be omitted.

When winfog starts, it displays the [FOG] window. The following diagrams show a [FOG] window when
the device information definition file has been loaded and when it has not.

[FOG] Window (initial screen)

[FOG] Window (after reading the device information definition file)



CHAPTER 8  FUNCTION OPTION GENERATOR <winfog>

56 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

8.3.2 Window
    Option list area  Function option document area

←   →

←
   

→

The area can be resized by dragging the frame boundary.

Message area

∗ The microcomputer model name on the title bar is the file name (not including the path and extension) of the device

information definition file that has been read.

∗ The option list and the function option document vary with each type of microcomputer.

Fig. 8.3.2.1  Window configuration

The [FOG] window is divided into three areas as shown above.

Option list area
Lists mask options set in the device information definition file (s1c88xxx.ini). Use the check boxes in
this area to select each option. A selected option has its check box marked by ✓ .

Function option document area
Displays the contents of selected options in the function option document format. The contents
displayed in this area are output to the function option document file. When you change any selected
item in the option list area, the display in this area is immediately updated.

Message area
When you create a file by selecting [Generate] from the [Tool] menu or clicking the [Generate] button,
this area displays a message showing the result of the selected operation.



CHAPTER 8  FUNCTION OPTION GENERATOR <winfog>

S5U1C88000C MANUAL II EPSON 57
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

8.3.3 Menus and Toolbar Buttons
This section explains each menu item and toolbar button.

[File] menu
Open
Opens a function option document file. Use this menu command when correct-
ing an existing file. The [Open] button has the same function.

 [Open] button

End
Terminates winfog.

[Tool] menu
Generate
Creates a file according to the selected contents of the option list. The [Gener-
ate] button has the same function.

 [Generate] button

Setup
Sets the date of creation, output file name and a comment included in the
function option document file. The [Setup] button has the same function.

 [Setup] button

Device INI Select
Loads the device information definition file <s1c88xxx.ini>. The [Device INI
Select] button has the same function. This file must be loaded first before
performing any operation with winfog.

 [Device INI Select] button

[Help] menu
Version
Displays the version of winfog. The [Help] button has the same function.

 [Help] button

The dialog box shown below appears. Click [OK] to close this dialog box.



CHAPTER 8  FUNCTION OPTION GENERATOR <winfog>

58 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

8.3.4 Operation Procedure
The following shows the basic operation procedure.

(1) Loading the device information definition file
First, select a device information definition file <s1c88xxx.ini> and load it.
Select [Device INI Select] from the [Tool] menu or click the [Device INI Select] button.

 [Device INI Select] button

The dialog box shown below appears. Enter a file name including the path in the text box or select a
file by clicking the [Ref] button.

Click [OK], and the file is loaded. If the
specified file exists and there is no problem
with its contents, the option list and the
function option document, which have both
been set by default, are displayed in each
area.
To stop loading the file, click [Cancel].

Once a device information definition file is selected, the same file is automatically loaded the next
time you start winfog.

Note: When you load a device information definition file after setting up options, all settings are reset to
the default state.

(2) Setup
Select [Setup] from the [Tool] menu or click the [Setup] button to bring up the [Setup] dialog box.
From this dialog box, select items and enter data.

 [Setup] button

Date
Displays the current date. Change it as
necessary.

Function Option Document file
Specify the function option document file
name you want to create. The file name
displayed by default can be modified. You
can use the [Ref] button to look at other
folders.

Function Option HEX
Do you make hex file?
Select whether to create a function option
HEX file. You need to create one when you
use the ICE to debug programs.

Function Option HEX file
When you create a function option HEX file,
specify its file name here. The file name
displayed by default can be modified. You
can use the [Ref] button to look at other
folders.



CHAPTER 8  FUNCTION OPTION GENERATOR <winfog>

S5U1C88000C MANUAL II EPSON 59
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

EPROM Type
This option is not available for S1C88 Family microcomputers.

User's Name
Enter your company name. You can enter up to 40 characters. You can use English letters, numbers,
symbols, and spaces. The content entered here is recorded in the USER'S NAME field of the function
option document file.

Comment
Enter a comment. Up to 50 characters can be entered in one line. You can enter up to 10 lines. You can
use English letters, numbers, symbols, and spaces. Use the [Enter] key to create a new line. All
comments should include the following information:
• Place of business, your department or section
• Address, telephone number, and facsimile number
• Other: Technical information, etc.

The content entered here is recorded in the COMMENT field of the function option document file.
When you have finished entering the above necessary items, click [OK]. The setup contents are saved,
and the dialog box is closed. The setup contents take effect immediately. If you click [Cancel], current
settings will not be changed and the dialog box is closed.

Notes: • File name specification is subject to the following limitations:
1. The number of characters that can be used to specify a file name including the path is 2,048.
2. The file name itself (not including the extension) can be up to 15 characters, and the exten-

sion up to three characters.
3. The file name cannot begin with a hyphen (-), nor can the following symbols be used as part

of directory names (folder names), file names, and extensions:
/ : , ; ∗  ? " < > |

• The symbols shown below cannot be used in the User's Name and Comment:
$ \ | `

(3) Selecting options
Select necessary options by clicking the corresponding check boxes in the option list. When you
change any selection item in the option list area, the display in the function option document area is
updated. Note that when you have loaded the device information definition file, the option list is
placed in its default selection state.
For details about option specifications, refer to the Technical Manual available for each type of
microcomputer.

(4) Creating files
After selecting options, select [Generate] from the [Tool] menu or click the [Generate] button to create
the files.

 [Generate] button

The function option document file you specified from the [Setup] dialog box and the function option
HEX file (if specified) are created. When winfog has finished creating the files normally, it displays the
message "Making file(s) is completed" in the message area. If an error occurs, an error message is
displayed.



CHAPTER 8  FUNCTION OPTION GENERATOR <winfog>

60 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

(5) Correcting an existing document file
You can read an existing function option document file into winfog and correct it as necessary.
To read a file, select [Open] from the [File] menu or click the [Open] button.

 [Open] button

The dialog box shown below appears, so enter a file name including the path in the text box or select a
file by clicking the [Ref] button.

Click [OK], and the file is loaded. If the specified file exists and there is no problem with its contents,
the option list and the function option document areas are updated according to the contents of the
file. To stop loading the file, click [Cancel].

Perform steps (2) to (4) to update the file.
If you select [Generate] without changing the file name, the message shown below is displayed asking
you whether or not to overwrite the file. Click [Yes] to overwrite or [No] or [Cancel] to stop overwrit-
ing. Use the [Setup] dialog box to change the file name.

Note: The function option document file can be read only when the device information definition file has
been loaded.

(6) Quitting
To terminate winfog, select [End] from the [File] menu.



CHAPTER 8  FUNCTION OPTION GENERATOR <winfog>

S5U1C88000C MANUAL II EPSON 61
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

8.4 Error Messages
The error messages of winfog are listed below. The "Dialog" in the Display column means that messages
are displayed in the dialog box, and "Message" means that messages are displayed in the [FOG] window
message area.

Table 8.4.1  List of winfog error messages

Message
File name error
Illegal character
Please input file name
Can't open File : xxxx
INI file is not found
INI file does not include FOG information

Function Option document file is not found
Function Option document file does not 
match INI file
A lot of parameter
Making file(s) is completed
[xxxx is no data exist]
Can't open File: xxxx
Making file(s) is not completed
Can't write File: xxxx
Making file(s) is not completed

Description
Number of characters in the file name or extension exceeds the limit.
Prohibited characters have been entered.
File name has not been entered.
File (xxxx) cannot be opened.
Specified device information definition file (.ini) does not exist.
Specified device information definition file (.ini) does not contain 
function option information.
Specified function option document file does not exist.
Contents of the specified function option document file do not match 
device information definition file (.ini).
Too many command line parameters are specified.
Finished creating the file, but the created file (xxxx) does not contain 
any data.
File (xxxx) cannot be opened when executing Generate.

File (xxxx) cannot be written when executing Generate.

Display
Dialog
Dialog
Dialog
Dialog
Dialog
Dialog

Dialog
Dialog

Dialog
Message

Message

Message

Table 8.4.2  winfog warning messages
Message

Are you file update?
xxxx is already exist

Description
Overwrite confirmation message
(Specified file already exists.)

Display
Dialog



CHAPTER 8  FUNCTION OPTION GENERATOR <winfog>

62 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

8.5 Example Output Files

Note: Option and other configurations vary with each type of microcomputer.

Example of a function option document file
* S1C88xxx FUNCTION OPTION DOCUMENT Vx.xx ← Version
*
* FILE NAME    zzzzzzzz.FDC ← File name (specified by [Setup])
* USER'S NAME  SEIKO EPSON CORPORATION ← User name (specified by [Setup])
* INPUT DATE   yyyy/mm/dd ← Date of creation (specified by [Setup])
* COMMENT      SAMPLE DATA ← Comment (specified by [Setup])
*
* *** OPTION NO.1 *** ← Option number
* --- OSC1 SYSTEM CLOCK --- ← Option name
* Crystal(32.768KHz) ---- Selected ← Selected specification
 OPT0101 01 ← Mask data
*
* *** OPTION NO.2 ***
* --- OSC3 SYSTEM CLOCK ---
* CR 200KHz ---- Selected
 OPT0201 01
*
* *** OPTION NO.3 ***
* --- INPUT PORT PULL UP RESISTOR ---
* K00 With Resistor ---- Selected
* K01 With Resistor ---- Selected
* K02 With Resistor ---- Selected
* K03 With Resistor ---- Selected
* K10 With Resistor ---- Selected
* K11 With Resistor ---- Selected
* K12 With Resistor ---- Selected
* K13 With Resistor ---- Selected
 OPT0301 01
 OPT0302 01
 OPT0303 01
 OPT0304 01
 OPT0305 01
 OPT0306 01
 OPT0307 01
 OPT0308 01
*
* *** OPTION NO.4 ***
* --- OUTPUT PORT OUTPUT SPECIFICATION ---
* R00 Complementary ---- Selected
* R01 Complementary ---- Selected
* R02 Complementary ---- Selected
* R03 Complementary ---- Selected
 OPT0401 01
 OPT0402 01
 OPT0403 01
 OPT0404 01
*

:
*
* *** OPTION NO.8 ***
* --- SOUND GENERATOR POLARITY ---
* NEGATIVE ---- Selected
 OPT0801 01
*EOF ← End mark

Example of a function option HEX file (Motorola S2 format)
S22400000022FF0200FFFFFFFFFFFFFFFFFFFFFFFF00000000000000FFFFFFFFFFFFFFFFFFCD
S804000000FB

For details about the Motorola S2 format, refer to Section A.2.5.3, "Motorola S2 Format".



CHAPTER 9  SEGMENT OPTION GENERATOR <winsog>

S5U1C88000C MANUAL II EPSON 63
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 9 SEGMENT OPTION GENERATOR

<winsog>
9.1 Outline of winsog
Some types of microcomputers in the S1C88 Family allow the LCD output pin output specifications and
LCD output pin assignments to be set with hardware options, so that mask patterns for the IC are
generated according to option settings. The Segment Option Generator <winsog> is the software tool for
creating the files required to generate mask patterns. Its graphical user interface (GUI) ensures simple
mask option setting.
In addition, simultaneously with this file, winsog can create mask option setup files (Motorola S2 format
data) that are required when debugging programs with the ICE (S5U1C88000H5). When using the ICE to
debug a program, you can download this file from the host computer, making it possible to realize
optional functions on the ICE that are equivalent to those on the actual IC.

Note: The Segment Option Generator <winsog> is provided for only certain types of microcomputers that
have set segment options.

9.2 Input/output Files
Figure 9.2.1 shows the input/output files of winsog.

Selection of 
mask options

zzzzzzzz.sad zzzzzzzz.sdc

winsog

Segment assignment
data file

Segment option 
document file

Function option 
document file

zzzzzzzz.ssa

Segment option 
HEX file

To ICE Mask data creation 
by mask data checker

zzzzzzzz.fdc
Device information

definition file s1c88xxx.ini

Fig. 9.2.1  Input/output files of winsog

Device information definition file (s1c88xxx.ini)
This file contains option lists for various types of microcomputers and other information. Always be
sure to use the files presented by Seiko Epson. This file is effective for only the type of microcomputer
indicated by the file name. Do not modify the contents of the file or use the file in other types of
microcomputers.

Function option document file (zzzzzzzz.fdc)
This is the text format file generated by winfog and contains the selected mask options. This file is
required only when the segment option setup condition depends on the mask option selected with
winfog.

Segment option document file (zzzzzzzz.sdc)
This is a text format file in which setup contents of segment options are stored. You can read this file
into winsog and correct the option settings. This file is packed along with completed other program/
data files into a single file by the mask data checker <winmdc>, which will be presented to Seiko
Epson as the mask data file. From this file, Seiko Epson will create the mask patterns for the IC.



CHAPTER 9  SEGMENT OPTION GENERATOR <winsog>

64 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Segment option HEX file (zzzzzzzz.ssa)
This is the Motorola S2 format file necessary to set the selected segment options in the ICE. When you
debug programs with the ICE, download this file into the ICE using ICE commands.

Segment assignment data file (zzzzzzzz.sad)
This is a text format file in which segment assignment data is stored. Create this file when terminating
winsog before finishing segment assignment. You can continue option setting next time by loading
this file to winsog.

∗ 1 The "xxx" in the file name denotes the model name of a microcomputer. For the "zzzzzzzz" part, any
given file name can be specified.

∗ 2 For details on how to download mask options into the ICE, refer to the ICE manual.

9.3 Using winsog

9.3.1 Starting Up

Startup from Explorer
Double-click on the winsog.exe icon or select winsog from the start menu.
If the device information definition file (s1c88xxx.ini) was loaded into your computer
during previous execution, winsog automatically reads the same file as it starts.
Alternatively, drag the device information definition file icon into the winsog.exe icon to
start winsog, which will then read the device information definition file. If a function option
document file is required for setting the segment option, a dialog box will appear to allow
file selection. In this case enter the file name including the path in the text box or choose the
file from the dialog box that appears by clicking on the [Ref] button.

Startup by command input
You can also start winsog from the MS-DOS prompt by entering the command shown below.

>winsog [s1c88xxx.ini] 

 denotes entering the return key.
You can specify the device information definition file (s1c88xxx.ini) as a command option. (You can
also specify a path.)  When you specify the device information definition file here, winsog reads it as
it starts. If a function option document file is required for setting the segment option, the file
(zzzzzzzz.fdc) must be prepared in the directory in which s1c88xxx.ini and winsog.exe exist before
entering the command. When the command is entered, a dialog box will appear to allow file selection.
Enter the file name including the path in the text box or choose the file from the dialog box that
appears by clicking on the [Ref] button. This specification can be omitted.



CHAPTER 9  SEGMENT OPTION GENERATOR <winsog>

S5U1C88000C MANUAL II EPSON 65
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

When winsog starts, it displays the [SOG] window. The following diagrams show a [SOG] window when
the device information definition file has been loaded and when it has not.

[SOG] Window (initial screen)

[SOG] Window (after reading the device information definition file)



CHAPTER 9  SEGMENT OPTION GENERATOR <winsog>

66 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

9.3.2 Window
Option setup area

←
   

→

The area can be resized by dragging the frame boundary.

Message area

∗ The microcomputer model name on the title bar is the file name (not including the path and extension) of the device

information definition file that has been read.

∗ The display memory addresses and segment configuration vary with each type of microcomputer.

Fig. 9.3.2.1  Window configuration

The [SOG] window is divided into two areas as shown above.

Option setup area
Comprised of a display memory map, a segment decode table, and buttons to select pin specifications.
By clicking on cells in the display memory map and segment decode table, you can assign display
memory addresses and bits.

Message area
When you create a file by selecting [Generate] from the [Tool] menu or clicking the [Generate] button,
this area displays a message showing the result of the selected operation.



CHAPTER 9  SEGMENT OPTION GENERATOR <winsog>

S5U1C88000C MANUAL II EPSON 67
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

9.3.3 Menus and Toolbar Buttons
This section explains each menu item and toolbar button.

[File] menu
Open
Opens a segment option document file. Use this menu command when
correcting an existing file. The [Open] button has the same function.

 [Open] button

Record - Save
Saves the current option settings to a file (segment assignment data file).
The [Save] button has the same function.

 [Save] button

Record - Load
Loads a segment assignment data file. The [Load] button has the same
function.

 [Load] button

End
Terminates winsog.

[Tool] menu
Generate
Creates a file according to the contents of segment options set. The
[Generate] button has the same function.

 [Generate] button

Setup
Sets the date of creation or output file name or a comment included in
the segment option document file. The [Setup] button has the same
function.

 [Setup] button

Device INI Select
Loads the device information definition file <s1c88xxx.ini>. The [Device
INI Select] button has the same function. This file must be loaded first
before performing any operation with winsog.

 [Device INI Select] button

[Help] menu
Version
Displays the version of winsog. The [Help] button has the same function.

 [Help] button

The dialog box shown below appears. Click [OK] to close this dialog box.



CHAPTER 9  SEGMENT OPTION GENERATOR <winsog>

68 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

9.3.5 Operation Procedure
The following shows the basic operation procedure.

(1) Loading the device information definition file
First, select a device information definition file <s1c88xxx.ini> and load it.
Select [Device INI Select] from the [Tool] menu or click the [Device INI Select] button.

 [Device INI Select] button

The dialog box shown below appears. Enter a file name including the path in the text box or select a
file by clicking the [Ref] button.

Click [OK], and the file is loaded. If the
specified file exists and there is no problem
with its contents, the set-up items in winsog
are initialized with the loaded device
information.
To stop loading the file, click [Cancel].

9.3.4 Option Selection Buttons
The following buttons are available in the option setup area.

OUTPUT Option buttons
These buttons select SEG pin output modes. These buttons are enabled when you click a SPEC cell in
[SEGMENT DECODE TABLE].

Selects LCD segment output.

Selects DC-complementary output.

Selects DC-Pch open-drain output.

Selects DC-Nch open-drain output.

Selects segment/common shared output.

[Delete] button
Clears the selected segment assignment. The [Delete] key has the same function.



CHAPTER 9  SEGMENT OPTION GENERATOR <winsog>

S5U1C88000C MANUAL II EPSON 69
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Once a device information definition file is selected, the same file is automatically loaded the next
time you start winfog.
If a function option document file is required for setting the segment option, the dialog box shown
below will appear to allow file selection. In this case enter the file name including the path in the text
box or choose the file from the dialog box that appears by clicking on the [Ref] button.

Date
Displays the current date. Change it as
necessary.

Segment Option Document file
Specify the segment option document file
name you want to create. The file name
displayed by default can be modified. You
can use the [Ref] button to look at other
folders.

Segment Option HEX
Do you make hex file?
Select whether to create a segment option
HEX file. You need to create one when you
use the ICE to debug programs.

Segment Options HEX file
When you create a segment option HEX file,
specify its file name here. The file name
displayed by default can be modified. You
can use the [Ref] button to look at other
folders.

Note: When you load a device information definition file after setting up options, all settings are reset to
the default state.

(2) Setup
Select [Setup] from the [Tool] menu or click the [Setup] button to bring up the [Setup] dialog box.
From this dialog box, select items and enter data.

 [Setup] button



CHAPTER 9  SEGMENT OPTION GENERATOR <winsog>

70 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

EPROM Type
This option is not available for S1C88 Family microcomputers.

User's Name
Enter your company name. Up to 40 characters can be entered. You can use English letters, numbers,
symbols, and spaces. The content entered here is recorded in the USER'S NAME field of the segment
option document file.

Comment
Enter a comment. Up to 50 characters can be entered in one line. You can enter up to 10 lines. You can
use English letters, numbers, symbols, and spaces. Use the [Enter] key to create a new line. All
comments should include the following information:
• Place of business, your department or section
• Address, telephone number, and facsimile number
• Other: Technical information, etc.

The content entered here is recorded in the COMMENT field of the segment option document file.
When you have finished entering the above necessary items, click [OK]. The setup contents are saved,
and the dialog box is closed. The setup contents take effect immediately. If you click [Cancel], current
settings will not be changed and the dialog box is closed.

Notes: • File name specification is subject to the following limitations:
1. The number of characters that can be used to specify a file name including the path is 2,048.
2. The file name itself (not including the extension) can be up to 15 characters, and the exten-

sion up to three characters.
3. The file name cannot begin with a hyphen (-), nor can the following symbols be used as part

of directory names (folder names), file names, and extensions:
/ : , ; ∗  ? " < > |

• The symbols shown below cannot be used in the User's Name and Comment:
$ \ | `

(3) Setting segment outputs
The LCD drive circuit of a S1C88 Family chip that has had segment options set normally allows
selecting the segment output and DC output for every two pins (in certain types of microcomputers,
individually for each pin). Segment output should be specified when using the pins for driving an
LCD panel.
Segment output ports have a built-in segment decoder allowing any address and data bit in the
display memory area to be assigned to any segment. When the segment memory bit is set to 1, the
assigned segment lights up; when the bit is set to 0, the segment dims. Segments and display memory
bits correspond individually, so that you cannot assign one display memory bit to multiple segments.
Therefore, all segments must be assigned different addresses and data bits.
For details about the display memory map and segment assignment, refer to the Technical Manual for
each type of microcomputer.
In the explanation below, the chip is assumed to have four common pins, COM0 to COM3.
Follow the procedure below to assign segments:

1. From the [Memory Address/Data bit] table, select the memory address/data bit you want to
assign by clicking the appropriate cell. The cell changes color to blue.
If you select an incorrect cell, select a correct cell.
The horizontal rows of the table correspond to display memory addresses. The hexadecimal
number shown to the right of the "Memory Address/Data bit" title is the base address of display
memory, with only the lower byte of address being displayed in each row of the table. The vertical
columns of the table correspond to data bits.



CHAPTER 9  SEGMENT OPTION GENERATOR <winsog>

S5U1C88000C MANUAL II EPSON 71
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

2. From [SEGMENT DECODE TABLE], select the SEG pin/COM pin to which you want to assign the
memory address/data bit selected in 1 by clicking the appropriate cell. A 3-digit numeric value is
displayed in the cell, showing the selected address (2 high-order digits) and data bit (1 low-order
digit), and the cell changes color to yellow.

Selection example: 

If you select an incorrect cell, click the [Delete] button to clear its assignment and  reselect from 1.
Two or more cells selected by dragging an area can also be deleted using the [Delete] button.
Before selecting a cell in [SEGMENT DECODE TABLE], always select a cell in [Memory Address/
Data bit].

3. Click the SPEC cell for the segment selected in 2 and then the [Seg] button. The cell shows the
letter S and changes color to red. This means that the segment has been set for a LCD segment
output pin.
If your chip requires selecting segment output and DC output every two pins, the other pin that
comprises a pair is set in the same way.

Selection example: 

4. Repeat steps 1 to 2 for all segments used for LCD output. Specification selection in 3 may be
performed later.
If any COM cell in one SEG pin is unused, leave it blank.

Selection example: 

(4) Setting DC outputs
When using SEG pins for general-purpose DC output, assign segments according to steps 1 and 2
described in Item (3), "Setting segment outputs". However, output control works in such a way that
the display memory assigned to COM0 is enabled while the display memory assigned to COM1
through COM3 are disabled. Therefore, set a memory address/data bit for only COM0 cell and leave
memory address/data bits for COM1 through COM3 cells blank.
For DC output, you may select an output mode between complementary output and Nch (or Pch)
open-drain output. Select your desired output in SPEC cell using the buttons listed below:
[Comp] button: Complementary output (C)
[Nch-] button: N-channel open-drain output (N)
[Pch-] button: P-channel open-drain output (P)
If your chip requires selecting an output mode every two pins, the other pin that comprises a pair is
set in the same way.

Selection example: 

(5) Setting SEG/COM shared pins
Whether the SEG/COM shared pins output segment signals or common signals is determined by
selecting the function option.
When using the shared pins as SEG pins, allocate display memory addresses/bits as shown above
and leave unused COM cells blank.
When using the shared pins as COM pins, select segment/common shared output ([M] button) as the
output specification and do not allocate memory.

Note: This setting is required only for microcomputers that have SEG/COM shared pins.



CHAPTER 9  SEGMENT OPTION GENERATOR <winsog>

72 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

(6) Setting unused SEG pins
For SEG pins that are used for neither LCD output nor DC output, leave COM0 through COM3 cells
in [SEGMENT DECODE TABLE] blank. However, SPEC cells cannot be left blank, so select segment
output (S) for the corresponding SPEC cells.

Selection example: 

(7) Creating files
After selecting options, select [Generate] from the [Tool] menu or click the [Generate] button to create
the files.

 [Generate] button

The segment option document file you specified from the [Setup] dialog box and the segment option
HEX file (if specified) are created. When winsog has finished creating the files normally, it displays
the message "Making file(s) is completed" in the message area. If an error occurs, an error message is
displayed.

(8) Saving uncompleted segment option data
You can save the segment option settings that have not been completed as a segment assignment data
file. To save data, select [Record - Save] from the [File] menu or click the [Save] button.

 [Save] button

The dialog box shown below appears, so enter a file name including the path in the text box or select a
file by clicking the [Ref] button.

Clicking [OK] saves the current assignment data to the specified file. To stop saving, click [Cancel].

You can read an existing segment option document file into winsog and correct it as necessary.
To load a segment assignment data file, select [Record - Load] from the [File] menu or click the [Load]
button.

 [Load] button

The dialog box shown below appears, so enter a file name including the path in the text box or select a
file by clicking the [Ref] button.

Click [OK], and the file is loaded. If the specified file exists and there is no problem with its contents,
the option setup area is updated according to the segment assignment data saved in the file. You can
continue segment assignment from the previous set state. To stop loading the file, click [Cancel].



CHAPTER 9  SEGMENT OPTION GENERATOR <winsog>

S5U1C88000C MANUAL II EPSON 73
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Notes: • The segment assignment data file can be read only when the device information definition file
has been loaded.

• Some models need a function option document file to be loaded at the start of winsog, and the
contents of the file affect the segment option setup condition. Therefore, the segment assign-
ment data file in which the settings do not match the function option cannot be read.

(9) Correcting an existing document file
You can read an existing segment option document file into winsog and correct it as necessary.
To read a file, select [Open] from the [File] menu or click the [Open] button.

 [Open] button

The dialog box shown below appears, so enter a file name including the path in the text box or select a
file by clicking the [Ref] button.

Click [OK], and the file is loaded. If the specified file exists and there is no problem with its contents,
[Memory Address/Data bit] and [SEGMENT DECODE TABLE] are updated according to the contents
of the file. To stop loading the file, click [Cancel].

If you want to change an assigned address, clear its cell assignment using the [Delete] button first and
then reassign a new address. If you want to change a selected output mode too, select the correspond-
ing SPEC cell and clear its selected output mode with the [Delete] button before reselecting a new
output mode. Two or more cells selected by dragging an area can also be deleted using the [Delete]
button.
If you select [Generate] without changing the file name, the dialog box asking you whether to over-
write the file is displayed. Click [Yes] to overwrite or [No] or [Cancel] to stop overwriting. Use the
[Setup] dialog box to change the file name.

Notes: • The segment option document file can be read only when the device information definition file
has been loaded.

• Some models need a function option document file to be loaded at the start of winsog, and the
contents of the file affect the segment option setup condition. Therefore, the segment option
document file in which the settings do not match the function option cannot be read.

(10) Quitting
To terminate winsog, select [End] from the [File] menu.



CHAPTER 9  SEGMENT OPTION GENERATOR <winsog>

74 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

9.4 Error Messages
The error messages of winsog are listed below. The "Dialog" in the Display column means that messages
are displayed in the dialog box, and "Message" means that messages are displayed in the [SOG] window
message area.

Table 9.4.1  List of winsog error messages
Message

File name error
Illegal character
Please input file name
Can't open File : xxxx
INI file is not found
INI file does not include SOG information

Function Option document file is not found
Function Option document file does not 
match INI file
Segment Option document file is not found
Segment Option document file does not 
match INI file
Segment assignment data file is not found
Segment assignment data file does not 
match INI file
Can't open File: xxxx
Making file(s) is not completed
Can't write File: xxxx
Making file(s) is not completed
ERROR: SPEC is not set
Making file(s) is not completed

Description
Number of characters in the file name or extension exceeds the limit.
Prohibited characters have been entered.
File name has not been entered.
File (xxxx) cannot be opened.
Specified device information definition file (.ini) does not exist.
Specified device information definition file (.ini) does not contain 
segment option information.
Specified function option document file does not exist.
Contents of the specified function option document file do not match 
device information definition file (.ini).
Specified segment option document file does not exist.
Contents of the specified segment option document file do not match 
device information definition file (.ini).
Specified segment assignment data file does not exist.
Contents of the specified segment assignment data file do not match 
device information definition file (.ini).
File (xxxx) cannot be opened when executing Generate.

File (xxxx) cannot be written when executing Generate.

One or more SPEC cells are left blank when executing Generate.

Display
Dialog
Dialog
Dialog
Dialog
Dialog
Dialog

Dialog
Dialog

Dialog
Dialog

Dialog
Dialog

Message

Message

Message

Table 9.4.2  winsog warning messages
Message

Are you file update?
xxxx is already exist

Description
Overwrite confirmation message
(Specified file already exists.)

Display
Dialog



CHAPTER 9  SEGMENT OPTION GENERATOR <winsog>

S5U1C88000C MANUAL II EPSON 75
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

9.5 Example Output Files

Note: The display memory addresses, the number of SEG/COM pins, and output specification vary with
each type of microcomputer.

Example of a segment option document file
* S1C88xxx SEGMENT OPTION DOCUMENT Vx.xx ← Version
*
* FILE NAME    zzzzzzzz.SDC ← File name (specified by [Setup])
* USER'S NAME  SEIKO EPSON CORPORATION ← User name (specified by [Setup])
* INPUT DATE   yyyy/mm/dd ← Date of creation (specified by [Setup])
* COMMENT      SAMPLE DATA ← Comment (specified by [Setup])
*
*
* OPTION NO.xx ← Option number (varies with type of microcomputer)
*
* < LCD SEGMENT DECODE TABLE >
*
* SEG COM0 COM1 COM2 COM3 SPEC
*
   0  163  162  161  1F3  S ← Segment decode table
   1  170  172  171  160  S
   2  143  142  141  1E1  S
   3  150  152  151  140  S
                :
  xx  3B0  3B1  3B2  3B3  S
*EOF ← End mark

Example of a segment assignment data file
* S1C88xxx SEGMENT OPTION DOCUMENT Vx.xx ← Version
*
* FILE NAME    zzzzzzzz.SDC ← File name (specified by [Setup])
* USER'S NAME ← User name (specified by [Setup])
* INPUT DATE   yyyy/mm/dd ← Date of creation (specified by [Setup])
* COMMENT ← Comment (specified by [Setup])
*
*
* OPTION NO.xx ← Option number (varies with type of microcomputer)
*
* < LCD SEGMENT DECODE TABLE >
*
* SEG COM0 COM1 COM2 COM3 SPEC
*
   0  163  162  161  1F3  S ← Segment data has been assigned
   1  170  172  171  160  S
   2  143  142  141  1E1  S
                :
  mm  FRE  FRE  FRE  FRE  X ← FRE: Segment address and data bit have not been assigned.
  nn  FRE  FRE  FRE  FRE  X ← X: Output specification has not been set.
  oo  FRE  FRE  FRE  FRE  X
*EOF ← End mark

Example of a segment option HEX file (Motorola S2 format)
S2240000001603160216011F03FFFFFFFFFFFFFFFF1700170217011600FFFFFFFFFFFFFFFF23
S2240000201403140214011E01FFFFFFFFFFFFFFFF1500150215011400FFFFFFFFFFFFFFFF14
                                    :
S2240010E0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF0B
S804000000FB

For details about the Motorola S2 format, refer to Section A.2.5.3, "Motorola S2 format".



CHAPTER 10  MASK DATA CHECKER <winmdc>

76 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 10 MASK DATA CHECKER <winmdc>
10.1 Outline of winmdc
The Mask Data Checker <winmdc> is the software tool for checking the format of each generated file and
creating the files necessary to generate mask patterns. winmdc checks the built-in ROM data HEX file
generated by program unused area filling utility <fil88xxx>, the function option document file generated
by function option generator <winfog>, and the segment option document file generated by segment
option generator <winsog>.
winmdc also has a function for restoring the created mask data file into the original file format.

10.2 Input/output Files
Figure 10.2.1 shows the input/output files of winmdc.

Mask data created 
(packed)

To Seiko Epson

Device information 
definition file

s1c88xxx.ini

Built-in ROM data
HEX file

zzzzzzzz.psa

Function option 
document file

zzzzzzzz.fdc

Segment option 
document file

zzzzzzzz.sdc

zzzzzzzz.usa zzzzzzzz.ufd zzzzzzzz.usd

winmdc

Data restored 
(unpacked)

winmdc

Pack file 
(mask data file)c88xxx··yyy.paN

Fig. 10.2.1  Input/output files of winmdc

Device information definition file (s1c88xxx.ini)
This file contains option lists for various types of microcomputers and other information. Always be
sure to use the files presented by Seiko Epson. This file is effective for only the type of microcomputer
indicated by the file name. Do not modify the contents of the file or use the file in other types of
microcomputers.

Built-in ROM data HEX file (zzzzzzzz.psa)
This is the built-in ROM data HEX file in Motorola S2 format. This file is created by program unused
area filling utility <fil88xxx>. The unused areas in the built-in ROM are filled with FFH and a system
code is set to the system reserved area (see vector table shown in the Technical Manual).

Function option document file (zzzzzzzz.fdc)
This is a text format file in which the contents of selected function options are stored. This file is
created by function option generator <winfog>.

Segment option document file (zzzzzzzz.sdc)
This is a text format file in which the contents of segment options set are stored. It is created by
segment option generator <winsog>. This file is available for only microcomputers with set segment
options.

Pack file (c88xxx··yyy.paN, N = 0 and over)
This is a text format file which contains the above data files combined into one. We would like to have
this file presented to Seiko Epson as the mask data file. Seiko Epson will create the mask patterns for
the IC from this mask data file.

  ∗ The "xxx··" in the file name denotes the model name of a microcomputer. The "yyy" part of the file
name represents the custom code of each customer. Enter the code from Seiko Epson here. For the
"zzzzzzzz" part, any given file name can be specified.



CHAPTER 10  MASK DATA CHECKER <winmdc>

S5U1C88000C MANUAL II EPSON 77
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

10.3 Using winmdc

10.3.1 Starting Up

Startup from Explorer
Double-click on the winmdc.exe icon or select winmdc from the start menu.

If the device information definition file (s1c88xxx.ini) was loaded into your computer
during a previous execution, winmdc automatically reads the same file as it starts.
Alternatively, drag the device information definition file icon into the winmdc.exe icon to
start winmdc, which will then read the device information definition file.

Startup by command input
You can also start winmdc from the MS-DOS prompt by entering the command shown below.

>winmdc [s1c88xxx.ini] 

 denotes entering the return key.
You can specify the device information definition file (s1c88xxx.ini) as a command option. (You can
also specify a path.)  When you specify the Device information definition file here, winmdc reads it as
it starts. This specification can be omitted.

When winmdc starts, it displays the [MDC] window.

[MDC] Window (initial screen)

∗ The microcomputer model name on the title bar is the file name (not including the path and extension) of the device
information definition file that has been read.

∗ The [Pack] and [Unpack] buttons on the tool bar are enabled when the device information definition file is read.



CHAPTER 10  MASK DATA CHECKER <winmdc>

78 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

10.3.2 Menus and Toolbar Buttons
This section explains each menu item and toolbar button.

[File] menu
End
Terminates winmdc.

[Tool] menu
Pack
Packs the ROM data file and option document file to create a mask data file for
presentation to Seiko Epson. The [Pack] button has the same function.

 [Pack] button

Unpack
Restores files in the original format from a packed file. The [Unpack] button has
the same function.

 [Unpack] button

Device INI Select
Loads the device information definition file <s1c88xxx.ini>. The [Device INI
Select] button has the same function. This file must be loaded first before
performing any operation with winmdc.

 [Device INI Select] button

[Help] menu
Version
Displays the version of winmdc. The [Help] button has the same function.

 [Help] button

The dialog box shown below appears. Click [OK] to close this dialog box.



CHAPTER 10  MASK DATA CHECKER <winmdc>

S5U1C88000C MANUAL II EPSON 79
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

10.3.3 Operation Procedure
The following shows the basic operation procedure.

(1) Loading the Device information definition file
First, select a device information definition file <s1c88xxx.ini> and load it.
Select [Device INI Select] from the [Tool] menu or click the [Device INI Select] button.

 [Device INI Select] button

The dialog box shown below appears. Enter a file name including the path in the text box or select a
file by clicking the [Ref] button.

Click [OK], and the file is loaded. If the specified
file exists and there is no problem with its
contents, the set-up items in winmdc are initial-
ized with the loaded device information.
To stop loading the file, click [Cancel].

Once a device information definition file is selected, the same file is automatically loaded the next
time you start winmdc.

(2) Packing
1. Select [Pack] from the [Tool] menu or click the [Pack] button on the tool bar to bring up the [Pack]

dialog box.

 [Pack] button



CHAPTER 10  MASK DATA CHECKER <winmdc>

80 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

2. Select the files to be entered.
[Pack Input Files] lists the files of the type specified in the device information definition file by
their default file names. If the data files to be entered are represented by different names in this
list, replace the file names following the procedure below.
a. Select a file name to be changed by clicking on it from the list box.
b. Click the [Ref] button and select the data file to be entered.
Do this for all files listed.
When replacing files, take care not to mistake one file type (extension) for another. If the type of
input file is erroneous, an error will result during file packing.

3. Setting output file names.
In the [Pack Output File] text box, specify a pack file name in which you want the mask data to be
output. The file name displayed by default can be modified. You can use the [Ref] button to look at
other folders.
Make sure the extension of the output file name is ".pa0". If after presenting data to Seiko Epson,
you present new data due to program bugs or any other reason, increase the number in the last
digit of the extension in increments of one. For example, the extension of the second file presented
should be "c88xxx··yyy.pa1".

Note: File name specification is subject to the following limitations:
1. The number of characters that can be used to specify a file name including the path is 2,048.
2. The file name itself (not including the extension) can be up to 15 characters, and the extension

up to three characters.
3. The file name cannot begin with a hyphen (-), nor can the following symbols be used as part of

directory names (folder names), file names, and extensions:
/ : , ; * ? " < > |

4. Click the [Pack] button to execute packing.
When winmdc has completed packing, it displays a message "Packing completed!" in the [Pack
message] text box. If an error has occurred, an error message is displayed.

5. Click the [Cancel] button to close the dialog box.
Alternatively, you can click the [Cancel] button to quit winmdc before it executes packing.



CHAPTER 10  MASK DATA CHECKER <winmdc>

S5U1C88000C MANUAL II EPSON 81
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

(3) Unpacking
1. Select [Unpack] from the [Tool] menu or click the [Unpack] button on the tool bar to bring up the

[Unpack] dialog box.

 [Unpack] button

2. Select the file you want to unpack.
In the [Packed Input File] text box, specify the pack file name you want to enter. Use the names
displayed by default to specify this file name after changing one, or select another file using the
[Ref] button.

3. Select the output file name.
[Unpack Output Files] lists the files of the type specified in the device information definition file
by their default file names. Modify the file name displayed by the following procedure.
a. Click in the list box to select the file name to be modified.
b. Click the [Ref] button to select another folder, and then enter a file name. Modify all the listed

file names. The extensions cannot be changed.

4. Click the [Unpack] button to execute unpacking.
When winmdc has completed unpacking, it displays a message "Unpacking completed!" in the
[Unpack message] text box. If an error has occurred, an error message is displayed.

5. Click the [Cancel] button to close the dialog box.
Alternatively, you can click the [Cancel] button to quit winmdc before it executes unpacking.

(4) Quitting
To terminate winmdc, select [End] from the [File] menu.



CHAPTER 10  MASK DATA CHECKER <winmdc>

82 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

10.4 Error Messages
The error messages of winmdc are listed below. The "Dialog" in the Display column means that messages
are displayed in the dialog box, and "Message" means that messages are displayed in the message area of
the [Pack] or [Unpack] dialog box.

Table 10.4.1  List of I/O error messages
Message

File name error
Illegal character
Please input file name
INI file is not found
INI file does not include MDC information

Can't open file : xxxx
Can't write file: xxxx

Description
Number of characters in the file name or extension exceeds the limit.
Prohibited characters have been entered.
File name has not been entered.
Specified device information definition file (.ini) does not exist.
Specified device information definition file (.ini) does not contain 
MDC information.
File (xxxx) cannot be opened.
File (xxxx) cannot be written.

Display
Dialog
Dialog
Dialog
Dialog
Dialog

Dialog
Dialog

Table 10.4.2  List of ROM data error messages
Message

Hex data error: Not S record.
Hex data error: Data is not sequential.
Hex data error: Illegal data.
Hex data error: Too many data in one line.
Hex data error: Check sum error.
Hex data error: ROM capacity over.
Hex data error: Not enough the ROM data.
Hex data error: Illegal start mark.
Hex data error: Illegal end mark.
Hex data error: Illegal comment.

Description
Data does not begin with "S."
Data is not listed in ascending order.
Invalid character is included.
Too many data entries exist in one line.
Checksum does not match.
Data is large. (Greater than ROM size)
Data is small. (Smaller than ROM size)
Start mark is incorrect. 
End mark is incorrect.
Model name shown at the beginning of data is incorrect. 

Display
Message
Message
Message
Message
Message
Message
Message
Message
Message
Message

Table 10.4.3  List of function option data error messages
Message

Option data error : Illegal model name.
Option data error : Illegal version.
Option data error : Illegal option number.
Option data error : Illegal select number.
Option data error : Mask data is not enough.
Option data error : Illegal start mark.
Option data error : Illegal end mark.

Description
Model name is incorrect.
Version is incorrect.
Option No. is incorrect.
Selected option number is incorrect.
Mask data is insufficient.
Start mark is incorrect.
End mark is incorrect.

Display
Message
Message
Message
Message
Message
Message
Message

Table 10.4.4  List of segment option data error messages
Message

LCD segment data error : Illegal model name.
LCD segment data error : Illegal version.
LCD segment data error : Illegal segment No.
LCD segment data error : Illegal segment area.
LCD segment data error : Illegal segment output 
specification.
LCD segment data error : Illegal data in this line.
LCD segment data error : Data is not enough.
LCD segment data error : Illegal start mark.
LCD segment data error : Illegal end mark.

Description
Model name is incorrect.
Version is incorrect.
Segment No. is incorrect.
Display memory address is out of range.
Specified output mode is incorrect.

Data written here is not hexadecimal number or output mode.
Segment data is insufficient.
Start mark is incorrect.
End mark is incorrect.

Display
Message
Message
Message
Message
Message

Message
Message
Message
Message



CHAPTER 10  MASK DATA CHECKER <winmdc>

S5U1C88000C MANUAL II EPSON 83
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

10.5 Example Output File

Note: The configuration and contents of data vary with each type of microcomputer.

Example of a pack file (mask data file)
*
* S1C88xxx MASK DATA VER x.xx ← Version
*
\ROM1 ← Built-in ROM HEX data start mark
S1C88xxxyyy PROGRAM ROM ← Model name
S224000000................................

:       :       :       :       :
S804000000FB "zzzzzzzz.psa"
S224000000................................

:       :       :       :       :
S804000000FB
\END ← Built-in ROM HEX data end mark
\OPTION1 ← Function option start mark
* S1C88xxx FUNCTION OPTION DOCUMENT V x.x ← Model name/version
*
* FILE NAME    zzzzzzzz.FDC
* USER'S NAME  SEIKO EPSON CORPORATION
* INPUT DATE   yyyy/mm/dd
* COMMENT      SAMPLE DATA
* "zzzzzzzz.fdc"
* *** OPTION NO.1 ***
* --- OSC1 SYSTEM CLOCK ---
* Crystal(32.768KHz) ---- Selected
 OPT0101 01

:       :       :       :       :
 OPTnn01 01
*EOF
\END ← Function option end mark
\SEGMENT1 ← Segment option start mark
* S1C88xxx SEGMENT OPTION DOCUMENT Vx.xx ← Model name/version
*
* FILE NAME    zzzzzzzz.SDC
* USER'S NAME  SEIKO EPSON CORPORATION
* INPUT DATE   yyyy/mm/dd
* COMMENT      SAMPLE DATA
*
*
* OPTION NO.xx
* "zzzzzzzz.sdc"
* < LCD SEGMENT DECODE TABLE >
*
* SEG COM0 COM1 COM2 COM3 SPEC
*
   0  163  162  161  1F3  S
   1  170  172  171  160  S
              :
  xx  3B0  3B1  3B2  3B3  S
*EOF
\END ← Segment option end mark



CHAPTER 11  SELF-DIAGNOSTIC PROGRAM <t88xxx>

84 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 11 SELF-DIAGNOSTIC PROGRAM <t88xxx>
11.1 Outline of t88xxx
t88xxx is a self-diagnostic program to check the operation of the hardware tools ICE (S5U1C88000H5) and
S5U1C88xxxP that are used for program debugging of the S1C88 Family.
Perform a self-diagnostic of the ICE and S5U1C88xxxP periodically using this program.

11.2 File Configuration

(1) Program data HEX file (t88xxx.psa)
This is the main file of the self-diagnostic program generated by fil88xxx, in which the unused area of
the built-in ROM is filled with FFH and the system code is set to the system reserved area of the
S1C88xxx.

(2) Function option HEX file (t88xxx.fsa)
This is the file generated by winfog to set the function option into the ICE and S5U1C88xxxP, and is
used at self-diagnosis.

(3) Function option document file (t88xxx.fdc)
This is the document file corresponding to the function option HEX file shown above and is generated
by winfog.

(4) Segment option HEX file (t88xxx.ssa)
This is the file generated by winsog to set the segment option into the ICE and S5U1C88xxxP, and is
used at self-diagnosis.

(5) Segment option document file (t88xxx.sdc)
This is the document file corresponding to the segment option HEX file shown above and is generated
by winsog.

Note that the segment option files (4 and 5) are provided for only certain types of microcomputers that
have set segment options.

(6) readme.txt
This file contains the description of the S5U1C88xxxP LED illumination status to check the operation
with the self-diagnostic program.

11.3 Operation Procedure
After installing S5U1C88xxxP into the ICE, self-diagnosis of the ICE and S5U1C88xxxP can be done by the
following operation test.
For the following operation test, the self-diagnostic program (t88xxx.psa) and the function option HEX
data (t88xxx.fsa) in this package are used. In addition to these files, the segment option HEX data
(t88xxx.ssa) is required for testing the microcomputer model that supports segment option.
Perform the below operations.

(1) Execute the self-diagnostic program (t88xxx.psa), the function option HEX data (t88xxx.fsa) and the
segment option HEX data (t88xxx.ssa) after downloading them into the ICE.
Refer to the ICE manual for downloading and executing programs.

(2) Check the LEDs on the S5U1C88xxxP. If the LEDs light in the sequence described in readme.txt after a
system reset, it is normal. The "cycle count" described in readme.txt indicates a 1 second interval and
the LEDs change their light status every second.



CHAPTER 12  88xxx.par FILE

S5U1C88000C MANUAL II EPSON 85
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 12 88xxx.par FILE
The 88xxx.par file is a macro file that contains the information for each model. The ICE (S5U1C88000H5)
sets its operating environment by loading this parameter file. Therefore, the ICE cannot start up if this
parameter file does not exist.

12.1 Contents of 88xxx.par File
The following shows a sample parameter file.

[Options]
Prcclksel=0 ...(1)
Vdddown=0 ...(2)
CC=0 ...(3)
DIAG=0 ...(4)

[MAP Config]
;S1C88xxx MAP Configuration Setting
;  000000-00FFFF:Define 1 byte unit
;  010000-FFFFFF:Define 256 bytes unit
;
;syntax:<Start address> <End address> [E][I][U][S][W]
;        E:Emulation memory
;        I:I/O (PRC Board) memory
;        U:User memory
;        S:Stack area
;        W:Write protect (Default does not protect)

;Internal ROM
Map0=000000 00EFFF E W ...(5)

;Internal RAM
Map1=00F000 00F3FF E

;Stack area
Map2=00F400 00F5FF E S

;Display memory
Map3=00F800 00F828 I
Map4=00F833 00F842 I
Map5=00F900 00F928 I
Map6=00F933 00F942 I
Map7=00FA00 00FA28 I
Map8=00FA33 00FA42 I
Map9=00FB00 00FB28 I
Map10=00FB33 00FB42 I
Map11=00FC00 00FC28 I
Map12=00FC33 00FC42 I
Map13=00FD00 00FD28 I
Map14=00FD33 00FD42 I

;I/O memory
Map15=00FF00 00FF02 I
Map16=00FF10 00FF12 I
Map17=00FF20 00FF25 I
Map18=00FF30 00FF34 I
Map19=00FF35 00FF36 I W
Map20=00FF40 00FF40 I
Map21=00FF41 00FF41 I W
Map22=00FF42 00FF42 I
Map23=00FF43 00FF43 I W
Map24=00FF44 00FF45 I
Map25=00FF48 00FF4A I
Map26=00FF50 00FF53 I
Map27=00FF54 00FF55 I W
Map28=00FF61 00FF61 I
Map29=00FF63 00FF63 I
Map30=00FF70 00FF71 I
Map31=00FF75 00FF75 I
Map32=00FF78 00FF78 I



CHAPTER 12  88xxx.par FILE

86 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

12.2 Description of the Parameters
The parameters (1) to (4) are system reserved items, so do not modify their settings. Parameter (5) and the
following parameters are used to set the memory allocations and memory conditions.

General format:
Map<Serial number> = <Start address> <End address> <Switch>

Serial number
The Map parameter must have a serial number within the range from 0 to 1023.
The serial numbers must not be specified in a special order.
If a number is duplicated, the parameter set first is enabled and the others are disabled.

Address settings
Addresses can be set in byte units for the range from 000000 to 00FFFF. Areas exceeding 010000
should be done using 256 byte units. (****00–****FF).

Switch
The following five letters are available for specifying <Switch>: E, I, U, S and W.

• Switches for allocating memories (E, I, U switches)
The I switch allocates the specified address area to the memory on the S5U1C88xxxP board.
The E switch allocates the specified area to the emulation memory on the ICE.
The U switch allocates the specified area to the user’s memory on the target board.

• Switch for setting stack area (S switch)
The S switch sets the specified area as a stack area.

• Write-protect switch/specifying ROM area (W switch)
The W switch sets the specified area as a ROM area that cannot be written. When an area is specified
without the W switch, the ICE will regard it as a RAM area.

Comments
The ICE identifies a line that begins with a semicolon (;) as a comment line. Comments cannot be
placed following parameters.
Example: ;Internal ROM ... OK

Map0=000000 00EFFF EW ;internal ROM ... NG

12.3 Emulation Memory
The ICE has built-in a 64KB emulation memory for the memory space from 000000 to 00FFFF and a
512KB emulation memory in S5U1C88000H5 or a 256KB emulation memory in S5U1C88000H3 that can be
used as an expanded memory area exceeding address 010000. The emulation memory allows the user to
use it as a memory that will be connected externally in the actual product. Thus it is not necessary to
mount the external memory on the target board to develop the program. However, prepare the external
memory on the target board when developing a product that needs a larger memory than 512KB at a
location exceeding address 010000.

Notes
• It is therefore necessary to edit the path description in the ice88*.ini (* = r or ur) file located in the

Windows system folder. When the 88xxx.par file exists in the same folder as the ice88*.exe file, only
the file name part should be modified.
Installation of ICE88* for Windows makes the default.par file in the same folder as the ice88*.exe file
installed and sets the path information in the ice88*.ini file so that the debugger will refer to the
default.par file.

• The parameters (1) to (4) must be described in the part that begins with an [Options] line and the
parameters following (5) must be described after the [MAP Config] line. Do not delete [Options] and
[MAP Config].



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 87
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

13.1 Overview
The db88 debugger is a development tool for the S1C88 Family of 8-bit single-chip microcomputers. The
debugger included in this package allows you to debug software created with the S1C88 integrated tool
(C compiler, assembler) using the in-circuit emulator (S5U1C88000H5).
The debugger has the following features and functions:
• Various data can be referenced at the same time using multiple windows.
• Frequently used commands can be executed from tool bars and menus using a mouse.
• Also available are C source, disassembled code and symbol display functions.
• Consecutive program execution and three types of single-stepping are possible.
• Three break functions are supported.
• Trace and coverage functions.
• An automatic command execution function using a command file.

13.2 Input/output Files

ICE
file.sy

file.psa Program HEX file

Symbol file

file.fsa Function option HEX file

file.mcs
file.mot FPGA data file

Debugger

db88

file.absfile.par file.cmd

Absolute
object file

Parameter
file

file.log

Log file

file.cmd

Record file

file.trc

Trace file

Command file
file.c(asm)

Source file(s)

Fig. 13.2.1  Input/output files

Parameter file (file_name.par)
This text file contains memory information on each microcomputer model and is used to set the memory
mapping information to the ICE. For the contents of this file, refer to Chapter 12, "88xxx.par File".

Absolute object file (file_name.abs)
This is an IEEE-695 object file generated by the advanced locator or locator. By reading a file in this
format that contains debug information, C source display and symbolic debugging can be performed.

Source file (file_name.c, file_name.asm)
This is the source file of the above object file. It is read when the debugger performs source display.

Internal ROM data HEX file (file_name.psa)
This is the program file generated by the fil88xxx unused ROM area FF filling utility in Motorola S2
format file. The unused area of the built-in ROM has been filled with FFH and the system code is set
to the system reserved area.

Symbol information file (file_name.sy)
This is the symbol information file generated by the symbol table file generator. By preparing the file
with the same name as the internal ROM data HEX file in the same directory, it will be automatically
loaded at the same time the internal ROM data HEX file is loaded. This file allows the debugger to
display the symbols defined in the source.

Function option HEX file (file_name.fsa)
This is the mask option setup file in Motorola S2 format that is generated by the function option
generator.



CHAPTER 13  S1C88 FAMILY DEBUGGER

88 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

FPGA data file (file_name.mot, file_name.mcs)
This data file is used to configure the FPGA on the peripheral board S5U1C88000P for a S1C88 Family
model. ".mot" is a Motorola S2 format file and ".mcs" is an Intel HEX format file.

Command file (file_name.cmd)
This text file contains a description of debug commands to be executed successively. By writing a
series of frequently used commands in this file, the time and labor required for entering commands
from the keyboard can be saved. The command described in the file are read and executed using the
com command.

Log file (file_name.log)
This text file contains the executed commands and execution results. Output of this file can be con-
trolled by the log command.

Record file (file_name.cmd)
This text file contains the executed commands. Output of this file can be controlled by the rec com-
mand. This command can be used as a command file.

Trace file (file_name.trc)
This text file contains the specified range of trace information. Output of this file can be controlled by
the tf command.

13.3 Starting and Terminating the Debugger

13.3.1 Starting the Debugger
Connect the ICE (S5U1C88000H5) to a personal computer and turn the power on before starting up the
debugger.
The debugger can be started up using one of the following methods:

Starting from Work Bench
After the build process of the project has completed, select [DB88 Debugger] from the [Debug] menu
or click the [DB88] button. The dialog box shown below appears.

Select the absolute object file format (IEEE 695 or Motorola
S) using the radio button.
Select a function option HEX file from the dialog box
displayed by clicking the [Ref] button, or enter a function
option HEX file name directly into the [Fsa File] text box.
The [Create] button invokes the function option generator
winfog to generate a new function option HEX file.
After these items have been selected/entered, click the [OK]
button to launch the debugger.

Starting from Windows Explorer

Double-click this icon to start the debugger.

Starting from MS-DOS prompt
Enter the command shown below to start the debugger.

db88 ^ [<parameter file name>] ^ [<command file name>]

^ denotes a space. [ ] indicates the possibility to omit.

Example:  C:\epson\s1c88\\db88\db88 par88xxx.par startup.cmd

Note: The parameter file and command file will be recognized by their extensions ".par" and ".com", so
the extension must be included in the file name to be specified.



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 89
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

When the debugger starts up, it outputs the following message in the [Command] window.

DB88 Ver x.xx
Copyright SEIKO EPSON CORP. 2001

Parameter file: xxxxxxxx.par
Initialize........................ OK
>

When the tests and initialization of the ICE have been finished, the debugger displays "OK" and is ready
to execute a debugger command. When the debugger is invoked from the Work Bench, the specified
object file is loaded after the tests have been finished. The state of the screen including the position and
size of the windows will return the same as the last time the debugger was terminated.

Note: If the ICE is in self-diagnosis state (when the ICE is turned on with the DIAG switch set to on
position), the debugger does not display "OK" until the diagnosis is finished. The self-diagnosis
takes about 40 seconds for the process.

If "NG" is displayed, restart the debugger after checking the following conditions:

• The USB cable is connected properly
• The USB driver for the ICE is installed
• The peripheral board is correctly fitted in place
• The ICE's power is turned on
• The ICE remains reset

13.3.2 Terminating the Debugger
To terminate the debugger, select [Exit] from the [File] menu.

You can also input the q command in the [Command] window to terminate the debugger.

>q



CHAPTER 13  S1C88 FAMILY DEBUGGER

90 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

13.4 Windows
This section describes the types of windows used by the debugger.

13.4.1 Basic Structure of Window
The diagram below shows the window structure of the debugger.

 [Source] window  [Watch] window       [Coverage] window       [Register] window

[Command] window [Trace] window [Symbol] window [Dump] window

Features common to all windows

(1) Open/close and activating a window
All windows except [Command] can be closed or opened.
To open a window, select the window name from the [View] menu. When a command is executed, the
corresponding window opens if the command uses the window for displaying the executed results.
To close a window, click the [Close] box on the window.
The opened windows are listed in the [Window] menu. Selecting one from the list activates the
selected window. It can also be done by simply clicking on an inactive window. Furthermore, pressing
[Ctrl]+[Tab] switches the active window to the next open window.

(2) Resizing and moving a window
Each window can be resized as needed by dragging the boundary of the window with the mouse. The
[Minimize] and [Maximize] buttons work in the same way as in general Windows applications. Each
window can be moved to the desired display position by dragging the window's title bar with the
mouse. However, windows can only be resized and moved within the range of the application
window.

(3) Other
The opened windows can be cascaded or tiled using the [Window] menu.



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 91
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

13.4.2 [Command] Window

The [Command] window is used to do the following:

(1) Entering debug commands
When the prompt ">" appears in the [Command] window, the system will accept a command entered
from the keyboard.

(2) Displaying debug commands selected from menus or tool bar
When a command is executed by selecting the menu item or tool bar button, the executed command
line is displayed in the [Command] window.

(3) Displaying command execution results
The [Command] window displays command execution results. However, some command execution
results are displayed in other windows. The contents of these execution results are displayed when
their corresponding windows are open. If the corresponding window is closed, the execution result is
displayed in the [Command] window.
When writing to a log file, the content of the write data is displayed in the window. (Refer to the
description for log command.)

(4) Displaying the command history
db88 stores up to the 32 most recent commands executed since startup in memory. (If any command
has been executed twice or more, it is registered only once.) The commands stored in memory can be
recalled by entering the [Ctrl] + [H] keys when the [Command] window is active.

Command history
displayed by entering [Ctrl] + [H]



CHAPTER 13  S1C88 FAMILY DEBUGGER

92 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

• Simply enter [Ctrl] + [H] to display a command history in popup list form. Double-click a command
to repeat, or select a command with the up or down arrow keys and press [Enter]. The command is
pasted into the prompt position. It can then be executed by pressing the [Enter] key. If the command
history has only one previous command registered, the command is pasted directly into the prompt
position without being displayed in a popup list.

• Enter [Ctrl] + [H] after entering any character to display a command history in one of the following
ways:
- If the command history has several commands registered that begin with that character (string),

those commands are listed. Then, when another character (string) is entered, one of the recently
executed commands among those listed is selected (highlighted) that includes the character
(string).

- If the command history contains only a single command registered that begins with the character
(string), the command is pasted directly into the prompt position.

- If the command history does not contain any commands registered that begin with the character
(string), no operation is performed.

For example, if the command history contains the three commands dd, sy, and s:
- Enter [Ctrl] + [H] after entering the character 's'. The commands s and sy are listed. Here, the

recently executed command s is displayed above the other commands and highlighted.
- If you follow by entering a 'y', command sy is highlighted.
- Enter [Ctrl] + [H] after entering the character 'd' to paste the command dd into the prompt

position.

Note: The [Command] window cannot be closed.



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 93
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

13.4.3 [Source] Window
The [Source] window displays the program code. The following three display modes are supported:

1. Disassemble display mode
After disassembling the loaded object, the debugger displays the addresses, codes, and mnemonics in
it. To open the [Source] window in this mode, select [Source | Disassemble] from the [View] menu. To
go to disassemble display mode while in another mode, select [Source | Disassemble] as described
above, or click the [Disassemble] button on the [Source] window, or run the u command. When the
[Source] window is in this display mode, the word "Disassemble" is displayed on the title bar. This
display mode can be selected regardless of the type of object file loaded.

 [Disassemble] button

2. Source display mode
In this mode, the debugger displays the corresponding source for an object that includes the current
program counter address. However, this mode can be selected only when an absolute object file (.abs)
in IEEE-695 format containing debug information for source display purpose is loaded. To open the
[Source] window in this mode, select [Source | Source] from the [View] menu. To go to source display
mode while in another mode, select [Source | Source] as described above, or click the [Source] button
on the [Source] window, or run the sc command. When an absolute object file (.abs) that contains C
source debug information is loaded while the [Source] window is open, the [Source] window auto-
matically enters this mode. In this display mode, the source file name is displayed on the title bar.

 [Source] button

3. Mix display mode
In this mode, the debugger displays the source and its disassembled contents (address, code, and
mnemonic) separately in the upper and lower rows. However, this mode can be selected only when
an absolute object file (.abs) in IEEE-695 format containing debug information for source display
purpose is loaded. To open the [Source] window in this mode, select [Source | Mix] from the [View]
menu. To go to mix display mode while in another mode, select [Source | Mix] as described above, or
click the [Mix] button on the [Source] window, or run the m command. When the [Source] window is
in this display mode, the word "Mix" is displayed on the title bar.

 [Mix] button

∗  Source display
The source of any object can be displayed only when an absolute object file in IEEE-695 format that
contains debug information for source display purpose is loaded.
Furthermore, because the source file is loaded after locating it from the object file's debug information
(relative path information for the source file), if the source file is removed or relocated (i.e., its relative
position from the object file has changed), the source is not displayed. In this case, the window in
source display mode is left blank, and in mix display mode, the window shows only the disassembled
contents.



CHAPTER 13  S1C88 FAMILY DEBUGGER

94 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Disassemble display mode

Described below are the functions of the [Source] window in disassemble display mode:

(1) Displaying program code
The window displays the physical/logical addresses, codes, and disassembled contents.
Program display location can be changed by the following method as well as scrolling.
• Enter an address in the [Address] text box. Or specify an address using the u command.

The program is displayed from the selected address.

•

Displays the beginning or end area of the memory.
Displays one page before or after in the current window size.
Displays the program from the current PC address.

Note: The S1C88 Family processors use variable length mnemonics, so that when the window is scrolled
upward, the disassembled contents shown on the window may differ from the actual code.

  ∗ Updating of display
When a program is loaded and executed (g, gr, s, n, se, or rst command), or the memory contents are
changed (de, df, or dm command), the display contents are updated. In this case the [Disassemble]
window updates its display contents so that the current PC address can always be displayed.

(2) Displaying the current PC
The current PC (program counter) address is indicated by a yellow arrow at the beginning of the line.

(3) Displaying PC breakpoints
The address line where a breakpoint is set is indicated by a red ●  mark at the beginning of the line.

(4) Coverage information
The coverage function places an ∗  at the beginning of the executed address line.

(5) Setting a break at the cursor position
Place the cursor at an address line where a breakpoint is to be set. Then click on the [Break]
button. A PC breakpoint will be set at that address. If the same is done at the address line where
a PC breakpoint has been set, the breakpoint will be cleared. This function allows setting of two
or more breakpoints.

If the [Go to Cursor] button is clicked, the program will execute beginning with the current PC
position, and program execution breaks at the line where the cursor is located.



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 95
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Source display mode

Described below are the functions of the [Source] window in source display mode:

(1) Displaying program code
The window displays the source of the loaded object. The source automatically displayed here
includes the address indicated by the current PC (program counter).
The comment lines, reserved words, and any text other than these two types are displayed in green,
blue, and black, respectively. The tab width is set to a length of four characters. The program display
position can be changed in the following manner, as well as by scrolling:

• Select a function name from the [Functions] pulldown list. The
source is displayed from the beginning of that function.

• Click the [Current PC] button. The source is displayed from the current PC address.

• To display another source file, click the [Source Files] button to bring up the dialog box
shown below and to select the desired source file from the list of sources.

  ∗ Updating of display
When a program is loaded and executed (g, gr, s, n, se, or rst command) and program execution is
halted midway, the display contents are updated. In this case, the source that includes the current PC
address is displayed in the window. If the corresponding source cannot be found, the [Select Files]
dialog box shown above appears, prompting for selection of the source to be displayed.



CHAPTER 13  S1C88 FAMILY DEBUGGER

96 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

(2) Displaying the current PC
The source lines that include the address indicated by the current PC (program counter) are marked
with a yellow arrow at the beginning of the line.

(3) Displaying PC breakpoints
The source lines that include any address that has been set as a breakpoint are marked with a red ●
mark at the beginning of the line.

(4) Setting a break at the cursor position
Place the cursor at the source line at which a breakpoint is to be set. Then click the [Break]
button. This sets the source line (the start address of the effective object code corresponding to
the source) as a breakpoint. (A breakpoint can also be set by double-clicking anywhere in the
line.) If the same action is performed at the source line in which a PC breakpoint has been set,
the breakpoint is cleared. Multiple breakpoints can be set, one breakpoint per source line.
However, no breakpoints can be set in source lines that do not have actual code. Note that due
to optimization by the C compiler, no code can be generated for some C statements that would
otherwise have code generated. For source lines at which breakpoints cannot be set, change to
mix display mode and check.

Click the [Go to Cursor] button. The program starts running from the current PC and breaks at
the line at which the cursor is positioned. In this case, the cursor must also be located at the
source lines that have the actual code. Clicking the [Go to Cursor] button has no effect unless
the source has the actual code.

(5) Searching for a character string
In source display mode, the [Source] window displays the following find buttons, permitting a search
for a character string.

Click the [Find] button to display the dialog box shown below, allowing you to specify a search
string.

Enter a search string in the [Find what] edit
box and click the [Find Next] button. The
string search proceeds in the downward
direction of the [Source] window (toward the
end of the program) from the current cursor
position. If an instance of the specified string
is found in the [Source] window, it is placed
in a selected state.

When the [Find Next] button is clicked again, the next instance of the specified string is sought
from that position forward. To search up (toward the beginning of the program), select the
[Up] button for [Direction]. To search for instances that completely match the specified string,
check the [Match whole word only] check box. Or to discriminate between uppercase and
lowercase letters when searching, check the [Match case] check box, before clicking the [Find
Next] button.

Select a string by dragging the mouse in the [Source] window and clicking the [Find Next]
button on the [Source] window. The string search proceeds in the downward direction of the
[Source] window (toward the end of the program) from that selected position. If an instance of
the string is found, the newly found string is placed in a selected state. When the [Find Next]
button is clicked again, the next instance of the string is sought from that position forward.
This search is case-insensitive, and instances that do not completely match the string will also
be found.

The [Find Previous] button functions in the same way as the [Find Next] button described
above, except that string searches proceed up (toward the beginning of the program).



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 97
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

(6) Registering symbols in the [Watch] window
Select a symbol name in the window by dragging with the mouse (displayed in reverse video
when selected) and click the [Watch] button. The symbol is registered to the symbol list of the
[Watch] window. Once registered this way, the value of that symbol can be verified in the
[Watch] window.

(7) Displaying variable values
Place the mouse cursor at a variable name in the displayed
source (need not to click), and the value of that variable
(or address for a pointer variable) is displayed. The
variable types (signed/unsigned) int, long, and short are
displayed in decimal notation, while addresses, structures,
and unions are displayed in hexadecimal notation. To
display the values of structure members, the member's
variable name needs to be selected with the mouse. For
array elements, variable names must be selected with the
mouse. Out-of-scope variables are not displayed.

Mix display mode

The mix display mode is functionally the same as disassemble display mode. The difference is that each
source line and the disassembled contents of the corresponding object code (physical/logical address,
object code, and mnemonic) are displayed one for one in the upper and lower rows. However, mix
display mode can only be selected when an absolute object file (.abs) in IEEE-695 format containing
debug information is loaded.

The displayed source lines cannot be operated on - for example, by setting a break. Various display
manipulating and break setting operations can only be performed on the disassembled display contents.
For [Source] window functions that can be used in mix display mode, refer to the description of disas-
semble display mode.

The source lines and the disassembled contents are displayed in black and gray, respectively.



CHAPTER 13  S1C88 FAMILY DEBUGGER

98 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

13.4.4 [Dump] Window

(1) Displaying data memory contents
The [Dump] window displays the memory dump results in hexadecimal numbers.
Data is displayed in byte units by default. It can be changed to another size using the pull-down box.
Memory display location can be changed by the following method as well as scrolling.
• Enter an address in the [Address] text box. Or specify an address using the dd command.

Data is displayed from the selected address.

•

Displays the beginning or end area of the memory.
Displays one page before or after in the current window size.

  ∗ Updating of display
The display contents of the [Dump] window are updated automatically when memory contents are
modified with a command (de, df, or dm command), or by direct modification. After executing the
program (g, gr, s, n, se, or rst command), the display contents are also updated. To refresh the [Dump]
window manually, execute the dd command or click the vertical scroll bar.
After program execution is completed, the value changed during execution is displayed in red.

(2) Direct modification of data memory contents
The [Dump] window allows direct modification of data memory contents. To modify data on the
[Dump] window, place the cursor at the front of the data to be modified or double click the data, and
then type a hexadecimal character (0–9, a–f). Data in the address will be modified with the entered
number and the cursor will move to the next address. This allows successive modification of a series
of addresses.

(3) Displaying decimal data
Hover the mouse cursor over data (need not to click) during [BYTE], [WORD], or [LONG] display,
and the data is displayed in decimal notation (signed int or unsigned int). For [BYTE], the data is also
displayed in bits.



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 99
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

13.4.5 [Register] Window
(1) Displaying register contents

The [Register] window displays the contents of
the S1C88 CPU registers, condition flags and the
memory pointed by the [HL], [SP], [IX], [IY],
[IX+L] and [IY+L] registers.

  ∗ Updating of display
The display is updated when registers are dumped (rd command), when register data is modified (rs
command), when the CPU is reset (rst command), or after program execution (g, gr, s, se, or n com-
mand) is completed. After program execution is completed, the value changed during execution is
displayed in red.

(2) Direct modification of register contents
The [Register] window allows direct modification of register contents. To modify data on the [Regis-
ter] window, select (highlight) the data to be modified and type a hexadecimal number (0–9, a–f), then
press [Enter]. The register data will be modified with the entered number.

13.4.6 [Symbol] Window
The [Symbol] window can display the symbol list,
if symbol information is loaded.
Symbols are listed in alphabetical order by default.
It can be changed to address order using the "sy /a"
command.

  ∗ The symbol file is automatically read when a target program file in the Motorola S2 format is loaded.
However, it must be the same name (extension is .sy) and be located in the same directory as the
target program file. Note that a symbol file is not read when an IEEE-695 program file is loaded.

13.4.7 [Watch] Window
The window shows the name and the current value of
the symbol registered using the w command or the
[Source] window [Watch] button. The value is
displayed in the format specified by the w command.
If the symbol is an array, structure, or union, a  +  icon
is displayed. Clicking this icon displays the array,
structure, or union members hierarchically.

The registered symbols can also be removed or have their display formats changed (e.g., from hexadeci-
mal to decimal) from a menu displayed by right-clicking the symbol. However, display formats can be
changed only for types such as int, char, long, and short, and cannot be changed for addresses. The
addresses are always displayed in hexadecimal notation.
Note that symbol display on this window is possible only when an absolute object file (.abs) in IEEE-695
format containing information on the specified symbol is loaded.

Note: If the -O1 option is specified when compiling, unnecessary symbols may be removed for code
optimization, and no symbol information may be generated. Such symbols cannot be registered in
the [Watch] window.

  ∗ Updating of display
The display is updated after program execution (g, gr, s, se, or n command) is completed (default).
This condition can be changed so that the display is updated while the program is running using the
dialog box that appears by selecting the [Run | Setting...] menu command (see Section 13.8.4, "Execut-
ing Program").



CHAPTER 13  S1C88 FAMILY DEBUGGER

100 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

13.4.8 [Trace] Window

After the trace function is turned on by the md command, the debugger samples trace information while
the target program is running. The trace data buffer has a capacity for 8192 instructions (overwritten from
the beginning if the capacity is exceeded), and its data can be displayed in the [Trace] window.
The following lists the trace contents:
• Instruction number
• Fetched code and disassembled contents
• Register and condition flag contents
• Memory access status (R/W, address, data)

This window also displays the trace data search results by the ts command.

  ∗ Updating of display
The contents of the [Trace] window are cleared when the target program is executed. After the
execution has finished, the [Trace] window displays the contents of the trace buffer.

13.4.9 [Coverage] Window
This window shows the coverage information
(executed address information) acquired by the ICE.
The displayed contents indicate the memory map in
16 bytes per line. The value at the beginning of each
line is a physical address (hexadecimal value).
Asterisks (∗ ) in the line indicate the executed ad-
dresses within a 16-byte area beginning with the
displayed address. The Count values are number of
executed addresses in the line.

The [Coverage] window does not update its displayed contents automatically even if a program execu-
tion is suspended. To update the display, select [Coverage] from the [Coverage] menu or execute the cv
command. To clear the coverage information acquired in the ICE and display contents in the [Coverage]
window, select [Coverage Clear] from the [Coverage] menu.



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 101
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

13.5 Menu
This section outlines the menu bar available with the debugger.
The menu bar has nine menus, each including frequently-used commands.

[File] Menu
[Load File...]
This button reads an object file in the IEEE-695 format or an internal ROM
HEX file in Motorola S2 format into the debugger. It performs the same
function when the lf command is executed.

[Load Parameter File...]
This button reads a parameter file into the debugger. It performs the same
function when the par command is executed.

[Exit]
This menu item quits the debugger. It performs the same function when the
q command is executed.

[Run] Menu
[Go]
This menu item executes the target program from the address indicated by
the current PC. The [F5] key can also be used. It performs the same function
when the g command is executed.

[Go to Cursor]
This menu item executes the target program from the address indicated by
the current PC to the cursor position in the [Source] window (the address
of that line). Before this menu item can be selected, the [Source] window
must be open and the address line where the program is to break must be
clicked.

[Go after Reset]
This button resets the CPU and then executes the target program after
fetching the reset vector. It performs the same function when the gr com-
mand is executed.

[Step]
This menu item executes one instruction step at the address indicated by
the current PC. The [F11] key can also be used. It performs the same
function when the s command is executed.

[Next]
This button executes one instruction step at the address indicated by the
current PC. If the instruction to be executed is cars, carl, call, or int, it is
assumed that a program section until control returns to the next address
constitutes one step and all steps of their subroutines are executed. The
[F10] key can also be used. It performs the same function when the n
command is executed.

[Step Exit]
This button executes the target program from the address indicated by the
current PC. If the program starts from inside a subroutine, the program
execution will stop when the sequence returns to the parent routine. This
button performs the same function when the se command is executed.

[Stop]
This menu item forcibly breaks execution of the target program. The [Esc]
key can also be used.

[Reset CPU]
This menu item resets the CPU. It performs the same function when the rst
command is executed.

The file names listed in this
menu are recently used files.
Selecting one opens the file.



CHAPTER 13  S1C88 FAMILY DEBUGGER

102 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

[Setting...]
This menu item displays a dialog box for setting options related to program
execution (execution monitor interval, interrupt mode during single step-
ping, watch update mode, and unit of execution time measurement).

[Command File...]
This menu item reads a command file and executes the debug commands
written in that file. It performs the same function when the com or cmw
command is executed.

[Break] Menu
[Breakpoint Setting]
This menu item sets or clears PC breakpoints and data break conditions using
a dialog box. It performs the same function as executing the bp, bpa, ba and
bd command.

[Break List]
This menu item displays the all break conditions that have been set. It
performs the same function as executing the bl command.

[Break All Clear]
This menu item clears all break conditions. It performs the same function as
executing the bac command.

[Setting...]
This menu item displays a dialog box for setting a software break enable area
and sequential break mode.

[Trace] Menu
[Trace]
This menu item activates the [Trace] window to displays the trace informa-
tion sampled in the ICE trace data buffer. It performs the same function as
executing the td command.

[Trace Search...]
This menu item searches trace information from the trace data buffer under
the condition specified using a dialog box. It performs the same function as
executing the ts command.

[Trace File...]
This menu item saves the specified range of the trace information displayed
in the [Trace] window to a file. It performs the same function as executing the
tf command.

[Setting...]
This menu item displays a dialog box for setting the trace mode.

[Coverage] Menu
[Coverage]
This menu item activates the [Coverage] window to displays the coverage
information acquired in the ICE. It performs the same function as executing
the cv command.

[Coverage Clear]
This menu item clears the coverage information acquired in the ICE and display
contents in the [Coverage] window. It performs the same function as executing
the cvc command.

[Setting...]
This menu item displays a dialog box for setting coverage options (coverage
area and coverage mode).



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 103
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

[View] Menu
[Command]
This menu item activates the [Command] window.

[Source - Disassemble]
This menu item opens or activates the [Source] window and
displays the program in the disassemble display mode.

[Source - Source]
This menu item opens or activates the [Source] window and displays the
program in the source display mode.

[Source - Mix]
This menu item opens or activates the [Source] window and displays the
program in the mix display mode.

[Dump]
This menu item opens or activates the [Dump] window and displays the
memory contents from the memory start address.

[Register]
This menu item opens or activates the [Register] window and displays the
current values of the registers.

[Trace]
This menu item opens or activates the [Trace] window and displays the trace
data sampled in the ICE trace data buffer.

[Coverage]
This menu item opens or activates the [Coverage] window and displays the
coverage information acquired in the ICE.

[Symbol]
This menu item opens or activates the [Symbol] window and displays the
symbol list if a symbol information has been loaded.

[Watch]
This menu item opens or activates the [Watch] window and displays the
contents of the symbol registered.

[Toolbar]
This menu item shows or hides the toolbar.

[Status Bar]
This menu item shows or hides the status bar.

[Option] Menu
[Log...]
This menu item starts or stops logging using a dialog box. It performs the
same function as executing the log command.

[Record...]
This menu item starts or stops recording of a command execution using a
dialog box. It performs the same function as executing the rec command.

[Setting...]
This menu item displays a dialog box for setting system options (emulation
clock, firmware clock, self-rewrite check function, and wait time for the cmw
command).



CHAPTER 13  S1C88 FAMILY DEBUGGER

104 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

[Window] Menu
[Cascade]
This menu item cascades the opened windows.

[Tile]
This menu item tiles the opened windows.

This menu shows the currently opened window names. Selecting one acti-
vates the window.

[Help] Menu
[About DB88...]
This menu item displays an About dialog box for the debugger.



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 105
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

13.6 Tool Bar
This section outlines the tool bar available with the debugger.
The tool bar has 12 buttons, each one assigned to a frequently used command.

The specified function is executed when you click on the corresponding button.

[Load File] button
This button reads an absolute object file in IEEE-695 format, a program file in Motorola S2 format,
or a function option file into the debugger. It performs the same function when the lf command is
executed.

[Load Parameter] button
This button reads a parameter file into the debugger. It performs the same function when the par
command is executed.

[Key Break] button
This button forcibly breaks execution of the target program. This function can be used to cause the
program to break when the program has fallen into an endless loop.

[Break] button
Use this button to set and clear a breakpoint at the address where the cursor is located in the
[Source] window. This function is valid only when the [Source] window is open.

[Break All Clear] button
This button clears all break conditions. It performs the same function as executing the bac com-
mand.

[Go] button
This button executes the target program from the address indicated by the current PC. It performs
the same function when the g command is executed.

[Go to Cursor] button
This button executes the target program from the address indicated by the current PC to the cursor
position in the [Source] window (the address of that line).
Before this button can be selected, the [Source] window must be open and the address line where
the program is to break must be clicked.

[Go after Reset] button
This button resets the CPU and then executes the target program after fetching the reset vector. It
performs the same function when the gr command is executed.

[Step] button
This button executes one instruction step at the address indicated by the current PC. It performs
the same function when the s command is executed.

[Next] button
This button executes one instruction step at the address indicated by the current PC. If the instruc-
tion to be executed is cars, carl, call, or int, it is assumed that a program section until control
returns to the next address constitutes one step and all steps of their subroutines are executed.
This button performs the same function when the n command is executed.

[Step Exit] button
This button executes the target program from the address indicated by the current PC. If the
program starts from inside a subroutine, the program execution will stop when the sequence
returns to the parent routine. This button performs the same function when the se command is
executed.

[Reset CPU] button
This button resets the CPU. It performs the same function when the rst command is executed.



CHAPTER 13  S1C88 FAMILY DEBUGGER

106 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

13.7 Method for Executing Commands
All debug functions can be performed by executing debug commands. This section describes how to
execute these commands.

13.7.1 Entering Commands from Keyboard
Select the [Command] window (by clicking somewhere on the [Command] window). When the prompt
">" appears on the last line in this window and a cursor is blinking behind it, the system is ready to
accept a command from the keyboard. Input a debug command at the prompt position. The commands
are not case-sensitive; they can be input in either uppercase or lowercase.

General command input format

>command   [ parameter [ parameter ...  parameter ] ] ↵

• A space is required between a command and parameter.
• Space is required between parameters.

Use the arrow keys, [Back Space] key, or [Delete] key to correct erroneous input.
When you press the [Enter] key after entering a command, the system executes that command. (If the
command entered is accompanied by guidance, the command is executed when the necessary data is
input according to the displayed guidance.)
Input example:
>g↵ (Only a command is input.)
>lf test.abs↵ (A command and parameter are input.)

Command input accompanied by guidance
For commands that cannot be executed unless a parameter or the commands that modify the existing
data are specified, a guidance mode is entered when only a command is input. In this mode, the
system brings up a guidance field, so input a parameter there.
Input example:
>cmw↵
File name   ? :test.cmd↵   ← Input data according to the guidance (underlined part).
           :

   • Commands requiring parameter input as a precondition
The cmw command shown in the above example reads a program file into the debugger. Commands
like this that require an entered parameter as a precondition are not executed until the parameter is
input and the [Enter] key pressed. If a command has multiple parameters to be input, the system
brings up the next guidance, so be sure to input all necessary parameters sequentially. If the [Enter]
key is pressed without entering a parameter in some guidance session of a command, the system
assumes the command is canceled and does not execute it.

   • Commands that replace existing data after confirmation
The commands that rewrite memory or register contents one by one provide the option of skipping
guidance (do not modify the contents), returning to the immediately preceding guidance, or terminat-
ing during the input session.
[Enter] key Skips input.
[^] key Returns to the immediately preceding guidance.
[q] key Terminates the input session.

Input example:
>de↵ ←  Command to modify data memory.
Data enter address ? :00ff00↵ ←  Inputs the start address.
00FF00 A:1↵ ←  Modifies address 00ff00H to 1.
00FF01 A:^↵ ←  Returns to the immediately preceding address.
00FF00 1:0↵ ←  Inputs address 00ff00H back again.
00FF01 A:↵
00FF02 A:↵
00FF01 A:q↵ ←  Terminates the input session.
>



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 107
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Numeric data format of parameter
For numeric values to be accepted as a parameter, they must be input in hexadecimal numbers for
almost all commands. However, some parameters accept decimal or binary numbers.
The following characters are valid for specifying numeric data:
Hexadecimal: 0–9, a–f, A–F, ∗
Decimal: 0–9
Binary: 0, 1, ∗
("∗ " is used to mask bits when specifying a data pattern.)

Specification with a symbol
For address specifications, the symbols can also be used when an IEEE-695 absolute object file (.abs)
or a symbol file (.sy) is loaded.
Input example:
>u Main↵ ←  Displays the program from the label Main

   ∗ The symbol file (.sy) is automatically loaded simultaneously with the target program in the Motorola
S2 format. However, it must be the same name (extension is .sy) and be located in the same directory
as the target program file. When an IEEE-695 program file is specified, the debugger does not load a
symbol file.

Notes:  • If the specified symbol is not found, db88 handles the specified string as a hexadecimal (e.g.,
ABC). However, if the string includes other than the specified hexadecimal characters, an error is
assumed.

 • If the -O1 option is specified when compiling the C source, some symbols written in the source
may not actually be used for reasons of code optimization. In such cases, debug information for
that symbol is not output to the .abs file, whether or not the -g option is specified.
Example: int x,y,xy;

x = GLOBAL_X * 100;

y = GLOBAL_Y * 100;

xy = x * y;

In this example, because variable xy become nonexistent due to optimization, the contents of xy
cannot be referenced when debugging.
If after evaluating the executable file created by specifying the -O0 option (optimization OFF), it
is recreated by specifying the -O1 option (optimization ON), program behavior cannot be guaran-
teed. Be sure to reverify the executable file whenever it is recreated in this way.

Successive execution using the [Enter] key
The commands listed below can be executed successively by using only the [Enter] key after execut-
ing once. Successive execution here means repeating the previous operation or continuous display of
the previous contents.
Execution commands: g, s, n, se, com
Display commands: u, dd, td

The successive execution function is terminated when some other command is executed.



CHAPTER 13  S1C88 FAMILY DEBUGGER

108 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

13.7.2 Executing from Menu or Tool Bar
The menu and tool bar are assigned frequently-used commands as described in Sections 13.5 and 13.6. A
command can be executed simply by selecting desired menu command or clicking on the tool bar button.
Table 13.7.2.1 lists the commands assigned to the menu and tool bar.

Table 13.7.2.1  Commands that can be specified from menu or tool bar
Command

lf

par

g

–

gr

s

n

se

com

cmw

rst

bp, bpa, bpr, bc, bpc

bas

ba, bar

bd, bdc

bl

bac

td

ts

tf

cv

cvc

u

sc

m

dd

rd

sy

w

log

rec

Function

Load program file

Load parameter file

Execute program successively

Execute program to cursor position successively

Reset CPU and execute program successively

Single step execution

Step execution with skip subroutine

Exit from subroutine

Load and execute command file

Load and execute command file with wait

Reset CPU

Set/clear software breakpoint

Set sequential break mode

Set/clear hardware breakpoint

Set/clear data break conditions

Break list

Clear all break conditions

Display trace information

Search trace information

Save trace information to file

Display coverage information

Clear coverage information

Disassemble display

Source display

Mix display

Dump memory

Display register values

Display symbol list

Display symbol information

Register symbols

Turn log output on or off

Record commands to a command file

Menu

[File | Load File...]

[File | Load Parameter File...]

[Run | Go]

[Run | Go to Cursor]

[Run | Go after Reset]

[Run | Step]

[Run | Next]

[Run | Step Exit]

[Run | Command File...]

[Run | Command File...]

[Run | Reset CPU]

[Break | Breakpoint Setting]

[Break | Setting]

[Break | Breakpoint Setting]

[Break | Breakpoint Setting]

[Break | Break List]

[Break | Break All Clear]

[View | Trace], [Trace | Trace]

[Trace | Trace Search...]

[Trace | Trace File...]

[Coverage | Coverage]

[Coverage | Coverage Clear]

[View | Source | Disassemble]

[View | Source | Source]

[View | Source | Mix]

[View | Dump]

[View | Register]

[View | Symbol]

[View | Watch]

–

[Option | Log...]

[Option | Record...]

Button

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

∗  Located in the [Source] window

*

*

*

*



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 109
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

13.7.3 Executing from a Command File
Another method for executing commands is to use a command file that contains descriptions of a series
of debug commands. By reading a command file into the debugger the commands written in it can be
executed.

Creating a command file
Create a command file as a text file using an editor.
Although there are no specific restrictions on the extension of a file name, Seiko Epson recommends
using ".cmd".
Command files can also be created using the rec command. The rec command creates a command file
and saves the executed commands to the file.

Example of a command file
The example below shows a command group that loads a program file, sets a breakpoint and then
executes the program.
Example: File name = start.cmd

lf test.abs

bp 0004d7

g

A command file to write the commands that come with a guidance mode can be executed. In this case,
be sure to break the line for each guidance input item as a command is written.

Reading in and executing a command file
The debugger has the com and cmw commands available that can be used to execute a command file.
The com command reads in a specified file and executes the commands in that file sequentially in the
order they are written.
The cmw command performs the same function as the com command except that each command is
executed at intervals specified by the md command (1 to 256 seconds).
Example: com start.cmd

cmw test.cmd

The commands written in the command file are displayed in the [Command] window.

Restrictions
Another command file can be read from within a command file. However, nesting of these command
files is limited to a maximum of five levels. An error is assumed and the subsequent execution is
halted when the com or cmw command at the sixth level is encountered.



CHAPTER 13  S1C88 FAMILY DEBUGGER

110 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

13.7.4 Log File
The executed commands and the execution results can be saved to a file in text format that is called a "log
file". This file allows verification of the debug procedures and contents.
The contents displayed in the [Command] window are saved to this file.

Command example

>log tst.log

After the debugger is set to the log mode by the log command (after it starts outputting to a log file),
the log command toggles (output turned on in log mode ↔ output turned off in normal mode).
Therefore, you can output only the portions needed can be output to the log file.

Display of [Command] window in log mode
The contents displayed in the [Command] window during log mode differ from those appearing in
normal mode.

(1) When executing a command when each window is open
(When the window that displays the command execution result is opened)
Normal mode: The contents of the relevant display window are updated. The execution results are

not displayed in the [Command] window.
Log mode: The same contents as those displayed in the relevant window are also displayed in

the [Command] window. However, changes made to the relevant window by
scrolling or opening it are not reflected in the [Command] window.

(2) When executing a command while each window is closed
When the relevant display window is closed, the execution results are always displayed in the
[Command] window regardless of whether operation is in log mode or normal mode.



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 111
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

13.8 Debug Functions
This section outlines the debug features of the debugger, classified by function.

13.8.1 Loading Files
Table 13.8.1.1 lists the files read by the debugger and the load commands.

Table 13.8.1.1  Files and load commands
File

1. Parameter file

2. IEEE-695 absolute object file

3. Motorola S2 program file

4. Function option file

5. Symbol file
6. Command file

7. FPGA data file

Type

.par

.abs

.psa

.fsa

.sy
.cmd
.mot
.mcs

Generation tool

–

lc88

fil88xxx

fog88xxx or winfog

sy88, sym88
–
–
–

Command

par

lf

lf

lf

–
com/cmw

xfwr ;S
xfwr ;H

Button

–
–
–
–

Menu

[File | Load Parameter File...]

[File | Load File...]

[File | Load File...]

[File | Load File...]

–
[Run | Command File...]

–
–

Loading a parameter file resets the debugger. The memory mapping information set by the parameter file
can be displayed using the ma command. Refer to Chapter 12, "88xxx.par File", for more information on
the parameter file.

The lf command loads an IEEE-695 absolute object file (.abs), a Motorola S2 program file (.psa) or a
function option HEX file (.fsa). The debugger distinguishes these files with the specified extension. It is
necessary to load an IEEE-695 absolute object file that contains debugging information to perform source
level debugging.

The symbol file is required to specify addresses using the symbols defined in the source when debugging
a Motorola S2 program file. Debugging can be done even if this file is not loaded. The symbol file is
loaded simultaneously with the program file by the lf command. However, it must be the same name
(extension is .sy) and be located in the same directory as the program file. When the symbol file is loaded,
the contents of the file can be displayed in the [Symbol] window or the [Command] window using the sy
command.

When an IEEE-695 absolute object file that contains symbol information is loaded, the debugger does not
read the symbol file as the object file allows symbolic debugging.

Refer to Section 13.7.3, for the command file.

A FPGA data file is used to program the FPGA on the peripheral board (S5U1C88000P) for an S1C88
Family model. When this data is written to the FPGA once, rewriting is not necessary until the develop-
ment for the model has been completed.



CHAPTER 13  S1C88 FAMILY DEBUGGER

112 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

13.8.2 Source Display and Symbolic Debugging Function
The debugger allows program debugging while displaying the C source statements. Address specifica-
tion using a symbol name is also possible.

Displaying program code
The [Source] window displays the program in the specified display mode. The display mode can be
selected from among the three modes: Disassemble display mode, Source display mode and Mix
display mode.

Table 13.8.2.1  Commands/menu items/tool bar buttons to switch display mode
Function

Disassemble display mode

Source display mode

Mix display mode

Command

u

sc

m

ButtonMenu

[View | Source | Disassemble]

[View | Source | Source]

[View | Source | Mix]

(1) Disassemble display mode

In this mode, the debugger displays the program codes after disassembling into mnemonics.

(2) Source display mode

In this mode, the source that contains the code at the current PC address is displayed. This mode is
available only when an IEEE-695 absolute object file that contains source debugging information has
been loaded.



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 113
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

(3) Mix display mode

This mode displays both sources and the disassembled codes of the corresponding object codes. This
mode is available only when an IEEE-695 absolute object file that contains source debugging informa-
tion has been loaded.

Refer to Section 13.4.3, "[Source] Window" for display contents and operation on the window.

Symbol reference
When debugging a program after loading an object file (.abs) in the IEEE-695 format, the symbols
defined in the source file can be used to specify an address. This feature can be used when entering a
command having <address> in its parameter from the [Command] window or a dialog box. However,
the object file loaded must contain symbol information.

To perform symbolic debugging after loading a program file (.psa) in the Motorola S2 format, it is
necessary to prepare a symbol file with the same name as the program file in the same directory. The
symbol file is loaded simultaneously with the program file.

The symbols used in the program and the defined addresses can be displayed in the [Command]
window or the [Symbol] window.

Table 13.8.2.2  Symbol list display command/menu item

Function

Displaying symbol list

Command

sy

Button

–

Menu

[View | Symbol]



CHAPTER 13  S1C88 FAMILY DEBUGGER

114 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

13.8.3 Displaying/Modifying Memory and Register Data
The debugger has functions to operate on the memory and registers. Available memory area is set to the
debugger according to the map information that is given in a parameter file.

Memory operation
The following operations can be performed on the memory areas (ROM, RAM, display memory, I/O
memory):

Table 13.8.3.1  Memory operation commands/menu item
Function

Dumping memory data

Entering/modifying memory data

Rewriting specified area

Coping specified area

Searching data

Command

dd

de

df

dm

ds

Button

–

–

–

–

–

Menu

[View | Dump]

–

–

–

–

(1) Dumping memory
The memory contents are displayed in a specified size (Byte, Word, Long, Float, Double) hexadecimal
dump format. If the [Dump] window is opened, the contents of the [Dump] window are updated; if
not, the contents of the data memory are displayed in the [Command] window.

(2) Entering/modifying data
Data at a specified address is rewritten by entering hexadecimal data. Data can be directly modified
on the [Dump] window.

(3) Rewriting specified area
An entire specified area is rewritten with specified data.

(4) Copying specified area
The content of a specified area is copied to another area.

(5) Searching data
An specified data can be searched within a specified area. The [Command] window displays the
results up to 256 found data. The [Dump] window shows found data within the current displayed
area in green.

See Section 13.4.4, "[Dump] Window", for display contents and operation on the [Dump] window.



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 115
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Operating registers
The following operations can be performed on registers:

Table 13.8.3.2  Register operation commands/menu item

Function

Displaying register values

Modifying register value

Command

rd

rs

Button

–

–

Menu

[View | Register]

–

(1) Displaying registers
Register contents and the contents of the memory specified in register indirect addressing can be
displayed in the [Register] or [Command] window.
Registers: PC, SP, IX, IY, A, B, H, L, BR, CB, NB, EP, XP, YP, SC (I1, I0, U, D, N, V, C, Z)

and CC (F3, F2, F1, F0)
Memory: [HL], [SP], [IX], [IY], [IX+L], [IY+L]

(2) Modifying register values
The contents of the above registers can be set to any desired value.
The register values can be directly modified on the [Register] window.

See Section 13.4.5, "[Register] Window", for display contents and operation on the [Register] window.



CHAPTER 13  S1C88 FAMILY DEBUGGER

116 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

13.8.4 Executing Program
The debugger can execute the target program successively or execute instructions one step at a time
(single-stepping).

Successive execution

(1) Types of successive execution
There are three types of successive execution available:
• Successive execution from the current PC
• Successive execution from the current PC to the cursor position in the [Source] window
• Successive execution after resetting the CPU

Table 13.8.4.1  Commands/menu items/tool bar buttons for successive execution
Function

Successive execution from current PC

Successive execution from current PC
to cursor position

Successive execution after resetting CPU

Command

g

–

gr

ButtonMenu

[Run | Go]

[Run | Go to Cursor]

[Run | Go after Reset]

(2) Stopping successive execution
Temporary break addresses can be specified in the [Source] window.
If the cursor is placed on an address line in the [Source] window and the [Go to Cursor] button clicked, the
program starts executing from the current PC address and breaks immediately before executing the
instruction at the address the cursor is placed.
Note that when displaying C source in source display mode, the cursor must be located at one of the
source lines expanded into effective source code. If the cursor is located at any source line, such as a
comment line or declaration statement that is not compiled into object code, the program is not executed,
even if you click the [Go to Cursor] button. (Refer to the description of the PC break function.)
Except being stopped by this temporary break, the program continues execution until it is stopped by one
of the following causes:
• Break conditions set by a break set up command are met.
• A break signal is input to the ICE BRKIN pin.
• The [Key Break] button is clicked, the [Run | Stop] menu command is selected or the [Esc] key is

pressed.
• A program execution error is detected.

 [Key Break] button ∗  When the program does not stop, use this button to forcibly stop it.

Note: If program execution is halted in C source display mode, the debugger displays the source for an
object that includes the halted address. However, if no sources exist at the halted address, a
[Source Files] dialog box is displayed, prompting for selection of a source file.

(3) Display during successive executions
The display is updated as below due to a successive execution.
When program execution is halted, the [Command] window displays the number of executed cycles
and execution time.
Example: >g

BUS CYCLE : 428649   ... Number of bus cycles
Mode L    : 001min 002s  543ms 468us   ... Execution time (1 µs units by default)

The [Source], [Register] and [Dump] windows do not change their display contents while the program
is executing and updates after the program execution is halted. If the [Register] window is closed, its
contents are displayed in the [Command] window. The [Trace] window clears its display contents
when the program execution is started and re-displays the latest trace data after the program execu-
tion is halted. The [Watch] window is updated after the program execution is halted by default. It can
be changed so that the window is updated in specified cycles using the dialog that appears by using
the [Run | Setting...] menu command.
The [Symbol ] and [Coverage] windows do not change their display contents due to successive
executions.



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 117
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Single-stepping

(1) Types of single-stepping
There are three types of single-stepping available:

• Single-stepping C statements or instructions (STEP)
In C source display mode, the program is single-stepped, one C source line at a time. In disas-
semble display or mix display mode, the program is single-stepped, one instruction at a time.

• Single-stepping other than functions or subroutines (NEXT)
In C source display mode, function calls in the program currently being executed are skipped by
handling each function call from entry until the return simply as a single step. Other program
parts are single-stepped in the same way as for STEP.
In disassemble display or mix display mode, the cars, carl, call, and int instructions till returned to
the next step by a return instruction are executed as a single step. Other instructions are singled-
stepped in the same way as for STEP.

• Terminating at a function or subroutine (STEP EXIT)
In C source display mode, the program is successively executed from the current function until it
returns to the higher-level function, and is halted after returning. Do not run this single-stepping
mode in the main function.
In disassemble display or mix display mode, the program is successively executed from the
current subroutine until it is returned to the higher-level subroutine by a return instruction, and is
halted after returning. At the highest level, the program is executed in the same way as when run
by the g command. If a lower-level subroutine is called, and returned from it, the program execu-
tion is not halted.

In either case, the program starts executing from the current PC.

Table 13.8.4.2  Commands/menu items/tool bar buttons for single-stepping

Function

Stepping

Stepping except functions/subroutines

Exit from function/subroutine

Command

s

n

se

ButtonMenu

[Run | Step]

[Run | Next]

[Run | Step Exit]

When executing s or n by command input, the number of steps to be executed can be specified, up to
65,535 steps. When using menu commands or tool bar buttons, the program is executed one step at a
time.
In the following cases, single-stepping is terminated before a specified number of steps is executed:
• The [Key Break] button is clicked, the [Run | Stop] menu command is selected or the [Esc] key is

pressed.
• A program execution error is detected.

Single-stepping is not suspended by breaks set by the user such as a PC break or data break.

 [Key Break] button ∗  When the program does not stop, use this button to forcibly stop it.

(2) Display during single-stepping
In the initial debugger settings, the display is updated as follows:
When the [Source], [Register], [Dump], [Trace], or [Watch] window is open, the display contents are
updated after the last step has been executed. If the [Register] window is closed, its contents are
displayed in the [Command] window.
The [Symbol ] and [Coverage] windows do not change their display contents due to single-stepping.



CHAPTER 13  S1C88 FAMILY DEBUGGER

118 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

In the initial settings, the debugger is set to the interrupt disable mode. The interrupt enable mode can
also be set in the dialog box displayed by selecting [Setting...] from the [Run] menu.

(4) Precautions to be observed when single-stepping C sources
When single-stepping a program in C source display mode, the program is basically executed one
source line at a time. However, source lines that do not have the corresponding object code, or lines
without user sources (e.g., functions automatically generated by inline assembler or compiler) are
skipped until the next line is reached that has effective object code. Accordingly, the number of steps
executed varies depending on how C statements are written.
Example: for(x=0; x<10; x++) a[x]=x; ... Executed in one step.

for(x=0; x<10; x++)

a[x]=x; ... 20 steps need to be executed before exiting the for statement.

Execution options
Four options are available for program execution. To select one of these options, use the dialog box
that appears when [Setting...] is selected from the [Run] menu.

(3) Interrupts during single-stepping
The CPU is placed in a standby mode when the halt or slp instruction is executed. An interrupt is
required to cancel this mode.
The debugger has a mode to enable or disable an external interrupt for use in single-step operation.

Table 13.8.4.3  External interrupt modes

External interrupt

halt and slp instructions

Enable mode

Interrupt is processed.

Executed as the halt instruction.

Processing is continued by an

external interrupt or clicking on

the [Key Break] button.

Disable mode

Interrupt is not processed.

The halt and slp instructions are

replaced with a nop instruction as

the instruction is executed.

Run Monitor Interval
Set the display update interval in 100 ms increments when
selecting "short break mode" as the [Watch] window update
mode. This interval can be set from 1 (= 100 ms, default) to
10 (= 1 second).

Single Step Mode
Choose whether to enable or disable interrupts while
single-stepping a program. (See Table 13.8.4.3.) To enable
interrupts, select (check) the check box.

Watch/Local repaint
Set the [Watch] window's update mode. The default real-
time mode ([with Real Time] selected) is provided for
running programs in real time. In this mode, the [Watch]
window is updated after a break in program execution. In
short break mode (with [Short Break] selected), the contents
displayed in the window are updated at intervals set by
[Run Monitor Interval]. In this mode, however, program
execution is temporarily suspended so that display can be
updated. Therefore, programs cannot be run in real time.

Run-time measurement base
The ICE contains a 31-bit execution cycle counter, allowing you to measure the time and number of
bus cycles in which a program was run continuously. The run time here can be measured in units of 1
µs (default) or 62.5 ns as selected with this option. Bus cycles can be counted up to 2,147,483,647 cycles
(with ±0 error).



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 119
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

The maximum times that can be measured are shown below.
When measured in 1 µs units: About 35 minutes, 50 seconds (with ±1 µs error)
When measured in 62.5 ns units: About 2 minutes, 15 seconds (with ±62.5 ns error)

The measurement result is displayed in the [Command] window after a break in continuous program
execution, as shown below.
Example: >g

BUS CYCLE : 428649 ... Number of bus cycles
Mode L    : 001min 002s  543ms 468us ... Execution time (in 1 µs units, default)

>g

BUS CYCLE : 35095 ... Number of bus cycles
Mode L    : 003s  094ms 152us 0.0ns ... Execution time (in 62.5 ns units)

If the counter's maximum count is exceeded, the debugger indicates "Count overflow" for the number
of bus cycles and "Time over" for the execution time.
The counter is reset when successive program execution starts.
No measurements are made when single-stepping a program.

Resetting the CPU

Table 13.8.4.4  Commands/menu items/tool bar buttons for resetting CPU

Function

Reset CPU

Successive execution after resetting CPU

Command

rst

gr

ButtonMenu

[Run | Reset CPU]

[Run | Go after Reset]

The CPU is reset when the gr command is executed, or by executing the rst command.
The following shows the initial settings when the CPU is reset.

(1) Internal registers of the CPU and memory
The CPU internal registers are initialized as follows during initial reset:

PC: Reset exception processing loads the reset vector stored in bank 0, 000000H–000001H
into the PC.

SP, IX, IY: 0xAAAA
 B, A, H, L, BR: 0xAA
CB, NB: 0x01
EP, XP, YP: 0x00
SC: 0b11000000
CC: 0b1111

The internal RAM and external RAM are not initialized at initial reset.
The respectively stipulated initializations are done for internal peripheral circuits.

(2) Redisplaying the [Source] and [Register] windows
Because the PC is reset, the [Source] window is redisplayed beginning with that address.
The [Register] window is redisplayed with the settings above.



CHAPTER 13  S1C88 FAMILY DEBUGGER

120 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

13.8.5 Break Functions
The target program is made to stop executing by one of the following causes:
• Break conditions set by a break set up command are met. (for successive execution only)
• A break signal is input to the ICE BRKIN pin. (for successive execution only)
• The [Key Break] button is clicked, the [Run | Stop] menu command is selected or the [Esc] key is pressed.
• A program execution error is detected.

Break by command
The debugger has three types of break functions that allow the break conditions to be set by a com-
mand. When the set conditions in one of these break functions are met, the program under execution
is made to break.

(1) Software breakpoints and a software break area
When the PC matches a set address, a break occurs. The program fetches the instruction from that
address and breaks before executing that instruction. Software breakpoints can be set at up to 64
separate addresses and in one area with a specified address range.
However, these breakpoints are effective in only a 1 MB active break area. If any address outside this
area is specified, no breaks can occur at that address, although the address is registered as an invalid
breakpoint. The 8 MB of code space is divided into eight 1 MB active break areas, one of which can be
selected from the [Break Common Setting] dialog box that is displayed by the [Break | Setting...]
menu command. At debugger startup, a 1 MB area (from 0x0 to 0x0fffff) is automatically selected as
the active break area.

To select an active break area, enter your desired value in
the [An Active Area of Software Breaks] text box. A value
from 0 to 7 can be entered.
0: 0x000000 to 0x0fffff
1: 0x100000 to 0x1fffff
2: 0x200000 to 0x2fffff

        :
7: 0x700000 to 0x7fffff

Table 13.8.5.1  Commands/menu items/tool bar button to set breakpoints
Function

Set software breakpoints

Set software break area

Clear software breakpoints

Command

bp

bpa

bpr
bc (bpc)

Button

–

Menu

[Break | Breakpoint Setting]

[Break | Breakpoint Setting]

[Break | Breakpoint Setting]



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 121
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Selecting [Breakpoint Setting] from the [Break] menu displays the [Break setting] dialog box. The
[Software Break Setting (1MB Area)] tab of this dialog box shows a list of PC breakpoints that have
been set.

To set a software breakpoint, select the [Point Break] radio button and enter an address in the [Loca-
tion at] text box. Then click the [Add] button to register the address you entered as a valid breakpoint.
Up to 64 breakpoints can be added to the list. Exceeding this limit prompts a warning. In such case,
delete unnecessary breakpoints before adding a new one.
To set a software break area, select the [Range Break] radio button, then enter the start and end
addresses of that area in the [Start Location] and [End Location to] text boxes, respectively. Then click
the [Add] button to register the area you entered as a valid software break area. All addresses in that
area are assumed to have breakpoints set. The start address of the area is shown in the Address
column of the list, with area size (in bytes) shown in the AreaNum column. Setting a new area with a
software break area already registered prompts a warning. In such case, delete the registered software
break area before setting a new one.
Any address including those in a software break area can be registered only once as a breakpoint.
Neither addresses nor areas (that contain a breakpoint address) can be set twice or more as a
breakpoint or break area.
To disable a valid breakpoint (whose address is preceded by an asterisk (∗ ) in the list), select that
address from the list (by clicking the ON part), then click the [Disable] button. The asterisk disappears
and the breakpoint is disabled.
To enable an invalid breakpoint, select the address of that breakpoint from the list, then click the
[Enable] button. The address is then marked with an asterisk (∗ ) to indicate that a breakpoint is
enabled at that address.
To clear a breakpoint, select the address of that breakpoint from the list, then click the [Delete] button.
The [Clear All] button allows you to clear all breakpoints that have been set, including those in a
software break area.

The addresses that are set as PC breakpoints are marked with a ●  as they are displayed in the [Source]
window.
Example in source display mode

Example in disassemble display mode



CHAPTER 13  S1C88 FAMILY DEBUGGER

122 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Using the [Break] button easily allows the setting and canceling of breakpoints.

 [Break] button

Click on the line in the [Source] window at where the program break is desired (after moving the
cursor to that position) and then click on the [Break] button. A ●  mark will be placed at the beginning
of the line indicating that a breakpoint has been set there, and the address is registered in the
breakpoint list. Clicking on the line that begins with a ●  and then the [Break] button cancels the
breakpoint you have set, in which case the address is deleted from the breakpoint list.

Setting breakpoints during source display mode
In the [Source] window in source display mode, there are lines at which breakpoints can be set and
those at which breakpoints cannot be set. No breakpoints can be set in source lines that do not have
actual code generated.
Example: 1 void func(void) // NG

2 { // OK
3 int a; // NG
4 int x=0; // OK
5 a = x; // OK
6 } // OK

Line 1 is a function declaration that does not have actual code (same as a label declaration in the
assembler). A breakpoint cannot be set here.
Line 3 is a variable declaration that does not have actual code. A breakpoint cannot be set here.
Line 4 is a variable declaration that has initialization code generated for it. A breakpoint can be set
here.
Line 2 allows a breakpoint to be set. However, the breakpoint is set in line 4 (instruction at the begin-
ning of that function).
Line 5 is an effective line that has actual code. A breakpoint can be set here.
Line 6 is a function termination (equivalent to mnemonic ret). A breakpoint can be set here.

However, if optimized during compiling, some lines become unusable in terms of setting a
breakpoint. In the above example, since nothing is derived by executing each line (rewriting of only
local variables involved, and that of global variables nonexistent), the actual code may be lost by
optimization.

The same applies for lines whose execution can be halted by the [Go to Cursor] button.



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 123
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

(2) Sequential break function
The sequential break function causes a break to occur after the target program executes specified
addresses following a specific sequence.
Three channels (BA1 to BA3) are provided for use in sequential breaks. On address can be set indi-
vidually for each channel. For BA3, an execution count or number of times the program is to be run
can be set, in addition to a break address.
The break addresses set here are effective in the entire code space, regardless of where active break
area is selected.

One of the following four sequential break modes can be set depending on the channels used.

Independent break mode
In this mode, each channel acts as an independent breakpoint. When a program fetches the
instruction at the address set on the channel, a break occurs before the program can execute that
instruction. The run count specified for BA3 is not effective.

BA3 count mode
In this mode, program execution is made to break when the program has fetched the instruction at
the address set on BA3 the specified number of times. Settings on BA1 and BA2 are not effective.

BA2–3 sequential mode
In this mode, program execution is made to break when the program has fetched the instruction at
the address set on BA3 the specified number of times after executing the instruction more than
once at the address set on BA2. Setting on BA1 is not effective.

BA1–3 sequential mode
In this mode, program execution is made to break when the program has fetched the instruction at
the address set on BA3 the specified number of times after executing the instructions more than
once in that order at the addresses set on BA1 and BA2.

Table 13.8.5.2  Sequential break setting commands
Function

Set sequential break mode

Set hardware breakpoints

Clear hardware breakpoints

Command

bas

ba

bar

Button

–

–

–

Menu

[Break | Setting...]

[Break | Breakpoint Setting]

[Break | Breakpoint Setting]

To set sequential break mode, select [Setting...] from the [Break] menu.

The [Break Common Setting] dialog box then appears.
Select one of the [Sequential Break Mode] radio buttons
from this dialog box to set the desired mode.
When you choose any radio button for BA3 counter-based
mode, the [CH3 Count] text box becomes active. There-
fore, enter an execution count in this text box. The pro-
gram does not break until it fetches the instruction (the
number of times as specified here) at the BA3 address.



CHAPTER 13  S1C88 FAMILY DEBUGGER

124 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

To set an address on each channel, use the [Break setting] dialog box that appears when [Breakpoint
Setting] is selected from the [Break] menu. When the [Break setting] dialog box appears, select the
[Hardware PC Break Setting] tab in the dialog box.

Use the radio buttons to select the channel on which you want to set an address, then enter the
desired address in the [Location at] text box.
To specify an execution count on BA3, enter a hexadecimal number for the desired count in the [CH3
Count] text box. If a count was set from the [Break Common Setting] dialog box, the value you
entered is reflected in this text box.
Click the [Add] button to register the address you've set as a valid breakpoint. Each channel can have
only one address set. Setting a new address on any channel for which an address is already set will
overwrite the existing address. Also note that attempting to set an address that has already been
registered as a hardware PC breakpoint will prompt a warning.
If addresses are set on each channel as shown above in BA1–3 sequential mode, program execution is
made to break after the program executes instructions at each set address as follows:
1. Start running
         :
2. Execute instruction at address 0x0003A5 once or more
         :
3. Execute instruction at address 0x0003C0 once or more
         :
4. Execute instruction at address 0x000412 four times
         :
5. Fetch instruction at address 0x000412 again

At step 5, the program is made to break before executing the instruction at address 0x000412.

To disable a valid breakpoint (whose address is preceded by an asterisk (∗ ) in the list), select that
address from the list (by clicking the ON part), then click the [Disable] button. The asterisk disappears
and the breakpoint is disabled.
To enable an invalid breakpoint, select the address of that breakpoint from the list, then click the
[Enable] button. The address is marked with an asterisk (∗ ) to indicate that a breakpoint is enabled at
that address.
To clear a breakpoint, select the address of that breakpoint from the list, then click the [Delete] button.
The [Clear All] button allows you to clear all breakpoints that have been set.



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 125
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

(3) Data break function
The data break function causes a break to occur when a program accesses memory as specified. Four
channels (CH0 to CH3) are provided for use in data breaks. The following three conditions can be
specified on each channel individually.

Address When an address is specified, the target program is made to break when it accesses that
address.

Data When data is specified, the target program is made to break when it writes or reads the
specified data. Here, specify one byte of data. The data bits can be masked so that the
program can be made to break when only the desired (but not all) bits match.

Read/write The program can be made to break in only a read or a write cycle or in both, as specified.

Of the above, specify one or more conditions. When two or more conditions are specified, the pro-
gram is made to break after accessing memory to satisfy all specified conditions.

Table 13.8.5.3  Data break setting commands
Function

Set data break conditions

Clear data break conditions

Command

bd

bdr

Button

–

–

Menu

[Break | Breakpoint Setting]

[Break | Breakpoint Setting]

Select [Breakpoint Setting] from the [Break] menu to display the [Break setting] dialog box. Select
(click) the [Hardware Data Break Setting] tab in the dialog box.

Use the radio buttons to select the channel on which you want to set break conditions, then enter an
address in the [Location at] text box and data in the [Data Value for] text box (optional). Use the radio
buttons to select the desired read/write condition, then click the [Set] button to register what you've
entered as valid break conditions. Note that setting a new condition on any channel for which condi-
tions are already set will overwrite the existing conditions.

In the above example, the target program is made to break when it writes data whose MSB = 1 to
address 0x00ff04.

To disable valid break conditions on any channel (preceded by an asterisk (∗ ) in the list), select that
channel from the list (by clicking the ON part), then click the [Disable] button. The asterisk disappears
and break conditions on the channel are disabled.
To enable invalid break conditions on any channel, select that channel from the list, then click the
[Enable] button. The channel is marked with an asterisk (∗ ) to indicate that break conditions are
enabled on the channel.
To clear break conditions on any channel, select that channel from the list, then click the [Delete] button.
The [Clear All] button allows you to clear all break conditions that have been set.



CHAPTER 13  S1C88 FAMILY DEBUGGER

126 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

(4) Other break commands
Commands are available to display all break conditions set in the [Command] window and to clear all
break conditions.

Table 13.8.5.4  Other break commands
Function

Display all break conditions

Clear all break conditions

Command

bl

bac

Button

–

Menu

[Break | Break List]

[Break | Break All Clear]

Forced break
The [Key Break] button, [Run | Stop] menu command, and [ESC] key can be used to forcibly termi-
nate the program being executed.

 [Key Break] button

Low level input to the ICE BRKIN pin
By setting the BRKIN pin of the ICE to LOW, a break occurs at the rising edge of the signal.

Break due to program execution error
A break occurs when the ICE has detected one of the operations below during a program execution.
• Writing data to the ROM area
• Stack operation outside of the stack area
• Access to an undefined area
• Executing an illegal instruction (that is not available in the model)

These errors are detected using the memory and other information described in the parameter file.



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 127
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

13.8.6 Trace Functions

Trace data buffer and trace information
The ICE has a trace data buffer. When the debugger executes the program, the trace information on
each executed instruction is taken into this buffer. The trace data buffer has the capacity to store
information for 8,192 cycles. When the trace information exceeds this capacity, the data is overwritten,
the oldest data first. Consequently, the trace information stored in the trace data buffer is always
within 8,192 cycles. The trace data buffer is cleared when a program is executed, starting to trace the
new execution data.

The following lists the trace information that is taken into the trace data buffer in every instruction
execution cycle. This list is corresponded to display in the [Trace] window.

INS: Executed cycle number (0 to 8191, decimal)
0000 means oldest trace data.

P Addr: PC address (hexadecimal physical address)
L Addr: PC address (hexadecimal logical address)
Code: Instruction code (hexadecimal)
Mnemonic: Disassembled instruction code
BA to YP: Values of the CPU registers (hexadecimal)
SC, CC: Condition flag status
Memory: Memory access status (other than code fetch status)

MR:  Memory read
MW: Memory write
[<address>] = <data>:  Accessed memory address and read/write data (hexadecimal)



CHAPTER 13  S1C88 FAMILY DEBUGGER

128 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Trace modes
Two trace modes are provided for selection depending on how trace information is captured.

All trace mode
Information is recorded on all bus cycles executed. In this mode, the latest trace data (for up to 8,192
cycles) can always be obtained.

Range-specified trace mode
In this mode, memory access conditions can be specified. Information is only recorded on the bus
cycles that match the specified conditions.
The following lists the memory access conditions that can be specified:
• Specify an address range and whether to trace inside or outside the specified address range
• Specify whether to trace both program fetch and data read/write cycles, or only data read/write

cycles
• Specify whether to trace either read or write cycles (or both)

To set trace mode, select [Setting...] from the [Break] menu.

To set all trace mode, select the [All] radio button
and click [OK].

To set range-specified trace mode, select the
[Range] radio button, then specify an address
range by entering the start and end addresses in
the [Start location from] and [End location to] text
boxes in decimal notation, respectively. To trace
outside that address range, select the [Out of
Range] radio button. Then select a read/write
condition with the [Access Type] radio button.
Use the radio buttons under [Access Area] to
specify that all accesses be traced (All) or only data
read/write accesses be traced (Data). After making
the above selections, click the [OK] button.

To stop setting trace mode, click the [Cancel]
button.



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 129
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Displaying and searching trace information
The sampled trace information is displayed in the [Trace] window after a program execution has
finished. In the [Trace] window, the entire trace data buffer can be seen by scrolling the window. The
trace information can be displayed beginning from a specified cycle using a command. The display
contents are as described above.
If the [Trace] window is closed, the information can be displayed in the [Command] window using a
command.

Table 13.8.6.1  Command/menu item to display trace information

Function

Display trace information

Command

td

Button

–

Menu

[Trace | Trace]

When [Trace] is selected from the [Trace] menu, the dialog box shown below appears.

Enter the display start and end cycle numbers
(in hexadecimal) to the [Start from] and [End
to] text boxes, respectively, and then click the
[OK] button. When number entry is omitted,
the debugger assumes the start cycle number
is 0 and the end cycle number is 0x1fff (8191).
To cancel trace data display, click the [Cancel]
button.

It is possible to specify a search condition and display the trace information that matches a specified
condition.
The search condition can be selected from the following three:
1. Program's execution address
2. Address from which data is read
3. Address to which data is written

When the above condition and one address are specified, the system starts searching. When the trace
information that matches the specified condition is found, the system displays the found data in the
[Trace] window (or in the [Command] window if the [Trace] window is closed).

Table 13.8.6.2  Command/menu item to search trace information

Function

Search trace information

Command

ts

Button

–

Menu

[Trace | Trace Search...]

When [Trace Search...] is selected from the [Trace] menu, the dialog box shown below appears.

Choose a search condition using the radio button, enter an
address, and then click the [Search] button.
To cancel searching trace data, click the [Cancel] button.



CHAPTER 13  S1C88 FAMILY DEBUGGER

130 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Saving trace information
The trace information within the specified range can be saved to a file.

Table 13.8.6.3  Command/menu item to save trace information

Function

Save trace information

Command

tf

Button

–

Menu

[Trace | Trace File...]

When [Trace File...] is selected from the [Trace] menu, the dialog box shown below appears.

Enter the start and end cycle numbers of the range to be
saved to the [Start Point] and [End Point] text boxes,
respectively.
Enter the file name to the [File Name] text box or
choose a folder/file using the [Browse...] button.
Then click the [OK] button to start saving.
To cancel saving trace data, click the [Cancel] button.



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 131
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

13.8.7 Coverage
The ICE has a coverage function that allows you to record the memory addresses accessed.
The coverage information is recorded according to the acquisition mode and acquisition range specified
with the debugger's coverage options.

Acquisition mode
Specify whether to acquire coverage information for access to both code and data spaces, or for access
to only code space. By default, coverage information is acquired for access to both code and data
spaces.

Acquisition range
The ICE divides the 16-MB address space into 64 KB × 256 areas, with coverage information acquired
from each 64-KB area. A 64-KB area from 0x00000 to 0x00FFFF is the default acquisition range.
Therefore, if coverage information must be acquired from another area, you should specify that area
before running the program.

To set coverage options, select [Setting...] from the [Coverage] menu.

Enter a numeric value from 0 to 255 in the [Coverage Area (0-255)]
text box to specify the desired acquisition range. Use the radio
buttons to select the desired acquisition mode. Click the [OK] button
to confirm what you've set.
To stop setting coverage, click the [Cancel] button.

The acquired coverage information can be displayed in the [Coverage] window.

Table 13.8.7.1  Coverage commands
Function

Display coverage information

Clear coverage information

Command

cv

cvc

Button

–

–

Menu

[Coverage | Coverage]

[Coverage | Coverage Clear]

Selecting [Coverage] from the [Coverage] menu opens the [Coverage] window, and the dialog box shown
below appears.

Enter the address in hexadecimal notation from
which to start displaying coverage information in
the [Start from] text box, then click the [OK]
button. To display coverage information in the
[Coverage] window, you can leave [End to] blank.
Note that the start and the end addresses of the 64
KB area selected are assumed if start and end
addresses are not entered in these text boxes.
To stop setting addresses, click the [Cancel]
button.



CHAPTER 13  S1C88 FAMILY DEBUGGER

132 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Coverage information is displayed in the [Coverage] window as shown below.

Coverage information is displayed 16 bytes per row. P.Addr indicates the start address (physical address)
of each line. The accessed addresses are marked with an asterisk (∗ ), and addresses not accessed are
marked with a space " ". The Count value indicates the total addresses accessed (in bytes) among the 16
bytes on each line.

In addition to the [Coverage] window, the executed addresses in the [Source] window are marked with
an asterisk (∗ ), except in source display mode.

Executing the cv command while the [Coverage] window is closed displays information in the [Com-
mand] window as shown below.
Example: >cv 0

00001e

000100 - 00010f

       :



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 133
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

13.8.8 Writing Data to the FPGA on the Standard Peripheral Circuit Board
The standard peripheral circuit board S5U1C88000P is configured for the supported model by writing the
peripheral function data to the on-board FPGA. This writing is necessary the first time the standard
peripheral circuit board is used or before beginning development of another model.
The debugger supports the following FPGA data handling functions:

(1) Erasing FPGA
All contents of the FPGA are erased.

(2) Writing data to FPGA
Data in the specified file is written to the FPGA. Also, the write command supports erasing the FPGA.
Data for the supported models are provided as "c88xxx.mot" files in the "epson\s1c88\ice\fpga"
directory (default).

(3) FPGA data comparison
The contents of the FPGA and specified file are compared.

(4) FPGA data dump
The FPGA data is displayed in a hexadecimal dump format.

Table 13.8.8.1  FPGA commands
Function

Erase FPGA
Write data to FPGA
Compare FPGA data
Dump FPGA data

Command
xfer
xfwr
xfcp
xdp

Button
–
–
–
–

Menu
–
–
–
–



CHAPTER 13  S1C88 FAMILY DEBUGGER

134 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

13.8.9 System Options
The [System Common Setting] dialog box that appears when [Setting...] is selected from the [Option]
menu is provided to set the options associated with ICE hardware.

Clock Type
One of the following two clocks can be selected for use in
emulation:
(1) Default clock of peripheral board (default)
(2) Mask option clock of peripheral board

Selecting the peripheral board (PRC88XXX)'s default clock
means that the clock on the peripheral board is used as the
clocking source during emulation regardless of how the
mask option is set. Some MPUs do not support this default
clock.

For details about clock frequencies, refer to the technical
manual supplied with your MPU.

Firm Clock
One of the following five firmware clocks can be selected
for the ICE:
(1) 4 MHz (selected by default)
(2) 2 MHz
(3) 1 MHz
(4) 500 kHz
(5) 250 kHz

The ICE uses the firmware clock to execute its debugging functions. For example, a memory dump is
performed using the firmware clock. Therefore, if the target board you're using consists of a low-
speed device or one that may cause a delay in data output, the memory dump contents and contents
read out by running the program may not match. In such case, set the firmware clock to a lower
appropriate frequency.

SelfFlash Check
Turn the SelfFlash or self-rewriting check function on or off. Although the SelfFlash check function is
automatically set according to a description in the parameter file, this option may be used to forcibly
turn it on or off.

Cmw command wait time
Specify an interval time at which to execute commands after loading a command file with the cmw
command. The interval time can be set from 1 to 256 seconds in 1-second increments. The interval
time initially is set to 1 second.



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 135
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

13.9 Command Reference

13.9.1 Command List
Table 13.9.1.1 lists the debug commands available with the debugger.

Table 13.9.1.1  Command list
Classification

Memory 
operation

Register 
operation

Program 
execution

CPU reset
Break

Program display

Symbol display

Load file

Trace

Coverage

Command file

Log
Map information
FPGA operation

Quit
Help

Function
Dump memory data

Enter memory data
Fill memory area
Copy memory area

Search memory data

Display register values
Modify register value 
reg={PC|SP|IX|IY|A|B|HL|BR|CB|EP|XP|YP|SC|I1|I0|U|D|N|V|Z|C}
Execute program successively from current PC
Execute program successively after resetting CPU
Single stepping from current PC
Single stepping with skip subroutines
Exit from subroutine
Reset CPU
Set software breakpoints
Set software break area
Clear software breakpoints

Set sequential break mode
Set hardware breakpoints

Clear hardware breakpoints
Set hardware data break condition

Clear hardware data break condition
Display all break conditions
Clear all break conditions
Disassemble code display
Source display
Mix display
Display symbol list
Display symbol information
Load program/option HEX file
Load parameter file
Display trace information
Search trace information
Save trace information
Display coverage information
Clear coverage information
Load and execute command file
Load and execute command file with execution interval
Record executed commands to file
Logging
Display map information
Erase FPGA
Write FPGA data
Compare FPGA data
Dump FPGA data
Quit debugger
Display command usage

Page
137

140
142
143

144

145
146

148
150
151
153
154
155
156
158
160

161
162

164
165

167
168
169
170
172
174
176
177
178
179
180
183
185
186
188
189
190
191
192
193
194
195
196
197
198
199

dd

de
df
dm

ds

rd
rs

g
gr
s
n
se
rst
bp
bpa
bpr
bc
bpc
bas
ba

bar
bd

bdr
bl
bac
u
sc
m
sy
w
lf
par
td
ts
tf
cv
cvc
com
cmw
rec
log
ma
xfer
xfwr
xfcp
xdp
q
?

[<addr1> [<addr2>]] [{-B|-W|-L|-F|-D}]
[<addr1> <@size>] [{-B|-W|-L|-F|-D}]
[<addr> <data1> [..<data16>]]
[<addr1> <addr2> <data>]
[<addr1> <addr2> <addr3>]
[<addr1> <@size> <addr3>]
<addr1> {<addr2>|@<byte>}... 
...{"<str>"|<data>[:{B|W|L}]} [S=<step>]

[<reg> <value>]

[<addr>]
[<addr>]
[<step>]
[<step>]

{-|+|_} <addr>
<addr1> <addr2>

[<addr>]
[<addr>]
{0|1|2|3}
<ch> <addr> [<count>]
<ch> {-|+|_}

<ch> [A=<addr>][D=<data>][{R|W|}]
<ch> {-|+|_}

[<addr>]
[<addr>]
[<addr>]
[/a]
<symbol> [;{H|D|Q|B}] [/A]
[<file>]
[<file>]
[<cycle>]
[{pc|dr|dw} <addr>]
[<file> [<cycle1> [<cycle2>]]]
[<addr1> [<addr2>]]

[<file> [<interval>]]
[<file>]
[<file>]
[<file>]

<file> ;{H|S} [;N]
<file> ;{H|S}
<addr1> [<addr2>]

Command



CHAPTER 13  S1C88 FAMILY DEBUGGER

136 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

13.9.2 Reference for Each Command
The following sections explain all the commands by functions.

The explanations contain the following items.

Function

Indicates the functions of the command.

Format

Indicates the keyboard input format and parameters required for execution.

Example

Indicates a sample execution of the command.

Note

Shows notes on using.

GUI utility

Indicates a menu item or tool bar button if they are available for the command.

Notes: • In the command format description, the parameters enclosed by < > indicate they are necessary
parameters that must be input by the user; while the ones enclosed by [ ] indicate they are
optional parameters.

• The input commands are case-insensitive, you can use either upper case or lower case letters
or even mixed.

• An error results if the number of parameters is not correct when you input a command using
direct input mode.

Error : Incorrect number of parameters



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 137
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

13.9.3 Memory Operation

dd  (data dump)

Function

This command displays the content of the memory in a 16 words/line hexadecimal dump format.

Format

(1) >dd [<address1> [<address2>]] [<option>]↵ (direct input mode)

(2) >dd [<address1> @<size>] [<option>]↵ (direct input mode)
<address1>: Start address to display; hexadecimal or symbol (IEEE-695 format only)
<address2>: End address to display; hexadecimal or symbol (IEEE-695 format only)
<size>: Size of display area (in bytes); hexadecimal
<option>: Display format; specify with a symbol below.

-B Byte (default)
-W Word
-L Long
-F Float
-D Double

Condition: 0 ≤ address1 ≤ address2 ≤ 0xffffff, 0 ≤ size ≤ 0xffffff

Display

(1) When [Dump] window is opened

If both <address1> and <address2> are not defined, the [Dump] window is redisplayed beginning
with address 0x000000.
If <address1> is defined , the [Dump] window is redisplayed in such a way that <address1> is
displayed at the uppermost line.
Even when <address1> specifies somewhere in 16 addresses/line, data is displayed beginning with
the top of that line. For example, even though you may have specified address 0x00ff08 for <ad-
dress1>, data is displayed beginning with address 0x00ff00. However, if an address near the upper-
most part of data memory (e.g. maximum address is 0xffffff), such as 0xffffc0, is specified as <ad-
dress1>, the last line displayed in the window in this case is 0xfffff0, the specified address is not at the
top of the window.
Since the [Dump] window can be scrolled to show the entire data memory, defining <address2> or
@<size> does not have any specific effect. Only defining <address1> and both defining <address1>
and <address2> or @<size> has same display result.



CHAPTER 13  S1C88 FAMILY DEBUGGER

138 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

(2) When [Dump] window is closed
If both <address1> and <address2> are not defined, the debugger displays data for 256 words from
address 0x000000 in the [Command] window.
>dd↵
Address +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F Value
000000  AE 02 F0 F0 C9 02 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 ................
000010  00 A4 E0 48 0A 08 E0 80 EE 6A FC BA 3E BA 4A 01 ...H.....j..>.J.
  :                            :                               :
0000F0  A6 A2 22 82 A0 0C 04 02 FE F7 BD 9E FE 7F BA FB ..".............
>

If only <address1> is defined, the debugger displays data for 256 words from <address1>.
>dd ff00↵
Address +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F Value
00FF00  30 00 00 FF FF FF FF FF FF FF FF FF FF FF FF FF 0...............
00FF10  00 00 1F 00 FF FF FF FF FF FF FF FF FF FF FF FF ................
  :                            :                               :
00FFF0  FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ................
>

If both <address1> and <address2> are defined, the debugger displays data from <address1> to
<address2>.
>dd ff00 ff1f↵
Address +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F Value
00FF00  30 00 00 FF FF FF FF FF FF FF FF FF FF FF FF FF 0...............
00FF10  00 00 1F 00 FF FF FF FF FF FF FF FF FF FF FF FF ................
>

If @<size> is defined in place of <address2>, the debugger displays the specified bytes of data from
<address1>.
>dd ff00 @20↵
Address +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F Value
00FF00  30 00 00 FF FF FF FF FF FF FF FF FF FF FF FF FF 0...............
00FF10  00 00 1F 00 FF FF FF FF FF FF FF FF FF FF FF FF ................
>

(3) Display format options
The display format option allows selection of a data type same as the pull-down list on the [Dump]
window. When option specification is omitted, data is displayed in byte units. The following shows
display examples in each option:
>dd -b↵ ... Byte format (default)
Address +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F Value
000000  AE 02 F0 F0 C9 02 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 ................
  :                            :
>dd -w↵ ... Word format
Address  +0   +2   +4   +6   +8   +A   +C   +E  Value
000000  02AE F0F0 02C9 F0F0 F0F0 F0F0 F0F0 F0F0 ................
  :                        :
>dd -l↵ ... Long format
000000  F0F002AE F0F002C9 F0F0F0F0 F0F0F0F0 ................
  :                      :
>dd -f↵ ... Float format
000000  AE 02 F0 F0 -5.942371e+029
000004  C9 02 F0 F0 -5.942382e+029
  :                :
>dd -d↵ ... Double format
000000  AE 02 F0 F0 C9 02 F0 F0 -1.018151011077231e+236
000008  F0 F0 F0 F0 F0 F0 F0 F0 -1.077308742674321e+236
  :                            :
>



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 139
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

(4) During log output
If a command execution is being output to a log file by the log command when you dump the data
memory, data is displayed in the [Command] window even if the [Dump] window is opened and are
also output to the log file.
If the [Dump] window is closed, data is displayed in the [Command] window in the same way as in
(2) above.
If the [Dump] window is open, it is redisplayed to show data in the same way as in (1) above. In this
case, the same number of lines is displayed in the [Command] window as are displayed in the
[Dump] window.

(5) Successive display
Once you execute the dd command, data can be displayed successively with the [Enter] key only until
some other command is executed.
When you hit the [Enter] key, the [Dump] window is scrolled one full screen.
When displaying data in the [Command] window, data is displayed for the 16 lines following the
previously displayed address (same number of lines as displayed in the [Dump] window during log
output).
>dd↵
Address +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F Value
000000  AE 02 F0 F0 C9 02 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 ................
000010  00 A4 E0 48 0A 08 E0 80 EE 6A FC BA 3E BA 4A 01 ...H.....j..>.J.
  :                            :                               :
0000F0  A6 A2 22 82 A0 0C 04 02 FE F7 BD 9E FE 7F BA FB ..".............
>↵
000100  FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ................
000110  FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ................
   :          :                :
0001F0  FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ................
>

Notes

  • Both the start and end addresses specified here must be within the range of the memory area available
with each microcomputer model.
An error results if the limit is exceeded or the input one is not a hexadecimal number or not a valid
symbol.

  • An error results if the start address is larger than the end address.

GUI utility

[View | Dump] menu item
When this menu item is selected, the [Dump] window opens or becomes active and displays the
current data memory contents.



CHAPTER 13  S1C88 FAMILY DEBUGGER

140 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

de  (data enter)

Function

This command rewrites the contents of the memory with the input hexadecimal data. Data can be
written to continuous memory locations beginning with a specified address.

Format

(1) >de <address> <data1> [<data2> [...<data16>]]↵ (direct input mode)

(2) >de↵ (guidance mode)
Data enter address ? : <address>↵
Address Original data : <data>↵
..........
>

<address>: Start address from which to write data; hexadecimal or symbol (IEEE-695 format only)
<data(1–16)>: Write data; hexadecimal
Condition: 0 ≤ address ≤ 0xffffff, 0 ≤ data ≤ 0xff

Examples

Format (1)
>de ff10 0↵ ... Rewrites data at address 0x0xff10 with 0.

Format (2)
>de↵
Data enter address ? :ff10↵ ... Address is input.
00FF10   0 : a↵ ... Data is input.
00FF11   0 : ↵ ... Skipped.
00FF12   0 : q↵ ... Command is terminated.
>

Notes

  • The start address specified here must be within the range of the memory area available with each
microcomputer model.
An error results if the limit is exceeded or the input one is not a hexadecimal number or a valid
symbol.

  • The contents of the unused area will be marked as "∗ ". If you encounter any address marked by "∗ ",
press [Enter] key to skip that address or terminate the command.

  • Data must be input using a hexadecimal number in the range of 8 bits (0–0xff). An error results if the
limit is exceeded.

  • When the contents of the data memory is modified using the de command, the displayed contents of
the [Dump] window are updated automatically.

  • In guidance mode, the following keyboard inputs have special meaning:
"q↵ " … Command is terminated. (finish inputting and start execution)
"^↵ " … Return to previous address.
"↵ " … Input is skipped. (keep current value)
If the maximum address of data memory is reached and gets a valid input other than "^↵ ", the
command is terminated.



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 141
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

GUI utility

[Dump] window

The [Dump] window allows direct modification of memory contents. To modify data on the [Dump]
window, place the cursor at the front of the data to be modified or double click the data, and then type
a hexadecimal character (0–9, a–f). Data in the address will be modified with the entered number and
the cursor will move to the next address. This allows successive modification of a series of addresses.



CHAPTER 13  S1C88 FAMILY DEBUGGER

142 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

df  (data fill)

Function

This command rewrites the contents of the specified memory area with the specified data.

Format

(1) >df <address1> <address2> <data>↵ (direct input mode)

(2) >df↵ (guidance mode)
Start address ? <address1>↵
End address ? <address2>↵
Data pattern ? <data>↵
>

<address1>: Start address of specified range; hexadecimal or symbol (IEEE-695 format only)
<address2>: End address of specified range; hexadecimal or symbol (IEEE-695 format only)
<data>: Write data; hexadecimal
Condition: 0 ≤ address1 ≤ address2 ≤ 0xffffff, 0 ≤ data ≤ 0xff

Examples

Format (1)
>df ff200 ff2ff 0↵ ... Fills the memory area from address 0xff200 to address 0xff2ff with 0x0.

Format (2)
>df↵
Start address ? ff200↵ ... Start address is input.
End address ? ff2ff↵ ... End address is input.
Data pattern ? 0↵ ... Data is input.
>
∗  Command execution can be canceled by entering only the [Enter] key and nothing else.

Notes

  • Both the start and end addresses specified here must be within the range of the memory area available
with each microcomputer model.
An error results if the limit is exceeded or the input one is not a hexadecimal number or a valid
symbol.

  • An error results if the start address is larger than the end address.

  • Data must be input using a hexadecimal number in the range of 8 bits (0 to 0xff). An error results if
the limit is exceeded.

  • Write operation is not performed to the read only address of the I/O area.

  • When there is an unused area in the specified address range, no error occurs. The area other than the
unused area will be filled with the specified data.

  • When the contents of the data memory is modified using the df command, the displayed contents of
the [Dump] window are updated automatically.

GUI utility

None



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 143
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

dm  (data move)

Function

This command copies the contents of the specified memory area to another area.

Format

(1) >dm <address1> <address2> <address3>↵ (direct input mode)

(2) >dm <address1> @<size> <address3>↵ (direct input mode)

(3) >dm↵ (guidance mode)
Start address ? <address1>↵
End address ? <address2>↵
Destination address ? <address3>↵
>

<address1>: Start address of source area to be copied from; hexadecimal or symbol (IEEE-695 format only)
<address2>: End address of source area to be copied from; hexadecimal or symbol (IEEE-695 format only)
<address3>: Address of destination area to be copied to; hexadecimal or symbol (IEEE-695 format only)
<size>: Size of the source area (in bytes); hexadecimal
Condition: 0 ≤ address1 ≤ address2 ≤ 0xffffff, 0 ≤ address3 ≤ 0xffffff, 0 ≤ size ≤ 0xffffff

Examples

Format (1)
>dm ff200 ff2ff ff280↵ ... Copies data within the range from address 0xff200 to address

    0xff2ff to the area from address 0xff280.
Format (2)
>dm ff200 @100 ff280↵ ... Same as above.

Format (3)
>dm↵
Start address ? ff200↵ ... Source area start address is input.
End address ? ff2ff↵ ... Source area end address is input.
Destination address ? ff280↵ ... Destination area start address is input.
>
∗  Command execution can be canceled by entering only the [Enter] key and nothing else.

Notes

  • All the addresses specified here must be within the range of the memory area available with each
microcomputer model.
An error results if the limit is exceeded or the input one is not a hexadecimal number or a valid
symbol.

  • Write operation is not performed to the read-only address of the I/O area.

  • Data in the write-only area cannot be read. If the source area contains write-only address, 0 is written
to the corresponding destination. If the destination area contains read-only address, the data of that
address can not be rewritten. If the source and destination areas contain I/O address of mixed read-
only bits and write-only bits, either read or write operation can be executed for the corresponding
bits.

  • When the contents of the data memory is modified using the dm command, the displayed contents of
the [Dump] window are updated automatically.

GUI utility

None



CHAPTER 13  S1C88 FAMILY DEBUGGER

144 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

ds  (data search)

Function

This command searches for a specified data or string from a specified range of memory. When the
search data or string is found, the address of the data or string found is indicated in the [Command]
window. In addition, if specified data is found in the address range displayed in the [Dump] window,
the data found is displayed in green.

Format

>ds <address1> {<address2>|@<byte>} {"<string>"|<data> [:<size>]} [S=<step>]↵
(direct input mode)

<address1>: Start address of search range; hexadecimal or symbol (IEEE-695 format only)
<address2>: End address of search range; hexadecimal or symbol (IEEE-695 format only)
<byte>: Size of search range (in bytes); hexadecimal
<string>: String to search, consisting of up to four ASCII characters
<data>: Data to search, equal in size to <size> represented in hexadecimal or binary notation. The

data bytes or bits can be masked with an asterisk (∗ ).
<size>: Data size, specifying using the following symbols:

B for byte (1 byte) (default)
W for word (2 bytes)
L for long (4 bytes)

<step>: Step (in bytes) in which increments to search, equal to data size (specified by <size>) when
omitted

Condition: 0 ≤ address1 ≤ address2 ≤ 0xffffff, address2 ≤ address1+0xffff, byte ≤ 0x10000,
1 ≤ step ≤ 0xffff

Examples
>ds f000 30:W S=10↵
00F000  00F070
>
In this example, the command searches for word data "0x0030" starting from address 0x00f000.
Because the step is specified to be 16 bytes, word data at only the 16-byte boundary addresses
(0x00f000, 0x00f010, ...) are checked. Even if word data "0x0030" exists at address 0xf002, for example,
it does not appear in the search result.

>ds f000 f0ff "ABC"↵
00F022
>
In this example, the command searches for string "ABC" (= 0x41, 0x42, 0x43) in the address range from
0x00f000 to 0x00f0ff. The string is searched in byte steps or increments (default).

Notes

  • The address specified here must be within the range of the memory area available with each micro-
computer model.
An error results if the limit is exceeded or the input one is not a hexadecimal number or a valid
symbol.

  • Search is made within a 64 KB range. Specifying an address exceeding this range results in an error.

GUI utility

None



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 145
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

13.9.4 Register Operation

rd  (register display)

Function

This command displays the contents of the CPU registers.

Format

>rd↵ (direct input mode)

Display

(1) Contents of display
This command displays the contents of the following registers and memory addresses pointed by the
registers.
Register: PC, SP, IX, IY, B, A, H, L, BR, SC, CC
Memory: [HL], [IX], [IX+L], [SP], [IY], [IY+L]

  ∗ If the memory locations indicated by the registers are in an unused area, data in that area is marked
by an "∗ " as it is displayed.

(2) When [Register] window is opened

When the [Register] window is opened, all the above contents are displayed in the [Register] window
according to the program execution. When you use the rd command, the displayed contents of the
[Register] window is updated.

(3) When [Register] window is closed
Data is displayed in the [Command] window in the following manner:
>rd↵
PC:02AE  SP:AAAA  IX:AAAA  IY:AAAA
 B:AA     A:AA     H:AA     L:AA    BR:AA
CB:01    NB:01    EP:00    XP:00    YP:00
SC:I1 I0 U D N V C Z   CC:F3 F2 F1 F0
    1  1 0 0 0 0 0 0       1  1  1  1
>

(4) During log output
If a command execution result is being output to a log file by the log command, the register values are
displayed in the [Command] window even if the [Register] window is opened and are also output to
the log file.

GUI utility

[View | Register] menu item
When this menu item is selected, the [Register] window opens or becomes active and displays the
current register contents.



CHAPTER 13  S1C88 FAMILY DEBUGGER

146 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

rs  (register set)

Function

This command modifies the register values.

Format

(1) >rs <register> <value>↵ (direct input mode)

(2) >rs↵ (guidance mode)
PC = Old value : <value>↵
SP = Old value : <value>↵
  IX = Old value : <value>↵
  IY = Old value : <value>↵
  A = Old value : <value>↵
  B = Old value : <value>↵
I1 = Old value : <value>↵
I0 = Old value : <value>↵
U = Old value : <value>↵
D = Old value : <value>↵
N = Old value : <value>↵
V = Old value : <value>↵
C = Old value : <value>↵
Z = Old value : <value>↵

HL = Old value : <value>↵
BR = Old value : <value>↵
CB = Old value : <value>↵
EP = Old value : <value>↵
XP = Old value : <value>↵
YP = Old value : <value>↵

>
<register>: Register name (PC, SP, IX, IY, A, B, HL, BR, CB, EP, XP, YP, SC, I1, I0, U, D, N, V, Z, C)
<value>: Value to be set to the register; hexadecimal

Examples

Format (1)
>rs SC 0↵ ... Resets all the flags in the SC register.

Format (2)
>rs↵
 PC=02ae : 180↵
 SP=aaaa : f0ff↵
 IX=aaaa : f000↵
 IY=aaaa : f000↵
  A=  aa : 0↵
  B=  aa : 0↵
 HL=aaaa : 0↵
 BR=  aa : 0↵
 I1=   0 : 1↵
 I0=   0 : 1↵
  U=   0 : ↵
  D=   0 : ↵
  N=   0 : ↵
  V=   0 : ↵
  C=   0 : ↵
  Z=   0 : ↵
 CB=  01 : ↵
 EP=  00 : ↵
 XP=  00 : ↵
 YP=  00 : ↵
>

When a register is modified, the [Register] window is updated to show the contents you have input. If
you input "q↵ " to stop entering in the middle, the contents input up to that time are updated.



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 147
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Notes

  • An error results if you input a value exceeding the register's bit width.

  • An error results if you input an illegal register name in direct input mode.

  • In guidance mode, the following  keyboard inputs have special meaning:
"q↵ " … Command is terminated. (finish inputting and start execution)
"^↵ " … Return to previous register.
"↵ " … Input is skipped. (keep current value)

GUI utility

[Register] window
The [Register] window allows direct modification of data. Click the [Register] window, select the
displayed data to be modified and enter a value then press [Enter].



CHAPTER 13  S1C88 FAMILY DEBUGGER

148 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

13.9.5 Program Execution

g  (go)

Function

This command executes the target program from the current PC address or specified address.

Format

>g [<address>]↵ (direct input mode)

<address>: Break address; hexadecimal or symbol (IEEE-695 format only)
Condition: 0 ≤ address ≤ last program memory address

Operation

(1) Program execution
If <address> is not specified, the target program is executed from the address indicated by the PC. If
<address> is specified, the target program is executed from the specified address. Program execution
is continued until it is made to break for one,œf the following causes:
• Break conditions set by a break set up command are met.
• A break signal is input to the ICE BRKIN pin.
• The [Key Break] button is clicked, the [Run | Stop] menu command is selected or the [Esc] key is

pressed.
• A program execution error is detected.

If a break address is specified, the program execution will be suspended before executing the instruc-
tion at the specified address.

>g 1a0↵ ... Executes the program from the current PC address to address 0x1a0.

When program execution breaks, the system stands by waiting for a command input after displaying
the number of executed cycles/execution time. When you hit the [Enter] key here, program execution
is resumed beginning with the break address. The break address setting is also valid.

(2) Window display by program execution
The [Source] window is updated after a break in such a way that the break address is displayed
within the window.
If the [Trace] window is opened, the display contents are cleared as the program is executed. It is
updated with the new trace information after a break.
If the [Dump] or [Register] window is opened, the display contents are updated after a break.
If the [Watch] window is set in short-break mode using the [Run | Setting...] menu item, its display
contents are updated in the specified cycles.

(3) Display during log mode
If the program is executed after turning on the log mode, the same contents as when executing the rd
command are displayed in the [Command] window after the number of executed cycles and execu-
tion time are displayed due to a break.
Example:
>g
 BUS CYCLE : 86519
 Mode L    : 004s   036ms  943us
OK!
PC:0618  SP:F7FE  IX:21F8  IY:F1E4
 B:01     A:05     H:F1     L:E4    BR:F0
CB:01    NB:01    EP:00    XP:04    YP:00
SC:I1 I0 U D N V C Z   CC:F3 F2 F1 F0
    0  0 0 0 0 0 0 0       0  0  0  0
>

When a break occurs, the same display appears as when data is displayed by the rd command.



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 149
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

(4) Execution cycle counter
When the target program execution is suspended, the debugger displays the number of executed
cycles and execution time in the [Command] window. (Refer to Section 13.8.4 for details.)
The execution cycle counter is reset each time the g command is issued.

Notes

  • If a break condition is met, program execution is suspended and the PC will be set to the program
address at the breakpoint.

  • The address you specified must be within the range of the program memory area available with each
microcomputer model.
An error results if the limit is exceeded or the input one is not a hexadecimal number or a valid
symbol.

GUI utility

[Run | Go] menu item, [Go] button
When this menu item or button is selected, the g command without break address specification is
executed.

 [Go] button

[Run | Go to Cursor] menu item, [Go to Cursor] button
When this menu item or button is selected after placing the cursor to the temporary break address line
in the [Source] window, the g command with a break address is executed. The program execution will
be suspended before executing the address at the cursor position.

 [Go to Cursor] button



CHAPTER 13  S1C88 FAMILY DEBUGGER

150 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

gr  (go after reset CPU)

Function

This command executes the target program from the boot address after resetting the CPU.

Format

>gr [<address>]↵ (direct input mode)

<address>: Break address; hexadecimal or symbol (IEEE-695 format only)
Condition: 0 ≤ address ≤ last program memory address

Operation

This command resets the CPU before executing the program. This causes the PC to be set at the boot
address, from which the command starts executing the program.
Once the program starts executing, the command operates in the same way as the g command, except
that the gr command does not support the function for restarting execution by hitting the [Enter] key.
Refer to the explanation of the g command for more information.

Note

If a break condition is met, program execution is suspended and the PC will be set to the program
address at the breakpoint.

GUI utility

[Run | Go after Reset] menu item, [Go after Reset] button
When this menu item or button is selected, the gr command is executed.

 [Go after Reset] button



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 151
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

s  (step)

Function

This command single-steps the target program from the current PC position by executing one instruc-
tion at a time.

Format

>s [<step>]↵ (direct input mode)

<step>: Number of steps to be executed; decimal (default is 1)
Condition: 0 ≤ step ≤ 65,535

Operation

(1) Step execution
If the <step> is omitted, only the program step at the address indicated by the PC is executed, other-
wise the specified number of program steps is executed from the address indicated by the PC.

>s↵ ...Executes one step at the current PC address.
>s 20↵ ...Executes 20 steps from the current PC address.

The program execution is suspended by the following cause even before the specified number of steps
is completed.
• The [Key Break] button is clicked or the [Esc] key is pressed

After each step is completed, the register contents in the [Register] window are updated. If the
[Register] window is closed, the register contents are displayed in the [Command] window same as
executing the rd command.
When program execution is completed by stepping through instructions, the system stands by
waiting for command input. If you hit the [Enter] key here, the system single-steps the program in the
same way again.

(2) HALT and SLEEP states and interrupts
When the halt or slp instruction is executed, the CPU is placed in standby mode. An interrupt is
required to clear this mode. The debugger has a mode to enable or disable an external interrupt for
use in a single-step operation.

External interrupt

halt and slp instructions

Enable mode

Interrupt is processed.

Executed as the halt instruction.

Processing is continued by an

external interrupt or clicking on

the [Key Break] button.

Disable mode

Interrupt is not processed.

The halt and slp instructions are

replaced with a nop instruction as

the instruction is executed.

In the initial settings, the debugger is set to the interrupt disable mode.
The interrupt enable mode can be set using the [Run | Setting...] menu item.

(3) Execution cycle counter
After the last step is completed, the debugger displays the number of executed cycles and execution
time in the [Command] window. (Refer to Section 13.8.4 for details.)
The execution cycle counter is reset each time the s command is issued.

(4) During log mode
If the program is single-stepped after turning on the log mode, the same contents as when executing
the rd command are displayed in the [Command] window after the last step is completed.



CHAPTER 13  S1C88 FAMILY DEBUGGER

152 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Notes

  • The step count must be specified within the range of 0 to 65,535. An error results if the limit is ex-
ceeded.

  • If the [Dump] window is opened, its display contents are updated after the execution.

  • The program will not break even if the break condition set by a command is met while this command
is processed.

GUI utility

[Run | Step] menu item, [Step] button
When this menu item or button is selected, the s command without step count is executed.

 [Step] button



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 153
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

n  (next)

Function

This command single-steps the target program from the current PC position by executing one instruc-
tion at a time.

Format

>n [<step>]↵ (direct input mode)

<step>: Number of steps to be executed; decimal (default is 1)
Condition: 0 ≤ step ≤ 65,535

Operation

This command basically operates in the same way as the s command.
However, the call instructions, including all subroutines until control returns to the next address, are
executed as one step.

Notes

  • The step count must be specified within the range of 0 to 65,535. An error results if the limit is ex-
ceeded.

  • If the [Dump] window is opened, its display contents are updated after the execution.

  • The program will not break even if the break condition set by a command is met while this command
is processed.

GUI utility

[Run | Next] menu item, [Next] button
When this menu item or button is selected, the n command without step count is executed.

 [Next] button



CHAPTER 13  S1C88 FAMILY DEBUGGER

154 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

se  (step exit)

Function

This command single-steps the target program from the current PC position and stops execution after
exiting from the current function or subroutine.

Format

>se↵ (direct input mode)

Operation

The target program starts from the current PC address in single-stepping and stops immediately after
it returns to the caller routine.

Notes

  • Do not execute the se command in the main (top-level) routine.

  • If the [Dump] window is opened, its display contents are updated after the execution.

  • During a single-step operation, the program will not break even if the break condition set by a
command is met.

GUI utility

[Run | Step Exit] menu item, [Step Exit] button
When this menu item or button is selected, the se command is executed.

 [Step Exit] button



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 155
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

13.9.6 CPU Reset

rst  (reset CPU)

Function

This command resets the CPU.

Format

>rst↵ (direct input mode)

Notes

  • The registers and flags are set as follows:
PC: Reset exception processing loads the reset vector stored in bank 0, 000000H–000001H

into the PC.
SP, IX, IY: 0xAAAA
B, A, H, L, BR: 0xAA
CB, NB: 0x01
EP, XP, YP: 0x00
SC: 0b11000000
CC: 0b1111

The internal RAM and external RAM are not initialized at initial reset.
The respectively stipulated initializations are done for internal peripheral circuits.

* Reset exception processing loads the preset values stored in 0 bank, 000000H–000001H into the PC. At
the same time, 01H of the NB initial value is loaded into CB.

  • If the [Source] window is open, the window is redisplayed beginning with the boot address. If the
[Register] window is open, the window is redisplayed with the above contents.

  • The debug status, such as memory contents, breaks, and trace, is not reset.

GUI utility

[Run | Reset CPU] menu item, [Reset] button
When this menu item or button is selected, the rst command is executed.

 [Reset] button



CHAPTER 13  S1C88 FAMILY DEBUGGER

156 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

13.9.7 Break

bp  (software breakpoint set)

Function

This command sets or clears software breakpoints at addresses where program execution is halted.
When a program fetches an instruction at any valid software breakpoint that has been set in a 1 MB
active break area, a break occurs immediately before that instruction is executed.

Format

>bp [<option>] <address>↵ (direct input mode)

<option>: Specify to clear, enable or disable breakpoints
- Clear breakpoint
+ Enable breakpoint (default)
_ Disable breakpoint

<address>: Break address; hexadecimal or symbol (IEEE-695 format only)
Condition: 0 ≤ address ≤ last program memory address (0x7fffff)

Examples
>bp 200↵ ... Sets address 0x200 as a breakpoint.

>bp _ 200↵ ... Disables the breakpoint at address 0x200.

>bp - 200↵ ... Clears the breakpoint at address 0x200.

Notes

  • If any address outside the 1 MB active break area set as the debugger's operating environment is
specified, no breaks can occur at that address, although the address is registered as an invalid
breakpoint. The 8 MB of code space is divided into eight 1 MB active break areas, one of which can be
selected as a break option (by using [Break | Setting...]). At debugger startup, a 1 MB area from 0x0 to
0x0fffff is automatically selected as the active break area.

  • Up to a total of 64 breakpoints can be set. Any attempt to exceed this limit prompts a warning.

  • The addresses must be specified within the range of the program memory area available for each
microcomputer model.
An error results if the limit is exceeded or the input one is not a hexadecimal number or a valid
symbol.

  • Any attempt to set an address again that has already been set as a breakpoint will prompt a warning.

  • Any attempt to clear an address where no breakpoints are set will result in an error being assumed.

  • For a breakpoint, specify the start address of an instruction at which you want the program to break.
If an intermediate address of that instruction is specified, no breaks can occur.

  • No breakpoints can be set individually in a software break area set by the bpa command (because all
addresses in that area already have breakpoints set). Any attempt to set a breakpoint at any address in
that area will result in an error being assumed.

  • When a program or parameter file is loaded, the contents of all breaks set are cleared.



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 157
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

GUI utility

[Break | Breakpoint Setting] menu item
Selecting this menu command displays a dialog box for setting or clearing breakpoints. Before
performing any operation described below, select the [Software Break Setting (1MB Area)] tab.

To set a software breakpoint, select the [Point Break] radio button and enter an address in the [Loca-
tion at] text box. Then click the [Add] button to register the address you entered as a valid breakpoint.
Up to 64 breakpoints can be added to the list. Exceeding this limit prompts a warning. In such case,
delete the unnecessary breakpoints before adding a new one.
To disable a valid breakpoint (whose address is preceded by an asterisk (∗ ) in the list), select that
address from the list (by clicking the ON part), then click the [Disable] button. The asterisk disappears
and the breakpoint is disabled.
To enable an invalid breakpoint, select the address of that breakpoint from the list, then click the
[Enable] button. The address is marked with an asterisk (∗ ) to indicate that a breakpoint is enabled at
that address.
To clear a breakpoint, select the address of that breakpoint from the list, then click the [Delete] button.
The [Clear All] button allows you to clear all breakpoints that have been set, including those in a
software break area.

[Break] button
When this button is clicked after placing the cursor to a line in the [Source] window, the address at the
cursor position is set as a breakpoint. If the address has been set as a breakpoint, this button clears the
breakpoint.

 [Break] button

The set breakpoints are marked with a ●  at the beginning of the address lines in the [Source] window.



CHAPTER 13  S1C88 FAMILY DEBUGGER

158 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

bpa  (software area breakpoint set)

Function

This command sets a software break area or an address range in which program execution is halted.
When the program fetches an instruction in a software break area that has been set in a 1 MB active
break area, a break occurs immediately before that instruction is executed.

Format

(1) >bpa <address1> <address2>↵ (direct input mode)

(2) >bpa - <address1>↵ (direct input mode)
<address1>: Start address of break area; hexadecimal or symbol (IEEE-695 format only)
<address2>: End address of break area; hexadecimal or symbol (IEEE-695 format only)
Condition: 0 ≤ address1 ≤ address2 ≤ last program memory address (0x7fffff)

Examples

Format (1)
>bpa 100 1ff↵ ... Sets the address range from 0x0100 to 0x01ff as software break area.

Format (2)
>bpa - 100↵ ... Clears the software break area beginning with address 0x0100.

Notes

  • Specifying any address outside the 1 MB active break area set as the debugger's operating environ-
ment results in an error being assumed. The 8 MB of code space is divided into eight 1 MB active
break areas, one of which can be selected as a break option (by using [Break | Setting...]). At debugger
startup, a 1 MB area from 0x0 to 0x0fffff is automatically selected as the active break area.

  • Only one software break area can be set at a time. Before a new software break area can be set, the
previously set area must be cleared.

  • The addresses must be specified within the range of the program memory area available for each
microcomputer model.
An error results if the limit is exceeded or the input one is not a hexadecimal number or a valid
symbol.

  • Any attempt to set an area that contains an address already set individually as a breakpoint prompts a
warning. Similarly, no breakpoints can be set individually in a software break area that has been set
by the bpa command.

  • For a break area's start and end addresses, specify the start address of an instruction at which you
want the program to break. If an intermediate address of that instruction is specified, no breaks can
occur.

  • When a program or parameter file is loaded, the contents of all breaks set are cleared.



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 159
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

GUI utility

[Break | Breakpoint Setting] menu item
Selecting this menu command displays a dialog box for setting or clearing breakpoints. Before
performing any operation described below, select the [Software Break Setting (1MB Area)] tab.

To set a software break area, select the [Range Break] radio button, then enter the start and end
addresses of that area in the [Start Location] and [End Location to] text boxes, respectively. Then click
the [Add] button to register the area you entered as a valid software break area. All addresses in that
area are assumed to have breakpoints set. The start address of the area is shown in the Address
column of the list, and the area size (in bytes) is shown in the AreaNum column. Setting a new area
with a software break area already registered prompts a warning. In such case, delete the registered
software break area before setting a new one. Also note that because only one software break area can
exist at a time, any area that contains an address already registered as a breakpoint cannot be set as a
software break area.
To disable a valid breakpoint (whose address is preceded by an asterisk (∗ ) in the list), select that
address from the list (by clicking the ON part), then click the [Disable] button. The asterisk disappears
and the breakpoint is disabled.
To enable an invalid breakpoint, select the address of that breakpoint from the list, then click the
[Enable] button. The address is marked with an asterisk (∗ ) to indicate that a breakpoint is enabled at
that address.
To clear a breakpoint, select the address of that breakpoint from the list, then click the [Delete] button.
The [Clear All] button allows you to clear all breakpoints that have been set, including those in a
software break area.



CHAPTER 13  S1C88 FAMILY DEBUGGER

160 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

bpr / bc / bpc  (software breakpoint clear)

Function

This command clears the specified breakpoints or software break area that have been set.

Format

(1) >bpr↵ (direct input mode)

(2) >bc [<address>]↵ (direct input mode)

(3) >bpc [<address>]↵ (direct input mode)
<address>: Break address; hexadecimal or symbol (IEEE-695 format only)

Examples
>bc 200↵ ... Clears a breakpoint at address 0x0200.

    When a break area is set from address0x0200, the break area is cleared.

>bpr↵ ... Clears all breakpoints and break area.

>bc↵ ... Clears all breakpoints and break area.

>bpc↵ ... Clears all breakpoints and break area.

Notes

  • The bc and bpc commands have the same functions.

  • If no address parameter is specified for the bc or bpc command, it works the same as the bpr com-
mand and all the breakpoints and break area that have been set are cleared.

  • An error results if an address that is not set at a breakpoint is specified.

GUI utility

[Break | Breakpoint Setting] menu item
When this menu item is selected, a dialog box appears for setting/clearing breakpoints. (See the bp
command.)

[Break] button
When this button is clicked after placing the cursor to a break address line in the [Source] window, the
breakpoint is cleared. If the address has not been set as a breakpoint, this button sets a new breakpoint
at the address.

 [Break] button



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 161
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

bas  (sequential break setting)

Function

This command sets the sequential break mode.

Format

>bas[<mode>]↵ (direct input mode)

<mode>: Sequential break mode number
0   Independent break mode
1   BA3 count break mode
2   BA2&BA3 sequential break mode
3   BA1–BA3 sequential break mode

Examples
>bas3↵ ... Sets BA1–BA3 sequential break mode.

>bas↵ ... If <mode> is omitted, the current mode is displayed.
 Independent Break Mode
>

Notes

  • Do not insert any space between "bas" and <mode>.

  • See the ba command for the operation in each mode and setting each break channel.

  • The debugger is configured to independent break mode at the time it starts up.

  • The set break conditions are all cleared when a program or a parameter file is loaded.

GUI utility

[Break | Setting...] menu item
When this menu item is selected, a dialog box appears for selecting break options.

Select a sequential break mode using the [Sequential
Break Mode] radio buttons.
The [CH3 Count] text box is enabled to enter a BA3
execution count value when a radio button for the mode
that uses the BA3 counter is selected.



CHAPTER 13  S1C88 FAMILY DEBUGGER

162 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

ba  (hardware breakpoint set)

Function

This command sets or clears hardware breakpoints at which the program is halted when it executes a
specified sequence. The breakpoints set on each channel and the execution count set on CH3 are
enabled or disabled according to the sequential break mode set by the bas command.
Break occurrence conditions in each sequential break mode are described below.

1. Independent break mode (BAS0) (default)
In this mode, program execution is made to break when the program fetches an instruction at a
breakpoint set on each channel. The execution count specified for CH3 (BA3) is not effective.

2. BA3 count mode (BAS1)
In this mode, the count function of CH3 (BA3) is effective. Program execution is made to break
when the program has fetched the instruction as many times as set by <count> at the breakpoint
set on CH3. Breakpoints set on CH1 and CH2 are not effective.

3. BA2&BA3 sequential mode (BAS2)
In this mode, program execution is made to break when the program has fetched the instruction as
many times as set by <count> at the breakpoint set on CH3 after executing the instruction more
than once at the breakpoint set on CH2. The breakpoint set on CH1 is not effective.

4. BA1–BA3 sequential mode (BAS3)
In this mode, program execution is made to break when the program has fetched the instruction as
many times as set by <count> at the breakpoint set on CH3 after executing the instructions more
than once in that order at the breakpoints set on CH1 and CH2.

Format

(1) >ba<channel> <address> [<count>]↵ (direct input mode)

(2) >ba<channel> <option>↵ (direct input mode)
<channel>: Break channel number (1–3)
<address>: Break address; hexadecimal or symbol (IEEE-695 format only)
<count>: CH3 count value; decimal (default: 1)
<option>: Specify to clear, enable or disable breakpoints

- Clear breakpoint
+ Enable breakpoint (default)
_ Disable breakpoint

Condition: 0 ≤ address1 ≤ last program memory address (0x7fffff), 0 ≤ count ≤ 4095

Examples
>bas0↵
>ba1 200↵
>
In this example, independent break mode is selected, with the CH3 breakpoint set at address 0x0200.
Program execution is made to break when the program fetches the instruction at address 0x0200. This
breakpoint is effective even when set outside a 1-MB active break area.

>ba1 _↵
>
In this example, the breakpoint on CH1 is disabled.

>bas2↵
>ba2 200↵
>ba3 300 2↵
>
In this example, BA2&BA3 sequential mode is selected, with the CH2 and CH3 breakpoints set at
addresses 0x0200 and 0x0300, respectively. Also, the CH3 counter is set to 2. When the program
executes the instruction at 0x0300 once and fetches the instruction at 0x0300 again after executing the
instruction at 0x0200 once or more, a break occurs before that instruction is executed. These
breakpoints are effective even when set outside a 1 MB active break area.



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 163
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Notes

  • Do not insert a space between "ba" and <channel>.

  • If count specification is omitted when setting CH3, the counter is set to 1 by default. Specifying a
count of 0 sets the counter to 4,096 by default.

  • Even in independent break mode, a execution count for CH3 can be set without causing an error, but
the count is not effective.

  • The addresses must be specified within the range of the program memory area available for each
microcomputer model.
An error results if the limit is exceeded or the input one is not a hexadecimal number or a valid symbol.

  • Any attempt to set the same address again that has already been set as a breakpoint will prompt a
warning.

  • Any attempt to clear an address at which no breakpoints are set will result in an error being assumed.

  • For a breakpoint, specify the start address of an instruction at which you want the program to break.
If an intermediate address of that instruction is specified, no breaks can occur.

  • When a program or parameter file is loaded, the contents of all breaks set are cleared.

GUI utility

[Break | Breakpoint Setting] menu item
Selecting this menu command displays a dialog box for setting or clearing breakpoints. Before
performing any operation described below, select the [Hardware PC Break Setting] tab.

Use the radio buttons to select the channel on which you want to set an address, then enter the
desired address in the [Location at] text box. To specify an execution count on BA3, enter a hexadeci-
mal number for the desired count in the [CH3 Count] text box. If a count was set from the [Break
Common Setting] dialog box, the value you entered is reflected in this text box.
Click the [Add] button to register the address you've set as a valid breakpoint. Each channel can have
only one address set. Setting a new address on a channel for which an address is already set over-
writes the existing address. Any attempt to set an address already registered as a hardware PC
breakpoint prompts a warning.
To disable a valid breakpoint (whose address is preceded by an asterisk (∗ ) in the list), select that
address from the list (by clicking the ON part), then click the [Disable] button. The asterisk disappears
and the breakpoint is disabled.
To enable an invalid breakpoint, select the address of that breakpoint from the list, then click the
[Enable] button. The address is marked with an asterisk (∗ ) to indicate that a breakpoint is enabled at
that address.
To clear a breakpoint, select the address of that breakpoint from the list, then click the [Delete] button.
The [Clear All] button allows you to clear all breakpoints that have been set.



CHAPTER 13  S1C88 FAMILY DEBUGGER

164 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

bar  (hardware breakpoint clear)

Function

This command clears the hardware breakpoints that have been set and the CH3 counter.

Format

>bar↵ (direct input mode)

Example
>bar↵ ... Clears all the hardware breakpoints set.

Note

An error results if no hardware breakpoint is set.

GUI utility

[Break | Breakpoint Setting] menu item
When this menu item is selected, a dialog box appears for setting/clearing breakpoints. (See the ba
command.)



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 165
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

bd  (hardware data breakpoint set)

Function

This command sets or clears hardware data breaks at which the program is halted when it performs a
memory access under the specified conditions.
Data break conditions can be set individually on each of four channels. Data breaks on each channel
can be individually enabled or disabled.
The following data break conditions can be set.

1. Address condition
Specify this condition to cause the program to break when it accesses a particular address.

2. Data condition
Specify this condition to cause the program to break when it reads or writes a particular byte of
data from or to memory. Specifying data in other than decimal notation allows any data bits to be
masked (excluded from data conditions) when marked with an asterisk (∗ ).

3. Read/write condition
Specify whether you want the program to break in a read or a write cycle. If this specification is
omitted, a break occurs in both cycles.

These three conditions can be specified in any desired combination. In such case, a break occurs when
the program accesses memory to satisfy all set conditions.

Format

(1) >bd<channel> [A=<address>] [D=<data>] [{R|W}]↵ (direct input mode)

(2) >bd<channel> <option>↵ (direct input mode)
<channel>: Data break channel number (0–3)
<address>: Memory address; hexadecimal or symbol (IEEE-695 format only)
<data>: Data pattern (1 byte)

Specifying data in other than decimal notation allows any bits to be masked when marked with
an asterisk (∗ ).

R|W: R for break in a read cycle
W for break in a write cycle
If this specification is omitted, a break occurs in both read and write cycles.

<option>: Specify whether to clear, enable, or disable settings.
- Clear break conditions
+ Enable break conditions (default)
_ Disable break conditions

Condition: 0 ≤ address ≤ 0xffffff, 0 ≤ data ≤ 0xff

Examples
>bd0 A=f100 D=1*******B R↵
>
In this example, data break is set on CH0. A break occurs when the program reads data whose MSB =
1 from address 0xf100. This address is effective even when set outside a 1 MB active break area.

>bd0 _↵
>
In this example, break conditions are disabled on CH0.



CHAPTER 13  S1C88 FAMILY DEBUGGER

166 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Notes

  • Do not insert a space between "bd" and <channel>.

  • The addresses must be specified within the range of the memory area available for each microcom-
puter model.
An error results if the limit is exceeded or the input one is not a hexadecimal number or a valid
symbol.

  • Any attempt to clear a channel on which no break conditions are set results in an error being assumed.

  • When a program or parameter file is loaded, the contents of all breaks set are cleared.

GUI utility

[Break | Breakpoint Setting] menu item
Selecting this menu command displays a dialog box for setting or clearing breakpoints. Before
performing any operation described below, select (click) the [Hardware Data Break Setting] tab.

Use the radio buttons to select the channel on which you want to set break conditions, then enter an
address in the [Location at] text box and data in the [Data Value for] text box (optional). Use the radio
buttons to select the desired read/write condition, then click the [Set] button to register what you've
entered as valid break conditions. Setting a new condition on a channel for which conditions are
already set overwrites the existing conditions.
To disable valid break conditions on a channel (preceded by an asterisk (∗ ) in the list), select that
channel from the list (by clicking the ON part), then click the [Disable] button. The asterisk disappears
and break conditions on the channel are disabled.
To enable invalid break conditions on any channel, select that channel from the list, then click the
[Enable] button. The channel is marked with an asterisk (∗ ) to indicate that break conditions are
enabled on the channel.
To clear break conditions on any channel, select that channel from the list, then click the [Delete]
button.
The [Clear All] button allows you to clear all break conditions that have been set.



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 167
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

bdr  (hardware data breakpoint clear)

Function

This command clears the hardware data break conditions that have been set.

Format

>bdr↵ (direct input mode)

Example
>bdr↵ ... Clears all the hardware  data break conditions set.

Note

An error results if no hardware data break condition is set.

GUI utility

[Break | Breakpoint Setting] menu item
When this menu item is selected, a dialog box appears for setting/clearing breakpoints. (See the bd
command.)



CHAPTER 13  S1C88 FAMILY DEBUGGER

168 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

bl  (breakpoint list)

Function

This command lists the current setting of all break conditions.

Format

>bl↵ (direct input mode)

Example

>bl↵
PC break:
Software Break:
    1:  0005fa ENABLE
    2:  000618 ENABLE
    3:  00062d ENABLE
Area Break:
 000100 - 0001ff ENABLE
Hardware Break:
    1:  CH1 000728 ENABLE
    2:  CH2 000742 ENABLE
    3:  CH3 000786 ENABLE
Sequential Break Mode:
 BA1 - BA3 Sequential Mode : Count(3)
Data break:
 CH0 DATA: 1*******   R/W: R   R/W AREA: 00F010 ENABLE
>

GUI utility

[Break | Break List] menu item
When this menu item is selected, the bl command is executed.



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 169
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

bac  (break all clear)

Function

This command clears all break conditions set by the bp, bpa, bas, ba and/or bd commands.

Format

>bac↵ (direct input mode)

GUI utility

[Break | Break All Clear] menu item, [Break All Clear] button
When this menu item or button is selected, the bac command is executed.

 [Break All Clear] button



CHAPTER 13  S1C88 FAMILY DEBUGGER

170 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

13.9.8 Program Display

u  (unassemble)

Function

This command displays the program in the [Source] window after disassembling it. The display
contents are as follows:
• Physical memory address
• Logical memory address
• Object code
• Unassembled contents of the program

Format

>u  [<address>]↵ (direct input mode)

<address>: Start address for display; hexadecimal or symbol (IEEE-695 format only)
Condition: 0 ≤ address ≤ last program memory address (0x7fffff)

Display

(1) When [Source] window is opened

If <address> is not specified, display in the [Source] window is changed to the disassemble display
mode. If <address> is specified, display in the [Source] window is changed to the disassemble display
mode. At the same time, code is displayed beginning with <address>.

(2) When [Source] window is closed
The 16 lines of disassembled result are displayed in the [Command] window. The system then waits
for a command input.
If <address> is not specified, this display begins with the current PC. If <address> is specified, the
display begins with <address>.
>u↵
P.ADDR  L.ADDR   CODE                 UNASSEMBLE
0002AE  00:02AE  CF6E00F8    __START: LD SP,#F800h
0002B2  00:02B2  B4FF                 LD BR,#FFh
0002B4  00:02B4  DD0000               LD [BR:00h],#00h
0002B7  00:02B7  DD020C               LD [BR:02h],#0Ch

:       :        :                      :
0002CF  00:02CF  B200                 LD L,#00h
0002D1  00:02D1  C30000               ADD IY,#0000h
>



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 171
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

(3) During log output
If the command execution result is being output to a log file as specified by the log command, code is
displayed in the [Command] window and its contents are also output to the log file.
If the [Source] window is closed, the result is displayed in the same way as in (2) above.
If the [Source] window is opened, the window is redisplayed. In this case, the same number of lines is
displayed in the [Command] window as displayed in the [Source] window.

(4) Successive display
If you execute the u command after entering it from the keyboard, code can be displayed successively
by entering the [Enter] key only until some other command is executed.
When you press the [Enter] key, the [Source] window is scrolled forward one screen.
When displaying code in the [Command] window, 16 lines of code following the previously displayed
address are displayed (the same number of lines as displayed in the [Source] window if the u com-
mand is executed during log output).

Note

The display start address you specified must be within the range of the program memory area
available with each microcomputer model.
An error results if the limit is exceeded or the input one is not a hexadecimal number or not a valid
symbol.

GUI utility

[View | Source | Disassemble] menu item, [Disassemble] button
When this menu item or button is selected, the [Source] window opens or activates and displays the
program from the current PC address.

 [Disassemble] button



CHAPTER 13  S1C88 FAMILY DEBUGGER

172 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

sc  (source code)

Function

This command displays the contents of the program source file in the [Source] window.

Format

>sc [<address>] ↵ (direct input mode)
<address>: Start address for display; hexadecimal or symbol (IEEE-695 format only)
Condition: 0 ≤ address ≤ last program memory address (0x7fffff)

Display

(1) When [Source] window is opened

If <address> is not specified, display in the [Source] window is changed to the source display mode.
If <address> is specified, display in the [Source] window is changed to the source display mode. At
the same time, code is displayed beginning with <address>.

(2) When [Source] window is closed
The 17 lines of source code are displayed in the [Command] window. The system then waits for a
command input.
If <address> is not specified, this display begins with the current PC. If <address> is specified, the
display begins with <address>.
>sc↵
{

#pragma asm

GLOBAL __START
__START:

;========================================================================
;===================  system initialization  ============================
;========================================================================

LD SP,#@DOFF(__lc_es) ; stack pointer initialize
LD BR,#0FFh ; BR register initialize to I/O area
;---------------  bus mode setting  -------------------------------------

; MCU & MPU mode
LD [BR:00h],#0

; Single Chip mode
; /CE0,/CE2,/CE3,/CE1:disenabled

>



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 173
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

(3) During log output
If the command execution result is output to a log file as specified by the log command, code is
displayed in the [Command] window and its contents are also output to the log file.
If the [Source] window is closed, code is displayed in the same way as in (2) above.
If the [Source] window is open, the window is redisplayed. In this case, the same number of lines is
displayed in the [Command] window as displayed in the [Source] window.

(4) Successive display
If you execute the sc command after entering it from the keyboard, code can be displayed successively
by entering the [Enter] key only until some other command is executed.
When you press the [Enter] key, the [Source] window is scrolled forward one screen.
When displaying code in the [Command] window, 17 lines of code following the previously displayed
address are displayed (the same number of lines as displayed in the [Source] window if the sc com-
mand is executed during log output).

Notes

  • Source codes can be displayed only when an absolute object file that contains source debug informa-
tion has been loaded.

  • The display start address you specified must be within the range of the program memory area
available with each microcomputer model.
An error results if the limit is exceeded or the input one is not a hexadecimal number or not a valid
symbol.

GUI utility

[View | Source | Source] menu item, [Source] button
When this menu item or button is selected, the [Source] window opens or activates and displays the
program from the current PC address.

 [Source] button



CHAPTER 13  S1C88 FAMILY DEBUGGER

174 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

m  (mix)

Function

This command displays the disassembled result of the program and the contents of the program
source file in the [Source] window. The disassemble display contents are the same as the disassemble
display mode.

Format

>m [<address>]↵ (direct input mode)
<address>: Start address for display; hexadecimal or symbol (IEEE-695 format only)
Condition: 0 ≤ address ≤ last program memory address (0x7fffff)

Display

(1) When [Source] window is opened

If <address> is not specified, display in the [Source] window is changed to the mix (source and
disassemble) display mode. If <address> is specified, display in the [Source] window is changed to
the mix display mode. At the same time, code is displayed beginning with <address>.

(2) When [Source] window is closed
The 16 lines of mix display are produced in the [Command] window. The system then waits for a
command input.
If <address> is not specified, this display begins with the current PC. If <address> is specified, the
display begins with <address>.
>m↵
_interrupt( 0x0000 ) /* Startup vector */
void _start_cpt( void )
{
0002AE  00:02AE  CF6E00F8    __START: LD SP,#F800h
0002B2  00:02B2  B4FF                 LD BR,#FFh
0002B4  00:02B4  DD0000               LD [BR:00h],#00h
0002B7  00:02B7  DD020C               LD [BR:02h],#0Ch
0002BA  00:02BA  DD0100               LD [BR:01h],#00h
0002BD  00:02BD  B4F0                 LD BR,#F0h
   :       :       :                       :



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 175
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

(3) During log output
If the command execution result is output to a log file as specified by the log command, code is
displayed in the [Command] window and its contents are output to the log file also.
If the [Source] window is closed, code is displayed in the same way as in (2) above.
If the [Source] window is open, the window is redisplayed. In this case, the same number of lines is
displayed in the [Command] window as displayed in the [Source] window.

(4) Successive display
If you execute the m command after entering it from the keyboard, code can be displayed successively
by entering the [Enter] key only until some other command is executed.
When you press the [Enter] key, the [Source] window is scrolled forward one screen.
When displaying code in the [Command] window, 16 lines of code following the previously displayed
address are displayed (the same number of lines as displayed in the [Source] window if the m com-
mand is executed during log output).

Notes

  • Source codes can be displayed only when an absolute object file that contains source debug informa-
tion has been loaded.

  • The display start address you specified must be within the range of the program memory area
available with each microcomputer model.
An error results if the limit is exceeded or the input one is not a hexadecimal number or not a valid
symbol.

GUI utility

[View | Source | Mix] menu item, [Mix] button
When this menu item or button is selected, the [Source] window opens or activates and displays the
program from the current PC address.

 [Mix] button



CHAPTER 13  S1C88 FAMILY DEBUGGER

176 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

13.9.9 Symbol Information

sy  (symbol list)

Function

This command displays a list of symbols in the [Command] window.

Format

>sy [/a]↵ (direct input mode)

Examples
>sy↵
 Address  Symbol
 0004A5   __ANDXL
 0004E4   __BLCPS
 0004C6   __CMPSL
 00056B   __CMPUL
 0002CE   __DIVSI
    :        :
 000E48   _strtok
 0002C9   _watchdog
>
When /a is omitted, all the defined symbols are displayed in alphabetical order.

>sy /a↵
 Address  Symbol
 000100   __copytable
 00014A   _rtclock
 0002AE   __START
 0002AE   __start_cpt
 0002C9   _watchdog
    :        :
 00F1F2   __ungetc
 00F800   __lc_es
>
When /a is specified, the symbol list is sorted by address.

Note

The symbol list can only be displayed when the object file (.abs) in IEEE-695 format has been read or
when the symbol file (.sy) is loaded simultaneously with the program HEX file (.psa).

GUI utility

None



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 177
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

w  (symbol watch)

Function

This command displays the content of a specified symbol.

Format

(1) >w <symbol> [;<option>] [/a]↵ (direct input mode)

(2) >w↵ (guidance mode)
File name: <file name>↵
Function name: <function>↵
Symbol name: <symbol>↵
Format ? (B/Q/D/H) <option>↵
Display in watch window? (Y/N) {Y|N}↵
<symbol> = Current value
>

<symbol>: Symbol name
<option>: Display format option

B Binary
Q Octal
D Decimal
H Hexadecimal (default)

<file name>: Source file name
<function>: Function name

Examples

Format (1)
>w saveFlg ;B↵
saveFlg = 00000001 ... Shows the symbol value
>w saveFlg ;B /a↵ ... Shows the symbol value in the [Watch] window
>w xxx↵
No such symbol exists. ... If the symbol cannot be found
>
When the /a option is specified, the symbol is registered in the watch symbol list when its name and
value are displayed in the [Watch] window, and the displayed contents are automatically updated
according to the [Watch] window's update mode.

Format (2)
>w↵
File name: calc.c↵
Function name: main↵
Symbol name: count↵
Format? (B/Q/D/H)H↵
Display in watch window? (Y/N)N↵
count = 0x00↵
>
To specify a global symbol, simply press the [Enter] key without entering a file name and function name.

Note

Symbol information can only be displayed using the w command when an IEEE-695 format object file
(.abs) is loaded in the ICE.

GUI utility

[Watch] button (located in the [Source] window)
Select (highlight) a symbol name in the [Source]
window by dragging it, then click the [Watch] button.
The selected symbol is then registered in the symbol list
in the [Watch] window. Once registered this way, the
symbol value can be confirmed in the [Watch] window.

 [Watch] button



CHAPTER 13  S1C88 FAMILY DEBUGGER

178 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

13.9.10 Load File

lf  (load file)

Function

This command loads an object file (.abs: IEEE-695 format, .psa: Motorola S2 format) and/or a function
option HEX file (.fsa: Motorola S2 format) into the debugger.

Format

(1) >lf <file name>↵ (direct input mode)

(2) >lf↵ (guidance mode)
Program object file name (.ABS/.PSA) . . . ? <file name>↵
Function option file name (.FSA) . . . ? <file name>↵
OK!
>

<file name>: File name to be loaded (path can also be specified)

Examples

Format (1)
>lf test.abs↵
OK!
Symbol file is loaded. ... Indicates that symbol information has been loaded.
>lf test.fsa↵
OK!
>
In format (1), the object file and function option file must be specified separately.

Format (2)
>lf↵
Program object file name(.ABS/.PSA) ... ? test.abs↵
Function option file name(.FSA) ... ? test.fsa↵
OK!
Symbol file is loaded.
>
In format (2), the object file and function option file can be loaded in one operation by entering both
file names according to the guidance. You can skip loading one of the two files by simply pressing the
[Enter] key.

Notes

  • The debugger determines the type of file from the specified file name. Therefore, only files that have
one of the above extensions can be loaded. Specifying other files results in an error.

  • If you want to use source display and symbols when debugging a program, the object file must be in
IEEE-695 format that contains debug information loaded into the debugger.

  • If the [Source] window is opened when loading a file, its contents are updated. The program contents
are displayed from the current PC address.

  • If an error occurs when loading a file, portions of the file that have already been read will remain in
the emulation memory.

  • When a program file is loaded, all set breakpoints and break conditions are cleared, as are all trace
information and coverage information acquired.

GUI utility

[File | Load File…] menu item, [Load File] button
When this menu item or button is selected, a dialog box appears allowing selection of an object file to
be loaded.

 [Load File] button



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 179
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

par  (load parameter file)

Function

This command loads a parameter file (.par) to set memory map information.
When a SelfFlash program address must be set, a break must be set at the end address of that pro-
gram.

Format

(1) >par <file name>↵ (direct input mode)

(2) >par↵ (guidance mode)
File Name      . . . ? <file name>↵
>

<file name>: Parameter file name to be loaded (path can also be specified)

Examples

Format (1)
>par 88xxx.par↵
>

Format (2)
>par↵
File name   ? 88xxx.par↵
>

Notes

  • When a parameter file is loaded, all set breakpoints and break conditions are cleared, as are all trace
information and coverage information acquired.

  • If the map information of the loaded parameter file is erroneous, the debugger fails to initialize the
ICE and cannot run the program.

GUI utility

[File | Load Parameter File] menu item, [Load Parameter] button
When this menu item or button is selected, a dialog box appears allowing selection of a parameter file
to be loaded.

 [Load Parameter] button



CHAPTER 13  S1C88 FAMILY DEBUGGER

180 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

13.9.11 Trace

td  (trace data display)

Function

This command displays the trace information that has been sampled into the ICE trace memory.

Format

(1) >td [<cycle>]↵ (direct input mode)

(2) >td↵ (guidance mode)
Start index (ENTER as 0)? : <cycle>↵
(Trace data is displayed)
>

<cycle>: Start cycle number of trace data; decimal (from 0 to 8,191)

Display

The following lists the contents of trace information:
INS: CPU cycle number (decimal)
P. Addr: Physical address (hexadecimal)
L. Addr: Logical address (hexadecimal)
Code: Object code (hexadecimal)
Mnemonic: Disassembled code
BA to YP: Values of the CPU registers after finishing the cycle (hexadecimal)
SC, CC: Condition flag status
Memory: Memory access status (other than code fetch status)

MR:  Memory read
MW: Memory write
[<address>] = <data>:  Accessed memory address and read/write data (hexadecimal)

(1) When [Trace] window is opened:

When the td command is input without <cycle>, the [Trace] window redisplays the latest data; when
the td command is input with <cycle>, the trace data starting from <cycle> is displayed in the [Trace]
window.
The display contents of the [Trace] window is updated after an execution of the target program.
All trace data can be displayed by scrolling the window.



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 181
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

(2) When [Trace] window is closed:
When the td command is input without <cycle>, the debugger displays 11 lines of the latest trace data
in the [Command] window. When the td command is input with <cycle>, the debugger displays 11
lines of the trace data from <cycle> in the [Command] window.
>td↵
Start index (ENTER as 0)? : ↵
Ins. P.Addr L.Addr  Code     Mnemonic           BA   HL   IX   IY   SP  BR EP XP YP    SC     CC  Memory

0000 000179 00:0179 CF7000   LD BA,[SP+00h]    xxxx xxxx xxxx F0E4 xxxx xx xx xx xx 11------ 00C0

0001 00017A 00:017A                            xxxx xxxx xxxx F0E4 xxxx xx xx xx xx 11------ 00C0

0002 00017B 00:017B                            xxxx xxxx xxxx F0E4 xxxx xx xx xx xx 11------ 00C0

0003 0077FC 00:F7FC                            xx00 xxxx xxxx F0E4 xxxx xx xx xx xx 11------ 00C0 MR:[00F7FC]=00

0004 00017C 00:017C                            xx00 xxxx xxxx F0E4 xxxx xx xx xx xx 11------ 00C0

0005 0077FD 00:F7FD                            0100 xxxx xxxx F0E4 xxxx xx xx xx xx 11------ 00C0 MR:[00F7FD]=01

0006 00017C 00:017C 98       DEC BA            0100 xxxx xxxx F0E4 xxxx xx xx xx xx 11------ 00C0

0007 00017D 00:017D                            0100 xxxx xxxx F0E4 xxxx xx xx xx xx 11------ 00C0

0008 00017D 00:017D CF7400   LD [SP+00h],BA    00FF xxxx xxxx F0E4 xxxx xx xx xx xx 11------ 00C0

0009 00017E 00:017E                            00FF xxxx xxxx F0E4 xxxx xx xx xx xx 11------ 00C0

0010 00017F 00:017F                            00FF xxxx xxxx F0E4 xxxx xx xx xx xx 11------ 00C0

>td 11↵
Ins. P.Addr L.Addr  Code     Mnemonic           BA   HL   IX   IY   SP  BR EP XP YP    SC     CC  Memory

0011 0077FC 00:F7FC                            00FF xxxx xxxx F0E4 xxxx xx xx xx xx 11------ 00C0 MW:[00F7FC]=FF

0012 000180 00:0180                            00FF xxxx xxxx F0E4 xxxx xx xx xx xx 11------ 00C0

0013 0077FD 00:F7FD                            00FF xxxx xxxx F0E4 xxxx xx xx xx xx 11------ 00C0 MW:[00F7FD]=00

0014 000180 00:0180 E7EB     JRS NZ,EBh        00FF xxxx xxxx F0E4 xxxx xx xx xx xx 11------ 00C0

0015 000181 00:0181                            00FF xxxx xxxx F0E4 xxxx xx xx xx xx 11------ 00C0

0016 00016C 00:016C CE3501   CP [HL],#01h      00FF xxxx xxxx F0E4 xxxx xx xx xx xx 11------ 00C0

0017 00016D 00:016D                            00FF xxxx xxxx F0E4 xxxx xx xx xx xx 11------ 00C0

0018 00016E 00:016E                            00FF xxxx xxxx F0E4 xxxx xx xx xx xx 11------ 00C0

0019 000C53 00:0C53                            00FF xxxx xxxx F0E4 xxxx xx xx xx xx 11------ 00C0 MR:[000C53]=01

0020 00016F 00:016F E706     JRS NZ,06h        00FF xxxx xxxx F0E4 xxxx xx xx xx xx 11-----Z 00C0

0021 000170 00:0170                            00FF xxxx xxxx F0E4 xxxx xx xx xx xx 11-----Z 00C0

>

(3) During log output
When the command execution result is being output to a log file as specified by the log command, the
trace data is displayed in the [Command] window and its contents are also output to the log file.
If the [Trace] window is closed, data is displayed in the same way as in (2) above.
If the [Trace] window is open, its contents are redisplayed. In this case, the same number of lines are
displayed in the [Command] window as displayed in the [Trace] window.

(4) Successive display
When you execute the td command, the trace data can be displayed successively by entering the
[Enter] key only until some other command is executed.
When you input the [Enter] key, the [Trace] window is scrolled forward one screen.
When displaying data in the [Command] window, 11 lines of data preceding the previously displayed
cycle are displayed in the [Command] window (the same number of lines as displayed in the [Trace]
window if the command is executed during log output).
The direction of display is such that each time you input the [Enter] key, data on older execution
cycles is displayed (FORWARD). This direction can be reversed (BACKWARD) by entering the [B]
key. To return the display direction to FORWARD, input the [F] key. If the [Trace] window is open, the
direction in which the window is scrolled is also changed.

>td 100↵ ... Started display in FORWARD.
    (Data on cycle Nos. 100 to 110 is displayed.)
>b↵ ... Changed to BACKWARD.
    (Data on cycle Nos. 99 to 89 is displayed.)
>↵ ... Continued display in BACKWARD.
    (Data on cycle Nos. 88 to 78 is displayed.)
>f↵ ... Changed back to FORWARD.
    (Data on cycle Nos. 99 to 89 is displayed.)
>



CHAPTER 13  S1C88 FAMILY DEBUGGER

182 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Notes

  • Specify the trace cycle No. within the range of 0 to 0x1fff (8,191). An error results if this limit is
exceeded.

  • The trace memory receives new data until a break occurs. When the trace memory is filled, old data is
overwritten by new data.

GUI utility

[Trace | Trace] menu item
When this menu item is selected, the [Trace] window opens and displays the latest trace data.
At the same time, the dialog box shown below appears to specify the cycle number to be displayed.

Enter the display start and end cycle numbers
in hexadecimal to the [Start from] and [End
to] text boxes, respectively, and then click
[OK]. These entries can be omitted, and if
[Start from] is omitted, the trace data is
displayed from cycle number 0.

[Trace | Setting...] menu item
When this menu item is selected, the [Trace Information Setting] dialog box appears to set trace
conditions. See Section 13.8.6, "Trace Function", for details.



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 183
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

ts  (trace search)

Function

This command searches trace information from the trace memory under a specified condition. The
search condition can be selected from three available conditions:

1. Search by executed address
In this mode, you can specify a program memory address. The debugger searches the cycle in
which the specified address is executed.

2. Search for a specified memory read cycle
In this mode, you can specify a data memory address. The debugger searches the cycle in which
data is read from the specified address.

3. Search for a specified memory write cycle
In this mode, you can specify a data memory address. The debugger searches the cycle in which
data is written to the specified address.

Format

(1) >ts <option> <address>↵ (direct input mode)

(2) >ts↵ (guidance mode)
1. pc address   2. data read address   3. data write address   ...? <1 | 2 | 3>↵
Search address ?: <address>↵
(Search result is displayed)
>

<option>: Search condition; pc (= executed address), dr (= data read address), dw (= data write address)
<address>: Search address; hexadecimal or symbol (IEEE-695 format only)
Condition: 0 ≤ address ≤ 0x7fffff (when pc is specified), 0 ≤ address ≤ 0xffffff (when dr/dw is specified)

Examples

The search results are displayed in the [Trace] window if it is opened; otherwise, the results are
displayed in the [Command] window in the same way as for the td command.

Format (1)
>ts pc 823↵
Searching trace data ... OK!
Ins. P.Addr L.Addr  Code     Mnemonic              BA   HL   IX   IY ...
0006 000823 00:0823                               0006 xxxx xxxx xxxx ...
0007 000823 00:0823 E7FA     JRS NZ,FAh           0006 xx07 xxxx xxxx ...
>

Format (2)
>ts↵
1.pc address  2.data read address  3.data write address ...? 1↵
Searching trace data ... OK!
Ins. P.Addr L.Addr  Code     Mnemonic              BA   HL   IX   IY ...
0006 000823 00:0823                               0006 xxxx xxxx xxxx ...
0007 000823 00:0823 E7FA     JRS NZ,FAh           0006 xx07 xxxx xxxx ...
>

When command execution results are being output to a log file by the log command, the search
results are displayed in the [Command] window as well as output to the log file even when the
[Trace] window is opened.

Note

The address specified for search must be within the range of the memory area available for each
microcomputer model.
An error results if the limit is exceeded or the input one is not a hexadecimal number or not a valid
symbol.



CHAPTER 13  S1C88 FAMILY DEBUGGER

184 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

GUI utility

[Trace | Trace Search...] menu item
When this menu item is selected, a dialog appears for setting a search condition.

Select an option using the radio button and enter an
address in the text box, then click [OK].



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 185
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

tf  (trace file)

Function

This command saves the specified range of the trace information displayed in the [Trace] window by
the td or ts command to a file.

Format

(1) >tf <file name> [<cycle1> [<cycle2>]]↵ (direct input mode)

(2) >tf↵ (guidance mode)
Start index (min 0) ? : <cycle1>↵
End index (max 8191) ? : <cycle2>↵
File Name     ? : <file name>↵
>

<file name>: Output file name (path can also be specified)
<cycle1>: Start cycle number; decimal (0 by default)
<cycle2>: End cycle number; decimal (0x1fff by default)
Condition: 0 ≤ cycle1 ≤ cycle2 ≤ 0x1fff

Examples

Format (1)
>tf trace.trc↵ ... Saves all trace information extracted by the td command.
8191-8000
8000-7000
    :
1000-   1
OK!
>

Format (2)
>tf↵
Start index (min 0) ? :0↵
End index (max 8191) ? :100↵
File name   ? :test.trc↵
1000-   1
OK!
>

Notes

 • If an existing file is specified, the file is overwritten with the new data.

 • The default value of <cycle1> is 0, and the default value of <cycle2> is 0x1fff (8191), the latest trace
data.

GUI utility

[Trace | Trace File…] menu item
When this menu item is selected, a dialog box appears allowing specification of the parameters.

Enter a start cycle number, end cycle number and a file
name, then click [OK].
To save all the trace information, leave the [Start Point] and
[End Point] boxes blank.
The file name can be selected using a standard file selection
dialog box that appears by clicking [Browse...].



CHAPTER 13  S1C88 FAMILY DEBUGGER

186 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

13.9.12 Coverage

cv  (coverage)

Function

This command displays the coverage information (accessed addresses) acquired by the ICE while
running the target program.

Format

>cv <address1> [<address2>]↵ (direct input mode)

<address1>: Start address; hexadecimal or symbol (IEEE-695 format only)
<address2>: End address; hexadecimal or symbol (IEEE-695 format only)
Condition: 0 ≤ address1 ≤ address2 ≤ last memory address (0xffffff)

Examples

(1) When [Coverage] window is opened:

Coverage information is displayed in a 16 bytes per line format beginning with <address1>. P.Addr
indicates the start address (physical address) of each line. The accessed addresses are marked with an
asterisk (∗ ) and addresses not accessed are marked with a space " ". The Count value indicates the
total addresses accessed (in bytes) among the 16 bytes on each line. All acquired data can be displayed
by scrolling the screen.

(2) When [Coverage] window is closed:
If <address2> is omitted when executing the cv command, coverage information from <address1> to
the end address is displayed in the [Command] window.
If <address2> is specified when executing the cv command, coverage information from <address1> to
<address2> is displayed.

>cv 100↵ ...Shows the executed addresses following 0x000100.
   000100 - 00020e
   000233 - 0002c4
   0004e4 - 0004e9
          :
   00ff40
   00ff54 - 00ff55
   00ff61
   00ff63
>cv 100 1ff↵ ...Shows the executed addresses from 0x000100 to 0x0001ff.
   000100 - 0001ff
>



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 187
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Notes

  • Coverage information is recorded according to the acquisition mode (i.e., whether to acquire informa-
tion from the entire address space or data space only) and acquisition range (selected 64 KB area)
specified with the debugger's coverage options. The dialog box displayed by selecting [Setting...] from
the [Coverage] menu is used to set the coverage options. For details, see Section 13.8.7, "Coverage".

  • The addresses specified here must be within the range of the program memory area available with
each microcomputer model.
An error results if the limit is exceeded or the input one is not a hexadecimal number or a valid
symbol.

  • An error results if the start address is larger than the end address.

GUI utility

[Coverage | Coverage] menu item
Selecting this menu command opens the [Coverage] window.
At this time, the dialog box shown below appears, allowing you to specify the address from which to
start displaying coverage information.

Enter the address in hexadecimal notation
from which to start displaying coverage
information in the [Start from] text box, then
click the [OK] button. To display coverage
information in the [Coverage] window, you
can leave [End to] blank. Note that the start
and end addresses of the selected 64 KB area
are assumed if start and end addresses are not
entered in these text boxes.



CHAPTER 13  S1C88 FAMILY DEBUGGER

188 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

cvc  (coverage clear)

Function

This command clears the coverage information.

Format

>cvc↵ (direct input mode)

GUI utility

[Coverage | Coverage Clear] menu item
When this menu item is selected, the cvc command is executed.



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 189
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

13.9.13 Command File

com  (execute command file)

Function

This command reads a command file and executes the debug commands written in that file. You can
execute the commands successively, or set an 0 to 256 seconds of interval between each command
execution in 1-second increments.

Format

(1) >com <file name> [<interval>]↵ (direct input mode)

(2) >com↵ (guidance mode)
File name      ? <file name>↵
Execute commands  1. successively  2. with wait ...? <1 | 2>↵
Interval (0 - 256 seconds)  : <interval>↵ (appears only when "2. With wait" is selected)
>(Display execution progress)

<file name>: Command file name (path can also be specified)
<interval>: Interval (wait seconds) between each command; decimal (0–256)

Examples

Format (1)
>com batch1.cmd↵
>..... ... Commands in "batch1.com" are executed successively.

Format (2)
>com↵
File name   ? test.cmd↵
Execute commands   1. successively   2. with wait   ...? 2↵
Wait time (0 - 256 seconds) : 2↵
>..... ... 2 sec. of interval is inserted after each command execution.

Notes

  • Any contents other than commands cannot be written in the command file.

  • An error results if the file you specified does not exist.

  • Another command file can be read from a command file. However, the nesting of command files is
limited to a maximum of 5 levels. An error results if a com (or cmw) command at the sixth level is
encountered, the commands in the file specified by that com (or cmw) command will not be executed,
but the subsequent execution of the commands in upper level files will be executed continuously.

  • If you specify an interval more than 256 seconds, it is set to 256 by default.

  • Use the hot key ([CTRL]+[Q]) to stop executing a command file.

GUI utility

[Run | Command File…] menu item
When this menu item is selected, a dialog box appears allowing selection of a command file.

Enter a file name into the [Command File
Path] text box, then click [Execute]. The
file name can be selected using a standard
file selection dialog box that appears by
clicking [Browse...].
To specify an interval, select [With Wait]
and enter the number of seconds into the
[Executing Wait Time] text box.



CHAPTER 13  S1C88 FAMILY DEBUGGER

190 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

cmw  (execute command file with wait)

Function

This command reads a command file and executes the debug commands written in that file at prede-
termined time intervals.
The execution interval of each command can be set in a range of 1 to 256 seconds (in 1-second incre-
ments) using the md command. In the initial debugger settings, the execution interval is 1 second.

Format

(1) >cmw <file name>↵ (direct input mode)

(2) >cmw↵ (guidance mode)
File name      ? <file name>↵
>(Display execution progress)

<file name>: Command file name (path can also be specified)

Examples

Format (1)
>cmw batch1.cmd↵
>.....

Format (2)
>cmw↵
File name   ? test.cmd↵
>.....

Notes

  • Any contents other than commands cannot be written in the command file.

  • An error results if the file you specified does not exist.

  • Another command file can be read from a command file. However, the nesting of command files is
limited to a maximum of 5 levels. An error results if a cmw (or com) command at the sixth level is
encountered, the commands in the file specified by that cmw (or com) command will not be executed,
but the subsequent execution of the commands in upper level files will be executed continuously.

  • If the cmw command is written in the command file that you want to be read by the com command,
all other commands following that command in the file (even when a com command is included) will
be executed at predetermined time intervals.

  • Use the hot key ([CTRL]+[Q]) to stop executing a command file.

GUI utility

None
However, the same function as the cmw can be executed using [Command File...] in the [Run] menu
(see the com command).



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 191
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

rec  (record commands to a file)

Function

This command records all the debug commands executed following this command to a specified
command file.

Format

(1) >rec <file name>↵ (direct input mode)

(2) >rec↵ (guidance mode) ...See Examples for guidance.

<file name>: Command file name (path can also be specified)

Examples

(1) First rec execution after debugger starts up
>rec↵
File name   ? sample.cmd↵
1. append   2. clear and open   ...? 2↵ ...Displayed if the file is already exists.
>

(2) rec command input in the second and following sessions
>rec↵
Set to record off mode. ...Record function toggles when rec is input.
.....
>rec↵
Set to record on mode.

Notes

  • In record on mode, besides the commands directly input in the [Command] window, the commands
executed by selecting from a menu or with a tool bar button (except the [Help] menu command) are
also displayed in the [Command] window, and output to the specified file.
If you modify the register value or data memory contents by direct editing in the [Register] or [Dump]
window, or set breakpoints in the [Source] window by double-clicking the mouse, the corresponding
commands are also displayed in the [Command] window, and output to the specified file.

  • At the first time, you should specify the file name to which all debug commands following the rec
command will be output.

  • Once an output command file is opened, the recording is suspended and resumed (toggled) every
time you input the rec command. This toggle operation remains effective until you terminate the
debugger. If you want to record following commands to another file, you can use format (1) to specify
the file name, then current output file is closed and all following commands will be recorded in the
newly specified file.

  • If you want to execute some commands frequently, you can record them to a file at the first execution,
and then use the com or cmw command to execute that command file you made.

GUI utility

[Option | Record…] menu item
Selecting this menu command displays a dialog box for
specifying a command file. To specify a new command file,
enter the command file name in [Current Command File]
or click the [New...] button and select from the list that
appears.
If the debugger has already started recording commands,
use the [Record State] radio buttons to turn recording on or
off.



CHAPTER 13  S1C88 FAMILY DEBUGGER

192 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

13.9.14 log

log  (log)

Function

This command saves the input commands and the execution results to a file.

Format

(1) >log <file name>↵ (direct input mode)

(2) >log↵ (guidance mode) ...See Examples for guidance.

<file name>: Log file name (path can also be specified)

Examples

(1) First log execution after debugger starts up
>log↵
File name   ? debug1.log↵
1. append   2. clear and open   ...? 2↵ ...Displayed if the file is already exists.
>

(2) log command input in the second and following sessions
>log↵
Set to log off mode. ...Logging function toggles when log is input.
.....
>log↵
Set to log on mode.

Notes

  • In log on mode, the contents displayed in the [Command] window are written as displayed directly to
the log file.
The commands executed by selecting from a menu or with a tool bar button are displayed in the
[Command] window. However, the [Help] menu and button commands are not displayed. If you
modify the register value or data memory contents by direct editing in the [Register] or [Dump]
window, or set breakpoints in the [Source] window by double-clicking the mouse, the corresponding
commands and the execution results are also displayed in the [Command] window, and output to the
specified file.

The displayed contents of the [Source], [Dump], [Trace] or [Register] window produced by command
execution are displayed in the [Command] window as well. The on-the-fly information is also dis-
played. However, the updated contents of each window after some execution, as well as the contents
of each window scrolled by scroll bar or arrow keys, are not displayed.

  • At the first time, you should specify the file name to which all following debug commands and
execution results will be output.

  • Once a log file is open, log output is suspended and resumed (toggled) every time you input the log
command. This toggle operation remains effective until you terminate the debugger. If you want to
specify a new log file, you can use format (1) to specify the file name, then current log file is closed
and following commands and results will be output to the newly specified file.

GUI utility

[Option | Log…] menu item
Selecting this menu command displays a dialog box for specifying
a log file. To specify a new log file, enter the log file name in
[Current Log File] or click the [New...] button and select from the
list that appears.
If the debugger has already started logging commands, use the
[Log State] radio buttons to turn logging on or off.



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 193
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

13.9.15 Map Information

ma  (map information)

Function

This command displays the map information that is set by a parameter file.

Format

>ma↵ (direct input mode)

Example

After the command is input, the system displays the map information in the internal memory area,
external memory area and I/O area.
>ma↵
[Internal memory]
  RAM 00F000 - 00F7FF
  STK 00F500 - 00F7FF
  LCD 00F800 - 00F842
  LCD 00F900 - 00F942
  LCD 00FA00 - 00FA42
  LCD 00FB00 - 00FB42
  LCD 00FC00 - 00FC42
  LCD 00FD00 - 00FD42
[External memory]
  ROM 000000 - 00BFFF
  RAM 080000 - 080001
  RAM 100000 - 107FFF
  RAM 180000 - 1801FF
[I/O memory]
        0 1 2 3 4 5 6 7 8 9 A B C D E F
  FF00  * * *
  FF10  * * * *
  FF20  * * * * * *
  FF30  * * * * * * *
  FF40  * * * * * *     * * *
  FF50  * * * * * *
  FF60  * * * *
  FF70  * * * * * * * * *
  FF80
  FF90
  FFA0
  FFB0
  FFC0
  FFD0
  FFE0
  FFF0

  ∗ When displaying the map information of the I/O area, the mapped addresses are marked by the letter
"∗ ".

GUI utility

None



CHAPTER 13  S1C88 FAMILY DEBUGGER

194 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

13.9.16 FPGA Operation

xfer  (xilinx fpga data erase)

Function

This command erases the contents of the FPGA on the standard peripheral circuit board inserted in
the ICE.

Format

>xfer↵ (direct input mode)

Example

>xfer↵
>

After the command is entered, a dialog box appears to select start or cancel erasing.

Notes

  • A dialog box appears to show the progress of erasing while executing. To abort erasing, click the
[Cancel] button on the dialog box or press the [ESC] key. In this case, the standard peripheral circuit
board cannot be used until the FPGA is erased and reprogrammed.

  • Erase time is about TBD minutes TBD seconds (max.).

GUI utility

None



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 195
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

xfwr  (xilinx fpga data write)

Function

This command writes peripheral circuit data to the FPGA on the standard peripheral circuit board
inserted in the ICE.

Format

>xfwr <file name> ;{H | S} [;N]↵ (direct input mode)
<file name>: FPGA data file (.mot: Motorola S, .mcs: Intel HEX)
H: Load Intel HEX file
S: Load Motorola S file
N: Skip erasing before writing data

Examples

>xfwr ..\ice\fpga\c88xxx.mot ;S↵
>
In this example, the main FPGA is erased and then data in the c88xxx.mot file (Motorola S format) is
written to it.

>xfwr ..\ice\fpga\c88xxx.mot ;S ;N↵
>
In this example, erasing before writing is skipped. However, the main FPGA must be erased before-
hand.

Notes

  • Use the file provided by Seiko Epson as the data to be written without modifying the contents. Also
the file extension cannot be changed as it is .mot (Motorola S) or .mcs (Intel HEX). Specifying an
illegal file results in an error and data cannot be written.

  • The N option can be specified when the FPGA has been erased completely using the xfer command.
When writing data to the FPGA that has not been erased, do not specify the N option.

  • A dialog box appears to show the progress while executing. To abort execution, click the [Cancel]
button on the dialog box or press the [ESC] key. In this case, the standard peripheral circuit board
cannot be used until the FPGA is erased and reprogrammed.

  • Process time including erase is about TBD minutes (max.).

GUI utility

None



CHAPTER 13  S1C88 FAMILY DEBUGGER

196 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

xfcp  (xilinx fpga data compare)

Function

This command compares the contents between the FPGA and the specified file.

Format

>xfcp <file name> ;{H | S}↵ (direct input mode)
<file name>: FPGA data file (.mot: Motorola S, .mcs: Intel HEX)
H: Intel HEX file
S: Motorola S file

Examples

>xfcp ..\ice\fpga\c88xxx.mot ;S↵
> ...No error has occurred.

>xfcp ..\ice\fpga\c88yyy.mot ;S↵
Warning : Verify error ...Verify error has occurred.
0X00000  0XFF ...Error addresses and data in the FPGA are displayed.
0X00001  0X84
0X00002  0XAB
   :      :
>

Notes

  • Data is verified only within the valid address range in the specified file. If the FPGA contains data
outside the range, it is not verified.

  • Use the file provided by Seiko Epson as the data to be compared without modifying the contents. Also
the file extension cannot be changed as it is .mot (Motorola S) or .mcs (Intel HEX). Specifying an
illegal file results in an error.

  • A dialog box appears to show the progress while executing. To abort execution, click the [Cancel]
button on the dialog box or press the [ESC] key.

GUI utility

None



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 197
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

xdp  (xilinx fpga data dump)

Function

This command displays the content of the FPGA on the standard peripheral circuit board to the
[Command] window in a 16 words/line hexadecimal dump format.

Format

>xdp <address1> [<address2>]↵ (direct input mode)
<address1>: Start address to display; hexadecimal
<address2>: End address to display; hexadecimal
Condition: 0 ≤ address1 ≤ address2 ≤ FPGA end address

Examples

If only <address1> is defined, the debugger displays data for 256 words from <address1>.
>xdp 0↵
Addr   +0 +1 +2 +3 +4 +5 +6 +7  +8 +9 +A +B +C +D +E +F
00000: FF 84 AB EF F9 D8 FF BB  FB BB BF FB BF BF FB BF
00010: BB FB BB BF BB BF FB BB  BF BF FB BB FF EE FF EE
00020: EF FE D7 FB FE EE EF EF  EE EE FE EE FB FE EF EF
  :               :                        :
000E0: FF FF FF FF FB FF FF FF  BD DF FB FD DF FF FF FF
000F0: FF FF BF FF FF FF FF F9  FF FF FF FF FF FF FF FF
>

If both <address1> and <address2> are defined, the debugger displays data from <address1> to
<address2>.
>xdp 100 100↵
Addr   +0 +1 +2 +3 +4 +5 +6 +7  +8 +9 +A +B +C +D +E +F
00100: FF
>

Notes

  • An error results if the specified address is not a hexadecimal number.

  • An error results if the start address is larger than the end address.

GUI utility

None



CHAPTER 13  S1C88 FAMILY DEBUGGER

198 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

13.9.17 Quit

q  (quit)

Function

This command quits the debugger.

Format

>q↵ (direct input mode)

GUI utility

[File | Exit] menu item
Selecting this menu item terminates the debugger.



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 199
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

13.9.18 Help

?  (help)

Function

This command displays the input format of each command.

Format

(1) ? (direct input mode)
(2) ? <n> (direct input mode)
(3) ? <command> (direct input mode)

<n>: Command group number; decimal
<command>: Command name
Condition: 1 ≤ n ≤ 6

Examples

When you input the command in Format 1 or 2, the system displays a list of commands classified by
function. Use the command in Format 3 if you want to display the input format of each individual
command.
>?↵
group 1: data & register ............ dd,de,df,dm,ds/rd,rs

group 2: execution & break .......... g,gr,s,n,se,rst/bp,bpa,bpr,bc(bpc),bas,ba,bar,bd,bdr,bl,bac

group 3: source & symbol ............ u,sc,m/sy/w

group 4: file & flash rom ........... lf, par/xfer,xfwr,xfcp,xdp

group 5: trace & coverage ........... td,ts,tf/cv,cvc

group 6: others ..................... par/com,cmw,rec/log/ma/q/?

 Type "? <group #>" to show group or "? <command>" to get usage of the command.

>? 1↵
group 1: data & register

dd (data dump), de (data enter), df (data fill), dm (data move), ds (data search)

rd (register display), rs (register set)

 Type "? <command>" to get usage of the command.

>? dd↵
dd (data dump): dump memory content with hexadecimal format

usage: dd [addr1] [addr2] [unit]   ... dump from 0x0 in byte unit if without parameter

       dd [addr1] [@size] [unit]   ... dump from 0x0 in byte unit if without parameter

unit: display unit (-B (default) / -W / -L / -F / -D)

GUI utility

None



CHAPTER 13  S1C88 FAMILY DEBUGGER

200 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

13.10 Error Messages

Debugger error messages
Error message Description

Error : Address out of range : The specified address is outside the valid range.
use 0x000000 - 0xffffff
Error : Address out of range, use 0 - 0x7FFFFF The address specified here is outside the program memory area.
Error : Address out of range, use 0 - 0xFFFFFF The address specified here is outside the data memory area.
Error : Cannot open device(ICE88UR) Failed to connect to the ICE.
Error : Cannot open file Cannot open the file.
Error : Checksum error Checksum resulted in an error.
Error : Coverage mode is off or the coverage Coverage mode is turned off or the ICE being used does not support
mode is not supported coverage mode.
Error : Data out of range, use 0 - 0xFF The specified value is outside the valid range of data.
Error : DLL Initialization error Failed to initialize DLL.
Error : End address < start address The end address specified here is smaller than the start address.
Error : End index < start index The end cycle specified here is smaller than the start cycle.
Error : Error file type (extension should be CMD) The specified file extension is not effective as a command file.
Error : Error file type (extension should be PAR) The specified file extension is not effective as a parameter file.
Error : Failed ICE88UR initialization Failed to initialize the ICE.
Error : Failed to initialize DLL : %s Failed to initialize DLL.
Error : Failed to Load DLL Failed to load DLL needed to start DB88.
Error : Failed to open : %s Could not open the file.
Error : Failed to read BA Error occurred when reading the BA register.
Error : Failed to read BR Error occurred when reading the BR register.
Error : Failed to read CB Error occurred when reading the CB register.
Error : Failed to read CC Error occurred when reading the CC register.
Error : Failed to read EP Error occurred when reading the EP register.
Error : Failed to read file : %s Error occurred when reading the file.
Error : Failed to read HL Error occurred when reading the HL register.
Error : Failed to read NB Error occurred when reading the NB register.
Error : Failed to read PC Error occurred when reading the PC register.
Error : Failed to read SC Error occurred when reading the SC register.
Error : Failed to read SP Error occurred when reading the SP register.
Error : Failed to read X Error occurred when reading the X register.
Error : Failed to read Y Error occurred when reading the Y register.
Error : Failed to road DLL : %s Failed to load DLL.
Error : Failed to write BA Error occurred when writing to the BA register.
Error : Failed to write BR Error occurred when writing to the BR register.
Error : Failed to write CB Error occurred when writing to the CB register.
Error : Failed to write CC Error occurred when writing to the CC register.
Error : Failed to write EP Error occurred when writing to the EP register.
Error : Failed to write HL Error occurred when writing to the HL register.
Error : Failed to write NB Error occurred when writing to the NB register.
Error : Failed to write PC Error occurred when writing to the PC register.
Error : Failed to write SC Error occurred when writing to the SC register.
Error : Failed to write SP Error occurred when writing to the SP register.
Error : Failed to write X Error occurred when writing to the X register.
Error : Failed to write Y Error occurred when writing to the Y register.
Error : ICE88UR Diagnostic error Detected an error during ICE self-diagnostic processing.
Error : Ice88ur Initialization failed Failed to initialize the ICE.
Error : Ice88ur is already running ICE88UR.EXE is up and running.

(DB88 and ICE88UR cannot be started at the same time.)
Error : ICE88UR is turned off Power to the ICE is turned off.
Error : Illegal initialization packet data Initialization packet data is in error.
Error : Incorrect number of parameters The number of parameters for the command is illegal.
Error : Incorrect r/w option, use r/w/* The R/W option specified here is invalid.
Error : Incorrect register name, The register name specified here is invalid.
use PC/SP/IX/IY/A/B/HL/BR/CB/EP/XP/YP/SC
Error : Index out of range, use 0 - 8191 The specified trace cycle number is outside the valid range.
Error : Initialization failed! Failed to initialize DB88. Please restart DB88.
Please quit and restart!
Error : Input address does not exist The address specified here has no breakpoints set.
Error : Invalid command The command entered here is invalid.



CHAPTER 13  S1C88 FAMILY DEBUGGER

S5U1C88000C MANUAL II EPSON 201
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Error message Description
Error : Invalid data pattern The data pattern entered here is invalid.
Error : Invalid display unit, use -B/-W/-L/-F/-D The display unit specified here is invalid.
Error : Invalid DLL ModuleID DLL identification error
Error : Invalid file name The specified file extension is not effective as a program file or function

option file.
Error : Invalid fsa file The FSA file is invalid.
Error : Invalid hexadecimal string This is an invalid hexadecimal string.
Error : Invalid value The value entered here is invalid.
Error : Maximum nesting level(5) is exceeded, Command files have been nested exceeding the nesting limit.
cannot open file
Error : Memory ranges in %s are invalid or the The memory range of the CPU INI file is invalid.
file is not exist
Error : No symbol information No symbol information is found.

(No symbol files have been loaded.)
Error : Number of steps out of range, The specified number of steps exceeds the limit.
use 0 - 65535
Error : The Memory Area cannot include the The specified area overlaps the 0x00FFFF–0x010000 address
boundary between 0x00FFFF and 0x010000 boundary.
Error : The Memory Area must be above Any memory area specified above 0x010000 must be greater than
0x10000, and longer than 256 bytes 256 bytes in size.
Error : This command is not supported in The trace and coverage commands are not effective when trace or
current mode coverage is turned off.
Error : Unable to get the coverage area number Failed to get the coverage area number.
Error : Unable to get the coverage mode Failed to get coverage information.
Error : Unable to set SelfFlash check function Could not set the SelfFlash check function.
Error : Unable to set the coverage area number Failed to set the coverage area number.
Error : Unable to set the coverage mode Failed to set coverage mode.
Error : Wrong Command line parameter The startup parameters are incorrect.
Please load the selfflash library program Please load the SelfFlash library program.

(When the SelfFlash function is enabled, a library program must be
loaded in the ICE.)

Warning : 64 break addresses are already set The total number of breakpoints specified here exceeds 64.
Warning : Break address already exists The specified address has a breakpoint already set.
Warning : Identical break address input Two or more instances of the same address are specified on

the command line.
Warning : Memory may be modified by SelfFlash Memory contents may have been modified by the SelfFlash program.
Warning : SelfFlash program area is out of the The SelfFlash program area does not match the currently set software
current software pc break area. break area. Please clear the breakpoint set at (Address).
Please clear the break point(Address) (If this breakpoint is not cleared, the program may stop at

an unexpected location.)



CHAPTER 13  S1C88 FAMILY DEBUGGER

202 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

ICE hardware error messages
Error message Description

Error : Cannot be run in Free-Run mode The ICE is operating in free-run mode.
Error : Cannot fine specified data The specified data could not be found.

(The search failed to find matching data.)
Error : ICE88UR is still keep a conservative mode The ICE is operating in maintenance mode.
Error : ICE88UR power off execution abort Power to the ICE main unit is off. Execution was aborted.

(Power to the main unit has been shut off while running the program.)
Error : Insufficient memory for loading program Failed to allocate memory for the program.

(Windows system resources may be insufficient.
Check available resources and quit unnecessary applications.)

Error : Vdd down or no clock The power supply voltage for the target system is low, the target system
is not powered on, or no clocks are supplied to the target system.
(Effective only when Vdddown is set to 1 in the parameter file.)

Error : Verify error A verify error occurred.
ICE88UR system error : ?? illegal packet Detected an illegal packet.
ICE88UR system error : Command timeout Detected a command time-out.
ICE88UR system error : Firmware packet error Detected an error in EB: Firmware packet.
ICE88UR system error : Master reset Detected MR: master reset.
ICE88UR system error : Not connected The ICE is not connected or powered on.
ICE88UR system error : Not ready The ICE is not ready.
Internal error : ICE88UR does not support this The current version of the ICE does not support this command.
command version (Please shut down the DB88 debugger immediately.)
Internal error : Illegal error code fetched. Nonexistent error code has been encountered.
System crash possible (Please shut down the ICE88UR debugger immediately.)
Processing terminated by hitting ESC-key Processing terminated because the ESC key was pressed.



APPENDIX A  ASSEMBLER (Sub tool chain)

S5U1C88000C MANUAL II EPSON 203
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX A ASSEMBLER (Sub tool chain)
A.1 Outline of Package

A.1.1 Introduction
The "S1C88 Family Assembler" is one of the software development tools of the CMOS 8-bit single chip
microcomputer S1C88 Family. It consists of a cross assembler, linker and utilities to create programs.
This package can commonly be used for all S1C88 Family models and allows for development of pro-
grams with macro function.

A.1.2 Outline of Software Tools
Figure A.1.2.1 shows the flow of software development using the structured assembler.

Development ToolS1C88 Family 
Assembler

Assembler

asm88

Preprocessor

sap88

Linker

link88

file.Ofile.LST

Object
file(s)

Assembly
list file(s) file.X

Cross
reference
file

Error
list filefile.E

Symbol
information

reference file

file.LCM
Link command 

parameter file

In-circuit Emulator (ICE)

Symbol Information 

generator rel88

file.ABS

Segment Option

Generator winsog

file.SSA

Segment option
HEX file

file.SDC

file.par

file.ini

Mask Data Checker

winmdc

file.PAn
Mask
data file

SEIKO EPSON

Function Option

Generator winfog

file.FSA file.FDC

Function option
document file

Function option
HEX file

Segment option
document file

Program unused area

filling utility fil88xxx

file.PSA
Program data
HEX file
(filled with FF)

file.MS
Preprocessed
source file(s)

file.S
Assembly
source file(s)

Absolute
object file

HEX converter

hex88

Motorola-S
format filesfile.SAfile.REF

Symbolic
table file

Symbolic table file 

generator sym88

file.SY

Fig. A.1.2.1  Software development flow using structured assembler



APPENDIX A  ASSEMBLER (Sub tool chain)

204 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

The basic functions of each program are as follows.

Structured preprocessor <sap88>
The sap88 structure preprocessor is a preprocessor used to add the macro function on the cross
assembler asm88.
First create assembly source files including macro functions and process them with the sap88 to create
the source files (in which macros are expanded into the S1C88 instructions) that can be assembled
with the asm88.

Cross assembler <asm88>
The asm88 cross assembler assembles the program source file described by the S1C88 instruction set
and pseudo-instruction and converts it into machine language.
The asm88 is compatible with the relocatable assembly for development by module, and creates
relocatable object files used to link other modules via the linker.

Linker <link88>
The relocatable object file created with the asm88 is linked if there is more than one present and then
converted into absolute (binary form) object file.

Other utilities
This package contains the following utility programs in addition to the earlier mentioned major
programs.

Symbol information generator <rel88>
This is a program that obtains symbolic table information of the relocatable object file.
This utility is used for preprocessing of symbolic table generations.

Binary/HEX converter <hex88>
Converts the binary file into a Motorola S2 format HEX file (ASCII file).
This is basically used to convert the absolute object file output from the link88 linker into a HEX
program file. The converted program data HEX file allows for debugging through hardware tools and
creation of mask data.

Symbolic table file generator <sym88>
The sym88 symbolic table file generator converts a symbolic information file generated in file redirect
with the rel88 symbol information generator to a symbolic table file that can be referenced in the ICE.
Loading the symbolic table file and the corresponding relocatable assembly program file in the ICE
makes symbolic debugging possible.

Batch files
Batch files are included to automatically process basic tools and operations to promote efficient
program development. Customize the file accordingly.

• ra88.bat: Batch file for relocatable assembly
• lk88.bat: Batch file for linking

Details on the batch file and how to create customized files will be explained in Section A.2, respec-
tively under their titles.



APPENDIX A  ASSEMBLER (Sub tool chain)

S5U1C88000C MANUAL II EPSON 205
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

A.2 Program Development Procedures
This section will start off by explaining the flow involved in program development and then give details
on how each software tool of this package is used, in accordance with the development flow. Each
software tools will be explained of its basic processing procedures and the flag settings (start-up com-
mand flag) required for the tools in terms of batch file commands. Refer to Appendix C, "Assembly Tool
Reference" for more information on other flags, etc.

A.2.1 Development Flow
The following shows the program development procedure using the asm88 cross assembler.

<Relocatable assembly and link>
  – Create the entire program as a multiple module (development by module) –

Relocatable assembly refers to the assembling method in which programs are allocated into several parts
(each allocated part is referred to as a module) according to the processing contents and then undergoing
development procedures by each module.
The cross assembler can input assembly source files created with an editor and the files in which macros
are expanded by the sap88.
Each module (relocatable object file) is linked via the linker after assembling and then consolidated into
one program. The program memory address that allocates each module is determined through the link.
Therefore, the developmental process in which the source program is created can be performed without
regards to the address.
Debugging efficiency is boosted since this method allows for debugging by modules that have been
allocated in small programs.

Figure A.2.1.1 shows the flow of program development upon using the relocatable assembly. This pack-
age contains "ra88.bat" and "lk88.bat" that are batch files containing basic processing tools. Customize
accordingly. (Refer to Sections "A.2.3.4 Batch processing for relocatable assembly (ra88.bat)" and "A.2.4.5
Batch processing for linking (lk88.bat)" for more information on "ra88.bat" and "lk88.bat".)

Note: Prepare each relocatable module under 32K bytes so that they fit in one bank. Modules exceeding
this capacity will result in an error message during linking. Thus, it will be necessary to allocate the
program so that it is under 32K bytes. Similarly, the data size must be under 64K bytes so that it
fits in one page.
The modules cannot be reallocated so that they span across both banks. In this case, the modules
will be allocated so that it starts from the head of the next bank. The program memory (usable
area) will be wasted if all modules are too large. Give consideration to each module size to prevent
this.



APPENDIX A  ASSEMBLER (Sub tool chain)

206 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

.s.s

Create source file
by editor

.s
Structured assembly
source files
(create for each module)

Execute sap88
Expands macro statements

.ms
Assembly source file after expanding
macro statements

Execute asm88
Assembles source file

.l
Assembly
list file

.x
Cross reference
list file

.e
Error
list file

1

2

3

Batch processing for relocatable assembly <ra88.bat>

• System code setting and FF filling in
  unused program area by fil88XXX.
• Program debugging using ICE.
• Creating mask data of program.

.o.o.o
Relocatable
object files
(create for each module)

Execute for each module

.o

Relocatable
object file

.lcm
Link command
parameter file for link88*

Batch processing for linking <lk88.bat>

4

Absolute
object file

Execute rel88
Creates symbol information

5

7

.ref
Symbol information
reference file

* Created by editor

Correct after
debugging program

6

Program data
HEX file

Execute sym88
Creates symbolic table file

.ref
Symbolic
table file

Execute hex88
Converts binary to HEX

Execute link88
Link

.sa

.a

Fig. A.2.1.1  Relocatable assembly development flow



APPENDIX A  ASSEMBLER (Sub tool chain)

S5U1C88000C MANUAL II EPSON 207
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

A.2.2 Creating Source File
Software used: Editor

Create the source file using an editor.
Small applications can be created solely in assembler language with the entire program as a single
module.
What's more, source files for single module can also be allocated by using the INCLUDE pseudo-instruc-
tion of the sap88 structured preprocessor.
Generally, debugging requires appropriate consideration to module allocation since source files are each
created for respective modules.

Create source files for assembler modules by using the S1C88 CPU instruction set or assembler pseudo-
instructions.
Specify the assembly source file name with a ".s" on the extension.
Each source program statement basically comes in the following form.

Symbol field Mnemonic field Operand field Comment field

• Symbol field:
This field indicates the symbol. Always put a colon (:) immediately after the symbol, other than for
EQU or SET command statements.

• Mnemonic field:
This field indicates the operation code and pseudo-instruction.

• Operand field:
This field indicates the operand, constant, variable, defined symbol, symbol that indicates the
memory address and formula of each instruction.

• Comment field:
A semi-colon (;) at the beginning of this field, then continued with a comment.

Refer to Appendix B of this manual for more information on how to create a source file.
Macro statement offered by the sap88 structured preprocessor and various pseudo-instructions of the
asm88 cross assembler can be used for this assembler.
The following indicates an outlines of these statements and instructions.

<Instruction set>
All S1C88 Family models employs a S1C88 in the core CPU. Therefore, instructions are common for all
models other than for CPU MODELS and mode limitations. Refer to the "S1C88 Core CPU Manual" for
more information on the instructions, and refer to the "S1C88xxx Technical Manual" for control program
examples of the peripheral circuit incorporated in each model.
The asm88 cross assembler is capable of converting all mnemonic instruction settings of the S1C88 into
machine language.

<Macro statement>
Macro is used to priorly define a processing (sequence of instructions) frequently used in the program
with a voluntary name to allow for it to be called out under that specific name. As a result, the need for
routine procedures can be eliminated. (For more information refer to Appendix B.)
Macro statements are offered as pseudo-instructions of the sap88 and by putting it through the sap88 it is
applied in the macro call-out portion in mnemonic form that can be assembled.



APPENDIX A  ASSEMBLER (Sub tool chain)

208 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Example of macro definition

Before expanding
subtitle "example"
public main,work
external src_address,dst_address,counter

;
abc equ 0ffh
;

data
work:db [1]
;

code
;*************************************************
;**     * macro define *                        **
;*************************************************
nop3 macro

nop
nop
nop
endm

;*************************************************
;**     * example *                             **
;*************************************************
main:

ld a,#abc
lb b,[work]
nop3 ; macro call ***
ld ix,#src_address
ld iy,#dst_address
ld hl,[counter]

;***
end

After expanding
subtitle "example"
public main,work
external src_address,dst_address,counter

;
abc equ 0ffh
;

data
work:db [1]
;

code
;*************************************************
;**     * macro define *                        **
;*************************************************
;*************************************************
;**     * example *                             **
;*************************************************
main:

ld a,#abc
lb b,[work]
nop
nop
nop
ld ix,#src_address
ld iy,#dst_address
ld hl,[counter]

;***
end

Macro statement expanded into
mnemonics

Macro call

Macro definition



APPENDIX A  ASSEMBLER (Sub tool chain)

S5U1C88000C MANUAL II EPSON 209
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

<Pseudo-instruction>

Section setting pseudo-instructions

(CODE, DATA)

Data definition pseudo-instructions

(DB, DW, DL, ASCII, PARITY)

Symbol definition pseudo-instructions

(EQU, SET)

Location counter control pseudo-instruction

(ORG)

External definition and reference pseudo-instructions

(EXTERNAL, PUBLIC)

Source file insertion pseudo-instruction

(INCLUDE) sap88 only

Assembly termination pseudo-instruction

(END)

Macro related pseudo-instructions

(MACRO–ENDM, DEFINE, LOCAL, PURGE, UNDEF,

IRP–ENDR, IRPC–ENDR, REPT–ENDR) sap88 only

Conditional assembly pseudo-instructions

(IFC–ENDIF, IFDEF–ENDIF, IFNDEF–ENDIF) sap88 only

Output list control pseudo-instructions

(LINENO, SUBTITLE, SKIP, NOSKIP, LIST, NOLIST, EJECT)

Use to specify sections.

   * Specifies the program area and data area.

   (For more details refer to "A.2.3.2 Cross assembler (asm88)".)

Specifies various data within the program memory.

Allocates constant to symbols (voluntary name) used within

the source program.

Sets the program counter.

Allows for symbols and labels to be referenced between modules.

Inserts contents of other source files in voluntary places.

Specified the assembly end point.

Defines the macro statement.

Assembly or skip can be set according to the definition

of the symbol.

Controls the output to the assembly list file.

Pseudo-instruction by function Description

Unlike CPU instructions, pseudo-instructions do not directly compose of application programs upon
executing control instructions to the sap88 and asm88.
The pseudo-instructions that can be used with this assembler are indicated above according to their
functions. (Refer to Appendix B for more details.)



APPENDIX A  ASSEMBLER (Sub tool chain)

210 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

A.2.3 Assembly
This section will explain the method to assemble the assembly source file and the relocatable object file
created by the process.

Software used: sap88, asm88

.s
Structured assembly
source file (create for each module)

Execute sap88
Expands macro statements

.ms
Assembly source file after expanding
macro statements

Execute asm88
Assembles source file

.l
Assembly
list file

.x
Cross reference
list file

1

2

3

.o
Relocatable

object file

.e
Error
list file

Create source file
by editor

Linking

Execute
relocatable assembly

Fig. A.2.3.1  Flowchart of relocatable assembly

A.2.3.1 Structured preprocessor (sap88)
This assembler system is composed of the sap88 structured preprocessor and asm88 cross assembler.

As indicated in Section A.2.2, the sap88 is responsible in putting the macro statement in mnemonic form.
Since the asm88 cannot read the macro statement, assembly source files included these documents can
not be directly input in the asm88 as a file.
The asm88 is the actual assembler responsible in converting the mnemonic language into machine
language and assembling cannot be performed with sap88.
Therefore, there is a need to used both sap88 and asm88 for the structured assembly. It is advisable to
process it through the sap88 even if the structured assembly is not required, since the process will not
effect the source file.

The sap88 inputs an assembly source file with a ".s" extension and expands the macro statements. After that,
the sap88 outputs a file for assembly. The name of the extension of the output file should be set as ".ms".

A.2.3.2 Cross assembler (asm88)
The asm88 cross assembler assemble the S1C88 Family CPU instructions and the pseudo-instructions of
the asm88 and converts it into machine language.
The asm88 is compatible with the relocatable assembly.
The relocatable assembly creates relocatable object files (".o") that will be linked with other modules using
a linker. The asm88 can input several assembly source files and thus allows for simultaneously assembly
of several relocatable modules.
The asm88 can also output three lists, i.e., assembly list (".l"), error list (".e") and a cross reference list (".x")
for the programmer.
The assembly list consists of the line number, target address, code that corresponds to the source and
source statements. The line number is output in decimals, while the address and code are output in
hexadecimals.
If in case an error takes place during assembling, an error list file containing the source file name, line
number in which the error took place, error level and error message will be created. What's more, the
assembly list file will also note the line in which the error took place with an asterisks "*" beside the line
number. Processing will be continued regardless of an error message unless the error is fatal.
The relation of the symbol definition and reference within the file has been prepared to foster easy
understanding depending on the cross reference list.
File management has been enhanced since they are prepared as separate files.



APPENDIX A  ASSEMBLER (Sub tool chain)

S5U1C88000C MANUAL II EPSON 211
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

<Control of program and data memory>
This section will explain how to control the memory of the program and data.
The S1C88XXX memory map can be categorized in the program memory (ROM) for the program code
and RAM and I/O memory for the data.
For example, even if a certain symbol is noted in a voluntary position in the assembly source file, the
asm88 is not capable of determining whether this is within the program memory or data memory.
For this reason, there is a need to clarify which memory each line comes under by prior instruction
through the section setting pseudo-instructions.
The following explains the section set methods for the relocatable assembly, and the asm88 process
corresponding to the method.

Setting sections
The absolute address allocated within each module of the relocatable assembly will be specified or
determined upon liking. Therefore, an absolute address cannot be specified within the assembly
source file. A relative address specification can be made using an ORG pseudo-instruction, however,
in this case, a standard for a relative address will be required. What's more, there is also a need to
specify the segments of the program and data area for the asm88.
The entire program for this assembler is categorized into CODE and DATA. These basically indicate
the following areas.

CODE section: Program data area written in the ROM
DATA section: Data memory area other than ROM

The asm88 is complete with a CODE and DATA pseudo-instruction to specify the section. The area
can be set through descriptions in the assembly source file.

Specifying the CODE section
If a CODE pseudo-instruction is described within an assembly source file, the asm88 will assemble it
to be allocated to the CODE section until the next DATA pseudo-instruction appears. The CODE
pseudo-instruction can be used in several places within one module. The asm88 assumes the head of
the CODE section within the module as relative address 0000H and will continuously realign them in
the order that the CODE pseudo-instruction appears to consolidate it into one block. In other words, a
CODE specification range of one module will be handled as one CODE section. (Refer to Figure
A.2.3.2.1.)
The CODE section of each module is further consolidated as a whole by the linker. The linker will link
in sectional units in accordance with the bank control within the program memory area.
The CODE section consists of CODE sections with one or multiple modules and the maximum size is
limited to 32K bytes as one bank is. (Details on section control will be explained in "A.2.4.2 Section
control".) Therefore, the programmer must be careful not to use more than 32K bytes in the code when
creating a module. The capacity of the CODE section can be verified by using the -ROM# flag when
starting-up the asm88. Use of this feature is advised. For example, when flag specification for "-ROM
32768" is performed, an error message will be displayed if a CODE section of one module exceeds 32K
bytes.

Specifying the DATA section
If a DATA pseudo-instruction is described within an assembly source file, the asm88 will assemble it
to be allocated to the DATA section until the next CODE pseudo-instruction appears. The DATA
pseudo-instruction can be used in several places within one module. The asm88 assumes the head of
the DATA section within the module as relative address 0000H and will continuously realign them in
the order that the DATA pseudo-instruction appears to consolidate it into one block. In other words, a
DATA specification range of one module will be handled as one DATA section. (Refer to Figure
A.2.3.2.1.)
The DATA section of each module is further consolidated as a whole by the linker. The linker will link
in sectional units in accordance with the page control within the data memory area.



APPENDIX A  ASSEMBLER (Sub tool chain)

212 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

The DATA section consists of DATA sections with one or multiple modules and the maximum size is
limited to 64K bytes as one page is. (Details on section control will be explained in "A.2.4.2 Section
control".) Therefore, the programmer must be careful not to use more than 64K bytes in the code when
creating a module. The capacity of the DATA section can be verified by using the -RAM# flag when
starting-up the asm88. Use of this feature is advised.
For example, when flag specification for "-RAM 65535" is performed, an error message will be dis-
played if a DATA section of one module exceeds 64K bytes.

CODE
   :
   :
DATA
   :
CODE
   :
DATA
   :

Assembly source file

C1

D1

C2

D2

Object code

C1

C2

D1

D2

CODE
section

DATA
section

Fig. A.2.3.2.1  CODE section and DATA section

Note
If either the CODE pseudo-instruction or DATA pseudo-instruction is missing during relocatable
assembling the operation will result in an error. For this reason, it is important that the CODE pseudo-
instruction is used for the program memory and the DATA pseudo-instruction is used for the data
memory.

A.2.3.3 Starting sap88 and asm88

<sap88 operation procedure>

(1) Set the directory in which the structured assembly source file (.s) is presented as the current drive.

(2) Start-up the sap88 with the next format.

sap88_[flag]_input file

_ indicates a space key input.
 indicates a return key input.

The following indicates the flag used for batch processing of relocatable assembly (ra88.bat).

Flag

-o <file name>

Description

Specify the file name that is output. (Specify ".ms" as the extension of the file to be output.)

If this flag is omitted it will be processed as a standard output.

Refer to Appendix C for information on other flags.

Example: C:\USER>c:\EPSON\sap88 -o sample.ms sample.s

Inputs the assembly source file "sample.s" created in the sub-directory USER of drive C and then
creates assembly source file "sample.ms" to be input in asm88 in the same directory as the input file.
If the PATH to sap88 is set, then there is not need to specify the path before sap88.

Refer to Section "A.2.3.9 Example of assembly execution" for more information on I/O files and messages
displayed.



APPENDIX A  ASSEMBLER (Sub tool chain)

S5U1C88000C MANUAL II EPSON 213
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

<asm88 operation procedure>

(1) Set the directory in which the assembly source file (.ms) created with the sap88 exists as the current
drive.

(2) Start-up the asm88 with the next format.

asm88_[flag]_input file

_ indicates a space key input.
 indicates a return key input.

Flag can be omitted.

The following indicates the flags used for batch processing of relocatable assembly (ra88.bat).

Flag

-ROM#

-RAM#

Description

Specify the ROM capacity in byte units. It is especially useful during relocatable assembling and is 

used to verify the size of the CODE area.

Specify the RAM capacity in byte units. It is especially useful during relocatable assembling and is 

used to verify the size of the DATA area.

Refer to Appendix C for more information on other flags.

Example 1: When continuously assembling several assembly source files through relocatable assembly.

C:\USER>c:\EPSON\asm88 sample1.ms sample2.ms

Inputs the assembly source files "sample1.ms" and "sample2.ms" created in the sub-directory USER of
drive C and starts the relocatable assembly process. Then creates the relocatable object files
"sample1.o" and "sample2.o" in the same directory as the input file.
At the same time, the assembly list files "sample1.l" and "sample2.l", cross reference list files
"sample1.x" and "sample2.x", and error list files "sample1.e" and "sample2.e" will also be created in the
same directory.
If the PATH to asm88 is set, then there is not need to specify the path before asm88.

Example 2: Assembling with the relocatable assembler, including the verification of the ROM and RAM capacity.

C:\USER>c:\EPSON\asm88 -ROM 32768 -RAM 65536 sample.ms

Inputs assembly source file "sample.ms" created within the sub-directory USER of drive C and starts
relocatable assembly. Then creates the relocatable object file "sample.o" in the same directory as the
input file.
At the same time, creates the assembly list file "sample.l", cross reference list file "sample.x" and error
list file "sample.e" in the same directory.
The capacity of the CODE and DATA sections will be verified during assembling with the
-ROM and -RAM flags. An error will result in this case when the CODE exceeds 32K bytes and the
DATA exceeds 64K bytes.
If the PATH to asm88 is set, then there is not need to specify the path before asm88.

Refer to Section "A.2.3.9 Example of assembly execution" for more information on I/O files and messages
displayed.



APPENDIX A  ASSEMBLER (Sub tool chain)

214 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

A.2.3.4 Batch processing for relocatable assembly (ra88.bat)
The start-up procedures for sap88 and asm88 were already discussed in the earlier section, however, it
must be further noted that these can be batch processed by consolidating them into a batch file.
The batch file can voluntarily created by the user, however, since this package contains batch file, i.e.,
ra88.bat for relocatable assembly, the following will introduce the contents of the batch file and how to
use them. This batch file can be used for general processing purposes. Use it advantageously by custom-
izing the flag settings, etc. as needed.
Figure A.2.3.4.1 shows the ra88.bat processing flow.

.s
Structured assembly
source file
(create for each module)

Execute sap88
Expands macro statements

.ms
Assembly source file after expanding
macro statements

Execute asm88
Assembles source file

.l
Assembly
list file

.x
Cross reference
list file

.o
Relocatable

object file

.e
Error
list file

Batch file for relocatable assembly <ra88.bat>

Execute for each module

Fig. A.2.3.4.1  ra88.bat processing flow

<Outline of process>
The ra88.bat inputs the specified assembly source file and then executes sap88 and asm88, respectively to
perform relocatable assembly to create a relocatable object file. Since the sap88 does not permit input of
multiple assembly source files, it is limited to assembly per module other than when several structured
assembly source files are read with the INCLUDE pseudo-instruction of the sap88.

<Input/output files>
The following indicates the input/output files of the ra88.bat.

Input file
Structured assembly source file (relocatable): file_name.s
This is a structured assembly source file (relocatable) created with an editor .

Output files

  1. Assembly source file: file_name.ms
An assembly source file in which macros are expanded will be output.

  2. Relocatable object file: file_name.o
This is a binary file that has been converted in machine language that can be reallocated through
relocatable assembly. (This is also the file that inputs the lk88.bat batch file to perform linking.)

  3. Assembly list file: file_name.l
This is the file output as a list that corresponds to each source statement when the machine language
and the relocatable address (the head of the CODE or the DATA section is assumed as relative address
000000H) converted with the assembler.

  4. Cross reference list file: file_name.x
This is the address list that contains the definition and references of symbols.

  5. Error list file: file_name.e
This is the list of error taking place during assembling.



APPENDIX A  ASSEMBLER (Sub tool chain)

S5U1C88000C MANUAL II EPSON 215
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

<Operation procedure>

(1) Set the directory in which the structured assembly source file (.s) is presented as the current drive.

(2) Start-up the ra88.bat with the next format.

ra88_file name

_ indicates a space key input.
 indicates a return key input.

Do not input the extensions of file name. It is fixed on the ".s" extension.

Example: C:\USER>c:\EPSON\ra88 sample

Inputs structured assembly source file "sample.s" created within the sub-directory USER of drive C
and starts relocatable assembly. Then creates the following files in the same directory as the input file.

sample.ms, sample.o, sample.l, sample.x, sample.e

If the PATH to ra88 is set, then there is not need to specify the path before ra88.

Refer to Section "A.2.3.9 Example of assembly execution" for more information on I/O files and messages
displayed.

Customizing ra88.bat

<Customizing ra88.bat execution parameters>
Since the ra88.bat controls the program execution, it has a execution parameter customization field
within it. General parameters are temporarily described in the default position, however, it is advised
that the program is customized in accordance with the user's development method.

1. Setting the ROM capacity (Verification of the size of the CODE section)

set rom = 32768 : The capacity of the ROM of the CODE section that locates errors will be specified
in bytes. (default capacity 32768 = 32K bytes)

2. Setting the RAM capacity (Verification of the size of the DATA section)

set ram = 65536 : The capacity of the RAM of the DATA section that locates errors will be specified in
bytes. (default capacity 65536 = 64K bytes)

Note: There are basically no error checks made on these parameter settings, therefore, do not set the
parameter with settings other than those specified.

<Customizing ra88.bat execution command>
The ra88.bat has the following command line upon execution of the program. Customize these
command lines if a flag without a default setting is to be used.

sap88

%drv%sap88 -o %1.ms %1.s

asm88

%drv%asm88 -ROM %rom% -RAM %ram% %1.ms

The %drv% is a path that locates the execution command of the ra88.bat. For this reason, it can not be
altered and neither can the SET statement that is defined be altered. The %1 is a file name that is input
from the command line.

The following indicates the ra88.bat program source list and the message list of the ra88.bat. Refer to it
upon customizing the program.



APPENDIX A  ASSEMBLER (Sub tool chain)

216 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

ra88.bat program source list

echo off
rem **************************************************************************
rem *E0C88 Family Auto Relocatable Assemble Execution Utility
rem * (Ver. X.XX)
rem * Copyright(C) SEIKO EPSON CORP. 1993–1996
rem **************************************************************************
rem * customized parameter information
rem *rom=*  * : rom capacity(32768 max.)
rem *ram=*  * : ram capacity(65536 max.)
rem **************************************************************************
rem ********** customized parameter area (default) **********
rem *  caution : customized parameters value do not check,therefore
rem * please be carefully when you set
rem **********
set rom=32768
set ram=65536

rem ********** command searching path **********
rem set drv=c:\

rem **************************************************************************
rem *main program
rem * if you want to use another option(s), please append
rem * option flag(s) at command line.
rem **************************************************************************
:start

echo E0C88 Family Auto Relocatable Assemble Execution Utility Ver. X.XX
echo Copyright (C) SEIKO EPSON CORP. 1993–1996

if "%1"=="" goto usage
:error_chk

if not exist %drv%nul goto exit04
if not exist %1.s goto exit05
if not exist %drv%sap88.exe goto exit06
if not exist %drv%asm88.exe goto exit07

rem (sap88)
:sap88
%drv%sap88 -o %1.ms %1.s

if errorlevel 1 goto exit01

rem (asm88)
:asm88
%drv%asm88 -ROM %rom% -RAM %ram% %1.ms

if errorlevel 1 goto exit02
goto end

:usage
echo usage : ra88 needs [input file_name]

goto skip
:exit01
echo Error stop at %drv%sap88.exe

goto skip
:exit02
echo Error stop at %drv%asm88.exe

goto skip
:exit03
echo Cannot find %drv% installed E0C88 dev. tools directory

goto skip
:exit04
echo Cannot find input file

goto skip
:exit05
echo Cannot find %drv%sap88.exe

goto skip
:exit06
echo Cannot find %drv%asm88.exe

goto skip
:end
echo ra88.bat utility has been successfully executed.
:skip
set rom=
set ram=
set drv=

The drv is a path that locates the execution command
of the ra88.bat. It is set to root directory by default.
Customize it if necessary.

User customization field

Note: There are basically no
error checks made on these
parameter settings, therefore,
do not set the parameter with
settings other than those
specified.

←  Start-up command of sap88

←  Start-up command of asm88

←  Setting the capacity of the ROM
←  Setting the capacity of the RAM



APPENDIX A  ASSEMBLER (Sub tool chain)

S5U1C88000C MANUAL II EPSON 217
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Message list

1. Start-up message

E0C88 Family Auto Relocatable Assemble Execution Utility Ver. X.XX

Copyright (C) SEIKO EPSON CORP. 1993–1996

2. Message when terminated normally

ra88.bat utility has been successfully executed.

3. Error message

usage : ra88 needs [input file_name]

Error stop at [drive and path name] sap88.exe

Error stop at [drive and path name] asm88.exe

Cannot find [drive and path name] installed E0C88 dev. 

tools directory

Cannot find input file

Cannot find [drive and path name] sap88.exe

Cannot find [drive and path name] asm88.exe

Usage output.

Error occurred in sap88.

Error occurred in asm88.

Cannot find [drive or path] in which the S1C88 Family software tools

is installed.

Cannot find aa88.bat input file (.s).

Cannot find sap88.

Cannot find asm88.

Error message Explanation

Note: The following operations will be stopped when an error occurs.

<Precautions upon using the batch file>

(1) Some of the messages displayed during batch processing is automatically generated through the MS-
DOS/PC-DOS batch processing function and command. For this reason, it may be placed under MS-
DOS/PC-DOS control when an error occurs and thus force the batch processing to be interrupted.

(2) When an error occurs, the following procedures do not automatically continue. However, it may not
be controllable as noted in reason (1) indicated above.

(3) The ra88.bat and the lk88.bat (mentioned hereafter) employ the MS-DOS/PC-DOS COPY command in
addition to S1C88 Family tools.
For this reason, it is requested that the COPY command is operable, by setting the PATH, when
executing the batch file.

(4) The execution parameters (user customization field) of the batch file basically do not locate parameter
setting errors. Therefore, do not set the parameters other than specified.

(5) An MS-DOS/PC-DOS environment variable will be used to execute the batch file, therefore, the size
of the environment variable should be allocated with as much space as possible using the
CONFIG.SYS.



APPENDIX A  ASSEMBLER (Sub tool chain)

218 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

A.2.3.5 Relocatable object file
The relocatable object file is a binary file that is created through the relocatable assembly of the asm88.
Other than when -o flag is specified the file name that is created will be the same file name input with the
asm88 and the extension will be ".o".
This file consists of header information and symbol tables required for reallocation using the linker, in
addition to the object (machine language) code.

A.2.3.6 Assembly list file
The assembly list file is an ASCII file added with an object code (hexadecimal) and code address (hexa-
decimal) in the assembly source file input in the asm88. It is created through asm88 assembly. Each page
will have a header with the file name and date that the file is created.

The file name that is created will be the same as the file name input via the asm88 other than when -o flag
is specified. The extension will be ".l".
The assembly list file consists of the following items:
LINE ................................ The consecutive line number from the beginning.
ADDRESS ...................... This refers to the target address of the object code.
CODE .............................. This is the object (machine language) code that corresponds to the source state-

ment in the same line.
SOURCE STATEMENT .. This is the assembly source input in the asm88.

When relocatable assembly is performed, the code address will be a relative address from the beginning
of the CODE section. Similarly, the address of the data area is a relative address from the beginning of the
DATA section.
If an error is occurred, an asterisks "*" will be placed at the beginning of the line in which the error
occurred.

The output of assembly list file can be controlled with the following asm88 pseudo-instructions and flag
specifications upon start-up.

Output list control pseudo-instructions

LINENO

SUBTITLE

SKIP

NOSKIP

LIST

NOLIST

EIECT

Changes the line number (LINE) to the voluntary value.

Inserts the subtitle line that is voluntarily set after the column explanation line.

If any line of the code exceeds 5 bytes through ASCII, DB or DW data settings, the exceeding

portion will not be output. (default setting.)

Outputs all codes by canceling the SKIP setting.

The following lines are output in a list when the NOLIST setting is canceled.

Prevents output of the list from the line after the pseudo-instruction.

Adds a involuntary page break.

Pseudo-instruction Description

Refer to Appendix B for details of the pseudo-instructions.

Start-up flag
Refer to Appendix C for details of the flag.

-l Prevents creation of an assembly list file.
Flag Description



APPENDIX A  ASSEMBLER (Sub tool chain)

S5U1C88000C MANUAL II EPSON 219
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

A.2.3.7 Cross reference list
The cross reference list file is created through asm88 assembly with an ASCII file. This ASCII file is
defined within the module or contains a list of reference symbols.
The name of the file created will be the same as the file name input with the asm88 other than when
specifying -o flag. The extension will be ".x".

The output format of the cross reference list file is as follows.

R  SYMBOL  A  VALUE  LINE No. INFORMATION

R Reference definition
G: Global
L: Local

SYMBOL Symbol name (maximum 15 characters)

A Attribute
L: Label
C: Constant
V: Variable
U: Undefined within the module

VALUE Symbol value (6 digit, hexadecimal expression)

LINE No. INFORMATION

This is a list in which the symbol is defined or referenced line numbers. They are output as
follows.
lineno* lineno lineno . . . . lineno

lineno*: The line number in which the target symbol is defined.
lineno: The line number in which the target symbol is referenced.

The LINE No. INFORMATION can consist up to a maximum of 12 line numbers.

The following page header will be output at the head of each page.

The numeric labels are temporary labels. The same name can be used if they are outside the range
defined by the general label. It will not be output on the cross reference list. (Refer to Appendix B for the
numeric labels.)

The cross reference list file can prohibit output using the -x flag of the asm88.

Example of cross reference list

CROSS REFERENCE TABLE OF asm88  error.x  1993-06-07  17:28    PAGE  1

L  delay           L  000100H       5*     14     15
L  delay_00        L  000103H       7*      9
L  delay_3times    L  000107H      13*



APPENDIX A  ASSEMBLER (Sub tool chain)

220 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

A.2.3.8 Error list
The errors generated during asm88 assembling will be output as an error list file.
The name of the file created will be the same as the file name input with the asm88 other than when
specifying -o flag. The extension will be ".e".

The output format of the error list is as indicated below.

SOURCE FILE  LINE No.: ERROR LEVEL: ERROR MESSAGE

SOURCE FILE Source file name

LINE No. Line number in which the error occurred

ERROR LEVEL Level of error
Warning This is a warning and does not affect the output object.
Severe This is a general error. The output object will be invalid.
Fatal This is a fatal error. Assembly will be interrupted. Fatal errors are displayed on the

CRT without output of an error list file.

ERROR MESSAGE Error content

Refer to Appendix C for the error messages of the asm88.

Example of error list

error.s 16:  Severe:   delay not defined

When an error is not generated, nothing will be output in the error list file.

A.2.3.9 Example of assembly execution
The following shows example of the assembly execution.

Messages when ra88.bat (relocatable assembly) is executed

C:\USER>c:\EPSON\ra88 sample

C:\USER>echo off
E0C88 Family Auto Relocatable Assemble Execution Utility Ver. X.XX
Copyright (C) SEIKO EPSON CORP. 1993–1996
sap88 Structured Assembler Preprocessor Version X.XX

Copyright (c) 1993 by Advanced Data Controls, Corp.
Licenced to SEIKO EPSON CORP.
asm88 Cross Assembler Version X.XX

Copyright (c) 1993 by Advanced Data Controls, Corp.
Licenced to SEIKO EPSON CORP.

9 Symbol(s) Used

0 Warning Error(s)
0 Severe Error(s)

ra88.bat utility has been successfully executed.
C:\USER>



APPENDIX A  ASSEMBLER (Sub tool chain)

S5U1C88000C MANUAL II EPSON 221
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

A.2.4 Link
This section will explain the linking operations of relocatable modules.

Software used: link88

Execute link88
Link

.lcm
Link command
parameter file

Creating program
data HEX file

Create the link88
link command

parameter file by editor

.a
Absolute
object file

Relocatable object files

.o.o.o

Fig. A.2.4.1  Link processing flow

A.2.4.1 Linking modules
The object codes of each module created with the relocatable assembly of the asm88 is not specified to be
located in a certain portion of the ROM. The allocation address is determined by how each modules are
linked. The link88 linker is the tool used for linking operations.

When linking is successfully performed the relative address for the external reference label that was
undeclared up to this point will be declared and thus, create an absolute object file (.a) that consolidates
all modules into one file. By processing this absolute object file with the binary/HEX converter hex88, as
indicated in Section A.2.5, the program data HEX file to be used to create the program mask data or to
debug the hardware will be created.

A.2.4.2 Section control
The S1C88 Family has a 24-bit width address space (maximum of 16M bytes). By using the topmost 8-bit
for register control using the code bank register (CB), expand page register (EP, XP, YP) and others, the
address space can be allocated into a 32K-byte bank (CODE) or 64K-byte page (DATA) unit. Access
performance can be improved within those ranges. By rewriting the content of the register, the user will
have access of a voluntary bank or page from a voluntary bank. As a result, large programs and data
bases can easily be controlled. However, the bank and page will not automatically be changed with the
execution of the program and thus it must be set in accordance with the program specifications.
Therefore a program as described in linear programs can not be created in the 16M-byte address space.
This indicates that multiple modules can not simply be linked.
For this reason, the link88 employs a multi-section method to resolve this problem by allocate voluntary
modules in voluntary addresses.
Allocation in this method is undertaken by making it possible to specify addresses for block units
referred to as sections.
The section is categorized into a CODE section in which the allocation site is the ROM and the DATA
section which is the data memory. To resolve the aforementioned bank and page problems, the size of one
CODE section can consist of up to 32K bytes and the size of one DATA section is limited to 64K bytes. It is
important to note that this size is based on the fact that they are not allocated over the bank or page limit.
If in case they are allocated in the middle of a bank or page, the size will be limited to the remaining size.

To create an object code for the desired multi-section using the section method, the user must define the
section and supply address information on the allocation of the section to allocate the address.
The section is defined by using the linker's secondary flag (flag used to define section) +code and +data
and the -p flag is used to allocate the address.
Up to a maximum of 255 sections can be defined with one link.



APPENDIX A  ASSEMBLER (Sub tool chain)

222 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

<Example of section definition>
Let's look at the section definition procedures through a simple example.
First, the method to actualize a memory mapping as indicated in Figure A.2.4.2.1 will be explained.
It will be assumed that "prg1.s" describing C1 and D1, "prg2.s" describing C2 and "prg3.s" describing C3
is assembled and then each respective relocatable object file "prg1.o", "prg2.o" and "prg3.o" is created.
In this case, C indicates the CODE section and D indicates the DATA section.

The flag to link88 can be specified through input redirect operations.
When the following flag specification is performed and a link command parameter file (filename.1cm)
that is used to allocate the address and define the section is created following by executing
link88<filename.lcm, a memory mapping as indicated in Figure A.2.4.2.1 will be created.

C1

C2

C3

D1
I/O

Memory
000000H

00001FH
000100H

002xxxH

00F000H
00F800H

00FFFFH
00F7xxH

C1
D1

prg1.o

C2

prg2.o

C3

prg3.o

Fig. A.2.4.2.1  Memory mapping example

Contents of the file transferred to link88 (link88<filename.lcm)

-o prg.a ...(1)
+code -p0x000000 ...(2)
+data -p0x00f000 ...(3)
prg1.o ...(4)
+code -p0x000100 ...(5)
prg2.o prg3.0 ...(6)

(1) Specifies the absolute object file that is output with the -o flag.
(2) Defines the CODE section that starts with a physical address from 000000H.
(3) Defines the DATA section that starts with a physical address from 00F000H.
(4) Allocates "prg1.o" to the sections defined in (2) and (3) indicated above.

In this case, the contents of the CODE section C1 in "prg1.o" will be allocated from the beginning
of the CODE section defined in (2) and the contents of the DATA section D1 will be allocated at the
head of the DATA section defined in (3).

(5) Defines the CODE section that starts with a physical address from 000100H. This CODE section is
different from the CODE section defined in (2). The CODE section (2) will be completed when a
new section is defined at this point.

(6) The "prg2.o" CODE section of C2, and "prg3.o" CODE section C3 will be continuously be allocated
in respective order.
In this example, "prg2.o" and "prg3.o" does not have a DATA section. However, if there is a DATA
section then it will be allocated from the address following D1 of the DATA section defined in (3).

There are three sections defined and linked in this example as indicated above. When the link is success-
ful an absolute object file named "prg.a" will be created.
Multiple modules can be allocated in these sections defined as long as it is within the allowable capacity
limit. What's more, multiple sections can be allocated within one bank as well.



APPENDIX A  ASSEMBLER (Sub tool chain)

S5U1C88000C MANUAL II EPSON 223
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

<Allocation address and relocation of section>
As indicated in the earlier example, the -p flag determines the physical start address of the section
defined immediately before operations.
Let's say, for example, the following settings are made for a certain section.

-p 0x10000

The start address of this section will physically be 10000H. The CODE section will be specified at the
head of bank 2 and the DATA section will be specified at the head of page 1.
The following allocation (reallocation of address information) will be performed for a symbol if a symbol
is defined to be positioned from the head of this section to the 1234H offset and that symbol is used to
reference that address.

(1) When handled as data memory (symbol name will be indicated as "SYMBOL".)

Operand Relocate value

#SYMBOL → #1234H
[SYMBOL] → [1234H]
#POD SYMBOL → 01H
#LOD SYMBOL → 1234H
#HIGH SYMBOL → 12H
#LOW SYMBOL → 34H
[BR:LOW SYMBOL] → [BR:34H]

(2) When handled as program memory (symbol name will be indicated as "LABEL".)

Operand Relocate value

#BOC LABEL → 02H
#LOC LABEL → 9234H

A relative valued in accordance with the address that allocated by the branch instruction will be
calculated and set for PC relative branch instructions like "JRL LABEL".

The section start address, in the above example, was specified at the head of the bank or page, however,
specifications can be made for it to start in the middle of a bank or page, as indicated below.

-p 0x15000

In this case the start address will physically be 15000H and have a 5000H offset from the head of the bank
or page. The link88 relocates each symbol based on the physical address, therefore, such offsets will also
be properly processed.
All symbol information after reallocation will be recorded in the absolute object file. A list of these
symbols can be created using the rel88 symbol information generating utility. Refer to Section A.2.6.1,
"Creating symbol information (rel88)" for more information on rel88 operations.

A.2.4.3 Module allocation information
As indicated in the example of section definition mentioned earlier, section definitions and command
lines that specify files can be handed over to the link88 through the input redirect function.
The number of modules are limited and the link is simple, as indicated in the example, it will be possible
to create a file similar to that indicated in the example and directly input into the link88.
There will be need to be conscious about the memory efficiency when increasing the number of modules.
One CODE section is limited to 32K bytes and the DATA section is limited to 64K bytes. Thus, it will be
necessary to allocate each module so that it does not exceed the limit. It will be necessary to give consid-
eration to the combination of modules in each section upon allocation. Otherwise, there will be more
unused memory area and thus, require unnecessary memory extension.



APPENDIX A  ASSEMBLER (Sub tool chain)

224 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

A.2.4.4 Starting link88

<Operations of link88>

(1) Set the directory in which the relocatable object files (.o) to be linked and the link command parameter
file (.lcm) including link88 command line created with the editor are existed as the current drive.

(2) Start-up the link88 with the next format.

link88_<_link command parameter file name

_ indicates a space key input.
 indicates a return key input.

Regardless of the input redirect function, the link command parameter file can directly be input in the
command line. The procedures will be omitted since it is not practical. Refer to Appendix B for more
information on formatting.
Details on the flags that compose the command line will also be omitted.
Refer to Appendix B for details of the flags.

Example: Performing linking through the link command parameter file (.lcm)

C:\USER>c:\EPSON\link88 < sample.lcm

Use the link command parameter file "sample.lcm" created in the USER of the sub-directory of drive C
as the input redirect function to start-up link88 and perform linking. The name of the absolute object
file specified in the link command parameter file will be created in the same directory as the input file.
If the PATH to link88 is set, then there is not need to specify the path before link88.

Refer to Section A.2.4.2 for the link command parameter file.

A.2.4.5 Batch processing for linking (lk88.bat)
As so with the assembler, this package contains the lk88.bat batch file for linking.
This batch file is prepared so that it can process the procedures from linking to creation of the program
data HEX file. (Details on processing procedures after linking will be noted later.)
Figure A.2.4.5.1 shows the processing flow of lk88.bat.

.o.o.o
Relocatable
object files
(create for each module) .lcm

Link command
parameter file for link88*

Batch processing for linking <lk88.bat>

Absolute
object file

Execute rel88
Creates symbol information

.ref
Symbol information
reference file

* Created by editor

Program data
HEX file

Execute sym88
Creates symbolic table file

.ref
Symbolic
table file

Execute hex88
Converts binary to HEX

Execute link88
Link

.sa

.a

Fig. A.2.4.5.1  lk88.bat processing flow



APPENDIX A  ASSEMBLER (Sub tool chain)

S5U1C88000C MANUAL II EPSON 225
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

<Outline of processing procedures>
The lk88.bat reads the link command parameter file for the link88 and executes linking operations.
When an absolute object file is created using the link88, it will then use the rel88 symbol information
generator. After reallocation operations are complete a symbolic table information file will be created.
After that, the sym88 will be executed to generate a symbolic table file that is necessary for symbolic
debugging using the ICE.
Then a program data HEX file will be created with the hex88 binary/HEX converter from the absolute
object file.

<Input/output files>

Input files

1. Link command parameter file: file_name.lcm

This is a command parameter file for the link88. It indicates the information to reallocate the
relocatable object of the S1C88 memory space.

2. Relocatable object file: file_name.o

This is a relocatable file in machine language that can be output through relocatable assembly with
the cross assembler.

Output files

1. Absolute object file: file_name.a

This is the multi-section object file created with the linker.

2. Program data HEX file: file_name.sa

This is a Motorola S2 format ASCII record file consisting of an absolute object file that was converted
with the binary/HEX converter.

3. Symbol information reference file: file_name.ref

This is the symbol information reference file of the absolute object file that was reallocated by the
physical address.

4. Symbolic table file: file_name.sy

This file contains symbol names and the address list information for symbolic debugging.

<Operation procedure>

(1) Set the directory including the relocatable object files (.o) to be linked as the current drive.
Put the command parameter file handed over to the link88 in the same directory.

(2) Start-up the lk88 with the next format.

lk88

 indicates a return key input.

Example: C:\USER>c:\EPSON\lk88

Use the link command parameter file "sample.lcm" created in the USER of the sub-directory of drive C
to start batch processing.
Batch processing will create the absolute object file (.a), symbol information reference file (.ref),
program data HEX file (.sa) and symbolic table file (.sy) in the same directory as the input file.
If the PATH to lk88 is set, then there is not need to specify the path before lk88.



APPENDIX A  ASSEMBLER (Sub tool chain)

226 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Customizing lk88.bat

<Customizing lk88.bat execution parameters>
Since the lk88.bat controls the program execution, it has a execution parameter customization field
within it. General parameters are temporarily described in the default position. Always customize the
batch files according to your development method since the parameter will vary depending on your
application style.

1. Parameter file name to be input

set parfn = file_name : Link command parameter file name (.lcm) input to link88

2. Output file name

set outfn = file_name : File name of absolute object file and program data HEX file

3. Use of the symbol information generator (rel88)

set rel88 = y : rel88 is used (default)
A symbol information reference file (.ref) will be created.

= n : rel88 is not used.

4. Use of +sec flag (information on individual section) of the symbol information generator (rel88)

set secf = y : +sec flag is added to rel88 (default)
= n : +sec flag is not added to rel88

Note: This parameter will be ignored when rel88 is not used.

Note: There are basically no error checks made on these parameter settings, therefore, do not set the
parameter with settings other than those specified.

<Customizing lk88.bat execution command>
The lk88.bat has the following command line upon execution of the program. Customize these
command lines if a flag without a default setting is to be used.

link88

%drv%link88<%parfn%.lcm

rel88 (when +sec flag is used)

%drv%rel88 -v +sec

%outfn%.a>%outfn%.ref

rel88 (when +sec flag is not used)

%drv%rel88 -v %outfn%.a>%outfn%.ref

hex88

%drv%hex88 -o %outfn%.sa %outfn%.a

sym88

%drv%sym88 %outfn%.ref

The %drv% is a path that locates the execution command of the lk88.bat. For this reason, it can not be
altered and neither can the SET statement that is defined be altered.
Use the same name for the customized parameter outfn as the name described in the link command
parameter (.lcm).

The following indicates the lk88.bat program source list and the message list of the lk88.bat. Refer to it
upon customizing the program.



APPENDIX A  ASSEMBLER (Sub tool chain)

S5U1C88000C MANUAL II EPSON 227
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

The drv is a path that locates the execution command
of the lk88.bat. It is set to root directory by default.
Customize it if necessary.

User customization field

Note: There are basically no
error checks made on these
parameter settings, therefore,
do not set the parameter with
settings other than those
specified.

←  Start-up command of link88

←  Start-up command of rel88 (no +sec flag)

←  Start-up command of rel88 (with +sec flag)

←  Start-up command of hex88

lk88.bat program source list

echo off
rem **************************************************************************
rem * E0C88 Family Auto Link Execution Utility
rem * (Ver. X.XX)
rem * Copyright(C) SEIKO EPSON CORP. 1993–1996
rem **************************************************************************
rem * customized parameter information
rem * parfn=          : input parameter file_name
rem * (file_name_lcm) for link88.exe i.e. c8316xxx.lcm
rem * outfn=          : output file_name which is written
rem * in the input parameter file_name i.e. c8316xxx
rem * rel=y y : use rel88 for absolute symbol map generation
rem *    =n n : do not use rel88
rem *
rem * secf=y y : show physical address and module size with absolute
rem *     symbolic table after link procedure
rem *     =n n : do not show physical address and module size just
rem *     symbolic table after link procedure
rem **************************************************************************
rem ********** customized parameter area (default) **********
rem *  caution : customized parameters value do not check, therefore
rem * please be carefully when you set
rem **********
set parfn=sample
set outfn=sample
set rel=y
set secf=y

rem ********** command searching path **********
rem set drv=c:\

rem **************************************************************************
rem * main program
rem * if you want to use another option(s), please append
rem * option flag(s) at command line
rem **************************************************************************
:start

echo E0C88 Family Auto Link Execution Utility Ver. X.XX
echo Copyright (C) SEIKO EPSON CORP. 1993–1996

:error_chk
if not exist %drv%nul goto exit05
if not exist %parfn%.lcm goto exit06
:chk00
if not exist %drv%link88.exe goto exit07
if not exist %drv%rel88.exe goto exit08
if not exist %drv%hex88.exe goto exit09
if not exist %drv%sym88.exe goto exit10

:link88
%drv%link88<%parfn%.lcm

if errorlevel 1 goto exit01

rem (rel88 no sec option)
:rel88_01

if "%rel%"=="n" goto hex88
if "%secf%"=="y" goto rel88_02

%drv%rel88 -v %outfn%.a>%outfn%.ref
if errorlevel 1 goto exit02

goto hex88
rem (rel88 with sec option)
:rel88_02
%drv%rel88 -v +sec %outfn%.a>%outfn%.ref

if errorlevel 1 goto exit02

:hex88
%drv%hex88 -o %outfn%.sa %outfn%.a

if errorlevel 1 goto exit03

←  Name of link command parameter file to be input
←  Name of file to be output
←  Use of not of rel88
←  Use or not of the rel88 + sec flag



APPENDIX A  ASSEMBLER (Sub tool chain)

228 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

:sym88
%drv%sym88 %outfn%.ref

if errorlevel 1 goto exit04
goto end

:exit01
echo Error stop at %drv%link88.exe

goto skip
:exit02
echo Error stop at %drv%rel88.exe

goto skip
:exit03
echo Error stop at %drv%hex88.exe

goto skip
:exit04
echo Error stop at %drv%sym88.exe

goto skip
:exit05
echo Cannot find %drv% installed E0C88 dev. tools directory

goto skip
:exit06
echo Cannot find %parfn% input parameter file

goto skip
:exit07
echo Cannot find %drv%link88.exe

goto skip
:exit08
echo Cannot find %drv%rel88.exe

goto skip
:exit09
echo Cannot find %drv%hex88.exe

goto skip
:exit10
echo Cannot find %drv%sym88.exe

:end
echo lk88.bat utility has been successfully executed.

:skip
set parfn=
set outfn=
set rel=
set secf=
set drv=

Message list

1. Start-up message

E0C88 Family Auto Link Execution Utility Ver. X.XX
Copyright (C) SEIKO EPSON CORP. 1993–1996

2. Message when terminated normally

lk88.bat utility has been successfully executed.

←  Start-up command of sym88



APPENDIX A  ASSEMBLER (Sub tool chain)

S5U1C88000C MANUAL II EPSON 229
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

3. Error message

Error stop at [drive and path name] link88.exe

Error stop at [drive and path name] rel88.exe

Error stop at [drive and path name] hex88.exe

Error stop at [drive and path name] sym88.exe

Cannot find [drive and path name] installed E0C88 dev. 

tools directory

Cannot find [file_name] input parameter file

Cannot find [drive and path name] link88.exe

Cannot find [drive and path name] rel88.exe

Cannot find [drive and path name] hex88.exe

Cannot find [drive and path name] sym88.exe

Error occurred in link88.

Error occurred in rel88.

Error occurred in hex88.

Error occurred in sym88.

Cannot find [drive or path] in which the S1C88 Family software tools

is installed.

Cannot find input parameter file (.lcm) that is used with the lk88.bat.

Cannot find link88.

Cannot find rel88.

Cannot find hex88.

Cannot find sym88.

Error message Explanation

Note: The following operations will be stopped when an error occurs.

<Precautions upon using the batch file>

(1) Some of the messages displayed during batch processing is automatically generated through the MS-
DOS/PC-DOS batch processing function and command. For this reason, it may be placed under MS-
DOS/PC-DOS control when an error occurs and thus force the batch processing to be interrupted.

(2) When an error occurs, the following procedures do not automatically continue. However, it may not
be controllable as noted in reason (1) indicated above.

(3) The execution parameters (user customization field) of the batch file basically do not locate parameter
setting errors. Therefore, do not set the parameters other than specified.

(4) An MS-DOS/PC-DOS environment variable will be used to execute the batch file, therefore, the size
of the environment variable should be allocated with as much space as possible using the
CONFIG.SYS.

A.2.4.6 Absolute object file
The absolute object file is a binary file created by link88.
The name of the file name created will be the same as that specified with the -o flag.
The files come in a multi-section object format.
This file is composed of an object (machine language) code and various reallocation information.

A.2.4.7 Execution example of linking
The following shows examples of the lk88 execution.

C:\USER>c:\EPSON\lk88

C:\USER>echo off
E0C88 Family Auto Link Execution Utility Ver. X.XX
Copyright (C) SEIKO EPSON CORP. 1993–1996
link88 Linker Version X.XX

Copyright (c) 1993 by Advanced Data Controls, Corp.
Licenced to SEIKO EPSON CORP.
lk88.bat utility has been successfully executed.
C:\USER>



APPENDIX A  ASSEMBLER (Sub tool chain)

230 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

A.2.5 Creating Program Data HEX File
This section will explain the program data HEX file and how they can be created using the hex88 binary/
HEX converter.

Software used: hex88

• System code setting and FF filling
   in unused program area by fil88XXX.
• Program debugging using ICE.
• Creating mask data of program.

.a
Absolute
object file

Execute hex88
Converts binary to HEX

.sa
Program data
HEX file

Fig. A.2.5.1  Program data HEX file generation flow

A.2.5.1 Program data HEX file
The program data HEX file is an ASCII file in which the binary object codes were converted in HEX data.
The Motorola S2 format is generally employed at the HEX file format since the S1C88 Family has a 16M-
byte address space. (Refer to Section A.2.5.3 for more information.)
This file will be required to mask program data or to debug program with the ICE.
When development is undertaken for modules according to relocatable assembly, the absolute object file
created by the linker will be converted into HEX data through the hex88 binary/HEX converter and then
create a program data HEX file.
The program data HEX file created through such procedures will set system codes according to each
model and fill FF of the unused built-in ROM area. This is done with the fil88XXX software tool according
to the model.

A.2.5.2 Creating program data HEX file using hex88
The following indicates the direction in creating a program data HEX file using the hex88.

(1) Set the directory in which the absolute object file (.a) is presented as the current drive.

(2) Start-up the hex88 with the next format.

hex88_[flag]_file name

_ indicates a space key input.
 indicates a return key input.

The following indicates the flag employed during batch processing (lk88.bat) of links.

Flag

-o <file name>

Description

Specify the file name that is output. (Specify ".sa" as the extension of the file to be output.)

If this flag is omitted it will be processed as a standard output.

Example: Converting sample.a to create program data HEX file

C:\USER>c:\EPSON\hex88 -o sample.sa sample.a

"sample.sa" will be created in the same directory as the input file by inputting the absolute object file
"sample.a" created in the USER of the sub-directory of drive C and converting it into HEX data
format.
If the PATH to hex88 is set, then there is not need to specify the path before hex88.

The batch file can allow for hex88 to be executed after linking. Refer to Section "A.2.4.5 Batch processing
for linking (lk88.bat)" for more details on such batch processing methods.



APPENDIX A  ASSEMBLER (Sub tool chain)

S5U1C88000C MANUAL II EPSON 231
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

A.2.5.3 Motorola S2 format
The HEX file in the Motorola S2 format is a collection of records composed of fields like the following.

<S FIELD><COUNT><ADDR><DATA BYTES><CHECKSUM>

All information will be indicated in hexadecimal pairs and each pair will indicate a 1-byte value.

<S FIELD> Indicates the format of that line. "S2" will appear in this field.

<COUNT> Indicates the total number of bytes of <ADDR>, <DATA BYTES> and <CHECKSUM> in
hexadecimal form.

<ADDR> Indicates the address of the first data byte of that line.
The <ADDR> field in S2 format is 3-byte.

<DATA BYTES> Data will be allocated in 1 byte units in order of the increase in address. This field
generally includes the 32-byte (maximum) data.

<CHECKSUM> This is the complement of 1 of the total number of bytes allocated to that line (excluding S
field).

Motorola S2 format
S224000380788812CF7C8812CFC0CFC1CFC2CFC3CFC4CFC5CFC6CFC7CFD0CFD1CFD2CFD3CF7C
S2240003A0D4CFD5CFD6CFD7CFD8CFD9CFDACFDBCFDCCFDDCFDECFDFCFE0CFE1CFE2CFE3CF90
S2240003C0E4CFE5CFE6CFE7CFE8CFE9CFEACFEBCFECCFEDCFEECFEFCFF0CFF1CFF2CFF3CE71
S2240003E0F4CEF5CEF8CEF9CFFACFFEDD8812C8C8C9C9CACACCCCCCCCCDCDA8A9AAABACAD28
S224000400AEAFCFB4CFB5CFB6CFB7CFBCCFBDA0A1A2A3A4A5A6A7CFB0CFB1CFB2CFB3CFB8AC
S224000420CFB9F6F7CE94CE95CE9688CE97CE90CE91CE9288CE93CE9CCE9DCE9E88CE9FCE22
S22400044098CE99CE9A88CE9BCE80CE81CE8288CE83CE84CE85CE8688CE87CE88CE89CE8A9E
S22400046000CE8BCE8CCE8DCE8E88CE8FE438E536E634E732CEE02FCEE12CCEE229CEE326CE

<ADDR>
<COUNT> 32-byte
<S FIELD>

<DATA BYTES> <CHECKSUM>



APPENDIX A  ASSEMBLER (Sub tool chain)

232 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

A.2.6 Symbol Information

A.2.6.1 Creating symbol information (rel88)
The rel88 is a utility used to create symbol information. It will obtain symbol information from the
specified object file and then create its list. The target object files are the relocatable object file created
with asm88 and the absolute object file created with link88.

Generally, this tool is used for two purposes: one for checking the symbol list after linking and second for
generating a file to be input to the sym88.

The rel88 outputs a list in accordance with the standard output.
The following explains the operations to obtain the symbol list of an absolute object file.

<rel88 operation procedure>
When creating a symbol list for the absolute object file

(1) Set the directory in which the absolute object file (.a) is presented as the current drive.

(2) Start-up the rel88 with the next format.

rel88_[flag]_input file name_>_output file name

_ indicates a space key input.
 indicates a return key input.

General flags

Flag

+sec

-v

Description

Outputs the start address and size of each section.

Sorts the sections contents according to the symbol value.

Refer to the following examples for information on the flag effects. Refer to Appendix C for more details
on the flag.

Since the rel88 output corresponds to the standard output, a file will be created according to the output
redirect.

Example: C:\USER>c:\EPSON\rel88 -v +sec sample.a > sample.ref

Inputs the absolute object file "sample.a" created in the USER of the sub-director of drive C and then
creates the symbol list file "sample.ref" in the same directory as the input file.
If the PATH to rel88 is set, then there is not need to specify the path before rel88.

The following indicate the list of symbols that are created.

Correlation with flag

*** rel88 (default) format ***

0x8000c         acia.o
0x80b8d         acia.o
0x8000C  n_getch
0x80bcD  _buffer
0x8059C  n_recept
0x8045C  n_outch
0x80baD  _ptlec
0x80b8D  _ptecr
0x8082C  n_main

*** rel88 -v format ***

SECTION 1
0x008000 c      acia.o
0x008000 C  n_getch
0x008045 C  n_outch
0x008059 C  n_recept
0x008082 C  n_main



APPENDIX A  ASSEMBLER (Sub tool chain)

S5U1C88000C MANUAL II EPSON 233
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

SECTION 2
0x0080b8 d      acia.o
0x0080b8 D  _ptecr
0x0080ba D  _ptlec
0x0080bc D  _buffer

*** rel88 +sec format ***

SECTION 1:  code
       address = 0x008000  size = 0x000b8

SECTION 2:  data
       address = 0x0080b8  size = 0x00000

(For reference)

*** -a format ***

0x000000 c  sec: 1      acia.o
0x0000b8 d  sec: 2      acia.o
0x0000bc D  sec: 2 _buffer
0x0000b8 D  sec: 2 _ptecr
0x0000ba D  sec: 2 _ptlec
0x000000 C  sec: 1 n_getch
0x000082 C  sec: 1 n_main
0x000045 C  sec: 1 n_outch
0x000059 C  sec: 1 n_recept

*** -d format ***

0x000000 c      acia.o
0x0000b8 d      acia.o
0x000000 C  n_getch
0x0000bc D  _buffer
0x000059 C  n_recept
0x000045 C  n_outch
0x0000ba D  _ptlec
0x0000b8 D  _ptecr
0x000082 C  n_main

*** -g format ***

0x000000 C  n_getch
0x0000bc D  _buffer
0x000059 C  n_recept
0x000045 C  n_outch
0x0000ba D  _ptlec
0x0000b8 D  _ptecr
0x000082 C  n_main

*** +dec format ***

       0 c      acia.o
     184 d      acia.o
       0 C  n_getch
     188 D  _buffer
      89 C  n_recept
      69 C  n_outch
     186 D  _ptlec
     184 D  _ptecr
     130 C  n_main



APPENDIX A  ASSEMBLER (Sub tool chain)

234 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

A.2.6.2 Creating symbolic table file (sym88)
The sym88 symbolic table file generator converts symbol information reference (.ref) output from the
rel88 symbol information generator into an information file that contains a symbolic table for symbolic
debugging in the ICE.

<sym88 operation procedure>

(1) Set the directory in which the symbol information reference file (.ref) is presented as the current drive.

(2) Start-up the sym88 with the next format.

sym88_input file name

_ indicates a space key input.
 indicates a return key input.

Example: C:\USER>c:\EPSON\sym88 sample.ref

Inputs the symbol information reference file "sample.ref" created in the USER of the sub-director of
drive C and then creates the symbolic table file "sample.sy" in the same directory as the input file.
If the PATH to sym88 is set, then there is not need to specify the path before sym88.



APPENDIX B  CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

S5U1C88000C MANUAL II EPSON 235
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX B CREATING PROCEDURE OF ASSEMBLY

SOURCE FILE (Sub tool chain)
B.1 Outline
When you develop a program using the assembly language, first create an assembly source file using the
CPU instructions and the pseudo-instructions included with the cross assembler. The assembly source file
should be created according to the contents and rules to be explained hereafter, using an editor you have.

B.1.1 File Name
As explained in Section A.2.3, this assembler is separated into two programs: the structured preprocessor
sap88 which expands macro instructions into the format that can be assembled by the asm88, and the
cross assembler asm88 which actually executes assembly. Files to be handled in this series of procedures
are an assembly source file. However, since there are some difference in each file, extensions of the file
names are specified as below.

Structured assembly source file: file_name.s
This is an assembly source file which includes macro instructions, etc., and is input into the structured
preprocessor sap88. When you create programs using the assembler language, create assembly source
files to make the file name with the extension ".s".

Assembly source file: file_name.ms
This is an assembly source file in which the macro instructions have been expanded, and is generated
from the structured preprocessor sap88.

In the structured preprocessor sap88 and the cross assembler asm88, files with other extensions can be
input, but generally use the above mentioned extension.

B.1.2 Source File Differences Depending on sap88 and asm88
As explained in the previous section, format of the file to be input to the cross assembler asm88 is differ-
ent from that of the structured preprocessor sap88 as to contents.
The statement (line) such as macro instruction and sap88 pseudo-instruction, which can be used in the
structured preprocessor sap88, cannot be distinguished in the cross assembler asm88, and will cause an
error. Consequently, when using the macro instructions, be sure to expand it to the format which can be
input into the cross assembler asm88, using the structured preprocessor sap88.
In particularly, attention should be paid when modifying the source file ".ms" being input into the asm88
directly.
The pseudo-instructions which are incorporated in the cross assembler asm88 functions will not cause an
error in the structured preprocessor sap88.
In the pseudo-instructions explained later, details for only the structured preprocessor sap88 are indi-
cated by [sap88 only] or the notes are described. Take care when reading.

B.1.3 Macro Instructions
Macro instruction allows the user to define virtual instructions with instruction sequences. The structured
preprocessor sap88 expands the defined instructions into the source format that can be assembled by the
cross assembler asm88. The following describes the outline of it.
When using the same statement block in multiple parts of a program, previous define the statement block
with an optional name, after this the statement block can be called using the defined name. The defined
statement block is Macro. Describe the macro name that has been defined and necessary parameters in
program, to call the macro. That part is expanded in the contents of the statement block that have been
defined as a macro by the structured preprocessor sap88, and at that point the changing of the specified
parameters is also to be done.
In addition to the macro-definition and the macro-call, some pseudo-instructions related to the macro
have been provided. For details, see Section B.3.8.



APPENDIX B  CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

236 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

B.2 General Format of Source File
Assembly source file is composed of statements (lines) such as the CPU instruction set, pseudo-instruc-
tions which are incorporated in the sap88 and asm88, and comments, and is completed by END pseudo-
instruction (pseudo-instruction to terminate assembly). (Statements can be described after the END
pseudo-instruction, however, that part will not be assembled.)
The following explains the asm88 fundamentally. (Functions permitted on the asm88 will not cause an
error on the sap88.)

Example of source file

subtitle "assembly source file example (sample.s)"
public main
external src_address, dst_address, counter

;
code

main:
ld ix,[src_address]
ld iy,[dst_address]
ld hl,[counter]
ret

;***
end

The following explains the general particulars such as the composition of the statement and characters
and notation for numerical values which can be used.

Each source program statement should be written using the following format.

Symbol field Mnemonic field Operand field Comment field

Example:
on equ 1000h
start: jrl init ;to initialize
flag: db [1]
value: db 080h

In the above sort of format line, the line end normally is the termination, however, the operand may be
described over several lines.

Symbol field: In this field, describe a symbol. A colon (:) must be used following the symbol except for
the statement of the EQU or SET instruction.
Use symbols properly in accordance with the following definition.

Symbol •Label (Colon must follow)
•Name (Constant definition by EQU or SET instruction)

Mnemonic field: In this field, describe an operation code or a pseudo-instruction.

Operand field: In this field, describe an operand or constant of each instruction, a variable, a defined
symbol, a symbol that indicates memory address, or an operational expression.

Comment field: Put semicolon (;) at the beginning of this field, and describe a comment following it.



APPENDIX B  CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

S5U1C88000C MANUAL II EPSON 237
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

B.2.1 Symbol
Symbol is the name in which the specific value is defined. The following two ways are to define a symbol.

(1) Label
The symbol that is put at the beginning of statement of CPU instructions or data definition is defined
as a label. The value that is defined to the symbol is the address of the CPU instruction or data area.

(2) Name
It is defined using the EQU or SET pseudo-instruction. The value that is defined to the symbol is the
value of <expression> that is specified using the EQU or SET pseudo-instruction.

The symbol definition is in accordance with the following rules.

  • Although the symbol length is not restricted, a maximum of 15 characters from the front will be
distinguished as a symbol.

  • In the case of a label, it can be described from any column, however, a colon (:) must be used at the
end of a label.

  • In the case of a name, it must begin from column 1.

  • The characters that can be used for symbols are as follows:
Alphabetic characters (A–Z, a–z), Arabic numerals (0–9), _

  • To input symbol it does not matter whether capital letters or small letters are used. In the default
setting, capital letters and small letters are not distinguished, therefore symbols ABC and abc are
handled identically. However, when the -c flag is used, they are distinguished.

  • A symbol cannot begin with a number.
Symbol names must begin with an alphabetic character or "_".

B.2.2 Mnemonic
A CPU instruction or a pseudo-instruction is placed in the mnemonic field. These are normally composed
of character-strings that end with a blank space. These are discussed later.

In the default setting of the asm88 and sap88, capital letters and small letters are not distinguished. In such
cases, even if inputting the following, they will all be considered as correct and the same.

Examples: byte  BYTE  bYtE

In the default setting, it is also permissible for a CPU instruction set to be written either in capital letters
or small letters. When writing programs, it is better to write them with the standard method. However,
when handling the symbol name to distinguish between capital letters and small letters using -c flag, be
sure to describe the CPU instruction set and register name in small letters.

Example:
jrl ABC ;jump to label ABC
ld a,b ;A register <- B register

B.2.3 Operand
0 or more operands can be placed in accordance with the content of the mnemonic field. These operands
are allocated by the parameter strings. They begin from a blank character indicating the termination of
the mnemonic field, are delimited by a comma and end with a blank character or semicolon.

B.2.4 Comment
Comments are disregarded in the process of assembly. The comment begins with a ";" (semicolon) and
ends at the termination of the line end (line feed code).



APPENDIX B  CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

238 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

B.2.5 Numerical Expression
Bit control is frequently executed in a microcomputer built into the equipment. For this reason, asm88
and sap88 can handle binary, octal, hexadecimal and decimal expressions as the radix of numerical
expression.

The radix is recognized by placement of the following characters after the number.

B: Binary
O, Q: Octal
H: Hexadecimal
None: Decimal (D can be used.)

(These may also be written as small letters.)

The numbers must begin with Arabic numerals (0–9). For example, the number "10" can appear as
follows.

10: Decimal
1010B: Binary
12Q: Octal
0AH: Hexadecimal

(To distinguish from names all hexadecimal numbers using letters A to F must have a "0" in front.
eg. 0AH = HEX number, AH = name)

B.2.6 Characters
The sap88 and asm88 have adopted the notation that has been normally called ASCII (American Standard
Code for Information Interchange) for expression of characters and character strings.

B.2.7 ASCII Character Set
The ASCII character set code is composed of two parts:
7 bits data according to the characters and 1 bit parity
to check whether there is an error during transfer. The
ASCII character set is classified into the following four
types.
In the asm88, the notation characters can be handled as
a character constant by enclosing them with single
quotation marks such as 'A', 'Z' and 'X'. '\'' is particu-
larly used for the single quotation marks themselves.
To express a character which can not be displayed such
as a control code, the asm88 permits the following
notations for control characters thought to have a
particularly high usage frequency.

'\a' Bell (07H)
'\n' New-line (0AH)
'\r' Return (0DH)
'\t' Tab (09H)
'\b' Back space (08H)
'\e' Escape (1BH)
'\i' Shift-in (0FH)
'\o' Shift-out (0EH)

Table B.2.7.1  ASCII character code table

00

01

02

03

04

05

06

07

08

09

0a

0b

0c

0d

0e

0f

00

NUL

SOH

STX

ETX

EOT

ENQ

ACK

BEL

BS

HT

LF

VT

FF

CR

SO

SI

01

DEL

DC1

DC2

DC3

DC4

NAK

SYN

ETB

CAN

EM

SUB

ESC

FS

GS

RS

US

02

SP

!

"

#

$

%

&

'

(

)

✻

+

'

-

.

/

03

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

04

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

05

P

Q

R

S

T

U

V

W

X

Y

Z

[

\(¥)

]

^

_

06

`

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

07

p

q

r

s

t

u

v

w

x

y

z

{

|
}

~

DEL

00 01 10 11

Section

HL

The notation, \nnn (nnn is an octal), can also be used. When this notation is used, bell, for example, can
be written '\007'.
These descriptions by escape sequences are only permitted in character strings. The character string can
be handled by ASCII instruction, and they can also be expressed by sets of characters enclosed by single
quotation marks.



APPENDIX B  CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

S5U1C88000C MANUAL II EPSON 239
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

B.2.8 Expressions
Constants are set at many points within programs, for example, the operands for CPU instruction set and
the parameters for pseudo-instructions. Moreover, constants can be shown using expressions. The cross
assembler asm88 evaluates expressions and can make the result value into the constant. A variable of the
same size as the numbers used by the CPU or a larger one may be used for the expression evaluation
during assembly.

NOTE:
(1) When a relocatable code is made, the address can only be used within the expression of which the

result will be a quantity that becomes relocatable or a constant.

Consequently, the following expressions may be used.

label1 - label2 ;When two labels are in the same program selection
label1 + <constant>
label1 - <constant>

The following expressions may not be used because the result will not be a relocatable quantity or a
constant.

label1 + label2
label1 & label2
label1 * <constant>
label1 / <constant>
label1 % <constant>
label1 * label2
label1 / label2
label1 % label2
<constant> + label2
label1 - label2 ;When two labels are in the different program selection

(2) Since the results do not become relocatable quantity, logic operations using a relocatable address
become errors during assembly.

Expressions are composed of several terms linked by binary operators (for example, +). In the evaluation,
these expressions are calculated with 16-bit precision.
The following terms may be used within the expressions.

1 Numbers
2 Variables which have been defined by the user to use the EQU and SET instructions, and declared

labels
3 Location counters $

When $ is used as the operand for the CPU instructions, the address immediately preceding the instruc-
tion is applied.

The asm88 is a two pass assembler and the values for several variables which are used in program are not
defined in the pass 1 stage. When variables for which values are undefined appear within expressions
during the pass 1 execution, 0 is assigned for them. And if there are variables for which values are still
undefined in pass 2 execution,  an error results. Also, if variables which were undefined when used for
the expression in pass 1 are used in pass 2, it causes a phase error. Consequently, you should define the
values for variables prior to using them in an expression.



APPENDIX B  CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

240 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

B.2.9 Operators
The asm88 accepts the following operators.

Table B.2.9.1a  Unary operator
Operator Function
+a Positive sign

Example: ld a,#+25h

-a Negative sign

Example: add b,#-13h

~a Assigns the values reversing each bit.

Example: and a,#~10h

LOW a Assigns a lower 8-bit value of an expression.

Example: or b,#low 1234h

HIGH a Assigns a lower 8-bit value of an expression after

the expression value is shifted 8-bit to the right.

This is the same as that to return the upper 8-bit of

a 16-bit expression.

Example: ld h,#high 1020h

BOC Calculates a bank value from a physical address.

This operator is effective for a physical address.

(Bank Of Code)

Example: ld a,#boc label

ld nb,a

LOC Calculates a logical address within the logical

space from a physical address. This operator is

effective for a physical address.

(Logical address Of Code)

Example: ld hl,#loc label

jp hl

:

label:

POD Calculates a page value from a physical address.

This operator is effective for a physical address.

(Page Of Data)

Example: ld a,#pod label

ld ep,a

LOD Calculates a logical address within the page from a

physical address. This operator is effective for a

physical address.

(Logical address Of Data)

Example: ld ix,#lod label

ld a,[ix]

:

label:

Table B.2.9.1b  Binary operator
Operator Function
a+b Addition (32-bit signed integer)

Example: sbc [hl],#25h+10h

a-b Subtraction (32-bit signed integer)

Example: sub a,#63h-03h

a*b Multiplication (32-bit signed integer)

Example: xor l,#48h*5h

a/b Integer division (32-bit signed integer)

Example: cp ba,#1256h/31h

a%b Remainder. Divides the left operand by the right

operand, and returns the remainder.

Example: add a,#0d7h%4fh

a&b Logical AND. Returns true if both operands are

true. Returns false if either of the operands is false

or both operands are false.

Example: ld sp,#04a1h&2030h

a|b Logical OR. Returns true if either operand is true

or both operands are true.

Example: ld ix,#3026h|1000h

a^b Exclusive OR. Returns true if one operand is true

and the other is false. Returns false if both

operands are true or false.

Example: ld [iy],#44h^10h

a<<b Shift to left. Shifts b (integer) bits to the left.

Example: adc hl,#5000h<<3

a>>b Shift to right. Shifts b (integer) bits to the right.
Example: cp ba,#8130h>>10h

Priority for operators
An expression is evaluated from left to right,
however, an operator with higher priority is
evaluated earlier than the other operators immedi-
ately in front of or behind it. If there are two or
more continued operators equal in priority, the
operators are evaluated from the left side.
Every left parenthesis "(" must have a correspond-
ing right parenthesis ")".
The following table shows the priority for opera-
tors.

Table B.2.9.2  Priority for operators
Operators Priority

|, ^, & Low

+ (addition), - (subtraction) ↑
*, /, %, <<, >>

BOC, LOC, POD, LOD ↓
HIGH, LOW, ~, -, + High



APPENDIX B  CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

S5U1C88000C MANUAL II EPSON 241
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Operation rules  for BOC, LOC, POD and LOD
In the unary operators, four operators BOC, LOC, POD and LOD are peculiar to the S1C88, and possesses
original rules for operation as the below.

BOC (physical address & 0x7f8000) >> 15
LOC If (physical address & 0x7f8000)

(physical address & 0x7fff) | 0x8000
else

(physical address & 0x7fff) | 0x0000
POD (physical address & 0xff0000) >> 16
LOD (physical address & 0xffff)

In the above, the value indicates the physical value possessed by the operand. During assembly, the
asm88 only generates special relocation information corresponding to each operator and the actual
address calculation is done by the link88 during linking.

B.2.10 Instruction Set
The asm88 accepts each of the following instructions as CPU instruction set.

S1C88 Family instruction list
adc cp inc neg rete sep swap

add cpl int nop rets sla upck

and dec jp or rl sll xor

bit div jrl pack rlc slp

call djr jrs pop rr sra

carl ex ld push rrc srl

cars halt mlt ret sbc sub

B.2.11 Register Name
The CPU register names indicated in the following have been reserved as keywords in the asm88. Refer to
the "S1C88 Core CPU Manual" for information on the respective register functions.

a Data register A

b Data register B

ba A and B register pair

h Data register H

l Data register L

hl Index register HL

ix Index register IX

iy Index register IY

sp Stack pointer SP

br Base register BR

sc System condition flag SC

pc Program counter PC

nb New code bank register NB

cb Code bank register CB

ep Expand page register EP

xp XP expand page register for IX

yp YP expand page register for IY

ip XP and YP register



APPENDIX B  CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

242 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

B.2.12 Addressing Mode
The S1C88 determines the execution address according to the following 12 types of addressing modes.

Table B.2.12.1  List of S1C88 addressing modes

Refer to the "S1C88 Core CPU Manual" for details on each addressing mode. The notation rules for the
operands corresponding to these addressing modes are as follows.

Table B.2.12.2  Notation rules for operands
No. Notation rule

1 A "#" is to be placed in front of numeric expressions and symbols

2 Register name is to be written directly

3 Index register is to be enclosed by brackets ([ ])

4 Index register and displacement are to be enclosed by brackets ([ ])

5 Index register + L is to be enclosed by brackets ([ ])

6 A "BR:" is to be placed in front of numeric expressions and enclosed by brackets ([ ])

7 Numeric expressions and symbols are to be enclosed by brackets ([ ])

8 Numeric expressions and symbols are to be enclosed by brackets ([ ])

9 Numeric expressions and symbols are to be enclosed by brackets ([ ])

10 Numeric expressions and symbols are to be written directly

11 Numeric expressions and symbols are to be written directly

12 None

No. Addressing mode

1 Immediate data addressing

2 Register direct addressing

3 Register indirect addressing

4 Register indirect addressing with displacement

5 Register indirect addressing with index register

6 8-bit absolute addressing

7 16-bit absolute addressing

8 8-bit indirect addressing

9 16-bit indirect addressing

10 Signed 8-bit PC relative addressing

11 Signed 16-bit PC relative addressing

12 Implied register addressing



APPENDIX B  CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

S5U1C88000C MANUAL II EPSON 243
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

B.2.13 Example for Mnemonic Notation
The examples for mnemonic notation in each addressing mode are shown in the below.

Addressing Constant
Name Label (default)

Default definition
name equ 50h label: address 00ffh

#nn eg.) ld  a,#0ffh eg.) ld  a,#name eg.) ld  a,#label -----

0 to 255

#mmnn eg.) ld  ba,#1000h eg.) ld  ba,#name eg.) ld  ba,#label -----

0 to 65535

[br:ll] eg.) ld  b,[br:0ffh] eg.) ld  b,[br:name] eg.) ld  b,[br:label] [br:low lod label]

0 to 255

[hhll] eg.) ld  1,[1000h] eg.) ld  l,[name] eg.) ld  l,[label] [lod label]

0 to 65535

[ix+dd] eg.) ld  [ix+10h],a eg.) ld  [ix+name],a ----- -----

[iy+dd]

[sp+dd]

-128 to 127

#hh eg.) ld  br,#0ffh eg.) ld  br,#name eg.) ld  br,#label high lod label

0 to 255

#pp eg.) ld  ep,#05h eg.) ld  ep,#name eg.) ld  ep,#label pod label

0 to 255

#bb eg.) ld  nb,#05h eg.) ld  nb,#name eg.) ld  nb,#label boc label

0 to 255

rr eg.) jrs  10h eg.) jrs  name eg.) jrs  label loc label

-128 to 127

[kk] eg.) jp  [10h] eg.) jp  [name] eg.) jp  [label] [low lod label]

0 to 255

qqrr eg.) jrl  1000h eg.) jrl  name eg.) jrl  label loc label

-32768 to 32767

  • Meaning of the above mentioned default definitions are as follows:
For example, when "jrl  label" has been described, the cross assembler asm88 judges as "jrl  loc label".

jrl  label  →  jrl  loc label

The program sequence is long jumped to the logical address converted from the physical address.

  • An error occurs when the operand exceeding the above mentioned addressing range has been speci-
fied, or when it is judged to exceed it.

  • In programming, pay attention to the following points when using the short branch or long branch
instruction.

jrs(l)  10H..... Jumps to the address at a distance of (10+1)H from current address
jrs(l)  $+10H... Jumps to the address at a distance of 10H from current address

Except for the above, notations described in the "S1C88 Core CPU Manual" can be used as is.



APPENDIX B  CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

244 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

B.3 Pseudo-Instructions
In this chapter the usage of each type of pseudo-instruction supported by the asm88 and sap88 is ex-
plained in the form classified by function. The format as explained below has been adopted for each
explanation to permit reference to it at any time.

View of the explanation
The explanation contents of each pseudo-instruction have been configured as the following format.

1) Name
Name of the pseudo-instruction . . . Function of the instruction

2) Format
Here the instruction format is described. The format is explained using notations according to the
following rules.
The explanations of the respective terms used in the operand notations are as follows.

<Expression>
General expression composed of symbols and constants including operators

<Numerical expression>
Constant expression using a numerical value expression (including name which has been defined as
constant by EQU instruction)

<Label>
Symbols having a definition within the self-module that has a relocatable property

<Name>
Symbols defined by EQU and SET instructions

<Symbol>
Name to be defined for the specific value

<Character string>
Character strings enclosed by double quotation marks
The following symbols have been given special meanings.

{ } ... The enclosed part indicated an optional selection.
{ }* .. This option may be placed repeatedly any number of times.
| | | .. When different parameters of a number of different types can be adopted, one among them that

is delimited by this symbol must necessarily be used as a parameter.

Other symbols
Commas ","s, brackets "[" and "]", and parentheses "(" and ")" may be input as assembler sources.

3) Functions
Here the operations of the instruction are explained in detail.

4) Examples
Here usage examples are indicated. Several types may be written depending on the instruction.

5) Related items
Here instructions that function in a similar manner and instructions that assist in understanding are
indicated.

6) Restriction
Here restrictions for use are provided. Also, causes of errors that occur in the use of an instruction
(forgetting the separator, for example) are explained.



APPENDIX B  CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

S5U1C88000C MANUAL II EPSON 245
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

B.3.1 Section Setting Pseudo-Instructions
The section setting pseudo-instructions set each section (code section and data section) and decides
program area. The section setting pseudo-instructions are as follows:

CODE    DATA
The section setting pseudo-instruction of the cross assembler asm88 has been defined on assumption that
the code section should be allocated into ROM and data section into RAM. It aims that the non-volatile
data such as program codes and constant data should not be assigned into RAM, since the microcom-
puter to built into an equipment has RAM area that the initial values become undefined. Therefore, when
the non-volatile data such as program codes and constant data are described, it must be described within
code section to set the code section by CODE pseudo-instruction. When the volatile data such as work
area and stack area are described, it must be described within data section to set the data section by
DATA pseudo-instruction.
Correspondence of each pseudo-instruction, setting section, area used, and contents to be described are
shown in table below.

Section name

Code section

(CODE)

Data section

(DATA)

Contents to be described

Data allocation that is necessary to decide from the power on, such as 

program code, constant data, and table.

Reservation for data area that does not matter if the initial value is 

undefined at power on, such as work area, stack area, flags, and buffers.

Area used

ROM

RAM

Name:
CODE.....Definition of program section

Format:
CODE

Functions:
This instruction is used to allocate the program and constants in the CODE section (ROM area). An
optional number of CODE sections may be defined within one module and resumed during assembly.
Since this instruction specifies the section with the same function as the DATA pseudo-instruction, be
sure to specify which when in the assembly. When it has not been specified, an error message is
output.

Example:
Defines the program and constants in the code section.

code
trans: ld [iy],[ix]

inc ix
inc iy
djr nz,trans
ret
db 01h, 02h, 03h, 04h, 05h

Related items:
DATA, ORG



APPENDIX B  CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

246 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Name:
DATA.....Definition of data section

Format:
DATA

Functions:
This instruction is used to reserve and allocate the data area in the DATA section (RAM area). An
optional number of DATA sections may be defined within one module and resumed during assembly.
Normally, the data section definition performs only area reservation, and it is not output to the object
as a result of the assembly. However, this section is a RAM area. When using equipment with built in
microcomputer, pay attention that the RAM area is undefined at the power on and the initial values
are invalidated.
Since this instruction specifies the section with the same function as the CODE pseudo-instruction, be
sure to specify which when in the assembly for the data section. When it has not been specified, an
error message is output.

Example:
Reserves an area for flag and buffer table in the data section.

data
flag: db [1]
buffer: db [256*8]

Related items:
CODE, ORG



APPENDIX B  CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

S5U1C88000C MANUAL II EPSON 247
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

B.3.2 Data Definition Pseudo-Instructions
Data definition pseudo-instruction is the pseudo-instruction to define data to be stored into the memory.
The data definition pseudo-instructions are as follows:

DB    DW    DL    ASCII    PARITY

Name:
DB .... Reserve/constant setting of the byte unit data area

Format 1:
DB  <expression> {,<expression>}*

Format 2:
DB  <expression> (<numeric expression>) {,<expression> (<numeric  expression>)}*

Format 3:
DB  [<numeric expression>] {,[<numeric expression>]}*

Functions:
This instruction is used to reserve the 1 byte unit data area and to set the constant. The setting of
constants are done according to a string of numeric values delimited by a comma or the specification
for the repeat number. The parameters for this instruction can be described over several lines, but you
should take care that the relocation information for linking are not included. Further when this
instruction is used, it should be described within the DATA (RAM) area when reserving data area, and
within the CODE (ROM) area when setting constant. The code generation rules for each format are as
follows.

  • Format 1
This format defines the optional constant as the optional number of object codes in 1 byte unit and
multiple expressions can be specified for an operand field. The expression is handled as constant
value of 1 byte and when multiple specifications are made, the object codes are generated in the order
of specification.

  • Format 2
This format repeat defines the optional constant in 1 byte units and sets the repeat number in a
<numeric expression> enclosed by parentheses.

  • Format 3
This format reserves the area for the number of bytes that have been assigned by the <numeric
expression> enclosed by brackets. The code generated within the object at this time is 0.

Integer numeric constants, character constants and symbols can be used as the expressions for formats
1 and 2, but they must necessarily have an absolute numeric attribute. The value of the expression
must also be within the range of -128 to 255. When an operation result  is outside the above range, it
will be made an error and the value of the lower 1 byte will be made the evaluation value. Each
format can be premixed for one instruction.

Examples:
buffer: db [50] ;Reserves 50 bytes area

tratbl: db '0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F'
;Reserves 16 bytes data as the constant

xhrbuf: db ' '(64) ;Reserves 64 bytes and initializes at the character code for the space
db '*'(64) ;Reserves 64 bytes '*' as the constant

Related items:
DW, DL



APPENDIX B  CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

248 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Name:
DW ..... Reserve/constant setting of the word unit data area

Format 1:
DW <expression> {,<expression>}*

Format 2:
DW <expression> (<numeric expression>) {,<expression> (<numeric  expression>)}*

Format 3:
DW [<numeric expression>] {,[<numeric expression>]}*

Functions:
This instruction is used to reserve the word (2 bytes) unit data area and to set the constant. The setting
of constants are done according to a string of numeric values delimited by a comma or the specifica-
tion for the repeat number. The parameters for this instruction can be described over several lines.
Further when this instruction is used, it should be described within the DATA (RAM) area when
reserving data area, and within the CODE (ROM) area when setting constant. The code generation
rules for each format are as follows.

  • Format 1
This format defines the optional constant as the optional number of object codes in word (2 bytes)
units and multiple expressions can be specified for an operand field. The expression is handled as a
long word constant value or symbol value and when multiple specifications are made, the object
codes are generated in the order of specification.

  • Format 2
This format repeat defines the optional constant in word units and sets the repeat number in a
<numeric expression> enclosed by parentheses.

  • Format 3
This format reserves the area for the number of words that have been assigned by the <numeric
expression> enclosed by brackets. The code generated within the object at this time is 0.

Integer numeric constants, character constants and symbols can be used as the expressions for formats
1 and 2. When the expression has a relocatable quality, the logical address of the location where the
concerned symbol has been allocated is rearranged during linking. The value of the expression must
also be within the range of -32766 to 65535. When an operation result is outside the above range, it
will be made an error and the value of the lower 2 bytes will be made the evaluation value. Each
format can be premixed for one instruction.

Examples:
array: dw [10] ;Reserves 10 word size area

external func1,func2,func3,func4,func5
jmptbl: dw func1,func2,func3,func4,func5

;Jump table of the functions

Related items:
DB, DL



APPENDIX B  CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

S5U1C88000C MANUAL II EPSON 249
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Name:
DL ..... Reserve/constant setting of the long word unit data area

Format 1:
DL <expression> {,<expression>}*

Format 2:
DL <expression> (<numeric expression>) {,<expression> (<numeric  expression>)}*

Format 3:
DL [<numeric expression>] {,[<numeric expression>]}*

Functions:
This instruction is used to reserve the long word (4 bytes) unit data area and to set the constant. The
setting of constants are done according to a string of numeric values delimited by a comma or the
specification for the repeat number. The parameters for this instruction can be described over several
lines. Further when this instruction is used, it should be described within the DATA (RAM) area when
reserving data area, and within the CODE (ROM) area when setting constant. The code generation
rules for each format are as follows.

  • Format 1
This format defines the optional constant as the optional number of object codes in long word (4
bytes) units and multiple expressions can be specified for an operand field. The expression is handled
as a long word constant value or symbol value and when multiple specifications are made, the object
codes are generated in the order of specification.

  • Format 2
This format repeat defines the optional constant in long word units and sets the repeat number in a
<numeric expression> enclosed by parentheses.

  • Format 3
This format reserves the area for the number of long words that have been assigned by the <numeric
expression> enclosed by brackets. The code generated within the object at this time is 0.

Integer numeric constants, character constants and symbols can be used as the expressions for formats
1 and 2. When the expression has a relocatable quality, the lower 16 bits value is rearranged as a valid
value during linking. Each format can be premixed for one instruction.

Examples:
lubarr: dl [10] ;Reserves 10 4 byte size areas

lonum: dl 13768 ;Sets the constant lonum with a long word size integer

Related items:
DB, DW



APPENDIX B  CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

250 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Name:
ASCII.....ASCII text storing in memory

Format:
ASCII   character expression {, character expression}*
character expression = character string | character constant | byte constant

Functions:
This instruction is used to store the ASCII character code in memory.
For the area reserved by this instruction, the ASCII text assigned by the parameter must be stored in
the memory. The character string for the parameter is decoded and stored in the memory sequentially
from low-order addresses.
The area size becomes the number of bytes for the decoded parameter. The operand is a character
string of one or more characters enclosed by double quotation marks.
The ASCII instruction stores the character code of each character of the character string in the
memory, however, since the information showing the length and the termination of the character
string is not output, the character strings may be set without a limitation.

Examples:
ascii "S1C88 Family"
ascii "bell",'\a' ; bell and BELL code
ascii "bell\07" ; Other format example
ascii "bell",'\07' ; Other format example
ascii 62h,65h,6ch,6ch,07h ; Other format example

Related item:
Table of ASCII character set

Name:
PARITY.....Setting/resetting of parity bit

Format:
PARITY <operand>

Functions:
The alphabet that has been adopted in the cross assembler asm88 is an ASCII character set. The ASCII
character data are indicated with 7 bits and the most significant bit shows the parity. This bit can be
optionally set or reset either always 0 or always 1 using the PARITY instruction. In addition, the total
number for 1 bit can be made odd or even. The following parities can be specified for an <operand>.

PARITY  7 Sets the parity bit at 0 (default)
PARITY  8 Sets the parity bit at 1
PARITY  ODD It is set such that "1" within the 8 bits becomes odd
PARITY  EVEN It is set such that "1" within the 8 bits becomes even

Related item:
Table of ASCII character set



APPENDIX B  CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

S5U1C88000C MANUAL II EPSON 251
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

B.3.3 Symbol Definition Pseudo-Instructions
Symbol definition pseudo-instruction is the pseudo-instruction to define an expression with a name. The
symbol definition pseudo-instructions are as follows:

EQU    SET

Name:
EQU.....Name value setting

Format:
<name> EQU <expression>

Functions:
This instruction is used to define the <expression> with a <name>. The value of a name that has been
defined by this instruction may not be changed later. Nor may an EXTERNAL declared symbol be
placed on the right side of the equals sign.
Length of the expression is not restricted, but up to a 6 character hexadecimal number can be output
to the assembly list. When a 7 or more character hexadecimal number has been defined, a warning is
output.

In the sap88, the name defined by the EQU can be used in the conditional expression of the IFC
statement that hereafter occurs, or it can be used as the parameter for the IFDEF/IFNDEF statements.
[sap88 only]

Examples:
false equ 0 ;Initialization
true equ -1
tablen equ TABFIN-TABSTA ;Calculation of table length
nul equ 00h ;Defines a character string indicating ASCII characters
soh equ 01h
stx equ 02h
etx equ 03h
eot equ 04h
enq equ 05h

Related items:
SET, IFC, IFDEF, IFNDEF, REPT

Limitation:
The <name> description must begin from the 1st column.



APPENDIX B  CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

252 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Name:
SET.....Name value setting

Format:
<name> SET <expression>

Functions:
This instruction is the same as the EQU instruction, it is intended, among others, to improve mainte-
nance of the assembler source code and it serves to link <numeric expressions> with the <names>.
Unlike in the case of the EQU instruction, a name defined by the SET instruction can be redefined any
number of times for other values and can be treated as an assembler variable. Among the attributes of
the cross-reference list, which is one of the output lists of the assembler, those are defined as variables
take this symbol. The right side of the equals sign must be defined before this instruction. The main
object of this instruction is to use the name as a conditional assemble or macro variable and it serves
as a valuable function in the structured preprocessor sap88. However, it does not have too much
application in the cross assembler asm88 itself, other than functioning to permit the redefining of
names.
Length of the expression is not restricted, but up to a 6 character hexadecimal number can be output
to the assembly list. When a 7 or more character hexadecimal number has been defined, a warning is
output.
In the sap88, the name defined by the SET can be used in the conditional expression of the IFC
statement that hereafter occurs, or it can be used as the parameter for the IFDEF/IFNDEF statements.
[sap88 only]

Examples:
abc set 1

ld a,#abc
abc set 2

ld a,#abc

Related items:
EQU, IFC, IFDEF, IFNDEF, REPT

Limitation:
The <name> description must begin from the 1st column.



APPENDIX B  CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

S5U1C88000C MANUAL II EPSON 253
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

B.3.4 Location Counter Control Pseudo-Instruction
The location counter control pseudo-instruction is as follows:

ORG

Name:
ORG.....Changing of location counter value

Format:
ORG    <expression>

Functions:
This instruction is used to specify addresses where program has been placed. <expression> must be a
relative value from a label within the current program section. At this time, an attempt to insert an
absolute address into the program counter results as an error.
Length of the expression can be defined up to a 6 digit hexadecimal number, and an error occurs if 7
digits or more has been defined.

Examples:
sizstk equ 200h ;The stack size is 512 bytes
topstk: ;Reserves space for the stack

org topstk+sizstk

Related items:
CODE, DATA



APPENDIX B  CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

254 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

B.3.5 External Definition and External Reference Pseudo-Instructions
External definition and external reference pseudo-instructions are the pseudo-instructions to define and
refer symbols which are commonly used between modules.

• External reference pseudo-instruction .....EXTERNAL

• External definition pseudo-instruction .....PUBLIC

Name:
EXTERNAL..Symbol external definition declaration

Format:
EXTERNAL    <symbol> {,<symbol>}*

Functions:
EXTERNAL and PUBLIC instructions are used so that the same symbol will be used between multiple
modules. Declaration must be done with an EXTERNAL instruction to reference symbols not defined
within the self-module, but rather defined within other modules. If a declaration is made in EXTER-
NAL, it will simultaneously be made in PUBLIC as well.

Example:
external sqrt
carl sqrt

Related item:
PUBLIC

Name:
PUBLIC.....Global declaration of symbol

Format:
PUBLIC    <symbol> {,<symbol>}*

Functions:
When optional symbols are used in multiple modules, they are declared with the PUBLIC and
EXTERNAL instructions. PUBLIC is used for declaration of symbols, such that there is a definition
within the self-module that permits reference from other modules.

Example:
public  sqrt ;SQRT permits reference from other modules

sqrt: ;Routine that computes the square root of an integer
.....
etc.

Related item:
EXTERNAL



APPENDIX B  CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

S5U1C88000C MANUAL II EPSON 255
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

B.3.6 Source File Insertion Pseudo-Instruction [sap88 only]
Source file insertion pseudo-instruction is a pseudo-instruction to read and insert other files into the
optional location of source file.

INCLUDE

* This instruction can only be used in the structured preprocessor sap88. The sap88 expands this instruc-
tion and creates the source file in which the specified file is inserted. In the cross assembler asm88, this
instruction cannot be used and will cause an error if used.

Name:
INCLUDE.....Another file insertion

Format:
INCLUDE    <file name>

Functions:
This instruction reads the specified file in the following an INCLUDE statement.
Including can be nested to optional depths. Another file can be further included into a file that is
already included.

The sap88 analyses this pseudo-instruction and creates the output file in which the specified file is
inserted. This pseudo-instruction is not transferred to the asm88 as is.

Examples:
include chargen.s ;Character generator
include utilsub ;General purpose subroutine group

Limitation:
This instruction can only be used in the structured preprocessor sap88. In the cross assembler asm88,
it cannot be used and will cause an error if used.



APPENDIX B  CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

256 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

B.3.7 Assembly Termination Pseudo-Instruction
Assembly termination pseudo-instruction terminates each source program.

END

Name:
END.....Assembly stop

Format:
END    {<Label>}

Functions:
This instruction is used to stop the assembly. A list for the portion following this instruction is output,
but not assembled.



APPENDIX B  CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

S5U1C88000C MANUAL II EPSON 257
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

B.3.8 Macro-Related Pseudo-Instructions [sap88 only]
The following pseudo-instructions are related to the macro functions, and they perform a macro defini-
tion, a macro deletion, a repeat definition, and the like.

MACRO ~ ENDM
DEFINE
LOCAL
PURGE
UNDEF
IRP ~ ENDR
IRPC ~ ENDR
REPT ~ ENDR

* These pseudo-instructions can only be used in the structured preprocessor sap88. The sap88 outputs
the source file in which the setting contents of these pseudo-instructions are expanded into a form that
can be assembled by the cross assembler asm88. Further these macro-related pseudo-instructions
cannot be accepted in the asm88 and will cause an error if used.

Name:
MACRO.....Macro definition

Format:
<macro name> MACRO [<parameter> [, <parameter>] * ]

<statement string>
[EXITM]
<statement string>

[<macro name>] ENDM

Functions:
This instruction performs a macro definition. If the specified macro name is already used, the previ-
ous definition will be overridden and this current definition will redefine the macro. Names including
any characters except blank characters, brackets "(" , ")", "{" , "}", "[" , "]" and a colon ":" can be used as
macro names. It is not necessary to define the macro name for the ENDM line except the case that the
macro definition was nested. Moreover, there is no limitation as to the number of parameters.
Arguments delimited by a comma "," can be specified by the number of your choice at the time of a
macro call. The number of arguments should not necessarily be equal to the number of parameters at
the time of a macro definition. If a character string identical to one parameter exists in the macro body,
it will be replaced with the corresponding argument character string at the time of a macro call. If any
corresponding argument does not exit it will be replaced with a blank character string. It is also
possible to specify a blank character string on arguments. In this case, specification should be done
using the characters which are not included in the blank character string. For example, if it is specified
as shown below at the time of a certain macro "xmac" call :

xmac   1,,2

The second argument will become a blank character string. At the same time, the number of argument
at the time of the call will be replaced with the sap88 system parameters NARG and narg. The blank
character string arguments at this time will also be counted.
All the parameters are not necessarily independent as tokens. Some will be replaced with arguments
even when they occur inside character strings. In order to reduce substitution, it is advisable to use
special symbols so that too much substitution can be evaded. All symbols except a comma "," and
brackets "(" , ")", "{" , "}", "[" , "]" can be used for parameters and arguments.



APPENDIX B  CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

258 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

For example :

sum macro c,d
ld a,[c]
add a,d
sld [c],a
endm

sum total,#20

The above will be interpreted as follows :

l#20 a,[total]
a#20#20 a,#20
l#20 [total],a

If you redefine your macro definition as shown below, your input will be correctly replaced :

sum macro c,&d
ld a,[c]
add a,&d
ld [c],a
endm

The blank characters before and after parameters and arguments will be discarded. The blank charac-
ters inside parameters and arguments, however, are valid. Please take caution in this respect. A macro
call from inside the body of the macro for a macro definition can also be done. In this case, a macro
call should be initiated at the time the macro call generates.
For example :

 maca macro x,y
add x,y
endm

 macb macro x,y
maca x,y
endm

macb a,#2 → add a,#2

 maca macro x,y
sub x,y
endm

macb a,#2 → sub a,#2

A macro call from the body of the macro can be executed according to the depth of your choice.
However, if the call enters a loop, the macro call will be suspended. Take a simple example for
instance :

add macro x,y
ld a,x
add a,y
ld x,a
endm

When the macro defined as above is called, it is expanded as follows :

ld a,b
add b,#2 → add a,#2

ld b,a

"add  a,y" in the third line will call itself. The macro call, therefore, will not occur. It will turn out to be
a simple "add" instruction. If we take a look at a little more complicated example :

maca macro x,y
macb x,y
macc x,y
endm



APPENDIX B  CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

S5U1C88000C MANUAL II EPSON 259
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

macb macro x,y
macc x,y
maca x,y
endm

macc macro x,y
maca x,y
macb x,y
endm

maca r0,#2

macb r0,#2

macc r0,#2

maca r0,#2

macc r0,#2

maca r0,#2

maca r0,#2

macb r0,#2

macb r0,#2

macc r0,#2

maca r0,#2

When performing a conditional assembly using the IFC statement inside the body of the macro, the
judgment will be made at the time of the macro call. If an EXITM line occurs at this time, the macro
expansion will be suspended and the macro call will end at that moment.
For example :

xmac macro x,y
...
ifc MODE == 2

exitm
endif
...
endm

MODE set 2
xmac #3,#4

When called as shown above, the macro expansion will end at the EXITM line.

MODE set 1

xmac #3,#4

When called as shown above, the macro expansion will be executed to the last.

It is possible to include a macro definition in the body of the macro. In this case, however, the macro
name of the MACRO line corresponding to the ENDM line will be required :

x macro
...

y macro
...

z macro
...

z endm
...

y endm
...
endm

With the case shown above, the macro "y" definition will be executed at the time the macro "x" is
called. In this case, however, it is not necessary to specify a macro name for the outermost macro
definition ("x" in the above example) of the ENDM line. Nesting can be done to the depth of your
choice.

Related items:
EQU, IFC, IFDEF, IFNDEF, IRP, IRPC, PURGE, SET

Limitation:
This pseudo-instruction can only be used in the structured preprocessor sap88. It cannot be accepted
in the asm88 and will cause an error if used.



APPENDIX B  CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

260 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Name:
DEFINE.....Character-string macro definition

Format:
DEFINE <character-string macro name> [<substitute character-string>]

Functions:
This instruction performs a character-string macro definition. The token identical to the character-
string macro name in the source after the DEFINE statement will be replaced with a macro instruction
in the specified substitute character-string prior to the evaluation of all the statements except the
IFDEF and IFNDEF statements. In the case that a substitute character-string is not specified, it will be
replaced with a blank character-string. In addition, a character-string macro name will be subject to be
evaluated in the IFDEF or IFNDEF statements.

Example:
define XMAX #128

cp a,XMAX
↓
cp a,#128

Related items:
IDEF, IFNDEF, UNDEF

Limitation:
This pseudo-instruction can only be used in the structured preprocessor sap88. It cannot be accepted
in the asm88 and will cause an error if used.



APPENDIX B  CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

S5U1C88000C MANUAL II EPSON 261
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Name:
LOCAL.....Definition of local label

Format:
LOCAL [<local label name> [,<local label name>] * ]

Functions:
This instruction declares a local label. When a token with the name identical to that of a local label
occurs inside a macro definition, it will be replaced in macros by a different label name, which will be
automatically generated at each macro expansion. According to the rule of local label generation, the
numerals in four digits starting with 0001 should follow the front character string "L". The front
character string can be changed if specified at the start-up of the sap88.

Example:
macl macro

local x
cp a,#3
jr c,x
ld d,r0

x:
endm

macl
macl
↓
cp a,#3
jr c,L001
ld d,a

L001:
cp a,#3
jr c,L002
ld d,a

L002:

Related item:
MACRO

Limitation:
This pseudo-instruction can only be used in the structured preprocessor sap88. It cannot be accepted
in the asm88 and will cause an error if used.



APPENDIX B  CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

262 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Name:
PURGE.....Macro deletion

Format:
PURGE [<macro name>]

Functions:
Once this instruction is executed, the macro definition of specified name that occur thereafter will be
deleted. When name is not specified, all the macro definitions will be deleted. It is also possible to
specify undefined macro name.

Example:
purge add ;delete the macro add
add ba,#10 ;use the add instruction

Related item:
MACRO

Limitation:
This pseudo-instruction can only be used in the structured preprocessor sap88. It cannot be accepted
in the asm88 and will cause an error if used.

Name:
UNDEF.....Deletion of a character string macro

Format:
UNDEF <character string macro name>

Functions:
The character-string macro definition will be deleted of the specified name that occur after this
instruction is executed. It is also possible to specify undefined character-string macro name.

Example:
undef XMAX ;delete the character string macro XMAX

Related items:
DEFINE, IFDEF, IFNDEF

Limitation:
This pseudo-instruction can only be used in the structured preprocessor sap88. It cannot be accepted
in the asm88 and will cause an error if used.



APPENDIX B  CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

S5U1C88000C MANUAL II EPSON 263
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Name:
IRP.....Repetition using character strings

Format:
IRP <parameter>, <argument> [, <argument>] *

<statement string>
ENDR

Functions:
With this instruction, arguments will be assigned to parameters in sequence from the left and expan-
sion will be repeatedly performed up to the ENDR line by the times equal to the number of the
arguments. If, at this time, a character string identical to the parameter exists between the IRP line and
the ENDR line, such a character string will be replaced with the character string keyed by the argu-
ment.

All the parameters are not necessarily independent as tokens. Even when they occur inside character
strings, they will be replaced with arguments. In order to reduce substitution, it is advisable to use
special symbols for parameters so that too much substitution can be evaded. All except a comma ","
and brackets " (" , ") ", " {" , "} ", " [" , "] " can be used as special symbols.
For example :

irp w,10,20,30
dw w

endr

The above will be interpreted as :

d10 10
d20 20
d30 30

If you modify the symbols as follows, your input will be correctly replaced:

irp &w,10,20,30
dw &w

endr

The blank characters before or after parameters or arguments can be discarded. However, the blank
characters located inside parameters and arguments are valid. Please take caution in this regard.

Each statement of IRP, IRPC and REPT can be nested to the depth of your choice. The ENDR line at
this time will correspond to the inside IRP/IRPC/REPT lines.

Example:
irp char,30,31,32,33,34,35,36,37,38,39
c_char: dw charh
endr

↓
c_30: dw 30h
c_31: dw 31h
c_32: dw 32h
c_33: dw 33h
c_34: dw 34h
c_35: dw 35h
c_36: dw 36h
c_37: dw 37h
c_38: dw 38h
c_39: dw 39h

Related items:
IRPC, MACRO, REPT

Limitation:
This pseudo-instruction can only be used in the structured preprocessor sap88. It cannot be accepted
in the asm88 and will cause an error if used.



APPENDIX B  CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

264 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Name:
IRPC.....Repetition by characters

Format:
IRPC <parameter>, <argument character string>

<statement string>
ENDR

Functions:
With this instruction, the characters of argument character strings will be assigned to parameters one
by one in sequence from the left. The expansion will be repeatedly performed till the ENDR line by
the times equal to the number of characters of arguments. If, at this time, the character strings identi-
cal to the parameters exist between the IRPC line and the ENDR line, such strings will be replaced
with the characters keyed by the arguments.

All the parameters are not necessarily independent as tokens. Even when they occur inside character
strings, they will be replaced with arguments. In order to reduce substitution, it is advisable to use
special symbols so that excessive substitution can be prevented. All symbols except a comma "," and
brackets "(" , ")", "{" , "}", "[" , "]" can be used as special symbols for parameters and arguments. For
example :

irpc w,abc
dw 'w'

endr

The above will be interpreted as :

da 'a'
db 'b'
dc 'c'

If you modify the symbols as follows, your input will be correctly replaced :

irpc &w,abc
dw '&w'

endr

The blank characters before or after the parameters or arguments will be discarded. However, the
blank characters inside the parameters and arguments are valid. Please take caution in this respect.
Each statement of IRP, IRPC and REPT can be nested to the depth of your choice. The ENDR line at
this time will correspond to the inside IRP/IRPC/REPT lines.

Example:
irp char,Hello, world!

dw 'char'
endr

↓
dw 'H'
dw 'e'
dw 'l'
dw 'l'
dw 'o'
dw ','
dw ' '
dw 'w'
dw 'o'
dw 'r'
dw 'l'
dw 'd'
dw '!'

Related items:
IRPC, MACRO, REPT

Limitation:
This pseudo-instruction can only be used in the structured preprocessor sap88. It cannot be accepted
in the asm88 and will cause an error if used.



APPENDIX B  CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

S5U1C88000C MANUAL II EPSON 265
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Name:
REPT .... Repetition by the specified number of times

Format:
REPT <operation expression>

<statement string>
ENDR

Functions:
The portion between the REPT line and the ENDR line will be repeatedly expanded by the number of
times equal to the value of the operation expression. If there is any undefined name in the operation
expression, the value of such a name will be evaluated as "0".

Each statement of IRP, IRPC and REPT can be nested to the depth of your choice. The ENDR line at
this time will correspond to the inside IRP/IRPC/REPT lines.

Example:
rept 4 ;4-bit shift

sll a
endr

Related items:
EQU, IRP, IRPC, SET

Limitation:
This pseudo-instruction can only be used in the structured preprocessor sap88. It cannot be accepted
in the asm88 and will cause an error if used.



APPENDIX B  CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

266 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

B.3.9 Conditional Assembly Pseudo-Instructions [sap88 only]
The conditional assembly pseudo-instructions decide whether or not to perform the assembly within the
specified range by the evaluation result of the conditional expression or whether the name has been
defined or not. The conditional assembly pseudo-instructions are as follows:

IFC ~ ENDIF
IFDEF ~ ENDIF
IFNDEF ~ ENDIF

* These pseudo-instructions can only be used in the structured preprocessor sap88. The sap88 outputs
the source file in which the statements subject for assembly are included. Further these conditional
assembly pseudo-instructions cannot be accepted in the asm88 and will cause an error if used.

Name:
IFC ..... Conditional assembly by conditional expression

Format:
IFC <conditional expression>

<statement string> [
ELSEC

<statement string> ]
ENDIF

Functions:
This instruction evaluates a conditional expression. If an expression is evaluated as "true", the state-
ments following the IFC line will become a subject to be assembled until either an ELSEC line or an
ENDIF line appears. If it is evaluated as "false", the statements following the IFC line will not be
considered a subject to be assembled. In the case that there is an ELSEC line, the portion between the
ELSEC and ENDIF lines will become a subject to be assembled if the conditional expression of the IFC
line is "false". If it is "true", the ELSEC line through the ENDIF line will not become a subject for
assembly.

Each statement of IFC, IFDEF and IFNDEF can be nested to the depth of your choice. The ELSEC line
and the ENDIF line at this time will correspond to the inside IFC/IFDEF/IFNDEF lines.

As explained in the following, the conditional expression comes in three cases :

1) <operation expression>
When only an operation expression is used, a decision will be made as to whether the value of the
expression is "0" or not "0". If it is "0", the value will be considered as "false". If it is not "0", the value
will be considered as "true". In the case that there is any undefined name in the operation expression,
the value of such a name will be evaluated as "0". For instance :

IFC  ee

will be decided as equivalent to

IFC  ee != 0

2) <operation expression> <relational operator> <operation expression>
The values of each operation expression are compared. If, at this time, there is any undefined name in
the operation expressions, the value of the undefined name will be evaluated as "0".
The following relational operators are available :

== "true" if the value of the left side is equal to that of the right side
!= "true" if the value of the left side is not equal to that of the right side
< "true" if the left side is smaller than the right side
> "true" if the left side is larger than the right side
<= "true" if the left side is smaller than, or equal to the right side
>= "true" if the left side is larger than, or equal to around the right side



APPENDIX B  CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

S5U1C88000C MANUAL II EPSON 267
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

3) [<conditional expression>] <logical operator> <conditional expression>
A complex conditional expression can be expressed using a logical operator. The logical operation
expressions include the following :

Unary operator:

! "true" if the conditional expression is "false"

Binary operator:

&& "true" if the left side is "true" and the right side is also "true"
|| "true" if the left side is "true" or the right side is "true"

The operators will be classified as follows from high to low precedence : either an operation expres-
sion or a conditional expression enclosed by a  round bracket > a unary operator > an operator of an
ordinary operation expression > a relational operator > &&> ||

The same operator precedence will take effect inside a round bracket. A unary operator is defined as a
unary operator of an ordinary operation expression and "!" of a logical operator.

In addition, "character string" can be used as an operation expression.

When such character strings occurs on both sides of a relational operator, a character string will be
compared to another character string. Otherwise, the value of the length of character strings will be
compared.

Example:
table macro&1,&2

ifc narg == 1
ifc ! USE_DEFAULT || DEFAULT_SIZE<64

&1:  db  0(64)
elsec

&1:  db  0(DEFAULT_SIZE)
endif

elsec
&1: db  0(&2)

endif
endm

Related items:
EQU, IFDEF, IFNDEF, SET

Limitation:
This pseudo-instruction can only be used in the structured preprocessor sap88. It cannot be accepted
in the asm88 and will cause an error if used.



APPENDIX B  CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

268 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Name:
IFDEF .... Conditional assembly by the name either defined or undefined

Format:
IFDEF <name>

<statement string> [
ELSEC

<statement string> ]
ENDIF

Functions:
If the name is defined by either the EQU statement or the SET statement, or is a character-string macro
name which is defined by the DEFINE statement, the statements following the IFDEF line will become
a subject to be assembled until either the ELSEC line or ENDIF line occurs. If the name is undefined,
the statements following the IFDEF line will not become a subject to be assembled. In the case that
there is an ELSEC line, the portion between the ELSEC line and the ENDIF line corresponding to the
IFDEF line will become a subject to be assembled if the name of the IFDEF line is not defined. If the
name is defined, the ELSEC line through the ENDIF line will not become a subject to be assembled.

Each statement of IFC, IFDEF and IFNDEF can be nested to the depth of your choice. The ELSEC line
and the ENDIF line at this time corresponds to the inside IFC/IFDEF/IFNDEF lines.

Example:
ifdef EXTRA_MEMORY
stack_start equ 4000h
stack_size equ 1000h
elsec
stack_start equ 3800h
stack_size equ 800h
endif

Related items:
DEFINE, EQU, IF, IFNDEF, SET

Limitation:
This pseudo-instruction can only be used in the structured preprocessor sap88. It cannot be accepted
in the asm88 and will cause an error if used.



APPENDIX B  CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

S5U1C88000C MANUAL II EPSON 269
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Name:
IFNDEF ..... Conditional assembly by the name either undefined or defined

Format:
IFNDEF <name>

<statement string> [
ELSEC

<statement string> ]
ENDIF

Functions:
If the name is not defined neither by the EQU statement or SET statement, nor defined by the DEFINE
statement as a character-string macro name, the statements following the IFNDEF line will become a
subject to be assembled until either the ELSEC line or the ENDIF line occurs. If the name is defined,
the statements following the IFNDEF line will not be processed as a subject to be assembled. In
addition, in the case that there is an ELSEC line, the portion between the ELSEC line and the ENDIF
line corresponding to the IFNDEF line will become a subject to be assembled if the name of the
IFNDEF line is defined. If not defined, the portion will not become a subject to be assembled.

Each statement of IFC, IFDEF and IFNDEF can be nested to the depth of your choice. The ELSEC line
and the ENDIF line at that time will correspond to the inside IFC/IFDEF/IFNDEF lines.

Example:
ifndef  SMALL_MEMORY
stack_start equ 3800h
stack_size equ 800h
elsec
stack_start equ 4000h
stack_size equ 1000h
endif

Related items:
DEFINE, EQU, IF, IFNDEF, SET

Limitation:
This pseudo-instruction can only be used in the structured preprocessor sap88. It cannot be accepted
in the asm88 and will cause an error if used.



APPENDIX B  CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

270 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

B.3.10 Output List Control Pseudo-Instructions
The output list control pseudo-instructions are used for that can be easily referred, and are as following 7
types:

LINENO
SUBTITLE
SKIP
NOSKIP
LIST
NOLIST
EJECT

Name:
LINENO ... Change of line number for assembly list file

Format:
LINENO    <numeric expression>

Functions:
This instruction forcibly changes the line number for the assembly list file to the following line
number set by the <numeric expression>. The line number can be changed up to 65535, and starts
from 0 if it exceeds the upper limit.

Example:
lineno 99 ;line number begins from 100

Name:
SUBTITLE .... Subtitle setting to assembly list file

Format:
SUBTITLE    <character string>

Functions:
The SUBTITLE instruction is used for outputting optional character string as subtitles onto the 4th
line of the list output. After the first page, SUBTITLE appearing within the current page is used as the
subtitle of the following page and continue to be used until a new SUBTITLE appears.
The character string should be enclosed by double quotation marks.

Example:
subtitle "asm88 Special function library"



APPENDIX B  CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

S5U1C88000C MANUAL II EPSON 271
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Name:
SKIP .... Suppresses all initialization codes output that exceed 4 bytes to assembly list file

Format:
SKIP

Functions:
When this instruction appears, even when there is an initialization that exceeds a one line assembly
list file, that is, a size greater than 5 bytes in each of the following instructions ASCII, DB, DL and DW,
it will output a 1 line code only to the assembly list file and will suppress code outputs that do not fit
on the assembly list file. The NOSKIP instruction serves to counter this  function, however, SKIP is set
in the default.

Example:
noskip

db 1,2,3,4,5,6,7,8,9,0
;All the hexadecimal codes output to the assembly list file

skip
ascii"1234567890"

;ASCII codes output to list file as one line only

Related item:
NOSKIP

Name:
NOSKIP .... Outputs all initialization codes to assembly list file

Format:
NOSKIP

Functions:
This instruction is used to reverse the function of the SKIP instruction (default) that suppresses output
of codes exceeding 4 bytes to the assembly list file. When this instruction appears, thereafter, if
initialization codes are set for each of the ASCII, DB, DL and DW instructions, all of these codes will
be output onto the list.

Example:
noskip

db 1,2,3,4,5,6,7,8,9,0
;All the hexadecimal codes output to the assembly list file

skip
ascii"1234567890"

;ASCII codes output to list file as one line only

Related item:
SKIP



APPENDIX B  CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

272 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Name:
LIST.....Assembly list file output

Format:
LIST

Functions:
When this instruction appears, thereafter, the assembly list file will be output. In the default, LIST is
set.

Related item:
NOLIST

Name:
NOLIST ... Prohibition of assembly list file output

Format:
NOLIST

Functions:
When this instruction appears, thereafter, the assembly list file output will be prohibited. In order to
resume the assembly list file output, use the LIST instruction. Further the line number is updated if
the assembly list file output has been prohibited by NOLIST.

Related item:
LIST

Name:
EJECT.....Form feed of assembly list file

Format:
EJECT

Functions:
When this instruction appears, the form feed with the page header is inserted to the assembly list file
same as an auto form feed. This instruction itself is shown in the first line of the page after form
feeding.



APPENDIX C  ASSEMBLY TOOL REFERENCE (Sub tool chain)

S5U1C88000C MANUAL II EPSON 273
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX C ASSEMBLY TOOL REFERENCE

(Sub tool chain)
The explanation for each software tool has been arranged by the items shown below.

PROGRAM NAME
Shows the program name.

SUMMARY
Functions of the software tool are explained.

INPUT/OUTPUT FILES

Shows the execution flow and input/output files.

START-UP FORMAT
Shows the start-up command format of the software
tool. This format includes the main component
elements of the command line; the name of tool
itself and all the flags that can be received in the
tool. The command cannot be started up if you
input invalid flags and/or arguments and forget the
necessary arguments.

Flags are listed in [ ] by a delimiter "-" and the
names. In principle, the flags are listed in alphabeti-
cal order. Flags that are composed of values alone,
are listed behind all other flags. In the case of flags
that accompany some values, the type of concerned
value as well is shown by one of the below codes
(assigned immediately following the flag name).

That means, a word size integer value is assigned to
the flags -RAM, -ROM and -sig. The flags -all, -c, -l, -q
and -x do not have values. Character strings are
assigned to -o and -suf.
Be careful of flags which normally have a hyphen
placed immediately in front, appearing without one.
(Provided there is no particular specification and a
hyphen is assumed.)
When specifying the flag individually, RAM# in the
list shown above should be assigned as -RAM#.
Furthermore, flags without values can continuously
be specified by placing a "-" (hyphen) only for the
head of the flags to be specified, for example, -clq.
The location and meaning of a non-flag argument is
indicated by a word within < and > (<files> in the
above example). Each meta-concept shows 0 or 1 or
more arguments on the command line. When
inputting command lines, type all the command
line where meta-concepts appear in their position
on the concerned line. In the case of the asm88,
input one or more file names in the position shown
by <files>. Meta-concepts in brackets are optional
specifications. It is all right if they appear, and they
may appear more than once.

FLAGS
Functions of all flags are listed. In some cases,
supplementary explanations follow them depend-
ing on the situation.

ERROR MESSAGES
A list of error messages displayed during execution.

RETURN VALUE
When execution has been completed, each tool
returns either of two values, "success" or "failure".
This item describes the conditions under which
either of the two are returned by the tool. Generally,
the return value of "success" indicates that the tool
executed all the necessary file processing.
This return value is used to evaluate an execution
result of the tool when executing batch processing.

EXAMPLE
Here is an example using the software tool.

NOTE
Here notes for use are described.

The hash mark # shows word size (2-byte) integers.
Double hash marks ## show long word size (4-byte)
integers. When integers begin with 0x or 0X they
may be interpreted as hexadecimal numbers. When
they begin with O as octal numbers and in other
cases as decimal numbers, they can optionally be
preceded by either plus + or minus - signs.
A caret "^" immediately follows the value code, of
formats of the type where there are two or more
assignments per flag such that the values are
stacked.
For example, the asm88 utility format is as follows:

asm88 -[all c l o* q RAM# ROM#

sig# suf* x] [drive:]<files>

We know that the asm88 receives the following 10
different sorts of flags.

Code Types of value
* Character string
# Integer (word size)

## Integer (long word size)
? Single character



APPENDIX C  ASSEMBLY TOOL REFERENCE <sap88>

274 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

C.1 Structured Preprocessor <sap88>

PROGRAM NAME

sap88.exe

SUMMARY

The structured preprocessor sap88 adds the macro functions to the cross assembler asm88.
The sap88 expands the macro and structured control statements included in the specified S1C88
assembly source file into a format that can be assembled by the asm88, and outputs it. At this time, the
sap88 also executes the processing for including of the modularized S1C88 assembly source files and
conditional assembly.
When file name has not been specified, the sap88 reads from the standard input (console).

INPUT/OUTPUT FILE

• Execution flow • Input file
Structured assembly source file: file_name.s
This is a structured assembly source file which is created by
an editor such as EDLIN.

• Output file
Assembly source file: file_name.ms
This is the output file in which the macros in the structured
assembly source file are expanded into the S1C88 instruc-
tions that can be assembled by the asm88. This file becomes
an input file of the asm88. The output file extension should
be made as ".ms".

sap88 execution flowAssembly source file

file_name.ms

Structured assembly source files

sap88

file_name.s

START-UP FORMAT

sap88 -[d*^ l* o* q] [drive:] <file>

flags:
Character strings enclosed with [ ] mean flags. Explanations for each flag are discussed later.

drive:
In case the input file is not in current drive, input the drive name in front of the input file name. It can be omitted if
the input file is in current drive.

file:
Specify the file name to be input to the sap88. This file name can be input using either capital letters or small letters.
When <file> has not been specified, the sap88 reads from the standard input.

Note: The extension for the structured assembly source file should be made as ".s".



APPENDIX C  ASSEMBLY TOOL REFERENCE <sap88>

S5U1C88000C MANUAL II EPSON 275
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

FLAGS

The sap88 can accept the following flags. The flags should be input with small letters.

Character-string 

macro definition

Front character string 

specification

Creating output file

Suppression of start-up message

A character-string macro is defined prior to reading in an input file. 

"*" has the following format:

    <character-string macro name> = <substitution character string>

If the substitution character string is not defined and only the

    <character-string macro name>

is defined, only the character-string macro will be defined and the substitution character 

string will become a blank character string. The character-string macros using the 

-d flag can be defined up to a maximum of 20. 

The front character string of a label name that is created at the time of the expansion of 

the structured control statement  is designated. It is "L" in default.

An output file name is turned to *. The default status is standard output.

Does not output any message related to processing of the structured preprocessor.

Function ExplanationFlag

-d*^

-l*

-o*

-q

ERROR MESSAGES

unexpected EOF in ~

can't include ~

illegal ~

illegal define

illegal expression at ~

illegal undef

The file is terminated in the middle of ~.

~ cannot be included.

~ is incorrect.

"define" statement is incorrect.

~ in the expression is incorrect.

"undef" statement is incorrect.

Error message Description

RETURN VALUE

The sap88 returns "success" if there is no syntax error in the input file. If there is a syntax error,
"failure" is returned even if the contents of the input file are correct.

EXAMPLE

Expands the structured assembly source file "sample.s" to the assembly source file "sample.ms".
C>sap88 -o sample.ms sample.s

NOTE

If there is no syntax error in a macro statement, the sap88 expands it normally even though it contains
illegal operands such as wrong register names. This error will be detected by the assembler asm88.



APPENDIX C  ASSEMBLY TOOL REFERENCE <asm88>

276 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

C.2 Cross Assembler <asm88>

PROGRAM NAME

asm88.exe

SUMMARY

The cross assembler asm88 converts an assembly source file to machine language by assembling the
assembly source file in which the macros are expanded by the structured preprocessor sap88. The
asm88 is a high speed assembler whose functions have been simplified to increase speed, and all the
added functions, such as macro and conditional assembly, are supplemented with another utility
(sap88).
The asm88 deals with the relocatable assembly for modular development.
In the relocatable assembly, the relocatable object file to link up with the other modules using the
linker link88 is created.
In addition, the asm88 can directly input an assembly source file and in such case, the source program
can be described in free format as the following format.

Label:   Mnemonic   Operand   ;Comment

In the above format, ":" indicates the end of the label and ";" indicates the beginning of the comment.
It is possible to format freely by using these separators.

The asm88 also outputs three types of lists for the programmer, an assembly list, an error list and a
cross-reference list. The assembly list is composed of a line number, address and a machine code
corresponding to each source statement. The line number is output as a decimal number and the
address and machine code as a hexadecimal number. When errors occur during assembly, an error list
file is created that is composed of a file name, the line number that generated the error, the error level
and an English error message.
Also in the assembly list file, a mark "*" is placed at the line number in which an error has been
generated.
It has also been designed such that the relationship between the definitions and the references of the
symbols within the files can be easily understood by a cross-reference list. Since these are created as
individual files, file management has also been simplified. Processing can continue even when an
error occurs, provided it is not a fatal error.

INPUT/OUTPUT FILES

• Execution flow
The asm88 inputs assembly source files and
outputs relocatable object files, an assembly
list file, a cross reference list file and an error
list file after assembly.

asm88 execution flow

Relocatable
object file

Assembly
source files

file_name.ms

Error
list file

Cross reference
list file

file_name.x

Assembly
list file

file_name.e file_name.o file_name.l

asm88



APPENDIX C  ASSEMBLY TOOL REFERENCE <asm88>

S5U1C88000C MANUAL II EPSON 277
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

• Input file
Assembly source file: file_name.ms
This is an assembly source file created by the sap88. In the default of the asm88, ".ms" is set as the
input file extension. Although the extension can be changed by specifying an option, do not change
the default setting if unnecessary.

• Output files

1. Relocatable object file: file_name.o
This is the file output from the asm88 after converting the assembly source file to the relocatable
S1C88 machine language by the relocatable assembly. This file becomes an input file for the linker
link88.

2. Assembly list file: file_name.l
This is the file in which the machine language converted by assembly and the address are output as a
list corresponding to each source statement. The addresses are output as relative addresses that the
head of the CODE section or the DATA section in the file assume as "000000H". The creating of this file
can be prohibited by a start-up flag.

3. Cross reference list file: file_name.x
This is a list of addresses in which a symbol has been defined and referred. Creating this file can be
prohibited by a start-up flag.

4. Error list file: file_name.e
This is a list of errors that have been generated during assembly.

START-UP FORMAT

asm88 -[all c l o* q RAM# ROM# sig# suf* x] [drive:] <files>

flags:
Character strings enclosed with [ ] mean flags. Explanations for each flag are discussed later.

drive:
In case the input file is not in current drive, input the drive name in front of the input file name. It can be omitted if
the input file is in current drive.

files:
Specify the file name to be input to the asm88. This file name can be input using either capital letters or small letters,
and specifying two or more source files is possible. An error will occur when <files> are not specified.

Note: Up to eight characters are available for the source file name. Furthermore, the extension ".ms"
must be input.



APPENDIX C  ASSEMBLY TOOL REFERENCE <asm88>

278 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

FLAGS

The asm88 can accept the following flags.
-ROM# and -RAM# should be input using capital letters and the others should be input using small
letters.

All symbols output

Differentiation between capital 

and small letters within source 

program

Prohibition of assembly list 

generation

Creating output file

Outputs all symbols including local symbols to a symbol table. In default, only global 

symbols and undefined symbols are output.

Differentiates capital and small letters within the input source. Since capital and small 

letters are not differentiated in default, ABC and abc are handled as the same symbol. 

When this flag is specified, the CPU instructions and the register names must be 

described using small letters.

Prohibits the creation of an assembly list file. In default, an assembly list file with the 

extension ".l" is created.

Creates output files with the name "*". In default, the output file name is the same as 

the input file and the extension becomes ".o" when the input file extension is ".ms". 

When the input file extension is other than ".ms", the default output file name becomes "xeq".

Example: When creating "out.o" from  "sample.ms", specify as below.

          asm88 -o out.o sample.ms

Function ExplanationFlag

-all

-c

-l

-o*

Suppression of start-up message

RAM capacity setting

ROM capacity setting

Setting character numbers 

of symbols

Change of input file extension

Prohibition of cross reference 

list file creation

Does not output any messages related to the assembly processing.

Sets the RAM capacity in byte units with #. When the total size of the DATA section

exceeds the value set by this flag, an error is output. 

Example: When the internal RAM capacity is set in 2K (2048 bytes), specify as below.

          asm88 -RAM 2048 sample.ms

Sets the ROM capacity in byte units with #. When the total size of the CODE section

exceeds the value set by this flag, an error is output. 

Example: When the internal ROM capacity is set in 16K (16384 bytes), specify as below.

          asm88 -ROM 16384 sample.ms

Character numbers of symbols that are significant can be set with a # value. 

In default the # is set to 15 characters.

Changes the extension of the input file to * (a separator "." is not included).

The default is ".ms".

Example: When the extension of an input source file (sample.ms) is changed to ".bs", 

specify as below.

          asm88 -suf bs sample.bs

Prohibits the creation of a cross reference list file. In default, a cross reference list file 

with the extension ".x" is created.

-q

-RAM#

-ROM#

-sig#

-suf*

-x

When one or more <files> without the -o flag are specified and the file name extension of the input
file name is the suffix of the default file name, the asm88 outputs the object files with the same name
as the input files and the extension ".o".

asm88 file1.ms file2.ms files3.ms

By inputting the above, the three object files file1.o, file2.o and file3.o are automatically created. Be
aware that the -o flag will not function, when multiple files have been specified for <files>.



APPENDIX C  ASSEMBLY TOOL REFERENCE <asm88>

S5U1C88000C MANUAL II EPSON 279
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

ERROR MESSAGE

• Fatal errors

can't create <file>

can't open <file>

can't read tmp file

can't write tmp file

namelist full

no i/p file

insufficient memory

can't seek on vmem file

can't seek to end of vmem file

no swappable page

read error on vmem file

write error on vmem file

<file> cannot be created.

<file> cannot be opened.

Temporary file cannot be read.

Temporary file cannot be written.

Name list table is full.

There is no input file specification.

There is not enough memory.

Seeking of virtual memory file has failed.

Cannot reach the end of virtual memory file.

There is no swap space.

Reading of virtual memory file has failed.

Writing to virtual memory file has failed.

Error message Description

• Severe errors

<numeric label> already defined

<identifier> wrong type

<token> expected

' missing

attempted division by zero

attempt to redefine <identifier>

constant expected

end expected

encountered too early end of line

field overflow

invalid branch address

invalid byte relocation

invalid character

invalid flag

invalid operand

invalid relocation item

invalid register

invalid register pair

invalid symbol define

invalid word relocation

new origin incompatible with current psect

non terminated string

<identifier> not defined

missing numeric expression

cars or jrs out of range

carl or jrl out of range

operand expected

psect name required

phase error <identifier>

CODE or DATA missing

ROM capacity overflow

RAM capacity overflow

relocation error in expression

<identifier> reserved word

syntax error <token> expected

syntax error <token> unexpected

syntax error - invalid identifier <identifier>

syntax error <token> invalid in expression

system error < > <token>

unsupported instruction

unsupported operand

The numeric label has been defined previously.

An illegal identifier has appeared.

A token is needed.

A quotation mark is missing.

Attempt has been made to divide by zero.

Attempt has been made to redefine an identifier.

A constant expression is required.

There is no end instruction.

The line has terminated in the middle.

The field to be secured has overflowed.

An external defined symbol is used for the operand of the short branch instruction.

The byte relocation is invalid.

Three is an illegal character.

The flag is invalid.

The operand is invalid.

The relocation item is invalid.

The register is invalid.

The register combination is invalid.

The symbol definition is invalid.

The word relocation is invalid.

There is an absolute origin within the relocatable section (relocatable mode).

The termination of a string cannot be located.

Undefined identifier has appeared.

A numeric expression is missing.

Branch destination by cars or jrs is out of range.

Branch destination by carl or jrl is out of range.

There is no operand.

A section name must be specified.

The label address is different between pass 1 and pass 2.

There is no section setting pseudo-instruction.

ROM capacity has overflowed.

RAM capacity has overflowed.

A relocation error has appeared within the expression.

<identifier> is a reserved word.

Syntax error due to insufficient token(s)

Syntax error due to excess token(s)

Syntax error due to an illegal identifier

Syntax error due to an illegal token

System error due to an illegal token

Unsupported instruction has appeared.

Unsupported operand has appeared.

Error message Description



APPENDIX C  ASSEMBLY TOOL REFERENCE <asm88>

280 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

• Warning errors

directive is ignored in relocatable mode

possibly missing relocatability

constant overflow

expected operator

The pseudo-instruction is skipped because it is in the relocatable mode.

Relocatability may lose.

Seven or more digits has been defined for the name.

There is no operator (BOC, LOC, POD, LOD). 

Error message Description

RETURN VALUE

When there is no syntax error within the input file nor pass 2 error, and all the processing is success-
fully completed, the asm88 returns "success".

EXAMPLE

Performs relocatable assembly of the file "sample.ms" to simultaneously obtain the list file "sample.l".
C>asm88 sample.ms



APPENDIX C  ASSEMBLY TOOL REFERENCE <link88>

S5U1C88000C MANUAL II EPSON 281
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

C.3 Linker <link88>

PROGRAM NAME

link88.exe

SUMMARY

The link88 links multi-section relocatable object files for the S1C88 and creates an absolute object file.
The absolute object file is used to create a program data HEX file that is used for debugging with the
ICE by inputting to the binary/HEX converter hex88. It will also be used to create absolute symbol
information (rel88) after linking the relocatable assembled file.

The basic functions of the link88 process are as follows.

1) The global flag controls the overall link88 process.

2) It defines the new CODE section and DATA section by the addition of a flag and a file.

3) It relocates sections, rearranging them in optional locations of the physical memory and permits
them to be mutually "stacked" (chaining) in appropriate storage boundaries.

4) Each object file input affects the current CODE section and DATA section.

5) The final output starts with the header, thereafter (in the named order) all CODE sections, all
DATA sections, symbolic table and the relocation stream for all CODE sections and all DATA
sections. The respective component elements for these sorts of outputs are controlled through use
of the appropriate global flag which will be described later.

6) Since all the sections are continuous in the linker output, the binary/HEX converter hex88 must be
used for writing the section into the appropriate physical location, in order to execute it in a
special location within the memory.

The S1C88 has a 24-bit wide address space (maximum 16M bytes). It splits that address space into a
32K-byte bank (code section) or a 64K-byte page (data section) by controlling the most significant 8-bit
by registers such as the code bank register (CB) and the expanded page registers (EP, XP and YP) in an
effort to expand the access performance within that range. It is possible to access an optional bank or
page from an optional bank or page by rewriting the content of the register, thus permitting easy
management of such things as large programs and data bases. However, since the register will not be
automatically renewed, even if the bank and the register are crossed, a load module image permitting
the 16M-byte address space to be described linearly cannot be created.

The S1C88 adopts a multi-segment system for linking relocatable objects, in order to create load
images to be laid out in the optional physical addresses of the address spaces managed by it.

This is a technique in which "All the spaces are split into optional sections of 64K-byte (page) or 32K-
byte (bank) units and the address information necessary for the memory layout determines all the
address information in accordance with the assignment to each segment unit."
In this technique, since the creation of continuous data objects whose size exceeds 64K bytes (page)
and 32K bytes (bank) for one section is not permitted, a limitation is imposed whereby the total size
for the CODE sections included in the modules of assembly units cannot exceed 32K bytes and the
total size for the DATA section cannot exceed 64K bytes. This restriction reflects the address restriction
of the CPU itself and even if a diagnosis of a data overflow generated during assembly were over-
looked, it is set up such that it would be rediagnosed during linking.
However, it outputs an error when the size exceeds 64K bytes in default, but does not output when
the size exceeds 32K bytes. Consequently, a flag must be specified for judgment when the size exceeds
32K bytes.



APPENDIX C  ASSEMBLY TOOL REFERENCE <link88>

282 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

INPUT/OUTPUT FILES

• Execution flow

link88 execution flow

• Input files

1. Relocatable object file: file_name.o
This is a relocatable file in machine
language that is output through
relocatable assembly with the cross
assembler asm88.

2. Link command parameter file:
file_name.lcm
This is a link command parameter
file that is directly described by the
user.

• Output file
Absolute object file: file_name.a
This is a multi-section object file
created by the link88.

Relocatable
object files

Link command
parameter file

link88<file_name.lcm

Absolute object file

file_name.a

file_name.lcm file_name.o

Note: Multi-section object file is an absolute object image whose format is composed of a global header,
a section descriptor, objects within all CODE sections, objects within all DATA sections, objects
within all DEBUG sections, objects within all ZPAG section, a symbolic table, a debug symbolic
table, and all relocation information.

START-UP FORMAT

link88 -[c cd +dead max## o* q] <sections>

<sections> includes one or more following contents.

-[+code +data m## p##] [drive:]

flags:
Character string enclosed with [ ] mean flags. Flags within the first [ ] are global flags and flags within the [ ]
included in <sections> are local flags.

drive:
In case of the relocatable object files or the libraries are not in current drive, input the drive name in front of these
file names. It can be omitted if these files are in current drive.

Note: The extension for the relocatable object files should be made as ".o".



APPENDIX C  ASSEMBLY TOOL REFERENCE <link88>

S5U1C88000C MANUAL II EPSON 283
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

FLAGS

The link88 can accept the following flags. The flags should be input with small letters.

• Global flags

Distinction between capital 

and small letters within symbols

Deletion of DATA code part

Listing of undefined symbols

Setting of maximum section size

Setting of output file name

Skip start-up message

Distinguishes capital and small letters used for symbols within the relocatable object file. 

In default, they are not distinguished, therefore ABC and abc are handled as the same symbol.

Does not output the code part for the DATA section. -cd is used to create modules that define 

only symbol values for such purposes as specification of the addresses for the common library.

Outputs a list of dead wood symbols on the CRT, that is, symbols that have been 

defined, but are not referred as absolute.

Sets the maximum section size at ## bytes. The default value is FFFFFFH (16M bytes). 

This value is used when sections are linked. When it exceeds this value, an error will occur.

Writes the output module on the file *. The default output file name is xeq.

Does not output any message related to link processing.

Function ExplanationFlag

-c

-cd

+dead

-max##

-o*

-q

When the arguments on the command line are not transferred to the link88, the list of flags and files
that become arguments of the link88 are transferred from standard input. When a "-" (hyphen) first
appears in the argument list of the command line, a standard input is incorporated into the argument
list in place of the "-". The occurrences of "-" following thereafter are disregarded.
The specified <files> are linked in that order.

• Local flags

Flags for sections

Beginning CODE section

Beginning DATA section

Begins a new CODE section, then processes the local flag for that section. 

Begins a new DATA section, then processes the local flag for that section. 

Function ExplanationFlag

+code

+data

A new section of a specified format is not actually created, when the final section of that format has a
zero size. However, a new local flag is processed and overwrites the preceding value. These two flags
must immediately precede the local flag set to appropriately process the flags and to decide to what
flag is to be applied.

Flags used only together with +code or +data

Setting of individual 

section size

Physical address setting

Sets the maximum size of the individual segment as ## bytes. The default size is 8000H 

(CODE section) or 10000H (DATA section). An error will occur if the section size 

exceeds this setting value.

Sets the physical address of the beginning of the section as ##.

Function ExplanationFlag

-m##

-p##



APPENDIX C  ASSEMBLY TOOL REFERENCE <link88>

284 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

ERROR MESSAGES

bad file format: 'FILE NAME'

bad relocation item

bad symbol number: 'NUMBER'

can't create 'FILE NAME'

can't create tmp file

can't open: 'FILE NAME'

can't read binary header: 'FILE NAME'

can't read file header: 'FILE NAME'

can't read symbol table: 'FILE NAME'

can't read tmp file

can't write output file

can't write tmp file

field overflow

inquiry phase error: 'SYMBOL NAME'

link: early EOF in pass2

multiply defined 'SYMBOL NAME'

no object files

no relocation bits: 'FILE NAME'

'SECTION NAME' overflow

phase error: 'SYMBOL NAME'

previous reference blocked: 'SYMBOL NAME' range error

read error in pass2

undefined 'SYMBOL NAME'

Format of the input file 'FILE NAME' is incorrect.

There is long integer type relocation information.

'NUMBER' is detected as illegal symbol code.

The file 'FILE NAME' cannot be created.

Temporary file cannot be created.

The input file 'FILE NAME' cannot be opened.

Header of the file 'FILE NAME' cannot be read.

First two bytes of the file 'FILE NAME' cannot be read.

Symbol table cannot be read from the file 'FILE NAME'.

Temporary file cannot be read.

Cannot write into output file.

Cannot write into temporary file.

Branch destination by cars or jrs is out of range.

Symbol value of the 'SYMBOL NAME' is different between pass 1 

and pass 2.

Unexpected EOF is detected during pass 2 processing.

'SYMBOL NAME' is multiply defined.

No input object files exist.

The relocation information corresponding to the file 'FILE NAME' is 

suppressed.

The section size in the 'SECTION NAME' exceeds the upper limit value.

Symbol value of the 'SYMBOL NAME' is different between pass 1 

and pass 2.

The information related relocation bit width is unmatched.

Read error is generated during pass 2 processing.

'SYMBOL NAME' has not been defined.

Error message Description

RETURN VALUE

When an error message is not output to the standard output, in other words, no undefined symbol
remains and all reads and writes have succeeded, the link88 returns "success". If not, it returns
"failure".

EXAMPLE

Links the sample.o by the link88 via standard input.
A>link88
-o c88xxx.a +code -p0x100 +data -p0x8000
sample.o
^Z
A>
A>link88 < sample.lcm



APPENDIX C  ASSEMBLY TOOL REFERENCE <rel88>

S5U1C88000C MANUAL II EPSON 285
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

C.4 Symbol Information Generator <rel88>

PROGRAM NAME

rel88.exe

SUMMARY

The rel88 checks the multi-section relocatable objects. The files that become the object of such checks
are relocatable object files output by the cross assembler asm88 and absolute object files output by the
link88. The rel88 can be used to check the size and configuration of relocatable object files and to
output symbol information in absolute object files output from the link88.

INPUT/OUTPUT FILES

• Execution flow

rel88 execution flow

• Input file
Absolute object file: file_name.a
Inputs an absolute object file created by the link88.

• Output file
Standard output or
Symbol information reference file: file_name.ref
The rel88 outputs a symbol information reference file
that is allocated in the physical address from the
absolute object file.

Symbol information
reference file

file_name.ref

file_name.a

Absolute object file

rel88>file_name.ref

Standard output

START-UP FORMAT

rel88 -[a +dec d g +in +sec v] [drive:] <files>

flags:
Character strings enclosed with [ ] mean flags. Explanations for each flag are discussed later.

drive:
In case an input file is not in current drive, input the drive name in front of the input file name. It can be omitted if an
input file is in current drive.

files:
Specify the file name to be input into the rel88. This file name can be input using either capital or small letters and
specifying two or more files is possible. An error will occur when <files> is not specified.



APPENDIX C  ASSEMBLY TOOL REFERENCE <rel88>

286 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

FLAGS

The rel88 can accept the following flags. The flags should be input with small letters.

Sorting of symbol names

Decimal output

Output of defined symbols

Output only global symbols

Standard input

Physical address and size of 

multi-section

Sorting by symbol values

Sorts outputs in alphabetical order of the symbol names.

Outputs symbol values and segment sizes in decimal numbers. 

The default is a hexadecimal number.

Outputs all defined symbols within each file, one per line. The symbol value, the 

"relocation code" showing to what the value is related and the symbol name are entered 

on each line. Values are output in the number of digits needed to indicate the integers in 

the S1C88. The meanings of the relocation codes in the outputs are as follows. 

 • C indicates CODE relativity

 • D indicates DATA relativity

 • A indicates absolute (not relocatable)

 • ? indicates rel88 cannot recognize it.

Small letters are used to indicate local symbols. 

Capital letters are used for global symbols.

Outputs global symbols only.

Takes <files> from standard input and adds them to command line. 

Redirecting is also possible and is valid when many files are specified. 

Outputs the physical address and size of each section of multi-segment output files. 

Sorts the inside of section by symbol values. The aforementioned -d flag is tacitly 

specified. Symbols that have the same value are sorted in alphabetic order. Absolute 

(non-relocatable) symbols are displayed first and are followed by CODE relative 

symbols and DATA relative symbols.

Function ExplanationFlag

-a

+dec

-d

-g

+in

+sec

-v

<files> are zero, or one or more files and they must have a multi-section format. When two or more
files are specified, the name of each file or module precedes the information that is output pertaining
to it. Each name is followed by a colon and a new-line. When there is no <files> specification, or when
a "-" appears on the command line, xeq is used as an input file.

ERROR MESSAGE

can't read binary header

can't read header

can't read symbol table

Reading of the object header excluding magic number and configuration 

byte has failed.

Reading of the first two bytes of the object header (magic number and 

configuration byte) has failed.

Reading of the symbolic table in the object has failed.

Error message Description

RETURN VALUE

When a diagnostic message has not been created (in other words, when all the reads have succeeded
and all the file formats are valid), rel88 returns "success".



APPENDIX C  ASSEMBLY TOOL REFERENCE <rel88>

S5U1C88000C MANUAL II EPSON 287
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

EXAMPLE

Obtains a list of all the symbols within the module in alphabetic order in hexadecimal numbers.
C>rel88 -a alloc.o
0x0074C _alloc
0x0000D _exit
0x01feC _free
0x00beC _nalloc
0x0000D _sbreak
0x0000D _write

NOTE

When no symbol is in the object or local symbols only exist, rel88 outputs a "no memory" message.
However, the local symbols are registered in the symbolic table by setting the -all flag of the asm88 (all
symbols output). If you wish to refer to all symbols, set the -all flag of the asm88.



APPENDIX C  ASSEMBLY TOOL REFERENCE <sym88>

288 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

C.5 Symbolic Table File Generator <sym88>

PROGRAM NAME

sym88.exe

SUMMARY

The symbolic table file generator sym88 converts a symbolic information file (file_name.ref) generated
in file redirect with the symbol information generating utility rel88 to a symbolic table file
(file_name.sy) that can be referenced in the ICE. Loading the symbolic table file and the correspond-
ing relocatable assembly program file in the ICE makes symbolic debugging possible.

INPUT/OUTPUT FILE

• Execution flow

sym88 execution flow

• Input file
Symbol information reference file: file_name.ref
Inputs a symbol information reference file created by the rel88.

• Output file
Symbolic table file: file_name.sy
The sym88 converts a symbol information file into a format that
can be loaded to the ICE and outputs a symbolic table file.

Symbolic table file

file_name.sy

file_name.ref

Symbol information
reference file

sym88

START-UP FORMAT

sym88 <file>

file:
Specify the symbol information file (.ref) to be input to the sym88.
This file name can be input using either capital letters or small letters.
An error will occur when <file> is not specified.

ERROR MESSAGE

No Input File Input file ".ref" has not been specified.

Error message Description



APPENDIX C  ASSEMBLY TOOL REFERENCE <sym88>

S5U1C88000C MANUAL II EPSON 289
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

RETURN VALUE

The sym88 returns "success" if there is no error in the input file and an output file is created. If there is
an error in the input file or internal created file, "failure" is returned.

EXAMPLE

Converts the symbol information reference file sample.ref into the symbolic table file sample.sy.
A:\>sym88 sample.ref

NOTES

1. Drives and directories for input files can not be specified in the startup command of the sym88.
Therefore, be sure to start up the sym88 after setting the directory of the input file as the current
directory.

2. The sym88 does not check the format of the input file. Therefore, the symbol information file to be
input to the sym88 must only be generated using the symbol information generating utility rel88
with the flags shown below.
A:\>rel88 -v +sec sample.a>sample.ref



APPENDIX C  ASSEMBLY TOOL REFERENCE <hex88>

290 EPSON S5U1C88000C MANUAL II
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

C.6 Binary/HEX Converter <hex88>

PROGRAM NAME

hex88.exe

SUMMARY

The hex88 converts an absolute object file created by the link88 into a hexadecimal data conversion
format (program data HEX file). This system adopted Motorola S record format. An absolute object
file is read from the <ifile>. When an <ifile> is not assigned, or when an assigned file name is a "-"
(hyphen), file xeq is read.
Further, S2 format in Motorola S record (can convert up to 3-byte address) is used since the S1C88 has
a maximum 16M-byte address space (000000–FFFFFFH).

INPUT/OUTPUT FILES

hex88 execution flow

• Input file
Absolute object file: file_name.a
File to be input into the hex88 is an absolute
object file output from linker.

• Output file
Standard output
or Program data HEX file: file_name.sa
The hex88 converts an absolute object file to an
ASCII file that can be input to the unused area
filling utility fil88XXX.

• Execution flow
The hex88 is a tool to convert an absolute
object file output from the linker (link88)
into a program data HEX file in hexadecimal
format. The execution flow is shown below.

Program data HEX file

file_name.sa

file_name.a

Absolute object file

hex88

Standard output

START-UP FORMAT

hex88 -[o*] [drive:] <ifile>

flag:
Character string enclosed with [ ] means flag. Explanations for the flag is discussed later.

drive:
In case an absolute object file is not in current drive, input the drive name in front of the file name. It can be omitted
if an input file is in current drive.

ifile:
Specify the file name input to the hex88. This file name can be input using either capital or small letters. When an
<ifile> is not assigned, or when an assigned file name is a "-" (hyphen), file xeq is read.

Note: The extension for the absolute object file should be made as ".a".



APPENDIX C  ASSEMBLY TOOL REFERENCE <hex88>

S5U1C88000C MANUAL II EPSON 291
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

FLAG

The hex88 can accept the following flag. The flag should be input with small letters.

Output file specification Writes the output module for the file *. 

The default is standard output. (hex88 fixed setting flag)

Function ExplanationFlag

-o*

ERROR MESSAGE

bad file format

can't read <input file>

can't write <output file>

Input file format is incorrect.

Reading of the <input file> has failed.

Writing to the <output file> has failed.

Error message Description

RETURN VALUE

If an error message is not printed, in other words if all the records have meanings, and all the reading
and writing is successful, the hex88 returns "success". Otherwise, the hex88 returns "failure".

EXAMPLE

Converts the absolute object file sample.a into the program data HEX file in the Motorola S2 format.
A>hex88 -o sample.sa sample.a





S1C88 Family Development Tools

Quick Reference



Software Development Flow Development Flow

ice88ur.exe

Segment option

generator winsog.exe

file.SSA

Segment option
HEX file

file.SDC

file.ini

Mask data checker

winmdc.exe

file.PAn
Mask
data file

Function option

generator winfog.exe

file.FSA file.FDC

Function option
document file

Function option
HEX file

Segment option
document file

Program unused area

filling utility fil88xxx

file.PSA
Program 
data HEX file

C compiler

c88.exe

Assembler

as88.exe

Object reader

pr88.exe

Library maintainer

ar88.exe

Text editor

(prepared by customer)

file.OUT

Linker
object
module

file.ABS

Absolute
load
module

Motorola S
object file

file.C C source
files

file.SRC Assembly
files

file.OBJ Object
modules

Bitmap utility  BmpUtil.exe

(Simulator package)

Bitmap editor

(prepared by customer)

file.BMP
Bitmap
file(s)

file.BMU

Bitmap
definition 

file

file.TXT
Data

table file

file.ERR
Error
file

∗1

∗2

∗2 ∗2

∗2 ∗2

∗2

∗3

∗1

file.LST
List
file

file.A
Object
library

Make program

mk88.exe

Control program

cc88.exe

file.MAK
Make
file

file.MEM file.INF
file.CPU

file.DSC

Locator
description
files

OR

file.ERS
Error
file

file.MAP
Locate
map
file

file.SY

Symbolic 
table
file

∗1

∗4

∗5

∗4

file.ELC

Error
file

Linker

lk88.exe

file.PRT

Port
setting
file

Port setting utility

PrtUtil.exe

Simulator

sim88.exe

Debugger

db88.exe (under development)

ICE & Peripheral circuit board

Target board

ROM writer control software

file.WPJ
Project
file

Workbench

wb88.exe

file.LCD

LCD
definition
file

file.CMP file.SPJ
Component
mapping file

Simulator
project file

model.PAR

ICE 
parameter 

file

model.MOT

Peripheral
circuit board
FPGA data

ice88ur.ini

ICE 
ini filefile.BMP

Bitmap
file

LCD panel customize utility

LcdUtil.exe

file.Axx

Result 
data file

file.CSV

Check 
sheet file

file.Mxx

Reference 
data file

file.TXT

Command 
file

Auto evaluation system

AutoEva.exe

file.SY
Symbolic 
table file

Symbolic table file generator

sy88.exe

file.SY
Symbolic 
table file

Symbolic table file generator

sym88.exe

∗1

file.LNL

Link
map
file

Advanced locator
definition file

file.CAL

Call
graph
file

file.ELK
Error
file

file.SA

Main tool chain

Embedded system simulator

Preprocessor

sap88.exe

Assembler

asm88.exe

file.SA
Motorola S
object file

file.ABS

Absolute
object
file

file.S Assembly
source files

Device 
information
definition file

file.MS Preprocessed
source files

file.O Object
modules

file.LCM
Link command
parameter file

HEX converter

hex88.exe

file.REF

Symbol
information
reference file

Linker

link88.exe

Symbol information generator

rel88.exe

file.X
Cross

reference
file

Error
list file

file.LST
Assembly
list file file.E

Sub tool chain Development tool chain

ROM writer

Manufactured in 

Seiko Epson

Flash ROM
MCU

Mask ROM
MCU

WBWB

Build

Build

Build

Build

Advanced locator

alc88.exe

Build
Locator

lc88.exe

Build

Build

WB

WB

WB

WB

WB

WB

WB

WB

∗1: If the error file is generated, wb88 displays the contents of the file in the message view and allows a tag jump function.    ∗2: Created using a text editor.   ∗3: Created using a bitmap editor.   ∗4: Created using the wb88 section editor (or a text editor).   ∗5: Selected by wb88.

WB

Build

WB Can be invoked from the workbench wb88. Tools executed automatically during build process by wb88.Build



Work Bench wb88 (1) Work Bench

Outline
This software provides an integrated development environment with 
Windows GUI. Creating/editing source files using an editor, selecting 
files and the major start-up options for C compiler Tool Chain, and the 
start-up of each tool can be made with simple Windows operations.

Windows

Option view
This area displays the selected 
options of the C compiler, assembler, 
linker, locator and segment editor, and
also allows option selection.
The option view changes its display 
contents according to the selection in 
the project view (whether node or file) 
as well as clicking a tool name tab.

Project view
This area shows the currently opened 
work space folder and lists all the files 
that can be edited by the user in the 
project, with a structure similar to 
Windows Explorer.
Double-clicking a source file icon 
invokes the specified editor to open 
the source file.

Message view
This area displays the messages 
delivered from the executed tools in 
a build or compile process. 
Double-clicking a syntax error 
message with a source line number 
displayed in this window invokes the 
specified editor. The editor opens the 
corresponding source and displays 
the source line in which the error has 
occurred (available when an editor 
with the tag jump function that can be 
specified by wb88 is used).



Work Bench wb88 (2) Work Bench

[PrtUtil] button
Invokes the port setting utility PrtUtil.

[LCDUtil] button
Invokes the LCD panel customize utility LCDUtil.

[Sim88] button
Invokes the simulator Sim88.

[AutoEva] button
Invokes the auto evaluation system AutoEva.

[ICE88UR] button
Invokes the ice88ur debugger.

[DB88] button
Invokes the db88 debugger.

[ROM Writer] button
Invokes the on-board ROM writer control software.

[About] button
Displays the version of wb88.

Tool bar  

Buttons

[New Project] button
Creates a new project.

[Save Project] button
Saves the project being edited. The file will be overwritten. 
This button becomes inactive if a project is not opened.

[Insert a file] button
Inserts the specified source/header file into the current opened project. 
This button becomes inactive if a project is not opened.

[Remove a file] button
Removes the selected file from the project. 

[Open] button
Opens a document. A dialog box will appear allowing selection of the file to be opened. 
When a source or header file is selected, the specified editor activates and opens the file.

[Compile/Assemble] button
Compiles or assembles the source file selected in the option view according to the source 
format.

[Build] button
Builds the currently opened project using a general make process.

[Rebuild] button
Builds the currently opened project. All the source files will be compiled/assembled 
regardless of whether they are updated or not.

[Stop Build] button
Stops the build process being executed.

[BMPUtil] button
Invokes the bitmap utility BmpUtil.

[WinFOG] button
Invokes the function option generator winfog.

[WinMDC] button
Invokes the mask data checker winmdc.

Tool bar  



Work Bench wb88 (3) Work Bench

Menus
New - C Source File
Creates a new C source file. 
(Invokes editor)
New - Asm Source File
Creates a new assembly source file. 
(Invokes editor)
New - Header File
Creates a new header file. 
(Invokes editor)
New - Project
Creates a new project.
Open ([Ctrl]+[O])
Opens a source file, header file or project file. 
Open Workspace
Opens a project. 
Save Workspace
Saves the currently opened project.
Close Workspace
Closes the currently opened project.
Exit
Terminates wb88.

Tool Bar
Shows or hides the tool bar.
Status Bar
Shows or hides the status bar.

Insert file into Project
Adds the specified source file in the currently 
opened project.
Remove file from Project
Removes the source file selected in the Project 
view from the currently opened project.

The file names listed in this menu are recently 
used source and project files. Selecting one 
opens the file.

[File] menu  Compile/Assemble
Compiles or assembles the source file selected in the 
option view according to the source format.
Build
Builds the currently opened project using a general make 
process.
ReBuild All
Builds the currently opened project.
Stop Build
Stops the build process being executed.

Sim88 Simulator
Invokes the Sim88 simulator.
DB88 Debugger
Invokes the db88 debugger.
ICE88UR Debugger
Invokes the ice88ur debugger.

Simulator Tools - Auto Evaluation System
Invokes the auto evaluation system AutoEva.
Simulator Tools - Bitmap Utility
Invokes the bitmap utility BmpUtil.
Simulator Tools - LCD Panel Customize Utility
Invokes the LCD panel customize utility LCDUtil.
Simulator Tools - Port Setting Utility
Invokes the port setting utility PrtUtil.

[Build] menu

[Debug] menu

[Tools] menu

[View] menu

[Source] menu



Work Bench wb88 (4) Work Bench

Menus

Dev Tools - Function Option Generator
Invokes the function option generator winfog.
Dev Tools - Mask Data Checker
Invokes the mask data checker winmdc.
On-Board ROM Writer
Invokes the on-board ROM writer control software.
Sim88 Configuration
Displays a dialog box for setting the path to the 
simulator Sim88.exe.
Editor Configuration
Displays a dialog box for setting the editor path and 
the command line options.

About WB88
Displays a dialog box showing the version of the work 
bench.

[Tools] menu

[Help] menu

Error Messages
Error output when generating a project
Unable to create a project : Dev Directory of Unable to create a project because no 
S1C88 family package does not exist. DEV directories exist. The DEV directory 

of the package contains various definition
files required for build task. No projects 
can be built without this directory.

Error output when adding files to the project
The file cannot be added to the project. The file <filename> cannot be added to
It is not a C file.(<filename>) the project because it is not a C source file.
The file cannot be added to the project. The file <filename> cannot be added to the 
It is not an ASM file.(<filename>) project because it is not an assembly source file.
The file cannot be added to the project. The file <filename> cannot be added to the  
It is not a header file.(<filename>) project because it is not a header file.
The file is already existed in the project. The file <filename> cannot be added to
It cannot be added in the project.(<filename>) the project because it already exists.
WB88 does not support such source file type. This source type file is not supported by wb88.
 (<filename>)

File error
Failed to access the file.(<filename>) Failed to operate on the file <filename>.
Unable to open the file.(<filename>) Failed to open the file <filename>.

Error output when starting a tool
Unable to execute ICE88UR.exe : Cannot start S5U1C88000H5 because
Unable to access <filename>. wb88 could not access the file <filename>.
Unable to execute Sim88 : Cannot start Sim88 because wb88 could
Unable to access the DEF file.(<filename>) not access the definition file.
Unable to execute <toolname>. Unable to start <toolname>.

Error output when building
Select a C or an ASM file. Select a C source or assembly source file. 

Before source files can be compiled, you 
must select the target file from tree view.

Build Command needs an active project. The build target must be project.
No target file is found in the project. No target files to build are found in the 

project. Source files must be registered to
a project before they can be built.

Other error
The command needs an active project. The command requires a project. This error

message is displayed if, in the absence of a
project, a function is executed for which a project 
must be present.

Error Messages
System error
not enough memory There is insufficient memory to run wb88.

Error output when generating a project
The file is not a WB88 project file. The file <filename> is not a wb88 project file.
(<filename>)
The version of the project file is not supported. This version of the project file <filename> is not 
(<filename>) supported.
Unable to create a project : cannot access. Unable to generate a project because the file 
<filename> <filename> could not be accessed correctly.
Unable to create a project : Unable to copy Unable to generate a project because wb88 
DEF file.(<filename>) failed to copy the definition file <filename>.
The project is already existed.(<filename>) Unable to create a project because the file 

<filename> already exists.  Two or more 
projects with the same name cannot be 
created in the same folder.



C Compiler c88 (1) Main Tool Chain

Options

Error/Warning Messages

I: information     E: error     F: fatal error     S: internal compiler error     W: warning

Frontend
F 1: evaluation expired Your product evaluation period has expired.
W 2: unrecognized option: 'option' The option you specified does not exist. 
E 4: expected number more The preprocessor part of the compiler found the '#if', 

'#endif' '#ifdef' or '#ifndef' directive but did not find a corresponding 
'#endif' in the same source file.

E 5: no source modules You must specify at least one source file to compile.
F 6: cannot create "file" The output file or temporary file could not be created.
F 7: cannot open "file" Check if the file you specified really exists.
F 8: attempt to overwrite input The output file must have a different name than the input 

file "file" file.
E 9: unterminated constant This error can occur when you specify a string without a 

character or string closing double-quote (") or when you specify a character 
constant without a closing single-quote ('). 

F 11: file stack overflow This error occurs if the maximum nesting depth (50) of file 
inclusion is reached.

F 12: memory allocation error All free space has been used.
W 13: prototype after forward call Check that a prototype for each function is present before 

or old style declaration the actual call. 
- ignored

E 14: ';' inserted An expression statement needs a semicolon.
E 15: missing filename after The -o option must be followed by an output filename.

-o option
E 16: bad numerical constant A constant must conform to its syntax. Also, a constant 

may not be too large to be represented in the type to which 
it was assigned.

E 17: string too long This error occurs if the maximum string size (1500) is 
reached. 

E 18: illegal character The character with the hexadecimal ASCII value 
(0xhexnumber) 0xhexnumber is not allowed here.

E 19: newline character in The newline character can appear in a character constant 
constant or string constant only when it is preceded by a backslash 

(\).
E 20: empty character constant A character constant must contain exactly one character. 

Empty character constants ('') are not allowed.
E 21: character constant overflow A character constant must contain exactly one character. 

Note that an escape sequence is converted to a single 
character.

E 22: '#define' without valid You have to supply an identifier after a '#define'.
identifier

Include options
-f file Read options from file
-H file Include file before starting compilation
-Idirectory Look in directory for include files

Preprocess options
-Dmacro[=def] Define preprocessor macro

Code generation options
-M{s|c|d|l} Select memory model: small, compact code, compact data or large
-O{0|1} Control optimization

Output file options
-e Remove output file if compiler errors occur
-o file Specify name of output file
-s Merge C-source code with assembly output

Diagnostic options
-V Display version header only
-err Send diagnostics to error list file (.err)
-g Enable symbolic debug information
-w[num] Suppress one or all warning messages

Startup Command

c88 [[option]...[file]...]...



C Compiler c88 (2) Main Tool Chain

Frontend
E 41: '#elif' without '#if' The '#elif' directive did not appear within an '#if', '#ifdef' or 

'#ifndef' construct.
E 42: syntax error, expecting A syntax error occurred in a parameter list a declaration or 

parameter type/declaration/ a statement. 
statement

E 43: unrecoverable syntax error, The compiler found an error from which it could not 
skipping to end of file recover.

I 44: in initializer "name" Informational message when checking for a proper 
constant initializer.

E 46: cannot hold that many The value stack may not exceed 20 operands.
operands

E 47: missing operator An operator was expected in the expression.
E 48: missing right parenthesis ')' was expected.
W 49: attempt to divide by zero An expression with a divide or modulo by zero was found.

- potential run-time error
E 50: missing left parenthesis '(' was expected.
E 51: cannot hold that many The state stack may not exceed 20 operators.

operators
E 52: missing operand An operand was expected.
E 53: missing identifier after An identifier is required in a #if defined(identifier).

'defined' operator
E 54: non scalar controlling Iteration conditions and 'if' conditions must have a scalar 

expression type (not a struct, union or a pointer).
E 55: operand has not integer type The operand of a '#if' directive must evaluate to an integral 

constant. 
W 56: '<debugoption><level>' no There is no associated debug action with the specified 

associated action debug option and level.
W 58: invalid warning number: The warning number you supplied to the -w option does 

number not exist.
F 59: sorry, more than number Compilation stops if there are more than 40 errors.

errors
E 60: label "label" multiple defined A label can be defined only once in the same function. 
E 61: type clash The compiler found conflicting types.
E 62: bad storage class for "name" The storage class specifiers auto and register may not 

appear in declaration specifiers of external definitions. 
Also, the only storage class specifier allowed in a 
parameter declaration is register.

E 63: "name" redeclared The specified identifier was already declared. The compiler 
uses the second declaration.

Error/Warning Messages

Frontend
E 23: '#else' without '#if' '#else' can only be used within a corresponding '#if', 

'#ifdef' or '#ifndef' construct.
E 24: '#endif' without matching '#if' '#endif' appeared without a matching '#if', '#ifdef' or 

'#ifndef' preprocessor directive.
E 25: missing or zero line number '#line' requires a non-zero line number specification.
E 26: undefined control A control line (line with a '#identifier') must contain one of 

the known preprocessor directives.
W 27: unexpected text after control '#ifdef' and '#ifndef' require only one identifier. Also, 

'#else' and '#endif' only have a newline. '#undef' requires 
exactly one identifier.

W 28: empty program The source file must contain at least one external 
definition. A source file with nothing but comments is 
considered an empty program.

E 29: bad '#include' syntax A '#include' must be followed by a valid header name 
syntax. 

E 30: include file "file" not found Be sure you have specified an existing include file after a 
'#include' directive. Make sure you have specified the 
correct path for the file.

E 31: end-of-file encountered The compiler found the end of a file while scanning a 
inside comment comment. Probably a comment was not terminated. 

E 32: argument mismatch for The number of arguments in invocation of a function-like 
macro "name" macro must agree with the number of parameters in the 

definition. Also, invocation of a function-like macro requires 
a terminating  ")"  token.

E 33: "name" redefined The given identifier was defined more than once, or a 
subsequent declaration differed from a previous one.

W 34: illegal redefinition of A macro can be redefined only if the body of the redefined 
macro "name" macro is exactly the same as the body of the originally 

defined macro.
E 35: bad filename in '#line' The string literal of a #line (if present) may not be a 

"wide-char" string. 
W 36: 'debug' facility not installed '#pragma debug' is only allowed in the debug version of 

the compiler.
W 37: attempt to divide by zero A divide or modulo by zero was found. 
E 38: non integral switch A switch condition expression must evaluate to an 

expression integral value. 
F 39: unknown error number: This error may not occur. 

number
W 40: non-standard escape Your escape sequence contains an illegal escape 

sequence character.



C Compiler c88 (3) Main Tool Chain

Frontend
E 89: illegal bitfield declarator A bit field may only be declared as an integer, not as a 

pointer or a function for example. 
E 90: #error message The message is the descriptive text supplied in a '#error' 

preprocessor directive.
W 91: no prototype for function Each function should have a valid function prototype.

"name"
W 92: no prototype for indirect Each function should have a valid function prototype.

function call
I 94: hiding earlier one Additional message which is preceded by error E 63. The 

second declaration will be used.
F 95: protection error: message Something went wrong with the protection key initialization. 
E 96: syntax error in #define #define id(  requires a right-parenthesis ')'.
E 97: "..." incompatible with If one function has a parameter type list and another 

old-style prototype function, with the same name, is an old-style declaration, 
the parameter list may not have ellipsis. 

E 98: function type cannot be A typedef cannot be used for a function definition.
inherited from a typedef

F 99: conditional directives '#if', '#ifdef' or '#ifndef' directives may not be nested 
nested too deep deeper than 50 levels.

E 100: case or default label not The case: or default: label may only appear inside a 
inside switch switch.

E 101: vacuous declaration Something is missing in the declaration. 
E 102: duplicate case or default Switch case values must be distinct after evaluation and 

label there may be at most one default: label inside a 
switch.

E 103: may not subtract pointer The only operands allowed on subtraction of pointers is 
from scalar pointer - pointer, or pointer - scalar. 

E 104: left operand of operator has The first operand of a '.' or '->' must have a struct or 
not struct/union type union type.

E 105: zero or negative array size Array bound constants must be greater than zero. 
- ignored

E 106: different constructors Compatible function types with parameter type lists must 
agree in number of parameters and in use of ellipsis. Also, 
the corresponding parameters must have compatible 
types. 

E 107: different array sizes Corresponding array parameters of compatible function 
types must have the same size.

E 108: different types Corresponding parameters must have compatible types 
and the type of each prototype parameter must be 
compatible with the widened definition parameter.

Error/Warning Messages

Frontend
E 64: incompatible redeclaration The specified identifier was already declared. 

of "name"
W 66: function "name": variable A variable is declared which is never used. 

"name" not used
W 67: illegal suboption: option The suboption is not valid for this option. 
W 68: function "name": parameter A function parameter is declared which is never used. 

"name" not used
E 69: declaration contains more Type specifiers may not be repeated. 

than one basic type specifier
E 70: 'break' outside loop or switch A break statement may only appear in a switch or a 

loop (do, for or while). 
E 71: illegal type specified The type you specified is not allowed in this context. 
W 72: duplicate type modifier Type qualifiers may not be repeated in a specifier list or 

qualifier list. 
E 73: object cannot be bound to Use only one memory attribute per object. 

multiple memories
E 74: declaration contains more A declaration may contain at most one storage class 

than one class specifier specifier. 
E 75: 'continue' outside a loop continue may only appear in a loop body (do, for or 

while). 
E 76: duplicate macro parameter The given identifier was used more than one in the format1 

"name" parameter list of a macro definition. 
E 77: parameter list should be An identifier list, not part of a function definition, must be 

empty empty. 
E 78: 'void' should be the only Within a function prototype of a function that does not 

parameter except any arguments, void may be the only parameter. 
E 79: constant expression A constant expression may not contain a comma. Also, the 

expected bit field width, an expression that defines an enum, array-
bound constants and switch case expressions must all 
be integral constant expressions.

E 80: '#' operator shall be followed The '#' operator must be followed by a macro argument.
by macro parameter

E 81: '##' operator shall not occur The '##' (token concatenation) operator is used to paste 
at beginning or end of a together adjacent preprocessor tokens, so it cannot be 
macro used at the beginning or end of a macro body.

W 86: escape character truncated The value of a hexadecimal escape sequence (a backslash, 
to 8 bit value \, followed by a 'x' and a number) must fit in 8 bits storage. 

E 87: concatenated string too long The resulting string was longer than the limit of 1500 
characters.

W 88: "name" redeclared with The specified identifier was already declared. 
different linkage



C Compiler c88 (4) Main Tool Chain

Frontend
E 131: bad operand type(s) of The operator needs an operand of another type.

operator 
W 132: value of variable "name" This warning occurs if a variable is used before it is 

is undefined defined. 
E 133: illegal struct/union A function cannot be a member of a struct or union. 

member type Also, bit fields may only have type int or unsigned.
E 134: bitfield size out of range The bit field width may not be greater than the number of 

- set to 1 bits in the type and may not be negative.
W 135: statement not reached The specified statement will never be executed. 
E 138: illegal function call You cannot perform a function call on an object that is not 

a function. 
E 139: operator cannot have The type name in a (cast) must be a scalar (not a struct, 

aggregate type union or a pointer) and also the operand of a (cast) must 
be a scalar.

E 140: type cannot be applied to For example, the '&' operator (address) cannot be used on 
a register/bit/bitfield object registers and bit fields. 
or builtin/inline function

E 141: operator requires The operand of the '++', or '--' operator and the left 
modifiable lvalue operand of an assignment or compound assignment 

(lvalue) must be modifiable. 
E 143: too many initializers There may be no more initializers than there are objects. 
W 144: enumerator "name" value An enum constant exceeded the limit for an int. 

out of range
E 145: requires enclosing curly A complex initializer needs enclosing curly braces. 

braces
E 146: argument #number: With prototypes, the memory spaces of arguments must 

memory spaces do not match.
match

W 147: argument #number: With prototypes, the types of arguments must be 
different levels of indirection assignment compatible. 

W 148: argument #number: With prototypes, both the prototyped function argument 
struct/union type does not and the actual argument was a struct or union, but they 
match have different tags. The tag types should match. 

E 149: object "name" has zero A struct or union may not have a member with an 
size incomplete type.

W 150: argument #number: With prototypes, the pointer types of arguments must be 
pointers to different types compatible. 

W 151: ignoring memory specifier Memory specifiers for a struct, union or enum are ignored.
E 152: operands of operator Be sure the operands point to the same memory space.

are not pointing to the same 
memory space

Error/Warning Messages

Frontend
E 109: floating point constant A floating point constant must have a value that fits in the 

out of valid range type to which it was assigned. 
E 110: function cannot return A function may not have a return type that is of type array 

arrays or functions or function. A pointer to a function is allowed. 
I 111: parameter list does not Check the parameter list or adjust the prototype. The 

match earlier prototype number and type of parameters must match. 
E 112: parameter declaration If the declarator is a prototype, the declaration of each 

must include identifier parameter must include an identifier. Also, an identifier 
declared as a typedef name cannot be a parameter 
name. 

E 114: incomplete struct/union The struct or union type must be known before you can 
type use it. 

E 115: label "name" undefined A goto statement was found, but the specified label did 
not exist in the same function or module. 

W 116: label "name" not referenced The given label was defined but never referenced. The 
reference of the label must be within the same function or 
module.

E 117: "name" undefined The specified identifier was not defined. A variable's type 
must be specified in a declaration before it can be used. 

W 118: constant expression out of A constant expression used in a case label may not be too 
valid range large. Also when converting a floating point value to an 

integer, the floating point constant may not be too large. 
E 119: cannot take 'sizeof' bitfield The size of a bit field or void type is not known. So, the

or void type size of it cannot be taken.
E 120: cannot take 'sizeof' function The size of a function is not known. So, the size of it 

cannot be taken.
E 121: not a function declarator This is not a valid function.
E 122: unnamed formal parameter The parameter must have a valid name.
W 123: function should return A return in a non-void function must have an expression.

something
E 124: array cannot hold functions An array of functions is not allowed.
E 125: function cannot return A return with an expression may not appear in a void 

anything function.
W 126: missing return A non-void function with a non-empty function body must 

(function "name") have a return statement.
E 129: cannot initialize "name" Declarators in the declarator list may not contain 

initializations. Also, an extern declaration may have no 
initializer. 

W 130: operands of operator are Pointer operands of an operator or assignment ('='), must 
pointers to different types have the same type.



C Compiler c88 (5) Main Tool Chain

Frontend
E 176: address of automatic is Unlike a static variable, an automatic variable does not 

not a constant have a fixed memory location and therefore, the address of 
an automatic is not a constant.

W 177: static variable "name" not A static variable is declared which is never used.
used

W 178: static function "name" not A static function is declared which is never called. 
used

E 179: inline function "name" is Possibly only the prototype of the inline function was 
not defined present, but the actual inline function was not. 

E 180: illegal target memory The pointer may not point to memory. 
(memory) for pointer

W 182: argument #number: With prototypes, the types of arguments must be 
different types compatible.

I 185: (prototype synthesized at This is an informational message containing the source file 
line number in "name") position where an old-style prototype was synthesized. 

E 186: array of type bit is not An array cannot contain bit type variables.
allowed

E 187: illegal structure definition A structure can only be defined (initialized) if its members 
are known. 

E 188: structure containing This error occurs when you use a bitaddressable storage 
bit-type fields is forced into type for a structure containing bit-type members.
bitaddressable area

E 189: pointer is forced to A pointer to bitaddressable memory is not allowed.
bitaddressable, pointer to 
bitaddressable is illegal

W 190: "long float" changed to In ANSI C floating point constants are treated having type 
"float" double, unless the constant has the suffix 'f'. 

E 191: recursive struct/union A struct or union cannot contain itself. 
definition

E 192: missing filename after The -f option requires a filename argument.
-f option

E 194: cannot initialize typedef You cannot assign a value to a typedef variable. 
F 199: demonstration package The demonstration package has certain limits which are 

limits exceeded not present in the full version. 
W 200: unknown pragma - ignored The compiler ignores pragmas that are not known. 
W 201: "name" cannot have storage A register variable or an automatic/parameter cannot 

type - ignored have a storage type. 
E 202: "name" is declared with You cannot call a function with an argument when the 

'void' parameter list function does not accept any (void parameter list). 
E 203: too many/few actual With prototyping, the number of arguments of a function 

parameters must agree with the prototype of the function.

Error/Warning Messages

Frontend
E 153: 'sizeof' zero sized object An implicit or explicit sizeof operation references an 

object with an unknown size. 
E 154: argument #number: With prototypes, only one of the prototyped function 

struct/union mismatch argument or the actual argument was a struct or union. 
The types should match. 

E 155: casting lvalue 'type' to The operand of the '++', or '--' operator or the left operand 
'type' is not allowed of an assignment or compound assignment (lvalue) may 

not be cast to another type. 
E 157: "name" is not a formal If a declarator has an identifier list, only its identifiers may 

parameter appear in the declarator list. 
E 158: right side of operator is The second operand of '.' or '->' must be a member of the 

not a member of the designated struct or union.
designated struct/union

E 160: pointer mismatch at Both operands of operator must be a valid pointer. 
operator

E 161: aggregates around The contents of the structs, unions or arrays on both sides 
operator do not match of the operator must be the same. 

E 162: operator requires an lvalue The '&' (address) operator requires an lvalue or function 
or function designator designator.

W 163: operands of operator have The types of pointers or addresses of the operator must be 
different level of indirection assignment compatible. 

E 164: operands of operator may The operands of operator may not have operand (void *).
not have type 'pointer to void'

W 165: operands of operator are The types of pointers or addresses of the operator must be 
incompatible: pointer vs. assignment compatible. A pointer cannot be assigned to a 
pointer to array pointer to array.

E 166: operator cannot make Casting type void to something else is not allowed.
something out of nothing

E 170: recursive expansion of An _inline function may not be recursive.
inline function "name"

E 171: too much tail-recursion in If the function level is greater than or equal to 40 this error 
inline function "name" is given.

W 172: adjacent strings have When concatenating two strings, they must have the same 
different types type.

E 173: 'void' function argument A function may not have an argument with type void.
E 174: not an address constant A constant address was expected. Unlike a static variable, 

an automatic variable does not have a fixed memory 
location and therefore, the address of an automatic is not a 
constant. 

E 175: not an arithmetic constant In a constant expression no assignment operators, no '++' 
operator, no '--' operator and no functions are allowed.



C Compiler c88 (6) Main Tool Chain

Backend
W 517: conversion of long address This warning  is issued when pointer conversion is needed.

to short address
F 524: illegal memory model See the compiler usage for valid arguments of the -M 

option.
E 526: function qualifier '_asmfunc' _asmfunc is only allowed in the function prototype.

not allowed in function 
definition

E 528: _at() requires a numerical You can only use an expression that evaluates to a 
address numerical address.

E 529: _at() address out of range The absolute address is not present in the specified 
for this type of object memory space.

E 530: _at() only valid for global Only global variables can be placed on absolute 
variables addresses.

E 531: _at() only allowed for Absolute variables cannot be initialized.
uninitialized variables

E 532: _at() has no effect on When declared extern the variable is not allocated by the 
external declaration compiler.

W 533: c88 language extension A language extension keyword is a reserved word, and 
keyword used as identifier reserved words cannot be used as an identifier.

E 536: illegal syntax used for See the description of the -R option for the correct syntax.
default section name 
'name' in -R option

E 537: default section name See the description of the -R option for the correct syntax.
'name' not allowed

W 538: default section name Only use one of the -R option or the renamesect pragma or 
'name' already renamed to use another name.
'new_name'

W 542: optimization stack underflow, This warning occurs if you use a #pragma endoptimize 
no optimization options are while there were no options saved by a previous #pragma 
saved with #pragma endoptimize.
optimize

W 555: current optimization level You could have HLL debug conflicts with these 
could reduce debugging optimization settings.
comfort (-g)

E 560: Float/Double: not yet Floating point will be supported in a following version.
implemented

Error/Warning Messages

Frontend
W 204: U suffix not allowed on A floating point constant cannot have a 'U' or 'u' suffix.

floating constant - ignored
W 205: F suffix not allowed on An integer constant cannot have a 'F' or 'f' suffix.

integer constant - ignored
E 206: 'name' named bit-field A bit field must be an integral constant expression with a 

cannot have 0 width value greater than zero.
E 212: "name": missing static A function with a static prototype misses its definition.

function definition
W 303: variable 'name' possibly Possibly an initialization statement is not reached, while a 

uninitialized function should return something. 
E 327: too many arguments to An _asmfunc function uses a fixed register-based interface

pass in registers for between C and assembly, but the number of arguments 
_asmfunc 'name' that can be passed is limited by the number of available 

registers. With function name this limit was reached.

Backend
W 501: function qualifier used on A function qualifier can only be used on functions.

non-function
E 502: Intrinsic function '_int()' The argument of the _int() intrinsic function must be an 

needs an immediate value integral constant expression rather than any type of 
as parameter integral expression.

E 503: Intrinsic function '_jrsf()' The given number must be a constant value between 0 
needs an immediate value 0..3 and 3.

W 508: function qualifier duplicated Only one function qualifier is allowed.
E 511: interrupt function must A function declared with _interrupt(n) may not accept 

have void result and void any arguments and may not return anything.
parameter list

W 512: 'number' illegal interrupt The interrupt vector number must be 0, or in the range 3 to 
number (0, or 3 to 251) 251. Any other number is illegal.
- ignored

E 513: calling an interrupt routine, An interrupt function cannot be called directly, you must 
use '_swi()' use the intrinsic function _swi().

E 514: conflict in '_interrupt'/ The attributes of the current function qualifier declaration 
'_asmfunc' attribute and the previous function qualifier declaration are not the 

same.
E 515: different '_interrupt' number The interrupt number of the current function qualifier 

declaration and the previous function qualifier declaration 
are not the same.

E 516: 'memory_type' is illegal The storage type is not valid for this function.
memory for function



C Compiler c88 (7) Main Tool Chain

Library

<ctype.h> isalnum, isalpha, isascii, iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace, 
isupper, isxdigit, toascii, _tolower, tolower, _toupper, toupper

<errno.h> Error numbers 
No C functions.

<float.h> Constants for floating-point operation
<limits.h> Limits and sizes of integral types 

No C functions.
<locale.h> localeconv, setlocale 

Delivered as skeletons.
<math.h> acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod, frexp, ldexp, log, 

log10, modf, pow, sin, sinh, sqrt, tan, tanh
<setjmp.h> longjmp, setjmp
<signal.h> raise, signal 

Functions are delivered as skeletons.
<simio.h> _simi, _simo
<stdarg.h> va_arg, va_end, va_start
<stddef.h> offsetof, definition of special types
<stdio.h> clearerr, fclose, _fclose, feof, ferror, fflush, fgetc, fgetpos, fgets, fopen, _fopen, 

fprintf, fputc, fputs, fread, freopen, fscanf, fseek, fsetpos, ftell, fwrite, getc, 
getchar, gets, _ioread, _iowrite, _lseek, perror, printf, putc, putchar, puts, _read, 
remove, rename, rewind, scanf, setbuf, setvbuf, sprintf, sscanf, tmpfile, tmpnam, 
ungetc, vfprintf, vprintf, vsprintf, _write

<stdlib.h> abort, abs, atexit, atof, atoi, atol, bsearch, calloc, div, exit, free, getenv, labs, 
ldiv, malloc, mblen, mbstowcs, mbtowc, qsort, rand, realloc, srand, strtod, strtol, 
strtoul, system, wcstombs, wctomb

<string.h> memchr, memcmp, memcpy, memmove, memset, strcat, strchr, strcmp, strcol, 
strcpy, strcspn, strerror, strlen, strncat, strncmp, strncpy, strpbrk, strrchr, strspn, 
strstr, strtok, strxfrm

<time.h> asctime, clock, ctime, difftime, gmtime, localtime, mktime, strftime, time 
All functions are delivered as skeletons.



Assembler as88 (1) Main Tool Chain

Options

Functions

@function_name(argument[,argument]...)

Mathematical Functions
ABS Absolute value
MAX Maximum value
MIN Minimum value
SGN Return sign

String Functions
CAT Catenate strings
LEN Length of string
POS Position of substring in string
SCP Compare strings
SUB Substring from a string

Macro Functions
ARG Macro argument function
CNT Macro argument count
MAC Macro definition function
MXP Macro expansion function

Assembler Mode Functions
AS88 Assembler executable name
DEF Symbol definition function
LST LIST control flag value
MODEL Selected model of the assembler

Address Handling Functions
CADDR Code address
COFF Code page offset
CPAG Code page number
DADDR Data address
DOFF Data page offset
DPAG Data page number
HIGH 256 byte page number
LOW 256 byte page offset

-C file Include file before source
-Dmacro[=def] Define preprocessor macro
-L[flag...] Remove specified source lines from list file
-M[s|c|d|l] Specify memory model
-V Display version header only
-c Switch to case insensitive mode (default case sensitive)
-e Remove object file on assembly errors
-err Redirect error messages to error file
-f file Read options from file
-i[l|g] Default label style local or global
-l Generate listing file
-o filename Specify name of output file
-t Display section summary
-v Verbose mode. Print the filenames and numbers of the passes while they progress
-w[num] Suppress one or all warning messages

Startup Command

as88 [option]...source-file [map-file]



Assembler as88 (2) Main Tool Chain

Macros and Conditional Assembly
DUP Duplicate sequence of source lines
DUPA Duplicate sequence with arguments
DUPC Duplicate sequence with characters
DUPF Duplicate sequence in loop
ENDIF End of conditional assembly
ENDM End of macro definition
EXITM Exit macro
IF Conditional assembly directive
MACRO Macro definition
PMACRO Purge macro definition

Assembler Directives

Debugging
CALLS Pass call information to object file. Used to build a call tree at link time for 

overlaying overlay sections.
SYMB Pass symbolic debug information

Assembly Control
ALIGN Specify alignment
COMMENT Start comment lines. This directive is not permitted in IF/ELIF/ELSE/ENDIF  

constructs and MACRO/DUP definitions.
DEFINE Define substitution string
DEFSECT Define section name and attributes
END End of source program
FAIL Programmer generated error message
INCLUDE Include secondary file
MSG Programmer generated message
RADIX Change input radix for constants
SECT Activate section
UNDEF Undefine DEFINE symbol
WARN Programmer generated warning

Symbol Definition
EQU Equate symbol to a value; accepts forward references
EXTERN External symbol declaration; also permitted in module body
GLOBAL Global symbol declaration; also permitted in module body
LOCAL Local symbol declaration
NAME Identify object file
SET Set symbol to a value; accepts forward references

Data Definition/Storage Allocation
ASCII Define ASCII string
ASCIZ Define NULL padded ASCII string
DB Define constant byte
DS Define storage
DW Define constant word



Assembler as88 (3) Main Tool Chain

Warnings (W)
W 120: assembler debug The SYMB record contains an expression with operations 

information: cannot emit that are not supported by the IEEE-695 object format. 
non-tiof expression for label

W 121: changed alignment size to size
W 123: expression: type-error The expression performs an illegal operation on an 

address or combines incompatible memory spaces.
W 124: cannot purge macro during 

its own definition
W 125: "symbol" is not a DEFINE You tried to UNDEF a symbol that was not previously 

symbol DEFINEd or was already undefined. 
W 126: redefinition of The symbol is already DEFINEd in the current scope. The 

"define-symbol" symbol is redefined according to this DEFINE. 
W 127: redefinition of macro The macro is already defined. The macro is redefined 

"macro" according to this macro definition. 
W 128: number of macro arguments You supplied less arguments to the macro than when 

is less than definition defining it. 
W 129: number of macro arguments You supplied more arguments to the macro than when 

is greater than definition defining it. 
W 130: DUPA needs at least one The DUPA directive needs at least two arguments, the 

value argument dummy parameter and a value parameter. 
W 131: DUPF increment value The step value supplied with the DUPF macro will skip the 

gives empty macro DUPF macro body. 
W 132: IF started in previous file The ENDIF or ELSE pre-processor directive matches with 

"file", line line an IF directive in another file. 
W 133: currently no macro The @CNT() and @ARG() functions can only be used 

expansion active inside a macro expansion. 
W 134: "directive" is not supported, The supplied directive is not supported by this assembler. 

skipped
W 135: define symbol of You supplied an illegal identifier with the -D option on the 

"define-symbol" is not an command line. 
identifier; skipped definition

W 137: label "label" defined The label is defined with an EXTERN and a GLOBAL 
attribute and attribute directive. 

W 138: warning: WARN-directive- Output from the WARN directive.
arguments

W 139: expression must be between 
hex-value and hex-value

W 140: expression must be between 
value and value

Error Messages

Warnings (W)
W 101: use option at the start of Primary options must be used at the start of the source.

the source; ignored
W 102: duplicate attribute An attribute of an EXTERN directive is used twice or more. 

"attribute" found Remove one of the duplicate attributes.
W 104: expected an attribute but 

got attribute; ignored
W 105: section activation expected, Use the SECT directive to activate a section.

use name directive
W 106: conflicting attributes You used two conflicting attributes in an EXTERN 

specified "attributes" statement directive.
W 107: memory conflict on object A label or other object is explicit or implicit defined using 

"name" incompatible memory types.
W 108: object attributes redefinition A label or other object is explicit or implicit defined using 

"attributes" incompatible attributes.
W 109: label "label" not used The label label is defined with the GLOBAL directive and 

neither defined nor referred, or the label is defined with the 
LOCAL directive and not referenced. 

W 110: extern label "label" defined The label label is defined with an EXTERN directive and 
in module, made global defined as a label in the source. The label will be handled 

as a global label.
W 111: unknown $LIST  flag You supplied an unknown flag to the $LIST control. 

"flag"
W 112: text found after END; An END directive designates the end of the source file. All 

ignored text after the END directive will be ignored. 
W 113: unknown $MODEL You supplied an unknown model. 

specifier; ignored
W 114: $MODEL may only be You supplied more than one model. 

specified once, it remains 
"model"; ignored

W 115: use ON or OFF after The control you specified must have either ON or OFF 
control name after the control name.

W 116: unknown parameter See the description of the control for the allowed 
"parameter" for parameters.
control-name control

W 118: inserted "extern name" The symbol name is used inside an expression, but not 
defined with an EXTERN directive.

W 119: "name" section has not the 
MAX attribute; ignoring 
RESET



Assembler as88 (4) Main Tool Chain

Errors (E)
E 217: description There was an error found during assembly of the mnemonic. 
E 218: unknown mnemonic: "name" The assembler found an unknown mnemonic. 
E 219: this is not a hardware The assembler found a generic instruction, but the -Oh 

instruction (use $OPTIMIZE (hardware only) option or the $OPTIMIZE ON "H" control 
OFF "H") was specified.

E 223: unknown section "name" The section name specified with a SECT directive has not 
(yet) been defined with a DEFSECT directive. 

E 224: unknown label "name" A label was used which was not defined. 
E 225: invalid memory type You supplied an invalid memory modifier.
E 226: unknown symbol attribute: 

attribute
E 227: invalid memory attribute The assembler found an unknown location counter or 

memory mapping attribute.
E 228: attr attribute needs a number The attribute attr needs an extra parameter. 
E 229: only one of the name 

attributes may be specified
E 230: invalid section attribute: The assembler found an unknown section attribute.

name
E 231: absolute section, expected An absolute section must be specified using an 'AT 

"AT" expression address' expression.
E 232: MAX/OVERLAY sections Sections with the MAX or OVERLAY attribute must have a 

need to be named sections name, otherwise the locator cannot overlay the sections.
E 233: type section cannot have Code sections may not have the CLEAR or OVERLAY 

attribute attribute attribute.
E 234: section attributes do not In an previous definition of the same section other 

match earlier declaration attributes were used. 
E 235: redefinition of section An absolute section of the same name can only be located 

once.
E 236: cannot evaluate expression Some functions and directives must evaluate their 

of descriptor arguments during assembly. 
E 237: descriptor directive must Some directives need to have a positive argument. 

have positive value
E 238: Floating point numbers not The DB directive does not accept floating point numbers. 

allowed with DB directive
E 239: byte constant out of range The DB directive stores expressions in bytes. 
E 240: word constant out of range The DW directive stores expressions in words. 
E 241: Cannot emit non tiof Floating point expressions and some functions can not be 

functions, replaced with represented in the IEEE-695 object format. 
integral value '0'

E 242: the name attribute must be A section must have the CODE or DATA attribute.
specified

Error Messages

Warnings (W)
W 141: global/local label "name" The label is declared and used but not defined in the 

not defined in this module; source file. 
made extern

W 170: code address maps to The code offset you specified to the @CPAG function is in 
zero page the zero page. 

W 171: address offset must be The offset you specified in the @CADDR or @DADDR 
between 0 and FFFF function was too large. 

W 172: page number must be The page number you specified in the @CADDR or 
between 0 and FF @DADDR function was too large. 

Errors (E)
E 200: message; halting assembly The assembler stops the further processing of your source 

file. 
E 201: unexpected newline or line The syntax checker found a newline or line delimiter that 

delimiter does not confirm to the assembler grammar. 
E 202: unexpected character:  The syntax checker found a character that does not 
'character' confirm to the assembler grammar. 
E 203: illegal escape character in The syntax checker found an illegal escape character in 

string constant the string constant that does not confirm to the assembler 
grammar. 

E 204: I/O error: open intermediate The assembler opens an intermediate file to optimize the 
file failed ( file ) lexical scanning phase. The assembler cannot open this file. 

E 205: syntax error: expected The syntax checker expected to find a token but found 
token at token another token. 

E 206: syntax error: token The syntax checker found an unexpected token.
unexpected

E 207: syntax error: missing ':' The syntax checker found a label definition or memory 
space modifier but missed the appended semi-colon. 

E 208: syntax error: missing ')' The syntax checker expected to find a closing parentheses. 
E 209: invalid radix value, The RADIX directive accepts only 2, 8, 10 or 16.

should be 2, 8, 10 or 16
E 210: syntax error The syntax checker found an error. 
E 211: unknown model Substitute the correct model, one of s, c, d or l.
E 212: syntax error: expected The syntax checker expected to find a token but found 

token nothing. 
E 213: label "label" defined The label is defined with a LOCAL and a GLOBAL or 

attribute and attribute EXTERN directive. 
E 214: illegal addressing mode The mnemonic used an illegal addressing mode. 
E 215: not enough operands The mnemonic needs more operands. 
E 216: too many operands The mnemonic needs less operands. 



Assembler as88 (5) Main Tool Chain

Errors (E)
E 264: cannot evaluate: "symbol", Could not evaluate the argument of a '%' or '?' operator 

value depends on an within a macro expansion. 
unknown symbol

E 265: cannot evaluate argument of The arguments of the DUP directive could not be 
dup (unknown or location evaluated. 
dependant symbols)

E 266: dup argument must be The argument of the DUP directive must be integral.
integral

E 267: dup needs a parameter Check the syntax of the DUP directive.
E 268: ENDM without a The assembler found an ENDM directive without an 

corresponding MACRO or corresponding MACRO or DUP definition. 
DUP definition

E 269: ELSE without a The assembler found an ELSE directive without an 
corresponding IF corresponding IF directive. 

E 270: ENDIF without a The assembler found an ENDIF directive without an 
corresponding IF corresponding IF directive. 

E 271: missing corresponding The assembler found an IF or ELSE directive without an 
ENDIF corresponding ENDIF directive. 

E 272: label not permitted with this Some directives do not accept labels. 
directive

E 273: wrong number of arguments The function needs more or less arguments. 
for function

E 274: illegal argument for function An argument has the wrong type. 
E 275: expression not properly aligned
E 276: immediate value must be The immediate operand of the instruction does only accept 

between value and value values in the given range. 
E 277: address must be between The address operand is not in the range mentioned. 

$address and $address
E 278: operand must be an address The operand must be an address but has no address 

attributes. 
E 279: address must be short
E 280: address must be short The operand must be an address in the short range. 
E 281: illegal option "option" The assembler found an unknown or misspelled command 

line option. 
E 282: "Symbols:" part not found in The map file may be incomplete. 

map file "name"
E 283: "Sections:" part not found in The map file may be incomplete. 

map file "name"
E 284: module "name" not found in The map file may be incomplete.

map file "name"

Error Messages

Errors (E)
E 243: use $OBJECT OFF or 

$OBJECT "object-file"
E 244: unknown control "name" The specified control does not exist. 
E 246: ENDM within IF/ENDIF The assembler found an ENDM directive within an 

IF/ENDIF pair. 
E 247: illegal condition code The assembler encountered an illegal condition code 

within an instruction. 
E 248: cannot evaluate origin All origins of absolute sections must be evaluated before 

expression of org creation of the object file. 
"name: address"

E 249: incorrect argument types The supplied argument(s) evaluated to a different type 
for function "function" than expected. 

E 250: tiof function not yet The supplied object format function is not yet implemented.
implemented: "function"

E 251: @POS(,,start) start The start argument is larger than the length of the string in 
argument past end of string the first parameter. 

E 252: second definition of label The label is defined twice in the same scope. 
"label"

E 253: recursive definition of The evaluation of the symbol depends on its own 
symbol "symbol" value. 

E 254: missing closing '>' in The syntax checker missed the closing '>' bracket in the 
include directive INCLUDE directive. 

E 255: could not open include file The assembler could not open the given include-file. 
include-file

E 256: integral divide by zero The expression contains an divide by zero. 
E 257: unterminated string All strings must end on the same line as they are started. 
E 258: unexpected characters after Spaces are not permitted between macro parameters. 

macro parameters, possible 
illegal white space

E 259: COMMENT directive not This assembler does not permit the usage of the 
permitted within a macro COMMENT directive within MACRO/DUP definitions or 
definition and conditional IF/ELSE/ENDIF constructs.
assembly

E 260: definition of "macro" The macro definition is not terminated with an ENDM 
unterminated, missing "endm" directive. 

E 261: macro argument name may MACRO and DUP arguments may not start with an 
not start with an '_' underscore. 

E 262: cannot find "symbol" Could not find a definition of the argument of a '%' or '?' 
operator within a macro expansion. 

E 263: cannot evaluate: "symbol", The symbol used with a '%' or '?' operator within a macro 
value is unknown at this point expansion has not been defined. 



Assembler as88 (6) Main Tool Chain

Fatal Error (F)
F 410: Assembler internal error: The assembler renames all symbols local to a scope to 

duplicate mufom "symbol" unique symbols. In this case the assembler did not 
during rename succeed into making an unique name.

F 411: symbolic debug error: An error occurred during the parsing of the SYMB 
"message" directive. 

F 412: macro calls nested too deep There is a limit to the number of nested macro expansions. 
(possible endless recursive Currently this limit is set to 1000. 
call)

F 413: cannot evaluate "function" A function call is encountered although it should have been 
processed. 

F 414: cannot recover from Due to earlier errors the assembler internal state got 
previous errors, stopped corrupted and stops assembling your program. 

F 415: error opening temporary file The assembler uses temporary files for the debug 
information and list file generation. It could not open or 
create one of those temporary files. 

F 416: internal error in optimizer The optimizer found a deadlock situation. Try to assemble 
without any optimization options. Please fill out the error 
report form and send it to Seiko Epson.

Error Messages

Errors (E)
E 285: file-kind file will overwrite The assembler warns when one of its output files will 

file-kind file overwrite the source file you gave on the command line or 
another output file. 

E 286: $CASE options must be The $CASE options may only be given before any symbol 
given before any symbol is defined. 
definition

E 287: symbolic debug error: The assembler found an error in a symbolic debug (SYMB) 
message instruction. 

E 288: error in PAGE directive: The arguments supplied to the PAGE directive do not 
message conform to the restrictions. 

E 290: fail: message Output of the FAIL directive. This is an user generated error. 
E 291: generated check: message Integrity check for the coupling between the C compiler 

and assembler. 
E 293: expression out of range An instruction operand must be in a specified address 

range. 
E 294: expression must be between 

hexvalue and hexvalue
E 295: expression must be between 

value and value
E 296: optimizer error: message The optimizer found an error. 
E 297: jump address must be a Jumps and jump-subroutines must have a target address 

code address in code memory. 
E 298: size depends on location, The size of some constructions (notably the align 

cannot evaluate directives) depend on the memory address. 

Fatal Error (F)
F 401: memory allocation error A request for free memory is denied by the system. All 

memory has been used. 
F 402: duplicate input filename The assembler requires one input filename on the 

"file" and "file" command line. 
F 403: error opening file-kind file: The assembler could not open the given file. 

"file-name"
F 404: protection error: message No protection key or not a IBM compatible PC.
F 405: I/O error The assembler cannot write its output to a file. 
F 406: parser stack overflow
F 407: symbolic debug output error The symbolic debug information is incorrectly written in the 

object file. 
F 408: illegal operator precedence The operator priority table is corrupt. 
F 409: Assembler internal error The assembler encountered internal inconsistencies.



Linker lk88 (1) Main Tool Chain

Options

Error Messages

-C Link case insensitive (default case sensitive)
-L directory Additional search path for system libraries
-L Skip system library search
-M Produce a link map (.lnl)
-N Turn off overlaying
-O name Specify basename of the resulting map files
-V Display version header only
-c Produce a separate call graph file (.cal)
-e Clean up if erroneous result
-err Redirect error messages to error file (.elk)
-f file Read command line information from file, '-' means stdin
-l x Search also in system library libx.a
-o filename Specify name of output file
-r Suppress undefined symbol diagnostics
-u symbol Enter symbol as undefined in the symbol table
-v or  -t Verbose option. Print name of each file as it is processed
-w n Suppress messages above warning level n

Startup Command

lk88 [option]...file... Warnings (W)
W 100: Cannot create map file The given file could not be created.

filename, turned off -M option
W 101: Illegal filename (filename) A filename with an illegal extension was detected.

detected 
W 102: Incomplete type specification, An unknown type reference. 

type index = Thexnumber
W 103: Object name (name) differs Internal name of object file not the same as the filename.

from filename
W 104: '-o filename' option Second -o option encountered, previous name is lost.

overwrites previous 
'-o filename'

W 105: No object files found No files where specified at the invocation.
W 106: No search path for system System library files (those given with the -l option) must 

libraries. Use -L or env have a search path, either supplied by means of the 
"variable" environment, or by means of the option -L.

W 108: Illegal option: option An illegal option was detected.
(-H or -\? for help)

W 109: Type not completely Not a complete type specification in either the current file 
specified for symbol or the mentioned file. 
<symbol> in file

W 110: Compatible types, different Name conflict between compatible types. 
definitions for symbol 
<symbol> in file

W 111: Signed/unsigned conflict for Size of both types is correct, but one of the types contains 
symbol <symbol> in file an unsigned where the other uses a signed type.

W 112: Type conflict for symbol A real type conflict.
<symbol> in file

W 113: Table of contents of file out The ar library has a symbol table which is not up to date. 
of date, not searched. 
(Use ar ts <name>)

W 114: No table of contents in file, The ar library has no symbol table. 
not searched. 
(Use ar ts <name>) 

W 115: Library library contains  Ucode is not supported by the linker.
ucode which is not supported

W 116: Not all modules are The library file has an unknown format, or is corrupted.
translated with the same 
threshold (-G value)

W 117: No type found for <symbol>. No type has been generated for the symbol.
No type check performed



Linker lk88 (2) Main Tool Chain

Errors (E)
E 215: Section <name> has a Two absolute sections may be linked (overlaid) on some 

different address from the conditions. They must have the same address.
already linked one

E 216: Variable <name>, name A variable is allocated outside a referencing addressing 
<name> has incompatible space. 
external addressing modes

E 217: Variable <name>, has A variable is not yet allocated but two external references 
incompatible external are made by non overlapping addressing modes.
addressing modes with 
file <filename>

E 218: Variable <name>, also An attempt was made to link different address formats 
referenced in <name> has between the current file and the mentioned file.
an incompatible address 
format

E 219: Not supported/illegal feature An option/feature is not supported or illegal in given object 
in object format format format.

E 220: page size (0xhexvalue) Section is too big to fit into the page.
overflow for section <name> 
with size 0xhexvalue

E 221: message Error generated by the object. 
E 222: Address of <name> not No address was assigned to the variable. Corrupted object 

defined file.

Fatal Errors (F)
F 400: Cannot create file filename The given file could not be created.
F 401: Illegal object: Unknown An unknown command was detected in the object file. 

command at offset offset Corrupted object file.
F 402: Illegal object: Corrupted Wrong byte count in hex number. Corrupted object file.

hex number at offset offset
F 403: Illegal section index A section index out of range was detected. Corrupted 

object file.
F 404: Illegal object: Unknown An unknown variable was detected in the object file. 

hex value at offset offset Corrupted object file.
F 405: Internal error number Internal fatal error. 
F 406: message No key no IBM compatible PC.
F 407: Missing section size for Each section must have a section size command in the 

section <name> object. Corrupted object file. 
F 408: Out of memory An attempt to allocate more memory failed.
F 409: Illegal object, offset offset Inconsistency found in the object module.

Error Messages

Warnings (W)
W 118: Variable <name>, has A variable is not yet allocated but two external references 

incompatible external are made by non overlapping addressing modes. 
addressing modes with 
file <filename>

W 119: error from the Embedded If the embedded environment is readable for the linker, the 
Environment: message, addressing mode check is relaxed. For instance, a variable 
switched off relaxed defined as data may be accessed as huge.
addressing mode check

Errors (E)
E 200: Illegal object, assignment The MUFOM variable did not exist. Corrupted object file.

of non existing var var
E 201: Bad magic number The magic number of a supplied library file was not ok.
E 202: Section name does not Named section with different attributes encountered. 

have the same attributes 
as already linked files

E 203: Cannot open filename A given file was not found.
E 204: Illegal reference in address Illegal MUFOM variable used in value expression of a 

of name variable. Corrupted object file.
E 205: Symbol 'name' already A symbol was defined twice. 

defined in <name>
E 206: Illegal object, multi The MUFOM variable was assigned more than once 

assignment on var probably due to a previous error 'already defined', E 205.
E 207: Object for different Bits per MAU, MAU per address or endian for this object 

processor characteristics differs with  the first linked object.
E 208: Found unresolved external(s): There were some symbols not found. 
E 209: Object format in file not The object file has an unknown format, or is corrupted.

supported
E 210: Library format in file not The library file has an unknown format, or is corrupted.

supported
E 211: Function <function> cannot The overlay pool has already been built in a previous linker 

be added to the already action. 
built overlay pool <name>

E 212: Duplicate absolute section Absolute sections begin on a fixed address. They cannot 
name <name> be linked.

E 213: Section <name> does not A section with the EQUAL attribute does not have the 
have the same size as the same size as other, already linked, sections.
already linked one

E 214: Missing section address for Each absolute section must have a section address 
absolute section <name> command in the object. Corrupted object file.



Linker lk88 (3) Main Tool Chain

Error Messages

Fatal Errors (F)
F 410: Illegal object Inconsistency found in the object module at unknown 

offset.
F 413: Only name object can be It is not possible to link object for other processors.

linked
F 414: Input file file same as Input file and output file cannot be the same.

output file
F 415: Demonstration package One of the limits in this demo version was exceeded.

limits exceeded

Verbose (V)
V 000: Abort ! The program was aborted by the user.
V 001: Extracting files Verbose message extracting file from library.
V 002: File currently in progress: Verbose message file currently processed.
V 003: Starting pass number Verbose message, start of given pass.
V 004: Rescanning.... Verbose message rescanning library. 
V 005: Removing file file Verbose message cleaning up. 
V 006: Object file file format format Named object file does not have the standard tool chain 

object format TIOF-695.
V 007: Library file format format Named library file does not have the standard tool chain 

ar88 format.
V 008: Embedded environment Embedded environment successfully read.

name read, relaxed 
addressing mode check 
enabled



Advanced Locator alc88 Main Tool Chain

Error MessagesStartup Command

alC88 project_path  file.out  file.inf Illegal Inf File Advanced locator definition file (.inf) is invalid.
Duplicate Memory Memory allocations in 0xnnnn–0xnnnn and 
-- 0xnnnn ~ 0xnnnn & 0xnnnn ~ 0xnnnn 0xnnnn–0xnnnn are duplicated.
No physical memory available for xxxx No specified addresses exist to which symbol xxxx

can be assigned.
Duplicate Symbol Name -- xxxx There are duplicates of symbol name xxxx.
Cannot find 0xnnnn bytes for xxxx section No 0xnnnn bytes of memory are available as

needed to map section xxxx.
Found unresolved external -- xxxx No information is available for external symbol

(Extern) xxxx.
There is no stack area No memory can be allocated for the stack because

internal RAM lacks sufficient space.
Absolute address 0xnnnn occupied The absolute address section area beginning with

0xnnnn is already occupied by another area.



Locator lc88 (1) Main Tool Chain

Options

Error Messages

-M Produce a locate map file (.map)
-S space Generate specific space
-V Display version header only
-d file Read description file information from file, '-' means stdin
-e Clean up if erroneous result
-err Redirect error messages (.elc)
-f file Read command line information from file, '-' means stdin
-f format Specify output format
-o filename Specify name of output file
-p Make a proposal for a software part on stdout
-v Verbose option. Print name of each file as it is processed
-w n Suppress messages above warning level n

Startup Command

lC88 [option]...[file]... Warnings (W)
W 100: Maximum buffer size for For the given format, a maximum buffer size is defined.

name is size (Adjusted)
W 101: Cannot create map file The given file could not be created.

filename, turned off -M option
W 102: Only one -g switch allowed, Only one .out file can be debugged.

ignored -g before name
W 104: Found a negative length Only stack sections can have a negative length.

for section name, made it 
positive

W 107: Inserted 'name' keyword A missing keyword in the description file was inserted.
at line line

W 108: Object name (name) Internal name of object file not the same as the filename. 
differs from filename

W 110: Redefinition of system Usually only one load module will access the system table 
start point (__lc_pm).

W 111: Two -o options, output Second -o option, the message gives the effective name.
name will be name

W 112: Copy table not referenced, If you use a copy statement in the layout part, the initial 
initial data is not copied data is located in rom. 

W 113: No .out files found to locate No files where specified at the invocation.
W 114: Cannot find start label label No start point found.
W 116: Redefinition of name at line Identifier was defined twice.

line
W 119: File filename not found in All files to be located must be given as an argument.

the argument list
W 120: unrecognized name option Wrong option assignment. Check the manual for 

<name> at line line possibilities.
(inserted 'name')

W 121: Ignored illegal sub-option An illegal format sub option was detected. 
'name' for name

W 122: Illegal option: option An illegal option was detected.
(-H or -\? for help)

W 123: Inserted character at line The given character was missing in the description file.
line

W 124: Attribute attribute at line An unknown attribute was specified in the description file.
line unknown

W 125: Copy table not referenced, Sections with attribute blank are detected, but the copy 
blank sections are not table is not referenced. The locator generates info for the 
cleared startup module in the copy table for clearing blank sections 

at startup. 



Locator lc88 (2) Main Tool Chain

Errors (E)
E 208: Cannot find a cluster for No writable memory available, or unknown addressing 

section name mode. 
E 210: Unrecognized keyword An unknown keyword was used in the description file.

<name> at line line
E 211: Cannot find 0xhexnumber One of virtual or physical memory was occupied, or there 

bytes for section name was no physical  memory at all!
(fixed mapping) 

E 213: The physical memory of A mapping failed. There was no virtual address space left.
name cannot be addressing 
in space name

E 214: Cannot map section name, An absolute mapping failed. 
virtual memory address 
occupied

E 215: Available space within The available addressing space for an addressing mode 
name exceeded by number has been exceeded.
bytes for section name

E 217: No room for section name The size of the cluster as defined in the .dsc file is too 
in cluster name small.

E 218: Missing identifier at line line This identifier must be specified.
E 219: Missing ')' at line line Matching bracket missing.
E 220: Symbol 'symbol' already A symbol was defined twice.

defined in <name>
E 221: Illegal object, multi The MUFOM variable was assigned more than once, 

assignment on var probably due to an error of the object producer.
E 223: No software description Each input file must be described in the software 

found description in the .dsc file.
E 224: Missing <length> keyword No length definition found in hardware description.

in block 'name' at line line
E 225: Missing <keyword> keyword For the given mapping, the keyword must be specified.

in space 'name' at line line
E 227: Missing <start> keyword in No start definition found in hardware description.

block 'name' at line line
E 230: Cannot locate section name, An absolute address was requested, but the address was 

requested address occupied already occupied by another process or section. 
E 232: Found file filename not All files to be located need a definition record in the 

defined in the description file description file.
E 233: Environment variable too Found environment variable in the dsc file contains too 

long in line line many characters.
E 235: Unknown section size for No section size found in this .out file. In fact a corrupted 

section name .out file.

Error Messages

Warnings (W)
W 127: Layout name not found The used layout in the named file must be defined in the 

layout part.
W 130: Physical block name It is not possible to assign a block more than once to a 

assigned for the second layout block.
time to a layout

W 136: Removed character at line The character is not needed here.
line

W 137: Cluster name declared The named cluster is declared twice. 
twice (layout part)

W 138: Absolute section name at Absolute section with an address outside physical memory. 
non-existing memory 
address 0xhexnumber

W 139: message Warning message from the embedded environment. 
W 140: File filename not found as All processes defined in the locator description file 

a parameter (software part) must be specified on the invocation line.
W 141: Unknown space <name> An unknown space name was specified with a -S option.

in -S option
W 142: No room for section name A section with attribute read-only could not be placed in 

in read-only memory, trying read-only memory, the section will be placed in writable 
writable memory ... memory.

Errors (E)
E 200: Absolute address An absolute address was requested, but the address was 

0xhexnumber occupied already occupied by another section.
E 201: No physical memory An absolute address was requested, but there is no 

available for section name physical memory at this address.
E 202: Section name with mau  A bit section cannot be located in a byte oriented 

size size cannot be located addressing mode.
in an addressing mode with 
mau size size

E 203: Illegal object, assignment The MUFOM variable did not exist. 
of non existing var var

E 204: Cannot duplicate section The process must be located more than once, but the 
'name' due to hardware section is mapped to a virtual space without memory 
limitations management possibilities.

E 205: Cannot find section for name Found a variable without a section, should not be possible.
E 206: Size limit for the section Small sections do not fit in a page any more.

group containing section 
name exceeded by 
0xhexnumber bytes

E 207: Cannot open filename A given file was not found.



Locator lc88 (3) Main Tool Chain

Fatal Errors (F)
F 400: Cannot create file filename The given file could not be created.
F 401: Cannot open filename A given file was not found.
F 402: Illegal object: Unknown An unknown command was detected in the object file. 

command at offset offset Corrupted object file.
F 403: Illegal filename (name) A filename with an illegal extension was detected on the 

detected command line.
F 404: Illegal object: Corrupted Wrong byte count in hex number. Corrupted object file.

hex number at offset offset
F 405: Illegal section index A section index out of range was detected. 
F 406: Illegal object: Unknown An unknown variable was detected in the object file. 

hex value at offset offset Corrupted object file.
F 407: No description file found The locator must have a description file with the description 

of the hardware and the software of your system.
F 408: message No protection key or not an IBM compatible PC.
F 410: Only one description file The locator accepts only one description file.

allowed
F 411: Out of memory An attempt to allocate more memory failed.
F 412: Illegal object, offset offset Inconsistency found in the object module.
F 413: Illegal object Inconsistency found in the object module at unknown 

offset.
F 415: Only name .out files can It is not possible to locate object for other processors.

be located
F 416: Unrecoverable error at line An unrecoverable error was made in the description file in 

line, name the given part.
F 417: Overlaying not yet done Overlaying is not yet done for this .out file, link it first 

without -r flag!
F 418: No layout found, or layout If there are syntax errors in the layout, it may occur that the 

not consistent layout is not usable for the locator. 
F 419: message Fatal from the embedded environment. 
F 420: Demonstration package One of the limits in this demo version was exceeded.

limits exceeded

Error Messages

Errors (E)
E 236: Unrecoverable specification An unrecoverable error was made in the description file.

at line line
E 238: Found unresolved At locate time all externals should be satisfied.

external(s):
E 239: Absolute address addr.addr In the given space the absolute address was not found.

not found
E 240: Virtual memory space name In the description files software part for the given file, a non 

not found existing memory space was mentioned.
E 241: Object for different Bits per MAU, MAU per address or endian for this object 

processor characteristics differs with the first linked object.
E 242: message Error generated by the object. 
E 244: Missing name part The given part was not found in the description file, 

possibly due to a previous error.
E 245: Illegal name value at line line A non valid value was found in the description file.
E 246: Identifier cannot be a A non valid identifier was found in the description file.

number at line line
E 247: Incomplete type specification, An unknown type was referenced by the given file. 

type index = Thexnumber Corrupted object file.
E 250: Address conflict between Overlapping addresses in the memory part of the 

block block1 and block2 description file.
(memory part)

E 251: Cannot find 0xhexnumber No room in the physical block in which the section must be 
bytes for section section in located.
block block

E 255: Section 'name' defined Sections cannot be declared more than once in one 
more than once at line line layout/loadmod part.

E 258: Cannot allocate reserved The memory for a reserved piece of space was occupied.
space for process number

E 261: User assert: message User-programmed assertion failed. 
E 262: Label 'name' defined more Labels defined in the description file must be unique.

than once in the software part
E 264: message Error from the embedded environment. 
E 265: Unknown section address No section address found in this .out file. In fact a 

for absolute section name corrupted .out file.
E 266: %s %s not (yet) supported The requested functionality is not (yet) supported in this 

release.



Locator lc88 (4) Main Tool Chain

Error Messages

Verbose (V)
V 000: File currently in progress: Verbose message. On the next lines single filenames are 

printed as they are processed. 
V 001: Output format: name Verbose message for the generated output format.
V 002: Starting pass number Verbose message, start of given pass.
V 003: Abort ! The program was aborted by the user.
V 004: Warning level number Verbose message, report the used warning level.
V 005: Removing file file Verbose message cleaning up. 
V 006: Found file <filename> via The description (include) file was not found in the standard 

path pathname directory. 
V 007: message Verbose message from the embedded environment.



DELFEE Main Tool Chain

Keyword

address Specify absolute memory address
amode Specify the addressing modes 
assert Error if assertion failed
attribute Assign attributes to clusters, sections, stack or heap
block Define physical memory area
bus Specify address bus
chips Specify cpu chips
cluster Specify the order and placement of clusters
copy Define placement of ROM-copies of data sections
cpu Define cpu part
dst Destination address
fixed Define fixed point in memory map
gap Reserve dynamic memory gap
heap Define heap
label Define virtual address label
layout Start of the layout description
length Length of stack, heap, physical block or reserved space
load_mod Define load module (process)
map Map a source address on a destination address
mau Define minimum addressable unit (in bits)
mem Define physical start address of a chip
memory Define memory part
regsfr Specify register file for use by debugger
reserved Reserve memory
section Define how a section must be located
selection Specify attributes for grouping sections into clusters
size Size of address space or memory
software Define the software part
space Define an addressing space or specify memory blocks
src Source address
stack Define a stack section
start Give an alternative start label
table Define a table section



Function Option Generator winfog (1) Development Tools

Outline
The function option generator winfog is the software tool for creating 
the file necessary to generate mask patterns of several hardware 
specifications such as I/O port functions. In addition, simultaneously 
with this file, winfog can create a mask option setup file that are 
required when debugging programs with the ICE.

Windows

Function option document area
Displays the contents of selected options in the function 
option document format. The contents displayed in this area 
are output to the function option document file. When you 
change any selected item in the option list area, the display 
in this area is immediately updated.

Option list area
Lists mask options set in the device information definition file 
(s1c88xxx.ini). Use the check boxes in this area to select 
each option. A selected option has its check box marked by ✓.

Message area
When you create a file by selecting [Generate] from the [Tool] 
menu or clicking the [Generate] button, this area displays a 
message showing the result of the selected operation.



Buttons

[Open] button
Opens a function option document file. 

[Generate] button
Creates a file according to the selected contents of the option list. 

[Setup] button
Sets the date of creation, output file name and a comment included in the function 
option document file. 

[Device INI Select] button
Loads the device information definition file (s1c88xxx.ini). 

[Help] button
Displays the version of winfog. 

Tool bar  

Function Option Generator winfog (2) Development Tools

Menus
Open
Opens a function option document file.
End
Terminates winfog.

Generate
Creates a file according to the selected contents of the option list.
Setup
Sets the date of creation, output file name and a comment included 
in the function option document file.
Device INI Select
Loads the device information definition file (s1c88xxx.ini). 

Version
Displays the version of winfog.

[File] menu  

[Tool] menu   

[Help] menu

Error Messages
File name error Number of characters in the file name or extension exceeds the limit.
Illegal character Prohibited characters have been entered.
Please input file name File name has not been entered.
Can't open File : xxxx File (xxxx) cannot be opened.
INI file is not found Specified device information definition file (.ini) does not exist.
INI file does not include FOG Specified device information definition file (.ini) does not contain
information function option information.
Function Option document file Specified function option document file does not exist.
is not found
Function Option document file Contents of the specified function option document file do not match
does not match INI file device information definition file (.ini).
A lot of parameter Too many command line parameters are specified.
Making file(s) is completed Finished creating the file, but the created file (xxxx) does not contain
[xxxx is no data exist] any data.
Can't open File: xxxx File (xxxx) cannot be opened when executing Generate.
Making file(s) is not completed
Can't write File: xxxx File (xxxx) cannot be written when executing Generate.
Making file(s) is not completed

Warning Message
Are you file update? Overwrite confirmation message
xxxx is already exist (Specified file already exists.)



Segment Option Generator winsog (1) Development Tools

Outline
The segment option generator winsog is the software tool for creating the 
file necessary to generate mask patterns of LCD output specifications and 
LCD output pin assignments. In addition, simultaneously with this file, 
winsog can create a mask option setup file that are required when 
debugging programs with the ICE.

Windows

Option setup area
Comprised of a display memory map, a segment decode 
table, and buttons to select pin specifications. By clicking on 
cells in the display memory map and segment decode table, 
you can assign display memory addresses and bits.

Selects LCD segment output.

Selects DC-complementary output.

Selects DC-Pch open-drain output.

Selects DC-Nch open-drain output.

Selects segment/common shared output.

Clears selected segment assignments.

Message area
When you create a file by selecting [Generate] from the [Tool] 
menu or clicking the [Generate] button, this area displays a 
message showing the result of the selected operation.



Buttons

[Open] button
Opens a segment option document file. 

[Save] button
Saves the current option settings to a file (segment assignment data file). 

[Load] button
Loads a segment assignment data file. 

[Generate] button
Creates a file according to the contents of segment options set. 

[Setup] button
Sets the date of creation or output file name or a comment included in the segment 
option document file. 

[Device INI Select] button
Loads the device information definition file (s1c88xxx.ini). 

[Help] button
Displays the version of winsog. 

Tool bar  

Segment Option Generator winsog (2) Development Tools

Menus
Open
Opens a segment option document file.
Record - Save
Saves the current option settings to a file (segment assignment 
data file). 
Record - Load
Loads a segment assignment data file. 
End
Terminates winsog.

Generate
Creates a file according to the contents of segment options set.
Setup
Sets the date of creation or output file name or a comment 
included in the segment option document file.
Device INI Select
Loads the device information definition file (s1c88xxx.ini).

Version
Displays the version of winsog.

[File] menu  

[Tool] menu   

[Help] menu

Error Messages
File name error Number of characters in the file name or extension exceeds the limit.
Illegal character Prohibited characters have been entered.
Please input file name File name has not been entered.
Can't open File : xxxx File (xxxx) cannot be opened.
INI file is not found Specified device information definition file (.ini) does not exist.
INI file does not include SOG Specified device information definition file (.ini) does not contain
information segment option information.
Function Option document file Specified function option document file does not exist.
is not found
Function Option document file Contents of the specified function option document file do not match
does not match INI file device information definition file (.ini).
Segment Option document file Specified segment option document file does not exist.
is not found
Segment Option document file Contents of the specified segment option document file do not match
does not match INI file device information definition file (.ini).
Segment assignment data file Specified segment assignment data file does not exist.
is not found
Segment assignment data file Contents of the specified segment assignment data file do not match
does not match INI file device information definition file (.ini).
Can't open File: xxxx File (xxxx) cannot be opened when executing Generate.
Making file(s) is not completed
Can't write File: xxxx File (xxxx) cannot be written when executing Generate.
Making file(s) is not completed
ERROR: SPEC is not set One or more SPEC cells are left blank when executing Generate.
Making file(s) is not completed

Warning Message
Are you file update? Overwrite confirmation message
xxxx is already exist (Specified file already exists.)



Mask Data Checker winmdc (1) Development Tools

Outline
The Mask Data Checker winmdc checks the format of the internal ROM 
HEX files generated by the program unused area filling utility fil88xxx and 
the option document files generated by the function option generator 
winfog and segment option generator winsog, and create a file necessary 
to generate mask patterns. winmdc also has a function for restoring the 
created mask data file into the original file format.

Flowchart

Mask data created 
(packed)

To Seiko Epson

Device information 
definition file

s1c88xxx.ini

Built-in ROM data
HEX file

zzzzzzzz.psa

Function option 
document file

zzzzzzzz.fdc

Segment option 
document file

zzzzzzzz.sdc

zzzzzzzz.usa zzzzzzzz.ufd zzzzzzzz.usd

winmdc

Data restored 
(unpacked)

winmdc

Pack file 
(mask data file)c88xxx··yyy.paN



Buttons

[Pack] button
Packs the ROM data file and option document file to create a mask data file for 
presentation to Seiko Epson. 

[Unpack] button
Restores files in the original format from a packed file. 

[Device INI Select] button
Loads the device information definition file (s1c88xxx.ini). 

[Help] button
Displays the version of winmdc.

Tool bar

Mask Data Checker winmdc (2) Development Tools

Menus
End
Terminates winmdc.

Pack
Packs the ROM data file and option document file to create a mask 
data file for presentation to Seiko Epson.
Unpack
Restores files in the original format from a packed file.
Device INI Select
Loads the device information definition file (s1c88xxx.ini).

Version
Displays the version of winmdc.

[File] menu

[Tool] menu

[Help] menu   

I/O Error Messages
File name error Number of characters in the file name or extension

exceeds the limit.
Illegal character Prohibited characters have been entered.
Please input file name File name has not been entered.
INI file is not found Specified device information definition file (.ini)

does not exist.
INI file does not include MDC information Specified device information definition file (.ini)

does not contain MDC information.
Can't open file : xxxx File (xxxx) cannot be opened.
Can't write file: xxxx File (xxxx) cannot be written.

ROM Data Error Messages
Hex data error: Not S record. Data does not begin with "S".
Hex data error: Data is not sequential. Data is not listed in ascending order.
Hex data error: Illegal data. Invalid character is included.
Hex data error: Too many data in one line. Too many data entries exist in one line.
Hex data error: Check sum error. Checksum does not match.
Hex data error: ROM capacity over. Data is large. (Greater than ROM size)
Hex data error: Not enough the ROM data. Data is small. (Smaller than ROM size)
Hex data error: Illegal start mark. Start mark is incorrect.
Hex data error: Illegal end mark. End mark is incorrect.
Hex data error: Illegal comment. Model name shown at the beginning of data is incorrect.

Function Option Data Error Messages
Option data error : Illegal model name. Model name is incorrect.
Option data error : Illegal version. Version is incorrect.
Option data error : Illegal option number. Option No. is incorrect.
Option data error : Illegal select number. Selected option number is incorrect.
Option data error : Mask data is not enough. Mask data is insufficient.
Option data error : Illegal start mark. Start mark is incorrect.
Option data error : Illegal end mark. End mark is incorrect.

Segment Option Data Error Messages
LCD segment data error : Illegal model name. Model name is incorrect.
LCD segment data error : Illegal version. Version is incorrect.
LCD segment data error : Illegal segment No. Segment No. is incorrect.
LCD segment data error : Illegal segment area. Display memory address is out of range.
LCD segment data error : Illegal segment Specified output mode is incorrect.
output specification.
LCD segment data error : Illegal data in this line. Data is not hex number or output mode.
LCD segment data error : Data is not enough. Segment data is insufficient.
LCD segment data error : Illegal start mark. Start mark is incorrect.
LCD segment data error : Illegal end mark. End mark is incorrect.



Debugger db88 (1) Development Tools

Outline
This software performs debugging by controlling the ICE hardware 
tool. Commands that are used frequently, such as break and step, are 
registered on the tool bar, minimizing the necessary keyboard 
operations. Moreover, sources, registers, and command execution 
results can be displayed in multiple windows, with resultant increased 
efficiency in the debugging tasks. 

Windows

[Source] window
Displays the program with disassemble codes, source codes or 
disassemble and source codes.

[Register] window
Displays register values and memory data pointed by the registers.

[Trace] window
Displays traced data.

[Coverage] window
Displays coverage data.

[Symbol] window
Displays symbol information.

[Watch] window
Displays the monitored symbol values.

[Dump] window
Displays the contents of the memory.

[Command] window
Used to enter debug commands and display the execution results.



Buttons

[Load File] button
Loads a program file or a function option file into the debugger. 
[Load Parameter] button 
Loads a parameter file into the debugger.
[Key Break] button 
Forcibly breaks execution of the target program.
[Break] button 
Sets or clears a breakpoint at the address where the cursor is located in the [Source] window. 
[Break All Clear] button 
Clears all break conditions. 
[Go] button 
Executes the program from the current PC address.
[Go to Cursor] button 
Executes the program from the current PC address to the cursor position in the [Source] window.
[Go after Reset] button 
Resets the CPU and then executes the program after fetching the reset vector.
[Step] button
Executes one instruction step at the current PC address.
[Next] button 
Executes one step at the current PC address. The subroutines are executed as one step.
[Step Exit] button
Executes the program to exit the current subroutine.
[Reset CPU] button 
Resets the CPU.  

[Disassemble] button
Switches the [Source] window into disassemble display mode.
[Source] button
Switches the [Source] window into source display mode.
[Mix] button
Switches the [Source] window into mix display mode.
[Find] button
Searches the specified strings in the [Source] window.
[Find Next] button
Searches the specified strings toward the end of the program.
[Find Previous] button
Searches the specified strings toward the beginning of the program.
[Watch] button
Registers the symbol selected in the [Source] window to the [Watch] window.

Buttons in the [Source] window  

Debugger db88 (2) Development Tools

Menu
Load File...
Loads a program file or a function option file into the debugger. 
Load Parameter File...
Loads a parameter file into the debugger.
Exit
Terminates the debugger.

Go
Executes the program from the current PC address.
Go to Cursor
Executes the program from the current PC address to the cursor position 
in the [Source] window.
Go after Reset
Resets the CPU and then executes the program after fetching the 
reset vector.
Step
Executes one instruction step at the current PC address.
Next
Executes one step at the current PC address. The subroutines are 
executed as one step.
Step Exit
Executes the program to exit the current subroutine.
Stop
Forcibly breaks execution of the target program.
Reset CPU
Resets the CPU.  
Setting...
Sets options related to program execution.
Command File...
Reads a command file and executes the debug commands written in it.

Breakpoint Setting
Sets or clears breakpoints and break conditions.
Break List
Displays all the break conditions that have been set.
Break All Clear
Clears all break conditions.
Setting...
Sets break options.

[File] menuTool bar buttons

[Run] menu

[Break] menu



Debugger db88 (3) Development Tools

Log...
Starts or stops logging.
Record...
Starts or stops recording of commands executed.
Setting...
Sets system options.

Cascade
Cascades the opened windows. 
Tile 
Tiles the opened windows. 

This menu shows the currently opened window names. 
Selecting one activates the window.

About DB88...
Displays an About dialog box for the debugger. 

[Window] menu

[Help] menu

Menu 
Trace 
Displays the trace information.
Trace Search...
Searches trace information from the trace memory.
Trace File...
Saves the specified range of the trace information to a file.
Setting...
Sets a trace mode.

Coverage
Displays the coverage information acquired in the ICE.
Coverage Clear
Clears the coverage information.
Setting...
Selects coverage options.

Command
Activates the [Command] window. 

Source (Disassemble, Source, Mix)
[Opens or activates the [Source] window and displays the 
program from the current PC address in the display mode 
selected from the sub menu items.

Dump
Opens or activates the [Dump] window and displays the memory contents.
Register
Opens or activates the [Register] window and displays the register values. 
Trace
Opens or activates the [Trace] window and displays the trace data. 
Coverage
Opens or activates the [Coverage] window and displays the coverage 
information. 
Symbol
Opens or activates the [Symbol] window and displays the symbol information. 
Watch
Opens or activates the [Watch] window and displays the symbol value. 
Toolbar 
Shows or hides the toolbar. 
Status Bar 
Shows or hides the status bar.

[Trace] menu  

[Coverage] menu

[View] menu

[Option] menu



Debugger db88 (4) Development Tools

Debug Commands

Memory operation
dd [<addr1> [<addr2>] [{-B|-W|-L|-F|-D}]] Dump memory data

[<addr1> <@size>] [{-B|-W|-L|-F|-D}]] 
de [<addr> <data1> [..<data16>]] Enter memory data
df [<addr1> <addr2> <data>] Fill memory area
dm [<addr1> <addr2> <addr3>] Copy memory area

[<addr1> <@size> <addr3>] 
ds <addr1> {<addr2>|@<byte>}... Search memory data

...{"<str>"|<data>[:{B|W|L}]} [S=<step>]

Register operation
rd Display register values
rs [<reg> <value>] Modify register value

reg={PC|SP|IX|IY|A|B|HL|BR|CB|EP|XP|YP| 
SC|I1|I0|U|D|N|V|Z|C}

 
Program execution

g [<addr>] Execute successively from current PC
gr [<addr>] Reset CPU and execute successively
s [<step>] Single stepping from current PC
n [<step>] Single stepping with skip function/subroutine
se Exit from function/subroutine

CPU reset
rst Reset CPU

Break
bp {-|+|_} <addr> Set software breakpoints
bpa <addr1> <addr2> Set software break area
bpr Clear software breakpoints
bc [<addr>] 
bpc [<addr>] 
bas {0|1|2|3} Set sequential break mode
ba <ch> <addr> [<count>] Set hardware breakpoints

<ch> {-|+|_} 
bar Clear hardware breakpoints
bd <ch> [A=<addr>][D=<data>][{R|W|}] Set hardware data break condition

<ch> {-|+|_} 
bdr Clear hardware data break condition
bl Display all break conditions
bac Clear all break conditions

Program display
u [<addr>] Disassemble code display
sc [<addr>] Source display
m [<addr>] Mix display

Symbol information
sy [/a] Display symbol list
w <symbol> [;{H|D|Q|B}] [/A] Display symbol information

Load file
lf [<file>] Load program/option HEX file
par [<file>] Load parameter file

Trace
td [<cycle>] Display trace information
ts [{pc|dr|dw} <addr>] Search trace information
tf [<file> [<cycle1> [<cycle2>]]] Save trace information

Coverage
cv [<addr1> [<addr2>]] Display coverage information
cvc Clear coverage information

Command file, logging
com <file> [<interval>]] Load and execute command file
cmw [<file>] Load and execute command file with interval
rec [<file>] Record executed commands to file
log [<file>] Logging

Map information
ma Display map information

FPGA operation
xfer Erase FPGA
xfwr <file> ;{H|S} [;N] Write FPGA data
xfcp <file> ;{H|S} Compare FPGA data
xdp <addr1> [<addr2>] Dump FPGA data

Quit
q Quit debugger

Help
? Display command usage



Debugger db88 (5) Development Tools

Debugger Messages
Debugger error
Error : Failed to write EP Error occurred when writing to the EP register.
Error : Failed to write HL Error occurred when writing to the HL register.
Error : Failed to write NB Error occurred when writing to the NB register.
Error : Failed to write PC Error occurred when writing to the PC register.
Error : Failed to write SC Error occurred when writing to the SC register.
Error : Failed to write SP Error occurred when writing to the SP register.
Error : Failed to write X Error occurred when writing to the X register.
Error : Failed to write Y Error occurred when writing to the Y register.
Error : ICE88UR Diagnostic error Detected an error during ICE self-diagnostic processing.
Error : Ice88ur Initialization failed Failed to initialize the ICE.
Error : Ice88ur is already running ICE88UR.EXE is up and running.
Error : ICE88UR is turned off Power to the ICE is turned off.
Error : Illegal initialization packet data Initialization packet data is in error.
Error : Incorrect number of parameters The number of parameters for the command is illegal.
Error : Incorrect r/w option, use r/w/* The R/W option specified here is invalid.
Error : Incorrect register name, use PC/ The register name specified here is invalid.
SP/IX/IY/A/B/HL/BR/CB/EP/XP/YP/SC
Error : Index out of range, use 0 - 8191 The specified trace cycle number is outside the valid

range.
Error : Initialization failed! Failed to initialize DB88.
Please quit and restart! Please restart DB88.
Error : Input address does not exist The address specified here has no breakpoints set.
Error : Invalid command The command entered here is invalid.
Error : Invalid data pattern The data pattern entered here is invalid.
Error : Invalid display unit,  The display unit specified here is invalid.
use -B/-W/-L/-F/-D
Error : Invalid DLL ModuleID DLL identification error
Error : Invalid file name The specified file extension is not effective as a

program file or function option file.
Error : Invalid fsa file The FSA file is invalid.
Error : Invalid hexadecimal string This is an invalid hexadecimal string.
Error : Invalid value The value entered here is invalid.
Error : Maximum nesting level(5) is   Command files have been nested exceeding
exceeded, cannot open file the nesting limit.
Error : Memory ranges in %s are invalid The memory range of the CPU INI file is invalid.
or the file is not exist
Error : No symbol information No symbol information is found.
Error : Number of steps out of range,  The specified number of steps exceeds the limit.
use 0 - 65535
Error : The Memory Area cannot include The specified area overlaps the 0x00FFFF–0x010000
the boundary between 0x00FFFF and address boundary.
0x010000

Debugger error
Error : Address out of range : The specified address is outside the valid range.
use 0x000000 - 0xffffff
Error : Address out of range, The address specified here is outside the program
use 0 - 0x7FFFFF memory area.
Error : Address out of range, The address specified here is outside the data
use 0 - 0xFFFFFF memory area.
Error : Cannot open device (ICE88UR) Failed to connect to the ICE.
Error : Cannot open file Cannot open the file.
Error : Checksum error Checksum resulted in an error.
Error : Coverage mode is off or the Coverage mode is turned off or the ICE being used
coverage mode is not supported does not support coverage mode.
Error : Data out of range, use 0 - 0xFF The specified value is outside the valid range of data.
Error : DLL Initialization error Failed to initialize DLL.
Error : End address < start address The end address specified here is smaller than the

 start address.
Error : End index < start index The end cycle specified here is smaller than the start cycle.
Error : Error file type (extension should The specified file extension is not effective as
be CMD) a command file.
Error : Error file type (extension should  The specified file extension is not effective as
be PAR) a parameter file.
Error : Failed ICE88UR initialization Failed to initialize the ICE.
Error : Failed to initialize DLL : %s Failed to initialize DLL.
Error : Failed to Load DLL Failed to load DLL needed to start DB88.
Error : Failed to open : %s Could not open the file.
Error : Failed to read BA Error occurred when reading the BA register.
Error : Failed to read BR Error occurred when reading the BR register.
Error : Failed to read CB Error occurred when reading the CB register.
Error : Failed to read CC Error occurred when reading the CC register.
Error : Failed to read EP Error occurred when reading the EP register.
Error : Failed to read file : %s Error occurred when reading the file.
Error : Failed to read HL Error occurred when reading the HL register.
Error : Failed to read NB Error occurred when reading the NB register.
Error : Failed to read PC Error occurred when reading the PC register.
Error : Failed to read SC Error occurred when reading the SC register.
Error : Failed to read SP Error occurred when reading the SP register.
Error : Failed to read X Error occurred when reading the X register.
Error : Failed to read Y Error occurred when reading the Y register.
Error : Failed to road DLL : %s Failed to load DLL.
Error : Failed to write BA Error occurred when writing to the BA register.
Error : Failed to write BR Error occurred when writing to the BR register.
Error : Failed to write CB Error occurred when writing to the CB register.
Error : Failed to write CC Error occurred when writing to the CC register.



Debugger db88 (6) Development Tools

Debugger Messages
ICE error
Error : Cannot be run in Free-Run mode The ICE is operating in free-run mode.
Error : Cannot fine specified data The specified data could not be found.
Error : ICE88UR is still keep a The ICE is operating in maintenance mode.
conservative mode
Error : ICE88UR power off execution Power to the ICE main unit is off. Execution was
abort aborted.
Error : Insufficient memory for loading Failed to allocate memory for the program.
program
Error : Vdd down or no clock The power supply voltage for the target system is low,

the target system is not powered on, or no clocks are
supplied to the target system.

Error : Verify error A verify error occurred.
ICE88UR system error : ?? illegal packet Detected an illegal packet.
ICE88UR system error : Command Detected a command time-out.
 timeout 
ICE88UR system error :  Firmware Detected an error in EB: Firmware packet.
packet error
ICE88UR system error : Master reset Detected MR: master reset.
ICE88UR system error : Not connected The ICE is not connected or powered on.
ICE88UR system error : Not ready The ICE is not ready.
Internal error : ICE88UR does not   The current version of the ICE does not support
support this command version this command.
Internal error : Illegal error code fetched. Nonexistent error code has been encountered.
System crash possible
Processing terminated by hitting Processing terminated because the ESC key was
ESC-key  pressed.

Debugger error
Error : The Memory Area must be above Any memory area specified above 0x010000 must be
0x10000, and longer than 256 bytes greater than 256 bytes in size.
Error : This command is not supported The trace and coverage commands are not effective
in current mode when trace or coverage is turned off.
Error : Unable to get the coverage area Failed to get the coverage area number.
number
Error : Unable to get the coverage mode Failed to get coverage information.
Error : Unable to set SelfFlash check Could not set the SelfFlash check function.
function
Error : Unable to set the coverage area Failed to set the coverage area number.
number
Error : Unable to set the coverage mode Failed to set coverage mode.
Error : Wrong Command line parameter The startup parameters are incorrect.
Please load the selfflash library program Please load the SelfFlash library program.
Warning : 64 break addresses are The total number of breakpoints specified here
already set exceeds 64.
Warning : Break address already exists The specified address has a breakpoint already set.
Warning : Identical break address input Two or more instances of the same address are

specified on the command line.
Warning : Memory may be modified by Memory contents may have been modified by the
SelfFlash SelfFlash program.
Warning : SelfFlash program area is out The SelfFlash program area does not match the
of the current software pc break area. currently set software break area. Please clear the
Please clear the break point(Address) breakpoint set at (Address).



Structured Preprocessor sap88 Sub Tool Chain

Outline
The structured preprocessor sap88 adds the macro functions to the cross 
assembler asm88.
The sap88 expands the macro and structured control statements included in 
the specified S1C88 assembly source file into a format that can be assembled 
by the asm88, and outputs it. At this time, the sap88 also executes the 
processing for including of the modularized S1C88 assembly source files and 
conditional assembly.

Startup Command
sap88 [flags] <file name>

Flags
-d<macro> A character-string macro is defined prior to reading in an input file.

<macro>: <character-string macro name> = <substitution character string>
or  <character-string macro name>

-l<label> The front character string of a label name that is created at the time of 
the expansion of the structured control statement is designated. It is "L" 
in default.

-o<file name> An output file name is turned to *. The default status is standard output.
-q Does not output any message related to processing of the structured 

preprocessor.

Error Messages
unexpected EOF in ~ The file is terminated in the middle of ~.
can't include ~ ~ cannot be included.
illegal ~ ~ is incorrect.
illegal define "define" statement is incorrect.
illegal expression at ~ ~ in the expression is incorrect.
illegal undef "undef" statement is incorrect.

Pseudo-Instructions
INCLUDE <file> Another file insertion
<macro> MACRO [<param>,...] Macro definition

<statements>
[EXITM]
<statements>

[<macro>] ENDM
DEFINE <macro> [<character string>] Character-string macro definition
LOCAL [<label>,...] Definition of local label
PURGE [<macro>] Macro deletion
UNDEF <macro> Deletion of a character string macro
IRP <param>,<arg>[,<arg>...] Repetition by character strings

<statements>
ENDR
IRPC <param>,<arg> Repetition by characters

<statements>
ENDR
REPT <expression> Repetition by the specified number of times

<statements>
ENDR
IFC <condition> Conditional assembly by conditional expression

<statements>[
ELSEC

<statements>]
ENDIF
IFDEF <name> Conditional assembly by the name either defined or 

<statements>[ undefined
ELSEC

<statements>]
ENDIF
IFNDEF <name> Conditional assembly by the name either undefined or 

<statements>[ defined
ELSEC

<statements>]
ENDIF



Cross Assembler asm88 (1) Sub Tool Chain

Outline
The cross assembler asm88 converts an assembly source file to machine 
language by assembling the assembly source file in which the macros are 
expanded by the structured preprocessor sap88. The asm88 deals with the 
relocatable assembly for modular development.
In the relocatable assembly, the relocatable object file to link up with the other 
modules using the linker link88 is created.

Startup Command
asm88 [flags] <file names>

Flags
-all Outputs all symbols including local symbols to a symbol table.
-c Differentiates capital and small letters within the input source.
-l Prohibits the creation of an assembly list file.
-o<file name> Creates output files with the name <file name>.
-q Does not output any messages related to the assembly processing.
-RAM<size> Sets the RAM capacity in byte units with <size>.
-ROM<size> Sets the ROM capacity in byte units with <size>.
-sig<number> Character numbers of symbols that are significant can be set with a 

<number> value.
-suf<ext> Changes the extension of the input file to <ext> (a separator "." is not 

included).
-x Prohibits the creation of a cross reference list file.

Pseudo-Instructions
CODE Definition of CODE section
DATA Definition of DATA section
DB <exp>[,<exp>...] Reserve/constant setting of the byte unit data area
DW <exp>[,<exp>...] Reserve/constant setting of the word (2-byte) unit data area
DL <exp>[,<exp>...] Reserve/constant setting of the long word (4-byte) unit data 

area
ASCII <exp>[,<exp>...] ASCII text storing in memory
PARITY Setting/resetting of parity bit
<name> EQU <exp> Name value setting
<name> SET <exp> Name value setting
ORG <exp> Changing of location counter value
EXTERNAL <symbol>[,<symbol>] Symbol external definition declaration
PUBLIC <symbol>[,<symbol>] Global declaration of symbol
LINENO <exp> Change of line number for assembly list file
SUBTITLE <title> Subtitle setting to assembly list file
SKIP Suppresses all initialization codes output that exceed 4 bytes 

to assembly list file
NOSKIP Outputs all initialization codes to assembly list file
LIST Assembly list file output
NOLIST Prohibition of assembly list file output
EJECT Form feed of assembly list file
END [<label>] Assembly stop



Cross Assembler asm88 (2) Sub Tool Chain

Error Messages
Severe errors
operand expected There is no operand.
psect name required A section name must be specified.
phase error <identifier> The label address is different between pass 1 and pass 2.
CODE or DATA missing There is no section setting pseudo-instruction.
ROM capacity overflow ROM capacity has overflowed.
RAM capacity overflow RAM capacity has overflowed.
relocation error in expression A relocation error has appeared within the expression.
<identifier> reserved word <identifier> is a reserved word.
syntax error <token> expected Syntax error due to insufficient token(s)
syntax error <token> unexpected Syntax error due to excess token(s)
syntax error - invalid identifier Syntax error due to an illegal identifier
<identifier>
syntax error <token> invalid in Syntax error due to an illegal token
expression
system error < > <token> System error due to an illegal token
unsupported instruction Unsupported instruction has appeared.
unsupported operand Unsupported operand has appeared.

Warnings
directive is ignored in relocatable The pseudo-instruction is skipped because it is in the 
mode relocatable mode.
possibly missing relocatability Relocatability may lose.
constant overflow Seven or more digits has been defined for the name.
expected operator There is no operator (BOC, LOC, POD, LOD).

Fatal errors
can't create <file> <file> cannot be created.
can't open <file> <file> cannot be opened.
can't read tmp file Temporary file cannot be read.
can't write tmp file Temporary file cannot be written.
namelist full Name list table is full.
no i/p file There is no input file specification.
insufficient memory There is not enough memory.
can't seek on vmem file Seeking of virtual memory file has failed.
can't seek to end of vmem file Cannot reach the end of virtual memory file.
no swappable page There is no swap space.
read error on vmem file Reading of virtual memory file has failed.
write error on vmem file Writing to virtual memory file has failed.

Severe errors
<numeric label> already defined The numeric label has been defined previously.
<identifier> wrong type An illegal identifier has appeared.
<token> expected A token is needed.
' missing A quotation mark is missing.
attempted division by zero Attempt has been made to divide by zero.
attempt to redefine <identifier> Attempt has been made to redefine an identifier.
constant expected A constant expression is required.
end expected There is no end instruction.
encountered too early end of line The line has terminated in the middle.
field overflow The field to be secured has overflowed.
invalid branch address An external defined symbol is used for the operand of the short 

branch instruction.
invalid byte relocation The byte relocation is invalid.
invalid character Three is an illegal character.
invalid flag The flag is invalid.
invalid operand The operand is invalid.
invalid relocation item The relocation item is invalid.
invalid register The register is invalid.
invalid register pair The register combination is invalid.
invalid symbol define The symbol definition is invalid.
invalid word relocation The word relocation is invalid.
new origin incompatible with There is an absolute origin within the relocatable section 
current psect (relocatable mode).
non terminated string The termination of a string cannot be located.
<identifier> not defined Undefined identifier has appeared.
missing numeric expression A numeric expression is missing.
cars or jrs out of range Branch destination by cars or jrs is out of range.
carl or jrl out of range Branch destination by carl or jrl is out of range.



Linker link88 Sub Tool Chain

Outline
The link88 links multi-section relocatable object files for the S1C88 and 
creates an absolute object file. The absolute object file is used to create a 
program data HEX file that is used for debugging with the ICE by inputting to 
the binary/HEX converter hex88. It will also be used to create absolute symbol 
information (rel88) after linking the relocatable assembled file.

Startup Command
link88 [global flags] [local flags] [<drive name>:]

Flags
Global flags
-c Distinguishes capital and small letters used for symbols within the 

relocatable object file.
-cd Does not output the code part for the DATA section.
+dead Outputs a list of dead wood symbols on the CRT, that is, symbols that 

have been defined, but are not referred as absolute.
-max<size> Sets the maximum section size at <size> bytes.
-o<file name> Writes the output module on the file <file name>.
-q Does not output any message related to link processing.

Local flags
+code Begins a new CODE section, then processes the local flag for that 

section.
+data Begins a new DATA section, then processes the local flag for that 

section.
-m<size> Sets the maximum size of the individual segment as <size> bytes.
-p<addr> Sets the physical address of the beginning of the section as <addr>.

Error Messages
bad file format: 'FILE NAME' Format of the input file 'FILE NAME' is incorrect.
bad relocation item There is long integer type relocation information.
bad symbol number: 'NUMBER' 'NUMBER' is detected as illegal symbol code.
can't create 'FILE NAME' The file 'FILE NAME' cannot be created.
can't create tmp file Temporary file cannot be created.
can't open: 'FILE NAME' The input file 'FILE NAME' cannot be opened.
can't read binary header: 'FILE NAME' Header of the file 'FILE NAME' cannot be read.
can't read file header: 'FILE NAME' First two bytes of the file 'FILE NAME' cannot be read.
can't read symbol table: 'FILE NAME' Symbol table cannot be read from the file 'FILE NAME'.
can't read tmp file Temporary file cannot be read.
can't write output file Cannot write into output file.
can't write tmp file Cannot write into temporary file.
field overflow Branch destination by cars or jrs is out of range.
inquiry phase error: 'SYMBOL NAME' Symbol value of the 'SYMBOL NAME' is different between 

pass 1 and pass 2.
link: early EOF in pass2 Unexpected EOF is detected during pass 2 processing.
multiply defined 'SYMBOL NAME' 'SYMBOL NAME' is multiply defined.
no object files No input object files exist.
no relocation bits: 'FILE NAME' The relocation information corresponding to the file 'FILE 

NAME' is suppressed.
'SECTION NAME' overflow The section size in the 'SECTION NAME' exceeds the upper 

limit value.
phase error: 'SYMBOL NAME' Symbol value of the 'SYMBOL NAME' is different between 

pass 1 and pass 2.
previous reference blocked: The information related relocation bit width is unmatched.
'SYMBOL NAME' range error
read error in pass2 Read error is generated during pass 2 processing.
undefined 'SYMBOL NAME' 'SYMBOL NAME' has not been defined.



Symbol Information Generator rel88 Sub Tool Chain

Outline
The rel88 checks the multi-section relocatable objects. The files that become 
the object of such checks are relocatable object files output by the cross 
assembler asm88 and absolute object files output by the link88. The rel88 can 
be used to check the size and configuration of relocatable object files and to 
output symbol information in absolute object files output from the link88.

Startup Command
rel88 [flags] <file names>

Flags
-a Sorts outputs in alphabetical order of the symbol names.
+dec Outputs symbol values and segment sizes in decimal numbers.
-d Outputs all defined symbols within each file, one per line.
-g Outputs global symbols only.
+in akes <file names> from standard input and adds them to command line.
+sec Outputs the physical address and size of each section of multi-segment output 

files.
-v Sorts the inside of section by symbol values. The aforementioned -d flag is 

tacitly specified.

Error Messages
can't read binary header Reading of the object header excluding magic number and 

configuration byte has failed.
can't read header Reading of the first two bytes of the object header (magic number 

and configuration byte) has failed.
can't read symbol table Reading of the symbolic table in the object has failed.



Symbolic Table File Generator sym88 Sub Tool Chain

Outline
The symbolic table file generator sym88 converts a symbolic information file 
(file_name.ref) generated in file redirect with the symbol information 
generating utility rel88 to a symbolic table file (file_name.sy) that can be 
referenced in the ICE. Loading the symbolic table file and the corresponding 
relocatable assembly program file in the ICE makes symbolic debugging 
possible.

Startup Command
sym88 <file name>

Error Message
No Input File Input file ".ref" has not been specified.



Binary/HEX Converter hex88 Sub Tool Chain

Outline
The hex88 converts an absolute object file created by the link88 into a 
hexadecimal data conversion format (program data HEX file). This system 
adopted Motorola S record format.

Startup Command
hex88 [-o<file name>] <file name>

Flags
-o<file name> Writes the output module for the file <file name>.

Error Messages
bad file format Input file format is incorrect.
can't read <input file> Reading of the <input file> has failed.
can't write <output file> Writing to the <output file> has failed.



AMERICA

EPSON ELECTRONICS AMERICA, INC.

HEADQUARTERS
2580 Orchard Parkway
San Jose, CA 95131, U.S.A.
Phone: +1-800-228-3964 Fax: +1-408-922-0238

SALES OFFICE
Northeast
301 Edgewater Place, Suite 210
Wakefield, MA 01880, U.S.A.
Phone: +1-800-922-7667 Fax: +1-781-246-5443

EUROPE
EPSON EUROPE ELECTRONICS GmbH

HEADQUARTERS
Riesstrasse 15 Muenchen Bayern
80992 GERMANY
Phone: +49-89-14005-0 Fax: +49-89-14005-110

ASIA
EPSON (CHINA) CO., LTD.
7F, Jinbao Bldg., No.89 Jinbao St., Dongcheng District
Beijing 100005, CHINA
Phone: +86-10-6410-6655 Fax: +86-10-6410-7320

SHANGHAI BRANCH
7F, Block B, Hi-Tech Bldg., 900, Yishan Road
Shanghai 200233, CHINA
Phone: +86-21-5423-5522 Fax: +86-21-5423-5512

EPSON HONG KONG LTD.
20/F, Harbour Centre, 25 Harbour Road
Wanchai, Hong Kong
Phone: +852-2585-4600 Fax: +852-2827-4346
Telex: 65542 EPSCO HX

EPSON (CHINA) CO., LTD.
SHENZHEN BRANCH
12/F, Dawning Mansion, Keji South 12th Road
Hi-Tech Park, Shenzhen
Phone: +86-755-2699-3828 Fax: +86-755-2699-3838

EPSON TAIWAN TECHNOLOGY & TRADING LTD.
14F, No. 7, Song Ren Road
Taipei 110
Phone: +886-2-8786-6688 Fax: +886-2-8786-6660

EPSON SINGAPORE PTE., LTD.
1 HarbourFront Place
#03-02 HarbourFront Tower One, Singapore 098633
Phone: +65-6586-5500 Fax: +65-6271-3182

SEIKO EPSON CORPORATION
KOREA OFFICE
50F, KLI 63 Bldg., 60 Yoido-dong
Youngdeungpo-Ku, Seoul, 150-763, KOREA
Phone: +82-2-784-6027 Fax: +82-2-767-3677

GUMI OFFICE
2F, Grand B/D, 457-4 Songjeong-dong
Gumi-City, KOREA
Phone: +82-54-454-6027 Fax: +82-54-454-6093

SEIKO EPSON CORPORATION
SEMICONDUCTOR OPERATIONS DIVISION

IC Sales Dept.
IC International Sales Group
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-42-587-5814 Fax: +81-42-587-5117

International Sales Operations



EPSON Electronic Devices Website

SEMICONDUCTOR OPERATIONS DIVISION

First issue October, 2001
Printed March, 2008 in Japan BL

(Integrated Tool Package for S1C88 Family)
Workbench/Development Tools/Assembler Package Old Version

S5U1C88000C Manual II

http://www.epson.jp/device/semicon_e

Document code: 411391600


	1 GENERAL
	1.1 Features
	1.2 S1C88 Family Integrated Development Environment

	2 INSTALLATION
	2.1 Package Components
	2.2 Operating Environment
	2.3 Installation Method
	2.4 Directories and Files after Installation
	2.5 Environment Settings

	3 WORK BENCH
	3.1 Features
	3.2 Starting Up and Terminating the Work Bench
	3.3 Work Bench Windows
	3.4 Toolbar and Buttons
	3.5 Menus
	3.5.1 [File] Menu
	3.5.2 [View] Menu
	3.5.3 [Source] Menu
	3.5.4 [Build] Menu
	3.5.5 [Debug] Menu
	3.5.6 [Tools] Menu
	3.5.7 [Help] Menu

	3.6 Project and Work Space
	3.6.1 Creating a New Project
	3.6.2 Inserting Sources into a Project
	3.6.3 Removing a Source from the Project
	3.6.4 Project View
	3.6.5 Opening and Closing a Project
	3.6.6 Saving the Project

	3.7 Creating/Editing Source Files
	3.7.1 Specifying an Editor
	3.7.2 Creating a New Source or Header File
	3.7.3 Editing Files
	3.7.4 Tag Jump Function

	3.8 Build Task
	3.8.1 Preparing a Build Task
	3.8.2 Building an Executable Object
	3.8.3 Running only the Compiler or Assembler

	3.9 Setting Tool Options
	3.9.1 Compiler Options
	3.9.2 Assembler Options
	3.9.3 Linker Options
	3.9.4 Locator Options
	3.9.5 Section Editor

	3.10 Debugging
	3.10.1 Simulator
	3.10.2 In-circuit Emulator (S5U1C88000H5) and Debugger

	3.11 Executing Other Tools
	3.12 File List
	3.13 Error Messages

	4 OUTLINE OF THE MAIN TOOL CHAIN
	5 ADVANCED LOCATOR <alc88>
	5.1 Functions of alc88
	5.2 Input/output Files
	5.3 Using alc88
	5.4 Error Messages
	5.5 Precautions

	6 OUTLINE OF THE DEVELOPMENT TOOLS
	7 PROGRAM UNUSED AREA FILLING UTILITY <fil88xxx>
	7.1 Outline of fil88xxx
	7.2 Input/output Files
	7.3 Using fil88xxx
	7.4 Error Messages
	7.5 Example of Input/output Files

	8 FUNCTION OPTION GENERATOR <winfog>
	8.1 Outline of winfog
	8.2 Input/output Files
	8.3 Using winfog
	8.3.1 Starting Up
	8.3.2 Window
	8.3.3 Menus and Toolbar Buttons
	8.3.4 Operation Procedure

	8.4 Error Messages
	8.5 Example Output Files

	9 SEGMENT OPTION GENERATOR <winsog>
	9.1 Outline of winsog
	9.2 Input/output Files
	9.3 Using winsog
	9.3.1 Starting Up
	9.3.2 Window
	9.3.3 Menus and Toolbar Buttons
	9.3.4 Option Selection Buttons
	9.3.5 Operation Procedure

	9.4 Error Messages
	9.5 Example Output Files

	10 MASK DATA CHECKER <winmdc>
	10.1 Outline of winmdc
	10.2 Input/output Files
	10.3 Using winmdc
	10.3.1 Starting Up
	10.3.2 Menus and Toolbar Buttons
	10.3.3 Operation Procedure

	10.4 Error Messages
	10.5 Example Output File

	11 SELF-DIAGNOSTIC PROGRAM <t88xxx>
	11.1 Outline of t88xxx
	11.2 File Configuration
	11.3 Operation Procedure

	12 88xxx.par FILE
	12.1 Contents of 88xxx.par File
	12.2 Description of the Parameters
	12.3 Emulation Memory

	13 S1C88 FAMILY DEBUGGER
	13.1 Overview
	13.2 Input/output Files
	13.3 Starting and Terminating the Debugger
	13.3.1 Starting the Debugger
	13.3.2 Terminating the Debugger

	13.4 Windows
	13.4.1 Basic Structure of Window
	13.4.2 [Command] Window
	13.4.3 [Source] Window
	13.4.4 [Dump] Window
	13.4.5 [Register] Window
	13.4.6 [Symbol] Window
	13.4.7 [Watch] Window
	13.4.8 [Trace] Window
	13.4.9 [Coverage] Window

	13.5 Menu
	13.6 Tool Bar
	13.7 Method for Executing Commands
	13.7.1 Entering Commands from Keyboard
	13.7.2 Executing from Menu or Tool Bar
	13.7.3 Executing from a Command File
	13.7.4 Log File

	13.8 Debug Functions
	13.8.1 Loading Files
	13.8.2 Source Display and Symbolic Debugging Function
	13.8.3 Displaying/Modifying Memory and Register Data
	13.8.4 Executing Program
	13.8.5 Break Functions
	13.8.6 Trace Functions
	13.8.7 Coverage
	13.8.8 Writing Data to the FPGA on the Standard Peripheral Circuit Board
	13.8.9 System Options

	13.9 Command Reference
	13.9.1 Command List
	13.9.2 Reference for Each Command
	13.9.3 Memory Operation
	dd (data dump)
	de (data enter)
	df (data fill)
	dm (data move)
	ds (data search)

	13.9.4 Register Operation
	rd (register display)
	rs (register set)

	13.9.5 Program Execution
	g (go)
	gr (go after reset CPU)
	s (step)
	n (next)
	se (step exit)

	13.9.6 CPU Reset
	rst (reset CPU)

	13.9.7 Break
	bp (software breakpoint set)
	bpa (software area breakpoint set)
	bpr / bc / bpc (software breakpoint clear)
	bas (sequential break setting)
	ba (hardware breakpoint set)
	bar (hardware breakpoint clear)
	bd (hardware data breakpoint set)
	bdr (hardware data breakpoint clear)
	bl (breakpoint list)
	bac (break all clear)

	13.9.8 Program Display
	u (unassemble)
	sc (source code)
	m (mix)

	13.9.9 Symbol Information
	sy (symbol list)
	w (symbol watch)

	13.9.10 Load File
	lf (load file)
	par (load parameter file)

	13.9.11 Trace
	td (trace data display)
	ts (trace search)
	tf (trace file)

	13.9.12 Coverage
	cv (coverage)
	cvc (coverage clear)

	13.9.13 Command File
	com (execute command file)
	cmw (execute command file with wait)
	rec (record commands to a file)

	13.9.14 log
	log (log)

	13.9.15 Map Information
	ma (map information)

	13.9.16 FPGA Operation
	xfer (xilinx fpga data erase)
	xfwr (xilinx fpga data write)
	xfcp (xilinx fpga data compare)
	xdp (xilinx fpga data dump)

	13.9.17 Quit
	q (quit)

	13.9.18 Help
	? (help)


	13.10 Error Messages

	APPENDIX
	A ASSEMBLER (Sub tool chain)
	A.1 Outline of Package
	A.1.1 Introduction
	A.1.2 Outline of Software Tools

	A.2 Program Development Procedures
	A.2.1 Development Flow
	A.2.2 Creating Source File
	A.2.3 Assembly
	A.2.3.1 Structured preprocessor (sap88)
	A.2.3.2 Cross assembler (asm88)
	A.2.3.3 Starting sap88 and asm88
	A.2.3.4 Batch processing for relocatable assembly (ra88.bat)
	A.2.3.5 Relocatable object file
	A.2.3.6 Assembly list file
	A.2.3.7 Cross reference list
	A.2.3.8 Error list
	A.2.3.9 Example of assembly execution

	A.2.4 Link
	A.2.4.1 Linking modules
	A.2.4.2 Section control
	A.2.4.3 Module allocation information
	A.2.4.4 Starting link88
	A.2.4.5 Batch processing for linking (lk88.bat)
	A.2.4.6 Absolute object file
	A.2.4.7 Execution example of linking

	A.2.5 Creating Program Data HEX File
	A.2.5.1 Program data HEX file
	A.2.5.2 Creating program data HEX file using hex88
	A.2.5.3 Motorola S2 format

	A.2.6 Symbol Information
	A.2.6.1 Creating symbol information (rel88)
	A.2.6.2 Creating symbolic table file (sym88)



	B CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)
	B.1 Outline
	B.1.1 File Name
	B.1.2 Source File Differences Depending on sap88 and asm88
	B.1.3 Macro Instructions

	B.2 General Format of Source File
	B.2.1 Symbol
	B.2.2 Mnemonic
	B.2.3 Operand
	B.2.4 Comment
	B.2.5 Numerical Expression
	B.2.6 Characters
	B.2.7 ASCII Character Set
	B.2.8 Expressions
	B.2.9 Operators
	B.2.10 Instruction Set
	B.2.11 Register Name
	B.2.12 Addressing Mode
	B.2.13 Example for Mnemonic Notation

	B.3 Pseudo-Instructions
	B.3.1 Section Setting Pseudo-Instructions
	B.3.2 Data Definition Pseudo-Instructions
	B.3.3 Symbol Definition Pseudo-Instructions
	B.3.4 Location Counter Control Pseudo-Instruction
	B.3.5 External Definition and External Reference Pseudo-Instructions
	B.3.6 Source File Insertion Pseudo-Instruction [sap88 only]
	B.3.7 Assembly Termination Pseudo-Instruction
	B.3.8 Macro-Related Pseudo-Instructions [sap88 only]
	B.3.9 Conditional Assembly Pseudo-Instructions [sap88 only]
	B.3.10 Output List Control Pseudo-Instructions


	C ASSEMBLY TOOL REFERENCE (Sub tool chain)
	C.1 Structured Preprocessor <sap88>
	C.2 Cross Assembler <asm88>
	C.3 Linker <link88>
	C.4 Symbol Information Generator <rel88>
	C.5 Symbolic Table File Generator <sym88>
	C.6 Binary/HEX Converter <hex88>


	Quick Reference
	Development Flow
	Software Development Flow

	Work Bench
	Work Bench wb88

	Main Tool Chain
	C Compiler c88
	Assembler as88
	Linker lk88
	Advanced Locator alc88
	Locator lc88
	DELFEE

	Development Tools
	Function Option Generator winfog
	Segment Option Generator winsog
	Mask Data Checker winmdc
	Debugger db88

	Sub Tool Chain
	Structured Preprocessor sap88
	Cross Assembler asm88
	Linker link88
	Symbol Information Generator rel88
	Symbolic Table File Generator sym88
	Binary/HEX Converter hex88





