EPSON

EXCEED YOUR VISION

CMOS 8-BIT SINGLE CHIP MICROCOMPUTER

S5U1C88000C Manual 11

(Integrated Tool Package for S1C88 Family)

Workbench/Development Tools/Assembler Package Old Version

SEIKO EPSON CORPORATION

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko
Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any
liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or
circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such
as medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there
is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright
infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic
products under the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from
the Ministry of Economy, Trade and Industry or other approval from another government agency.

The C compiler, assembler and tools explained in this manual are developed by TASKING, Inc.

Windows 2000 and Windows XP are registered trademarks of Microsoft Corporation, U.S.A.

PC/AT and IBM are registered trademarks of International Business Machines Corporation, U.S.A.

All other product names mentioned herein are trademarks and/or registered trademarks of their respective owners.

© SEIKO EPSON CORPORATION 2008, All rights reserved.

Configuration of product number

Devices
S1 C 88104 F 0AO01 00

Packing specifications

00 : Besides tape & reel
OA:TCP BL 2 directions
OB : Tape & reel BACK
0C:TCP BR 2 directions
OD:TCP BT 2 directions
OE: TCP BD 2 directions
OF : Tape & reel FRONT
0G: TCP BT 4 directions
OH:TCP BD 4 directions
0J : TCP SL 2 directions
OK:TCP SR 2 directions
OL : Tape & reel LEFT

OM: TCP ST 2 directions
ON:TCP SD 2 directions
OP:TCP ST 4 directions
0Q:TCP SD 4 directions
OR: Tape & reel RIGHT

99 : Specs not fixed

Specification

Package
[D: die form; F: QFP, B: BGA]

Model number

Model name
[C: microcomputer, digital products]

Product classification
[S1: semiconductor]

Development tools
S5U1 ~ C 88348 D1 1 OOL

Packing specifications
[00: standard packing]

Version
[1: Version 1]

Tool type

Hx : ICE

Ex : EVA board

Px : Peripheral board

Wx: Flash ROM writer for the microcomputer
Xx : ROM writer peripheral board

Cx : C compiler package
Ax : Assembler package
Dx : Utility tool by the model
Qx : Soft simulator

Corresponding model number
[88348: for S1C88348]

Tool classification
[C: microcomputer use]

Product classification
[S5U1: development tool for semiconductor products]

MANUAL ORGANIZATION

MANUAL ORGANIZATION
The S1C88 Family Integrated Tool Package contains the tools required to develop software for the S1C88
Family microcomputers. The SSU1C88000C Manual (S1C88 Family Integrated Tool Package) describes the
tool functions and how to use the tools. The manual is organized into two documents as shown below.

I. C Compiler/Assembler/Linker
Describes the C Compiler and its tool chain ([Main Tool Chain] part shown in the figure on the next
page).

1. Workbench/Development Tools/Assembler Package Old Version (this document)
Describes the Work Bench that provides an integrated development environment, Advanced Locator,

the Mask Data Creation Tools ([Development Tool Chain] part shown in the figure on the next page),
Debugger, and Structured Assembler ([Sub Tool Chain] part shown in the figure on the next page).
This manual assumes that the reader is familiar with C and Assembly languages.
Refer to the following manuals as necessary when developing an S1C88xxx microcomputer:

S1C88xxx Technical Manual
Describes the device specifications, control method and Flash EEPROM programming.

S5U1C88000Q Manual
Describes the operation of the tools included in the Simulator Package.

S5U1C88000H5 Manual
Describes the operation of the ICE (S5U1C88000H5).

S5U1C88xxxP Manual
Describes the operation of the peripheral circuit board installed in the ICE.

S5U1C88000C MANUAL 11 EPSON i
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

MANUAL ORGANIZATION

'880M Aq Pa10aJas G+ “(101Ipa 1Xa) & 10) JONPa UONIBS 88aM By} Buisn pajeasd iy« “ioupa dewnq e Buisn pajeald g+ I0)Ipa 1xal & Buisn pajeal) = ‘uonoun) dwnf Be) e smojie pue maia aBessaL au) ul 3|l U JO SIUBIU0D au) SAe|dSIp 8gam ‘patelauaB si ajy J04Id By})| 1T+

*88qMm Aq ssa20.d p|ing Buunp Ajjeanewoine painaaxa s|oo.

"880M YIUSGRIOM SU) LLIOIJ PBXOAUI BG UeD

axa°'gguWIs

Joe|nwis EIIREETS
e PeElie}
(6] o ASO'3lY
NOW preoq unaud fessyduad ® 301 ajy 10alod rds ol awoany | @ Buiddew —_—
Jopenuis L——— —— Je)
NOY Xsen WOY useld o o

ﬁ ﬁ
ﬁ ﬁ
, ﬁ
| ﬁ
W ﬁ

ay eyep '
7 QoUBIBRY puBWIWOD 7
, ,
ﬁ ﬁ
ﬁ ﬁ
ﬁ ﬁ
| ﬁ

ureys |00} Juswdo|aneq

9X9'INggadl
" aly oy
(iuswdojonap Japun) axa'ggap Bumas | Lddal uomuyap [@OTAI
1966ngaq uod —x— aon
oM NOY axa'[iNUd axa'[nNpa1 axa'engoINy
[LoW'[poul Aun Bumes 1od Annn aziwoisna jaued ao1 wa)sAs uonenfeAs ony
¢ e am| % am
elep vod4d aly g ||y
uosd3 oyles dwaaiy
3 S1EMOS [0JUOD JBIM plreoq N2 isrswered —— | deunig
m ut painioejnueny oSt o fesayduad 301 { fowinwis weisks peppequiy &—— | |]
oM 3y I o [(Asam
QoquiAs L——
“““ axa'gghs
[1T ol i sjnpow 3l 101e18uab Y B|qe) JIjOqUIAS
' 3l BIeD (e | Sl A (T 5-ay | 1AM [xgay | BWI03IA0 Myggy peoj [Sav'a : -
, & L afoquins L=— i | aiges L= s woionom L—=— || *°% ,
| 7 H oquIAS '
7 2X2-0pWUIM 7 7 axa'ggWiAS 7 7 [[, 7
? 193089 erep Ssep ﬂ 7 J1ores0uab Bl 3|qe) 2l0qUIAS 7 - o p— |
| 1 EITERIIEICTEN] H 101890| PIJUBAPY Gr 10712007
ﬁ i 7 mmm___howuom«hn_\d vSally uorrewLoul | &l ¥ W
e — .
, ,, ally uoniuyep [gNapy
3l X3H 1P (ygga , i
? A oren [vsaran W , P 7 po— | 1o1290] paavenpY) ,
| | 18LI8AU0D XIH 101e19U86 UORWIOMI [OqUIAS| aly 7
' Xxxxgg|ly Anjnn Buiy i dew l._z._.wE !
7 | | oy 7 S —
! eale pasnun weiboid 7 | 108lqo [SBVaIY 7 7
, L N ,
, , aly ajqel
| | 1 dewng
7 H 7 axagauI| ' 7 eleq
| 3|1y UBWINO0P Ay XaH | o | [J— l.cc..m_; l:s_m_.m_:
v uondo yuswbas uondo uawbas W 7 7 7
V oasaiy \ V iy sorewered 7 axa'ggud axe'ggre 7 (abexoed Joreinwis)
, — N
! . 3y puBWIWOD Hul L—— 7 Japeal 108[q0 Jaureyurew Areiqiy 7 axa'mndwg Aynn dewng
| oxa Bosum Jojessush | | ol st Souaizal sa|npow e I || [Em
i ‘ jou3 $S010 _ 3|l | 7]
h uondo yuswhas 7 h . 109[q0 HE oS! (Ts7om | . QMMV_W__M dng-aly
VL i Alquessy L ———]J , ,
7 ! 7 “““ axa'gguise 7 ““““““ oxoggse | (1awoisnd Aq pasedaid)
| 3|y Juawnoop Iy X3H | | 19|quIassy ! Jo|quisssy i J10pa dewng
H uondo uonoung uondo uonoung ﬁ H 7 v 1
7 | 7 Sa|ly 92IN0S —I—‘II = ' axa'ggqW 7
7 7 7 passadsoidaid SwWaly 7 weiboid axeiN 7
7 axa'Bojuim orelsush 7 7 " 7 " ﬁ
! v exeggdes | b %9880 3y
uondo uonouny | | i ~ | camaly
| | 10ss9201d31d i Ja11dwod o | ys8loid L—
h 3|l uoniuyap h h 7 '
— uoneuwuoyur | U3y | ' - 7 -
\ QaIneq ——— , | 7 9X9°'8899 ! X' 88aM
7 ! 7 7 wesboid jonuod 7 UOUSPHIOM
, L ,]

(1awosna Aq paredaid)
10Mpa X3 L

(am]

INIWNOHIANT LNINDOTIAIQ QILVHOILIN | ATINVH 88DTS

S5U1C88000C MANUAL I

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

EPSON

CONTENTS

CONTENTS

CcHAPTER 1 GENERAL 1
N R = (=S PP TSPTO PRSP 1
1.2 S1C88 Family Integrated Development ENVIroNMENtccccveevevenereseereeiesieeieennns 2

CHAPTER 2 |NSTALLATION 5
2.1 Package COMPONENES......ccceiueiierieieeeieeeieesessesessessestestesaessesteseessessessessessesessessessenses 5
2.2 Operating ENVIFONMENTccoiiiiiiecie ettt s na e neens 5
2.3 Installation MEtNOMcccooiiiiiiiiieie e st ens 6
2.4 Directoriesand Files after Installationccovveieneievisese e 7
2.5 ENVIrONMENE SEINGS ...vcuviveirtiietiiet ittt 8

cHAPTER 3 WORK BENCH 9
0 R = LU= 9
3.2 Sarting Up and Terminating the Work Bench...........cccccocvvvveiievenecesesececeeeeene 9
3.3 WOrk BENCh VWINAOWS......cveieiciceeceectee ettt st ne s 10
3.4 Toolbar and BULTONScc.ooiiiieie ettt st e ne e e ennens 12

35 IMBNUS...e e e e 13
S5 L [FE] MENU ...ttt 13
352 [MEBW] MENU ..o 13
3.5.3[SOUMCE] MENU ... 14
354 [BUIHA] MENU ..ottt 14
3.5.5 [DEDUG] MENU ...ttt 14
3.5.6 [TOOIS] MENU ...ttt 14
3.5.7 [HEIP] MENU ..o 15

3.6 Project and WOIK SPACE........coiiiieiiriei et
3.6.1 Creating @ NEW ProjECEccccieieiiiiieiecicectee ettt
3.6.2 Inserting Sources into @ ProjeCh..........cccevuciiieieieiieicesee e
3.6.3 Removing a Source from the PrOJECtccooveieeviciicece e
BB, A PrOJECE VIBIW ...ttt a e ene e
3.6.5 Opening and CloSiNg @ ProjeCtcccevieiiieiieies e
3.6.6 SAVING thE PrOJECE ...t

3.7 Creating/Editing SOUrCE FilESc.cciiiiiriiieee e
3.7.1 PECIfYiNG @n EdItOrcveviieicice e
3.7.2 Creating a New Source or Header File
BT.3EAING FIIES ...ttt ne
3.7.4Tag JUMP FUNCLION ..ottt

TR T =T T o =T T
3.8.1Preparing @ Build TaSK........ccuvirieiiiciiieics et
3.8.2 Building an Executable OBJECtcccevveiiiiiiiec e
3.8.3 Running only the Compiler or ASSEMbBIENcccceiviiviceiciceee e 23

3.9 Setting TOOI OPLIONSc.eeeeieeiiceeiesese sttt e e e e se e neerenne e 24
3.9.1 COMPIIEr OPLIONS ...ttt 25
3.9.2 ASSEMDIEr OPLIONS......cuiiieeieiiercieiere ettt 27
3.9.3 LIiNKEr OPLIONScuiiteiiireereiiire ettt 29
3.9.4 LOCAIOr OPLIONS.....cveviuiereeiesiresieiee et 30
3.9.5 SECHON EQITOF ...ttt 32

G350 0 I T oo o 1 oo O 38
3101 SIMUIBLOT <.ttt 38
3.10.2 In-circuit Emulator (S5U1C88000H5) and DebUQESccvvrviveeirerereeerennan 40

S5U1C88000C MANUAL 11 EPSON iii
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CONTENTS

3.11 ExXecuting Other TOOIScouiiieiirieirieisieeete sttt 41
I 2 L I USROS 42
G I 0 1Y 1= Vo SN 43
CcHAPTER 4 OuUTLINE oF THE MAIN TooL CHAIN 44
CHAPTER 5 ADVANCED L ocaTor <alc88> 45
5.1 FUNCLONS Of @ICBBeviieie et et st ens 45
5.2 INPUL/OULPUL FITESvoeeiiieie ettt sttt n e 46
LG T U = 1o I xS 47
5.4 EITOrN IMIEBSSAJES ... ceitieittieiiee sttt stee st et este st s bt bt s bt e e te e s ab e e b e e sate st e e sabeebeesnbeenneennnas 47
B.5 PrECAULIONS ...ttt ettt st sttt et et eeae e s te e e e saeenesaeesesanesreennans 47
CHAPTER 6 OUTLINE OF THE DEVELOPMENT TOOLS 48
CHAPTER 7 ProcraM UNuseD AREA FiLLING UTiLITY <fil88xxx> 50
7.1 OULHNE Of fillBBXXX ...eveeiietieiicie ittt sttt ettt et s ae e sre e e saeeeesreenneas 50
7.2 INPUL/OULPUL FITES ..ot 50
7.3 USING FIIBBXXK .ttt ettt et 51
T4 EITOr MESSAJES......couiiiiiiiatiite ittt sttt sttt b bbbt b b r e r e b sneen e e 52
7.5 Example of INPU/OULPUL FIlEScvoveiceececeeees e 53
cHAPTER 8 FuncTioN OpTiON GENERATOR <winfog> 54
8.1 OULHINE Of WINFOQ ...ttt bbbt 54
8.2 INPUL/OULPUL FITES ...t 54
8.3 USING WINTOQ ...ttt ettt bbb 55
8.3. L SANING UP oottt et 55
8.3 2 WMNAOW ..ottt 56
8.3.3 Menus and TooIbar BUITONScccvvueuiiririeieirinieeesisiee e 57
8.3.4 Operation ProCEAUNEccueieiieieeisieete ettt ae e 58
o (0] Q1Y =SS Vo S SR 61
8.5 EXamPI@ OULPUL FIIESceeuieiieeceicere et r e s 62
CHAPTER 9 SEGMENT OPTION GENERATOR <WiNS0g> 63
9.1 OULHINGE OF WINSOT ...ttt sttt sttt sttt ettt 63
9.2 INPUL/OULPUL FITES ...t 63
9.3 USING WINSOG .veveviieiieiiisiesieseesteteseeeeseseseesessessessessessessessessessessessessensensessensessssensenns

9.3.1 Sarting Up

9.3.2 Window
9.3.3 Menus and ToOoIbar BULLONScceieiviirieieieriece et snesre e naennen 67
9.3.4 Option SEleCtion BULLONS..........covcuiiieiiieiee et 68
9.3.5 OpEration ProCEAUNEc.ccuiieiiieiiiicete sttt 68
S g (0] 1Y =SS Vo S SR 74
9.5 EXamPIe OULPUL FIIEScueeuieiieeceesece et r e 75
cHAPTER 10 Mask DATA CHECKER <winmdc> 76
10.1 OULINE OFf WINIMOC ...ttt ettt e st e e st e s sae e s s sbeeeseate e s sanneessreneas 76
10.2 INPUL/OULPUL FITES ..ttt st st neens 76
iv EPSON S5U1C88000C MANUAL I

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CONTENTS

10.3 USING WINIMAC ...ttt
10.3.1 SAMNG UP oottt ere e
10.3.2 Menus and Toolbar Buttons
10.3.3 Operation ProCEAUIE.c.cvieieiecieseetec ettt
TO.4 ErrOr IMESSAGESccueiviiiiriierieresie sttt sttt b bbbt b e sr b e
10.5 EXamMpPle OULPUL FlE....uecuieieecieeee ettt
CHAPTER 11 SELF-DIAGNOSTIC PROGRAM <t88XXX> 84
12,1 OULIINE OF t8BXXXK . ..c.veventeiereeieie e eeiee e ettt sttt ee et e e e et e e e eseebesaeseesbeseeseenean 84
11.2 File CONMIQUIALIONveuetieiiiieeiieiese ettt 84
11.3 Operation PrOCEAUIEc.eoiitireriiieiiieiesieiesi ettt 84
CHAPTER 12 88xxx.par FiLE 85
12.1 Contents of 88XXX.PAr FIlEccueveeecieececeee e 85
12.2 Description Of the Parameters..... ..o 86
12.3 EMUIALTION MEIMOTY ..ottt 86
CHAPTER 13 S1C88 FAmILY DEBUGGER 87
L3 L OVEIVIEW w.uiieieiieeiee ettt ettt bbb 87
13.2 INPUL/OULPUL FITES ..ttt st ne s 87
13.3 Sarting and Terminating the DEDUGUEYceirieiriireree e 88
13.3.1 Starting the DEDUGUEScoviveeiireireiirieieereeee s
13.3.2 Terminating the Debugger
1304 WINAOWS ...ttt et et et ae e r e s ae e sae e e e sbeesee st e ensestaenreeneenns
13.4.1 Basic Structure of Window
13.4.2 [Command] WAINdOW.........ccoevvevrreniennne.

13.4.3 [Source] Window
13.4.4 [Dump] Window
13.4.5[REGISIET] WINAOW ...t
13.4.6 [Symbol] WANdOWccoeveeveriiiciiieienne

13.4.7 [Watch] WENAOWccocvvvevirivicicieiene e

13.4.8 [Trace] WENAOWccccevveriereeireiciesienas

13.4.9 [Coverage] Window

SRS 1Y/ = LU O
RS ST Lo o I == TR

13.7 Method for Executing Commands
13.7.1 Entering Commands from Keyboard............cccooceviieveesccicecee e 106
13.7.2 Executing from Menu or TOOI Barcccceieeiieiiisieeseieesee e 108
13.7.3 Executing from a Command File
13,74 LOQ FilE ittt be e aens

13.8 DEDUQG FUNCLIONS.ccuiiiiiiiiie it see ettt a et saesnesrestesresrenteneeneens
13.8. 1 L0AAING FlES.....ociiiiieieie et
13.8.2 Source Display and Symbolic Debugging FUNCLIONcccovvveenneniciienieee 112
13.8.3 Displaying/Modifying Memory and Register Datacccocvveevrnnecienncrenens 114
13.8.4 Executing Program
13.8.5 Break FuNCtionsccccovevevnniercennnn.
13.8.6 Trace FUNCLIONScoveveererecrciesieenes
13.8.7 COVEIAJE ..ottt et
13.8.8 Writing Data to the FPGA on the Standard Peripheral Circuit Board............ 133
13.8.9 SYSLEM OPLIONS ...ttt 134

S5U1C88000C MANUAL 11 EPSON \
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CONTENTS

13.9 CommanNd REFEIENCE........cccuiiiicticiecte ettt ettt ettt aesbaebesreere e 135
13.9.1 COMMANG LIS ...eveiiniirieiiisirieenses et 135
13.9.2 Reference for Each Commandccoeerrieininineeenneeesses e 136
13.9.3 MeMOTY OPEIAtiONcveveveieeicieicteeiee e ene s 137

dd (data dUMP) ... 137
de (At ENEEN) .oveeeeececieeee e e 140
Af (dALATIHT) e 142
AM (AR MOVE) ...t 143
dS (data SEArCH)covevieieeeeic e s 144
13.9.4 RegiSter OPEIratioNcccereeeerireiieeterieieeresr et 145
rd (register diSPlay)cccoeeeeicereeciee e 145
rs (register set)
13.9.5 Program EXECULTONc.ciririeieiiesieeisie ettt
[0 (o) ISP TSP USSP
or (go after reset CPU)
LS €5 < o) IO TORR SO ORRRRO
N (NEXE) ceeveeeiiiee ettt st r et et e b r et neneenan
se (step exit).............
13.9.6 CPU ReSetcoovrvvvenennnee
rst (reset CPU)
13197 BIEAK ..ttt sttt ettt eene et e et re e enea
bp (software breakpoint SEL)cccceeveirieiierei e 156
bpa (software area breakpoint SEt)ccceeveeveeiieiecesees e 158
bpr / bc/ bpc (software breakpoint Clear)cccovevrvreennseiireeenes 160
bas (sequential break SEtting)cocoeeeerreeiernee s 161
ba (hardware breakpoint SEL)cccceieeivieiieiecesee e 162
bar (hardware breakpoint CIEAr)ccccovvveeiiiieciceece e 164
bd (hardware data breakpoint Set)cocoeeoerrreiiisnces s 165
bdr (hardware data breakpoint Clear) ... 167
bl (breakpoint liSt)covcveieeicieeceeec e 168
bac (break all ClEAr)ccovcvieieeccicccee e 169
13.9.8 Program DiSPlaYccceeireriereiririeienisesie ettt 170
U (UNASSEMBIE) ...ttt 170
LS o o TU (oY oo o =) OSSR 172
M (IMIX) ettt ettt b ettt et naenan 174
13.9.9 Symbol INfOrMALTONcvveieicirecee e 176
SY (SYMBDOL TISE) vt 176
W (SYMDOI WALCH) ... 177
13.9.10 LOAA Fil@..uuiiieiiiiieieete ettt 178
(= I 1) ST 178
par (load parameter fil€)ccevcviieeiceicicee e 179
BT I B I 1 = To OO OO UP O U USURPRRRPTPN 180
td (tracedata display)ccoeeeveeieeeieees e 180
ts (trace search)
tF (ErACETIIE) e
13.9.12 COVEIAUEcvieeiereeeeieeeee sttt st ne e enen
CV (COVEIAGE) ..veuveririiereitesietestetestetete st essste s te s assbe st esestensebe e nesre e ebeseenis
CVC (COVErage ClEAI) ...viuecviiceecieeees e 188
vi EPSON S5U1C88000C MANUAL I

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CONTENTS

13.9.13 COMMANG Fl€ ...vviiieieieiieie e
com (execute command file)
cmw (execute command file With wait)cccoovevieiiiiveeceeecece 190
rec (record commandsto afil€)cccvveviverciiiciiiece e 191
e I o TSSO 192
100 (100) vttt s 192
13.9.15 Map INfOrMALIONcveeiveieiicieecieiee et 193
ma (MaP iNFOrMAaLION)oveerireicer s 193
13.9.16 FPGA OPEIatiONceeueieiieiiieeeieieie ettt see e seenesee e ae e e s 194
xter (Xilinx fpga data €rase)cccceeeevevieeieeccceesee e 194
XPwr (XiiNX fpga data WEItE)cveeeecirieieereeeeee e 195
xfep (Xilinx fpga data COMPAreE)ccovveeeireireeeerseeeseee e 196
xdp (xilinxX fpga data dump)ceeeereereieseeee e 197
G T I I L TSRO 198
O (QUIL) ettt rea bt e b ens 198
e I = o USRS 199
P (NEID) et 199
13,10 EXTOr IMESSAQESveiueeeeiueeieeseesteseestesstesseestesseesesseessessessseassesseasesssesssesseessnssenssenanns 200
APPENDIX A AsseMBLER (Sub tool chain) 203
AL OULIINE OF PACKAGEcuieeiiieiiieet ettt
0 R 1 100 [0 1 o] ISR

A.1.2 Outline of Software Tools

A.2 Program Development Procedures
A.2.1 DeVEIOPMENT FIOWoeviieiiieeceee ettt
A.2.2 Creating SOUrCE Fleovuiiceceeee e
A2 3 ASSEMDIY ...ttt eae s

A.2.3.1 Structured preprocessor (SAP88)cvwvereererrererireireriese et 210
A.2.3.2 Cross assembler (asm88)

A.2.3.3 Sarting sap88 and asm88
A.2.3.4 Batch processing for relocatable assembly (ra88.bat)c.ccccevennee 214
A.2.3.5 Relocatable object file
A.2.3.6 ASSEMDIY ISt i@
A.2.3.7 Cross referenCe liStovviiiiiiiciirceee e
A2 BB EITO ISttt

A.2.3.9 Example of assembly €XECULION...........oeivrereiienneerseeeseeeeea 220
A.2.4 Link

A.2.4.1 Linking modules

A.2.4.2 SECHION CONTOL ...t
A.2.4.3 Module allocation informationccceeeveevierieiese s 223
A2.4.4 Sarting lINKBBccoeueirireeieiresieirn e 224
A.2.4.5 Batch processing for linking (Ik88.bat)cccevvvievvieveciiieecee, 224
A.2.4.6 AbSOIULE OLJECE fil€ ... 229
A.2.4.7 Execution example Of [INKINGcovrervireinneeieneeerseeeseeeeeas 229
A.2.5 Creating Program Data HEX Fil€........cccccciiiiiiiiiciccceseeesee e 230
A.2.5.1 Programdata HEX fil@ccooeiiiiiiee e 230
A.2.5.2 Creating program data HEX file using hex88............cccccovvvevvvereernnene. 230
A.2.5.3 Motorola S2 FOrmaLcecveveevieieeieieesee et 231
S5U1C88000C MANUAL II EPSON vii

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CONTENTS

APPENDIX B CREATING PROCEDURE OF AssemMBLY SoUuRcE FILE (Subtool chain) 235

B.1

B.2

B.3

APPENDIX C AssemBLY TooL RereReNcE (Sub tool chain)

C1
C.2
C3
(o)
C5
C.6

Quick REFERENCE

A.2.6 SymbBol INFOrMALION ..ocvoviieiiceceee e 232
A.2.6.1 Creating symbol information (rel88)cccoevorieiiinrccirncees 232
A.2.6.2 Creating symbolic tablefile (Sym88)cccevveveiiieeiceeseseesienas 234

(O 011 11 L= T RO P ST
B.1.1 File Name
B.1.2 Source File Differences Depending on sap88 and asm88
B.1.3 Macro INStructions..........ccccceeeeveeevrerecrnseenans

General Format of Source File
B.2.1 SYMDI0L ...ttt a e ae e enas
B.2.2 Mnemonic.....
B.2.3 OPEIaNGcocecuiiiieii ettt ettt re s
B.2.4 COMMENT ...ttt b ettt b et n e n s
B.2.5 Numerical Expression
B.2.6 Char@CterS.....ccucuiuiiieieiresieeesee ettt
B.2.7 ASCI] CharaCter SEbccoveveirerieuiirinieienisesie sttt
B.2.8 Expressions
B.2.9 OPEIALOIS ...viviiiieiieieeiesie ettt sttt b e re b e e te s te s tesreeresre e e e etenens
B.2.20 INSLFUCLION SEL ...ttt
B.2.11 Register Name..................

B.2.12 Addressing Mode
B.2.13 Example for Mnemonic Notation

PSEUAO-INSEFUCTIONS ...ttt sttt s esaeaennens
B.3.1 Section Setting PSeUdO-INStrUCIONScucoviviiceiieieeseeseeee e
B.3.2 Data Definition Pseudo-Instructions
B.3.3 Symbol Definition PSeudo-INStructions............ccovcvevveeieeniesieeceecesee e
B.3.4 Location Counter Control PSeudo-INStruCtionccccoevveerirereenennieenenens
B.3.5 External Definition and External Reference Pseudo-Instructions ...
B.3.6 Source File Insertion Pseudo-Instruction [sap88 only]cccccevveevvvevcvnnene.
B.3.7 Assembly Termination Pseudo-INStruCtionc.ccccveeveeveeiveceseseee e
B.3.8 Macro-Related Pseudo-Instructions [sap88 only]cccevvvveeveeveeesicecreieene,
B.3.9 Conditional Assembly Pseudo-Instructions [sap88 only]cccceevvvevevennane.
B.3.10 Output List Control Pseudo-INStructionscccccvveeveeveenierisesececee e

Structured Preprocessor <KSAP88>cvicviieiiieiiriieiesieesiee e 274
Cross ASSEMBIEr KASIMBB>cvieuiieiiiieiieisre ettt n s 276
LIiNKEr <TINKBB> ...ttt et et be s e beennenreens 281
Symbol Information Generator <rel88>cccveveiiiiie s 285
Symbolic Table File Generator <SYMBB8>cccccevievieieereeieeiieeeieeseeeses e e enens 288
Binary/HEX Converter KheX88>ccccceiciieiieicinieee st 290

viii

EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 1 GENERAL

cHAPTER 1 GENERAL

1.1 Features

The S1C88 Family Integrated Tool Package contains software development tools that are common to all
the models of the S1C88 Family. The package comes as an efficient working environment for develop-
ment tasks, ranging from compilingZassembly source program to debugging.

The principal features are as follows:

Integrated working environment
The work bench wb88, a Windows GUI application, provides an integrated working environment
that allows management of all files as a project, execution of make process, invocation of tools includ-
ing the editor specified by the user.

Supports C and S1C88 Family assembly languages
This package contains C compiler tools as well as the conventional structured assembler tools.

Supports simulator, auto evaluation system and ICE as debugging tools
The work bench invokes the ICE (S5U1C88000H5) an optional development tool for the S1C88 Family
or the simulator after automatically generating a command file, this makes it possible to debug an
object immediately after building.

Common to all S1C88 chips
The tools included in this package are common to all S1C88 Family models. The chip dependent
information is read from the parameter file and device information definition file for each chip.

S5U1C88000C MANUAL 11 EPSON
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 1 GENERAL

t

1.2 S1C88 Family I ntegrated Development Environmen

'880M Aq pald|ds (G

*(1o1pa 1xa) & 10) JO)Pa UoNIBS 8gam au Buisn paresl) iy«

pireoq 1ebire |

Joypa deuniq e Buisn pajeal) g«

“J01pa 1xa) & Buisn pajeasd :zx "uonouny dwnl Be) e smojje pue malA afiessaw ay) ul 8]y ay) Jo S)UBIU0D 8y} sAe|dsIp ggqm ‘paresaush i ajly Jous 8yl J| T+

'88aqm Aq ssad0.d pjing Bulinp Ajfeanewoine payndaxa sjoo L "880M UOUSGIOM 8} WOJJ PIYOAUI 8¢ UeD

oxa'ggWIs

' Jore|nwis ally 198ys '
7 Ao3YD 7
now = preog unouo fessyduad ® 301 , m__whwwﬂm cdsaly dNDBIl ﬂwwhﬁw% ,
NOY IseN B WOHY yseld i o o 7
E - , "omep oy ewp ay |
| F | J 9X9'INgganl | o o unsey eousseey puewwod | |
(wuswdojanap 18pun) axa°ggqp | Bumas [Lddal o [[@d1am XXy"9|ly XXl AXxLey i
mes ruoniuys)
o I nuyop (ST | (oo) [owon] (pa=u] ||
92a , uod an ,
18UM NOY ' axa'NUd axa'IINpa7 axa'eAgoINY '
OW'epou] 7 Aynnn Bumas pod Aunn aziwoysno jpued ao wajsAs uonenjeas oy v
i — , am] am ,
EIT ejep vod4d ol ' B aly |
uosd3 ojles dNgaly
3 301 preoq ynoio J1esewesred | ——J deung |
21eMIJOS [011U0D IBNIM
m ur panjoejnueN wos fon i NOY resayduad Ell L Jore|nwis weisAs pappaqu3 €% g
am | |\ e e
l>w.m_:
&R 17 _
“““ axa'ggAs
Joyesausb a|ly 8|qe) OljoqLIAS
Iy Bep MGy gapy um_v_ﬁnm:__nwm ASal Ssaven 0 1l 31} JNoqUAS
_
aX9"opWuIM axa'ggWAs
199849 erep dse Joyesauab ajy s|qel oljoquIAS axo'ggoe o oxe880]
EINELIEICIEN 107890| PRJUBAPY 1018207
3|y 193lo vsam vonewnio [IO G
S ©|0J0ION L——— f F
3l XIH erep -
wesboig o0 | axo'ggxay axa'gglal 1018001 POUBADY S ainpow saiy |
19UBAU0D XIH 10ye19Uah UoRWIOMI [OqWAS |y - 13lgo | LNO3IY uonduosap
gl Aupan Bullly on dew | INTelY o —gx— 1000007 g
! : ul ——5—
®eale pasnun weiboid Jslgo [SEVaI A S o
aInjosqy S rrer s U uonmuyap
. aly ajqe} deunig
axa gl Aresqy oo
3|y Juswnaop a4 X3H Ivur - — | LXLal ngaly
uondo yuawbas uondo juswhas 199[q0 lI
3yl Ja1owered WoTal oxa'ggud axo'ggle (ebexoed orenwis)
sl puewwod yur] L———— Japeal 199[q0 Jaureyurew Areiqi axenndwg Annn dewng
oxa-Bosuim Joyessush ol 35k muw_._mw__m%._ sajnpow e am ©
uondo awbas 3|y 18| on N S)Bl gy
Alquiassy 1sTany 1s7an deung L———J
oxargguise oxa'ggse (1awoysna Aq paredaid)
3|l Juswnsop oy XaH J8|quiessy l9|quiassy Joupa deung
uondo uonoung uondo uonouny

axa'bojuim Joyesauah
uondo uonouny

axa'ggdes
Jossasoldald

axo'ggW
weiboid axe

e —
zx

||y

ox2'880
19)1dwod O

muh:cmmm_n_w __ ool

aly o
o

7 9X9'8820

ax9'gggqm
weiboud jonuod

YouagHom

(1awoysno Aq paredaid)

10pa @1

{em]

S5U1C88000C MANUAL I

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

EPSON

CHAPTER 1 GENERAL

The following shows the outlines of the software tools included in the package:

Integrated working environment
Work Bench (wh88.exe)
This software provides an integrated development environment with Windows GUI. Creating/editing
source files using an editor, selecting files and the major start-up options for C compiler Tool Chain,
and the start-up of each tool can be made with simple Windows operations.

Main tool chain

C compiler (c88.exe)
Compiles C source files to generate assembly source files.

Assembler (as88.exe)
Assembles the assembly source files generated by the C compiler to convert into relocatable object
files.

Linker (Ik88.exe)
Links relocatable object files and libraries to generate a combined relocatable object file.

Locator (Ic88.exe)
Relocates the relocatable object file generated by the linker to generate a load module that has abso-
lute address. This file is used for debugging and creating mask data.

Advanced locator (alc88.exe)

Realizes the locator's relocation functions without using description files in DELFEE. Moreover, it
incorporates a new function that helps to optimize branching. See Chapter 5 for details about ad-
vanced locator.

The tools available in the Main tool chain, except advanced locator, are detailed in the document titled
"S5U1C88000C Manual I".

Sub tool chain
Preprocessor (sap88.exe)
Expands the preprocessor instructions in assembly source files into the source codes that can be
assembled.

Assembler (as88.exe)
Assembles the assembly source files generated by the preprocessor to convert into relocatable object
files.

Linker (Ik88.exe)
Relocates the relocatable object files generated by the assembler to generate an absolute object file.

Hex converter (hx88.exe)
Converts the absolute object file generated by the linker into a HEX data file in the Motorola S format.
This HEX file is used for debugging and creating mask data.

Refer to Appendix for details of the tools in the Sub tool chain.

S5U1C88000C MANUAL 11 EPSON 3
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 1 GENERAL

Development tool chain
Function option generator (winfog.exe)
This tool creates an ICE function option setup file after selecting the mask options of the S1C88xxx
and the function option document file that is necessary to generate IC mask patterns.

Segment option generator (winsog.exe)

This tool creates an ICE segment option setup file after selecting the segment options of the S1C88xxx
and the segment option document file that is necessary to generate IC mask patterns. The winsog is
used only for the model that has segment options.

Program unused area filling utility (fil88xxx.exe)

This tool extracts the built-in ROM area from a program data HEX file and fills unused areas in the
built-in ROM with FFH. It also sets a system code to the system-reserved area. This processing must
be performed before debugging the program with the ICE as well as before generating a mask data
with winmdc.

Mask data checker (winmdc.exe)
This tool checks the data in development-completed program file and option document files to create
the mask data file that will be presented to Seiko Epson.

Refer to Chapters 6 through 12 for details of the tools in the Development tool chain.

Debug tool
db88 debugger (ice88ur.exe)
Controls the ICE (S5U1C88000H5) provided as a hardware tool for the S1C88 Family to debug pro-
grams. Commands that are used frequently, such as break and step, are registered on the tool bar,
minimizing the necessary keyboard operations. Moreover, sources, registers, and command execution
results can be displayed in multiple windows, with resultant increased efficiency in the debugging
tasks. Refer to Chapter 13 for details of the db88 debugger.

ice88ur debugger (ice88ur.exe)

Controls the ICE (S5U1C88000H5) provided as a hardware tool for the S1C88 Family to debug pro-
grams. The operations are described in a Windows help file (.hlp) that can be opened from the start
menu. (The help file in English can also be opened from the menu/tool bar in ice88ur.)

PROM writing tool
ROM writer control software
Controls the dedicated PROM writer to write data to the PROM in the built-in Flash EEPROM
microcomputer. A different tool and firmware are provided for each microcomputer model and each
type of PROM writer. Refer to the technical manual of each built-in Flash EEPROM microcomputer for
PROM writers and how to write data.

4 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 2 INSTALLATION

CHAPTER 2 | NSTALLATION

2.1 Package Components

The S1C88 Family Integrated Tool Package contains the items listed below. When it is unpacked, make
sure that all items are supplied.

1. CD-ROM (Tools and PDF manuals are included) One
2. WAITANLY CAIcovieiiiiiie et One each in English and Japanese
3. RegiStration Card..........ccccovveeeriiieiiiie e One each in English and Japanese

2.2 Operating Environment

For each tool to be used, the following operating environment is required:

Personal computer
IBM PC/AT or fully compatibles that can run the system software listed below. A personal computer
using Pentium 200 MHz or greater as the CPU and incorporating 64 MB or more of RAM is recom-
mended. Installation requires a CD-ROM drive.
To use the optional ICE (S5U1C88000H5), the personal computer also requires a USB port and Win-
dows 2000 or Windows XP.

Display
A 800 x 600 dots display unit or higher is required.

System software
Each tool is designed to run under Microsoft Windows 2000 and Windows XP (in English or Japa-

nese).
To use the optional ICE (S5U1C88000H5), Windows 2000 or Windows XP is necessary.

Other
To debug the target program using the in-circuit emulator system, the optional ICE (S5U1C88000H5)
and a Peripheral Circuit Board (S5U1C88xxxP) are needed as the hardware tools.

S5U1C88000C MANUAL 11 EPSON 5
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 2 INSTALLATION

2.3 Installation Method

To install the development tools, use the installer (Setup.exe) on the CD-ROM included with the package.

To install the tools

Setup.exe

(3) Double-click Setup.exe.

(1) Start Windows 2000 or Windows XP. If the OS is already active, close active programs.
(2) Insert the CD-ROM into the drive and display the contents.

When old-version tools are installed, the installer displays a warning message and stops
installation. In this case, uninstall the old-version tools and then run the installer again.

& # previous version of S1G88 Family G Gompiler beta version is found in your computer. Pleass uninstall it, and run this sstup program
AEaln.

51C88 Family C Compiler beta version Setup [<]

‘Welcome to the InstallShield Wizard for 51C88
Family C Compiler beta version

The InstalShield(A] wWizard will install 51C88 Famiy C
Compiler beta version on your computer. To continue, click
Mexst

Cancel |

51C88 Family C Compiler beta version Setup
Choose Destination Location

Select folder where Setup will instal files.

Setup will install 51C83 Family C Compiler beta version in the follawing folder.
Tainstall ta this folder, click Mext
Tainstall to a different folder, click Browse and select another folder.

Maote: The insalled folder name has the following limitations:
-Folder names may only contain up to 8 alphanumeric characters
At cannot contain any spaces
At cannot be more than 2 directory levels deep from the root

" Destination Folder

CAEPSOMAS1CES Browse..

[rstallShield

< Back Cancel |

51C88 Family C Compiler beta version Setup
Setup Status

51C83 Family C Compiler beta version Setup is performing the requested operations.

Installing:
CAEPSONASTCEES ampleshsample] 51088348 MEM

- 0%

IstalGhield

Welcome to ...
The install wizard starts and displays the welcome
dialog box.

(4) Click on the [Next>] button to proceed.

Choose Destination Location
A dialog box for specifying the folder in which to install
the tools appears.

(5) If you do not wish to change the default settings,
simply click the [Next>] button to execute installa-
tion.

To install in another folder

Click [Browse...] to bring up the [Choose Folder]
dialog box. From this dialog box, enter the path or
select the folder in which to install the tools. Click
the [OK] button to finish folder selection and then
click the [Next>] button.

Note: When installing the tools to a folder other than
default, be aware that the folder must satisfy the
following requirements:

- The folder name must be 8 letters or less.

- The folder name cannot contain any spaces.

- When selecting a sub-directory, it must be
located within two levels from the root directory.

The installer will start installing the tools.

EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

InstallShield Wizard Complete

wersion on your compuler

Setup has finizhed instaling 51C88 Famiy C Compiler beta

[~ 1 want to view the Japanese Read Me Fils

%] want to view the Englih Fiead He Fils!

CHAPTER 2 INSTALLATION

InstallShield Wizard Complete

(6) Click [Finish] to terminate the installer.

"401Comupd.exe" may be executed according to the
system condition.

< Back Finish I [Eancel

To end installation

All dialog boxes that appear during installation have a [Cancel] button. To prematurely terminate
installation, click [Cancel] in the dialog box when it is displayed.

To uninstall

To uninstall the installed tools, use "Add/Remove Programs" on the Control Panel.

2.4 Directories and Files after | nstallation

The installer copies the following files in the specified directory (default is "C:\EPSON\S1C88\"):

[EPSON\S1CS8S]
README_E.TXT
README_JTXT
ADDPATH.BAT

[\BIN]
WB88.EXE
C88.EXE
ASB3.EXE
LK88.EXE
LC88.EXE
ALCS8EXE
CC88.EXE
MK88.EXE
ARBS8.EXE
PR88.EXE
SY88.EXE
ICESS8UREXE
ICESS8URHLP

... ReadMetext file (English)
... ReadMetext file (Japanese)
... Batch file for environment setup

... S1C88 Family C Compiler Tools
... Work bench

... Ccompiler

... Assembler

... Linker

... Locator

... Advanced locator

... Control program

... Make program

... Library maintainer

... Object reader

... Symbolic table file generator

... S5BU1C88000H control software
... SBU1C88000H help file

... Other related files

[\SAP]
SAPS3.EXE
ASM88.EXE
LINK88.EXE
HEX88.EXE
REL88.EXE
SYMBS.EXE

[\DBS8]
DB88.EXE
DEFAULT.PAR

... S1C88 Family Structured Assembler Tools
... Preprocessor

... Assembler

... Linker

... HEX converter

... Symbol information generator

... Symbalic table file generator

... DB88 debugger directory
... DB88 debugger
... Default parameter file

... Other related files

[\DEV]

[\BIN]
WINFOG.EXE
WINSOG.EXE
WINMDC.EXE

[\88xxx]
S1C88xxx.CPU
S1C88xxx.DSC
S1C88xxx.MEM
FIL88xxx.EXE
S1C88xxx.ini
88xxx.PAR
t88xxx.psa
t88xxx.fsa
t88xxx.fdc

... S1C88 Family Development Tool for Windows
... Function option generator

... Segment option generator

... Mask data checker

... Model-dependent files
... Locator description files

... Program unused areafilling utility
... Device information definition file
... ICE parameter file

... ICE sdlf-diagnostic files

S5U1C88000C MANUAL 11

EPSON 7

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 2 INSTALLATION

[\DOC]
[\ENGLISH] ... Document folder (English)

REL_xxxx_E.TXT ... Tool release note

TBD_E.PDF ... Manua (PDF)

TBD_E.PDF ... Quick reference (PDF)

[\HARD] ... Hardware tool document folder (English)
PRC_COMMON_E.PDF ... Standard periphera circuit board manua (PDF)
ICE8BUR_SETUP_E.PDF... ICE manua (PDF)

[\JAPANESE] ... Document folder (Japanese)

REL_xxxx_JTXT ... Tool release note

TBD_J.PDF ... Manual (PDF)

TBD_JPDF ... Quick reference (PDF)

[\HARD] ... Hardware tool document folder (Japanese)
PRC_COMMON_J.PDF ... Standard peripheral circuit board manua (PDF)
ICE8BUR_SETUP_J.PDF ... ICE manua (PDF)

[\ETC] ... Default locator description files
S1C88.DSC
MK88.MK
S1C88.CPU
S1C88.MEM
[MICE]
[\FPGA]
C88xxx.MOT ... FPGA datafor standard peripheral circuit board
[INCLUDE] ... C header files
[\LIB] ... Clibrary files
[\LIBCC] ... Library objectsfor compact code model
[\LIBCD] ... Library objectsfor compact data mode
[\LIBCL] ... Library objectsfor large mode
[\LIBCS] ... Library objects for small mode
[\SRC] ... Library sourcefiles
[\SAMPLES] ... Sample program sources
Refer to ApplicationNote J(E).PDF located in thisfolder for the contents of the sample
programs.
[\WRITER]
[\8xxxx] (Flash microcomputer name)

[\URWZ2]

RW8xxxxx.EXE ... Universal ROM Writer |1 control software
8xxxxx.FRM ... Firmware

[\OBPW]

OBWS8xxxx.EXE ... On-board Programming ROM Writer control software
RW8xxxx.INI ... Deviceinformation setup file
[\MPRW]

G8xxxxxx.EXE ... Multiple-Programming ROM Writer control software
[J Refer to the technical manual for details of the ROM Writer and PROM programming.

Online manual in PDF format
The online manuals are provided in PDF format, so Adobe Acrobat Reader Ver. 4.0 or later is needed
to read it.

Files for future release models
The files for future release models will be provided in the Microcomputer User's Site of Seiko Epson.
Refer to the Readme file included in the package for installation.

2.5 Environment Settings
The following environment variables must be configured for the tools in this package:

SET PATH=C: \ EPSON\ S1C88\ BI N, %°ATH%
SET C881 NC=C: \ EPSON\ S1C88\ | NCLUDE
SET C88LI B=C: \ EPSO\ S1C88\ LI B

Run addpath.bat in which the above commands are described before using the tools.

When you select another directory at installation, "EPSON\S1C88\" shown above is changed to that
directory name.

However, wh88 automatically configures the environment variables at start-up, so it is not necessary to
run addpath.bat when invoking the tools from whb88.

8 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 3 WORK BENCH

cHAPTER 3 \WoRrk BENCH

This chapter describes the functions and operating method of the Work Bench whb88.

3.1 Features

The Work Bench wh88 provides an integrated operating environment ranging from editing source files to
debugging. Its functions and features are summarized below:

= Source edit function that supports tag jump from error messages using a user's editor.

= Allows simple management of all necessary files and information as a project.

= General make process to invoke necessary tools and to update the least necessary files.

= Supports all options of the S1C88 Family C compiler tool chain and invocation of each tool.
= Windows GUI interface for simple operation.

3.2 Starting Up and Terminating the Work Bench

To start up the work bench

Double-click on the wh88.exe icon.

whils exe When the work bench starts up, the window shown below appears.

File “iew Source Build Debug Tool Help

C Options IASM Dptionsl Linker Dptionsl Locater Optiong | Sect Options

Preproceszzor Macro Definitions [-0]

Include Files [-H]

I Eeferenee |

Include File Directories [-1]

I | W araeiC-source Eade with Sssermbli Hutmut []

I | Enable Spmbnlie B efum Infarmation o]
J= | St i iz atior 0]
I= | Suppress Warkitg i essage]s] [Fa] (el by earmma L

Other options:
|
Ready [[NUM i
To terminate the work bench
Select [Exit] from the [File] menu.
S5U1C88000C MANUAL II EPSON 9

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 3 WORK BENCH

3.3 Work Bench Windows

The work bench window is configured with Project view, Option view and Message view.
Menu bar Toolbar

Option view

TEst (S1C88348) ‘WBES

File Wiew Source Buld Debug Tool Help

2L EEREY VIFT EE Y- 1R

EE Source Files[C) E Elptic-nsl A5M Options Linker Optiaps | Locater Dptionsl Sect Options

fing.c Memom Model [-Me] [C and Aem Compile Option)
calc.o

cstartc

Ea SHDur.;E FilasfA5hd) [T Case Inzensitive [Apply Link Option [-C] and Azm Option [-2]]
. L[filelasm

P i W Search for System Libraries [-L] Fieference
=33 a::;iro":fh Additional Search Path: 4|

123 Defirition Files |
] 51c88348 cpu

1 BRI e wharning Level [-w] I 2 vl

188348 mem ™ Turn Off Overlaying [-M]
] 58348 par

™ Generate Link Map [-M]

™ Generate Call Graph File [-c]

™ Suppress Undefined Syrmbol Diagnostics []
™ Print Mame of Processing File [Werbose] [-+]

Linking with uzer librariez [Full path):

Other Optiong:

CAEPSOMAS1CB8\bin\Sy88.exe samplel.map ;[
samplg'l SYf||g|3|T|adg ...
ccl8 -osamplel.abs samplel.out .\defis1c88348.dsc -TIc"-M" -ieee
Build End Samplel
Ready | [[MOM | 4
Proj elct view Message view Satus bar

Each view area can be resized by dragging the boundary. A standard scroll bar appears if the display
contents exceed the view area. Use it to scroll the display contents. The arrow keys can also be used.

10 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 3 WORK BENCH

Project view
This area shows the currently opened work space folder and lists all the files that can be edited by the
user in the project, with a structure similar to Windows Explorer.
The file list is classified into five nodes:

= Project Project name (work space folder name)

= Source Files (C) C source files (.c)

= Source files (ASM) Assembly source files (.asm)

= Header Files Header files (.h/.inc)

= Definition Files Various device information definition files (.cpu/.dsc/.mem/.par) that allow
user to edit

Double-clicking a source file icon invokes the specified editor to open the source file. Definition Files
are displayed only when the check box [Disable Making DELFEE] of the section editor is selected.

Option view
This area displays the selected options of the C compiler, assembler, linker, locator and segment
editor, and also allows option selection. The option view changes its display contents according to the
selection in the project view (whether node or file) as well as clicking a tool name tab. Refer to Section
3.9 for details.

Message view
This area displays the messages delivered from the executed tools in a build or compile process.
Double-clicking a syntax error message with a source line number displayed in this window invokes
the specified editor. The editor opens the corresponding source and displays the source line in which
the error has occurred (available when an editor with the tag jump function that can be specified by
whb88 is used).

Menu bar
Refer to Section 3.5.

Tool bar
Refer to Section 3.4.
The tool bar can be shown or hidden by selecting [Tool Bar] from the [View] menu.
The tool bar can be changed to vertical position by dragging it towards the left edge or right edge of
the window. It can also be made a floating window by dragging it outside the tool bar area.

Status bar

Shows help messages when the mouse cursor is placed on a menu item or a button.
The status bar can be shown or hidden by selecting [Status Bar] from the [View] menu.

S5U1C88000C MANUAL 11 EPSON 11
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 3 WORK BENCH

3.4 Toolbar and Buttons

The toolbar has the following buttons:

[New Project] button
Creates a new project.

[Save Project] button
Saves the project being edited. The file will be overwritten. This button becomes inactive if a
project is not opened.

L

[Insert a file] button
Inserts the specified source/header file into the current opened project. This button becomes
inactive if a project is not opened.

B

[Remove a file] button
Removes the selected file from the project.
[Open] button

Opens a document. A dialog box will appear allowing selection of the file to be opened. When a
source or header file is selected, the specified editor activates and opens the file.

&
[~

[Compile/Assemble] button

Compiles or assembles the source file selected in the option view according to the source format.
[Build] button

Builds the currently opened project using a general make process.

[Rebuild] button

Builds the currently opened project. All the source files will be compiled/assembled regardless of
whether they are updated or not.

[Stop Build] button
=1 Stops the build process being executed.
% [BMPULil] button
=1 Invokes the bitmap utility BmpUltil.
@ [WinFOG] button
2221 Invokes the function option generator winfog.
m [WinMDC] button
= Invokes the mask data checker winmdc.
e [PrtUtil] button
1 Invokes the port setting utility PrtUtil.
[LCDULil] button
~——1 Invokes the LCD panel customize utility LCDUil.
[Sim88] button
—— Invokes the simulator Sim88.
= [AutoEva] button
- Invokes the auto evaluation system AutoEva.
gis | [ICE88UR] button

Invokes the ice88ur debugger.

[DB88] button

Invokes the db88 debugger.

[ROM Writer] button

Invokes the on-board ROM writer control software.

[About] button
Displays the version of wb88.

L

[uy
N

EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

3.5 Menus

CHAPTER 3 WORK BENCH

3.5.1[File] Menu

| FilelF)

Hew
Open Chrl+0

Open Workspace
Save Workspage
LCloze \wWorkzpage

1 CAEPSOMY.. harchfilel. azm

2 ohepzon'e]cB8htestiarcining.c
3 chepzon'. htestharchostart.c

4 cihepzonte] cBBhtestharchoale o

5 Testwpj

Exitf=]

The file names listed in this menu are
recently used source and project files.
Selecting one opens the file.

3.5.2 [View] Menu

| Wiew

v Tool Bar
v Status Bar

[New - C Source File]

Creates a new C source file. When a file name is entered in the
displayed dialog box, the specified editor activates and opens a
new document. The created source file is inserted into the
currently opened project (Source Files (C) node in the project
view).

[New - Asm Source File]

Creates a new assembly source file. When a file name is entered
in the displayed dialog box, the specified editor activates and
opens a new document. The created source file is inserted into the
currently opened project (Source Files (ASM) node in the project
view).

[New - Header File]

Creates a new header file. When a file name is entered in the
displayed dialog box, the specified editor activates and opens a
new document. The created source file is inserted into the
currently opened project (Header Files node in the project view).

[New - Project]

Creates a new project.

[Open] ([Ctrl]+[O])

Opens a source file, header file or project file. A dialog box will
appear allowing selection of the file to be opened. When a source
or header file is selected, the specified editor activates and opens
the file.

[Open Workspace]

Opens a project. A dialog box will appear allowing selection of
the project to be opened.

[Save Workspace]

Saves the currently opened project.

[Close Workspace]

Closes the currently opened project.
[Exit]

Terminates whba88.

[Tool Bar]
Shows or hides the tool bar.

[Status Bar]
Shows or hides the status bar.

S5U1C88000C MANUAL 11

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

EPSON 13

CHAPTER 3 WORK BENCH

3.5.3[Source] Menu

Source [Insert file into Project]
Adds the specified source file in the currently opened project. A dialog

box will appear allowing selection of the file to be added.

Inzert file into Project
Bemove file from Project

[Remove file from Project]

Removes the source file selected in the Project view from the currently
opened project. The actual file is not deleted.

3.5.4 [Build] Menu

Build [Compile/Assemble]
Compiles or assembles the source file selected in the Project view

Compileft:zzemble .
according to the source format.

Build
BeBuild Al [Build]
Stop Build Builds the currently opened project using a general make process.

[ReBuild All]

Builds the currently opened project. All the source files will be com-
piled/assembled regardless of whether they are updated or not.
[Stop Build]

Stops the build process being executed.

3.5.5[Debug] Menu
Debug [SIM88 Simulator]

Invokes the Sim88 simulator.

SIkE3 Simulator
DESS Debugger [DB88 Debugger]
|CEBBLR Debugger Invokes the db88 debugger.

[ICE88UR Debugger]
Invokes the ice88ur debugger.

3.5.6 [Tools] Menu

Tool

Simulator T ools Auto Evaluation System
Dev Toolz r Bitrnap Ltility
On-Board BOk Writer LCD Panel Custamize Litility

Paort Setting Litilit
Sim38 Configuration Sl et oY

E ditar Canfiguration [Simulator Tools - Auto Evaluation System]
Invokes the auto evaluation system AutoEva.

[Simulator Tools - Bitmap Utility]
Invokes the bitmap utility BmpUtil.

[Simulator Tools - LCD Panel Customize Utility]
Invokes the LCD panel customize utility LCDUTil.

[Simulator Tools - Port Setting Utility]
Invokes the port setting utility PrtUtil.

14 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

| Tool

Simulator T ools

a

Dev Tools

On-Baoard BOK Writer

CHAPTER 3 WORK BENCH

Furnction Option Generatar
Mazk Data Checker

SimB8 Configuration
E ditor Configuration

3.5.7[Help] Menu
| Help

About'wBes |

[Dev Tools - Function Option Generator]
Invokes the function option generator winfog.

[Dev Tools - Mask Data Checker]
Invokes the mask data checker winmdc.

[On-Board ROM Writer]
Invokes the on-board ROM writer control software.

[Sim88 Configuration]
Displays a dialog box for setting the path to the simulator Sim88.exe.

[Editor Configuration]
Displays a dialog box for setting the editor path and the command line
options.

[About WB88]
Displays a dialog box showing the version of the work bench.

S5U1C88000C MANUAL 11

EPSON

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

15

CHAPTER 3 WORK BENCH

3.6 Project and Work Space

The work bench manages a program development task using a work space folder and a project file that
contains file and other information necessary for invoking the development tools.

3.6.1 Creating a New Project
A new project file can be created by the following procedure:

1. Select [New | Project] from the [File] menu or click the [New Project] button.

0 |[New Project] button
The [New Project] dialog box appears.
Project Mame MCLU Type
| |s1cemne 7|
Laocate
|CAEPSONAS1CHEY J
Cancel |

2. Enter a project name, select a device name and a directory for saving the project, and then click [OK].

OThe [MCU Type] box lists the device names that exist in

Project Mame MEU Type the "dev" directory.
rest sicsernd 7|
S1CEE104
Locate S1casiiz2

- 51088308
IC.\EPSDN\S1CBB\test 108836

51088317

[S1CR83en
51088408

The work bench creates the folder (directory) specified in the [Locate] box as a work space, and creates
the project file (<project name>.wpj) and the following folders in the folder.

If a folder which has the same name as that of a specified one already exists in the specified location, the
work bench uses the folder as the work space.

The specified project name will also be used for the absolute object and other files.

Folders created in the work space

def: Folder in which advanced locator definition files and various other definition files are saved.
When a new project is created, a definition file that will be used as a template is copied into this
folder. This file can be reused simply by making the necessary changes, if any.

obj: Folder in which intermediate files generated during building are saved.

src: Folder in which source files and header files created from whb88 are saved. (Source files in other
folders are not copied to this folder, even when they have been added to a project.)

tmp: Folder in which temporary files created during building or tool execution are saved.

For more information on the file types placed in each folder, refer to Section 3.12, "File List".

16 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 3 WORK BENCH

3.6.2 Inserting Sources into a Project

The sources created must be inserted into the project.
To insert a source into a project, use one of the two methods shown below:

1. [Source | Insert file into Project] menu item or [Insert a file] button

@| [Insert afile] button

A dialog box appears when this menu item is selected or the button is clicked.

Open BE After specifying the file format (C source,
Look [3 Tes [ek [& assembly source, or header file), select a file
o _I _I _I and click the [Open] button. The selected file is
abi added to the project and displayed in project
S1e view.

tnp

File name: || Open I
Files of type: IC Source Files [*.c) j Cancel |/
e

Note: Reference information on the selected file is registered to the project. Since files are not copied
into the work space, do not move a file after adding it to the project. If a file is moved, remove the
file from the project (see the section below), then add it back to the project again.

2. [File | New] menu item
If a new source file or header file is created with this menu command, the file is automatically added
to the project that is currently open. For more information on creating new source and header files,
refer to Section 3.7.2.
The newly created files are added to the project and displayed in the Project view.

3.6.3 Removing a Source from the Project

To remove a source or header file from the project, select the file in the Project view and then select
[Remove file from Project] from the [Source] menu, click the [Remove a file] button or press the [Delete]
key. This removes only the file information, and does not delete the actual file.

@| [Remove a file] button

3.6.4 Project View
=S E The Project view shows the work space folder and the files that can be edited,

=43 Source Files(C) such as source, header and definition files, included in the project that has
Mg, c
' caee been opened.
tart.
543 SOu[C;:;uss[ASM] When a file icon or file name is double-clicked, the specified editor activates
[flelasm and opens the file. Notepad in Windows is set as the default editor. It can be

changed by selecting [Editor Configuration] from the [Tool] menu.

2 51088348 .cpu Note: Note that the list in the [project] window is not the actual directory

51055348, dsc structure.
5188348 mem

88348 par

S5U1C88000C MANUAL 11 EPSON 17
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 3 WORK BENCH

3.6.5 Opening and Closing a Project

To open a project, select [Open Workspace] from the [File] menu.
A dialog box appears allowing selection of a project file.

Open
Look ir: I (3 Test

[:I tnp
Testwpj

File name: | Open I
Files of tpe: IPrDiect Files{* wpil =l Cancel |
A

The work bench allows only one project to be opened at a time. So if a project has been opened, it will be
closed when another project is opened. At this time, a dialog box appears to select whether the current
project file is to be saved or not if it has not already been saved after a modification.

The project file can also be opened by selecting [Open] from the [File] menu or clicking the [Open] button.
= | [Open] button

In this case, choose the file type as Project Files (*.wpj) in the file open dialog box.

To close the currently opened project file, select [Close Workspace] from the [File] menu. At this time, a
dialog box appears to select whether the current project file is to be saved or not if it has not already been
saved after a modification. If [Yes] (save) is selected in this dialog box, all the modification items includ-
ing file configuration and tool settings will be saved.

3.6.6 Saving the Project

To save the currently edited project file, select [Save Workspace] from the [File] menu or click the [Save
Project] button.

= |[Save Project] button

In addition, if one of the following operations is performed before the project is saved, a dialog box is
displayed to prompt for save confirmation. This allows the project to be saved here.

= Open the project (by selecting the project with [Open Workspace] or [Open] from the [File] menu)
= Close the project ([Close Workspace] on the [File] menu)

= Create a new project ((New | Project] on the [File] menu)

= Compile or assemble ([Compile/Assemble] on the [Build] menu)

= Build ([Build] on the [Build] menu)

= Rebuild ([ReBuild All] on the [Build] menu)

18 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 3 WORK BENCH

3.7 Creating/Editing Source Files

Although the Work Bench itself does not include a source editor, it can invoke a specified editor and pass
file information or line number information to the editor. This function makes it possible to create and
edit sources, as well as tag jump from error messages.

3.7.1 Specifying an Editor

When a source/header file is newly created or opened, or when a file name listed in the Project view is
double clicked, the Work Bench invokes an editor and passes file information to it. The default editor is
the Windows Notepad application. To select another editor:

1. Select [Editor Configuration] from the [Tool] menu. The [Editor Configuration] dialog box shown
below is displayed:

Editor Configuration

Editar Path

IC: s NS N otepad.exe R eferencel

Parameter(f: File
|zr

Ok I Cancel |

Enter the following information in this dialog box:

[Editor Path]
Enter the path to the editor used or select an editor from the file select dialog box displayed by
clicking the [Reference] button.

[Parameter]
Enter the normal representation of command line options to specify a file name and line number
(for tag jump) when invoking the editor. The "%f" and "%l" are replaced with a file name and a line
number, respectively, before being sent to the editor. In the case of the default setting, Notepad is
invoked using the following command line.
C: \ W n98\ Not epad. exe <specified filename>

For example, if the editor requires specifying a file name in the same way as for Notepad and
specifying a "/j <line number>" option for tag jump in front of the file name, set the parameter as
follows:

ljod %

Note: In the default Notepad application, the tag jump function cannot be used.

2. Click the [OK] button. The editor used is changed.

S5U1C88000C MANUAL 11 EPSON 19
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 3 WORK BENCH

3.7.2 Creating a New Source or Header File

To create a new source or header file:

1. Select [New | C Source File], [New | Asm Source File] or [New | Header File] from the [File] menu.
The [New Source] dialog box appears.

Mew Source E

Source Mame
Jfiled.c

Locate
IC:'\EF’SDN\S1C88'\Test\src J

[Copy start up module

Cancel |

Example when [C Source Fil€] is selected.

[Source Name]

Enter a source file name. Depending on the source type, use one of the following extensions.
.c C source file

.asm Assembly source file

.h Header file

.inc Include file

[Locate]

Enter a directory in which to create the source file. Select directories from the dialog box displayed by
clicking the [...] button. The src folder in the work space is displayed as the default location. Use this
folder unless you wish to select another folder for a specific reason.

[Copy start up module]

This check box is displayed only when C source file is selected. Leave it checked to copy code from
the C startup module stationery file into the C source file to be created. The stationery file is cstart.c in
the \EPSONN\S1C88\LIB\SRC folder.

2. Click the [OK] button.
This creates a specified source file, and the selected editor starts to open that file. The created file is
also added to the project tree displayed in the Project view.

3. Inthe editor, enter the source codes and save the codes entered.

3.7.3 Editing Files

Correct or print the source file using the selected editor. Use one of the following two methods to open
the source file:

1. Select [Open] from the [File] menu, or click the [Open] button.
= | [Open] button

A [Open] dialog box appears. After specifying the file format (C source, assembly source, or header
file), select a file and click the [Open] button.

2. Double-click on the file name displayed in the Project view.
You can also open a definition file from the [Definition Files] list.

In either case, the selected file is opened in the selected editor. In the editor, perform the necessary work.

20 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 3 WORK BENCH

3.7.4 Tag Jump Function

If a syntax error occurs during compiling or assembling a source file, an error message is displayed in the
Message view. If the error message includes a source line number, double-click the message to open the
relevant source file in the editor and to jump to the source line with the error.

Editor

— XXXX XXXXX

Shows the line
with the error

WB88

XXXX XXXXX

XXXXXXX XXXXXX
Double-click
the error message

Tag jump

Note: Before using the tag jump function, you must ascertain that your editor supports command line-
based tag jumps, and that the command line option is correctly set in [Tool | Editor Configuration].
(This function cannot be used with the default Notepad.)

S5U1C88000C MANUAL 11 EPSON 21
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 3 WORK BENCH

3.8 Build Task

The [Build] menu or with the toolbar button is used to build a project using the C compiler tool chain
(i.e., to generate an executable object file from the source file) and to execute compile/assemble opera-
tions from the Work Bench. For detailed information on each tool, refer to the "S5U1C88000C Manual I".

3.8.1 Preparing a Build Task

Before starting a build task, necessary source files should be prepared and tool options should be configured.

1. Create a new project. (Refer to Section 3.6.1.)

2. Create source files and add them into the project. (Refer to Sections 3.7 and 3.6.2.)

3. When alc88 is used, edit the advanced locator definition file using the section editor (Refer to Section 3.9.5.)
When 1c88 is used, edit the locator description files (Refer to Section 3.7.3 and "S5U1C88000C Manual 1".)

4. Select tool options (Refer to Section 3.9.)

3.8.2 Building an Executable Object

To generate an executable object:

1. Open the project file.

2. Select [Build] from the [Build] menu or click the [Build] button.
¥ | [Build] button

The work bench generates a make file according to the source files in the project and the tool options set
by the user. This file is used to control invocation of tools.

First, the make process invokes the C compiler for each source file to be compiled. If the latest assembly
source file exists in the work space, the corresponding C source file is not compiled to reduce process
time.

Likewise, the assembler is invoked to generate relocatable object files.

Next, the linker is invoked to generate an absolute object file.

Finally, the advanced locator or the locator* is invoked to generate an executable object file.

To rebuild all files including the latest assembly source and relocatable object files, select [ReBuild All]
from the [Build] menu or click the [Rebuild] button.

| [Rebuild] button

The build task can be suspended by selecting [Stop Build] from the [Build] menu or clicking the [Stop
Build] button.

| [Stop Build] button

OSelecting Advanced Locator alc88 or Locator 1c88
Advanced locator alc88 and locator 1c88 both have the function to relocate linked relocatable objects to
absolute addresses in memory. Either type of locator can be used by selecting or deselecting the check
box [Disable branch optimize] (displayed on the [Locator Options] tab screen) for locator options.

When [Disable branch optimize] = OFF (default), alc88 is executed.
When [Disable branch optimize] = ON, Ic88 is executed.

The table below summarizes the differences between alc88 and 1¢88.

Table 3.8.2.1 Differences between alc88 and [c88

Iltem Advanced locator alc88 Locator 1c88
Definition file Advanced locator definition file Locator description files (DELFEE)
(.inf) (.dec, .mem, .cpu)
How definition files are created | The section editor of wh88isused (so | The section editor of wb88 is used or the
there is no need to learn DELFEE). user creates filesin DELFEE language.
CARL instruction branching Available Not available
optimization function

22 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 3 WORK BENCH

Except when necessary to use the existing locator description files, such as when upgrading applica-
tion versions, we recommend the use of alc88 with a branching optimization function.
See Section 3.9.5, "Section Editor", for details about and how to create definition files.

3.8.3 Running only the Compiler or Assembler

The source files can also be compiled or assembled individually. To invoke only the compiler or assem-
bler, select the source file to compile or assemble from the Project view, then select [Compile/Assemble]
from the [Build] menu or click the [Compile/Assemble] button.

@ [Compile/Assemble] button

Depending on the file type selected, either the compiler or the assembler is launched to process the file.

S5U1C88000C MANUAL 11 EPSON 23
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 3 WORK BENCH

3.9 Setting Tool Options

Each tool executed in build task has options that can be specified at startup. The Work Bench allows you

to select and set these opti

ons from the Option view.

C Dptionsl 45K Options Linker Options |Locater Dptionsl Sect Dptionsl

temary Model [-Mx] [C and Azm Compile Option)

[T Caze Insensitive [Apply Link Option [-C] and Asm Option [-c])
¥ Search for Sypstem Libraries [-L]
- Heferencel
Additional Search Path:

Warning Lesel [-w] IS 'I
™ Tumn Off Dverlaying [-M]

[~ Generate Link Map [-4]
[~ Generate Call Graph Fils [-]

[Suppress Undefined Symbol Diagnostics [-1]
[~ Print Mame of Processing File [Verbose] [+]

Linking with user libraries [Full path:

Other Options:

Option view

The options for each tool are displayed by clicking the tab for the intended tool name in the Option view.
The tool options displayed vary, depending on the selection made in the Project view, as shown below:

1. Select a project name
2. Select [Source Files (C)]
3. Select a C source file

4. Select [Source Files (ASM)]

5. Select an assembly source file

Linker options are displayed.

Default compile options (which apply to all C sources) are displayed.
Local compile options (which apply only to the selected C source) are

displayed.
displayed.

source) are displayed.

Default assemble options (which apply to all assembly sources) are

Local assemble options (which apply only to the selected assembly

The options for each tool selected in the Option view become effective the next time the tool is run.

24

EPSON

S5U1C88000C MANUAL I

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 3 WORK BENCH

3.9.1 Compiler Options

C Options IASM Dptionsl Linker Dptionsl Locater Dptionsl Sect Options

Freprocessor Macra Definitions [-D]

Include Files [-H]

| Reference |

Include File Directonies [-1]

[~ Marge C-source Code with Assembly Dutput [-5]

¥ Enable Symbolic Debug Infarmation [-g]
IV Set Optimization [-0]
[~ Suppress Warning Message(s) [-w] [delimit by comma ')

Other optiohiz:

In this screen, you can select the following compiler options:

Preprocessor Macro Definitions "-Dmacro[=def]" option of c88
Define the preprocessor macro. Enter in the text box in the following format:
macro name or macro name = content of definition

Include Files "-H file" option of c88

Specify the file name to be included before compiling. You can also display the files to include from
the dialog box displayed by clicking the [Reference] button.

Include File Directories "-Idirectory" option of c88
Specify the directory in which to search for include files that have unspecified path names. You can
also select this folder from the dialog box displayed by clicking the [...] button.

Merge C-source Code with Assembly Output "-s" option of c88
If this option is selected, C source codes are merged with the assembler output before being output.

Enable Symbolic Debug Information "-g" option of c88
If this option is selected, symbolic debug information is included in the output file.

Set Optimization "-O" option of c88
Selecting this option specifies "-O1" to optimize the code generated. Unchecking this option specifies
"-00", suppressing optimization of code generation.

Suppress Warning Message(s) "-w[num]" option of c88
Selecting this option suppresses compiler warning messages. To suppress all warning messages, leave
the text box blank. To specify a specific warning message, enter the message number in the text box.
To enter multiple numbers, separate each entry with a comma (,).

Other options
To specify other options (including those listed above), enter the desired option in this text box in
command line format.

S5U1C88000C MANUAL 11 EPSON 25
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 3 WORK BENCH

Notes to be observed when specifying compiler options

If both the -g option (Enable Symbolic Debug Information) and the -O1 option (Set Optimization) are
selected, a -W555 warning message is output during compiling.
If the -O1 option is specified, the symbols written in the source may not actually be used to optimize
the code. In this case, the debugging information for these symbols will not output to the .abs file,
even if the -g option is specified.
Example: int x, vy, Xy;

x = GLOBAL_X * 100;

y = GLOBAL_Y * 100;

Xy = x *y;
In this example, since variable xy become nonexistent for optimization, the contents of xy cannot be
referenced during debugging.
If the executable file is recreated by specifying the -O1 option (optimization ON) after evaluation of
the executable file created with the -O0 option set (optimization OFF), program behavior cannot be
assured. Be sure to reverify the executable file whenever it is recreated this way.

About options that are not displayed
The C compiler options not displayed in the Option view are handled as described below:

-e This option is used in internal processing.

-err C compiler messages are displayed in the message window and output to an error
log file.

-f file This option conflicts with internal processing and cannot be used.

-o file The source file name is also used for the output file.

-V This option is not used in wh88.

-M{s] c|d] I} Specify thisoption in the linker option setup screen.

Default options and local options
If individual C source files are selected in the Project view, the option setup screen shows only the
local options that are applied only to the selected C source file. If no specific file is selected in the
Project view, or files other than individual C source files are selected, the default options that apply to
all C source files are displayed.
If local options are displayed, the option setup screen will also display the [Use Default] button, as in
the example shown below, to allow you to specify whether or not to apply the default options to the
selected C source file.

C Dptions |ASM Dptinnsl Linker Dptinnsl Locater Options | Sect Options

¥ Use Default

Prepiocessor Macio Definitions [-01]

Include Files [-H]

| Hefarencel

Include File Directaries [-]

I= | Warae (-souee Eade withSssenbl it (5]
I | Eriatile Symtalic Dietug Infarmetin[Fa]

I¥ | Gt i ptimization [-0]

I= | Suppress warming Messagele] [w] [delimit bweamma L]
I= | Eriable &5 Dpticrs
Other options:

To change the compile options for each C source, uncheck the [Use Default] button and set each
option individually again.

26 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 3 WORK BENCH

3.9.2 Assembler Options

C Options ASM Options ILinker Dptionsl Locater Dptionsl Sect Optionz

Preproceszsor Macro Definitions [-0]

Include Files [-C]

I Reference |
Default Label Identifiers [-] I Lacal 2 l

™ Generate Listing File [] [Cartents |

™ Enable Symbolic Debug Information [-gs

™ Display Section Size Summary [+]
[~ Suppress Warning Meszage(s) [-w] (delimit by comma ')

Other options:

This screen can be used to select the following assembler options:

Preprocessor Macro Definitions "-Dmacro[=def]" option of as88
Define the preprocessor macro. Enter in the text box in the following format:
macro name or macro name = content of definition

Include Files "-C file" option of as88

Specify the file name to be included before assembly. You can also select the files to include from the
dialog box displayed by clicking the [Reference] button.

Default Label Identifiers "-i[l'| g]" option of as88
Specify the default label style as local or global. Select from the pull-down list.

Generate Listing File "-|" option of as88
If this option is selected, the assembler generates a list file.

Contents "-L" option of as88
This button is enabled by selecting [Generate Listing List File Contents <]
File]. Click this button to display the dialog box
shown below appears, where you can select the source il : % |
type line to be removed from the list file. The default [¥ Section Directive Caneel |
option setup content is "-LcDEIMNPQsWXy". v

Symbol Definition

¥ Show Generic Instuction E spansic

™ CProcessor Line Informatior

¥ MACRO/DUP Ditestive:

[~ Emphy Source Lines

¥ Conditional &ssembly Lines

¥ Azsembler Equates

[~ High Level Language Symbolic Debug Infarmat
¥ “wiapped Part of Sourc

[¥ MACRO/DUP Expansion
[~ Cycle Counts

S5U1C88000C MANUAL 11 EPSON
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

27

CHAPTER 3 WORK BENCH

Enable Symbolic Debug Information "-gs" option of as88
If this option is selected, symbolic debug information is included in the output file.

Display Section Size Summary "-t" option of as88
If this option is selected, the assembler displays a section summary in message view when assem-
bling.

Suppress Warning Message(s) "-w[num]" option of as88
If this option is selected, the assembler suppresses warning messages. To suppress all warning
messages, leave the text box blank. To specify a specific warning message to be suppressed, enter the
message number in the text box. Separate multiple numbers with a comma (,).

Other options
To specify other options (including those listed above), enter the desired option in this text box in
command line format.

About options that are not displayed
The assembler options not displayed in the Option view are handled as described below:

-e This option is used in internal processing.

-err Assembler messages are displayed in the Message window and output to an error
log file.

-f file This option conflicts with internal processing and cannot be used.

-0 file The source file name is also used for the output file.

-V This option is not used in whb88.

-V This option is not used in whb88.

-C Specify this option in the linker option setup screen.

-M{s] c | d |1} Specify this option in the linker option setup screen.

Default options and local options

If individual assembly source files are

C Opti ASM Options | Linker Opti Locater Opti Sect Opti
L | Lirker Opions | Locste Optns | Sect Dtons selected in the Project view, the option setup

: screen shows the local options that are
Preprocesszor Macro D efinitions [-0] appllE‘d Only to the selected assembly source
| file. If no specific file is selected in the
elide Bl 6] Project view, or files other than individual
| Heferencel assembly source files are selected, the
Defaut Label I denters m default optiops that apply to all assembly
sources are displayed.
b [Gereaie st iR] E0”"3”‘3| If local options are displayed, the option
W FErat BBy mbdic Dt (Ffermaten s setup screen will display the [Use Default]
¥ | Digplay Section Sioe Summar] button, as in the example shown below,
I= | Suppress iarming i Essage(s] [l (delmitby comma L] aIIOWing you to Specify whether or not to
I apply the default options to the selected
Dther options: assembly source file.

! To change the assembler options for each
assembly source, uncheck the [Use Default]
button and set each option individually
again.

28 EPSON S5U1C88000C MANUAL I

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 3 WORK BENCH

3.9.3 Linker Options

C Dptions' ASM Optigng Linker Options I Locater Dptionsl Sect Optians
temany Model [-k=] [C and Azm Compile Option)

™ Case Insensitive [&pply Link Option [-C] and &sm Option [-2])
¥ Search for Spstem Libraries [-L]
» Reference
Additional Search Path:
Warning Level [-w] I a 'I

™ Tum Off Dverlaying [-4]

™ Geherate Link Map [-M]
™ Generate Call Graph File [-c]

™ Suppress Undefined Symbol Diagnostics [-r]
™ Print Name of Proceszing File Werbose) [-v]

Litking with uzer libraries [Full path]:

Other Optionz:

This screen can be used to select the following options:

Memory Model "-M{s | ¢ | d | I}" option of c88/as88
Select a memory model from Small, Compact code, Compact data, or Large. This setting is used
during compiling and assembly.

Case Insensitive "-c" option of as88 and "-C" option of k88
If this option is selected, the assembler and linker do not distinguish between uppercase and lower-
case characters when assembling and linking.

Search for System Libraries "-L" option of k88
If this option is selected, the linker searches for system libraries. If this option is unchecked, the linker
does not search for system libraries.
If [Additional Search Path] is left blank after selecting this option, only the directory specified in the
environment variable C88LIB is searched. To search other directories, enter the appropriate path in
[Additional Search Path] or select a directory from the list displayed by clicking the [Reference]
button.

Warning Level "-w n" option of k88
Specify the level to which to suppress warning messages. Levels 0 to 9 can be selected from the pull-
down list. The default setting is 8. Warning messages whose levels are higher than the selected value
are not displayed.

Turn Off Overlaying "-N" option of k88
Selecting this option disables overlaying.

Generate Link Map "-M" option of 1k88
If this option is selected, the linker generates a link map file.

Generate Call Graph File "-c" option of k88
If this option is selected, the linker generates an independent call graph file.

Suppress Undefined Symbol Diagnostics "-r" option of k88
If this option is selected, the linker suppresses diagnosis of undefined symbols.

Print Name of Processing File (Verbose) "-v" option of k88
If this option is selected, the linker displays the currently processed file name when linking.

S5U1C88000C MANUAL 11 EPSON 29
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 3 WORK BENCH

Linking with user libraries
If there is any user library to link, enter the appropriate file name in this text box. To enter multiple
files, separate each entry with a comma ().

Other Options

To specify other options (including those listed above), enter the desired option in this text box in
command line format.

About options that are not displayed
The linker options not displayed in the Option view are handled as described below:

-e This option is used in internal processing.

-err Linker messages are displayed in the message window and output to an error log
file.

-f file This option conflicts with internal processing and cannot be used.

-Ix This option is automatically processed internally in accordance with memory model
settings and system library search settings.

-O file File names are set to the project name.

-o file File names are set to the project name.

-u symbol To specify this option, enter it in [Other Options].

-V This option is not used in wha8.

3.9.4 Locator Options

C Dptionsl ASH Dptionsl Linker Options ~ Locater Oplions | Sect Options

warning Level [-w] I8 j'

™ Make Proposal for Software Part [-p]
™ Print Name of Processing File [Verbose) [-v]
[~ Disable branch optimaize [OPTINABLE]

I~ Digable Build States Message

Space Mame for Specific Output [-5]

Other options:

This screen can be used to select the following options:

Warning Level "-w n" option of 1c88
Specify the level to which to suppress warning messages. Levels 0 to 9 can be selected from the pull-
down list. The default setting is 8. Warning messages whose levels are higher than the selected value
are not displayed.

Make Proposal for Software Part "-p" option of [c88

If this option is selected, the locator displays proposals for the software part of a locator description
file.

Print Name of Processing File (Verbose) "-v" option of 1c88
If this option is selected, the locator displays the name of the file currently being processed.

30 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 3 WORK BENCH

Disable branch optimize
Select this option when using 1c88. When the check box is deselected (default), alc88 is used to
generate object files in executable format.

Disable Build States Message
When this check box is deselected (default), the dialog box shown below appears when the software
starts building or rebuilding a project.

Build States il

ALCES iz Awailable.
Delfes is Edited.

Tf wou don't need this meszage,
pleaze check 'Disable Build States Mezsage'

Cancel |

This dialog box indicates which locator (alc88 or 1¢88) is to be used (based on whether the [Disable
branch optimize] check box for locator options is selected or deselected), and whether locator descrip-
tion files in DELFEE are to be edited by the section editor (based on whether the [Disable Making
DELFEE] check box of the section editor is selected or deselected).

If the wrong locator or edit mode is selected, use the [Cancel] button in this dialog box to stop build-
ing (or rebuilding) a project.

If this dialog box need not be displayed, click the [Disable Build States Message] check box.

Space Name for Specific Output "-S space" option of Ic88
Enter a space name here; the locator then generates a specific output file corresponding to the speci-
fied space.

Other options

To specify other options (including those listed above), enter the desired option in this text box in
command line format.

About options that are not displayed
The locator options not displayed in the Option view are handled as described below:

-d file The dsc file is always specified.

-e This option is used in internal processing.
-err Locator messages are displayed in the Message window and output to an error log file.
-f file This option conflicts with internal processing and cannot be used.
-fformat This option always generates IEEE 695 standard (.abs) and Motorola S (.s) files.
-M This option always generates a locate map file.
-o file File names are set to the project name.
-V This option is not used in wh88.
S5U1C88000C MANUAL I EPSON 31

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 3 WORK BENCH

3.9.5 Section Editor

C Dptionsl ASM Dptionsl Litik.er Dptionsl Locater Options Sect Options

Chip Mode |MELI *I Start Symbal |_STAHT

Add Symbol [Ram) Add External Memony
Addr Name Eind Addr Men Size
100 51 Sact

loooo Rom Looo

Add Symbal [Ram)

Addr Name KEind

fOED test Label

[~ Disable Making DELFEE Heap Size |5D

Use this screen to specify where sections, symbols, and external memory should be located.

The absolute address information specified here is referenced by whb88 as it generates the advanced
locator definition file or DELFEE-based locator description files, which are used as input files for ad-
vanced locator alc88 or locator 1c88 when executing build.

Chip Mode

MO j From the pulldown list, choose which mode to use for the chip, MCU, or MPU
mode. Choose MCU mode when using internal ROM. Choose MPU mode when
releasing the internal ROM area for external memory (i.e., not using internal
ROM).

Start Symbol
Set a start symbol. The contents set here are referenced as the "load_mod start=" parameter in locator
description file (.dsc).
The default is _START, which can suffice when starting from cstart.c. When starting from another C
routine, set a function name prefixed by " _"; when starting from an assembler routine, set the symbol
name of that routine.
Example:
1. Assembler routine
GLOBAL _main
When starting from _nai n: , set _nai n

2. Croutine
When starting from voi d main(),set_main

Add Symbol (Rom)
Set the name and address of a section, vector table, or label to be located in ROM.
The items to be set in the respective lines are described below.

Addr Enter the start address of a section or vector table, or the address to which to assign a label.
When sections are to be located at contiguous addresses, the start address of only the first
section is required and the start addresses of the second and subsequent sections may be left
blank. When different types of sections generated by the compiler are to be located at contigu-
ous addresses, however, the start address must be specified for each section (as detailed later).

32 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 3 WORK BENCH

Name Enter the name of a section, vector table, or label (symbol name).

Kind Choose the type of item to be located from the pulldown list:
Vect Vector table
Label Label
Sect Section

Add Symbol (Ram)
Set the name and address of a section or label to be located in RAM.
The items to be set in the respective lines are described below.

Addr Enter the start address of a section or the address to which to assign a label.
When sections are to be located at contiguous addresses, the start address of only the first
section is required and the start addresses of the second and subsequent sections may be left
blank. When different types of sections generated by the compiler are to be located at contigu-
ous addresses, however, the start address must be specified for each section (as detailed later).

Name Enter the name of a section or label (symbol name).

Kind Choose the type of item to be located from the pulldown list:
Label Label
Sect Section

Add External Memory
Set the address and size of memory or a device to be connected to the external bus of the microcom-
puter.
The items to be set in the respective lines are described below.

Addr Enter the start address of external memory or a device.

Mem Choose the type of external memory from the pulldown list:
Rom ROM
Ram RAM
Dev Any memory-mapped device (e.g., LCD controller)

Size Enter the capacity of external memory or the mapped size of a device in bytes.

Disable Making DELFEE
Choose whether you want locator description files in DELFEE language to be generated by the section
editor.

When the check box is deselected (default)
The section editor references the contents set on this screen as it generates the advanced locator
definition file for alc88 or locator description files for 1c88.

When the check box is selected

The section editor does not generate locator description files for 1c88. To use the existing locator
description files you created, deselect this check box. In this case, an advanced locator definition file
for alc88 is also generated according to the contents set on this screen.

Heap Size
Specify the size of a heap area for which memory is to be allocated by malloc(), etc. Note that this
setting only becomes effective when heap area is required and malloc(), etc. actually used.

S5U1C88000C MANUAL 11 EPSON 33
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 3 WORK BENCH

When using Advanced Locator alc88
When using alc88, make the following settings for locator options and in the section editor.

1.

w

Deselect the [Disable branch optimize] check box on the [Locator Options] tab screen.

The following settings must be made using the section editor:

Deselect the [Disable Making DELFEE] check box.

Choose the mode to be used for the chip (MCU or MPU mode) from the [Chip Mode] list.

Enter the location addresses of sections, etc. in the [Add Symbol (Rom)] and [Add Symbol (Ram)]
boxes. (How to enter will be detailed later.)

To use external memory or a device, enter the information on it in the [Add External Memory] box.
(How to enter will be detailed later.)

Because [Disable branch optimize] for locator options has been deselected, alc88 is invoked when
building a project.

When using Locator 1c88: Case 1

(Locator description files generated by the section editor are used.)
When you need not use existing locator description files, we recommend using alc88. When necessary
to use 1c88, make the following settings:

1.

w

6.

Deselect the [Disable Making DELFEE] check box.

If this check box cannot be deselected, go to the [Locator Options] tab screen and deselect the
[Disable branch optimize] check box on it before making this setting.

Choose the mode to be used for the chip (MCU or MPU mode) from the [Chip Mode] list.

Enter a start symbol name in [Start Symbol] as necessary. (Normally, leave START intact.)

Enter the location addresses of sections, etc. in the [Add Symbol (Rom)] and [Add Symbol (Ram)]
boxes. (How to enter will be detailed later.)

To use external memory or a device, enter the related information in the [Add External Memory]
box. (How to enter will be detailed later.)

Select the [Disable branch optimize] check box on the [Locator Options] tab screen.

Because [Disable branch optimize] for locator options has been selected, 1¢88 is invoked when build-
ing a project.

When using Locator 1c88: Case 2

(Existing locator description files are used.)
To use existing locator description files as may be needed when upgrading application versions, make
the following settings:

1.

Select the [Disable Making DELFEE] check box.

As a result of this setting, the [Disable branch optimize] check box for locator options is automati-
cally selected.

The files stored in the [Definition Files] folder will be listed in project view, so correct any locator
description file as necessary.

Because [Disable branch optimize] for locator options has been selected, 1¢88 is invoked when build-
ing a project.

Note: When using existing locator description files you need not enter location addresses, etc. in the

section editor. Note, however, that even in this case, an advanced locator definition file even with
incomplete content is generated (i.e., contents of locator description files are not reflected). If you
want to change for processing by alc88, therefore, be sure to correctly recreate an advanced
locator definition file.

34

EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 3 WORK BENCH

[Add Symbol (Rom/Ram)] — Defining and deleting symbols
To define symbols in [Add Symbol (Rom/Ram)], follow the procedure described below.
1. Click the [Addr] cell on a blank line, and enter an address in it.
2. Enter a symbol in [Name].
3. Click the [Kind] cell to display a pulldown list similar to the one shown below. Select the type of
item to be located from this list.

(Rom) |5ect vI (Ram) [_abel vI

4. When three cells are filled in, click the [Enter] key and a blank line will be added below.

5. Repeat the above procedure until you enter all sections, etc. to be located.
When sections of the same kind are to be located at contiguous addresses, you need only specify
[Addr] for the first section and can omit those for the second and subsequent sections. [Name] and
[Kind] cannot be omitted. If the kind of section is different from the immediately preceding section
that you have set, you must enter [Addr] for that section. Otherwise, the line that you are setting
has no effect and you cannot go to the next line. The sections generated by the compiler require
special caution with respect to the difference in kind.

The addresses need not be entered in descending or ascending order.
The definition files are updated for what you have entered or selected when you start building (or
rebuilding) a project, saving a project, or quitting wh88.

To delete the addresses set in [Add Symbol (Rom/Ram)]:

1. Delete all contents of [Addr], [Name] and [Kind] on the address line you want to delete (by using
the [Backspace] or [Delete] key and selecting blank for [Kind]).

2. When three cells have been blanked, click the [Enter] key.
The line will be deleted, with subsequent lines moved up.

[Add External Memory] — Defining and deleting external memory
For systems that have ROM or RAM, or such external devices as an LCD controller connected to the
external bus, you need to assign addresses and set the size of memory or the device in [Add External
Memory].
1. Click the [Addr] cell on a blank line, and enter an address in it.
2. Click the [Mem] cell to display a pulldown list similar to the one shown below. Choose the type of
external memory from this list.

Raom vI

Fam
D

3. Enter the size of external memory in [Size].
4. When three cells are filled in, click the [Enter] key and a blank line will be added below.
5. Repeat the above procedure until defining all the external memory and devices required.

The addresses need not be entered in descending or ascending order.
The definition files are updated for what you have entered or selected when you start building (or
rebuilding) a project, saving a project, or quitting wh88.

To delete the external memory definitions set in [Add External Memory]:

1. Delete all contents of [Addr], [Mem] and [Size] on the line you want to delete (by using the
[Backspace] or [Delete] key and selecting blank for [Mem]).

2. When three cells have been blanked, click the [Enter] key.
The line will be deleted, with subsequent lines moved up.

S5U1C88000C MANUAL 11 EPSON 35
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 3 WORK BENCH

Precautions
1. Limitations on input content

The maximum number of lines and maximum number of characters that can be entered are limited as
follows:

Maximum number of lines entered [Add Symbol (Rom/Ram)]....... 100 lines
[Add External Memory]............ 20 lines

Maximum number of characters entered [AdAr] ..., 8 digits
[Name] ..o 30 characters
[SIZe] cvooiiie 8 digits

. Checking the entered data

When you start building (or rebuilding) a project, saving a project, or quitting wh88, the Work Bench
checks whether all necessary items of the section editor are filled in.

When no problems are found, wb88 continues or terminates processing.

If a deficiency is found, such as when only two of the three necessary items for symbol or external
memory definitions are filled in, the dialog box shown below appears.

wWEES Click [OK], and wb88 will delete invalid lines before it
- : o continues or terminates.
Irvealid lines are in the Section Editar. .) - .
& Click [Cancel], and wh88 will stop building (or rebuilding) a
May | Delete,

project, stop saving a project, or quitting.

THE Cancel

Note that wh88 does not check input content for whether the addresses you have entered are within
the implemented memory area or whether there are any duplicate symbol names. Such discrepancies
or errors are checked by alc88 or 1c88.

. About sections generated by the compiler

When user-defined successive sections are to be specified in [Add Symbol (Rom/Ram)], the address
of only the first section need be specified and the addresses of those that follow can be omitted. In
addition to these, sections generated by the compiler can also be specified here. In this case, however,
care must be taken because the compiler generates different types of sections. Even when sections are
to be located at contiguous addresses, the address of a different type of section that follows another
section must be specified.

Several types of sections generated by the compiler are listed below.

ROM area
code_short
..comm
.startup
code
. text
Lt ext _XXXXXXXX
table.......... Address cannot be specified.
dat a_short
.nrdata
dat a
.frdata
RAM area
dat a_short
. nbss
. ndat a
. nbssnc
dat a
.fdata
.fbss
.fbssnc
stack.......... Address cannot be specified.
xvwouf fer Address cannot be specified.

EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 3 WORK BENCH

4. About vectors and labels
Vectors and labels can be defined in [Add Symbol (Rom/Ram)] as matched to the functions of 1c88.
The user can access the external (extern) vectors or labels named __lc_u_xxxxx, and the addresses of
those vectors or labels can be defined in the section editor.
When defining vectors or labels in [Add Symbol (Rom/Ram)], you need only enter the name part
UXXXXX".

5. Operations for deselecting the [Disable Making DELFEE] check box while currently selected
Selecting this check box automatically selects the [Disable branch optimize] check box for locator
options. While in this state, the [Disable Making DELFEE] check box cannot be deselected again. To
deselect this check box while it currently is selected, first deselect the [Disable branch optimize] check
box for locator options.

6. About special sections
The following four types of sections cannot be specified in the section editor. If any of these sections
are specified, it will be deleted when you save or build a project.
"heap", "stack”, "table" and "xvwbuffer"

S5U1C88000C MANUAL 11 EPSON 37
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 3 WORK BENCH

3.10 Debugging

Programs can be debugged by invoking the simulator or in-circuit emulator from the Work Bench.

3.10.1 Simulator
This section describes how to invoke the simulator sim88 from the Work Bench. For detailed information
on simulator functions and usage, please refer to the simulator manual.

Setting the path to the simulator

Before simulator sim88 can be invoked, you must set its path. To set the path, select [Sim88 Configura-
tion] from the [Tool] menu to display the dialog box shown below.

5im88 Configuration
Sim88 Path

| N

Cancel |

Select sim88.exe from the dialog box that is displayed by clicking the [...] button, or enter a path
directly into the text box.

5im88 Configuration

Sim83 Path
IC:'\EF’SDN\SIM\S'I c88hsimB8. exe

(1]4 | Cancel |

Once a path is set, there is no need to set it again the next time the simulator is run.

Invoking the simulator
To invoke the simulator

1. Select [Sim 88 Simulator] from the [Debug] menu or click the [Sim88] button. The dialog box
shown below is displayed:

|[Sirr188] button

Initial filez of Simulator Debugger 88 Setting

LCD File

Ref | Ereatel
PRT File

Fef | Ereatel
CHP File

Ref | Ereatel
F5a File

Ref | Create |

Load madule format
’VF |IEEE B35 ¢ Motorcla S records

OR Y Canesl Accept

38 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 3 WORK BENCH

2. Specify the following files needed to invoke the simulator. Select each file from the file select
dialog box displayed by clicking the [Ref] button, or enter a path for each file directly into the text
box.

LCD File: LCD panel definition file
PRT File: Port setting file

CMP File: Component mapping file
FSA File: Function option HEX file

Initial filez of Simulator Debugger 88 Setting

LCD File

IC:‘\EPSDN\SIM\ﬂcBB\&Ies'\sampIeLlcd Ref | Ereatel
PRT File
IC:\EF’SDN\SIM\S'IcSS\sampIes'\sampIe'I.plt Ref | Ereatel
CHP File
IC:\EF‘SDN\SIM\S'IcEE'\sampIes'\sample'I.cmp Ref | C[eatel
F54 File

IC:\EPSDN\SIM\S‘I cof\zamplesisamplel. fxd Ref | Create |

Load madule format
’75' |IEEE B35 ¢ Motorola S records

(u] 4 I Cancel Accept

For detailed information on the LCD panel definition file, port setting file, and component map-
ping file, refer to the simulator manual.

Click the [Create] button to launch the tool to create each file.
LCD File: LCD panel customize utility LcdUTtil

PRT File: Port setting utility PrtUtil

CMP File: Editor (specified with [Tool | Editor Configuration])
FSA File: Function option generator winfog (see Chapter 8)

For detailed information on the LCD panel customize utility and port setting utility, refer to the
simulator manual. These tools can also be launched from the [Tool] menu or with the toolbar
button.

3. Using the [Load module format] radio button, select the object file format (IEEE 695 or Motorola S)
to be loaded into the simulator.

4. Click the [OK] button to close the dialog box and start the simulator. From the input file informa-
tion, the Work Bench generates a simulator project file (.spj) and a command file to load the
necessary files, then passes these files to the simulator. The simulator is ready to start debugging
as soon as it is started.

The [Accept] button only generates the above files. It does not close the dialog box or launch the
simulator.

S5U1C88000C MANUAL 11 EPSON 39
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 3 WORK BENCH

3.10.2 In-circuit Emulator (S5U1C88000H5) and Debugger

This section describes how to invoke the debugging system using the ICE (S5U1C88000H5) from the
Work Bench. Refer to Chapter 13 for the db88 debugger and the SSU1C88000H5 manual for detailed
information on ICE and ice88ur debugger usage and functions.

To invoke the S5U1C88000H5 system

1. Check to see that the ICE is connected to the personal computer on which it is running and that its
power is turned on.

2. Start the Work Bench.

3. To start the db88 debugger, select [DB88 Debugger] from the [Debug] menu or click the [DB88] button.
[DBS88] button

To start the ice88ur debugger, select [ICE88UR Debugger] from the [Debug] menu or click the
[ICEB8UR] button.

5 | [|CESSUR] button

ICEHR

The dialog box shown below is displayed:

Target and F5A files for ICEBBUR
|'Load madule farmat

& |EEE B95
¢ Motorola S records

Fza File

I Ref |Ereate|

Cancel |

4. Using the [Load module format] radio button, select the absolute object file format (IEEE 695 or
Motorola S).

5. In [Fsa File], specify a function option HEX file. This is done by selecting a file from the file select
dialog box displayed by clicking the [Ref] button, or by entering a path for the file directly into the
text box. The [Create] button invokes the function option generator winfog that generates a function
option HEX file.

6. Click the [OK] button to close the dialog box and launch the debugger. The Work Bench generates a
command file to load the necessary files from the input information and passes it to the debugger. The
debugger is ready to start debugging as soon as it is started.

40 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 3 WORK BENCH

3.11 Executing Other Tools

The following tools can be launched from the [Tool] menu or with the toolbar buttons.

Table 3.11.1 Tools that can be launched from wb88

Tool Menu item Button
1. Auto evaluation system [Tool | Simulator Tools | Auto Evaluation System]]
2. Bitmap utility [Tool | Simulator Tools | Bitmap Utility] %
3. LCD panel customize utility [Tool | Simulator Tools | LCD Panel Customize Utility]
4. Port Setting Utility [Tool | Simulator Tools | Port Setting Utility] |
5. Function option generator [Tool | Dev Tools | Function Option Generator] w
6. Mask data checker [Tool | Dev Tools | Mask Data Checker] m
7. On-board ROM writer control software [Tool | On-Board ROM Writer] ﬁ

For information on how to use each tool, refer to the simulator manual for tools 1 to 4, the corresponding
chapters in this manual for tools 5 to 6, and the flash EEPROM-containing microcomputer technical
manual for tool 7.

S5U1C88000C MANUAL 11 EPSON 41
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 3 WORK BENCH

3.12 FileList
The table below lists the types of files handled by the Work Bench, and the locations where the files are
located.
Table 3.12.1 Filelist
File type File name Extension| Creator/tool Folder path (default)
C compiler-related files
C sourcefile Option .c User/text editor Option (<project>\src)
C header file Option .h User/text editor Option (<project>\src)
C startup routine cstartup .c whb88 <project>\def\
Assembly source (created by user) Option .asm User/text editor Option (<project>\src)
Assembly header file Option .anc User/text editor Option (<project>\src)
Bitmap file Option .bmp User/bitmap editor | Option
Bitmap definition file Option .bmu User/BmpUtil Option
Datatable Option txt User/BmpUtil Option
Project management file Project name wpj whb88 <project>\
Makefile makefile - wh88 <project>\tmp\
Error log file Project name er wh88/cc88 <project>\tmp\
Intermediate assembly source file [Source name reference] |.src whb88/c88 <project>\obj\
Assembly list file [Source name reference] | .Ist wh88/as88 <project>\obj\
Object file [Source name reference] | .obj wh88/as88 <project>\obj\
Object library file Option a User/ar88 Option
Linker object file Project name .out wh88/1k88 <project>\obj\
Link map file Project name Anl wh88/1k88 <project>\obj\
Call graph file Project name .ca whb88/Ik88 <project>\obj\
Advanced locator definition file Model name Anf whb88 EPSON\S1C88\Dev\
Locator definition file Model name .dsc User/text editor <project>\def\
CPU definition file Model name .cpu User/text editor <project>\def\
Memory definition file Model name .mem User/text editor <project>\def\
Locate map file Project name .map wh88/1c88 <project>\obj\
Absolute load module Project name .abs whb88/1c88 <project>\obj\
Motorola S module Project name .sa wh88/1c88 <project>\obj\
Symbolic table file Project name .Sy wh88/sy88 <project>\obj\
Program data HEX file Project name .psa wh88/fil88xxx <project>\obj\
Development tool-related files
Device information definition file Model name ani Seiko Epson EPSON\S1C88\Dev\
Function option HEX file Option fsa User/WinFOG Option
Function option document file Option fdc User/WinFOG Option
Mask datafile Option .paN User/WinMDC Option
Automatic evaluation system-related files
Command file Option xt User Option
Reference datafile Option .mXX User Option
Result datafile Option axX User Option
Check sheet file Option .CSV User/AutoEva Option
Simulator-related files
LCD panel definition file Option Idc User/LCDUHMil Option
Port setting file Option .prt User/PrtUtil Option
Simulator project file sim88 .Spj wh88 <project>\tmp\
Command file debug .cmd whb88 <project>\tmp\
Component map file Option .cmp User/text editor Option
ICE-related files
|CE parameter file Model name .par User/text editor <project>\def\
FPGA datafile for peripheral circuit boards |Model name .mot Seiko Epson
INI filefor ICE ice88ur ani wh88 <project>\tmp\
42 EPSON S5U1C88000C MANUAL II

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 3 WORK BENCH

3.13 Error Messages

The following tables list error messages associated with the Work Bench.

Table 3.13.1 System error messages

Message Description
not enough memory There isinsufficient memory to run wb88.

Table 3.13.2 Error messages output when generating a project

Message Description

Thefileis not a WBB88 project file.(<filename>) Thefile <filename> is not awb88 project file.

The version of the project file is not supported. This version of the project file <filename> is not supported.

(<filename>)

Unable to create aproject : cannot access. <filename>| Unable to generate a project because the file <filename> could not be
accessed correctly.

Unable to create a project : Unable to copy DEF Unable to generate a project because wb88 failed to copy the definition

file.(<filename>) file <filename>.

The project is already existed.(<filename>) Unable to create a project because the file <filename> already exists.
Two or more projects with the same name cannot be created in the same
folder.

Unable to create aproject : Dev Directory of SIC88 |Unable to create a project because no DEV directories exist. The DEV

family package does not exist. directory of the package contains various definition files required for
build task. No projects can be built without this directory.

Table 3.13.3 Error messages output when adding files to the project
Message Description

The file cannot be added to the project. Thefile <filename> cannot be added to the project becauseitisnotaC

Itisnot aC file.(<filename>) source file.

Thefile cannot be added to the project. The file <filename> cannot be added to the project because it is not an

Itisnot an ASM file.(<filename>) assembly sourcefile.

Thefile cannot be added to the project. Thefile <filename> cannot be added to the project because it is not a

It is not a header file.(<filename>) header file.

Thefileisalready existed in the project. Thefile <filename> cannot be added to the project because it aready

It cannot be added in the project.(<filename>) exists.

WB88 does not support such source file type.(<filename>)| This source type file is not supported by wh88.

Table 3.13.4 File error messages

Message Description
Failed to access the file.(<filename>) Failed to operate on the file <filename>.
Unable to open the file.(<filename>) Failed to open the file <filename>.

Table 3.13.5 Error messages output when starting a tool

Message Description
Unable to execute ICES88UR.exe : Cannot start S5U1C88000H5 because wh88 could not access thefile
Unable to access <filename>. <filename>.
Unable to execute Sim88 : Cannot start Sim88 because wb88 could not access the definition file.
Unable to access the DEF file.(<filename>)
Unable to execute <toolname>. Unable to start <toolname>.

Table 3.13.6 Error messages output when building

Message Description
Select aC or an ASM file. Select a C source or assembly source file. Before source files can be
compiled, you must select the target file from tree view.
Build Command needs an active project. The build target must be project.
No target fileisfound in the project. No target files to build are found in the project. Source files must be

registered to a project before they can be built.

Table 3.13.7 Other error messages

Message Description
The command needs an active project. The command requires a project. This error message is displayed if, in the
absence of a project, afunction is executed for which a project must be
present.
S5U1C88000C MANUAL Il EPSON 43

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 4 OUTLINE OF THE MAIN TOOL CHAIN

cHAPTER4 OUTLINE oF THE MAIN TooL CHAIN

The Main tool chain consists of the following tools centered on the C compiler:

1. C compiler <c88.exe>
Compiles C source files to generate assembly source files that can be processed by as88. Note that c88
is an ANSI C-compliant C compiler. Because no special syntax is supported, programs developed for
other types of microcomputers can be easily ported to run on the S1C88. Moreover, because the S1C88
architecture can be efficiently used at the C level to generate compact code, c88 is best suitable for the
development of embedded applications. With the preprocessor, S1C88 C front-end, and code genera-
tor integrated into a single program, c88 operates at high speed as a one-pass compiler without
requiring intermediate files.

2. Assembler <as88.exe>
Assembles the assembly source files output by ¢88 to convert the mnemonics in those files into S1C88
object (machine language) code. The result of this operation is output as relocatable object files in
IEEE-695 format that can be linked by 1k88.

3. Linker <1k88.exe>
Combines two or more relocatable object files generated by as88 with a library module to generate
one new relocatable object file.

4. Locator <Ic88.exe>
Relocates the relocatable object created by 1k88 to absolute addresses of memory to generate an
executable load image file. The relocation information to be referenced at this time must be written in
DELFEE language in the locator description files that are loaded on the locator.
Note that 1c88 can be used to develop applications using existing locator description files. When you
develop new applications, we recommend the use of newly added advanced locator alc88 (beginning
with S5U1C88000C Ver. 3) because it has a new branching optimization function in addition to all the
functions of 1c88. You can select whether to use 1c88 or alc88 in wh88.

5. Advanced locator <alc88.exe>
Realizes the relocation functions of 188 without using description files in DELFEE. For memory
models with 64K bytes or more of code area, alc88 should prove especially useful because although
extended instructions for bank specification (e.g., LD NB,xxxx) are added immediately before the call
instruction (CARL) by the assembler, alc88 has a function to delete unnecessary extended instructions
that have been added for intra-bank calls.

Refer to the document titled "S5U1C88000C Manual 1" for details about tools 1 to 4. Advanced locator
alc88 in 5 is detailed in this manual. Note that because all of the above tools are executed by the functions
of wb88, you need not operate any tool individually.

44 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 5 ADVANCED LOCATOR <alc88>

CHAPTER 5 ADVANCED L ocaTor <alc88>
5.1 Functionsof alc88

Advanced Locator <alc88> relocates the relocatable object created by linker <1k88> to the absolute
addresses of memory to generate an executable load image file. In addition, alc88 has a branching
optimization function. This function is effective for memory models with 64K bytes or more of code area
(Compact-Data or Large), in which case extended instructions for bank specification (e.g., LD NB,xxxx)
are unconditionally added immediately before the call instruction (CARL) by the assembler. However,
alc88 deletes such extended instructions whenever found in intra-bank calls.

This function enables alc88 to generate more compact executable object files than those generated by
locator <Ic88> that has been conventionally used in the Main tool chain.

Moreover, the locator description files in DELFEE language used to provide 1c88 with relocation infor-
mation are not required for alc88. Instead, alc88 uses the advanced locator definition file (.inf) that can be
easily generated by the section editor functions of wb88 without any specific concern about details.
Therefore, you have the option of using 188 when using conventional resources (including locator
definition files) to develop applications or alc88 when developing new applications, or not specifically
requiring existing locator definition files. You can select which tool to use in wb88.

Note: Branching optimization is only useful for the CARL instruction (in the format below) that causes the
CPU to branch off to locations within the same bank (32K-byte area). The extended instructions
added before other branch instructions (e.g., jump instruction) are not deleted even if unnecessary.
Also note that for extended or branch instructions where the address for an object is already fixed
before being entered, the extended instructions are not deleted even if the target of optimization.

LD NB, XXXX
CARL yyyy

When yyyy exists in the same bank as the CARL instruction, the immediately preceding "LD
NB,xxxx" is deleted.

When yyyy exists in a bank different than that of the CARL instruction, the immediately preceding
"LD NB,xxxx" is not deleted.

S5U1C88000C MANUAL 11 EPSON 45
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 5 ADVANCED LOCATOR <alc88>

5.2 Input/output Files

Figure 5.2.1 shows the input/output files of alc88.

Relocatable Advanced locator
object file definition file

—' "’
Relocatable objects are relocated to

alcss the absolute addresses of memory.

— - :

e _tlemap_| _flesy | ahenie

file table file
_fleavs | | fiesa |

Absolute Program data
object file HEX file
(Motorola S2 format)

Fig. 5.2.1 Input/output files of alc88

Relocatable object file (file.out)
This is the relocatable object file in IEEE-695 format that has been output by the linker <Ik88>.

Advanced locator definition file (file.inf)
This file contains a description of information referenced by alc88 as it relocates relocatable objects to
absolute addresses of memory. The section editor of whb88 creates this file.

Absolute object file (file.abs)
This is an executable object file output from the relocatable objects supplied to alc88 by being relo-
cated to the absolute addresses of memory. This file is created in IEEE-695 format and contains
debugging information included in the input files.

Program data HEX file (file.sa)
This HEX file is output from absolute objects converted into Motorola S2 format. This file is presented
as an input file the program unused area filling utility <fil88xxx>.

Map file (file.map)
A list of absolute addresses to which sections and labels have been allocated is recorded in this file.

Symbolic table file (file.sy)
This file contains symbol information extracted from the debugging information in the input files.
This file is required for the symbolic debugging to be performed by the debugger or simulator.

46 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 5 ADVANCED LOCATOR <alc88>

5.3 Using alc88

All operations including the creation of advanced locator definition files are normally handled by wb88.
Because alc88 is automatically invoked by wh88 as it executes build processing, the user need not start
alc88. The advanced locator definition file is created by using the section editor of wh88. See Chapter 3,
"Work Bench", for details on how to build a project or use the section editor.

To run alc88 independently of whb88, execute the following command from the MS-DOS prompt:

>alc88 <project_path> <file.out> <file.inf>

Denotes entering the return key.

<project_path> Specify the path to the project file (.wpj).

<file.out> Specify the object file name to be supplied to alc88.

<file.inf> Specify the advanced locator definition file to be supplied to alc88.

Example: C:\ epson\s1c88\appl appl. out appl.inf

When alc88 completes processing, it displays the following message (to stdout) regardless of whether it
terminated normally.

ALC88 Version X.Xxx

5.4 Error Messages

The error messages of alc88 are listed below.

Table 5.4.1 Error messages

Error message Description
lllegal Inf File Advanced locator definition file (.inf) isinvalid.
Duplicate Memory Memory alocations in Oxnnnn—-0xnnnn and Oxnnnn—0xnnnn are duplicated.

-- Oxnnnn ~ Oxnnnn & Oxnnnn ~ Oxnnnn
No physical memory available for xxxx No specified addresses exist to which symbol xxxx can be assigned.

Duplicate Symbol Name -- xxxx There are duplicates of symbol name Xxxx.

Cannot find Oxnnnn bytes for xxxx section | No Oxnnnn bytes of memory are available as needed to map section Xxxx.

Found unresolved external -- XXxx No information is available for external symbol (Extern) xxxx.

Thereisno stack area No memory can be allocated for the stack because internal RAM lacks sufficient space.

Absolute address Oxnnnn occupied The absolute address section area beginning with Oxnnnn is already occupied by
another area

Value out of range to label xx at address | The branch destination of the short branch instruction (JRS, CARS) is out of the range
O0xnn (-128 t0 127).

5.5 Precautions

Note that alc88 is subject to the limitations described below.

(1) Of the effective label descriptions of 1c88, alc88 only supports user-defined labels (__Ic_cp, __Ic_es,
e u xxxx, _Ic_b xxxx, __Ic_e xxxx). The labels _Ic_bs, Ic_ub_xxx, _lc_ue_xxx, etc. used in the
source have no effect on alc88. Refer to Section 4.9, "Locator Labels", in the "S5U1C88000C Manual 1"

(2) Even when branching is optimized by alc88, the results of such optimization are not reflected in the
list files created by as88, regardless of whether relocatable or absolute.

S5U1C88000C MANUAL 11 EPSON a7
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 6 OUTLINE OF THE DEVELOPMENT TOOLS

CHAPTER 6 OUTLINE OF THE DEVELOPMENT TOOLS

The S1C88 Family Integrated Tool Package contains the tools to create mask option and mask data
files, as well as files that contain descriptions of setup information for each type of microcomputer. The
tools 1 to 3 below are Windows GUI applications that run under Windows 2000 or Windows XP.

1. Function option generator <winfog.exe>
This tool creates an ICE (S5U1C88000H5) function option setup file after selecting the mask options of
the S1C88xxx and the function option document file that is necessary to generate IC mask patterns.
You can create function option data by selecting the appropriate item using the check boxes.

2. Segment option generator <winsog.exe>
This tool creates an ICE segment option setup file after selecting the segment options of the S1C88xxx
and the segment option document file that is necessary to generate IC mask patterns. You can create
segment assignment data by merely clicking on the display memory map and segment decode table
shown on the window.

3. Mask data checker <winmdc.exe>

This tool checks the data in development-completed built-in ROM file and option document files to
create the mask data file that will be presented to Seiko Epson.

4. Device information definition file <s1c88xxx.ini>

This file is used to set information, such as the configuration of options, on each type of microcom-
puter for the three tools described above. This file must be available before each tool can be executed.

5. ICE parameter file <88xxx.par>

This file is used to establish correspondence between the ICE and each type of microcomputer. This
file is required for starting up the ICE.

6. Program unused area filling utility <fil88xxx.exe>
This tool extracts the built-in ROM area from a program data HEX file and fills unused areas in the
built-in ROM with FFH. It also sets a system code to the system-reserved area. This processing must
be performed before debugging the program with the ICE as well as before generating a mask data
with winmdec. This tool can be executed from the MS-DOS prompt.

7. Self-diagnostic program <t88xxx.psa, t88xxx.fsa, t88xxx.fdc, t88xxx.ssa, t88xxx.sdc, readme.txt>
These are the self-diagnostic program and function option data to check the ICE and S5U1C88xxxP
hardware. Download these files to check the ICE. The t88xxx.ssa and t88xxx.sdc files are included
only for microcomputers in which segment options are provided.

The readme.txt file contains the description of the SSU1C88xxxP LED illumination status to check the
operation with the self-diagnostic program.

Notes: « There is no difference between each tool between the different types of microcomputers. There-
fore, the explanations in this manual are for all types of microcomputers using "S1C88xxx" as
the representative name. The contents of the sample screens shown in this manual vary accord-
ing to the type of microcomputer. Note that winsog, t88xxx.ssa and t88xxx.sdc are provided only
for microcomputers with segment options.

e S5U1C88000H3 (previous name: ICE88R) is provided in addition to S5U1C88000H5.

48 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 6 OUTLINE OF THE DEVELOPMENT TOOLS

Differences between new tools (S5U1C88000P-compliant version) and existing tools
The old peripheral boards (S5U1C88316P and S5U1C88348P) have been replaced by a new standard
peripheral board (S5U1C88000P). Note that tool action and functionality may differ somewhat given
the combination of new and old peripheral boards, and development tools.

For the following types of MPUs, the Integrated Tool Package for the S1C88 Family includes new
development tools, which are useful with the standard peripheral board (S5U1C88000P).
S1C88104, S1C88112, S1C88308, S1C88316, S1C88317, S1C88348, S1C88832, S1C88862

Table 6.1 Functional differences depending on combinations of SSU1C88316P
and S5U1C88348P peripheral boards and development tools

Functions
Combination

S1C88832/862's BZ (R51)
and TOUT (R26) outputs

Variation of OSC1/3 oscillator frequencies
(OSCl1 is for a CR oscillator; OSC3 is for a CR or ceramic oscillator)

+ new development tools

Old peripheral board Not available Not available (Because OSC1 and OSC3 are respectively fixed to

+ old development tools 32.768 kHz and 4.9152 MHz, clocks from external sources may be
used for other oscillator frequencies as required.)

New peripheral board Available Available

+ new development tools

Old peripheral board Not available Not available (Because OSCL1 is fixed to 32.768 kHz (with crystal

Not considered a problem

selected) or 32 kHz (with CR selected), and OSC3 is fixed to 8 MHz
(with ceramic selected) or approx. 8 MHz (with CR selected), clocks
from external sources may be used for other oscillator frequencies
as required.)

Not considered a problem

New peripheral board
+ old development tools

Not available
Not considered a problem

Not available (Because OSC1 and OSC3 are respectively fixed to
32.768 kHz and 4.9152 MHz, clocks from external sources may be
used for other oscillator frequencies as required.)

Not considered a problem

S5U1C88000C MANUAL 11

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

EPSON 49

CHAPTER 7 PROGRAM UNUSED AREA FILLING UTILITY <fil88xxx>

CHAPTER / Procram UNuseD AREA FILLING UTILITY
<fil88xxx>

7.1 Outline of fil88xxx

The Program Unused Area Filling Utility <fil88xxx> loads a Motorola S2 format program data HEX file
and generates the built-in ROM data HEX file after filling the unused area of the built-in ROM (000000H-
00EFFFH) with FFH. The generated file is used to debug the program with the ICE (S5U1C88000H5).
When debugging with the ICE, download this file from the computer.

This file is also used as the program data to generate the mask data for submission to Seiko Epson by the
mask data checker <winmdc>.

7.2 Input/output Files

Figure 7.2.1 shows the input/output files of fil88xxx.
— Program data HEX file
@ (Motorola S2 format)

’ filss Extract the built-in ROM data and
HHEOXXX fill the unused area of the built-in ROM with FFH

[~ —Built-in ROM data HEX file
@ (Motorola S2 format)

Debugging with ICE
Mask data creation by mask data checker

Fig. 7.2.1 Input/output files of fil88xxx

Program data HEX file (zzzzzzzz.sa)

This is a Motorola S2 format program data HEX file generated by the HEX converter <hex88> or a
third party software tool.

Built-in ROM data HEX file (zzzzzzzz.psa)
This is a Motorola S2 format file that contains the built-in ROM data extracted from the input program
data HEX file. The unused areas in the built-in ROM are filled with FFH and a system code is set to
the system reserved area (see vector table shown in the Technical Manual). When debugging with the
ICE, download this file from the computer. This file is packed along with completed other option files
into a single file by the mask data checker <winmdc>, which we would like to have presented to
Seiko Epson as the mask data file. From this file, Seiko Epson will create the mask patterns for the IC.

L The "xxx" in the file name denotes the model name of a microcomputer. For the "zzzzzzzz" part, any
given file name can be specified.
[2 For details on how to download the built-in ROM data HEX file into the ICE, refer to the ICE manual.

50 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 7 PROGRAM UNUSED AREA FILLING UTILITY <fil88xxx>

7.3 Using fil88xxx

(1) Starting up
To start fil88xxx, enter the command shown below from the MS-DOS prompt.

>fil88xxx <file name>

denotes entering the return key.

Specify a Motorola S2 format program data HEX file as the command line parameter. A path can also
be specified.

Example: C:\ S1C88\ DEV88\ DEV88xxx_V1>fil 88xxx d:\test\c8xxx0a0. sa

(2) Start-up message
When fil88xxx is started, the following message is displayed.

FI L88xxx Unused Area Filling Utility Version X XX
Copyright (C) SElI KO EPSON CORP. XXXX

(3) End message
When a series of operation are complete, the fil88xxx displays the following message.
When terminated normally
... ... Indicates the proceeding status

Unused Area Filling Conpleted
System Area Data Set Conpl eted

The converted HEX file (.psa) is generated in the same directory as the input file.

When an error has been occurred
C8xxx0A0. SA 5: File Format Error ... Example of error message

If an error is generated during fil88xxx execution, it displays the file name producing the error, the
line number and an error message, then terminates the fil88xxx.

Also, when an error has been generated, a post-conversion program data HEX file (.psa) is not
generated. In the event of a warning message, a post-conversion program data HEX file is generated.

(4) In the event of forced termination
To forcibly terminate the execution of the fil88xxx, enter "CTRL" + "C".

S5U1C88000C MANUAL 11 EPSON 51
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 7 PROGRAM UNUSED AREA FILLING UTILITY <fil88xxx>

7.4 Error Messages

The error and warning messages of fil88xxx are listed below.

Table 7.4.1 Error messages

Message Description
Can't Find File The specified input file does not exist.
Syntax Error: Input File An input file name has not been specified.
File Format Error Theinput file format iswrong. (C1L)
Can't Open File Theinput file cannot be opened.
Not S Record Theinput fileis not S record format.
Data Length The datalength of 1 lineistoo short.
Too Many Dataln One Line The datalength of 1 lineistoo long.
Not 3Byte Address The address length is not 3 bytes (including S1, S3, S7 and S9 record).
Check Sum Error The check sum does not match.
Duplicate Error Thereis a duplicate definition of datain the same address.
Can't Use Vector xxH System Reserve The physical address 0000xxH cannot be used as a vector because they are
reserved as a system area for the SIC88xxx.
Insufficient disk space Thereisno disk space.
Write Error An error has occurred while writing data.

M A fileformat error will occur under the following conditions:
- Another record has followed the S8 record.
- Something other than a hexadecimal number isincluded in thefile.
- Thereisaline that consists of less than 12 characters.
- Thereis an S8 record that has more or less than 12 characters or of which the byte count is not 04.
- Thereisan $4, S5 or S6 record included in the file.
- Thereis no S8 record.

Table 7.4.2 Warning message

Message Description
Warning: No OOH Address Thereis no datain the physical address 000000H.

Note: When there is no data in the physical address 000000H, it will output a warning message and filled
the data FFH.

52 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 7 PROGRAM UNUSED AREA FILLING UTILITY <fil88xxx>

7.5 Example of Input/output Files

Input file example

S224000000000123500050235023502350235023502350235023502350235023502350235040
S$2080000202350015013

S224000100CF6E00F6B4FFDD0030DD0100D94004C700F0CA0000CFDCC30200D700F8E7F7F262
S2240001209300D94004BOFFB104C543F8C700F8CFEB7093CF3BE7FBC10001C20001CFEED725

S224007F001818000055AA000101000001000100010002000000401011121314151617181919
S20EO007F201A1B1C1D1E1F2F3FOF3FEB
S804000000FB

Output file example

System code (e.g. F1H, FFH) are set in the system reserved area

(e.g. addresses 000024H and 000025H) for S1C88xxx.

$224000000000123500050235023502350235023502350235023502350235023502350235040
$22400002023500150F1 FF21
S224000040FFBB
S224000060FFOB
S224000080FFTB
S2240000A0FFSB
S2240000COFF3B
S2240000EQ0FFLB
S224000100CF6E00F6B4FFDD0030DD0100D94004C700F0C40000CFDCC30200D700F8E7F7F262
S2240001209300D94004B0FFB104C543F8C700F8CFEB7093CF3BE7FBC10001C20001CFEED725
S22400014000FEE7EEC500F8C600F8CFEEL1255F5DAB000F23A04DD2003D94009DD22019C3F7C
S224000160B001CED400F0D94004F27A00F29000F2A600F2BCO0F2DDO0F21703F23F03F2BD28
S22400018003F2F203CED084F1803204E703B000CED484F1CEDO03F1803214E703B000CED462
S2240001A003F1CEAECEDOO6F332FFE7F7BO00CED406F3F1B3D97560CEDOO07F7810CEDO0143
S2240001C07F7811D97801CED0027F7844CED0037F7845DD62FFDD6000DD63F5DD613FDI768C
S2240001E010DD4008F8A2A0CE0E7FB100CED084F1 CF40464C02CEBOFC297802A8 AAF8CEDOCC
S22400020084F13203E608F2E503B000F106F2D403BOFFCED4A07F4F8A2A0C6127FB100CEDOCB

S22400EFAOFF6C
S22400EFCOFFAC
S22400EFEOFF2C
S804000000FB

S5U1C88000C MANUAL 11 EPSON 53
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 8 FUNCTION OPTION GENERATOR <winfog>

cHAPTER 8 FuncTioN OpTioN (GENERATOR
<winfog>

8.1 Outline of winfog

The S1C88 chip allows several hardware specifications such as 1/0 port functions to be selected as mask
options. This helps you to configure the hardware of your product by changing the S1C88 chip's mask
patterns according to its specifications.

The Function Option Generator <winfog> is the software tool for creating the files necessary to generate
mask patterns. Its graphical user interface (GUI) ensures easy selection mask options. From the files
created by winfog, Seiko Epson produces the mask patterns for the S1C88 chip.

In addition, simultaneously with this file, winfog can create mask option setup files (Motorola S2 format
data) that are required when debugging programs with the ICE (S5U1C88000H5). When using the ICE to
debug a program, you can download this file from the host computer, making it possible to materialize
optional functions on the ICE that are equivalent to those on the actual IC.

8.2 Input/output Files

Figure 8.2.1 shows the input/output files of winfog.

Selection of
mask options

Function option Function option
HEX file document file
To ICE Mask data creation

by mask data checker

Fig. 8.2.1 Input/output files of winfog

Device information definition file (s1c88xxx.ini)
This file contains option lists for various types of microcomputers and other information. Always be
sure to use the files presented by Seiko Epson. This file is effective for only the type of microcomputer
indicated by the file name. Do not modify the contents of the file or use the file in other types of
microcomputers.

Function option document file (zzzzzzzz.fdc)
This is a text format file in which the contents of selected mask options are stored. You can read this
file into winfog and correct the already selected option settings. This file is packed along with com-
pleted other program/data files into a single file by the mask data checker <winmdc>, which we
would like to have presented to Seiko Epson as the mask data file. From this file, Seiko Epson will
create the mask patterns for the IC.

Function option HEX file (zzzzzzzz.fsa)

This is the Motorola S2 format file necessary to set the selected mask options in the ICE. When you
debug programs with the ICE, download this file into the ICE using an ICE command.

L The "xxx" in the file name denotes the model name of a microcomputer. For the "zzzzzzzz" part, any
given file name can be specified.
[2 For details on how to download mask options into the ICE, refer to the ICE manual.

54 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 8 FUNCTION OPTION GENERATOR <winfog>

8.3 Using winfog

8.3.1 Starting Up

Startup from Explorer
Double-click on the winfog.exe icon or select winfog from the start menu.

M If the device information definition file (s1c88xxx.ini) was loaded into your computer
during previous execution, winfog automatically reads the same file as it starts.
Alternatively, drag the Device information definition file icon into the winfog.exe icon to
start winfog, which will then read the Device information definition file.

Startup by command input
You can also start winfog from the MS-DOS prompt by entering the command shown below.

>winfog [s1c88xxx.ini]

denotes entering the return key.

You can specify the device information definition file (s1c88xxx.ini) as a command option. (You can
also specify a path.) When you specify the device information definition file here, winfog reads it as it
starts. This specification can be omitted.

When winfog starts, it displays the [FOG] window. The following diagrams show a [FOG] window when
the device information definition file has been loaded and when it has not.

telp ()

DEEEK]

[FOG] Window (initial screen)

Filel® ToolD Helptt

B Root = =
i + wwr wan
- No.1 0SC1 SVSTEM CLOCK OFTION HO. 1
: * —-- 0SC1 SYSTEN CLOCK ---
vl Crystal (32.768KHz) % Crystal (3z.768KHz) ---- Selected
L.[T] CR 60KHz CPTO101 01
No.2 0SC3 SYSTEM CLOCK *
® #w% OPTION MO.Z *3%
[i7 CR zooKHz + ——— 05C3 SYSTEN CLOCK -——
[T/ CR Type 1.8MHz + CR 200KHz --——- Selected

[T Ceramic 4MHz OPTO201 01

[T CR external resistor

+ No.3 INPUT PORT FULL UF RES
£ KOO

~ ¢ With Resistor

=% OPTION NO.3 =7
-—— INPUT PORT PULL UP RESISTOR ---
KOO With Resistor ---- Selected
KOl With Resistor ---- Selected
K0z With Resistor Selscted
K03 With Resistor Selected
K10 With Resistor Selected
7 itk Resister K1l With Resistor Selected

- K1z With Resistor Selected
-7 Gate Direct K13 With Resistor Selected

e ROZ ~ PTOANT N1 =
Ll | > 4? | >

Making file(s) is completed

~[7 Gate Direct
- KO1

Sk ok oo oA oA A 4

[FOG] Window (after reading the device information definition file)

S5U1C88000C MANUAL 11 EPSON 55
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 8 FUNCTION OPTION GENERATOR <winfog>

8.3.2Window

Option list area Function option document area

G{Function Option Generator) - S

File®) TooltD) Help(H)

EEESEI |

S ROGE \ = | / -
: # wad OPTICON NO.1 ##+
B Ho .1 OSC1 SYSTEM CLOCE
* ——— 03C1 SYSTEM CLOCE —--
..... [Crystal(3Z.765KHz) * Crystal (32.768KHz) --——— Selected

..... |_ CR GOEHz OPTO101 01
e W0 2 08C3 SYSTEM CLOCE "

® F%% OPTION NO.2 #%%
----- |7 CR Z00KH=

* ——— 0D3C3 SYSTEM CLOCE —-—-
..... [CR Type 1.8MH=z * CR 200EHz —--—-- Selected
..... [T ceramic 4MH=z CPTDZ01 01

----- CR external resistor
I_ ®%% QPTION MNO.3 #%+%

——— INPUT PCORT PULL UP RESISTOR ———
KOO With Resistor ---- Selected

No.3 INPUT PORT PULL UF RES

- KO0

#* % A+ * 4 * o+ * #
=z}
]
s

. . With Resistor ---- Selected
[y Tith Resistor] .
] KOZ With Resistor ---- Selected
~[] Gate Direct KO3 With Resistor —-—- Selected
B K01 K10 With BResistor ---- Zelected
|7 With Resistor i _}Kll With Resistor ---- Selected
. * KlZ With Resistor ---- Jelected
~[] Gate Direct "E13 With Resistor --—- Selected
e KO2 hd nant 1 1 hd
| | 3 1|O | »
Making file(s) is completed l

The area can be resized by dragging the frame boundary.

\

\
Message area

O The microcomputer model name on the title bar is the file name (not including the path and extension) of the device
information definition file that has been read.
0 The option list and the function option document vary with each type of microcomputer.

Fig. 8.3.2.1 Window configuration
The [FOG] window is divided into three areas as shown above.

Option list area
Lists mask options set in the device information definition file (s1c88xxx.ini). Use the check boxes in
this area to select each option. A selected option has its check box marked by .

Function option document area
Displays the contents of selected options in the function option document format. The contents
displayed in this area are output to the function option document file. When you change any selected
item in the option list area, the display in this area is immediately updated.

Message area
When you create a file by selecting [Generate] from the [Tool] menu or clicking the [Generate] button,
this area displays a message showing the result of the selected operation.

56 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 8 FUNCTION OPTION GENERATOR <winfog>

8.3.3 Menus and Toolbar Buttons
This section explains each menu item and toolbar button.

[File] menu
File(F»

Openil)
Erd

[Tool] menu

| Tool{T)

Gienerate &)

Setupls)
Device IMI Select

[Help] menu
Help(H?

Wersion (G |

Open
Opens a function option document file. Use this menu command when correct-
ing an existing file. The [Open] button has the same function.

@ [Open] button

End
Terminates winfog.

Generate
Creates a file according to the selected contents of the option list. The [Gener-
ate] button has the same function.

ﬂ [Generate] button

Setup
Sets the date of creation, output file name and a comment included in the
function option document file. The [Setup] button has the same function.

@l [Setup] button

Device INI Select

Loads the device information definition file <s1c88xxx.ini>. The [Device INI
Select] button has the same function. This file must be loaded first before
performing any operation with winfog.

El [Device INI Select] button

Version
Displays the version of winfog. The [Help] button has the same function.

ﬂ [Help] button

The dialog box shown below appears. Click [OK] to close this dialog box.

About Winfog

% Winfog Wer. x.xx
Copyright (C) 2EIKO EPSON CORP. Z001

S5U1C88000C MANUAL 11

EPSON 57

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 8 FUNCTION OPTION GENERATOR <winfog>

8.3.4 Operation Procedure

The following shows the basic operation procedure.

(1) Loading the device information definition file
First, select a device information definition file <s1c88xxx.ini> and load it.
Select [Device INI Select] from the [Tool] menu or click the [Device INI Select] button.

El [Device INI Select] button

The dialog box shown below appears. Enter a file name including the path in the text box or select a

file by clicking the [Ref] button.

Dizvice INI fi ot

INI file (.ini}
’7 IC:\SlCSS\DEVBS\DEVSSxxx_Vl\SlcSSxXx.in:L

0K | Cancell

Click [OK], and the file is loaded. If the
specified file exists and there is no problem
with its contents, the option list and the
function option document, which have both
been set by default, are displayed in each
area.

To stop loading the file, click [Cancel].

Once a device information definition file is selected, the same file is automatically loaded the next

time you start winfog.

Note: When you load a device information definition file after setting up options, all settings are reset to

the default state.

(2) Setup

Select [Setup] from the [Tool] menu or click the [Setup] button to bring up the [Setup] dialog box.
From this dialog box, select items and enter data.

ﬂ [Setup] button

up

on File
Date | 2000 £ IE & IH

IC:\SlCSS\DEVSE\DEUSSXXX_VI\ZZZZZZZZ, Foo

’—Func:mn Option Document file

—Function Option HEX

Do you make hex fila?
’7 ¥ Yas 1o

Function Option HEX file
’7 IC W E1CEEVDEVEE\DEVESxxx_Vlizzzzzzzz. FEA

ERLON T5pe
’7 (S1z7064, (Slzgnize A5 2ynesel §0) Zyobis

User's Name

Conment.

0K Cemcel

Date
Displays the current date. Change it as
necessary.

Function Option Document file

Specify the function option document file
name you want to create. The file name
displayed by default can be modified. You
can use the [Ref] button to look at other
folders.

Function Option HEX

Do you make hex file?

Select whether to create a function option
HEX file. You need to create one when you
use the ICE to debug programs.

Function Option HEX file

When you create a function option HEX file,
specify its file name here. The file name
displayed by default can be modified. You
can use the [Ref] button to look at other
folders.

58

EPSON

S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 8 FUNCTION OPTION GENERATOR <winfog>

EPROM Type
This option is not available for SIC88 Family microcomputers.

User's Name

Enter your company name. You can enter up to 40 characters. You can use English letters, numbers,
symbols, and spaces. The content entered here is recorded in the USER'S NAME field of the function
option document file.

Comment

Enter a comment. Up to 50 characters can be entered in one line. You can enter up to 10 lines. You can
use English letters, numbers, symbols, and spaces. Use the [Enter] key to create a new line. All
comments should include the following information:

= Place of business, your department or section

= Address, telephone number, and facsimile number

= Other: Technical information, etc.

The content entered here is recorded in the COMMENT field of the function option document file.
When you have finished entering the above necessary items, click [OK]. The setup contents are saved,
and the dialog box is closed. The setup contents take effect immediately. If you click [Cancel], current
settings will not be changed and the dialog box is closed.

Notes: » File name specification is subject to the following limitations:
1. The number of characters that can be used to specify a file name including the path is 2,048.
2. The file name itself (not including the extension) can be up to 15 characters, and the exten-
sion up to three characters.
3. The file name cannot begin with a hyphen (-), nor can the following symbols be used as part
of directory names (folder names), file names, and extensions:
[:,;0?2"<>|

e The symbols shown below cannot be used in the User's Name and Comment:
$\|°

(3) Selecting options
Select necessary options by clicking the corresponding check boxes in the option list. When you
change any selection item in the option list area, the display in the function option document area is
updated. Note that when you have loaded the device information definition file, the option list is
placed in its default selection state.
For details about option specifications, refer to the Technical Manual available for each type of
microcomputer.

(4) Creating files
After selecting options, select [Generate] from the [Tool] menu or click the [Generate] button to create
the files.

El [Generate] button

The function option document file you specified from the [Setup] dialog box and the function option
HEX file (if specified) are created. When winfog has finished creating the files normally, it displays the
message "Making file(s) is completed" in the message area. If an error occurs, an error message is
displayed.

S5U1C88000C MANUAL 11 EPSON 59
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 8 FUNCTION OPTION GENERATOR <winfog>

(5) Correcting an existing document file

You can read an existing function option document file into winfog and correct it as necessary.
To read afile, select [Open] from the [File] menu or click the [Open] button.

@l [Open] button

The dialog box shown below appears, so enter a file name including the path in the text box or select a
file by clicking the [Ref] button.

Function Option Document file Open

Function Option Document file

C:y31C88DEVEE \DEVESxxx_V1zezezzzz. FIC

[0):4 | Cancel |

Click [OK], and the file is loaded. If the specified file exists and there is no problem with its contents,
the option list and the function option document areas are updated according to the contents of the
file. To stop loading the file, click [Cancel].

Perform steps (2) to (4) to update the file.

If you select [Generate] without changing the file name, the message shown below is displayed asking
you whether or not to overwrite the file. Click [Yes] to overwrite or [No] or [Cancel] to stop overwrit-
ing. Use the [Setup] dialog box to change the file name.

WARNING

Are pou file update ?
zzzzzzz FOC is alieady exist

Note: The function option document file can be read only when the device information definition file has

been loaded.

(6) Quitting

To terminate winfog, select [End] from the [File] menu.

60

EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 8 FUNCTION OPTION GENERATOR <winfog>

8.4 Error Messages

The error messages of winfog are listed below. The "Dialog" in the Display column means that messages
are displayed in the dialog box, and "Message" means that messages are displayed in the [FOG] window
message area.

Table 8.4.1 List of winfog error messages

Message Description Display
File name error Number of charactersin the file name or extension exceeds thelimit. | Dialog
Illegal character Prohibited characters have been entered. Dialog
Please input file name File name has not been entered. Dialog
Can't open File : xxxx File (xxxx) cannot be opened. Dialog
INI fileis not found Specified device information definition file (.ini) does not exist. Dialog
INI file does not include FOG information | Specified device information definition file (.ini) does not contain Dialog

function option information.
Function Option document fileis not found | Specified function option document file does not exist. Dialog
Function Option document file does not Contents of the specified function option document file do not match | Dialog
match INI file device information definition file (.ini).
A lot of parameter Too many command line parameters are specified. Dialog
Making file(s) is completed Finished creating thefile, but the created file (xxxx) does not contain |Message
[xxxx is no data exist] any data.
Can't open File: xxxx File (xxxx) cannot be opened when executing Generate. Message
Making file(s) is not completed
Can't write File: xxxx File (xxxx) cannot be written when executing Generate. Message
Making file(s) is not completed
Table 8.4.2 winfog warning messages

Message Description Display
Areyou file update? Overwrite confirmation message Dialog
XXXX is already exist (Specified file already exists.)

S5U1C88000C MANUAL I EPSON 61

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 8 FUNCTION OPTION GENERATOR <winfog>

8.5 Example Output Files

Note: Option and other configurations vary with each type of microcomputer.

Example of a function option document file

* S1C88xxx FUNCTI ON OPTI ON DOCUMENT VX. XX

FI LE NAVE zzzzzz727. FDC

USER S NAME SEI KO EPSON CORPORATI ON
I NPUT DATE yyyy/ nmi dd

COWMMVENT SAVPLE DATA

x OPTION NO 1 *

--- OSCl SYSTEM CLOCK - - -

Crystal (32. 768KHz) Sel ect ed
OPT0101 01

EEE I R S

* kkk O:)TIO\‘ ,\02 * %k

* --- 08C3 SYSTEM CLOCK - --
* CR 200KHz ---- Selected
OPT0201 01

* k * ODTI()\I ’\D.S * % %

--- INPUT PORT PULL UP RESI STOR ---
KOO Wth Resistor Sel ect ed
KO1 Wth Resistor Sel ect ed

Wth Resistor Sel ect ed
KO3 Wth Resistor Sel ect ed
K10 Wth Resistor Sel ect ed
K11 Wth Resistor Sel ect ed
K12 Wth Resistor Sel ect ed
K13 Wth Resistor Sel ect ed
OPT0301 01

OPT0302 01

OPT0303 01

OPT0304 01

OPT0305 01

OPT0306 01

OPT0307 01

OPT0308 01

B 1
P
o
N

* k k ODTI O\l ,\D. 4 * %k

--- QUTPUT PORT QUTPUT SPECI FI CATI ON - - -
ROO Conpl enentary ---- Sel ected

RO1 Conpl enentary ---- Sel ected

RO2 Conpl enentary ---- Sel ected

RO3 Conpl enentary ---- Sel ected

OPT0401 01

OPT0402 01

OPT0403 01

OPT0404 01

*

E

% OPTION NO 8 *
--- SOUND GENERATOR POLARI TY ---
NEGATI VE ---- Selected
OPT0801 01
*ECF

ElE .

~ Version

~ File name (specified by [Setup])

« User name (specified by [Setup])

~ Date of creation (specified by [Setup])
~ Comment (specified by [Setup])

« Option number

« Option name

~ Selected specification
~ Mask data

« End mark

Example of a function option HEX file (Motorola S2 format)
S22400000022FF0200FFFFFFFFFFFFFFFFFFFFFFFFO0000000000000FFFFFFFFFFFFFFFFFFCD

S804000000FB

For details about the Motorola S2 format, refer to Section A.2.5.3, "Motorola S2 Format".

62

EPSON

S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 9 SEGMENT OPTION GENERATOR <winsog>

CHAPTER 9 SeEGMENT OprTiON (GENERATOR
<WINsog>

9.1 Outline of winsog

Some types of microcomputers in the S1C88 Family allow the LCD output pin output specifications and
LCD output pin assignments to be set with hardware options, so that mask patterns for the IC are
generated according to option settings. The Segment Option Generator <winsog> is the software tool for
creating the files required to generate mask patterns. Its graphical user interface (GUI) ensures simple
mask option setting.

In addition, simultaneously with this file, winsog can create mask option setup files (Motorola S2 format
data) that are required when debugging programs with the ICE (S5U1C88000H5). When using the ICE to
debug a program, you can download this file from the host computer, making it possible to realize
optional functions on the ICE that are equivalent to those on the actual IC.

Note: The Segment Option Generator <winsog> is provided for only certain types of microcomputers that
have set segment options.

9.2 Input/output Files

Figure 9.2.1 shows the input/output files of winsog.

~— Function option

’ winso Selection of
9 mask options

Device information
definition file

e

Segment assignment Segment option Segment option
data file HEX file document file
To ICE Mask data creation

by mask data checker

Fig. 9.2.1 Input/output files of winsog

Device information definition file (s1c88xxx.ini)
This file contains option lists for various types of microcomputers and other information. Always be
sure to use the files presented by Seiko Epson. This file is effective for only the type of microcomputer
indicated by the file name. Do not modify the contents of the file or use the file in other types of
microcomputers.

Function option document file (zzzzzzzz.fdc)
This is the text format file generated by winfog and contains the selected mask options. This file is
required only when the segment option setup condition depends on the mask option selected with
winfog.

Segment option document file (zzzzzzzz.sdc)
This is a text format file in which setup contents of segment options are stored. You can read this file
into winsog and correct the option settings. This file is packed along with completed other program/
data files into a single file by the mask data checker <winmdc>, which will be presented to Seiko
Epson as the mask data file. From this file, Seiko Epson will create the mask patterns for the IC.

S5U1C88000C MANUAL 11 EPSON 63
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 9 SEGMENT OPTION GENERATOR <winsog>

Segment option HEX file (zzzzzzzz.ssa)

This is the Motorola S2 format file necessary to set the selected segment options in the ICE. When you
debug programs with the ICE, download this file into the ICE using ICE commands.

Segment assignment data file (zzzzzzzz.sad)
This is a text format file in which segment assignment data is stored. Create this file when terminating
winsog before finishing segment assignment. You can continue option setting next time by loading
this file to winsog.

L The "xxx" in the file name denotes the model name of a microcomputer. For the "zzzzzzzz" part, any
given file name can be specified.
[2 For details on how to download mask options into the ICE, refer to the ICE manual.

9.3 Using winsog

9.3.1 Starting Up

Startup from Explorer
Double-click on the winsog.exe icon or select winsog from the start menu.

E If the device information definition file (s1c88xxx.ini) was loaded into your computer
during previous execution, winsog automatically reads the same file as it starts.
Alternatively, drag the device information definition file icon into the winsog.exe icon to
start winsog, which will then read the device information definition file. If a function option
document file is required for setting the segment option, a dialog box will appear to allow
file selection. In this case enter the file name including the path in the text box or choose the
file from the dialog box that appears by clicking on the [Ref] button.

WINE00. exe

Startup by command input
You can also start winsog from the MS-DOS prompt by entering the command shown below.

>winsog [s1c88xxx.ini]

denotes entering the return key.

You can specify the device information definition file (s1c88xxx.ini) as a command option. (You can
also specify a path.) When you specify the device information definition file here, winsog reads it as
it starts. If a function option document file is required for setting the segment option, the file
(zzzzzzzz.fdc) must be prepared in the directory in which s1¢88xxx.ini and winsog.exe exist before
entering the command. When the command is entered, a dialog box will appear to allow file selection.
Enter the file name including the path in the text box or choose the file from the dialog box that
appears by clicking on the [Ref] button. This specification can be omitted.

64 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 9 SEGMENT OPTION GENERATOR <winsog>

When winsog starts, it displays the [SOG] window. The following diagrams show a [SOG] window when

the device information definition file has been loaded and when it has not.

gment Optio

File(E) ToolT) Help(Hy

EEEE K]

|Hamory Address/Data bit (000G

SECGMENT DECODE TAELE

QUTPUT
Option

oy,

Comp

Diok—

el

Delatel

[SOG] Window (initial screen)

gment Optio

File(E) ToolT) Help(Hy

B> 2% 2]

|Hamory Address/Data bit (Z0Xh)

SECGMENT DECODE TAELE

como [comi [comz [coms [sPEC

oo

T e s e[5] ZIﬂ

ol

oz

0z

04

05

0&

o7

0s

a3

04

0B

oc

oD

0E

0F

10

11

1z

il

SEGO

SEGL

SEGE

SEC2

SEG4

SEGE

SEGE

SEG7

SEGE

SEG2

SEG1O

SEC11

SEG1E

SEG13

SEGL14

SEGLE

SEGLE

SEGL7

SEG18

SEC18

QUTPUT
Option

oy,

Comp

Diok—

el

[SOG] Window (after reading the device information definition file)

S5U1C88000C MANUAL I

WORKBENCH/DEV

TOOLS/OLD ASSEMBLER

EPSON

65

CHAPTER 9 SEGMENT OPTION GENERATOR <winsog>

9.3.2Window

Option setup area

eement Cption Generatord -

FiletF} ToolTd HelptH)

8lz/ule| 2B 2 /

/
|Hemory Address/Data bit (2000} | SEGMENT DECODE TAELE
como [com [comz [coms [sexc OUTEUT
SEGD ooo 001 oDz | ooz Opticn
SEGL 004 005 006 OO7
2EGZ 0lo 011 0lz | 013 ey
2EG3 014 015 0L 017
3RG4 oz0 | 021 022 | 023
3EGS5 0z4 | 025 | 026 | 027 Comp
SEGE 020 | 021 032 | 033
SEG7 024 | 035 | 036 | 037
SEGE 040 041 042 043 fan-
SEG 044 045 046 047
SEEI0 | 0S50 051 052 0863
SEG1l | 054 055 056 087 HERs
SEE1Z | 060 081 062 063
SEE13 | 064 065 066 067 "
gEE14 | 070 071 07z 073
SEE1S | 074 075 076 077
SEE16 | 020 081 08z 083
SEE17 | 084 085 | 085 | 087
SEE1E | 090 031 09z 093
[BEGLY | 094 4095 036 037 Delate |

Making file(s) is completed. l
\ The area can be resized by dragging the frame boundary.
Message area

0 The microcomputer model name on the title bar is the file name (not including the path and extension) of the device
information definition file that has been read.
[The display memory addresses and segment configuration vary with each type of microcomputer.

Fig. 9.3.2.1 Window configuration
The [SOG] window is divided into two areas as shown above.

Option setup area

Comprised of a display memory map, a segment decode table, and buttons to select pin specifications.
By clicking on cells in the display memory map and segment decode table, you can assign display
memory addresses and bits.

Message area
When you create a file by selecting [Generate] from the [Tool] menu or clicking the [Generate] button,
this area displays a message showing the result of the selected operation.

66 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 9 SEGMENT OPTION GENERATOR <winsog>

9.3.3 Menus and Toolbar Buttons

This section explains each menu item and toolbar button.

[File] menu
File(F?

Openion |
Record (B Savels)
End 00 LoadfLy

[Tool] menu

| ToalT

Gienerate 1E)

Setupis)
Device IMNI Select

[Help] menu
| HelpiH)
Wersion (&) |

Open
Opens a segment option document file. Use this menu command when
correcting an existing file. The [Open] button has the same function.

@ [Open] button

Record - Save
Saves the current option settings to a file (segment assignment data file).
The [Save] button has the same function.

El [Save] button

Record - Load
Loads a segment assignment data file. The [Load] button has the same
function.

E| [Load] button

End
Terminates winsog.

Generate
Creates a file according to the contents of segment options set. The
[Generate] button has the same function.

ﬂ [Generate] button

Setup

Sets the date of creation or output file name or a comment included in
the segment option document file. The [Setup] button has the same
function.

@l [Setup] button

Device INI Select

Loads the device information definition file <s1c88xxx.ini>. The [Device
INI Select] button has the same function. This file must be loaded first
before performing any operation with winsog.

El [Device INI Select] button

Version
Displays the version of winsog. The [Help] button has the same function.

ﬂ [Help] button

The dialog box shown below appears. Click [OK] to close this dialog box.

About Wingog

% Winsoyg Wer.x.xx
Copyright (C) SEIEO0 EPS0ON CORP. Z001

S5U1C88000C MANUAL 11

EPSON 67

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 9 SEGMENT OPTION GENERATOR <winsog>

9.3.4 Option Selection Buttons
The following buttons are available in the option setup area.
OUTPUT Option buttons

These buttons select SEG pin output modes. These buttons are enabled when you click a SPEC cell in
[SEGMENT DECODE TABLE].

Sey Selects LCD segment output.
C oy Selects DC-complementary output.
Peh- Selects DC-Pch open-drain output.
Hoh- Selects DC-Nch open-drain output.
M Selects segment/common shared output.

[Delete] button
Delete | Clears the selected segment assignment. The [Delete] key has the same function.

9.3.5 Operation Procedure

The following shows the basic operation procedure.

(1) Loading the device information definition file
First, select a device information definition file <s1c88xxx.ini> and load it.
Select [Device INI Select] from the [Tool] menu or click the [Device INI Select] button.

El [Device INI Select] button

The dialog box shown below appears. Enter a file name including the path in the text box or select a
file by clicking the [Ref] button.

Device NI file Select Click [OK], and the file is loaded. If the
- specified file exists and there is no problem
o with its contents, the set-up items in winsog
’7 IE:\SlCSS\DEUBS\DEVSSxxx_Ul\SlcSSxxx,in1 Ref are |nit|a|ized With the |Oaded deVICe
information.

s | Csncel| To stop loading the file, click [Cancel].

68 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 9 SEGMENT OPTION GENERATOR <winsog>

Once a device information definition file is selected, the same file is automatically loaded the next

time you start winfog.

If a function option document file is required for setting the segment option, the dialog box shown
below will appear to allow file selection. In this case enter the file name including the path in the text
box or choose the file from the dialog box that appears by clicking on the [Ref] button.

Function option document file n:

Function option document file

IC: A E1CEEADEVESADEVESxxx_Vl\szzzzzzz. FOU Ref

()4 | Cancel |

Note: When you load a device information definition file after setting up options, all settings are reset to

the default state.

(2) Setup
Select [Setup] from the [Tool] menu or click the [Setup] button to bring up the [Setup] dialog box.
From this dialog box, select items and enter data.

@l [Setup] button

Seguent Option Document file
{ |c:\swsa\nnvsa\mvssxxx_vl\zzzzzzzz.snc Ref ‘

~Seguent Option HEX

Do yow uake hex file?
’7 % yes Mo ‘

Seguent Option HEX file
’7IC:\SlCSB\DEVSE\DEVSSxxx_Vl\zzzzzzzz.SSA Ref

EPROM Type
’7627“4 Clzocize £lzg0zEs () 25EElz ‘

TUser's Name ||

Conment

1134 Carncel

Date
Displays the current date. Change it as
necessary.

Segment Option Document file

Specify the segment option document file
name you want to create. The file name
displayed by default can be modified. You
can use the [Ref] button to look at other
folders.

Segment Option HEX

Do you make hex file?

Select whether to create a segment option
HEX file. You need to create one when you
use the ICE to debug programs.

Segment Options HEX file

When you create a segment option HEX file,
specify its file name here. The file name
displayed by default can be modified. You
can use the [Ref] button to look at other
folders.

S5U1C88000C MANUAL 11 EPSON
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

69

CHAPTER 9 SEGMENT OPTION GENERATOR <winsog>

EPROM Type
This option is not available for SIC88 Family microcomputers.

User's Name

Enter your company name. Up to 40 characters can be entered. You can use English letters, numbers,
symbols, and spaces. The content entered here is recorded in the USER'S NAME field of the segment
option document file.

Comment

Enter a comment. Up to 50 characters can be entered in one line. You can enter up to 10 lines. You can
use English letters, numbers, symbols, and spaces. Use the [Enter] key to create a new line. All
comments should include the following information:

= Place of business, your department or section

= Address, telephone number, and facsimile number

= Other: Technical information, etc.

The content entered here is recorded in the COMMENT field of the segment option document file.
When you have finished entering the above necessary items, click [OK]. The setup contents are saved,
and the dialog box is closed. The setup contents take effect immediately. If you click [Cancel], current
settings will not be changed and the dialog box is closed.

Notes: » File name specification is subject to the following limitations:
1. The number of characters that can be used to specify a file name including the path is 2,048.
2. The file name itself (not including the extension) can be up to 15 characters, and the exten-
sion up to three characters.
3. The file name cannot begin with a hyphen (-), nor can the following symbols be used as part
of directory names (folder names), file names, and extensions:
[:,;0?2"<>|

e The symbols shown below cannot be used in the User's Name and Comment:
$\|°

(3) Setting segment outputs
The LCD drive circuit of a S1C88 Family chip that has had segment options set normally allows
selecting the segment output and DC output for every two pins (in certain types of microcomputers,
individually for each pin). Segment output should be specified when using the pins for driving an
LCD panel.
Segment output ports have a built-in segment decoder allowing any address and data bit in the
display memory area to be assigned to any segment. When the segment memory bit is set to 1, the
assigned segment lights up; when the bit is set to 0, the segment dims. Segments and display memory
bits correspond individually, so that you cannot assign one display memory bit to multiple segments.
Therefore, all segments must be assigned different addresses and data bits.
For details about the display memory map and segment assignment, refer to the Technical Manual for
each type of microcomputer.
In the explanation below, the chip is assumed to have four common pins, COMO0 to COM3.
Follow the procedure below to assign segments:

1. From the [Memory Address/Data bit] table, select the memory address/data bit you want to
assign by clicking the appropriate cell. The cell changes color to blue.
If you select an incorrect cell, select a correct cell.
The horizontal rows of the table correspond to display memory addresses. The hexadecimal
number shown to the right of the "Memory Address/Data bit" title is the base address of display
memory, with only the lower byte of address being displayed in each row of the table. The vertical
columns of the table correspond to data bits.

70 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 9 SEGMENT OPTION GENERATOR <winsog>

2. From [SEGMENT DECODE TABLE], select the SEG pin/COM pin to which you want to assign the
memory address/data bit selected in 1 by clicking the appropriate cell. A 3-digit numeric value is
displayed in the cell, showing the selected address (2 high-order digits) and data bit (1 low-order
digit), and the cell changes color to yellow.

7 s s| a] s3] = |ﬂ cono |coml [comz [coms [spEC
Selection example: |20 sEso | 007

01 SEGL

If you select an incorrect cell, click the [Delete] button to clear its assignment and reselect from 1.
Two or more cells selected by dragging an area can also be deleted using the [Delete] button.
Before selecting a cell in [SEGMENT DECODE TABLE], always select a cell in [Memory Address/
Data bit].

3. Click the SPEC cell for the segment selected in 2 and then the [Seg] button. The cell shows the
letter S and changes color to red. This means that the segment has been set for a LCD segment
output pin.

If your chip requires selecting segment output and DC output every two pins, the other pin that
comprises a pair is set in the same way.

7 3 5 4 3] 2 |a coMo [comi [comz [coms [spEc
Selection examp|e: 00 SEGO 007 006 005 004
a1 [1 ZEGL 017 0le 015 0l4

4. Repeat steps 1 to 2 for all segments used for LCD output. Specification selection in 3 may be
performed later.
If any COM cell in one SEG pin is unused, leave it blank.

—— e e = = R
(4) Setting DC outputs

o=
When using SEG pins for general-purpose DC output, assign segments according to steps 1 and 2
described in Item (3), "Setting segment outputs". However, output control works in such a way that
the display memory assigned to COMO is enabled while the display memory assigned to COM1
through COM3 are disabled. Therefore, set a memory address/data bit for only COMO cell and leave
memory address/data bits for COM1 through COM3 cells blank.
For DC output, you may select an output mode between complementary output and Nch (or Pch)
open-drain output. Select your desired output in SPEC cell using the buttons listed below:
[Comp] button: Complementary output (C)
[Nch-] button: N-channel open-drain output (N)
[Pch-] button: P-channel open-drain output (P)
If your chip requires selecting an output mode every two pins, the other pin that comprises a pair is
set in the same way.

0z SEGZ 0z7? C

. 03 2EG3 037 C
Selection example: [Tz sEee | 047 »
0g SEGS 0g7? P

(5) Setting SEG/COM shared pins
Whether the SEG/COM shared pins output segment signals or common signals is determined by
selecting the function option.
When using the shared pins as SEG pins, allocate display memory addresses/bits as shown above
and leave unused COM cells blank.
When using the shared pins as COM pins, select ssgment/common shared output ([M] button) as the
output specification and do not allocate memory.

Selection example:

Note: This setting is required only for microcomputers that have SEG/COM shared pins.

S5U1C88000C MANUAL 11 EPSON 71
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 9 SEGMENT OPTION GENERATOR <winsog>

(6) Setting unused SEG pins

For SEG pins that are used for neither LCD output nor DC output, leave COMO through COM3 cells
in [SEGMENT DECODE TABLE] blank. However, SPEC cells cannot be left blank, so select segment
output (S) for the corresponding SPEC cells.

SECE
SEG7

Selection example:

(7) Creating files

After selecting options, select [Generate] from the [Tool] menu or click the [Generate] button to create
the files.

ﬂ [Generate] button

The segment option document file you specified from the [Setup] dialog box and the segment option
HEX file (if specified) are created. When winsog has finished creating the files normally, it displays
the message "Making file(s) is completed” in the message area. If an error occurs, an error message is
displayed.

(8) Saving uncompleted segment option data

You can save the segment option settings that have not been completed as a segment assignment data
file. To save data, select [Record - Save] from the [File] menu or click the [Save] button.

El [Save] button

The dialog box shown below appears, so enter a file name including the path in the text box or select a
file by clicking the [Ref] button.

Segment assignment data file save E

Save file

C:4S1C88N\DEVES \DEVESxxx Vizzzzzzzz.sad Bef

0K | Cancell

Clicking [OK] saves the current assignment data to the specified file. To stop saving, click [Cancel].

You can read an existing segment option document file into winsog and correct it as necessary.
To load a segment assignment data file, select [Record - Load] from the [File] menu or click the [Load]
button.

El [Load] button

The dialog box shown below appears, so enter a file name including the path in the text box or select a
file by clicking the [Ref] button.

Segment assignment data file load E2

Load file

Coh 51088 \DEVES\DEVESxxx_ V1 z=zzzzzz. sad

0K | Cancell

Click [OK], and the file is loaded. If the specified file exists and there is no problem with its contents,
the option setup area is updated according to the segment assignment data saved in the file. You can
continue segment assignment from the previous set state. To stop loading the file, click [Cancel].

72

EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 9 SEGMENT OPTION GENERATOR <winsog>

Notes: « The segment assignment data file can be read only when the device information definition file
has been loaded.

e Some models need a function option document file to be loaded at the start of winsog, and the
contents of the file affect the segment option setup condition. Therefore, the segment assign-
ment data file in which the settings do not match the function option cannot be read.

(9) Correcting an existing document file
You can read an existing segment option document file into winsog and correct it as necessary.
To read a file, select [Open] from the [File] menu or click the [Open] button.

@l [Open] button

The dialog box shown below appears, so enter a file name including the path in the text box or select a
file by clicking the [Ref] button.

Segment Option Document file Open

Segument Option Document file

C:4 81088 DEVEE \DEVESxaxx_Viizezzzzzz. BDC

[0):4 | Ca.ncell

Click [OK], and the file is loaded. If the specified file exists and there is no problem with its contents,
[Memory Address/Data bit] and [SEGMENT DECODE TABLE] are updated according to the contents
of the file. To stop loading the file, click [Cancel].

If you want to change an assigned address, clear its cell assignment using the [Delete] button first and
then reassign a new address. If you want to change a selected output mode too, select the correspond-
ing SPEC cell and clear its selected output mode with the [Delete] button before reselecting a new
output mode. Two or more cells selected by dragging an area can also be deleted using the [Delete]
button.

If you select [Generate] without changing the file name, the dialog box asking you whether to over-
write the file is displayed. Click [Yes] to overwrite or [No] or [Cancel] to stop overwriting. Use the
[Setup] dialog box to change the file name.

Notes: « The segment option document file can be read only when the device information definition file
has been loaded.

e Some models need a function option document file to be loaded at the start of winsog, and the
contents of the file affect the segment option setup condition. Therefore, the segment option
document file in which the settings do not match the function option cannot be read.

(10) Quitting
To terminate winsog, select [End] from the [File] menu.

S5U1C88000C MANUAL 11 EPSON 73
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 9 SEGMENT OPTION GENERATOR <winsog>

9.4 Error Messages

The error messages of winsog are listed below. The "Dialog" in the Display column means that messages
are displayed in the dialog box, and "Message" means that messages are displayed in the [SOG] window

message area.

Table 9.4.1 List of winsog error messages

Message Description Display
File name error Number of charactersin the file name or extension exceeds the limit. | Dialog
Illegal character Prohibited characters have been entered. Dialog
Please input file name File name has not been entered. Dialog
Can't open File : xxxx File (xxxx) cannot be opened. Dialog
INI fileis not found Specified device information definition file (.ini) does not exist. Dialog
INI file does not include SOG information | Specified device information definition file (.ini) does not contain Dialog

segment option information.
Function Option document fileis not found | Specified function option document file does not exist. Dialog
Function Option document file does not Contents of the specified function option document file do not match | Dialog
match INI file device information definition file (.ini).
Segment Option document fileis not found | Specified segment option document file does not exist. Dialog
Segment Option document file does not Contents of the specified segment option document file do not match | Dialog
match INI file device information definition file (.ini).
Segment assignment datafileisnot found | Specified segment assignment data file does not exist. Dialog
Segment assignment data file does not Contents of the specified segment assignment data file do not match Dialog
match INI file device information definition file (.ini).
Can't open File: xxxx File (xxxx) cannot be opened when executing Generate. Message
Making file(s) is not completed
Can't write File: xxxx File (xxxx) cannot be written when executing Generate. Message
Making file(s) is not completed
ERROR: SPEC is not set One or more SPEC cells are | eft blank when executing Generate. Message
Making file(s) is not completed
Table 9.4.2 winsog warning messages

Message Description Display

Areyou file update? Overwrite confirmation message Dialog

XXxx is aready exist

(Specified file already exists.)

74

EPSON

S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 9 SEGMENT OPTION GENERATOR <winsog>

9.5 Example Output Files

Note: The display memory addresses, the number of SEG/COM pins, and output specification vary with
each type of microcomputer.

Example of a segment option document file

* S1C88xxx SEGVENT OPTI ON DOCUMENT Vx. xx « Version
*
* FI LE NAME zzzzzzzz. SDC ~ File name (specified by [Setup])
* USER S NAME SEI KO EPSON CORPORATI ON « User name (specified by [Setup])
* | NPUT DATE yyyy/ midd — Date of creation (specified by [Setup])
* COMVENT SAMPLE DATA ~ Comment (specified by [Setup])
*
* OPTI ON NO. xx « Option number (varies with type of microcomputer)
*
* < LCD SEGMVENT DECODE TABLE >
* SEG COMD COML COWR COMVB SPEC
*
0 163 162 161 1F3 S ~ Segment decode table
1 170 172 171 160 S
2 143 142 141 1E1 S
3 150 152 151 140 S
xx 3B0 3Bl 3B2 3B3 S
*ECF ~ End mark

Example of a segment assignment data file

* S1C88xxx SEGVENT COPTI ON DOCUMENT Vx. xx ~ Version
* FI LE NAME zzzzzzzz. SDC « File name (specified by [Setup])
* USER S NAME — User name (specified by [Setup])
* | NPUT DATE yyyy/ mi dd ~ Date of creation (specified by [Setup])
* COMVENT ~ Comment (specified by [Setup])
*
* OPTI ON NO xx — Option number (varies with type of microcomputer)
* < LCD SEGMVENT DECCDE TABLE >
*
* SEG COMD COML COWR COMVB SPEC
0 163 162 161 1F3 S « Segment data has been assigned
1 170 172 171 160 S
2 143 142 141 1E1 S
mm FRE FRE FRE FRE X ~ FRE: Segment address and data bit have not been assigned.
nn FRE FRE FRE FRE X ~ X: Output specification has not been set.
oo FRE FRE FRE FRE X
*ECF ~ End mark

Example of a segment option HEX file (Motorola S2 format)

S2240000001603160216011FO03FFFFFFFFFFFFFFFF1700170217011600FFFFFFFFFFFFFFFF23
S2240000201403140214011E01FFFFFFFFFFFFFFFF1500150215011400FFFFFFFFFFFFFFFF14

$2240010E0FFOB
S804000000FB

For details about the Motorola S2 format, refer to Section A.2.5.3, "Motorola S2 format".

S5U1C88000C MANUAL 11 EPSON 75
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 10 MASK DATA CHECKER <winmdc>

cHAPTER 10 Mask Data CHECKER <winmdc>

10.1 Outline of winmdc

The Mask Data Checker <winmdc> is the software tool for checking the format of each generated file and
creating the files necessary to generate mask patterns. winmdc checks the built-in ROM data HEX file
generated by program unused area filling utility <fil88xxx>, the function option document file generated
by function option generator <winfog>, and the segment option document file generated by segment
option generator <winsog>.

winmdc also has a function for restoring the created mask data file into the original file format.

10.2 I nput/output Files

Figure 10.2.1 shows the input/output files of winmdc.

Device information Built-in ROM data Function option Segment option
definition file HEX file document file document file
- [[
winmdc Mask data created
(packed)
——) Pack file)
£88xxx-yyy.paN| (mask data file) —> To Seiko Epson

4{ winmdc ‘ Data restored
(unpacked)
=

Fig. 10.2.1 Input/output files of winmdc

Device information definition file (s1c88xxx.ini)
This file contains option lists for various types of microcomputers and other information. Always be
sure to use the files presented by Seiko Epson. This file is effective for only the type of microcomputer
indicated by the file name. Do not modify the contents of the file or use the file in other types of
microcomputers.

Built-in ROM data HEX file (zzzzzzzz.psa)
This is the built-in ROM data HEX file in Motorola S2 format. This file is created by program unused
area filling utility <fil88xxx>. The unused areas in the built-in ROM are filled with FFH and a system
code is set to the system reserved area (see vector table shown in the Technical Manual).

Function option document file (zzzzzzzz.fdc)

This is a text format file in which the contents of selected function options are stored. This file is
created by function option generator <winfog>.

Segment option document file (zzzzzzzz.sdc)
This is a text format file in which the contents of segment options set are stored. It is created by
segment option generator <winsog>. This file is available for only microcomputers with set segment
options.

Pack file (c88xxx--yyy.paN, N = 0 and over)
This is a text format file which contains the above data files combined into one. We would like to have

this file presented to Seiko Epson as the mask data file. Seiko Epson will create the mask patterns for
the IC from this mask data file.

0 The "xxx--" in the file name denotes the model name of a microcomputer. The "yyy" part of the file
name represents the custom code of each customer. Enter the code from Seiko Epson here. For the
"zzzzzz77" part, any given file name can be specified.

76 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 10 MASK DATA CHECKER <winmdc>

10.3 Using winmdc

10.3.1 Starting Up

Startup from Explorer
Double-click on the winmdc.exe icon or select winmdc from the start menu.
T If the device information definition file (s1c88xxx.ini) was loaded into your computer
iﬁﬂ during a previous execution, winmdc automatically reads the same file as it starts.
.) Alternatively, drag the device information definition file icon into the winmdc.exe icon to
Winmdo. exe . ; . . . o .
start winmdc, which will then read the device information definition file.

Startup by command input
You can also start winmdc from the MS-DOS prompt by entering the command shown below.

>winmdc [s1c88xxx.ini]

denotes entering the return key.

You can specify the device information definition file (s1c88xxx.ini) as a command option. (You can
also specify a path.) When you specify the Device information definition file here, winmdc reads it as
it starts. This specification can be omitted.

When winmdc starts, it displays the [MDC] window.

(ERY

[MDC] Window (initial screen)

O The microcomputer model name on the title bar is the file name (not including the path and extension) of the device
information definition file that has been read.
0 The [Pack] and [Unpack] buttons on the tool bar are enabled when the device information definition file is read.

S5U1C88000C MANUAL 11 EPSON 7
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 10 MASK DATA CHECKER <winmdc>

10.3.2 Menus and Toolbar Buttons
This section explains each menu item and toolbar button.

[File] menu
File(E>
End o |

[Tool] menu

Tool{T}

Pack (F
Unpack (L
Device INI Select

[Help] menu
Help(H?

Wersion (G |

End
Terminates winmdc.

Pack
Packs the ROM data file and option document file to create a mask data file for
presentation to Seiko Epson. The [Pack] button has the same function.

g | [Pack] button

Unpack
Restores files in the original format from a packed file. The [Unpack] button has
the same function.

Device INI Select

Loads the device information definition file <s1c88xxx.ini>. The [Device INI
Select] button has the same function. This file must be loaded first before
performing any operation with winmdc.

%; | [Device INI Select] button

Version
Displays the version of winmdc. The [Help] button has the same function.

% | [Help] button

The dialog box shown below appears. Click [OK] to close this dialog box.

About Winmdc

Winmde Wer.x.xx

ﬂﬂ Copyright (C) SEIKO EPS0N CORP. 2001

78

EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 10 MASK DATA CHECKER <winmdc>

10.3.3 Operation Procedure
The following shows the basic operation procedure.
(1) Loading the Device information definition file
First, select a device information definition file <s1c88xxx.ini> and load it.
Select [Device INI Select] from the [Tool] menu or click the [Device INI Select] button.
E} [Device INI Select] button

The dialog box shown below appears. Enter a file name including the path in the text box or select a
file b

Click [OK], and the file is loaded. If the specified
file exists and there is no problem with its

W W (o) contents, the set-up items in winmdec are initial-
ized with the loaded device information.

To stop loading the file, click [Cancel].

IC: WSLCEEADEVES\DEVSExxx_VINE1lc88xxx. ini

()24 | Cancell

Once a device information definition file is selected, the same file is automatically loaded the next
time you start winmdc.

(2) Packing
1. Select [Pack] from the [Tool] menu or click the [Pack] button on the tool bar to bring up the [Pack]
dialog box.

@E‘?l [Pack] button
ey i

Pack

—Pack Input Files

C:WS1C88WDEVEEA\DEVEExxy V1 zzzssszs. PSA ;I
C:AWS1C88\DEWSS\DEVSS8xxx_Vilzzzzzzzs. FIC
C:nBlCE8\DEVES\DEVESxxx_Vithzzzzzzzz. BDC

w
1] 3 Ref

—Pack COutput File

IC: LELCESNDEVES\DEVSSxxx_WINCESxxxTET. PAD

Pack message

Pack | Cancell

S5U1C88000C MANUAL 11 EPSON 79
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 10 MASK DATA CHECKER <winmdc>

Note:

Select the files to be entered.

[Pack Input Files] lists the files of the type specified in the device information definition file by

their default file names. If the data files to be entered are represented by different names in this

list, replace the file names following the procedure below.

a. Select a file name to be changed by clicking on it from the list box.

b. Click the [Ref] button and select the data file to be entered.

Do this for all files listed.

When replacing files, take care not to mistake one file type (extension) for another. If the type of
input file is erroneous, an error will result during file packing.

Setting output file names.

In the [Pack Output File] text box, specify a pack file name in which you want the mask data to be
output. The file name displayed by default can be modified. You can use the [Ref] button to look at
other folders.

Make sure the extension of the output file name is ".pa0". If after presenting data to Seiko Epson,
you present new data due to program bugs or any other reason, increase the number in the last
digit of the extension in increments of one. For example, the extension of the second file presented
should be "c88xxx:yyy.pal".

File name specification is subject to the following limitations:

1. The number of characters that can be used to specify a file name including the path is 2,048.

2. The file name itself (not including the extension) can be up to 15 characters, and the extension
up to three characters.

3. The file name cannot begin with a hyphen (-), nor can the following symbols be used as part of
directory names (folder names), file names, and extensions:
[, ;%2 <>

Click the [Pack] button to execute packing.
When winmdc has completed packing, it displays a message "Packing completed!" in the [Pack
message] text box. If an error has occurred, an error message is displayed.

Click the [Cancel] button to close the dialog box.
Alternatively, you can click the [Cancel] button to quit winmdc before it executes packing.

80

EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 10 MASK DATA CHECKER <winmdc>

(3) Unpacking
1. Select [Unpack] from the [Tool] menu or click the [Unpack] button on the tool bar to bring up the
[Unpack] dialog box.

éaé [Unpack] button

—Packed Input File

—npack Output Files
C:w2lCE8DEVEE \DEVEExxx_Vizzezzzzz. PEA :I
C: ‘\SlCBS\DEVSS\DEUBSxxx_Ul\zzzzzzzz_ FDC
C:Ww31C88DEVEENDEVE 8xxx Vi\zzzzzzzz. 5DC

=
4] » Ref

Tnpack message

Tnpack | Cancell

2. Select the file you want to unpack.
In the [Packed Input File] text box, specify the pack file name you want to enter. Use the names
displayed by default to specify this file name after changing one, or select another file using the
[Ref] button.

3. Select the output file name.
[Unpack Output Files] lists the files of the type specified in the device information definition file
by their default file names. Modify the file name displayed by the following procedure.
a. Click in the list box to select the file name to be modified.
b. Click the [Ref] button to select another folder, and then enter a file name. Modify all the listed
file names. The extensions cannot be changed.

4. Click the [Unpack] button to execute unpacking.
When winmdc has completed unpacking, it displays a message "Unpacking completed!" in the
[Unpack message] text box. If an error has occurred, an error message is displayed.

5. Click the [Cancel] button to close the dialog box.
Alternatively, you can click the [Cancel] button to quit winmdc before it executes unpacking.

(4) Quitting
To terminate winmdc, select [End] from the [File] menu.

S5U1C88000C MANUAL 11 EPSON 81
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 10 MASK DATA CHECKER <winmdc>

10.4 Error Messages

The error messages of winmdc are listed below. The "Dialog" in the Display column means that messages
are displayed in the dialog box, and "Message" means that messages are displayed in the message area of

the [Pack] or [Unpack] dialog box.

Table 10.4.1 List of I/O error messages

Message Description Display

File name error Number of charactersin the file name or extension exceeds the limit. | Dialog

Illegal character Prohibited characters have been entered. Dialog

Please input file name File name has not been entered. Dialog

INI fileis not found Specified device information definition file (.ini) does not exist. Dialog

INI file does not include MDC information | Specified device information definition file (.ini) does not contain Dialog
MDC information.

Can't open file : xxxx File (xxxx) cannot be opened. Dialog
Can't write file: xxxx File (xxxx) cannot be written. Dialog
Table 10.4.2 List of ROM data error messages

Message Description Display
Hex data error: Not S record. Data does not begin with "S." Message
Hex data error: Datais not sequential. Datais not listed in ascending order. Message
Hex data error: Illegal data. Invalid character isincluded. Message
Hex data error: Too many datain one line. Too many data entries exist in one line. Message
Hex data error: Check sum error. Checksum does not match. Message
Hex data error: ROM capacity over. Dataislarge. (Greater than ROM size) Message
Hex data error: Not enough the ROM data. Datais small. (Smaller than ROM size) Message
Hex data error: llegal start mark. Start mark isincorrect. Message
Hex data error: Illegal end mark. End mark is incorrect. Message
Hex data error: Illegal comment. Model name shown at the beginning of dataisincorrect. Message

Table 10.4.3 List of function option data error messages

Message Description Display
Option data error : lllegal model name. Model name isincorrect. Message
Option data error : Illegal version. Version isincorrect. Message
Option dataerror : Illegal option number. Option No. isincorrect. Message
Option dataerror : Illegal select number. Selected option number isincorrect. Message
Option data error : Mask datais not enough. Mask datais insufficient. Message
Option data error : Illegal start mark. Start mark isincorrect. Message
Option data error : lllegal end mark. End mark isincorrect. Message

Table 10.4.4 List of segment option data error messages

Message Description Display
LCD segment data error : Illegal model name. Model nameisincorrect. Message
LCD segment data error : |llegal version. Version isincorrect. Message
LCD segment data error : Illegal segment No. Segment No. isincorrect. Message
LCD segment data error : Illegal segment area. Display memory addressiis out of range. Message
LCD segment data error : Illegal segment output | Specified output mode is incorrect. Message
specification.
LCD segment data error : Illegal datain thisline. |Datawritten hereis not hexadecimal number or output mode. [Message
L CD segment data error : Datais not enough. Segment dataisinsufficient. Message
LCD segment data error : Illegal start mark. Start mark isincorrect. Message
LCD segment data error : Illegal end mark. End mark is incorrect. Message

82 EPSON S5U1C88000C MANUAL II

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

10.5 Example Output File

CHAPTER 10 MASK DATA CHECKER <winmdc>

Note: The configuration and contents of data vary with each type of microcomputer.

Example of a pack file (mask data file)

*

* S1C88xxx MASK DATA VER Xx. XX
*

\ ROML
S1C88xxxyyy PROGRAM ROM
S224000000.
S804000000FB
S224000000.t
S804000000FB
\ END
\ OPTI ON1
* S1C88xxx FUNCTI ON OPTI ON DOCUMENT V X. X
*
* FI LE NAME zzzzzzzz. FDC
* USER S NAME SEI KO EPSON CORPORATI ON
* | NPUT DATE yyyy/ nm dd
* COMVENT SAMPLE DATA
* Kk k %k ODTIO\I ’\D 1 * k%
* --- OSCl SYSTEM CLOK - - -
* Crystal (32. 768KHz) ---- Selected
OPT0101 01
OPTnn01 01
* EOF
\ END
\ SEGVENT1
* S1C88xxx SEGQVENT OPTI ON DOCUMENT Vx. xx
FI LE NAMVE zzzzzzz2z. SDC
USER S NAME SEI KO EPSON CORPORATI ON
I NPUT DATE yyyy/ nm dd
COMVENT SAMPLE DATA

OPTI ON NO. xx

< LCD SEGVENT DECCDE TABLE >

SEG COMD COML COwMR COVB SPEC

E N

0 163 162 161 1F3 S
1 170 172 171 160 S

xx 3B0 3BlL 3B2 3B3 S
*ECF
\ END

~ Version

« Built-in ROM HEX data start mark
~ Model name

27777777 psa’

« Built-in ROM HEX data end mark
« Function option start mark
— Model name/version

"zzzz7777 fdc"

« Function option end mark
« Segment option start mark
~ Mode name/version

"'z27777777.54c"

« Segment option end mark

S5U1C88000C MANUAL 11
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

EPSON

83

CHAPTER 11 SELF-DIAGNOSTIC PROGRAM <t88xxx>

cHAPTER 11 SELF-DIAGNOSTIC PROGRAM <t88Xxx>
11.1 Outline of t88xxx

t88xxx is a self-diagnostic program to check the operation of the hardware tools ICE (S5U1C88000H5) and
S5U1C88xxxP that are used for program debugging of the S1C88 Family.
Perform a self-diagnostic of the ICE and S5U1C88xxxP periodically using this program.

11.2 File Configuration

(1) Program data HEX file (t88xxx.psa)

This is the main file of the self-diagnostic program generated by fil88xxx, in which the unused area of
the built-in ROM is filled with FFH and the system code is set to the system reserved area of the
S1C88xxX.

(2) Function option HEX file (t88xxx.fsa)
This is the file generated by winfog to set the function option into the ICE and S5U1C88xxxP, and is
used at self-diagnosis.

(3) Function option document file (t88xxx.fdc)

This is the document file corresponding to the function option HEX file shown above and is generated
by winfog.

(4) Segment option HEX file (t88xxx.ssa)

This is the file generated by winsog to set the segment option into the ICE and S5U1C88xxxP, and is
used at self-diagnosis.

(5) Segment option document file (t88xxx.sdc)

This is the document file corresponding to the segment option HEX file shown above and is generated
by winsog.

Note that the segment option files (4 and 5) are provided for only certain types of microcomputers that
have set segment options.

(6) readme.txt

This file contains the description of the SSU1C88xxxP LED illumination status to check the operation
with the self-diagnostic program.

11.3 Operation Procedure

After installing S5U1C88xxxP into the ICE, self-diagnosis of the ICE and S5U1C88xxxP can be done by the
following operation test.

For the following operation test, the self-diagnostic program (t88xxx.psa) and the function option HEX
data (t88xxx.fsa) in this package are used. In addition to these files, the segment option HEX data
(t88xxx.ssa) is required for testing the microcomputer model that supports segment option.

Perform the below operations.

(1) Execute the self-diagnostic program (t88xxx.psa), the function option HEX data (t88xxx.fsa) and the
segment option HEX data (t88xxx.ssa) after downloading them into the ICE.
Refer to the ICE manual for downloading and executing programs.

(2) Check the LEDs on the S5U1C88xxxP. If the LEDs light in the sequence described in readme.txt after a
system reset, it is normal. The "cycle count” described in readme.txt indicates a 1 second interval and
the LEDs change their light status every second.

84 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 12 88xxx.par FILE

CHAPTER 12 88xxX.par FILE

The 88xxx.par file is a macro file that contains the information for each model. The ICE (S5U1C88000H5)
sets its operating environment by loading this parameter file. Therefore, the ICE cannot start up if this
parameter file does not exist.

12.1 Contents of 88xxx.par File

The following shows a sample parameter file.

[Options]

Prccl ksel =0 (1)
Vdddown=0 ..(2)
CC=0 ..(3)
Dl AG=0 (4
[MAP Confi g]

; S1C88xxx MAP Configuration Setting
; 000000- OOFFFF: Define 1 byte unit
010000- FFFFFF: Define 256 bytes unit

;syntax: <Start address> <End address> [E][I][U[S][W
; E: Enul ati on menory

; 1:1/0 (PRC Board) nenory

; U:. User nenory

; S: Stack area

; WWite protect (Default does not protect)

;I nternal ROM
Map0=000000 OOEFFF E W ...(5)

;I nternal RAM
Mapl=00F000 OOF3FF E

; Stack area
Map2=00F400 OOF5FF E S

; Di spl ay nmenory

Map3=00F800 00F828
Map4=00F833 00F842
Map5=00F900 00F928
Map6=00F933 00F942
Map7=00FAO0 O0FA28
Map8=00FA33 O0FA42
Map9=00FBO0O 00FB28
Map10=00FB33 00FB42
Mapl11=00FCO0 OOFC28
Map12=00FC33 00FC42
Map13=00FDO0 OOFD28
Map14=00FD33 00FD42

; 1/ 0O nmenory

Map15=00FF00 OOFFO02
Mapl16=00FF10 OOFF12
Mapl7=00FF20 OOFF25
Map18=00FF30 OOFF34
Mapl19=00FF35 O0FF36
Map20=00FF40 OOFF40
Map21=00FF41 OOFF41
Map22=00FF42 OOFF42
Map23=00FF43 O0FF43
Map24=00FF44 OOFF45
Map25=00FF48 OOFF4A
Map26=00FF50 OOFF53
Map27=00FF54 OOFF55
Map28=00FF61 OOFF61
Map29=00FF63 O0FF63
Map30=00FF70 OOFF71
Map31=00FF75 OOFF75
Map32=00FF78 OOFF78

=

S5U1C88000C MANUAL 11 EPSON 85
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 12 88xxx.par FILE

12.2 Description of the Parameters

The parameters (1) to (4) are system reserved items, so do not modify their settings. Parameter (5) and the
following parameters are used to set the memory allocations and memory conditions.

General format:
Map<Serial number> = <Start address> <End address> <Switch>

Serial number
The Map parameter must have a serial number within the range from 0 to 1023.
The serial numbers must not be specified in a special order.
If a number is duplicated, the parameter set first is enabled and the others are disabled.

Address settings

Addresses can be set in byte units for the range from 000000 to 00FFFF. Areas exceeding 010000
should be done using 256 byte units. (****00—****FF).

Switch
The following five letters are available for specifying <Switch>: E, I, U, S and W.

» Switchesfor allocating memories (E, |, U switches)
The I switch allocates the specified address area to the memory on the SSU1C88xxxP board.
The E switch allocates the specified area to the emulation memory on the ICE.
The U switch allocates the specified area to the user’s memory on the target board.

» Switch for setting stack area (S switch)
The S switch sets the specified area as a stack area.

» Write-protect switch/specifying ROM area (W switch)
The W switch sets the specified area as a ROM area that cannot be written. When an area is specified
without the W switch, the ICE will regard it as a RAM area.

Comments
The ICE identifies a line that begins with a semicolon (;) as a comment line. Comments cannot be
placed following parameters.
Example: ; I nternal ROM ... OK
Map0=000000 OOEFFF EW ;i nternal ROM ... NG

12.3 Emulation Memory

The ICE has built-in a 64KB emulation memory for the memory space from 000000 to 00FFFF and a
512KB emulation memory in SSU1C88000H5 or a 256KB emulation memory in S5U1C88000H3 that can be
used as an expanded memory area exceeding address 010000. The emulation memory allows the user to
use it as a memory that will be connected externally in the actual product. Thus it is not necessary to
mount the external memory on the target board to develop the program. However, prepare the external
memory on the target board when developing a product that needs a larger memory than 512KB at a
location exceeding address 010000.

Notes
= It is therefore necessary to edit the path description in the ice88*.ini (* = r or ur) file located in the
Windows system folder. When the 88xxx.par file exists in the same folder as the ice88* .exe file, only
the file name part should be modified.
Installation of ICE88* for Windows makes the default.par file in the same folder as the ice88* .exe file
installed and sets the path information in the ice88*.ini file so that the debugger will refer to the
default.par file.

= The parameters (1) to (4) must be described in the part that begins with an [Options] line and the
parameters following (5) must be described after the [MAP Config] line. Do not delete [Options] and
[MAP Config].

86 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

CHAPTER 13 S1C88 FamiLY DEBUGGER

13.1 Overview

The db88 debugger is a development tool for the S1C88 Family of 8-bit single-chip microcomputers. The
debugger included in this package allows you to debug software created with the S1C88 integrated tool
(C compiler, assembler) using the in-circuit emulator (S5SU1C88000H5).

The debugger has the following features and functions:

= Various data can be referenced at the same time using multiple windows.

= Frequently used commands can be executed from tool bars and menus using a mouse.

= Also available are C source, disassembled code and symbol display functions.

= Consecutive program execution and three types of single-stepping are possible.

= Three break functions are supported.

= Trace and coverage functions.

= An automatic command execution function using a command file.

13.2 Input/output Files

Parameter ~ Absolute Source file(s)

file object file —————} Command file
e —file.c(asm) N ———
file.par | | file.abs |

H —
: , Program HEX file
Debugger -
ICE dbss o

[fiesy | Symbol file
file log file.mot_| FPGA data file

file.fsa | Function option HEX file
Record file Log file Trace file

Fig. 13.2.1 Input/output files

Parameter file (file_name.par)
This text file contains memory information on each microcomputer model and is used to set the memory
mapping information to the ICE. For the contents of this file, refer to Chapter 12, "88xxx.par File".

Absolute object file (file_name.abs)
This is an IEEE-695 object file generated by the advanced locator or locator. By reading a file in this
format that contains debug information, C source display and symbolic debugging can be performed.

Source file (file_name.c, file_name.asm)
This is the source file of the above object file. It is read when the debugger performs source display.

Internal ROM data HEX file (file_name.psa)
This is the program file generated by the fil88xxx unused ROM area FF filling utility in Motorola S2
format file. The unused area of the built-in ROM has been filled with FFH and the system code is set
to the system reserved area.

Symbol information file (file_name.sy)
This is the symbol information file generated by the symbol table file generator. By preparing the file
with the same name as the internal ROM data HEX file in the same directory, it will be automatically
loaded at the same time the internal ROM data HEX file is loaded. This file allows the debugger to
display the symbols defined in the source.

Function option HEX file (file_name.fsa)
This is the mask option setup file in Motorola S2 format that is generated by the function option
generator.

S5U1C88000C MANUAL 11 EPSON 87
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

FPGA data file (file_name.mot, file_name.mcs)
This data file is used to configure the FPGA on the peripheral board S5U1C88000P for a S1C88 Family
model. ".mot" is a Motorola S2 format file and ".mcs" is an Intel HEX format file.

Command file (file_name.cmd)
This text file contains a description of debug commands to be executed successively. By writing a
series of frequently used commands in this file, the time and labor required for entering commands
from the keyboard can be saved. The command described in the file are read and executed using the
com command.

Log file (file_name.log)
This text file contains the executed commands and execution results. Output of this file can be con-
trolled by the log command.

Record file (file_name.cmd)

This text file contains the executed commands. Output of this file can be controlled by the rec com-
mand. This command can be used as a command file.

Trace file (file_name.trc)
This text file contains the specified range of trace information. Output of this file can be controlled by
the tf command.

13.3 Starting and Terminating the Debugger

13.3.1 Starting the Debugger

Connect the ICE (S5U1C88000H5) to a personal computer and turn the power on before starting up the
debugger.
The debugger can be started up using one of the following methods:

Starting from Work Bench
After the build process of the project has completed, select [DB88 Debugger] from the [Debug] menu
or click the [DB88] button. The dialog box shown below appears.
Target and FSA files for DB8S =]| Select the absolute object file format (IEEE 695 or Motorola
[Load madule farmat S) using the radio button.

+ |EEE B35 Select a function option HEX file from the dialog box

¢ Matarola S records displayed by clicking the [Ref] button, or enter a function
option HEX file name directly into the [Fsa File] text box.
The [Create] button invokes the function option generator

I ﬂlﬂl winfog to generate a new function option HEX file.

After these items have been selected/entered, click the [OK]
button to launch the debugger.

Fza File

Cancel |

Starting from Windows Explorer

Double-click this icon to start the debugger.
DBad.exe

Starting from MS-DOS prompt
Enter the command shown below to start the debugger.

db88 A [<parameter file name>] A [<Rcommand file name>]
A~ denotes a space. [] indicates the possibility to omit.
Example: C:\ epson\s1c88\\db88\ db88 par 88xxx.par startup.cnd

Note: The parameter file and command file will be recognized by their extensions ".par" and ".com", so
the extension must be included in the file name to be specified.

88 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

When the debugger starts up, it outputs the following message in the [Command] window.

DB88 Ver x.xX
Copyri ght SEI KO EPSON CORP. 2001

Parameter file: XXXXXXXX.par
Initialize....... K

>

When the tests and initialization of the ICE have been finished, the debugger displays "OK" and is ready
to execute a debugger command. When the debugger is invoked from the Work Bench, the specified
object file is loaded after the tests have been finished. The state of the screen including the position and
size of the windows will return the same as the last time the debugger was terminated.

Note: If the ICE is in self-diagnosis state (when the ICE is turned on with the DIAG switch set to on
position), the debugger does not display "OK" until the diagnosis is finished. The self-diagnosis
takes about 40 seconds for the process.

If "NG" is displayed, restart the debugger after checking the following conditions:

= The USB cable is connected properly

= The USB driver for the ICE is installed

= The peripheral board is correctly fitted in place
= The ICE's power is turned on

« The ICE remains reset

13.3.2 Terminating the Debugger

To terminate the debugger, select [Exit] from the [File] menu.
You can also input the g command in the [Command] window to terminate the debugger.

>q

S5U1C88000C MANUAL 11 EPSON 89
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

13.4 Windows

This section describes the types of windows used by the debugger.

13.4.1 Basic Structure of Window

The diagram below shows the window structure of the debugger.

[Source] window [Watch] window [Coverage] window [Register] window

Fie Aun Break Trace ODoverage View Opfion Window Help

BE OME =\ o et \
T, T
A Mix _[O[x] / o x|
| Address. [00022E M4 2B : :AAAA IX:AAAA 1Y:AAARA
B:AA AzAR HzAR L:AR BR:AA
* 0n exit the program will fall into an endless loop. ﬂ CH:81 NB: 81 EP:88 XP 08 T
*/ SG: TBUDNVUEGZ GC: F3 F2 F1 FB
ia it int 1 poaona 11 1 1
vol _exit [int j; [HL]:AB [1X]:A0 [1X+L]:02
void _start (void j; [SP]:n0 [1¥]:n0 [1¥+L]:02
extern int main { void);
extern void _copytablef{ wvoid }; -|D|l|
_interrupt{ 6x0060) /% Startup vector =/ P addr| 0173456 7[0123456 F[Count] ﬁl
void _start_cpt{ wveoid)} a00e18 * 1
{ 000100 xxxxerse xexxxxsx 16
>*|0082AE B8:02AE CFGEBOFS __START: LD SP,HF806h +[990110 xxxxxerxx xxxxxxxx 16
BAA120 xxxxExxE XAXXXXEE 16
2 | ’
71900130 xxxxxxxx xxxxxxxx 16 -
= LO0] | BV =lo|x| & H 4
TNS |F Addr| T Addr | Code | Mnenonic «||[address | Symbol =] M I [l 5
8068 BBBS1F 04:B81F || essuas _ ANDXL = | o
5661 BROS28 BB:6820 BBONEX _ BLCPS SIS Lzl
00B2 000820 B0:0820 CE91 RL B BOBLCE _ CHMPSL saveflg 0x00
8003 080821 9E:0821 800568 _ CHPUL pHow BxF1EL
8004 DOOB22 08: 0822 BO02CE _ DIUSI phext 8xF1EL
Tll| opose8 _ pIUUIL g_keybuffer 0x@OF1E4
e — H 4|l nanzua DU | =l =
o] REE
>ma 2]} | address: [o00000 ferte =M« » M
[Internal memory] =
RAM 00F000 - 0OF7FF boobo. at 62 1o 1o g e |
STK 8OF500 - BAF7FF BOOE10 B8 84 EB 48 na 01 ..
LCD BOF&06 - BAFss2 000020 BF F9 AE BB 22 B2
LCD BOFO0G - BAF942 806838 CB B2 86 12 FF BF
LCD 0OFABA - 0OFA42 800048 FB FB FB FB FB FB
LCD BOFBOG — BAFHL2 BOOOSD 96 oA 10 28 FE FB
LCD BOFCOG — BAFCA2 BOO0GO BB EE AB BF A2 82
[E';ggrgg;"ggm;rslﬁm“z BOOO70 B2 A9 B4 BA 68 79
o Do hares o s
RAM BB0068 - 088001 =
1 . | LW | KA \
[Command] window [Trace] window [Symbol] window [Dump] window

Features common to all windows

(1) Open/close and activating a window
All windows except [Command] can be closed or opened.
To open a window, select the window name from the [View] menu. When a command is executed, the
corresponding window opens if the command uses the window for displaying the executed results.
To close a window, click the [Close] box on the window.
The opened windows are listed in the [Window] menu. Selecting one from the list activates the
selected window. It can also be done by simply clicking on an inactive window. Furthermore, pressing
[Ctrl]+[Tab] switches the active window to the next open window.

(2) Resizing and moving a window
Each window can be resized as needed by dragging the boundary of the window with the mouse. The
[Minimize] and [Maximize] buttons work in the same way as in general Windows applications. Each
window can be moved to the desired display position by dragging the window's title bar with the
mouse. However, windows can only be resized and moved within the range of the application
window.

(3) Other
The opened windows can be cascaded or tiled using the [Window] menu.

90 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

13.4.2 [Command] Window
iﬁ[:ummand —[O] =]
SC:I1 IBUDHNHUCLC 2 CC:F3 F2 F1 F@ ‘I
1 198000080 1 1 1 1
>g
BUS CYCLE : 86519
Mode L : Bahs B48ms 838us
OK*
PC:08618 SP:F7FE 1IX:21F& 1IVY:F1E4
B:o1 A:e5 H:F1 L:EY4 BR:F8@

CB:81 NB : 81 EP: 88 XP-By YP:88
SC:I1 IBUDHUVE Z CC:F3 F2 F1 FB
8@ BB BBAA 8 8 8 8
»s
Ho Hessage
PC:BBSBE SP:F7FC IX:21F8 IY:F1EL4
B:o1 A5 H:F1 L:E4 BR:F8
CB:81 NB : 81 EP: 88 XP-By YP:88
SC:I1 IBUDHUVE Z CC:F3 F2 F1 FB
| 8@ BB BBAA 8 8 8 8
2|

The [Command] window is used to do the following:

(1) Entering debug commands

When the prompt ">" appears in the [Command] window, the system will accept a command entered

from the keyboard.

(2) Displaying debug commands selected from menus or tool bar

When a command is executed by selecting the menu item or tool bar button, the executed command

line is displayed in the [Command] window.

(3) Displaying command execution results

The [Command] window displays command execution results. However, some command execution
results are displayed in other windows. The contents of these execution results are displayed when

their corresponding windows are open. If the corresponding window is closed, the execution result is

displayed in the [Command] window.

When writing to a log file, the content of the write data is displayed in the window. (Refer to the

description for log command.)

(4) Displaying the command history

db88 stores up to the 32 most recent commands executed since startup in memory. (If any command

has been executed twice or more, it is registered only once.) The commands stored in memory can be

recalled by entering the [Ctrl] + [H] keys when the [Command] window is active.

SC:I1 IBUDHUC Z CC:F3 F2 F1 F@
1 188600088 a8 8 8 @

Command history
displayed by entering [Ctrl] + [H]

S5U1C88000C MANUAL 11 EPSON
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

91

CHAPTER 13 S1C88 FAMILY DEBUGGER

= Simply enter [Ctrl] + [H] to display a command history in popup list form. Double-click a command
to repeat, or select a command with the up or down arrow keys and press [Enter]. The command is
pasted into the prompt position. It can then be executed by pressing the [Enter] key. If the command
history has only one previous command registered, the command is pasted directly into the prompt
position without being displayed in a popup list.

= Enter [Ctrl] + [H] after entering any character to display a command history in one of the following
ways:

- If the command history has several commands registered that begin with that character (string),
those commands are listed. Then, when another character (string) is entered, one of the recently
executed commands among those listed is selected (highlighted) that includes the character
(string).

- If the command history contains only a single command registered that begins with the character
(string), the command is pasted directly into the prompt position.

- If the command history does not contain any commands registered that begin with the character
(string), no operation is performed.

For example, if the command history contains the three commands dd, sy, and s:

- Enter [Ctrl] + [H] after entering the character 's'. The commands s and sy are listed. Here, the
recently executed command s is displayed above the other commands and highlighted.

- If you follow by entering a'y', command sy is highlighted.

- Enter [Ctrl] + [H] after entering the character 'd’ to paste the command dd into the prompt
position.

Note: The [Command] window cannot be closed.

92 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

13.4.3 [Source] Window

The [Source] window displays the program code. The following three display modes are supported:

1. Disassemble display mode
After disassembling the loaded object, the debugger displays the addresses, codes, and mnemonics in
it. To open the [Source] window in this mode, select [Source | Disassemble] from the [View] menu. To
go to disassemble display mode while in another mode, select [Source | Disassemble] as described
above, or click the [Disassemble] button on the [Source] window, or run the u command. When the
[Source] window is in this display mode, the word "Disassemble” is displayed on the title bar. This
display mode can be selected regardless of the type of object file loaded.

@ [Disassemble] button

2. Source display mode
In this mode, the debugger displays the corresponding source for an object that includes the current
program counter address. However, this mode can be selected only when an absolute object file (.abs)
in IEEE-695 format containing debug information for source display purpose is loaded. To open the
[Source] window in this mode, select [Source | Source] from the [View] menu. To go to source display
mode while in another mode, select [Source | Source] as described above, or click the [Source] button
on the [Source] window, or run the sc command. When an absolute object file (.abs) that contains C
source debug information is loaded while the [Source] window is open, the [Source] window auto-
matically enters this mode. In this display mode, the source file name is displayed on the title bar.

[Source] button

3. Mix display mode
In this mode, the debugger displays the source and its disassembled contents (address, code, and
mnemonic) separately in the upper and lower rows. However, this mode can be selected only when
an absolute object file (.abs) in IEEE-695 format containing debug information for source display
purpose is loaded. To open the [Source] window in this mode, select [Source | Mix] from the [View]
menu. To go to mix display mode while in another mode, select [Source | Mix] as described above, or
click the [Mix] button on the [Source] window, or run the m command. When the [Source] window is
in this display mode, the word "Mix" is displayed on the title bar.

[Mix] button

OSource display
The source of any object can be displayed only when an absolute object file in IEEE-695 format that
contains debug information for source display purpose is loaded.
Furthermore, because the source file is loaded after locating it from the object file's debug information
(relative path information for the source file), if the source file is removed or relocated (i.e., its relative
position from the object file has changed), the source is not displayed. In this case, the window in
source display mode is left blank, and in mix display mode, the window shows only the disassembled
contents.

S5U1C88000C MANUAL 11 EPSON 93
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

Disassemble display mode

i' Dizassemble H=]E3
| Adchess: [D00TEC [« » v |2 E
[P addr | L. iddr | Code | Unassemble [[=]
* BA18C BO:@18C CFGEOOFS __START: LD SP,#F8A6h |
* gAA198 68:8198 B4FF LD BR,HFFh
* gA@192 @8:8192 DDAAAA LD [BR:88h],#A86h0
* gAE195 @A8:8195 DDA2AA LD [BR:82h],#86h
* gAE198 @A:8198 DDA168@ LD [BR:81h],#a6h
* gAA198 68:8198 B4FO LD BR,H#F6h
* geg190 ©808:8190 F2A3FF CARL _ copytable
* gaa1a@ @8:81A8 F21281 CARL _main
6081A3 08:81A3 F28A01 CARL __exit
g081A6 00:81A6 F9 RETE
0081A7 00:81A7 CFBY _watchdog: PUSH ALE
0081A9 00:81A9 CFBD POP ALE
® 0001AB | BA:@1AB F9 RETE
* @E1AC B8:@1AC CFRO _rtclock: PUSH ALE
* @AB1AE B8:81AE B281 LD L,#81h
* g@E1B@ @A:@1B@ CECSAA LD EP,#a6h
* gAA1B3 668:81B3 CEDG24FF LD [FF24h],L
* gOG1B7 00:01B7 B9OOFO LD HL,[F886h]
* gAa1BA B88:81BA CFE? LD IX,HL
* gAE1BC @A:@1BC C18788 ADD HL,H#8887h
* @AA1BF @A8:@81BF 4D LD B,[HL]
* gAA1CA 668:81CA BA\1 LD a,#81h
* @gae1c2 @a:@81c2 61 abD A,B =
Kl ol

Described below are the functions of the [Source] window in disassemble display mode:

(1) Displaying program code
The window displays the physical/logical addresses, codes, and disassembled contents.
Program display location can be changed by the following method as well as scrolling.
= Enter an address in the [Address] text box. Or specify an address using the u command.
The program is displayed from the selected address.

S I

Displays the beginning or end area of the memory.
Displays one page before or after in the current window size.
Displays the program from the current PC address.

Note: The S1C88 Family processors use variable length mnemonics, so that when the window is scrolled
upward, the disassembled contents shown on the window may differ from the actual code.

0 Updating of display
When a program is loaded and executed (g, gr, s, n, se, or rst command), or the memory contents are
changed (de, df, or dm command), the display contents are updated. In this case the [Disassemble]
window updates its display contents so that the current PC address can always be displayed.

(2) Displaying the current PC
The current PC (program counter) address is indicated by a yellow arrow at the beginning of the line.

(3) Displaying PC breakpoints
The address line where a breakpoint is set is indicated by a red e mark at the beginning of the line.

(4) Coverage information
The coverage function places an [Oat the beginning of the executed address line.

(5) Setting a break at the cursor position
ﬂ Place the cursor at an address line where a breakpoint is to be set. Then click on the [Break]
button. A PC breakpoint will be set at that address. If the same is done at the address line where
a PC breakpoint has been set, the breakpoint will be cleared. This function allows setting of two
or more breakpoints.

If the [Go to Cursor] button is clicked, the program will execute beginning with the current PC
position, and program execution breaks at the line where the cursor is located.

-

94 EPSON S5U1C88000C MANUAL I

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

Source display mode

W C:AEPSONASIMAs1 cB8\samplesclkdemo.c

JFunctidns: I '”'ﬁ>|$ﬁﬂ‘|€‘6"\f

/#====display character (y8bit)

unsigned char disp_char¥8{char x, char y, unsigned char charac) {
unsigned char =yram, *ascfont;
unsigned char 1 = 8, err = 8;

charac -= AscCodeMin;
if ({x <= AscPosiHaxX) && (y <= AscPosiHax¥) && {charac <= AscCodeMax)}{
vram = (unsigned char =){UramStt + x + y = Uram¥step);

ascfont = {unsigned char #*){AsciiFontTbl + charac * AscFontStp);

=3 for (i=8 ; i < AscFontStp ; i++){ _J
#{uram++) = ={ascfont++);
H

H

else {
err = 1;
H
L] return {err);
} ||

Described below are the functions of the [Source] window in source display mode:

(1) Displaying program code
The window displays the source of the loaded object. The source automatically displayed here
includes the address indicated by the current PC (program counter).
The comment lines, reserved words, and any text other than these two types are displayed in green,
blue, and black, respectively. The tab width is set to a length of four characters. The program display
position can be changed in the following manner, as well as by scrolling:
a = Select a function name from the [Functions] pulldown list. The
J Functions: j L - .
source is displayed from the beginning of that function.

zet_reg -
rtkepzcan
rtclock,

idizp 3
dizp_stingy'a
main hal

c: | <« Click the [Current PC] button. The source is displayed from the current PC address.

= To display another source file, click the [Source Files] button to bring up the dialog box
shown below and to select the desired source file from the list of sources.

Select Files
File List: Function List:
CAEPSONSIMYe1 cB8ysampleshascifo set_reg
=) rkeyscan
CAEPS0NSIMYET cB8ysampleshostart. telock
eichits1cBinclude\stdlib h disp_charys
ehcBis1cBBincludelstring h disp_stringv'
rain
L L [CT 2

cora_|

0O Updating of display
When a program is loaded and executed (g, gr, s, n, se, or rst command) and program execution is
halted midway, the display contents are updated. In this case, the source that includes the current PC
address is displayed in the window. If the corresponding source cannot be found, the [Select Files]
dialog box shown above appears, prompting for selection of the source to be displayed.

S5U1C88000C MANUAL 11 EPSON 95
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

(2) Displaying the current PC
The source lines that include the address indicated by the current PC (program counter) are marked
with a yellow arrow at the beginning of the line.

(3) Displaying PC breakpoints
The source lines that include any address that has been set as a breakpoint are marked with a red e
mark at the beginning of the line.

(4) Setting a break at the cursor position

bl

=

Place the cursor at the source line at which a breakpoint is to be set. Then click the [Break]
button. This sets the source line (the start address of the effective object code corresponding to
the source) as a breakpoint. (A breakpoint can also be set by double-clicking anywhere in the
line.) If the same action is performed at the source line in which a PC breakpoint has been set,
the breakpoint is cleared. Multiple breakpoints can be set, one breakpoint per source line.
However, no breakpoints can be set in source lines that do not have actual code. Note that due
to optimization by the C compiler, no code can be generated for some C statements that would
otherwise have code generated. For source lines at which breakpoints cannot be set, change to
mix display mode and check.

Click the [Go to Cursor] button. The program starts running from the current PC and breaks at
the line at which the cursor is positioned. In this case, the cursor must also be located at the
source lines that have the actual code. Clicking the [Go to Cursor] button has no effect unless
the source has the actual code.

(5) Searching for a character string
In source display mode, the [Source] window displays the following find buttons, permitting a search
for a character string.

&

Click the [Find] button to display the dialog box shown below, allowing you to specify a search
string.

Find Enter a search string in the [Find what] edit

, . . box and click the [Find Next] button. The

o EEEE string search proceeds in the downward

I Match whole word only [Direction _Gred |1 girection of the [Source] window (toward the
™ Match case © Up Down end of the program) from the current cursor
position. If an instance of the specified string
is found in the [Source] windowy, it is placed
in a selected state.
When the [Find Next] button is clicked again, the next instance of the specified string is sought
from that position forward. To search up (toward the beginning of the program), select the
[Up] button for [Direction]. To search for instances that completely match the specified string,
check the [Match whole word only] check box. Or to discriminate between uppercase and
lowercase letters when searching, check the [Match case] check box, before clicking the [Find
Next] button.

Select a string by dragging the mouse in the [Source] window and clicking the [Find Next]
button on the [Source] window. The string search proceeds in the downward direction of the
[Source] window (toward the end of the program) from that selected position. If an instance of
the string is found, the newly found string is placed in a selected state. When the [Find Next]
button is clicked again, the next instance of the string is sought from that position forward.
This search is case-insensitive, and instances that do not completely match the string will also
be found.

The [Find Previous] button functions in the same way as the [Find Next] button described
above, except that string searches proceed up (toward the beginning of the program).

96

EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

(6) Registering symbols in the [Watch] window
ﬂ Select a symbol name in the window by dragging with the mouse (displayed in reverse video
when selected) and click the [Watch] button. The symbol is registered to the symbol list of the
[Watch] window. Once registered this way, the value of that symbol can be verified in the
[Watch] window.

(7) Displaying variable values

Place the mouse cursor at a variable name in the displayed
| Furictions: | .” S | f Hdh | source (need not to click), and the value of that variable
set_reg(); (or address for a pointer variable) is displayed. The

//<display clock data> variable types (signed/unsigned) int, long, and short are

err = disp string¥8(8,8, ; ; f : -
3 whi o = 5:00] dlsplay_ed in deCI_maI notaFlon, Whlle_addresses_, structures,
o free({char=)p_clkdata); and unions are displayed in hexadecimal notation. To
¥ display the values of structure members, the member's

variable name needs to be selected with the mouse. For
array elements, variable names must be selected with the
mouse. Out-of-scope variables are not displayed.

Mix display mode

| Address: [0003E5 [« » v |2 |E
i =
//====display string {y8bit)
i

unsigned char disp_string¥8{char x, char y, unsigned char =string) {
* 9OB3BS 0O0:03BS CFO6AB4EE _disp_string¥8: SUB SP,#08804h

* §EB3B? B0:83BY9 A48 LD B,RA
* §EB3BA B0:83BA CECo88 LD XP,#88h
* BOB3BD BO:83BD CFFA LD IX,SP
* BEB3BF B0:83BF CES482 LD [IX+82h],L
unsigned char err = B;
&% BA3IC2 06O:83C2 B208 LD L,#88h
while ({=string %= NHULL) || err *=0) {
* pOA3C4 BO:83C4 F133 JRS 33h
err = disp_char¥8{x,y,*string);
* BEO3C6 B0:B3C6 CF778@ LD [SP+@Bh],IY
* geB3CY? B0:83C% CECY@8 LD ¥P,#88h
o* B8A3CC @0:83CC SF LD H,[I¥]
* g8B3CDh B8:83CD CECo88 LD XP,#88h
* geB3D8 Be:83D08 CFFA LD IX,SP
* §ee3D2 B8:83D2 CE4CH3 LD [IX+83h],B
* ge83D5 Be:83D5 CECY@8 LD ¥P,#88h
* geB3D8 B8:83D8 CFFE LD IY,SP
* gee3bn B8:83DA CES182 LD L,[IY+82h] -
Kl ol

The mix display mode is functionally the same as disassemble display mode. The difference is that each
source line and the disassembled contents of the corresponding object code (physical/logical address,
object code, and mnemonic) are displayed one for one in the upper and lower rows. However, mix
display mode can only be selected when an absolute object file (.abs) in IEEE-695 format containing
debug information is loaded.

The displayed source lines cannot be operated on - for example, by setting a break. Various display
manipulating and break setting operations can only be performed on the disassembled display contents.
For [Source] window functions that can be used in mix display mode, refer to the description of disas-
semble display mode.

The source lines and the disassembled contents are displayed in black and gray, respectively.

S5U1C88000C MANUAL 11 EPSON 97
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

13.4.4 [Dump] Window

Address| +0

Dump 19 [=] B3

ress: (000000

+F| Value | ‘l

ki

a@e@aae 8C 81 FF H
888818 FF FF FF H
808828 FF FF AC OpgupLe
888838 FF FF FF FF FF

a@eauB FF FF FF FF FF FF FF FF FF FF FF
888858 FF FF FF FF FF FF FF FF FF FF FF
a888aB FF FF FF FF FF FF FF FF FF FF FF
888878 FF FF FF FF FF FF FF FF FF FF FF
080888 FF FF FF FF FF FF FF FF FF FF FF
888898 FF FF FF FF FF FF FF FF FF FF FF
ae808e8Ad FF FF FF FF FF FF FF FF FF FF FF
8808888 FF FF FF FF FF FF FF FF FF FF FF
@peece FF FF FF FF FF FF FF FF FF FF FF
a8e8ape FF FF FF FF FF FF FF FF FF FF FF
@88BER FF FF FF FF FF FF FF FF FF FF FF
8888FB FF FF FF FF FF FF FF FF FF FF FF
a@e188 a6 CF E3 CF B1 CF E6 CE D8 C8 CE
888118 CE D8 42 81 CE CE 4B E5 82 81 CF
888128 CE ChA 4A 81 48 CE CB AE F8 C8 CE
88@138 B8 88 Cha CF 3B E7 BB CE B8 88 C?
888148 1n F8 CE C7 88 A@ CE C5 88 C5 48
8@8a158 88 CF E9 CE 48 87 CE 48 88 CF 74
8@8@168 48 82 CF EC CE 48 84 CE 48 @5 CF

FF FF FF FF
FF FF FF FF
FF FF FF FF
TF FF FF FF FF FF

T
M T oTm o

@

ad

2

©)

Displaying data memory contents

The [Dump] window displays the memory dump results in hexadecimal numbers.

Data is displayed in byte units by default. It can be changed to another size using the pull-down box.

Memory display location can be changed by the following method as well as scrolling.

= Enter an address in the [Address] text box. Or specify an address using the dd command.

Data is displayed from the selected address.

- If 1 » b‘l

[[

Displays the beginning or end area of the memory.
Displays one page before or after in the current window size.

Updating of display

The display contents of the [Dump] window are updated automatically when memory contents are
modified with a command (de, df, or dm command), or by direct modification. After executing the
program (g, gr, s, n, se, or rst command), the display contents are also updated. To refresh the [Dump]
window manually, execute the dd command or click the vertical scroll bar.

After program execution is completed, the value changed during execution is displayed in red.

Direct modification of data memory contents

The [Dump] window allows direct modification of data memory contents. To modify data on the
[Dump] window, place the cursor at the front of the data to be modified or double click the data, and
then type a hexadecimal character (0-9, a—f). Data in the address will be modified with the entered
number and the cursor will move to the next address. This allows successive modification of a series
of addresses.

Displaying decimal data
Hover the mouse cursor over data (need not to click) during [BYTE], [WORD], or [LONG] display,

and the data is displayed in decimal notation (signed int or unsigned int). For [BYTE], the data is also
displayed in bits.

hddress|+0 +1 +2 +3 +4 +5 +6 +7 +6

pO0100 CE BD Q0 ES 08 CE 80 CE 91
000110 CF B1 CF E6 CE D8 C8 CE CF
000120 01 CE CE 4B femootio| CF E6
000130 01 48 CE CB 4 2% |C7 00
000140 F1 38 CE C6 OU oF B9 CE 40

98

EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

13.4.5 [Register] Window
iJj Register _ O] (1) Displaying register contents
PC:82AE SP:AAAA TIX:AAAR IY:AAAA The [Register] window displays the contents of
B:AA AzAA H:AA L:AR BR:AA the S1C88 CPU registers, condition flags and the
CB: @1 NE : 81 EP: @@ AP 00 YP: 00 .
SC: 11 I8UDNUCZ CC: F3 F2 F1 F8 memory pointed by the [HL], [SP], [IX], [IY],
1 188080008 11 1 1 [IX+L] and [IY+L] registers.
[HL]:AB [1X]:n8 [IX+L]:A2
[SP]:AB [1¥]:n8 [Iv+L]:A2

0 Updating of display
The display is updated when registers are dumped (rd command), when register data is modified (rs
command), when the CPU is reset (rst command), or after program execution (g, gr, s, se, or n com-
mand) is completed. After program execution is completed, the value changed during execution is
displayed in red.
(2) Direct modification of register contents
The [Register] window allows direct modification of register contents. To modify data on the [Regis-

ter] window, select (highlight) the data to be modified and type a hexadecimal number (0-9, a—f), then
press [Enter]. The register data will be modified with the entered number.

13.4.6 [Symbol] Window

' Symbol _[ofx]| The [Symbol] window can display the symbol list,
Iethees || Srulbal ~|| if symbol information is loaded.
088129 _ CHPUL _| Symbols are listed in alphabetical order by default.
688168 _ HULXI : " "
88618C _ START It can be changed to address order using the "sy /a
8p81s2 _ copytable command.
BBO2AF _ exit
BBFOAD _ 1c_b_._tbss
0OF1EX _ lc_bh
886CH8 1c co | |

O The symbol file is automatically read when a target program file in the Motorola S2 format is loaded.
However, it must be the same name (extension is .sy) and be located in the same directory as the
target program file. Note that a symbol file is not read when an IEEE-695 program file is loaded.

13.4.7 [Watch] Window
i Watch [_[ofx]| The window shows the name and the current value of
[Symbol Hame [Walue | | thesymbol registered using the w command or the
ip_clkdata 0xF1ES [Source] window [Watch] button. The value is
[8z8] bx30 0’ displayed in the format specified by the w command.
g_intflg 00600060 . . .
If the symbol is an array, structure, or union, a |+| icon
is displayed. Clicking this icon displays the array,
structure, or union members hierarchically.

The registered symbols can also be removed or have their display formats changed (e.g., from hexadeci-
mal to decimal) from a menu displayed by right-clicking the symbol. However, display formats can be
changed only for types such as int, char, long, and short, and cannot be changed for addresses. The
addresses are always displayed in hexadecimal notation.

Note that symbol display on this window is possible only when an absolute object file (.abs) in IEEE-695
format containing information on the specified symbol is loaded.

Note: If the -O1 option is specified when compiling, unnecessary symbols may be removed for code
optimization, and no symbol information may be generated. Such symbols cannot be registered in
the [Watch] window.

0 Updating of display
The display is updated after program execution (g, gr, s, se, or n command) is completed (default).
This condition can be changed so that the display is updated while the program is running using the
dialog box that appears by selecting the [Run | Setting...] menu command (see Section 13.8.4, "Execut-
ing Program™).

S5U1C88000C MANUAL 11 EPSON 99
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

13.4.8 [Trace] Window

INS. P.Addr| L.Addr Code Mnemonic BA HL IX IV SF ER EF XEF ¥F SC [5S) Hemory -
8217 808400 B81:8400 03 IHNC IY 3E84 F828 F828 FO68 F7F3 FO 88 88 88 88--H-C- 08888

0218 0004L0A 81:040AQ 02 INC IX 3E84 F828 F829 FO60 F7F2 FO 00 80 80 88--H-C- 0088

0219 BOB49B B1:849B CF7681 LD [SP+81h],IX 3E84 F828 F829 FA60 F7F3 FA 60 88 68 868--H-C- 00688 HMU:[BBF7F4]=29 HU:[88F;
8220 000L0E @81:840FE BAA1 LD A,#681h 3EB1 F828 F829 FO68 F7F2 FO 88 88 88 88--H-C- 0888

8221 008L4LA0 B1:84A0 AG PUSH IP 3EB1 F828 F829 FO60 F7F1 FO 80 60 688 88--N-C- 0886 WMW:[BOF7F2]=08 HU:[06F;
8222 @@oha1 91:84A1 CECHBO LD XP,#86h 3EG1 F828 F829 FO60 F7F1 FO 00 80 88 88--H-C- 0088

0223 B0B4AL4 B1:84A4 CFFA LD IX,SP 3EB1 F828 F7F1 FO68 F7F1 FB B8 88 68 B8—-H-C- 8868

8224 @0OLAG B1:84A6 CELBAZ LD B,[IX+82h] 8461 F828 F7F1 FO60 F7F1 FO 00 08 88 88—-N-G- 00088 HR:[OAF7F3]=-04

8225 8884LA0 81:84A0 AE POP IP 8461 F828 F7F1 FO60 F7F3 FO 00 68 88 88-—-N-C— 0088 MR:[@BF7F1]=60 HR:[86F;
8226 @004LAA 81:84AA B ADD A,B 84085 F828 F7F1 FO60 F7F3 FO 00 00 88 15 151]

0227 BOB4AB B1:84AB 58 LD L,A 8405 F8B5 F7F1 FO68 F7FF3 FB 80 88 68 [SLSL5Ne]

8228 0OOLAC 81:84AC B1A5 LD B,#85h 8585 F885 F7F1 FO68 F7F3 FO 88 88 88 aa88

8220 BOOLAE B81:84AE 42 LD A,L 8585 F8685 F7F1 FO68 F7F3 FO 88 88 88 a888

8230 000LAF 01:04AF A6 PUSH IP 85685 F8685 F7F1 FO60 F7F1 FO 00 80 88 00868 HW:[08F7F2]=00 HW:[60F;
0231 BOB4BB B1:84B0 CEC688 LD XP,#88h 8505 F8B5 F7F1 FO68 FFF1 F8 80 88 68 [SLSL5Ne]

8232 @004B3 @1:84B3 CFFA LD IX,SP 8585 F885 F7F1 FO68 F7F1 FO 88 88 88 aa88

8233 0004LBS ©01:04B5 CELLOZ LD [IX+82h],A 85685 F8685 F7F1 FO60 F7F1 FO 00 80 88 00868 HW:[BBF7F3]=085

0234 BOB4BE B1:84BB AE POP IP 8505 F8B5 F7F1 FO68 F7FF3 F8 B8O 88 68 0088 HR:[BOF7F1]=08 HR:[B6F;
8235 @004BT B81:84B7 3A8A XOR A,#86h 8585 F885 F7F1 FO68 F7F3 FO 88 88 88 aa88

8236 @OOLEE 91:84BE CEBBBA XOR B,i#86h 8585 F865 F7F1 FO68 F7F3 FO 88 88 88 a888

8237 OOOLBE 91:84BE 31 CP fA,B 8585 F865 F7F1 FO68 F7F2 FO 00 080 08 15 151]

0238 BOB4BF B1:84BF CEEBCB JRS LT,CBh 8585 F8O5 F7F1 FO68 F7FF3 FB B8 88 68 [SLSL5Ne]

8239 00OLC2 @1:84C2 F185 JRS B85h 8585 F865 F7F1 FO68 F7F3 FO 88 88 88 aa88

4 | ¥l

After the trace function is turned on by the md command, the debugger samples trace information while
the target program is running. The trace data buffer has a capacity for 8192 instructions (overwritten from
the beginning if the capacity is exceeded), and its data can be displayed in the [Trace] window.

The following lists the trace contents:

= Instruction number

= Fetched code and disassembled contents

= Register and condition flag contents

= Memory access status (R/W, address, data)

This window also displays the trace data search results by the ts command.

0 Updating of display
The contents of the [Trace] window are cleared when the target program is executed. After the
execution has finished, the [Trace] window displays the contents of the trace buffer.

13.4.9 [Coverage] Window
i) Coveias _[ojxj| Thiswindow shows the coverage information

W (executed address information) acquired by the ICE.
ogoe1e * 1 The displayed contents indicate the memory map in
a86108 16 - N

gee118 16 16 bytes per line. The value at the beginning of each
ae8120 16 line is a physical address (hexadecimal value).
ggg:ig :2 Asterisks (0 in the line indicate the executed ad-
aoe15A 16 dresses within a 16-byte area beginning with the
aes160 16 ~|| displayed address. The Count values are number of
Kl %] executed addresses in the line.

The [Coverage] window does not update its displayed contents automatically even if a program execu-
tion is suspended. To update the display, select [Coverage] from the [Coverage] menu or execute the cv
command. To clear the coverage information acquired in the ICE and display contents in the [Coverage]
window, select [Coverage Clear] from the [Coverage] menu.

100 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

13.5 Menu

This section outlines the menu bar available with the debugger.
The menu bar has nine menus, each including frequently-used commands.

[File] Menu

m [Load File...]

This button reads an object file in the IEEE-695 format or an internal ROM

pea : HEX file in Motorola S2 format into the debugger. It performs the same

Load Parameter File... function when the If command is executed.

1 clkdema.abs [Load Parameter File...]

2 Samplel.psa This button reads a parameter file into the debugger. It performs the same
function when the par command is executed.

Eal [Exit]

The file names listed in this
menu are recently used files.
Selecting one opens the file.

This menu item quits the debugger. It performs the same function when the
g command is executed.

[Run] Menu
Rur [Go]
Gia [F5) This menu item executes the target program from the address indicated by
G to Cursar the current PC. The [F5] key can also be used. It performs the same function

when the g command is executed.
G0 after Reset
[Go to Cursor]

;t:; Eg ;} This menu item executes the target program from the address indicated by
) the current PC to the cursor position in the [Source] window (the address

Step Exit of that line). Before this menu item can be selected, the [Source] window

Stop [ESE] must be open and the address line where the program is to break must be

Fieset CPU clicked.

S [Go after Reset]

This button resets the CPU and then executes the target program after
fetching the reset vector. It performs the same function when the gr com-
mand is executed.

[Step]

This menu item executes one instruction step at the address indicated by
the current PC. The [F11] key can also be used. It performs the same
function when the s command is executed.

[Next]

This button executes one instruction step at the address indicated by the
current PC. If the instruction to be executed is cars, carl, call, or int, it is
assumed that a program section until control returns to the next address
constitutes one step and all steps of their subroutines are executed. The
[F10] key can also be used. It performs the same function when the n
command is executed.

[Step Exit]

This button executes the target program from the address indicated by the
current PC. If the program starts from inside a subroutine, the program
execution will stop when the sequence returns to the parent routine. This
button performs the same function when the se command is executed.

[Stop]
This menu item forcibly breaks execution of the target program. The [Esc]
key can also be used.

[Reset CPU]

This menu item resets the CPU. It performs the same function when the rst
command is executed.

Command File...

S5U1C88000C MANUAL 11 EPSON 101
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

[Break] Menu

Break,

Breakpoint Setting
Break List
Break All Clear

Sething...

[Trace] Menu

Trace

Trace
Trace Search...
Trace File...

Sething...

[Coverage] Menu

Coverage

Coverage
Coverage Clear

Sething...

[Setting...]

This menu item displays a dialog box for setting options related to program
execution (execution monitor interval, interrupt mode during single step-
ping, watch update mode, and unit of execution time measurement).

[Command File...]
This menu item reads a command file and executes the debug commands

written in that file. It performs the same function when the com or cmw
command is executed.

[Breakpoint Setting]

This menu item sets or clears PC breakpoints and data break conditions using
a dialog box. It performs the same function as executing the bp, bpa, ba and
bd command.

[Break List]
This menu item displays the all break conditions that have been set. It
performs the same function as executing the bl command.

[Break All Clear]
This menu item clears all break conditions. It performs the same function as
executing the bac command.

[Setting...]
This menu item displays a dialog box for setting a software break enable area
and sequential break mode.

[Trace]

This menu item activates the [Trace] window to displays the trace informa-
tion sampled in the ICE trace data buffer. It performs the same function as
executing the td command.

[Trace Search...]

This menu item searches trace information from the trace data buffer under
the condition specified using a dialog box. It performs the same function as
executing the ts command.

[Trace File...]

This menu item saves the specified range of the trace information displayed
in the [Trace] window to a file. It performs the same function as executing the
tf command.

[Setting...]
This menu item displays a dialog box for setting the trace mode.

[Coverage]

This menu item activates the [Coverage] window to displays the coverage
information acquired in the ICE. It performs the same function as executing
the cv command.

[Coverage Clear]
This menu item clears the coverage information acquired in the ICE and display
contents in the [Coverage] window. It performs the same function as executing
the cve command.

[Setting...]
This menu item displays a dialog box for setting coverage options (coverage
area and coverage mode).

102

EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

[View] Menu

| WiEn

Carmmand

Source

Durmp
Begister

CHAPTER 13 S1C88 FAMILY DEBUGGER

[Command]
This menu item activates the [Command] window.

Dizazzemble [Source - Disassemble]
Source This menu item opens or activates the [Source] window and
Mix displays the program in the disassemble display mode.

Trace
Coverage
Symbal
Wiatch

v Toolbar
v Status Bar

[Option] Menu

| Option

Log...
Recard...
Setting...

[Source - Source]
This menu item opens or activates the [Source] window and displays the
program in the source display mode.

[Source - Mix]
This menu item opens or activates the [Source] window and displays the
program in the mix display mode.

[Dump]
This menu item opens or activates the [Dump] window and displays the
memory contents from the memory start address.

[Register]
This menu item opens or activates the [Register] window and displays the
current values of the registers.

[Trace]
This menu item opens or activates the [Trace] window and displays the trace
data sampled in the ICE trace data buffer.

[Coverage]
This menu item opens or activates the [Coverage] window and displays the
coverage information acquired in the ICE.

[Symbol]

This menu item opens or activates the [Symbol] window and displays the
symbol list if a symbol information has been loaded.

[Watch]

This menu item opens or activates the [Watch] window and displays the
contents of the symbol registered.

[Toolbar]
This menu item shows or hides the toolbar.

[Status Bar]
This menu item shows or hides the status bar.

[Log..]
This menu item starts or stops logging using a dialog box. It performs the
same function as executing the log command.

[Record...]
This menu item starts or stops recording of a command execution using a
dialog box. It performs the same function as executing the rec command.

[Setting...]

This menu item displays a dialog box for setting system options (emulation
clock, firmware clock, self-rewrite check function, and wait time for the cmw
command).

S5U1C88000C MANU

AL 1l

EPSON 103

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

[Window] Menu

‘window [Cascade]

This menu item cascades the opened windows.
Cazcade

Tile [Tile]
This menu item tiles the opened windows.

v 1 Command
This menu shows the currently opened window names. Selecting one acti-

2 Renister
3 Dump vates the window.
[Help] Menu
Help [About DB88...]
Ahout DEES. This menu item displays an About dialog box for the debugger.
104 EPSON S5U1C88000C MANUAL I

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

13.6 Tool Bar

This section outlines the tool bar available with the debugger.
The tool bar has 12 buttons, each one assigned to a frequently used command.

| &

= < U R S NN e

The specified function is executed when you click on the corresponding button.

B

¥ ¥ B B B N

¢ e

<

[Load File] button

This button reads an absolute object file in IEEE-695 format, a program file in Motorola S2 format,
or a function option file into the debugger. It performs the same function when the If command is
executed.

[Load Parameter] button
This button reads a parameter file into the debugger. It performs the same function when the par
command is executed.

[Key Break] button
This button forcibly breaks execution of the target program. This function can be used to cause the
program to break when the program has fallen into an endless loop.

[Break] button
Use this button to set and clear a breakpoint at the address where the cursor is located in the
[Source] window. This function is valid only when the [Source] window is open.

[Break All Clear] button

This button clears all break conditions. It performs the same function as executing the bac com-
mand.

[Go] button
This button executes the target program from the address indicated by the current PC. It performs
the same function when the g command is executed.

[Go to Cursor] button

This button executes the target program from the address indicated by the current PC to the cursor
position in the [Source] window (the address of that line).

Before this button can be selected, the [Source] window must be open and the address line where
the program is to break must be clicked.

[Go after Reset] button
This button resets the CPU and then executes the target program after fetching the reset vector. It
performs the same function when the gr command is executed.

[Step] button
This button executes one instruction step at the address indicated by the current PC. It performs
the same function when the s command is executed.

[Next] button

This button executes one instruction step at the address indicated by the current PC. If the instruc-
tion to be executed is cars, carl, call, or int, it is assumed that a program section until control
returns to the next address constitutes one step and all steps of their subroutines are executed.
This button performs the same function when the n command is executed.

[Step Exit] button

This button executes the target program from the address indicated by the current PC. If the
program starts from inside a subroutine, the program execution will stop when the sequence
returns to the parent routine. This button performs the same function when the se command is
executed.

[Reset CPU] button
This button resets the CPU. It performs the same function when the rst command is executed.

S5U1C88000C MANUAL 11 EPSON 105
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

13.7 Method for Executing Commands

All debug functions can be performed by executing debug commands. This section describes how to
execute these commands.

13.7.1 Entering Commands from Keyboard

Select the [Command] window (by clicking somewhere on the [Command] window). When the prompt
">" appears on the last line in this window and a cursor is blinking behind it, the system is ready to
accept a command from the keyboard. Input a debug command at the prompt position. The commands
are not case-sensitive; they can be input in either uppercase or lowercase.

General command input format
>command [parameter [parameter ... parameter]] 0

= A space is required between a command and parameter.
= Space is required between parameters.

Use the arrow keys, [Back Space] key, or [Delete] key to correct erroneous input.

When you press the [Enter] key after entering a command, the system executes that command. (If the
command entered is accompanied by guidance, the command is executed when the necessary data is
input according to the displayed guidance.)

Input example:

>g0 (Only a command is input.)

> f test.absO (A command and parameter are input.)

Command input accompanied by guidance
For commands that cannot be executed unless a parameter or the commands that modify the existing
data are specified, a guidance mode is entered when only a command is input. In this mode, the
system brings up a guidance field, so input a parameter there.
Input example:
>cma
File name ? :test.cmd — Inputdata according to the guidance (underlined part).

Commands requiring parameter input as a precondition

The cmw command shown in the above example reads a program file into the debugger. Commands
like this that require an entered parameter as a precondition are not executed until the parameter is
input and the [Enter] key pressed. If a command has multiple parameters to be input, the system
brings up the next guidance, so be sure to input all necessary parameters sequentially. If the [Enter]
key is pressed without entering a parameter in some guidance session of a command, the system
assumes the command is canceled and does not execute it.

Commands that replace existing data after confirmation

The commands that rewrite memory or register contents one by one provide the option of skipping
guidance (do not modify the contents), returning to the immediately preceding guidance, or terminat-
ing during the input session.

[Enter] key Skips input.
[~] key Returns to the immediately preceding guidance.
[a] key Terminates the input session.

Input example:

>de ~ Command to modify data memory.
Data enter address ? :00ff000 — Inputs the start address.
00FF00 A: 10O ~ Modifies address 00ff00H to 1.
00FF01 A MO — Returns to the immediately preceding address.
O0FFO0 1:00 ~ Inputs address 00ffOOH back again.
O0OFFO1 A O
00FF02 A: 0O
00FFO01 A:qO ~ Terminates the input session.
>
106 EPSON S5U1C88000C MANUAL I

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

Numeric data format of parameter
For numeric values to be accepted as a parameter, they must be input in hexadecimal numbers for
almost all commands. However, some parameters accept decimal or binary numbers.
The following characters are valid for specifying numeric data:
Hexadecimal: 0-9, a-f, A-F, O
Decimal: 0-9
Binary: 0,1, 0
(" is used to mask bits when specifying a data pattern.)

Specification with a symbol
For address specifications, the symbols can also be used when an IEEE-695 absolute object file (.abs)
or a symbol file (.sy) is loaded.
Input example:
>u Mai nO ~ Displays the program from the label Main

OThe symbol file (.sy) is automatically loaded simultaneously with the target program in the Motorola
S2 format. However, it must be the same name (extension is .sy) and be located in the same directory
as the target program file. When an IEEE-695 program file is specified, the debugger does not load a
symbol file.

Notes: e If the specified symbol is not found, db88 handles the specified string as a hexadecimal (e.g.,
ABC). However, if the string includes other than the specified hexadecimal characters, an error is
assumed.

e If the -O1 option is specified when compiling the C source, some symbols written in the source
may not actually be used for reasons of code optimization. In such cases, debug information for
that symbol is not output to the .abs file, whether or not the -g option is specified.

Example: i nt Xx,y, xy;

x = GLOBAL_X * 100;

y = GLOBAL_Y * 100;

Xy =X *y,
In this example, because variable xy become nonexistent due to optimization, the contents of xy
cannot be referenced when debugging.
If after evaluating the executable file created by specifying the -OO0 option (optimization OFF), it
is recreated by specifying the -O1 option (optimization ON), program behavior cannot be guaran-
teed. Be sure to reverify the executable file whenever it is recreated in this way.

Successive execution using the [Enter] key
The commands listed below can be executed successively by using only the [Enter] key after execut-
ing once. Successive execution here means repeating the previous operation or continuous display of
the previous contents.
Execution commands: g, s, n, se, com
Display commands: u, dd, td

The successive execution function is terminated when some other command is executed.

S5U1C88000C MANUAL 11 EPSON 107
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

13.7.2 Executing from Menu or Tool Bar

The menu and tool bar are assigned frequently-used commands as described in Sections 13.5 and 13.6. A
command can be executed simply by selecting desired menu command or clicking on the tool bar button.
Table 13.7.2.1 lists the commands assigned to the menu and tool bar.

Table 13.7.2.1 Commands that can be specified from menu or tool bar

Command

Function

@®
c
=
o
=

Menu

Load program file

[File | Load File...]

=
par Load parameter file [File | Load Parameter File...] E
g Execute program successively [Run | Go] ﬂ
- Execute program to cursor position successively |[Run | Go to Cursor] ﬂ
ar Reset CPU and execute program successively [Run | Go after Reset] g
s Single step execution [Run | Step] H
n Step execution with skip subroutine [Run | Next] ﬂ
se Exit from subroutine [Run | Step Exit] Fits
com Load and execute command file [Run | Command File...] -
cmw Load and execute command file with wait [Run | Command File...]
rst Reset CPU [Run | Reset CPU]

bp, bpa, bpr, bc, bpc

Set/clear software breakpoint

[Break | Breakpoint Setting]

s

bas Set sequential break mode [Break | Setting]

ba, bar Set/clear hardware breakpoint [Break | Breakpoint Setting] -

bd, bdc Set/clear data break conditions [Break | Breakpoint Setting] -

bl Break list [Break | Break List] -

bac Clear all break conditions [Break | Break All Clear] @

td Display trace information [View | Trace], [Trace | Trace] -

ts Search trace information [Trace | Trace Search...] -

tf Save trace information to file [Trace | Trace File...]

cv Display coverage information [Coverage | Coverage] -

cve Clear coverage information [Coverage | Coverage Clear] -

u Disassemble display [View | Source | Disassemble] @ *

sc Source display [View | Source | Source] *

m Mix display [View | Source | Mix] *

dd Dump memory [View | Dump] -

rd Display register values [View | Register] -

sy Display symbol list [View | Symbol] -

w Display symbol information [View | Watch] -
Register symbols - @ *

log Turn log output on or off [Option | Log...] -

rec Record commands to a command file [Option | Record...] -

OLocated in the [Source] window

108

EPSON

S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

13.7.3 Executing from a Command File

Another method for executing commands is to use a command file that contains descriptions of a series
of debug commands. By reading a command file into the debugger the commands written in it can be
executed.

Creating a command file
Create a command file as a text file using an editor.
Although there are no specific restrictions on the extension of a file name, Seiko Epson recommends
using ".cmd".
Command files can also be created using the rec command. The rec command creates a command file
and saves the executed commands to the file.

Example of a command file
The example below shows a command group that loads a program file, sets a breakpoint and then
executes the program.
Example: File name = start.cmd
I f test.abs
bp 0004d7
g

A command file to write the commands that come with a guidance mode can be executed. In this case,
be sure to break the line for each guidance input item as a command is written.

Reading in and executing a command file
The debugger has the com and cmw commands available that can be used to execute a command file.
The com command reads in a specified file and executes the commands in that file sequentially in the
order they are written.
The cmw command performs the same function as the com command except that each command is
executed at intervals specified by the md command (1 to 256 seconds).
Example: com start. cnd

cmv test.cnd
The commands written in the command file are displayed in the [Command] window.

Restrictions

Another command file can be read from within a command file. However, nesting of these command
files is limited to a maximum of five levels. An error is assumed and the subsequent execution is
halted when the com or cmw command at the sixth level is encountered.

S5U1C88000C MANUAL 11 EPSON 109
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

13.7.4 Log File

The executed commands and the execution results can be saved to a file in text format that is called a "log
file". This file allows verification of the debug procedures and contents.
The contents displayed in the [Command] window are saved to this file.

Command example
>l og tst.log

After the debugger is set to the log mode by the log command (after it starts outputting to a log file),
the log command toggles (output turned on in log mode - output turned off in normal mode).
Therefore, you can output only the portions needed can be output to the log file.

Display of [Command] window in log mode

The contents displayed in the [Command] window during log mode differ from those appearing in
normal mode.

(1) When executing a command when each window is open
(When the window that displays the command execution result is opened)
Normal mode: The contents of the relevant display window are updated. The execution results are
not displayed in the [Command] window.
Log mode: The same contents as those displayed in the relevant window are also displayed in
the [Command] window. However, changes made to the relevant window by
scrolling or opening it are not reflected in the [Command] window.

(2) When executing a command while each window is closed
When the relevant display window is closed, the execution results are always displayed in the
[Command] window regardless of whether operation is in log mode or normal mode.

110 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

13.8 Debug Functions

This section outlines the debug features of the debugger, classified by function.

13.8.1 Loading Files
Table 13.8.1.1 lists the files read by the debugger and the load commands.

Table 13.8.1.1 Files and load commands

File Type Generation tool [Command Menu Button

1. Parameter file .par - par [File | Load Parameter File...] Eq'
2. IEEE-695 absolute object file .abs 1c88 If [File | Load File...] ﬁ
3. Motorola S2 program file .psa fil88xxx If [File | Load File...] E.-q'
4. Function option file fsa | fog88xxx or winfog If [File | Load File...] ﬁ
5. Symbol file .Sy sy88, sym88 - - -
6. Command file .cmd - com/cmw [Run | Command File...] -

. .mot - xfwr ;S - -
7. FPGA data file “mes — Xhwr H — —

Loading a parameter file resets the debugger. The memory mapping information set by the parameter file
can be displayed using the ma command. Refer to Chapter 12, "88xxx.par File", for more information on
the parameter file.

The If command loads an IEEE-695 absolute object file (.abs), a Motorola S2 program file (.psa) or a
function option HEX file (.fsa). The debugger distinguishes these files with the specified extension. It is
necessary to load an IEEE-695 absolute object file that contains debugging information to perform source
level debugging.

The symbol file is required to specify addresses using the symbols defined in the source when debugging
a Motorola S2 program file. Debugging can be done even if this file is not loaded. The symbol file is
loaded simultaneously with the program file by the If command. However, it must be the same name
(extension is .sy) and be located in the same directory as the program file. When the symbol file is loaded,
the contents of the file can be displayed in the [Symbol] window or the [Command] window using the sy
command.

When an IEEE-695 absolute object file that contains symbol information is loaded, the debugger does not
read the symbol file as the object file allows symbolic debugging.

Refer to Section 13.7.3, for the command file.

A FPGA data file is used to program the FPGA on the peripheral board (S5U1C88000P) for an S1C88
Family model. When this data is written to the FPGA once, rewriting is not necessary until the develop-
ment for the model has been completed.

S5U1C88000C MANUAL 11 EPSON 111
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

13.8.2 Source Display and Symbolic Debugging Function

The debugger allows program debugging while displaying the C source statements. Address specifica-
tion using a symbol name is also possible.

Displaying program code
The [Source] window displays the program in the specified display mode. The display mode can be

selected from among the three modes: Disassemble display mode, Source display mode and Mix
display mode.

Table 13.8.2.1 Commands/menu items/tool bar buttons to switch display mode

Function Command Menu Button
Disassemble display mode u [View | Source | Disassemble] E
Source display mode sc [View | Source | Source]
Mix display mode m [View | Source | Mix]
(1) Disassemble display mode
ilDisassembIE !E
| Address: [00018C R R o
[P Addr[L.Addr | Code | Unassenble [=]
c>* BAB18C A0:018C CFGEBBFE __START: LD SP,HF3088h
* 980198 008:0198 BA4FF LD BR,H#FFh
* 990192 00:0192 DDOGGA LD [BR:86h],#06h
* 988195 @8:8195 DDAZ2BA LD [BR:82h],#088h
* pA0198 0868:0198 DDO1GA LD [BR:@#1h],#088h
* 0A019B 0OA:0198B BAFA LD BR,#FBh
* 980190 90:019D F2A3FF CARL __ copytable
* gae1ae B88:81A8 F21281 CARL _main
88813 060:81A3 F20n81 CARL _ exit
Afoiné BA:01A6 F9 RETE
f8e1A7 ©B8:01A7 CFBY? _watchdog: PUSH ALE
806819 ©80:081A9 CFBD POP ALE
® 0881aB | a8:81AB F9 RETE
* gae1Ac @8:81AC CFBY? _rtclock: PUSH ALE
* BA01AE B8:01AE B201 LD L,#81h
* 901B8 ©0:01B8 CEC568 LD EP,#08h
* @881B3 88:81B3 CEDG2LFF LD [FF24h],L
* g881B7 @0:81B7 B90OFA LD HL,[FB88h]
* pAp1BA BOA:01BA CFE? LD IX,HL
* 9E01BC ©98:01BC C107468 ADD HL ,#808687h
* G901BF 00:01BF 4D LD B,[HL]
* ga@1ce 88:81Ca Bo61 LD A, #6810
* gae1c2 @8:@1c2 9l ADD A,B -
JEil| A

In this mode, the debugger displays the program codes after disassembling into mnemonics.

(2) Source display mode

Wl C:AEPSDNASIMAs1 c88\samplesiclkdemo.c M=
JFunct\nns- vltblﬁﬁﬂl‘g‘fd’
; =
i
ff====display character {y8bit)
I

unsigned char disp_char¥8{char x, char y, unsigned char charac) {
unsigned char =uram, =ascfont;
unsigned char i = 8, err = 0;

charac -= AscCodeMin;

if ((x <= AscPosiMax¥) && (y <= AscPosiMax¥) && (charac <= AscCodeMax)){
vram = {unsigned char *){UramStt + x + y = Uram¥step);

ascfont = {unsigned char =)}({(AsciiFontTbl + charac * AscFontStp);
= for (i=8 ; i < AscFontStp ; i++){ J
={uram++) = ={ascfont++);
1
H
else {
err = 1;
H
[] return (err);
L =

In this mode, the source that contains the code at the current PC address is displayed. This mode is
available only when an IEEE-695 absolute object file that contains source debugging information has
been loaded.

112 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

(3) Mix display mode

W Mix _ Ol x]
| Address: [000385 4 M2 3
" ~
/f====display string (y8bit)}
"

unsigned char disp_string¥8(char x, char y, unsigned char =string) {
* 888385 0@:83B5 CF6AB4BO _disp_stringv8: SUB SP,#08084h

* 0083B9 00:83B7? A48 LD B,A
* DO83BA B@:83BA CEC60A LD XP,#88h
* @@@3BD B@08:B3BD CFFA LD IX,SP
* @@83BF @08:B83BF CES5482 LD [IX+82h],L
unsigned char err = 8;
@®* 06683C2 08:B83C2 B260 LD L,#868h
while ({*string ?= NULL) || err ?=8) {
* @063Ch4 ©08:83C4 F133 JRS 33h
err = disp_char¥8{x,y,*string);
* 0B83C6 B@:83C6 CF7708 LD [SP+@Bh],IY
* @@@3C? @08:83C? CEC7AA LD YP,#88h
o-* @@83CC @08:83CC 5F LD H,[IY]
* @@@3CDd @08:03CDh CECO688 LD XP,#88h
* 088308 8@:83D8 CFFA LD IX,SP
* 088302 88:83D2 CELCA3 LD [IX+83h].B
* 888305 @08:83D5 CEC7AA LD YP,#88h
* 9069308 ©08:83D8 CFFE LD IY,SP
* 0083DA 08:83DA CES5182 LD L,[IY¥+82h] hd
K AW

This mode displays both sources and the disassembled codes of the corresponding object codes. This
mode is available only when an IEEE-695 absolute object file that contains source debugging informa-
tion has been loaded.

Refer to Section 13.4.3, "[Source] Window" for display contents and operation on the window.

Symbol reference
When debugging a program after loading an object file (.abs) in the IEEE-695 format, the symbols
defined in the source file can be used to specify an address. This feature can be used when entering a
command having <address> in its parameter from the [Command] window or a dialog box. However,
the object file loaded must contain symbol information.

To perform symbolic debugging after loading a program file (.psa) in the Motorola S2 format, it is
necessary to prepare a symbol file with the same name as the program file in the same directory. The
symbol file is loaded simultaneously with the program file.

The symbols used in the program and the defined addresses can be displayed in the [Command]
window or the [Symbol] window.

Table 13.8.2.2 Symboal list display command/menu item

Function Command Menu Button
Displaying symbol list sy [View | Symbol] -
S5U1C88000C MANUAL I EPSON 113

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

13.8.3 Displaying/Modifying Memory and Register Data

The debugger has functions to operate on the memory and registers. Available memory area is set to the
debugger according to the map information that is given in a parameter file.

Memory operation
The following operations can be performed on the memory areas (ROM, RAM, display memory, I/0

memory):
Table 13.8.3.1 Memory operation commands/menu item
Function Command Menu Button
Dumping memory data dd [View | Dump] -
Entering/modifying memory data de - -
Rewriting specified area df - -
Coping specified area dm - -
Searching data ds - -

(1) Dumping memory
The memory contents are displayed in a specified size (Byte, Word, Long, Float, Double) hexadecimal
dump format. If the [Dump] window is opened, the contents of the [Dump] window are updated,; if
not, the contents of the data memory are displayed in the [Command] window.

(2) Entering/modifying data
Data at a specified address is rewritten by entering hexadecimal data. Data can be directly modified
on the [Dump] window.

(3) Rewriting specified area
An entire specified area is rewritten with specified data.

(4) Copying specified area
The content of a specified area is copied to another area.

(5) Searching data
An specified data can be searched within a specified area. The [Command] window displays the
results up to 256 found data. The [Dump] window shows found data within the current displayed
area in green.

See Section 13.4.4, "[Dump] Window", for display contents and operation on the [Dump] window.

| Aderess: 000000 et =W 4 » m
FETE

Address[+0 +1 +2 & +7 +8 +9 +h +B +C +D +E +F| Value I |
808808 8C A1 FF AYOAD F FF FF FF FF FF FF FF 10
8806818 FF FF FF Rpo. F FF FF FF FF FF FF FF FF
0008828 FF FF AC Anoupe [F FF FF FF FF FF FF FF FF
000838 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
008848 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0008658 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
000060 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
808878 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
000880 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
008898 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0000R8 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0088B8 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0006C8 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
000000 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
B0ABER FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0006F8 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
808108 A6 CF E3 CF B1 CF E6 CE D8 C8 CE CF 42 CF E6
900118 CE D8 42 81 CE CE 4B E5 02 81 CF E6 CF B4 CE
808128 CE CA 4A 61 48 CE CB AE F8 8 CE B8 80 C8 CA
000138 BS 80 CA CF 3B E7 OB CE BS 80 C9 CE BS 80 C9
000140 1a F& CE C7 00 A0 CE C5 00 G5 48 6C F1 38 CE
80158 08 CF E9 CE 40 87 CE 48 08 CF 74 B9 CE 40 81
000160 48 02 CF EC CE 40 04 CE 48 05 CF E8 CE 35 01

| A7

114 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

Operating registers
The following operations can be performed on registers:

CHAPTER 13 S1C88 FAMILY DEBUGGER

Table 13.8.3.2 Register operation commands/menu item

Function Command

Menu Button

Displaying register values rd

[View | Register]

Modifying register value rs

(1) Displaying registers

Register contents and the contents of the memory specified in register indirect addressing can be

displayed in the [Register] or [Command] window.

Registers: PC, SP, IX, IY, A, B, H, L, BR, CB, NB, EP, XP, YP, SC (11, 10, U, D, N, V, C, Z)

and CC (F3, F2, F1, FO)
Memory: [HL], [SP], [IX], [IY], [IX+L], [I'Y+L]

(2) Modifying register values

The contents of the above registers can be set to any desired value.
The register values can be directly modified on the [Register] window.

See Section 13.4.5, "[Register] Window", for display contents and operation on the [Register] window.

iﬁFlegister N =] E3

PE:B2I’IE SP:AAAA IX:AAAA IY:AAAA

B:AA AzAA H:zAA L:AA BR:AA

CB:®1 HEB - 81 EP: a8 wP:-A8 YF:A88

SC: 1 IaUDHUCL Z CC: F3 F2 F1 FA

1 1680680648 1 1 1 1
[HL]:AB [IX]:AB8 [IX+L]:A2
[SP]:A8 [I¥]:AB [I¥Y+L]:A2
S5U1C88000C MANUAL I EPSON 115

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

13.8.4 Executing Program

The debugger can execute the target program successively or execute instructions one step at a time
(single-stepping).

Successive execution

(1) Types of successive execution
There are three types of successive execution available:
= Successive execution from the current PC
= Successive execution from the current PC to the cursor position in the [Source] window
= Successive execution after resetting the CPU

Table 13.8.4.1 Commands/menu items/tool bar buttons for successive execution

Function Command Menu Button
Successive execution from current PC g [Run | Go] — |
Successive e'x_ecutlon from current PC B [Run | Go to Cursor] -]
to cursor position |
Successive execution after resetting CPU gr [Run | Go after Reset] *7 |

(2) Stopping successive execution
Temporary break addresses can be specified in the [Source] window.
If the cursor is placed on an address line in the [Source] window and the [Go to Cursor] button clicked, the
program starts executing from the current PC address and breaks immediately before executing the
instruction at the address the cursor is placed.
Note that when displaying C source in source display mode, the cursor must be located at one of the
source lines expanded into effective source code. If the cursor is located at any source line, such as a
comment line or declaration statement that is not compiled into object code, the program is not executed,
even if you click the [Go to Cursor] button. (Refer to the description of the PC break function.)
Except being stopped by this temporary break, the program continues execution until it is stopped by one
of the following causes:
= Break conditions set by a break set up command are met.
= Abreak signal is input to the ICE BRKIN pin.
= The [Key Break] button is clicked, the [Run | Stop] menu command is selected or the [Esc] key is

pressed.

= A program execution error is detected.

@ [Key Break] button OWhen the program does not stop, use this button to forcibly stop it.

Note: If program execution is halted in C source display mode, the debugger displays the source for an
object that includes the halted address. However, if no sources exist at the halted address, a
[Source Files] dialog box is displayed, prompting for selection of a source file.

(3) Display during successive executions
The display is updated as below due to a successive execution.
When program execution is halted, the [Command] window displays the number of executed cycles
and execution time.

Example: >g
BUS CYCLE : 428649 ... Number of bus cycles
Mode L : 001min 002s 543nms 468us ... Executiontime (1 us units by default)

The [Source], [Register] and [Dump] windows do not change their display contents while the program
is executing and updates after the program execution is halted. If the [Register] window is closed, its
contents are displayed in the [Command] window. The [Trace] window clears its display contents
when the program execution is started and re-displays the latest trace data after the program execu-
tion is halted. The [Watch] window is updated after the program execution is halted by default. It can
be changed so that the window is updated in specified cycles using the dialog that appears by using
the [Run | Setting...] menu command.

The [Symbol] and [Coverage] windows do not change their display contents due to successive
executions.

116 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

Single-stepping

(1) Types of single-stepping
There are three types of single-stepping available:

= Single-stepping C statements or instructions (STEP)
In C source display mode, the program is single-stepped, one C source line at a time. In disas-
semble display or mix display mode, the program is single-stepped, one instruction at a time.

= Single-stepping other than functions or subroutines (NEXT)
In C source display mode, function calls in the program currently being executed are skipped by
handling each function call from entry until the return simply as a single step. Other program
parts are single-stepped in the same way as for STEP.
In disassemble display or mix display mode, the cars, carl, call, and int instructions till returned to
the next step by a return instruction are executed as a single step. Other instructions are singled-
stepped in the same way as for STEP.

= Terminating at a function or subroutine (STEP EXIT)
In C source display mode, the program is successively executed from the current function until it
returns to the higher-level function, and is halted after returning. Do not run this single-stepping
mode in the main function.
In disassemble display or mix display mode, the program is successively executed from the
current subroutine until it is returned to the higher-level subroutine by a return instruction, and is
halted after returning. At the highest level, the program is executed in the same way as when run
by the g command. If a lower-level subroutine is called, and returned from it, the program execu-
tion is not halted.

In either case, the program starts executing from the current PC.

Table 13.8.4.2 Commands/menu items/tool bar buttons for single-stepping

Function Command Menu Button
Stepping s [Run | Step] +,
Stepping except functions/subroutines n [Run | Next] P
Exit from function/subroutine se [Run | Step Exit] £

When executing s or n by command input, the number of steps to be executed can be specified, up to

65,535 steps. When using menu commands or tool bar buttons, the program is executed one step at a

time.

In the following cases, single-stepping is terminated before a specified number of steps is executed:

= The [Key Break] button is clicked, the [Run | Stop] menu command is selected or the [Esc] key is
pressed.

= A program execution error is detected.

Single-stepping is not suspended by breaks set by the user such as a PC break or data break.

@ [Key Break] button OWhen the program does not stop, use this button to forcibly stop it.

(2) Display during single-stepping
In the initial debugger settings, the display is updated as follows:
When the [Source], [Register], [Dump], [Trace], or [Watch] window is open, the display contents are
updated after the last step has been executed. If the [Register] window is closed, its contents are

displayed in the [Command] window.
The [Symbol] and [Coverage] windows do not change their display contents due to single-stepping.

S5U1C88000C MANUAL 11 EPSON 117
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

(3) Interrupts during single-stepping
The CPU is placed in a standby mode when the halt or slp instruction is executed. An interrupt is
required to cancel this mode.
The debugger has a mode to enable or disable an external interrupt for use in single-step operation.

Table 13.8.4.3 External interrupt modes
Enable mode

Disable mode

External interrupt

Interrupt is processed.

Interrupt is not processed.

halt and slp instructions

Executed as the halt instruction.
Processing is continued by an
external interrupt or clicking on

The halt and slp instructions are
replaced with a nop instruction as
the instruction is executed.

the [Key Break] button.

In the initial settings, the debugger is set to the interrupt disable mode. The interrupt enable mode can
also be set in the dialog box displayed by selecting [Setting...] from the [Run] menu.

(4) Precautions to be observed when single-stepping C sources
When single-stepping a program in C source display mode, the program is basically executed one
source line at a time. However, source lines that do not have the corresponding object code, or lines
without user sources (e.g., functions automatically generated by inline assembler or compiler) are
skipped until the next line is reached that has effective object code. Accordingly, the number of steps
executed varies depending on how C statements are written.

Example: for (x=0; x<10; x++) a[x]=x; ... Executed in one step.
for(x=0; x<10; x++)
a[x] =x; ... 20 steps need to be executed before exiting the for statement.

Execution options
Four options are available for program execution. To select one of these options, use the dialog box
that appears when [Setting...] is selected from the [Run] menu.

Run Common Setting x|
r— Fun Manitar Inkerval

Time Interval I'I =1 00ms

— Single Step Mode

Run Monitor Interval

Set the display update interval in 100 ms increments when
selecting "short break mode" as the [Watch] window update
mode. This interval can be set from 1 (= 100 ms, default) to
10 (= 1 second).

™ Accept interupt at single step Single Step Mode

Choose whether to enable or disable interrupts while
single-stepping a program. (See Table 13.8.4.3.) To enable
interrupts, select (check) the check box.

—Watch/Local repaint
' Real Time

" Shart Break

Watch/Local repaint

Set the [Watch] window's update mode. The default real-
time mode ([with Real Time] selected) is provided for
running programs in real time. In this mode, the [Watch]
window is updated after a break in program execution. In
short break mode (with [Short Break] selected), the contents
displayed in the window are updated at intervals set by
[Run Monitor Interval]. In this mode, however, program
execution is temporarily suspended so that display can be
updated. Therefore, programs cannot be run in real time.

— Run-time measurement base
¥ L:
" H: 62.5ns + Bus cycle

Tuz + Buz cucle

Cancel |

Run-time measurement base

The ICE contains a 31-bit execution cycle counter, allowing you to measure the time and number of
bus cycles in which a program was run continuously. The run time here can be measured in units of 1
us (default) or 62.5 ns as selected with this option. Bus cycles can be counted up to 2,147,483,647 cycles
(with £0 error).

118 EPSON S5U1C88000C MANUAL I

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

The maximum times that can be measured are shown below.
When measured in 1 ps units: About 35 minutes, 50 seconds (with £1 ps error)
When measured in 62.5 ns units: About 2 minutes, 15 seconds (with +£62.5 ns error)

The measurement result is displayed in the [Command] window after a break in continuous program
execution, as shown below.

Example: >g
BUS CYCLE : 428649 ... Number of bus cycles
Mbde L : 001min 002s 543ns 468us ... Execution time (in 1 ps units, default)
>g
BUS CYCLE : 35095 ... Number of bus cycles
Mode L : 003s 094ns 152us 0.0ns ... Execution time (in 62.5 ns units)

If the counter's maximum count is exceeded, the debugger indicates "Count overflow" for the number
of bus cycles and "Time over" for the execution time.

The counter is reset when successive program execution starts.

No measurements are made when single-stepping a program.

Resetting the CPU
Table 13.8.4.4 Commands/menu items/tool bar buttons for resetting CPU

Function Command Menu Button
Reset CPU rst [Run | Reset CPU] <
Successive execution after resetting CPU gr [Run | Go after Reset] i

The CPU is reset when the gr command is executed, or by executing the rst command.
The following shows the initial settings when the CPU is reset.

(1) Internal registers of the CPU and memory
The CPU internal registers are initialized as follows during initial reset:

PC: Reset exception processing loads the reset vector stored in bank 0, 000000H-000001H
into the PC.

SP, IX, 1Y: OXAAAA

B, A, H, L, BR: 0xAA

CB, NB: 0x01

EP, XP, YP: 0x00

SC: 0b11000000

CC: Ob1111

The internal RAM and external RAM are not initialized at initial reset.
The respectively stipulated initializations are done for internal peripheral circuits.

(2) Redisplaying the [Source] and [Register] windows
Because the PC is reset, the [Source] window is redisplayed beginning with that address.
The [Register] window is redisplayed with the settings above.

S5U1C88000C MANUAL 11 EPSON 119
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

13.8.5 Break Functions

The target program is made to stop executing by one of the following causes:
= Break conditions set by a break set up command are met. (for successive execution only)
= Abreak signal is input to the ICE BRKIN pin. (for successive execution only)
= The [Key Break] button is clicked, the [Run | Stop] menu command is selected or the [Esc] key is pressed.
= A program execution error is detected.

Break by command

The debugger has three types of break functions that allow the break conditions to be set by a com-
mand. When the set conditions in one of these break functions are met, the program under execution

is made to break.

(1) Software breakpoints and a software break area
When the PC matches a set address, a break occurs. The program fetches the instruction from that
address and breaks before executing that instruction. Software breakpoints can be set at up to 64
separate addresses and in one area with a specified address range.
However, these breakpoints are effective in only a 1 MB active break area. If any address outside this
area is specified, no breaks can occur at that address, although the address is registered as an invalid
breakpoint. The 8 MB of code space is divided into eight 1 MB active break areas, one of which can be
selected from the [Break Common Setting] dialog box that is displayed by the [Break | Setting...]
menu command. At debugger startup, a 1 MB area (from 0x0 to 0xOfffff) is automatically selected as

the active break area.

Break Common Setting

An Active Area of Software Breaks

—

Sequential Break Mode
CH3 Covint

e

& [Independent break mode
" 1; BAZ count mode

2 BAZ-3 sequential mode
3 BA1-3 sequential mode

Cancel

To select an active break area, enter your desired value in
the [An Active Area of Software Breaks] text box. A value

from 0 to 7 can be entered.
0: 0x000000 to OxOfffff
1: 0x100000 to Ox1fffff
2: 0x200000 to Ox2fffff

7: 0x700000 to Ox7fffff

Table 13.8.5.1 Commands/menu items/tool bar button to set breakpoints

Function Command Menu Button
Set software breakpoints bp [Break | Breakpoint Setting] '1{11'] |
Set software break area bpa [Break | Breakpoint Setting] -
Clear software breakpoints bpr [Break | Breakpoint Setting] -;IEI]
P be (bpc) P 9 |
120 EPSON S5U1C88000C MANUAL II

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

Selecting [Breakpoint Setting] from the [Break] menu displays the [Break setting] dialog box. The
[Software Break Setting (LMB Area)] tab of this dialog box shows a list of PC breakpoints that have
been set.

Break setting

Hardware PC Break Setting | Hardware Data Break Setting |
Software Break Setting [1kE Area)

g Add.. |
Lacation at IDDDBAE Erable
" Range Break Dizable
Start Location |000533 Delete
End Locationto [000533 Clear Al
OM | Address | Argabum | Symbal |
0oa3aF 1
0003AC 1
000533 7

To set a software breakpoint, select the [Point Break] radio button and enter an address in the [Loca-
tion at] text box. Then click the [Add] button to register the address you entered as a valid breakpoint.
Up to 64 breakpoints can be added to the list. Exceeding this limit prompts a warning. In such case,
delete unnecessary breakpoints before adding a new one.

To set a software break area, select the [Range Break] radio button, then enter the start and end
addresses of that area in the [Start Location] and [End Location to] text boxes, respectively. Then click
the [Add] button to register the area you entered as a valid software break area. All addresses in that
area are assumed to have breakpoints set. The start address of the area is shown in the Address
column of the list, with area size (in bytes) shown in the AreaNum column. Setting a new area with a
software break area already registered prompts a warning. In such case, delete the registered software
break area before setting a new one.

Any address including those in a software break area can be registered only once as a breakpoint.
Neither addresses nor areas (that contain a breakpoint address) can be set twice or more as a
breakpoint or break area.

To disable a valid breakpoint (whose address is preceded by an asterisk (O in the list), select that
address from the list (by clicking the ON part), then click the [Disable] button. The asterisk disappears
and the breakpoint is disabled.

To enable an invalid breakpoint, select the address of that breakpoint from the list, then click the
[Enable] button. The address is then marked with an asterisk (0) to indicate that a breakpoint is
enabled at that address.

To clear a breakpoint, select the address of that breakpoint from the list, then click the [Delete] button.
The [Clear All] button allows you to clear all breakpoints that have been set, including those in a
software break area.

The addresses that are set as PC breakpoints are marked with a e as they are displayed in the [Source]
window.
Example in source display mode

H

[] return (err};

b
Example in disassemble display mode

8881A7 B8:B1A7 CFBY _watchdog: PUSH ALE

8881A9 BA:81A9 CFBD POP ALE
® 0061AB | B0:01AB F9 RETE

* ga@1AC @8:81AC CFBY _rtclock: PUSH ALE
S5U1C88000C MANUAL I EPSON 121

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

Using the [Break] button easily allows the setting and canceling of breakpoints.
ﬂ [Break] button

Click on the line in the [Source] window at where the program break is desired (after moving the
cursor to that position) and then click on the [Break] button. A e mark will be placed at the beginning
of the line indicating that a breakpoint has been set there, and the address is registered in the
breakpoint list. Clicking on the line that begins with a e and then the [Break] button cancels the
breakpoint you have set, in which case the address is deleted from the breakpoint list.

Setting breakpoints during source display mode

In the [Source] window in source display mode, there are lines at which breakpoints can be set and
those at which breakpoints cannot be set. No breakpoints can be set in source lines that do not have
actual code generated.

Example: 1 voi d func(void) // NG
2 { // OK
3 int a; // NG
4 int x=0; // OK
5 a = x; // OK
6 } // OK

Line 1 is a function declaration that does not have actual code (same as a label declaration in the
assembler). A breakpoint cannot be set here.

Line 3 is a variable declaration that does not have actual code. A breakpoint cannot be set here.

Line 4 is a variable declaration that has initialization code generated for it. A breakpoint can be set
here.

Line 2 allows a breakpoint to be set. However, the breakpoint is set in line 4 (instruction at the begin-
ning of that function).

Line 5 is an effective line that has actual code. A breakpoint can be set here.

Line 6 is a function termination (equivalent to mnemonic ret). A breakpoint can be set here.

However, if optimized during compiling, some lines become unusable in terms of setting a
breakpoint. In the above example, since nothing is derived by executing each line (rewriting of only
local variables involved, and that of global variables nonexistent), the actual code may be lost by
optimization.

The same applies for lines whose execution can be halted by the [Go to Cursor] button.

122 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

(2) Sequential break function

The sequential break function causes a break to occur after the target program executes specified
addresses following a specific sequence.

Three channels (BA1 to BA3) are provided for use in sequential breaks. On address can be set indi-
vidually for each channel. For BA3, an execution count or number of times the program is to be run
can be set, in addition to a break address.

The break addresses set here are effective in the entire code space, regardless of where active break
area is selected.

One of the following four sequential break modes can be set depending on the channels used.

Independent break mode
In this mode, each channel acts as an independent breakpoint. When a program fetches the
instruction at the address set on the channel, a break occurs before the program can execute that
instruction. The run count specified for BA3 is not effective.

BA3 count mode
In this mode, program execution is made to break when the program has fetched the instruction at
the address set on BA3 the specified number of times. Settings on BA1 and BAZ2 are not effective.

BA2-3 sequential mode
In this mode, program execution is made to break when the program has fetched the instruction at
the address set on BA3 the specified number of times after executing the instruction more than
once at the address set on BA2. Setting on BA1 is not effective.

BA1-3 sequential mode
In this mode, program execution is made to break when the program has fetched the instruction at
the address set on BA3 the specified number of times after executing the instructions more than
once in that order at the addresses set on BA1 and BA2.

Table 13.8.5.2 Sequential break setting commands

Function Command Menu Button
Set sequential break mode bas [Break | Setting...] -
Set hardware breakpoints ba [Break | Breakpoint Setting] -
Clear hardware breakpoints bar [Break | Breakpoint Setting] -

To set sequential break mode, select [Setting...] from the [Break] menu.

Break Common Setting The [Break Common Setting] dialog box then appears.
Select one of the [Sequential Break Mode] radio buttons
; |a L .
ATRBLHERTEE € A BiE from this dialog box to set the desired mode.

When you choose any radio button for BA3 counter-based

mode, the [CH3 Count] text box becomes active. There-
fore, enter an execution count in this text box. The pro-

@ 0 Independent bresk mode I—CH3 ot gram does not break until it fetches the instruction (the

O 1 B3 count mads : number of times as specified here) at the BA3 address.

= 2 BAZ-3 sequential mode

3 BA1-3 sequential mode

Sequential Break Mode

S5U1C88000C MANUAL 11 EPSON 123
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

To set an address on each channel, use the [Break setting] dialog box that appears when [Breakpoint
Setting] is selected from the [Break] menu. When the [Break setting] dialog box appears, select the
[Hardware PC Break Setting] tab in the dialog box.

Break zetting
Software Break Setting [1ME Area)

Hardware PC Break Setting | Hardware D ata Break Setting
Lacation at IEIEIEI4'I 2 Add
cH3Count [B Enbls

Dizable
Delete
M | Channel | Address | Symbaol |
. 1 e Clear &l
2 0oa3co
3 ooo412

Use the radio buttons to select the channel on which you want to set an address, then enter the
desired address in the [Location at] text box.

To specify an execution count on BA3, enter a hexadecimal number for the desired count in the [CH3
Count] text box. If a count was set from the [Break Common Setting] dialog box, the value you
entered is reflected in this text box.

Click the [Add] button to register the address you've set as a valid breakpoint. Each channel can have
only one address set. Setting a new address on any channel for which an address is already set will
overwrite the existing address. Also note that attempting to set an address that has already been
registered as a hardware PC breakpoint will prompt a warning.

If addresses are set on each channel as shown above in BA1-3 sequential mode, program execution is
made to break after the program executes instructions at each set address as follows:

1. Start running

2. Execute instruction at address 0X0003A5 once or more
3. Execute instruction at address 0x0003CO0 once or more
4. Execute instruction at address 0x000412 four times

5. Fetch instruction at address 0x000412 again

At step 5, the program is made to break before executing the instruction at address 0x000412.

To disable a valid breakpoint (whose address is preceded by an asterisk (O in the list), select that
address from the list (by clicking the ON part), then click the [Disable] button. The asterisk disappears
and the breakpoint is disabled.

To enable an invalid breakpoint, select the address of that breakpoint from the list, then click the
[Enable] button. The address is marked with an asterisk ([) to indicate that a breakpoint is enabled at
that address.

To clear a breakpoint, select the address of that breakpoint from the list, then click the [Delete] button.
The [Clear All] button allows you to clear all breakpoints that have been set.

124 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

(3) Data break function
The data break function causes a break to occur when a program accesses memory as specified. Four
channels (CHO to CH3) are provided for use in data breaks. The following three conditions can be
specified on each channel individually.

Address When an address is specified, the target program is made to break when it accesses that
address.

Data When data is specified, the target program is made to break when it writes or reads the
specified data. Here, specify one byte of data. The data bits can be masked so that the
program can be made to break when only the desired (but not all) bits match.

Read/write The program can be made to break in only a read or a write cycle or in both, as specified.

Of the above, specify one or more conditions. When two or more conditions are specified, the pro-
gram is made to break after accessing memory to satisfy all specified conditions.

Table 13.8.5.3 Data break setting commands

Function Command Menu Button
Set data break conditions bd [Break | Breakpoint Setting] -
Clear data break conditions bdr [Break | Breakpoint Setting] -

Select [Breakpoint Setting] from the [Break] menu to display the [Break setting] dialog box. Select
(click) the [Hardware Data Break Setting] tab in the dialog box.

Break setting
Software Break Setting [1kE Area) |
Hardware PC Break Setting Hardware Data Break Setting
e P [o0FFoe Set
f+ CHO
¢ CH1 D ata Walue for |1 xxxxxxx B Eratle |
Dizable

" CHZ Access Type
" CHZ [r‘ Feadfstite © Read = wiite Delete

M | Chatinel |Address | Syrnbol |Dala |T_|,Ipe | ﬂ

0 0OFFO4 a0

Use the radio buttons to select the channel on which you want to set break conditions, then enter an
address in the [Location at] text box and data in the [Data Value for] text box (optional). Use the radio
buttons to select the desired read/write condition, then click the [Set] button to register what you've
entered as valid break conditions. Note that setting a new condition on any channel for which condi-
tions are already set will overwrite the existing conditions.

In the above example, the target program is made to break when it writes data whose MSB =1 to
address 0x00ff04.

To disable valid break conditions on any channel (preceded by an asterisk (0 in the list), select that
channel from the list (by clicking the ON part), then click the [Disable] button. The asterisk disappears
and break conditions on the channel are disabled.

To enable invalid break conditions on any channel, select that channel from the list, then click the
[Enable] button. The channel is marked with an asterisk (0) to indicate that break conditions are
enabled on the channel.

To clear break conditions on any channel, select that channel from the list, then click the [Delete] button.
The [Clear All] button allows you to clear all break conditions that have been set.

S5U1C88000C MANUAL 11 EPSON 125
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

(4) Other break commands

Commands are available to display all break conditions set in the [Command] window and to clear all
break conditions.

Table 13.8.5.4 Other break commands

Function Command Menu Button
Display all break conditions bl [Break | Break List] -
Clear all break conditions bac [Break | Break All Clear] @] |

Forced break

The [Key Break] button, [Run | Stop] menu command, and [ESC] key can be used to forcibly termi-
nate the program being executed.

g [Key Break] button

Low level input to the ICE BRKIN pin
By setting the BRKIN pin of the ICE to LOW, a break occurs at the rising edge of the signal.

Break due to program execution error
A break occurs when the ICE has detected one of the operations below during a program execution.
= Writing data to the ROM area
= Stack operation outside of the stack area
= Access to an undefined area

= Executing an illegal instruction (that is not available in the model)

These errors are detected using the memory and other information described in the parameter file.

126 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

13.8.6 Trace Functions

Trace data buffer and trace information

The ICE has a trace data buffer. When the debugger executes the program, the trace information on

each executed instruction is taken into this buffer. The trace data buffer has the capacity to store
information for 8,192 cycles. When the trace information exceeds this capacity, the data is overwritten,
the oldest data first. Consequently, the trace information stored in the trace data buffer is always
within 8,192 cycles. The trace data buffer is cleared when a program is executed, starting to trace the
new execution data.

4

W Trace (O] =]
S.|F. Addr L. Addr Code Mnenonic Bi | HL IX¥ | IV | SF |BR| EF|XF| YF SC cc Hemory -

08217 000499 61:0499 93 INC 1Y 3E84 F828 F828 FO66 F7F3 FO 80 60 80 @6--N-C- 6060

6218 068849A 61:849n 92 INC IX 3JEB4 FB28 F829 FB66 F7F3 FA 08 68 68 86--N-C- 6060

06219 000498 61:049B CF7601 LD [SP+81h],IX 3E84 F828 F829 FO66 F7F3 FO 00 06 00 06--N-C- 6000 MY:[06F7F4]=29 KW [@0F7

6228 OBA4OE 61:049E BAG1 LD A,#d81h 3EB1 F828 F829 FB66 F7F3 FA B8 68 68 86--N-C- 6068

06221 0004A0 61:04A0 A6 PUSH IP 3JEG1 F828 F829 FO68 F7F1 FO 60 69 80 98--H-C- 6000 MY:[06F7F2]=08 HY:[86F7

6227 96O4A1 61:8401 CECH6AA LD XP,#68h 3EB1 F828 F829 FB66 F7F1 FO 68 aeee

0223 0004A4 01:04R4 CFFA LD IX,SP 3JEB1 F828 F7F1 FB68 F7F1 FO @@ 0060

6224 06BA4AG 61:8406 CE4862 LD B,[IX+82h] 6461 F828 F7F1 FB68 F7F1 FB B8 60688 MR:[BBF7F3]=04

6225 0004A9 B1:084A9 AE POP IP 6481 F828 F7F1 FB6@ F7F3 F@ 88 60808 MR:[OBF7F1]1=08 HR:[@0F7

0226 0004AA 61:04AR @1 ADD A,B 6465 F828 F7F1 FB6@ F7F3 FO 08 0060

08227 98B4AB 61:04AB 50 LD L,A 8485 FBA5 F7F1 FB60 F7F3 FO B8 agee

0228 0004AC 61:04AC B105 LD B,#d5h 65685 F885 F7F1 FO6@ F7F3 FO 08 0060

6229 OBB4AE B1:84AE 42 LD A,L 65685 FB8O5 F7F1 FB60 F7F3 FO 88 a8ee

0230 0004AF 61:04AF A6 PUSH IP 65685 F885 F7F1 FO6@ F7F1 F@ 08 00080 MY:[OBF7F2]=08 ryY:[80F7

6231 96A4EA 61:84B6 CEC6AA LD XP,#68h 6565 F8A5 F7F1 FB68 F7F1 FB 88 aeee

0232 9004B3 ©61:04B3 CFFA LD IX,SP 65685 F885 F7F1 FO6@ F7F1 F@ 88 0060

6233 06O4B5 61:04B5 CE448Z LD [IX+62h],R 6565 F8O5 F7F1 FB68 F7F1 FO 8@ 60688 MW:[0O6F7F3]=05

6234 0004B8 61:684B8 AE POP IP 6585 F885 F7F1 FB6@ F7F3 FA 88 60680 MR:[OBF7F1]=08 KR :[B6F7

6235 060489 61:04B9 3A80 X0R A,#86h 6585 F8O5 F7F1 FO6@ F7F3 FO 00 6060

06236 0BA4BB 61:084BB CEB8SA XOR B,H88h 8585 F885 F7F1 FB68 F7F3 F8 08 agee

0237 0OO4BE 61:04BE 31 CP n,B 8585 F8085 F7F1 FB68 F7F3 FO 60 0060

6238 06O4BF 61:84BF CEESCB JRS LT,CBh 8585 F885 F7F1 FB68 F7F3 FO 08 a8ee

0239 0004C2 61:084C2 F105 JRS 85h 8585 F805 F7F1 FB68 F7F3 FO 60 0060

The following lists the trace information that is taken into the trace data buffer in every instruction
execution cycle. This list is corresponded to display in the [Trace] window.

INS: Executed cycle number (0 to 8191, decimal)
0000 means oldest trace data.
P Addr: PC address (hexadecimal physical address)
L Addr: PC address (hexadecimal logical address)
Code: Instruction code (hexadecimal)
Mnemonic: Disassembled instruction code
BAto YP: Values of the CPU registers (hexadecimal)
SC, CC: Condition flag status
Memory: Memory access status (other than code fetch status)
MR: Memory read
MW: Memory write
[<address>] = <data>: Accessed memory address and read/write data (hexadecimal)
S5U1C88000C MANUAL I EPSON 127

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

Trace modes

Two trace modes are provided for selection depending on how trace information is captured.

All trace mode

Information is recorded on all bus cycles executed. In this mode, the latest trace data (for up to 8,192
cycles) can always be obtained.

Range-specified trace mode
In this mode, memory access conditions can be specified. Information is only recorded on the bus
cycles that match the specified conditions.
The following lists the memory access conditions that can be specified:

= Specify an address range and whether to trace inside or outside the specified address range

= Specify whether to trace both program fetch and data read/write cycles, or only data read/write

cycles

= Specify whether to trace either read or write cycles (or both)

To set trace mode, select [Setting...] from the [Break] menu.

Trace Information Setting

— Condition

Al

 Trace Area

Start location from

0

End location to 16777215
[Out of Range
—hccezs Type Aocess Area
" Read/wiite o Al
* Read = Data
 wiite

Ok, I Cancel

To set all trace mode, select the [All] radio button
and click [OK].

To set range-specified trace mode, select the
[Range] radio button, then specify an address
range by entering the start and end addresses in
the [Start location from] and [End location to] text
boxes in decimal notation, respectively. To trace
outside that address range, select the [Out of
Range] radio button. Then select a read/write
condition with the [Access Type] radio button.
Use the radio buttons under [Access Area] to
specify that all accesses be traced (All) or only data
read/write accesses be traced (Data). After making
the above selections, click the [OK] button.

To stop setting trace mode, click the [Cancel]
button.

128

EPSON S5U1C88000C MANUAL I

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

Displaying and searching trace information
The sampled trace information is displayed in the [Trace] window after a program execution has
finished. In the [Trace] window, the entire trace data buffer can be seen by scrolling the window. The
trace information can be displayed beginning from a specified cycle using a command. The display
contents are as described above.
If the [Trace] window is closed, the information can be displayed in the [Command] window using a
command.

Table 13.8.6.1 Command/menu item to display trace information
Function Command Menu Button

Display trace information td [Trace | Trace] -

When [Trace] is selected from the [Trace] menu, the dialog box shown below appears.

Set Address or Point Enter the display start and end cycle numbers
(in hexadecimal) to the [Start from] and [End

to] text boxes, respectively, and then click the
I [OK] button. When number entry is omitted,
End to | the debugger assumes the start cycle number
is 0 and the end cycle number is Ox1fff (8191).
To cancel trace data display, click the [Cancel]
button.

Start from

OK pe—

It is possible to specify a search condition and display the trace information that matches a specified
condition.

The search condition can be selected from the following three:

1. Program's execution address

2. Address from which data is read

3. Address to which data is written

When the above condition and one address are specified, the system starts searching. When the trace
information that matches the specified condition is found, the system displays the found data in the
[Trace] window (or in the [Command] window if the [Trace] window is closed).

Table 13.8.6.2 Command/menu item to search trace information
Function Command Menu Button

Search trace information ts [Trace | Trace Search...] -

When [Trace Search...] is selected from the [Trace] menu, the dialog box shown below appears.

Choose a search condition using the radio button, enter an
address, and then click the [Search] button.
Option To cancel searching trace data, click the [Cancel] button.

&' Program address
" Data read address

" Data write address

Address; [051d

Hexadecimal or Symbal

Search I Catcel

S5U1C88000C MANUAL 11 EPSON 129
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

Saving trace information
The trace information within the specified range can be saved to a file.

Table 13.8.6.3 Command/menu item to save trace information
Function Command Menu Button

Save trace information tf [Trace | Trace File...] -

When [Trace File...] is selected from the [Trace] menu, the dialog box shown below appears.

<]l Enter the start and end cycle numbers of the range to be

Trace File
saved to the [Start Point] and [End Point] text boxes,
respectively.
Start Paint: |D (Diecimal, max 8,131) Enter the file name to the [File Name] text box or
choose a folder/file using the [Browse...] button.
e | (becimal, min 0) Then click the [OK] button to start saving.

Tl W Browse. | To cancel saving trace data, click the [Cancel] button.
K I Cancel |

130 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

13.8.7 Coverage

The ICE has a coverage function that allows you to record the memory addresses accessed.

The coverage information is recorded according to the acquisition mode and acquisition range specified
with the debugger's coverage options.

Acquisition mode
Specify whether to acquire coverage information for access to both code and data spaces, or for access
to only code space. By default, coverage information is acquired for access to both code and data

spaces.
Acquisition range

The ICE divides the 16-MB address space into 64 KB x 256 areas, with coverage information acquired

from each 64-KB area. A 64-KB area from 0x00000 to OxXOOFFFF is the default acquisition range.

Therefore, if coverage information must be acquired from another area, you should specify that area

before running the program.

To set coverage options, select [Setting...] from the [Coverage] menu.

Enter a numeric value from 0 to 255 in the [Coverage Area (0-255)]

text box to specify the desired acquisition range. Use the radio

- buttons to select the desired acquisition mode. Click the [OK] button
overage Area [0-255) IE .
to confirm what you've set.
iletz To stop setting coverage, click the [Cancel] button.

" Code area only
& Al bus cycle

]9 I Cancel

The acquired coverage information can be displayed in the [Coverage] window.

Table 13.8.7.1 Coverage commands

Function Command Menu Button
Display coverage information cv [Coverage | Coverage] -
Clear coverage information cve [Coverage | Coverage Clear] -

Selecting [Coverage] from the [Coverage] menu opens the [Coverage] window, and the dialog box shown
below appears.

Set Address or Point Enter the address in hexadecimal notation from
which to start displaying coverage information in
the [Start from] text box, then click the [OK]
button. To display coverage information in the
End to | [Coverage] window, you can leave [End to] blank.
Note that the start and the end addresses of the 64
KB area selected are assumed if start and end
addresses are not entered in these text boxes.
Cancel | To stop setting addresses, click the [Cancel]
button.

Start from I

S5U1C88000C MANUAL 11 EPSON 131
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

Coverage information is displayed in the [Coverage] window as shown below.

iﬁ[ﬁnverage _ O =]
P.AddrlUl23456?|Dl23456?|C0unt AI
goaa1@ * 1
goa10a8 16
aea118@ 16
aee1z2@ 16
aeA13a@ 16
aeA148 16
gea15a 16
gea16@ 16 -
KN A

Coverage information is displayed 16 bytes per row. P.Addr indicates the start address (physical address)
of each line. The accessed addresses are marked with an asterisk (0, and addresses not accessed are

marked with a space " ". The Count value indicates the total addresses accessed (in bytes) among the 16
bytes on each line.

In addition to the [Coverage] window, the executed addresses in the [Source] window are marked with
an asterisk (0), except in source display mode.

Executing the cv command while the [Coverage] window is closed displays information in the [Com-
mand] window as shown below.
Example: >cv 0

00001e

000100 - 00010f

132 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

13.8.8 Writing Data to the FPGA on the Standard Peripheral Circuit Board

The standard peripheral circuit board S5U1C88000P is configured for the supported model by writing the
peripheral function data to the on-board FPGA. This writing is necessary the first time the standard
peripheral circuit board is used or before beginning development of another model.

The debugger supports the following FPGA data handling functions:

(1) Erasing FPGA
All contents of the FPGA are erased.

(2) Writing data to FPGA
Data in the specified file is written to the FPGA. Also, the write command supports erasing the FPGA.
Data for the supported models are provided as "c88xxx.mot" files in the "epson\s1c88\ice\fpga"
directory (default).

(3) FPGA data comparison
The contents of the FPGA and specified file are compared.

(4) FPGA data dump
The FPGA data is displayed in a hexadecimal dump format.

Table 13.8.8.1 FPGA commands

Function Command Menu Button
Erase FPGA xfer - -
Write data to FPGA xfwr - —
Compare FPGA data xfcp - —
Dump FPGA data xdp - —
S5U1C88000C MANUAL I EPSON 133

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

13.8.9 System Options

The [System Common Setting] dialog box that appears when [Setting...] is selected from the [Option]
menu is provided to set the options associated with ICE hardware.

System Common Setting Clock Type
. One of the following two clocks can be selected for use in
— Firmiwfare Clock A
emulation:
— Clock Type

(1) Default clock of peripheral board (default)

@ PREC8EXXX default clock (2) Mask option clock of peripheral board

' PRCBE:X mask option clack . .
fask sptien stee Selecting the peripheral board (PRC88XXX)'s default clock

means that the clock on the peripheral board is used as the
clocking source during emulation regardless of how the
mask option is set. Some MPUs do not support this default
€ BOOKHz ¢ 250KHe clock.

r— Farm Clack

&+ dMHz " 2MHz ¢ 1MHz

For details about clock frequencies, refer to the technical
manual supplied with your MPU.

r— SelfFlazh Check

[Output " aming Meszage Firm Clock
One of the following five firmware clocks can be selected
— Crmw command wait time for the ICE:
. (1) 4 MHz (selected by default)
Crr it tirme: I'I (2) 2 MHz
(3) 1 MHz
oK I Cancel | (4) 500 kHz
(5) 250 kHz

The ICE uses the firmware clock to execute its debugging functions. For example, a memory dump is
performed using the firmware clock. Therefore, if the target board you're using consists of a low-
speed device or one that may cause a delay in data output, the memory dump contents and contents
read out by running the program may not match. In such case, set the firmware clock to a lower
appropriate frequency.

SelfFlash Check
Turn the SelfFlash or self-rewriting check function on or off. Although the SelfFlash check function is
automatically set according to a description in the parameter file, this option may be used to forcibly
turn it on or off.

Cmw command wait time
Specify an interval time at which to execute commands after loading a command file with the cmw
command. The interval time can be set from 1 to 256 seconds in 1-second increments. The interval
time initially is set to 1 second.

134 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

13.9 Command Reference

CHAPTER 13 S1C88 FAMILY DEBUGGER

13.9.1 Command List
Table 13.9.1.1 lists the debug commands available with the debugger.

Table 13.9.1.1 Command list

Classification Command Function Page|
Memory dd [<addr1> [<addr2>]] [{-B|-W/|-L|-F|-D}] Dump memory data 137
operation [<addrl> <@size>] [{-B|-W|-L|-F|-D}]

de [<addr> <datal> [..<datal6>]] Enter memory data 140
df [<addr1> <addr2> <data>] Fill memory area 142
dm [<addrl> <addr2> <addr3>] Copy memory area 143
[<addrl> <@size> <addr3>]
ds <addr1> {<addr2>|@<byte>}... Search memory data 144
..{"'<str>"|<data>[:{B|W|L}]} [S=<step>]
Register rd Display register values 145
operation rs [<reg> <value>] Modify register value 146
reg={PC|SP|IX|IY|A|B|HL|BR|CB|EP|XP|YP|SC|I1]I0|U|D|N|V|Z|C}
Program g [<addr>] Execute program successively from current PC 148
execution gr [<addr>] Execute program successively after resetting CPU 150
5 [<step>] Single stepping from current PC 151
n [<step>] Single stepping with skip subroutines 153
se Exit from subroutine 154
CPU reset rst Reset CPU 155
Break bp {-]+|_} <addr> Set software breakpoints 156
bpa <addri> <addr2> Set software break area 158
bpr Clear software breakpoints 160
bc [<addr>]
bpc [<addr>]
bas {01]2/3} Set sequential break mode 161
ba <ch> <addr> [<count>] Set hardware breakpoints 162
<ch>{-[+| }
bar Clear hardware breakpoints 164
bd <ch> [A=<addr>][D=<data>][{R|W|}] Set hardware data break condition 165
<ch> {-|+_}
bdr Clear hardware data break condition 167
bl Display all break conditions 168
bac Clear all break conditions 169
Program display|u [<addr>] Disassemble code display 170
sC [<addr>] Source display 172
m [<addr>] Mix display 174
Symbol display |sy [/a] Display symbol list 176
w <symbol> [;{H|D|Q|B}] [/A] Display symbol information 177
Load file If [<file>] Load program/option HEX file 178
par [<file>] Load parameter file 179
Trace td [<cycle>] Display trace information 180
ts [{pc|dr|dw} <addr>] Search trace information 183
tf [<file> [<cyclel> [<cycle2>]]] Save trace information 185
Coverage cv [<addr1> [<addr2>]] Display coverage information 186
cve Clear coverage information 188
Command file |com [<file> [<interval>]] Load and execute command file 189
cmw [<file>] Load and execute command file with execution interval 190
rec [<file>] Record executed commands to file 191
Log log [<file>] Logging 192
Map information|ma Display map information 193
FPGA operation|xfer Erase FPGA 194
xfwr <file> ;{H|S} [;N] Write FPGA data 195
xfcp <file> ;{H|S} Compare FPGA data 196
xdp <addrl> [<addr2>] Dump FPGA data 197
Quit q Quit debugger 198
Help ? Display command usage 199
S5U1C88000C MANUAL Il EPSON 135

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

13.9.2 Reference for Each Command

The following sections explain all the commands by functions.

The explanations contain the following items.

I Function

Indicates the functions of the command.

I Format

Indicates the keyboard input format and parameters required for execution.

I Example

Indicates a sample execution of the command.

Note
Shows notes on using.

IGUI utility

Indicates a menu item or tool bar button if they are available for the command.

Notes: ¢ In the command format description, the parameters enclosed by < > indicate they are necessary
parameters that must be input by the user; while the ones enclosed by [] indicate they are
optional parameters.

e The input commands are case-insensitive, you can use either upper case or lower case letters
or even mixed.

e An error results if the number of parameters is not correct when you input a command using

direct input mode.
Error : Incorrect nunmber of paraneters

136 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

13.9.3 Memory Operation

dd (data dump)

I Function

This command displays the content of the memory in a 16 words/line hexadecimal dump format.

I Format

(1) >dd [<address1> [<address2>]] [<option>]0 (direct input mode)

(2) >dd [<address1> @<size>] [<option>]0 (direct input mode)
<address1>: Start address to display; hexadecimal or symbol (IEEE-695 format only)
<address2>: End address to display; hexadecimal or symbol (IEEE-695 format only)
<size>: Size of display area (in bytes); hexadecimal
<option>: Display format; specify with a symbol below.

-B Byte (default)

-W Word
-L Long
-F Float
-D Double

Condition: 0 < addressl < address2 < Oxffffff, 0 < size < Oxffffff

IDispIay

(1) When [Dump] window is opened

W /Dump (=1 |
| Address: [000000 [ere =M« » M

hddress| +0 +1 +2 {0 He +7 +8 +9 +A +B +C +D +E +F| Valus | |
000606 8C 61 FF FF FF FF FF FF FF FF 49 62 |
POAB18 FF FF FF H FF FF FF FF FF FF FF FF

000820 FF FF AC FF FF FF FF FF FF FF FF

000830 FF FF FF F FF FF FF FF FF FF FF FF

0008408 FF FF FF FF FF FF FF FF FF FF FF

0006508 FF FF FF FF FF FF FF FF FF FF FF

000868 FF FF FF FF FF FF FF FF FF FF FF

000878 FF FF FF FF FF FF FF FF FF FF FF

000886 FF FF FF FF FF FF FF FF FF FF FF

BOABY8 FF FF FF FF FF FF FF FF FF FF FF

00066 FF FF FF FF FF FF FF FF FF FF FF

0008E0 FF FF FF FF FF FF FF FF FF FF FF

0008CO0 FF FF FF FF FF FF FF FF FF FF FF

000608 FF FF FF FF FF FF FF FF FF FF FF

BOOBEG FF FF FF FF FF FF FF FF FF FF FF

0006F8 FF FF FF FF FF FF FF FF FF FF FF

000108 A6 CF E3 CE D8 C8 CE CF 42 CF E6

BOA118 CE D8 42 E5 62 81 CF E6 GF B4 CE

000120 CE CA 4A AE F8 C8 CE B8 88 C8 CA

006130 BB 80 CA CE B8 80 C9 CE B8 80 C9

000148 1A F8 CE C5 08 C5 48 6C F1 38 CE

0001508 08 CF E9 48 068 CF 74 00 CE 40 61 .

006160 48 62 CF CE 48 65 CF E8 CE 35 61 H....5.. =

] s

If both <address1> and <address2> are not defined, the [Dump] window is redisplayed beginning
with address 0x000000.

If <address1> is defined , the [Dump] window is redisplayed in such a way that <address1> is
displayed at the uppermost line.

Even when <address1> specifies somewhere in 16 addresses/line, data is displayed beginning with
the top of that line. For example, even though you may have specified address 0x00ff08 for <ad-
dress1>, data is displayed beginning with address 0x00ff00. However, if an address near the upper-
most part of data memory (e.g. maximum address is Oxffffff), such as 0xffffc0, is specified as <ad-
dress1>, the last line displayed in the window in this case is OxfffffO, the specified address is not at the
top of the window.

Since the [Dump] window can be scrolled to show the entire data memory, defining <address2> or
@<size> does not have any specific effect. Only defining <address1> and both defining <address1>
and <address2> or @<size> has same display result.

S5U1C88000C MANUAL 11 EPSON 137
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

)

©)

When [Dump] window is closed

If both <address1> and <address2> are not defined, the debugger displays data for 256 words from
address 0x000000 in the [Command] window.

>dd0

Address +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F Val ue

000000 AE 02 FO FO C9 02 FO FO FO FO FO FO FO FO FO FO
000010 00 A4 EO 48 OA 08 EO 80 EE 6A FC BA 3E BA 4A 01 ... H j..>d.

0000F0 A6 A2 22 82 AO OC 04 02 FE F7 BD 9E FE 7F BA FB ..".
>

If only <address1> is defined, the debugger displays data for 256 words from <address1>.
>dd ffooO

Address +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F Val ue

00FFO0 30 00 00 FF FF FF FF FF FF FF FF FF FF FF FF FF O...............
OOFF10 00 00 1F OO0 FF FF FF FF FF FF FF FF FF FF FF FF

OOFFFO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ..o
>

If both <address1> and <address2> are defined, the debugger displays data from <address1> to
<address2>.

>dd ff00 ffif0O

Address +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F Val ue

00FFO0 30 00 00 FF FF FF FF FF FF FF FF FF FF FF FF FF O...............

OOFF10 00 00 1F 00 FF FF FF FF FF FF FF FF FF FF FF FF
>

If @<size> is defined in place of <address2>, the debugger displays the specified bytes of data from
<address1>.

>dd ff00 @00

Address +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F Val ue

00FFO0 30 00 00 FF FF FF FF FF FF FF FF FF FF FF FF FF O...............

00FF10 00 00 1F 00 FF FF FF FF FF FF FF FF FF FF FF FF
>

Display format options

The display format option allows selection of a data type same as the pull-down list on the [Dump]
window. When option specification is omitted, data is displayed in byte units. The following shows
display examples in each option:

>dd -b0O ... Byteformat (default)

Address +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F Val ue

000000 AE 02 FO FO C9 02 FO FO FO FO FO FO FO FO FO FO

>dd -w ' ... Word format
Address +0 +2 +4 +6 +8 +A +C +E Value
000000 02AE FOFO 02C9 FOFO FOFO FOFO FOFO FOFO

>dd -0 Long format
000000 FOFO02AE FOF002C9 FOFOFOFO FOFOFOFO

>dd -0 ' ... Float format
000000 AE 02 FO FO -5.942371e+029
000004 C9 02 FO FO - 5. 942382e+029

>dd -dOd Double format
000000 AE 02 FO FO C9 02 FO FO -1.018151011077231e+236
000008 FO FO FO FO FO FO FO FO -1.077308742674321e+236

>

138

EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

(4) During log output
If a command execution is being output to a log file by the log command when you dump the data
memory, data is displayed in the [Command] window even if the [Dump] window is opened and are
also output to the log file.
If the [Dump] window is closed, data is displayed in the [Command] window in the same way as in
(2) above.
If the [Dump] window is open, it is redisplayed to show data in the same way as in (1) above. In this
case, the same number of lines is displayed in the [Command] window as are displayed in the
[Dump] window.

(5) Successive display
Once you execute the dd command, data can be displayed successively with the [Enter] key only until
some other command is executed.
When you hit the [Enter] key, the [Dump] window is scrolled one full screen.
When displaying data in the [Command] window, data is displayed for the 16 lines following the
previously displayed address (same number of lines as displayed in the [Dump] window during log
output).
>dd0
Address +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F Val ue
000000 AE 02 FO FO C9 02 FO FO FO FO FO FO FO FO FO FO
000010 00 A4 EO 48 OA 08 EO 80 EE 6A FC BA 3E BA4A 01 ...H j.o.o>0d.

0000F0 A6 A2 22 82 A0 OC 04 02 FE F7 BD 9E FE 7F BA FB ..".
>0

000100 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ..o
000110 FF FF FF FF FF FF FF FF FE FE FF FF FF FE FE EFo

0001F0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
>

I Notes

= Both the start and end addresses specified here must be within the range of the memory area available
with each microcomputer model.
An error results if the limit is exceeded or the input one is not a hexadecimal number or not a valid
symbol.

= An error results if the start address is larger than the end address.

B Gun utility

[View | Dump] menu item
When this menu item is selected, the [Dump] window opens or becomes active and displays the
current data memory contents.

S5U1C88000C MANUAL 11 EPSON 139
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

de (data enter)

I Function

This command rewrites the contents of the memory with the input hexadecimal data. Data can be
written to continuous memory locations beginning with a specified address.

I Format

(1) >de <address> <datal> [<data2> [...<datal6>]]0 (direct input mode)

(2) >ded (guidance mode)

Data enter address ? : <address>[]
Address Original data : <data>0

<address>: Start address from which to write data; hexadecimal or symbol (IEEE-695 format only)
<data(1-16)>: Write data; hexadecimal
Condition: 0 < address < Oxffffff, 0 < data < Oxff

I Examples

Format (1)

>de ff10 0O ... Rewrites data at address 0x0xff10 with O.
Format (2)

>del

Data enter address ? :ff100 .. Addressisinput.

00FF10 0 : ald ... Dataisinput.

00FF11 0: 0O ... Skipped.

00FF12 0: qO ... Command is terminated.

>

I Notes

The start address specified here must be within the range of the memory area available with each
microcomputer model.

An error results if the limit is exceeded or the input one is not a hexadecimal number or a valid
symbol.

The contents of the unused area will be marked as "[0'. If you encounter any address marked by "[7',
press [Enter] key to skip that address or terminate the command.

Data must be input using a hexadecimal number in the range of 8 bits (0-0xff). An error results if the
limit is exceeded.

When the contents of the data memory is modified using the de command, the displayed contents of
the [Dump] window are updated automatically.

In guidance mode, the following keyboard inputs have special meaning:

"g" ... Command is terminated. (finish inputting and start execution)
AN ... Return to previous address.
"o ... Input is skipped. (keep current value)

If the maximum address of data memory is reached and gets a valid input other than "~1", the
command is terminated.

140

EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

B Gun utility

[Dump] window

®ouep 0 mmH

| Address: [000000 Jevre =l w < » m
——

Address|+0 +1 +2 N 6 +7 +8 +9
808808 sc 61 FF R/OAD F FF FF FF
808818 FF FF FF Aot [F FF FF FF
000020 FF FF AC Gpgupe [F FF FF FF
000830 FF FF FF FF FF FF FF FF FF FF
000840 FF FF FF FF FF FF FF FF FF FF
600850 FF FF FF FF FF FF FF FF FF FF
600860 FF FF FF FF FF FF FF FF FF FF
000870 FF FF FF FF FF FF FF FF FF FF
BABBS8 FF FF FF FF FF FF FF FF FF FF
000090 FF FF FF FF FF FF FF FF FF FF
0008A0 FF FF FF FF FF FF FF FF FF FF
000BB0 FF FF FF FF FF FF FF FF FF FF
©008C0 FF FF FF FF FF FF FF FF FF FF
6008D0 FF FF FF FF FF FF FF FF FF FF
BOOBEO FF FF FF FF FF FF FF FF FF FF
B00BFO FF FF FF FF FF FF FF FF FF FF
BAB188 A6 CF E3 CF B1 CF E6 CE D8 CB
000110 CE D8 42 61 CE CE 4B E5 02 81
000120 CE CA 4 61 4 CE CB AE F8 C8
000130 BS 80 CA CF 3B E7 OB CE B8 80
000140 1A F8 CE C7 06 AB CE C5 00 C5
800150 00 CF E9 CE 46 07 CE 48 08 CF
800160 48 02 CF EC CE 4B 04 CE 48 65 =

K| Al

The [Dump] window allows direct modification of memory contents. To modify data on the [Dump]
window, place the cursor at the front of the data to be modified or double click the data, and then type
a hexadecimal character (0-9, a—f). Data in the address will be modified with the entered number and
the cursor will move to the next address. This allows successive modification of a series of addresses.

S5U1C88000C MANUAL 11 EPSON 141
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

df (datafill)

I Function

This command rewrites the contents of the specified memory area with the specified data.

I Format

(1) >df <address1> <address2> <data>[(direct input mode)

(2) >dfO (guidance mode)
Start address ? <address1>0
End address ? <address2>0]
Data pattern ? <data>[
>

<address1>: Start address of specified range; hexadecimal or symbol (IEEE-695 format only)
<address2>: End address of specified range; hexadecimal or symbol (IEEE-695 format only)
<data>: Write data; hexadecimal

Condition: 0 < addressl < address2 < Oxffffff, O < data < Oxff

I Examples

Format (1)

>df ff200 ff2ff 0O ... Fills the memory area from address 0xff200 to address Oxff2ff with 0xO0.
Format (2)

>df O

Start address ? ff2000 ... Start addressisinpuit.

End address ? ff2ff0 ... End address is input.

Data pattern ? 0O ... Dataisinput.

>

OCommand execution can be canceled by entering only the [Enter] key and nothing else.

I Notes

= Both the start and end addresses specified here must be within the range of the memory area available
with each microcomputer model.
An error results if the limit is exceeded or the input one is not a hexadecimal number or a valid
symbol.

= An error results if the start address is larger than the end address.

= Data must be input using a hexadecimal number in the range of 8 bits (0 to 0xff). An error results if
the limit is exceeded.

= Write operation is not performed to the read only address of the 170 area.

= When there is an unused area in the specified address range, no error occurs. The area other than the
unused area will be filled with the specified data.

= When the contents of the data memory is modified using the df command, the displayed contents of
the [Dump] window are updated automatically.

IGUI utility

None

142 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

dm (data move)

I Function

This command copies the contents of the specified memory area to another area.

I Format

(1) >dm <address1> <address2> <address3>[] (direct input mode)
(2) >dm <address1> @<size> <address3>0 (direct input mode)
(3) >dmO (guidance mode)

Start address ? <address1>[]

End address ? <address2>0

Destination address ? <address3>[]

>
<address1>: Start address of source areato be copied from; hexadecimal or symbol (IEEE-695 format only)
<address2>: End address of source area to be copied from; hexadecimal or symbol (IEEE-695 format only)
<address3>: Address of destination areato be copied to; hexadecimal or symbol (IEEE-695 format only)
<size>: Size of the source area (in bytes); hexadecimal
Condition: 0 < addressl < address2 < Oxffffff, 0 < address3 < Oxffffff, O < size < Oxffffff

I Examples

Format (1)

>dm ff200 ff2ff ff2800 ... Copies data within the range from address 0xff200 to address
Oxff2ff to the area from address Oxff280.

Format (2)

>dm ff 200 @00 ff2800 ... Same as above.

Format (3)

>dniJ

Start address ? ff2000 ... Source area start address is input.

End address ? ff2ff0 ... Source area end address is input.

Desti nation address ? ff2800 ... Destination area start address is input.

>

OCommand execution can be canceled by entering only the [Enter] key and nothing else.

I Notes

= All the addresses specified here must be within the range of the memory area available with each
microcomputer model.
An error results if the limit is exceeded or the input one is not a hexadecimal number or a valid
symbol.

= Write operation is not performed to the read-only address of the I/0 area.

= Data in the write-only area cannot be read. If the source area contains write-only address, 0 is written
to the corresponding destination. If the destination area contains read-only address, the data of that
address can not be rewritten. If the source and destination areas contain 1/0 address of mixed read-
only bits and write-only bits, either read or write operation can be executed for the corresponding
bits.

= When the contents of the data memory is modified using the dm command, the displayed contents of
the [Dump] window are updated automatically.

B Gun utility

None

S5U1C88000C MANUAL 11 EPSON 143
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

ds (data search)

I Function

This command searches for a specified data or string from a specified range of memory. When the
search data or string is found, the address of the data or string found is indicated in the [Command]
window. In addition, if specified data is found in the address range displayed in the [Dump] window,
the data found is displayed in green.

I Format

>ds <address1> {<address2>|@<byte>} {"<string>"|<data> [:<size>]} [S=<step>][
(direct input mode)
<addressl>: Start address of search range; hexadecimal or symbol (IEEE-695 format only)
<address2>: End address of search range; hexadecimal or symbol (IEEE-695 format only)

<byte>: Size of search range (in bytes); hexadecimal
<string>: String to search, consisting of up to four ASCII characters
<data>: Datato search, equal in size to <size> represented in hexadecimal or binary notation. The
data bytes or bits can be masked with an asterisk (D).
<size>: Data size, specifying using the following symbols:
B for byte (1 byte) (default)
W for word (2 bytes)
L for long (4 bytes)
<step>: Step (in bytes) in which increments to search, equal to data size (specified by <size>) when
omitted
Condition: 0 < addressl < address2 < Oxffffff, address2 < address1+0xffff, byte < 0x10000,
1 < step < Oxffff

I Examples

>ds f000 30: W S=100
O00FO00 00F070
>

In this example, the command searches for word data "0x0030" starting from address 0x00f000.
Because the step is specified to be 16 bytes, word data at only the 16-byte boundary addresses
(0x00f000, 0x00f010, ...) are checked. Even if word data "0x0030" exists at address 0xf002, for example,
it does not appear in the search result.

>ds f000 fOff "ABC'O

00F022
>

In this example, the command searches for string "ABC" (= 0x41, 0x42, 0x43) in the address range from
0x00f000 to 0x00fOff. The string is searched in byte steps or increments (default).

I Notes

= The address specified here must be within the range of the memory area available with each micro-
computer model.
An error results if the limit is exceeded or the input one is not a hexadecimal number or a valid
symbol.

= Search is made within a 64 KB range. Specifying an address exceeding this range results in an error.

IGUI utility

None

144 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

13.9.4 Register Operation

rd (register display)

I Function

This command displays the contents of the CPU registers.

I Format

>rd0d (direct input mode)

IDispIay

(1) Contents of display
This command displays the contents of the following registers and memory addresses pointed by the
registers.
Register: PC, SP, IX, 1Y, B, A, H, L, BR, SC, CC
Memory: [HL], [IX], [IX+L], [SP], [IY], [IY+L]

O If the memory locations indicated by the registers are in an unused area, data in that area is marked
by an "' as it is displayed.

(2) When [Register] window is opened

iﬁ Register =]

PC:820E SP:anAR IX:AnAA IY:AAAA

B:AA A:zAA H:AA L:AA BR:ARA
CB:81 NB:81 EP:88 XP:B@ YP:8@
SC: 1T IBUDHUCLCZ CC: F3 F2 F1 Fo

1 18p08008 11 1 1
[HL]:zAB [1X]:A0 [IX+L]:A2
[SP]:AB [1¥]:A0 [I¥+L]:A2

When the [Register] window is opened, all the above contents are displayed in the [Register] window
according to the program execution. When you use the rd command, the displayed contents of the
[Register] window is updated.

(3) When [Register] window is closed
Data is displayed in the [Command] window in the following manner:

>rd0
PC. 02AE SP: AAAA | X: AAAA | Y: AAAA
B: AA A AA H: AA L: AA BR: AA
CB: 01 NB: 01 EP: 00 XP: 00 YP: 00
SCI110UDNVCZ CC.F3 F2 F1 FO

1 1000000 1 1 1 1
>

(4) During log output
If a command execution result is being output to a log file by the log command, the register values are
displayed in the [Command] window even if the [Register] window is opened and are also output to
the log file.

IGUI utility

[View | Register] menu item
When this menu item is selected, the [Register] window opens or becomes active and displays the
current register contents.

S5U1C88000C MANUAL 11 EPSON 145
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

IS (register set)

I Function

This command modifies the register values.
I Format
(1) >rs <register> <value>[

(2) >rsO

PC = Old value
SP = Old value

IX = Old value
IY = Old value
A = Old value
B = Old value
11 = Old value
10 = Old value
U = Old value
D = Old value
N = Old value
V = Old value
C = Old value
Z = Old value

HL = Old value
BR = Old value
CB = Old value
EP = Old value
XP = Old value
YP = Old value

>

F

: <value>0
: <value>0
: <value>[
: <value>0
: <value>0
: <value>[
: <value>0
: <value>0
: <value>
: <value>0
: <value>0
: <value>
: <value>0
: <value>0
: <value>[
: <value>0
: <value>0
: <value>[
: <value>0
: <value>0

(direct input mode)

(guidance mode)

<register>: Register name (PC, SP, IX, 1Y, A, B, HL, BR, CB, EP, XP, YP, SC, I1,10,U, D, N,V, Z, C)
<value>: Valueto be set to the register; hexadecimal

I Examples

ormat (1)

>rs SC 00

F
>

ormat (2)
rsi

... Resets all the flagsin the SC register.

PC=02ae : 1800
SP=aaaa : fOff0O
| X=aaaa : f0000O
| Y=aaaa : f0000

A= aa :
B= aa :
HL=aaaa :
BR= aa :
| 1= 0 :
| 0= 0 :
U= 0 :
D= 0 :
N= 0 :
= 0 :
(o= 0 :
= 0 :
CB= 01 :
EP= 00
XP= 00
YP= 00
>

Ooooooooooo

When a register is modified, the [Register] window is updated to show the contents you have input. If
you input "q" to stop entering in the middle, the contents input up to that time are updated.

146

EPSON

S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

I Notes

= An error results if you input a value exceeding the register's bit width.
< An error results if you input an illegal register name in direct input mode.

= In guidance mode, the following keyboard inputs have special meaning:

"g" ... Command is terminated. (finish inputting and start execution)
AN ... Return to previous register.
"o ... Input is skipped. (keep current value)

B Gun utility

[Register] window
The [Register] window allows direct modification of data. Click the [Register] window, select the
displayed data to be modified and enter a value then press [Enter].

S5U1C88000C MANUAL 11 EPSON 147
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

13
9

.9.5 Program Execution

(go)

I Function

This command executes the target program from the current PC address or specified address.

I Format

>g [<address>]0 (direct input mode)

<address>: Break address; hexadecimal or symbol (IEEE-695 format only)
Condition: 0 < address < last program memory address

IOperation

@

@)

©)

Program execution

If <address> is not specified, the target program is executed from the address indicated by the PC. If

<address> is specified, the target program is executed from the specified address. Program execution

is continued until it is made to break for one,cef the following causes:

= Break conditions set by a break set up command are met.

= Abreak signal is input to the ICE BRKIN pin.

= The [Key Break] button is clicked, the [Run | Stop] menu command is selected or the [Esc] key is
pressed.

= A program execution error is detected.

If a break address is specified, the program execution will be suspended before executing the instruc-

tion at the specified address.
>g la00O ... Executes the program from the current PC address to address 0x1&a0.

When program execution breaks, the system stands by waiting for a command input after displaying
the number of executed cycles/execution time. When you hit the [Enter] key here, program execution
is resumed beginning with the break address. The break address setting is also valid.

Window display by program execution

The [Source] window is updated after a break in such a way that the break address is displayed
within the window.

If the [Trace] window is opened, the display contents are cleared as the program is executed. It is
updated with the new trace information after a break.

If the [Dump] or [Register] window is opened, the display contents are updated after a break.

If the [Watch] window is set in short-break mode using the [Run | Setting...] menu item, its display
contents are updated in the specified cycles.

Display during log mode

If the program is executed after turning on the log mode, the same contents as when executing the rd
command are displayed in the [Command] window after the number of executed cycles and execu-
tion time are displayed due to a break.

Example:
>g
BUS CYCLE : 86519
Mode L : 004s 036ms 943us
X!
PC. 0618 SP:.F7FE | X 21F8 |Y:Fl1E4
B: 01 A: 05 H F1 L: E4 BR FO

CB: 01 NB: 01 EP: 00 XP: 04 YP: 00
SCI1I10UDNVCZ CCF3F2F1 FO

0 000O0O0OO 0 0 0 O
>

When a break occurs, the same display appears as when data is displayed by the rd command.

148

EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

(4) Execution cycle counter
When the target program execution is suspended, the debugger displays the number of executed
cycles and execution time in the [Command] window. (Refer to Section 13.8.4 for details.)
The execution cycle counter is reset each time the g command is issued.

I Notes

= If a break condition is met, program execution is suspended and the PC will be set to the program
address at the breakpoint.

= The address you specified must be within the range of the program memory area available with each

microcomputer model.
An error results if the limit is exceeded or the input one is not a hexadecimal number or a valid

symbol.

B Gun utility

[Run | Go] menu item, [Go] button
When this menu item or button is selected, the g command without break address specification is

executed.
= [Go] button

[Run | Go to Cursor] menu item, [Go to Cursor] button

When this menu item or button is selected after placing the cursor to the temporary break address line
in the [Source] window, the g command with a break address is executed. The program execution will
be suspended before executing the address at the cursor position.

=+| [Go to Cursor] button

S5U1C88000C MANUAL 11 EPSON 149
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

gr (go after reset CPU)

I Function

This command executes the target program from the boot address after resetting the CPU.

I Format

>gr [<address>]0 (direct input mode)

<address>: Break address; hexadecimal or symbol (IEEE-695 format only)
Condition: 0 < address < last program memory address

I Operation
This command resets the CPU before executing the program. This causes the PC to be set at the boot
address, from which the command starts executing the program.
Once the program starts executing, the command operates in the same way as the g command, except
that the gr command does not support the function for restarting execution by hitting the [Enter] key.
Refer to the explanation of the g command for more information.

I Note

If a break condition is met, program execution is suspended and the PC will be set to the program
address at the breakpoint.

IGUI utility

[Run | Go after Reset] menu item, [Go after Reset] button
When this menu item or button is selected, the gr command is executed.

i*3 [Go after Reset] button

150 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

S (step)

I Function

This command single-steps the target program from the current PC position by executing one instruc-
tion at a time.

I Format

>s [<step>]0 (direct input mode)

<step>: Number of steps to be executed; decimal (default is 1)
Condition: 0 < step < 65,535

I Operation

(1) Step execution
If the <step> is omitted, only the program step at the address indicated by the PC is executed, other-

wise the specified number of program steps is executed from the address indicated by the PC.
>s[] ...Executes one step at the current PC address.
>s 200 ...Executes 20 steps from the current PC address.

The program execution is suspended by the following cause even before the specified number of steps

is completed.
= The [Key Break] button is clicked or the [Esc] key is pressed

After each step is completed, the register contents in the [Register] window are updated. If the
[Register] window is closed, the register contents are displayed in the [Command] window same as
executing the rd command.

When program execution is completed by stepping through instructions, the system stands by
waiting for command input. If you hit the [Enter] key here, the system single-steps the program in the
same way again.

(2) HALT and SLEEP states and interrupts
When the halt or slp instruction is executed, the CPU is placed in standby mode. An interrupt is
required to clear this mode. The debugger has a mode to enable or disable an external interrupt for
use in a single-step operation.

Enable mode Disable mode
External interrupt Interrupt is processed. Interrupt is not processed.
halt and slp instructions | Executed as the halt instruction. | The halt and slp instructions are
Processing is continued by an replaced with a nop instruction as
external interrupt or clicking on the instruction is executed.
the [Key Break] button.

In the initial settings, the debugger is set to the interrupt disable mode.
The interrupt enable mode can be set using the [Run | Setting...] menu item.

(3) Execution cycle counter
After the last step is completed, the debugger displays the number of executed cycles and execution
time in the [Command] window. (Refer to Section 13.8.4 for details.)
The execution cycle counter is reset each time the s command is issued.

(4) During log mode
If the program is single-stepped after turning on the log mode, the same contents as when executing
the rd command are displayed in the [Command] window after the last step is completed.

S5U1C88000C MANUAL 11 EPSON 151
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

I Notes

= The step count must be specified within the range of 0 to 65,535. An error results if the limit is ex-
ceeded.

= |If the [Dump] window is opened, its display contents are updated after the execution.

= The program will not break even if the break condition set by a command is met while this command
is processed.

IGUI utility

[Run | Step] menu item, [Step] button
When this menu item or button is selected, the s command without step count is executed.
+, [Sep] button

152 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

N (next)

I Function

This command single-steps the target program from the current PC position by executing one instruc-
tion at a time.

I Format

>n [<step>]0 (direct input mode)

<step>: Number of steps to be executed; decimal (default is 1)
Condition: 0 < step < 65,535

I Operation

This command basically operates in the same way as the s command.
However, the call instructions, including all subroutines until control returns to the next address, are
executed as one step.

I Notes

= The step count must be specified within the range of 0 to 65,535. An error results if the limit is ex-
ceeded.

= If the [Dump] window is opened, its display contents are updated after the execution.

= The program will not break even if the break condition set by a command is met while this command
is processed.

IGUI utility

[Run | Next] menu item, [Next] button
When this menu item or button is selected, the n command without step count is executed.

4 [Next] button

S5U1C88000C MANUAL 11 EPSON 153
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

SEe (step exit)

]

Function
This command single-steps the target program from the current PC position and stops execution after
exiting from the current function or subroutine.

Format
>sel] (direct input mode)

1]

Operation
The target program starts from the current PC address in single-stepping and stops immediately after
it returns to the caller routine.

.

Notes
= Do not execute the se command in the main (top-level) routine.

= |If the [Dump] window is opened, its display contents are updated after the execution.

= During a single-step operation, the program will not break even if the break condition set by a
command is met.

IGUI utility

[Run | Step Exit] menu item, [Step Exit] button
When this menu item or button is selected, the se command is executed.

{5 [Step Bxit] button

154 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

13.9.6 CPU Reset

rst (reset CPU)

I Function

This command resets the CPU.

I Format

>rst (direct input mode)

I Notes

= The registers and flags are set as follows:

PC: Reset exception processing loads the reset vector stored in bank 0, 000000H-000001H
into the PC.

SP, IX, IY: 0XAAAA

B,A H, L, BR: 0xAA

CB, NB: 0x01

EP, XP, YP: 0x00

SC: 0b11000000

CC: Ob1111

The internal RAM and external RAM are not initialized at initial reset.
The respectively stipulated initializations are done for internal peripheral circuits.

* Reset exception processing loads the preset values stored in 0 bank, 000000H-000001H into the PC. At
the same time, 01H of the NB initial value is loaded into CB.

= If the [Source] window is open, the window is redisplayed beginning with the boot address. If the
[Register] window is open, the window is redisplayed with the above contents.

= The debug status, such as memory contents, breaks, and trace, is not reset.

IGUI utility

[Run | Reset CPU] menu item, [Reset] button
When this menu item or button is selected, the rst command is executed.

=% [Reset] button

S5U1C88000C MANUAL 11 EPSON 155
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

13.9.7 Break

bp (software breakpoint set)

I Function

This command sets or clears software breakpoints at addresses where program execution is halted.
When a program fetches an instruction at any valid software breakpoint that has been set ina 1 MB
active break area, a break occurs immediately before that instruction is executed.

I Format

>bp [<option>] <address>[] (direct input mode)

<option>: Specify to clear, enable or disable breakpoints

- Clear breakpoint

+ Enable breakpoint (default)

_ Disable breakpoint
<address>: Break address; hexadecimal or symbol (IEEE-695 format only)
Condition: 0 < address < last program memory address (Ox7fffff)

I Examples

>bp 2000 ... Sets address 0x200 as a breakpoint.
>bp _ 2000 ... Disables the breakpoint at address 0x200.
>bp - 2000 ... Clears the breakpoint at address 0x200.

I Notes

= |f any address outside the 1 MB active break area set as the debugger's operating environment is
specified, no breaks can occur at that address, although the address is registered as an invalid
breakpoint. The 8 MB of code space is divided into eight 1 MB active break areas, one of which can be
selected as a break option (by using [Break | Setting...]). At debugger startup, a 1 MB area from 0x0 to
OxOfffff is automatically selected as the active break area.

= Up to a total of 64 breakpoints can be set. Any attempt to exceed this limit prompts a warning.

= The addresses must be specified within the range of the program memory area available for each
microcomputer model.
An error results if the limit is exceeded or the input one is not a hexadecimal number or a valid
symbol.

= Any attempt to set an address again that has already been set as a breakpoint will prompt a warning.
= Any attempt to clear an address where no breakpoints are set will result in an error being assumed.

= For a breakpoint, specify the start address of an instruction at which you want the program to break.
If an intermediate address of that instruction is specified, no breaks can occur.

= No breakpoints can be set individually in a software break area set by the bpa command (because all
addresses in that area already have breakpoints set). Any attempt to set a breakpoint at any address in
that area will result in an error being assumed.

= When a program or parameter file is loaded, the contents of all breaks set are cleared.

156 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

B Gun utility

[Break | Breakpoint Setting] menu item
Selecting this menu command displays a dialog box for setting or clearing breakpoints. Before
performing any operation described below, select the [Software Break Setting (IMB Area)] tab.
Break setting x|

Hardware PC Break Setting | Hardware D ata Break Setting |
Software Break Setting [1MB Area)

Add...
IUDD?AC Eriatile
" Range Break Dizable
Start Location [000533 Delete
End Location to [000533 Clear Al
ar ‘ Address | Arealum | Symbal |
0oo33F 1
0003ac 1
000533 7

To set a software breakpoint, select the [Point Break] radio button and enter an address in the [Loca-
tion at] text box. Then click the [Add] button to register the address you entered as a valid breakpoint.
Up to 64 breakpoints can be added to the list. Exceeding this limit prompts a warning. In such case,
delete the unnecessary breakpoints before adding a new one.

To disable a valid breakpoint (whose address is preceded by an asterisk (0 in the list), select that
address from the list (by clicking the ON part), then click the [Disable] button. The asterisk disappears
and the breakpoint is disabled.

To enable an invalid breakpoint, select the address of that breakpoint from the list, then click the
[Enable] button. The address is marked with an asterisk (0 to indicate that a breakpoint is enabled at
that address.

To clear a breakpoint, select the address of that breakpoint from the list, then click the [Delete] button.
The [Clear All] button allows you to clear all breakpoints that have been set, including those in a
software break area.

[Break] button

When this button is clicked after placing the cursor to a line in the [Source] window, the address at the
cursor position is set as a breakpoint. If the address has been set as a breakpoint, this button clears the
breakpoint.

M [Break] button

The set breakpoints are marked with a e at the beginning of the address lines in the [Source] window.

W Mix _ Ol x]
| Address: [000385 4 M2 3
T -
/f====display string (y8bit)
7t

unsigned char disp_string¥8(char x, char y, unsigned char =string) {
* 888385 0@:83B5 CF6AB4BO _disp_stringv8: SUB SP,#08084h
L

* 0083B9 00:83B7? A48 D B,A

* DO83BA B@:83BA CEC60A LD XP,#88h

* @@@3BD B@08:B3BD CFFA LD IX,SP

* @@83BF @08:B83BF CES5482 LD [IX+82h],L

unsigned char err = 8;
@®* 06683C2 08:B83C2 B260 LD L,#868h
while ({*string ?= NULL) || err ?=8) {
* @063Ch4 ©08:83C4 F133 JRS 33h
err = disp_char¥8{x,y,*string);

* 0B83C6 B@:83C6 CF7708 LD [SP+@Bh],IY

* @@@3C? @08:83C? CEC7AA LD YP,#88h
o-* @@83CC @08:83CC 5F LD H,[IY]

* @@@3CDd @08:03CDh CECO688 LD XP,#88h

* 088308 8@:83D8 CFFA LD IX,SP

* 088302 88:83D2 CELCA3 LD [IX+83h].B

* 888305 @08:83D5 CEC7AA LD YP,#88h

* 9069308 ©08:83D8 CFFE LD IY,SP

* 0083DA 08:83DA CES5182 LD L,[IY¥+82h] hd
K AW

S5U1C88000C MANUAL 11 EPSON 157

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

bpa (software area breakpoint set)

I Function

This command sets a software break area or an address range in which program execution is halted.
When the program fetches an instruction in a software break area that has been set in a 1 MB active
break area, a break occurs immediately before that instruction is executed.

I Format
(1) >bpa <address1> <address2>[(direct input mode)

(2) >bpa - <address1>0 (direct input mode)
<address1>: Start address of break area; hexadecimal or symbol (IEEE-695 format only)
<address2>: End address of break area; hexadecimal or symbol (IEEE-695 format only)
Condition: 0 < addressl < address2 < last program memory address (Ox 7fffff)

I Examples

Format (1)

>bpa 100 1ff0O ... Sets the address range from 0x0100 to Ox01ff as software break area.
Format (2)

>ppa - 1000 ... Clears the software break area beginning with address 0x0100.

I Notes

= Specifying any address outside the 1 MB active break area set as the debugger's operating environ-
ment results in an error being assumed. The 8 MB of code space is divided into eight 1 MB active

break areas, one of which can be selected as a break option (by using [Break | Setting...]). At debugger

startup, a 1 MB area from 0x0 to OxOfffff is automatically selected as the active break area.

= Only one software break area can be set at a time. Before a new software break area can be set, the
previously set area must be cleared.

= The addresses must be specified within the range of the program memory area available for each
microcomputer model.
An error results if the limit is exceeded or the input one is not a hexadecimal number or a valid
symbol.

= Any attempt to set an area that contains an address already set individually as a breakpoint prompts a

warning. Similarly, no breakpoints can be set individually in a software break area that has been set
by the bpa command.

= For a break area's start and end addresses, specify the start address of an instruction at which you
want the program to break. If an intermediate address of that instruction is specified, no breaks can
occur.

= When a program or parameter file is loaded, the contents of all breaks set are cleared.

158 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

B Gun utility

[Break | Breakpoint Setting] menu item
Selecting this menu command displays a dialog box for setting or clearing breakpoints. Before
performing any operation described below, select the [Software Break Setting (IMB Area)] tab.

Break setting

Hardware PC Break Setting | Hardware D ata Break Setting |
Software Ereak Setting [TME Area)

Add. |

Location at [Eriabls |
" Fanhge Break Disable |

Start Location |IJIJ|3533 Delete
EndLocationto [000533 Clear Al
OM | Address | AreaMum | Symbol |
* 0oo3sF 1

0003ac 1

000533 7

To set a software break area, select the [Range Break] radio button, then enter the start and end
addresses of that area in the [Start Location] and [End Location to] text boxes, respectively. Then click
the [Add] button to register the area you entered as a valid software break area. All addresses in that
area are assumed to have breakpoints set. The start address of the area is shown in the Address
column of the list, and the area size (in bytes) is shown in the AreaNum column. Setting a new area
with a software break area already registered prompts a warning. In such case, delete the registered
software break area before setting a new one. Also note that because only one software break area can
exist at a time, any area that contains an address already registered as a breakpoint cannot be set as a
software break area.

To disable a valid breakpoint (whose address is preceded by an asterisk (O in the list), select that
address from the list (by clicking the ON part), then click the [Disable] button. The asterisk disappears
and the breakpoint is disabled.

To enable an invalid breakpoint, select the address of that breakpoint from the list, then click the
[Enable] button. The address is marked with an asterisk (0 to indicate that a breakpoint is enabled at
that address.

To clear a breakpoint, select the address of that breakpoint from the list, then click the [Delete] button.
The [Clear All] button allows you to clear all breakpoints that have been set, including those in a
software break area.

S5U1C88000C MANUAL 11 EPSON 159
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

bpr /[bc/ pr (software breakpoint clear)

I Function

This command clears the specified breakpoints or software break area that have been set.

I Format

(1) >bprd (direct input mode)
(2) >bc [<address>]O (direct input mode)
(3) >bpc [<address>]0 (direct input mode)

<address>: Break address; hexadecimal or symbol (IEEE-695 format only)

I Examples

>bc 2000 ... Clears a breakpoint at address 0x0200.
When abreak areais set from address0x0200, the break areais cleared.
>bpr O ... Clears all breakpoints and break area.
>bcO ... Clears al breakpoints and break area.
>bpcO ... Clears all breakpoints and break area.

I Notes

= The bc and bpc commands have the same functions.

< If no address parameter is specified for the bc or bpc command, it works the same as the bpr com-
mand and all the breakpoints and break area that have been set are cleared.

= An error results if an address that is not set at a breakpoint is specified.

B Gut utility

[Break | Breakpoint Setting] menu item
When this menu item is selected, a dialog box appears for setting/clearing breakpoints. (See the bp
command.)

[Break] button

When this button is clicked after placing the cursor to a break address line in the [Source] window, the
breakpoint is cleared. If the address has not been set as a breakpoint, this button sets a new breakpoint
at the address.

4T [Break] button

160 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

bas (sequential break setting)

I Function

This command sets the sequential break mode.

I Format

>bas[<mode>]0 (direct input mode)

<mode>: Sequential break mode number
0 Independent break mode
1 BAS3 count break mode
2 BA2&BA3 sequential break mode
3 BA1-BA3 sequential break mode

I Examples

>bas30 ... Sets BA1-BA3 sequential break mode.

>pasl ... If <mode> is omitted, the current mode is displayed.

| ndependent Break Mde
>

I o
< Do not insert any space between "bas" and <mode>.
= See the ba command for the operation in each mode and setting each break channel.
= The debugger is configured to independent break mode at the time it starts up.

= The set break conditions are all cleared when a program or a parameter file is loaded.

IGUI utility

[Break | Setting...] menu item
When this menu item is selected, a dialog box appears for selecting break options.

Break Common Setting Select a sequential break mode using the [Sequential
Break Mode] radio buttons.
A ctive frea of Softwsre Breaks | The [CH3 Count] text box is enabled to enter a BA3

execution count value when a radio button for the mode
that uses the BA3 counter is selected.

Sequential Break Mode
& [Independent break mode CH3 Count

= 1; BAZ count mode ID

= 2 BAZ-3 sequential mode
3 BA1-3 sequential mode

Cancel |

S5U1C88000C MANUAL 11 EPSON 161
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

ba (hardware breakpoint set)

I Function

This command sets or clears hardware breakpoints at which the program is halted when it executes a
specified sequence. The breakpoints set on each channel and the execution count set on CH3 are
enabled or disabled according to the sequential break mode set by the bas command.

Break occurrence conditions in each sequential break mode are described below.

1. Independent break mode (BASO) (default)
In this mode, program execution is made to break when the program fetches an instruction at a
breakpoint set on each channel. The execution count specified for CH3 (BA3) is not effective.

2. BA3 count mode (BAS1)
In this mode, the count function of CH3 (BA3) is effective. Program execution is made to break
when the program has fetched the instruction as many times as set by <count> at the breakpoint
set on CH3. Breakpoints set on CH1 and CH2 are not effective.

3. BA2&BA3 sequential mode (BAS2)
In this mode, program execution is made to break when the program has fetched the instruction as
many times as set by <count> at the breakpoint set on CH3 after executing the instruction more
than once at the breakpoint set on CH2. The breakpoint set on CH1 is not effective.

4. BA1-BA3 sequential mode (BAS3)
In this mode, program execution is made to break when the program has fetched the instruction as
many times as set by <count> at the breakpoint set on CH3 after executing the instructions more
than once in that order at the breakpoints set on CH1 and CH2.

I Format

(1) >ba<channel> <address> [<count>][(direct input mode)

(2) >ba<channel> <option>0O (direct input mode)
<channel>: Break channel number (1-3)
<address>: Break address; hexadecimal or symbol (IEEE-695 format only)
<count>: CH3 count value; decimal (default: 1)
<option>: Specify to clear, enable or disable breakpoints
- Clear breakpoint
+ Enable breakpoint (default)
_ Disable breakpoint
Condition: 0 < addressl < last program memory address (Ox7fffff), O < count < 4095

I Examples

>bas00
>pal 2000
>

In this example, independent break mode is selected, with the CH3 breakpoint set at address 0x0200.
Program execution is made to break when the program fetches the instruction at address 0x0200. This
breakpoint is effective even when set outside a 1-MB active break area.

>pal _[O

>

In this example, the breakpoint on CH1 is disabled.

>bas20
>pa2 2000
>pa3 300 20
>

In this example, BA2&BA3 sequential mode is selected, with the CH2 and CH3 breakpoints set at
addresses 0x0200 and 0x0300, respectively. Also, the CH3 counter is set to 2. When the program
executes the instruction at 0x0300 once and fetches the instruction at 0x0300 again after executing the
instruction at 0x0200 once or more, a break occurs before that instruction is executed. These
breakpoints are effective even when set outside a 1 MB active break area.

162 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

I Notes

Do not insert a space between "ba" and <channel>.

If count specification is omitted when setting CH3, the counter is set to 1 by default. Specifying a
count of 0 sets the counter to 4,096 by default.

Even in independent break mode, a execution count for CH3 can be set without causing an error, but
the count is not effective.

The addresses must be specified within the range of the program memory area available for each
microcomputer model.
An error results if the limit is exceeded or the input one is not a hexadecimal number or a valid symbol.

Any attempt to set the same address again that has already been set as a breakpoint will prompt a
warning.

Any attempt to clear an address at which no breakpoints are set will result in an error being assumed.

For a breakpoint, specify the start address of an instruction at which you want the program to break.
If an intermediate address of that instruction is specified, no breaks can occur.

When a program or parameter file is loaded, the contents of all breaks set are cleared.

IGUI utility

[Break | Breakpoint Setting] menu item
Selecting this menu command displays a dialog box for setting or clearing breakpoints. Before
performing any operation described below, select the [Hardware PC Break Setting] tab.

Break setting
Software Break Setting [1kE Area)
Hardware PC Break Setting | Hardware D ata Break Setting
Locationat [nind12 Add
CHiCawt |5 Eribls
Dizable
Delete
oM | Chatinel | Address | Surmbal |
S 1 00385 Clear Al
2 0oa3ca
3 ooo41z2

Use the radio buttons to select the channel on which you want to set an address, then enter the
desired address in the [Location at] text box. To specify an execution count on BA3, enter a hexadeci-
mal number for the desired count in the [CH3 Count] text box. If a count was set from the [Break
Common Setting] dialog box, the value you entered is reflected in this text box.

Click the [Add] button to register the address you've set as a valid breakpoint. Each channel can have
only one address set. Setting a new address on a channel for which an address is already set over-
writes the existing address. Any attempt to set an address already registered as a hardware PC
breakpoint prompts a warning.

To disable a valid breakpoint (whose address is preceded by an asterisk (O in the list), select that
address from the list (by clicking the ON part), then click the [Disable] button. The asterisk disappears
and the breakpoint is disabled.

To enable an invalid breakpoint, select the address of that breakpoint from the list, then click the
[Enable] button. The address is marked with an asterisk (0 to indicate that a breakpoint is enabled at
that address.

To clear a breakpoint, select the address of that breakpoint from the list, then click the [Delete] button.
The [Clear All] button allows you to clear all breakpoints that have been set.

S5U1C88000C MANUAL 11 EPSON 163
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

bar (hardware breakpoint clear)

I Function

This command clears the hardware breakpoints that have been set and the CH3 counter.

I Format

>bar0 (direct input mode)
I Example
>par O ... Clears al the hardware breakpoints set.
Note

An error results if no hardware breakpoint is set.

IGUI utility

[Break | Breakpoint Setting] menu item
When this menu item is selected, a dialog box appears for setting/clearing breakpoints. (See the ba
command.)

164 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

bd (hardware data breakpoint set)

I Function

This command sets or clears hardware data breaks at which the program is halted when it performs a
memory access under the specified conditions.

Data break conditions can be set individually on each of four channels. Data breaks on each channel
can be individually enabled or disabled.

The following data break conditions can be set.

1. Address condition
Specify this condition to cause the program to break when it accesses a particular address.

2. Data condition
Specify this condition to cause the program to break when it reads or writes a particular byte of
data from or to memory. Specifying data in other than decimal notation allows any data bits to be
masked (excluded from data conditions) when marked with an asterisk (0.

3. Read/write condition
Specify whether you want the program to break in a read or a write cycle. If this specification is
omitted, a break occurs in both cycles.

These three conditions can be specified in any desired combination. In such case, a break occurs when
the program accesses memory to satisfy all set conditions.

I Format

(1) >bd<channel> [A=<address>] [D=<data>] [{R|W}]O (direct input mode)

(2) >bd<channel> <option>0 (direct input mode)
<channel>: Data break channel number (0-3)
<address>: Memory address; hexadecimal or symbol (IEEE-695 format only)
<data>: Data pattern (1 byte)
Specifying datain other than decimal notation allows any bits to be masked when marked with
an asterisk (D).
RIW: R for break in aread cycle
W for break in awrite cycle
If this specification is omitted, a break occursin both read and write cycles.
<option>: Specify whether to clear, enable, or disable settings.
- Clear break conditions
+ Enable break conditions (default)
_ Disable break conditions
Condition: 0 < address < Oxffffff, O < data < Oxff

I Examples

>bd0 A=f 100 D=1*******B R0
>

In this example, data break is set on CHO. A break occurs when the program reads data whose MSB =
1 from address 0xf100. This address is effective even when set outside a 1 MB active break area.

>pd0 _0O

>

In this example, break conditions are disabled on CHO.

S5U1C88000C MANUAL 11 EPSON 165
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

I Notes

= Do not insert a space between "bd" and <channel>.

= The addresses must be specified within the range of the memory area available for each microcom-

puter model.

An error results if the limit is exceeded or the input one is not a hexadecimal number or a valid

symbol.

= Any attempt to clear a channel on which no break conditions are set results in an error being assumed.

= When a program or parameter file is loaded, the contents of all breaks set are cleared.

IGUI utility

[Break | Breakpoint Setting] menu item

Selecting this menu command displays a dialog box for setting or clearing breakpoints. Before
performing any operation described below, select (click) the [Hardware Data Break Setting] tab.

Break setting

Software Break Setting [1ME Area)
Hardware PC Break Setting

Hardweare Data Break Setting

|

I) et [o0FFos Set
& CHO
¢ CH1 Data value for I-I xxxxxxx B Eratle |
" CH2 Aecess Tupe Dizable
" CH3 ’7(" Read/wiite ¢ Read & afrite Delete
Clear All
0N | Channel | Address | Symbol | Data | Type | | B
* i NOFFO4 a0

Use the radio buttons to select the channel on which you want to set break conditions, then enter an
address in the [Location at] text box and data in the [Data Value for] text box (optional). Use the radio
buttons to select the desired read/write condition, then click the [Set] button to register what you've
entered as valid break conditions. Setting a new condition on a channel for which conditions are

already set overwrites the existing conditions.

To disable valid break conditions on a channel (preceded by an asterisk (0 in the list), select that
channel from the list (by clicking the ON part), then click the [Disable] button. The asterisk disappears
and break conditions on the channel are disabled.

To enable invalid break conditions on any channel, select that channel from the list, then click the
[Enable] button. The channel is marked with an asterisk (O to indicate that break conditions are

enabled on the channel.

To clear break conditions on any channel, select that channel from the list, then click the [Delete]

button.

The [Clear All] button allows you to clear all break conditions that have been set.

166

S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

EPSON

CHAPTER 13 S1C88 FAMILY DEBUGGER

bdr (hardware data breakpoint clear)

I Function

This command clears the hardware data break conditions that have been set.

I Format

>bdrd (direct input mode)
I Example
>bdr O ... Clearsall the hardware data break conditions set.
Note

An error results if no hardware data break condition is set.

IGUI utility

[Break | Breakpoint Setting] menu item
When this menu item is selected, a dialog box appears for setting/clearing breakpoints. (See the bd
command.)

S5U1C88000C MANUAL 11 EPSON 167
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

bl (breakpoint list)

I Function

This command lists the current setting of all break conditions.

I Format

>bl0 (direct input mode)

I Example

>bl O
PC break:
Sof t war e Br eak:
1: 0005fa ENABLE
2: 000618 ENABLE
3: 00062d ENABLE
Area Break:
000100 - 0001ff ENABLE
Har dwar e Br eak:
1: CHL 000728 ENABLE
2: CH2 000742 ENABLE
3: CH3 000786 ENABLE
Sequential Break Mde:
BA1 - BA3 Sequential Mde : Count(3)
Dat a break:
CHO DATA: 1****x*x RW R R W AREA: 00F010 ENABLE
>

IGUI utility

[Break | Break List] menu item
When this menu item is selected, the bl command is executed.

168 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

bac (break all clear)

I Function

This command clears all break conditions set by the bp, bpa, bas, ba and/or bd commands.

I Format

>bacl (direct input mode)

B cut utility

[Break | Break All Clear] menu item, [Break All Clear] button
When this menu item or button is selected, the bac command is executed.

@ [Break All Clear] button

S5U1C88000C MANUAL 11 EPSON 169

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

13.9.8 Program Display

U (unassemble)

I Function

This command displays the program in the [Source] window after disassembling it. The display
contents are as follows:

= Physical memory address

= Logical memory address

= Object code

= Unassembled contents of the program

I Format

>u [<address>]0 (direct input mode)

<address>: Start address for display; hexadecimal or symbol (IEEE-695 format only)
Condition: 0 < address < last program memory address (Ox 7fffff)

IDispIay

(1) When [Source] window is opened

i Dizaszemble B E
| Adcress: [oo018C [« n |2 B
[P.Addr [L.2ddr | Cods | Unassemble | ||
=% B0B18C B0:018C CFGEDOBFE _ START: LD SP,HFBOGh |
*@08190 B80:0198 BAFF LD BR,HFFh
* 900192 080:9192 DDAARA LD [BR:@6h],Hee6h
*@0@195 @80:0195 DDA20A LD [BR:82h],HA8h
*@pa198 @80:0198 DDA10G LD [BR:@1h], #8680
*@0@198 @0:0198 BAura LD BR,H#F@h
*@p@a19D @80:0190 F2A3FF CARL _ copytable
*@pe1n0 B80:01A8 F21201 CARL _main
0e01A3 0O:-01A3 F20A01 CARL _ exit
0eB1A6 BO:81A6 F9 RETE
0001A7 O0:01A7 CFBY _watchdog: PUSH ALE
0001A9 00:01A9 CFBD POP ALE
® 0001AB | BO:-01AB F9 RETE
*@0@B1AC @0:01AC CFBY _rtclock: PUSH ALE
*@OB1AE B0:01AE B201 LD L,H81h
*@pa1B0 @0:01B@ CECS00 LD EP,H@8h
*@081B3 @0:01B3 CEDG24FF LD [FF2uh],L
= @OE1B7 @0:01B7 BYDAFH LD HL,[FB8Bh]
*@0e1BA B0:01BA CFE9 LD IX,HL
*@0a1BC @0:-01BC C10700 ADD HL ,H0887h
* @0B1BF @0:01BF 4D LD B,[HL]
*@0@1co @0:01ce BAO1 LD A,H81h
*@pe1c2 @80:01c2 01 ADD A,B =
] s

If <address> is not specified, display in the [Source] window is changed to the disassemble display
mode. If <address> is specified, display in the [Source] window is changed to the disassemble display
mode. At the same time, code is displayed beginning with <address>.

(2) When [Source] window is closed
The 16 lines of disassembled result are displayed in the [Command] window. The system then waits
for acommand input.
If <address> is not specified, this display begins with the current PC. If <address> is specified, the
display begins with <address>.

>uld
P. ADDR L.ADDR CODE UNASSEMBLE
0002AE 00: 02AE CFG6EOO0F8 __START: LD SP, #F800h
0002B2 00:02B2 BAFF LD BR #FFh
0002B4 00:02B4 DDO000O LD [BR 00h], #00h
0002B7 00:02B7 DD020C LD [BR 02h], #0Ch
0002CF 00: 02CF B200 LD L, #00h
0002D1 00:02D1 C30000 ADD 1Y, #0000h
>
170 EPSON S5U1C88000C MANUAL I

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

(3) During log output
If the command execution result is being output to a log file as specified by the log command, code is
displayed in the [Command] window and its contents are also output to the log file.
If the [Source] window is closed, the result is displayed in the same way as in (2) above.
If the [Source] window is opened, the window is redisplayed. In this case, the same number of lines is
displayed in the [Command] window as displayed in the [Source] window.

(4) Successive display
If you execute the u command after entering it from the keyboard, code can be displayed successively
by entering the [Enter] key only until some other command is executed.
When you press the [Enter] key, the [Source] window is scrolled forward one screen.
When displaying code in the [Command] window, 16 lines of code following the previously displayed
address are displayed (the same number of lines as displayed in the [Source] window if the u com-
mand is executed during log output).

I Note

The display start address you specified must be within the range of the program memory area
available with each microcomputer model.

An error results if the limit is exceeded or the input one is not a hexadecimal number or not a valid
symbol.

IGUI utility

[View | Source | Disassemble] menu item, [Disassemble] button
When this menu item or button is selected, the [Source] window opens or activates and displays the
program from the current PC address.

[E7] [Disassemble] button

S5U1C88000C MANUAL 11 EPSON 171
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

SC (source code)

I Function

This command displays the contents of the program source file in the [Source] window.

I Format

>sc [<address>] 0 (direct input mode)
<address>: Start address for display; hexadecimal or symbol (IEEE-695 format only)
Condition: 0 < address < last program memory address (Ox 7fffff)

IDispIay

(1) When [Source] window is opened

i' C:AEPSONASIMAs1c88\samplesiclkdemo.c

JFunchnns' I '”$|£ﬁﬂ‘|€|‘6"\f'

ff====display character {(y8bit)

unsigned char disp_char¥8{char x, char y, unsigned char charac) {
unsigned char =uram, =ascfont;
unsigned char i = @8, err = 8;

charac -= AscCodeMing

if ((x <= AscPosiMax¥) && (Y <= AscPosiMax¥) && (charac <= AscCodeMax}){
vram = {unsigned char =){UramStt + x + y = Uram¥step);
ascfont = (unsigned char =)}{AsciiFontTbl + charac * AscFontStp);

=9 for (i=8 ; i < AscFontStp ; i++){
x{uram++) = =x(ascfont++);
H
H

else {
err = 1;
H
L] return {err);

H

|

If <address> is not specified, display in the [Source] window is changed to the source display mode.
If <address> is specified, display in the [Source] window is changed to the source display mode. At

the same time, code is displayed beginning with <address>.

(2) When [Source] window is closed

The 17 lines of source code are displayed in the [Command] window. The system then waits for a

command input.

If <address> is not specified, this display begins with the current PC. If <address> is specified, the

display begins with <address>.

>scl
{
#pragma asm
GLOBAL __ START
__START:
; systeminitialization
LD SP, #@XOFF(__| c_es) ; stack pointer initialize
LD BR, #0FFh ; BRregister initialize to I/0 area

R LR R bus node setting -----------------------o-----

; MCU & MPU node
LD [BR 00h], #0
; Single Chip node

; |/ CEO,/ CE2,/ CE3, / CELl: di senabl ed

172 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

(3) During log output
If the command execution result is output to a log file as specified by the log command, code is
displayed in the [Command] window and its contents are also output to the log file.
If the [Source] window is closed, code is displayed in the same way as in (2) above.
If the [Source] window is open, the window is redisplayed. In this case, the same number of lines is
displayed in the [Command] window as displayed in the [Source] window.

(4) Successive display
If you execute the sc command after entering it from the keyboard, code can be displayed successively
by entering the [Enter] key only until some other command is executed.
When you press the [Enter] key, the [Source] window is scrolled forward one screen.
When displaying code in the [Command] window, 17 lines of code following the previously displayed
address are displayed (the same number of lines as displayed in the [Source] window if the sc com-
mand is executed during log output).

I Notes

= Source codes can be displayed only when an absolute object file that contains source debug informa-
tion has been loaded.

= The display start address you specified must be within the range of the program memory area
available with each microcomputer model.
An error results if the limit is exceeded or the input one is not a hexadecimal number or not a valid
symbol.

B Gun utility

[View | Source | Source] menu item, [Source] button
When this menu item or button is selected, the [Source] window opens or activates and displays the
program from the current PC address.

[Source] button

S5U1C88000C MANUAL 11 EPSON 173
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

m

(mix)

I Function

This command displays the disassembled result of the program and the contents of the program
source file in the [Source] window. The disassemble display contents are the same as the disassemble
display mode.

I Format

(1) When [Source] window is opened

(2) When [Source] window is closed

>m [<address>]0

(direct input mode)
<address>: Start address for display; hexadecimal or symbol (IEEE-695 format only)
Condition: 0 < address < last program memory address (Ox 7fffff)

IDispIay

i Mix [O[]
| Address: 000365 W4 M2 B
i’ ii
ff====display string (y8bit)
i
unsigned char disp_string¥8({char x, char y, unsigned char =string) {
* G003B5 008:83B5 CF6NO4A08 _disp_stringY8: SUB SP,#0084h
* 0AO3E9 B60:03B9 A48 LD B,A
* 0003BA 00:03BA CECG0B LD XP,#t86h
* A083BD AA:83BD CFFA LD IX,SP
* DAB3BF B0:03BF CES402 LD [IX+82h],L
unsigned char err = 8;
®* 0083C2 08:083C2 B208 LD L,#86h
while ((#string *= HULL) || err $=8) {
* g@e3cy B868:03C4 F133 JRE 33h
err = disp_char¥8(x,y,*string);
* @0083C6 AA:-B83C6 CF7788 LD [SP+@@h], IV
* 0Ae3cY? 080:03C9 CEC7O0A LD ¥P,#aah
o* BBE3CC @@-83CC 5F LD H,[IY¥]
* 0ee3CD 868:83CD CEC60A LD XP,#86h
* gee3be B868:83D8 CFFA LD IX,SP
* 08302 B86:03D2 CE4LCA3 LD [IN+83h],B
* 0@e3D5 B86:83D5 CEC708 LD ¥P,it@6h
* 08308 080:03D8 CFFE LD IY¥,SP
* A083DA B88:83DA CE5182 LD L,[I¥+82h] hd
Kl ol

If <address> is not specified, display in the [Source] window is changed to the mix (source and
disassemble) display mode. If <address> is specified, display in the [Source] window is changed to
the mix display mode. At the same time, code is displayed beginning with <address>.

The 16 lines of mix display are produced in the [Command] window. The system then waits for a
command input.
If <address> is not specified, this display begins with the current PC. If <address> is specified, the
display begins with <address>.

>nil

_interrupt(0x0000)

void _start_cpt(void)

/* Startup vector */

{
0002AE 00: 02AE CFG6EOO0F8 __START: LD SP, #F800h
0002B2 00:02B2 BA4FF LD BR, #FFh
0002B4 00:02B4 DDO000O LD [BR 00h], #00h
0002B7 00:02B7 DD020C LD [BR 02h], #0Ch
0002BA 00: 02BA DD0100 LD [BR 01h], #00h
0002BD 00: 02BD B4F0 LD BR, #FOh
174 EPSON S5U1C88000C MANUAL I

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

(3) During log output
If the command execution result is output to a log file as specified by the log command, code is
displayed in the [Command] window and its contents are output to the log file also.
If the [Source] window is closed, code is displayed in the same way as in (2) above.
If the [Source] window is open, the window is redisplayed. In this case, the same number of lines is
displayed in the [Command] window as displayed in the [Source] window.

(4) Successive display
If you execute the m command after entering it from the keyboard, code can be displayed successively
by entering the [Enter] key only until some other command is executed.
When you press the [Enter] key, the [Source] window is scrolled forward one screen.
When displaying code in the [Command] window, 16 lines of code following the previously displayed
address are displayed (the same number of lines as displayed in the [Source] window if the m com-
mand is executed during log output).

I Notes

= Source codes can be displayed only when an absolute object file that contains source debug informa-
tion has been loaded.

= The display start address you specified must be within the range of the program memory area
available with each microcomputer model.
An error results if the limit is exceeded or the input one is not a hexadecimal number or not a valid
symbol.

B Gun utility

[View | Source | Mix] menu item, [Mix] button
When this menu item or button is selected, the [Source] window opens or activates and displays the
program from the current PC address.

[Mix] button

S5U1C88000C MANUAL 11 EPSON 175
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

13.9.9 Symbol Information

SY (symbol list)

I Function

This command displays a list of symbols in the [Command] window.

I Format

>sy [/a]0] (direct input mode)
I Examples
>syll
Address Synbol
0004A5 _ ANDXL
0004E4 _ BLCPS
0004C6 _ COWPSL
00056B __ CWPUL

0002CE __DIVSI

000E48 _strtok
0002C9 _wat chdog
>

When /a is omitted, all the defined symbols are displayed in alphabetical order.

>sy [al
Address Synbol
000100 _ copytable
00014A rtclock
0002AE _ START
0002AE _ start_cpt
0002C9 _wat chdog
O00F1F2 _ ungetc
OOF800 _ Ic_es

>

When /Za is specified, the symbol list is sorted by address.

I Note

The symbol list can only be displayed when the object file (.abs) in IEEE-695 format has been read or
when the symbol file (.sy) is loaded simultaneously with the program HEX file (.psa).

B Gut utility

None

176 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

W (symbol watch)

I Function

This command displays the content of a specified symbol.

I Format

(1) >w <symbol> [;<option>] [/a]O (direct input mode)

(2) >wO (guidance mode)
File name: <file name>[
Function name: <function>0
Symbol name: <symbol>0
Format ? (B/Q/D/H) <option>[
Display in watch window? (Y/N) {Y|N}O
<symbol> = Current value
>
<symbol>: Symbol name
<option>: Display format option

B Binay
Q Octd
D Decimd

H Hexadecimal (default)
<file name>: Sourcefile name
<function>: Function name

I Examples

Format (1)

>w saveFl g ; BO

saveFl g = 00000001 ... Shows the symbol value

>w saveFl g ;B /al ... Shows the symbol value in the [Watch] window
>w xxx [

No such synbol exists. ... Ifthesymbol cannot be found

>

When the /a option is specified, the symbol is registered in the watch symbol list when its name and

value are displayed in the [Watch] window, and the displayed contents are automatically updated

according to the [Watch] window's update mode.

Format (2)

>wJ

File name: calc.cO

Function name: main0d

Synbol nane: count

Format ? (B/ Q D/ H) HO

Di splay in watch wi ndow? (Y/ N)NJ
count = 0x000

>

To specify a global symbol, simply press the [Enter] key without entering a file name and function name.

I Note

Symbol information can only be displayed using the w command when an IEEE-695 format object file

(.abs) is loaded in the ICE.

B Gun utility

[Watch] button (located in the [Source] window)
Select (highlight) a symbol name in the [Source] i Watch

O] x|

window by dragging it, then click the [Watch] button. 'Syubol Hame [¥aluwe |

The selected symbol is then registered in the symbol list |®ip_cikdata

in the [Watch] window. Once registered this way, the [8x8]
symbol value can be confirmed in the [Watch] window. | 9-1"t18

@ [Watch] button

S5U1C88000C MANUAL 11 EPSON
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

177

CHAPTER 13 S1C88 FAMILY DEBUGGER

13.9.10 Load File

If (load file)

I Function

This command loads an object file (.abs: IEEE-695 format, .psa: Motorola S2 format) and/or a function
option HEX file (.fsa: Motorola S2 format) into the debugger.

I Format

(1) >If <file name>0 (direct input mode)

(2) >If0 (guidance mode)
Program object file name ((ABS/.PSA) ... ? <file name>[
Function option file name (.FSA) . .. ? <file name>0O
OK!
>

<file name>: File name to be loaded (path can also be specified)

I Examples

Format (1)

> f test.absO

X!

Synbol file is |oaded. .. Indicatesthat symbol information has been loaded.
>l f test.fsal

X!

>

In format (1), the object file and function option file must be specified separately.

Format (2)

> f 0O

Program object file nanme(.ABS/.PSA) ... ? test.absO
Function option file nanme(.FSA) ... ? test.fsal

!

Synbol file is | oaded.
>

In format (2), the object file and function option file can be loaded in one operation by entering both
file names according to the guidance. You can skip loading one of the two files by simply pressing the
[Enter] key.

I Notes

< The debugger determines the type of file from the specified file name. Therefore, only files that have
one of the above extensions can be loaded. Specifying other files results in an error.

= If you want to use source display and symbols when debugging a program, the object file must be in
IEEE-695 format that contains debug information loaded into the debugger.

= If the [Source] window is opened when loading a file, its contents are updated. The program contents
are displayed from the current PC address.

= If an error occurs when loading a file, portions of the file that have already been read will remain in
the emulation memory.

= When a program file is loaded, all set breakpoints and break conditions are cleared, as are all trace
information and coverage information acquired.

B Gut utility

[File | Load File...] menu item, [Load File] button
When this menu item or button is selected, a dialog box appears allowing selection of an object file to
be loaded.

g [Load File] button

178 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

par (load parameter file)

I Function

This command loads a parameter file (.par) to set memory map information.
When a SelfFlash program address must be set, a break must be set at the end address of that pro-
gram.

I Format

(1) >par <file name>0 (direct input mode)
(2) >parQd (guidance mode)
File Name ...? <file name>0
>

<file name>: Parameter file name to be loaded (path can aso be specified)

I Examples

Format (1)
>par 88xxx. par
>

Format (2)

>par U

File nanme ? 88xxx. par
>

I Notes

= When a parameter file is loaded, all set breakpoints and break conditions are cleared, as are all trace
information and coverage information acquired.

= |If the map information of the loaded parameter file is erroneous, the debugger fails to initialize the
ICE and cannot run the program.

IGUI utility

[File | Load Parameter File] menu item, [Load Parameter] button
When this menu item or button is selected, a dialog box appears allowing selection of a parameter file
to be loaded.

E [Load Parameter] button

S5U1C88000C MANUAL 11 EPSON 179
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

13.9.11 Trace

td (trace data display)

I Function

This command displays the trace information that has been sampled into the ICE trace memory.

I Format

(1) >td [<cycle>]O

(2) >tdO

(direct input mode)

(guidance mode)

Start index (ENTER as 0)? : <cycle>[
(Trace data is displayed)

>

<cycle>:

IDispIay

Start cycle number of trace data; decimal (from 0 to 8,191)

The following lists the contents of trace information:

INS:

P. Addr:

L. Addr:
Code:
Mnemonic:
BAto YP:
SC, CC:
Memory:

CPU cycle number (decimal)

Physical address (hexadecimal)

Logical address (hexadecimal)

Object code (hexadecimal)

Disassembled code

Values of the CPU registers after finishing the cycle (hexadecimal)
Condition flag status

Memory access status (other than code fetch status)

MR: Memory read

MW: Memory write

[<address>] = <data>: Accessed memory address and read/write data (hexadecimal)

(1) When [Trace] window is opened:

W Trace =] S
INS.|P Addr| I Addr Code Mnemonic SP |BR EP|XP|¥P 5C cC Hemory -
8217 808499 B1:8499 93 INC 1Y% 3E8L F828 F828 FO60 F7F3 FB 80 06--H-C- pAGA

8218 00049A 01:049n 92 INC IX 3E8L F828 FB829 FOGO F7F2 FO 80 06--H-C- 0000

8219 800498 B1:049B CF7601 LD [SP+B1h],IX 3E8L F828 F820 FO60 F7F3 FB 80 08--N-C- 0O0A MW:[BOF7F4]=29 HW:[BOF7
0220 00B49E B1:049E BOG1 LD A,#81h 3EB1 F828 F829 FO60 F7F3 FO

8221 B8084AR B1:04A0 A6 PUSH IP 3EB1 F828 F829 FO60 F7F1 FB HW:[BOF7F2]=80 HW:[0OF7
08222 0804A1 61:04A1 CEC608 LD XP,H80h 3JEB1 F828 FB29 FO6B F7F1 FO

08223 0004n4 B1:04A4 CFFA LD IX,SP 3ED1 F828 F7F1 FO60 F7F1 FO

8224 BOB4AG6 B1:084A6 CE4BO2 LD B,[IX+B2h] 8461 F828 F7F1 FB68 F7F1 FB MR:[BBF7F3]=84

8225 0004A9 01:04A9 AE POP 1P 0481 F828 F7F1 FO60 F7F3 FO MR:[BOF7F1]=00 MR:[00F7
8226 B80@4AA B1:04AA 61 ADD A,B BuB5 F828 F7F1 FO60 F7F3 FB

08227 0004AB B1:04AB 50 LD L,A o485 F885 F7F1 FO6O F7F3 FO

8228 B0B4AC B1:84AC B165 LD B,#85h 8585 F885 F7F1 Fo68 F7F3 FB

8229 BOB4AE 01:04AE 42 LD A,L 858> F88% F7F1 FO6O F7F3 FO

6230 0004AF 01:04AF N6 PUSH IP 85085 F805 F7F1 FO60 F7F1 FO HW:[00F7F2]=-00 HW:[0OF7
8231 ABB4BA B1:84B6 CEC6BA LD XP,H#B8h 8585 F885 F7F1 FB68 F7F1 FB

08232 O0004E3 01:04B3 CFFA LD IX,.SP 8585 F805 F7F1 FO60 F7F1 FB

8233 A0B4B5 B1:084B5 CE4LB2 LD [IX+B2h],A 8585 F885 F7F1 Fo68 F7F1 FB HU:[BOF7F3]=85

8234 O0O4B8 01:04B8 AE POP 1P 858> F885 F7F1 FO6O F7F3 FO MR:[BOF7F1]=00 MR:[00F7
8235 A0B4B? B1:084B9 3A80 XOR A,H#88h 8585 F885 F7F1 FO68 F7F3 FB

8236 0004BB 01:04BB CEBBSO XOR B,H88h 8585 F885 F7F1 FO60 F7F3 FO

08237 O0O4BE 01:04BE 31 CP n,B 8585 F805 F7F1 F060 F7F2 FO

8238 A0B4BF B1:84BF CEEBCB JRS LT,CBh 8585 F885 F7F1 FB68 F7F3 FB

08239 0004C2 B1:04C2 F16% JRS 85h 8585 F805 F7F1 FO60 F7F2 FO

4 | a7

When the td command is input without <cycle>, the [Trace] window redisplays the latest data; when
the td command is input with <cycle>, the trace data starting from <cycle> is displayed in the [Trace]

window.

The display contents of the [Trace] window is updated after an execution of the target program.

All trace data can be displayed by scrolling the window.

180

EPSON

S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

(2) When [Trace] window is closed:
When the td command is input without <cycle>, the debugger displays 11 lines of the latest trace data
in the [Command] window. When the td command is input with <cycle>, the debugger displays 11
lines of the trace data from <cycle> in the [Command] window.

>t dO

Start index (ENTER as 0)? : O

Ins. P.Addr L.Addr Code Mhenoni ¢ BA H. IX 1Y SP BREPXPYP SC CC Menory

0000 000179 00: 0179 CF7000 LD BA, [SP+00h] XXXX XXXX XXXX FOE4 XXXX XX XX XX XX 1l------ 000

0001 00017A 00: 017A XXXX XXXX XXXX FOE4 XXXX XX XX XX XX 11------ 000

0002 00017B 00: 017B XXXX XXXX XXXX FOE4 XXXX XX XX XX XX 11------ 00Co

0003 0077FC 00: F7FC XX00 XxxxX XXXX FOE4 XXXX XX XX XX XX 1l------ 00Q0 MR [00F7FC] =00
0004 00017C 00: 017C XX00 xxxx Xxxxx FOE4 XxxXX XX XX XX XX 11------ 000

0005 0077FD 00: F7FD 0100 xxxx xxxx FOE4 XxXX XX XX XX XX 11------ 00C0 MR [00F7FD] =01
0006 00017C 00:017C 98 DEC BA 0100 xxxx xxxx FOE4 XXXX XX XX XX XX 11------ 000

0007 00017D 00: 017D 0100 xxxx xxxx FOE4 XXxXX XX XX XX XX 11------ 000

0008 00017D 00: 017D CF7400 LD [SP+00h], BA O00FF xxxx xxxXXx FOE4 XXxXX XX XX XX XX 11------ 00C0

0009 00017E 00: 017E 00FF xxxx xxxx FOE4 XXXX XX XX XX XX 11------ 000

0010 00017F 00: 017F 00FF xxxx xxxx FOE4 XXXX XX XX XX XX 11------ 000

>td 110

Ins. P.Addr L.Addr Code Mhenoni ¢ BA HL IX 1Y SP BREPXP YP SC CC Menory

0011 0077FC 00: F7FC O0FF xxxx xxxx FOE4 XXXX XX XX XX XX 1l------ 0000 MW [OOF7FC] =FF
0012 000180 00: 0180 00FF xxxx xxxx FOE4 XxxXX XX XX XX XX 11------ 00Co

0013 0077FD 00: F7FD O0FF xxxx xxxx FOE4 XXXX XX XX XX XX 1l------ 000C0 MW [00F7FD] =00
0014 000180 00: 0180 E7EB JRS Nz, EBh O00FF xxxx xxxX FOE4 XXXX XX XX XX XX 11------ 0000

0015 000181 00: 0181 00FF xxxx xxxx FOE4 XxxXX XX XX XX XX 11------ 00Co

0016 00016C 00: 016C CE3501 CP [HL], #01h O0FF xxxx xxxx FOE4 XXXX XX XX XX XX 1l------ 00C0

0017 00016D 00: 016D 00FF xxxx xxxx FOE4 XXXX XX XX XX XX 11------ 000

0018 00016E 00: 016E 00FF xxxx xxxx FOE4 xxXx XX XX XX XX 11------ 00Co

0019 000C53 00: 0C53 O0FF xxxx xxxx FOE4 XXXX XX XX XX XX 1l------ 0000 MR [000C53] =01
0020 00016F 00: 016F E706 JRS Nz, 06h 00FF xxxx xxxX FOE4 xXXX XX XX XX XX 11----- Z 00Q0

0021 000170 00:0170 00FF xxxx xxxx FOE4 xxxx XX XX XX XX 11----- Z 00C0

>

(3) During log output
When the command execution result is being output to a log file as specified by the log command, the
trace data is displayed in the [Command] window and its contents are also output to the log file.
If the [Trace] window is closed, data is displayed in the same way as in (2) above.
If the [Trace] window is open, its contents are redisplayed. In this case, the same number of lines are
displayed in the [Command] window as displayed in the [Trace] window.

(4) Successive display
When you execute the td command, the trace data can be displayed successively by entering the
[Enter] key only until some other command is executed.
When you input the [Enter] key, the [Trace] window is scrolled forward one screen.
When displaying data in the [Command] window, 11 lines of data preceding the previously displayed
cycle are displayed in the [Command] window (the same number of lines as displayed in the [Trace]
window if the command is executed during log output).
The direction of display is such that each time you input the [Enter] key, data on older execution
cycles is displayed (FORWARD). This direction can be reversed (BACKWARD) by entering the [B]
key. To return the display direction to FORWARD, input the [F] key. If the [Trace] window is open, the
direction in which the window is scrolled is also changed.

>td 1000 ... Started display in FORWARD.
(Dataon cycle Nos. 100 to 110 is displayed.)

>b[... Changed to BACKWARD.
(Dataon cycle Nos. 99 to 89 is displayed.)

>0 ... Continued display in BACKWARD.
(Dataon cycle Nos. 88 to 78 is displayed.)

>f O ... Changed back to FORWARD.
(Dataon cycle Nos. 99 to 89 is displayed.)

>

S5U1C88000C MANUAL 11 EPSON 181
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

I Notes

= Specify the trace cycle No. within the range of 0 to 0x1fff (8,191). An error results if this limit is
exceeded.

= The trace memory receives new data until a break occurs. When the trace memory is filled, old data is
overwritten by new data.

IGUI utility

[Trace | Trace] menu item
When this menu item is selected, the [Trace] window opens and displays the latest trace data.
At the same time, the dialog box shown below appears to specify the cycle number to be displayed.

Enter the display start and end cycle numbers
in hexadecimal to the [Start from] and [End
to] text boxes, respectively, and then click
Elafian | [OK]. These entries can be omitted, and if
[Start from] is omitted, the trace data is
displayed from cycle number 0.

Set Address or Point x|

End to I

Cancel |

[Trace | Setting...] menu item
When this menu item is selected, the [Trace Information Setting] dialog box appears to set trace
conditions. See Section 13.8.6, "Trace Function”, for details.

182 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

{S (trace search)

I Function

This command searches trace information from the trace memory under a specified condition. The
search condition can be selected from three available conditions:

1. Search by executed address
In this mode, you can specify a program memory address. The debugger searches the cycle in
which the specified address is executed.

2. Search for a specified memory read cycle
In this mode, you can specify a data memory address. The debugger searches the cycle in which
data is read from the specified address.

3. Search for a specified memory write cycle
In this mode, you can specify a data memory address. The debugger searches the cycle in which
data is written to the specified address.

I Format

(1) >ts <option> <address>0 (direct input mode)

(2) >tsOd (guidance mode)

1. pc address 2.dataread address 3. data write address ...? <1| 2| 3>0

Search address ?: <address>0

(Search result is displayed)

>
<option>: Search condition; pc (= executed address), dr (= data read address), dw (= data write address)
<address>: Search address; hexadecimal or symbol (IEEE-695 format only)
Condition: 0 < address < Ox7fffff (when pc is specified), O < address < Oxffffff (when dr/dw is specified)

I Examples

The search results are displayed in the [Trace] window if it is opened; otherwise, the results are
displayed in the [Command] window in the same way as for the td command.

Format (1)

>ts pc 8230

Searching trace data ... K

Ins. P.Addr L.Addr Code Vhenoni ¢ BA HL I X 1Y ...
0006 000823 00: 0823 0006 XXXX XXXX XXXX ...
0007 000823 00: 0823 E7FA JRS NZ, FAh 0006 xX07 XXXX XXXX ...
>

Format (2)

>t s

1.pc address 2.data read address 3.data wite address ...? 10
Searching trace data ... K

Ins. P.Addr L.Addr Code Mhenoni ¢ BA HL I X 1Yy ...
0006 000823 00: 0823 0006 XXXX XXXX XXXX ...
0007 000823 00: 0823 E7FA JRS NZ, FAh 0006 xX07 XXXX XXXX ...
>

When command execution results are being output to a log file by the log command, the search
results are displayed in the [Command] window as well as output to the log file even when the
[Trace] window is opened.

I Note

The address specified for search must be within the range of the memory area available for each
microcomputer model.

An error results if the limit is exceeded or the input one is not a hexadecimal number or not a valid
symbol.

S5U1C88000C MANUAL 11 EPSON 183
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

B Gut utility

[Trace | Trace Search...] menu item
When this menu item is selected, a dialog appears for setting a search condition.

Trace Search [x]| Select an option using the radio button and enter an

address in the text box, then click [OK].

[HE]

[seach | _ cocd |

184 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

tf (trace file)

I Function

This command saves the specified range of the trace information displayed in the [Trace] window by
the td or ts command to a file.

I Format

(1) >tf <file name> [<cyclel> [<cycle2>]]0 (direct input mode)

(2) >tfO (guidance mode)
Start index (min 0) ? : <cyclel>0
End index (max 8191) ? : <cycle2>[
File Name ?: <file name>0
>
<file name>: Output file name (path can also be specified)
<cyclel>: Start cycle number; decimal (O by default)
<cycle2>: End cycle number; decimal (Ox1fff by default)
Condition: 0 < cyclel < cycle2 < Ox1fff

I Examples

Format (1)

>tf trace.trcl ... Saves all trace information extracted by the td command.
8191- 8000

8000- 7000

1000- 1

X!

>

Format (2)

>tf [0

Start index (mn 0) ? :00
End i ndex (max 8191) ? :1000
File name ? itest.trcO
1000- 1

X!

>

I Notes

= If an existing file is specified, the file is overwritten with the new data.

= The default value of <cyclel> is 0, and the default value of <cycle2> is 0x1fff (8191), the latest trace
data.

B Gun utility

[Trace | Trace File...] menu item
When this menu item is selected, a dialog box appears allowing specification of the parameters.

Trace File xl| Enter a start cycle number, end cycle number and a file
name, then click [OK].
To save all the trace information, leave the [Start Point] and
Start Point; |0 [Decimal, max 5.191] [End Point] boxes blank.
: - The file name can be selected using a standard file selection
End Paint: 5131 [Decimal. min 0] . ..
dialog box that appears by clicking [Browse...].
File Mame: Isumple'l.trd Browse... |
ak. I Cancel |
S5U1C88000C MANUAL I EPSON 185

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

13.9.12 Coverage

CV (coverage)

I Function

This command displays the coverage information (accessed addresses) acquired by the ICE while
running the target program.

I Format

>cv <address1> [<address2>]0 (direct input mode)

<address1>: Start address; hexadecimal or symbol (IEEE-695 format only)
<address2>: End address; hexadecimal or symbol (IEEE-695 format only)
Condition: 0 < addressl < address2 < last memory address (Oxffffff)

I Examples

(1) When [Coverage] window is opened:

iﬁ[ﬁnverage M= Ei
P.AddrlUl23456?|Dl23456?|C0unt AI
goaa1@ * 1
goa10a8 16
aea118@ 16
aee1z2@ 16
aeA13a@ 16
aeA148 16
gea15a 16
gea16@ 16 -
KN A

Coverage information is displayed in a 16 bytes per line format beginning with <address1>. P.Addr
indicates the start address (physical address) of each line. The accessed addresses are marked with an
asterisk (O and addresses not accessed are marked with a space " ". The Count value indicates the
total addresses accessed (in bytes) among the 16 bytes on each line. All acquired data can be displayed
by scrolling the screen.

(2) When [Coverage] window is closed:

If <address2> is omitted when executing the cv command, coverage information from <address1> to
the end address is displayed in the [Command] window.

If <address2> is specified when executing the cv command, coverage information from <address1> to
<address2> is displayed.

>cv 1000 ...Shows the executed addresses following 0x000100.
000100 - 00020e
000233 - 0002c4
0004e4 - 0004e9

00f f 40
00ff54 - 00ff55
00ff 61
00ff 63
>cv 100 1ff O ...Shows the executed addresses from 0x000100 to 0x0001ff.
000100 - 0001ff
>

186 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

I Notes

= Coverage information is recorded according to the acquisition mode (i.e., whether to acquire informa-
tion from the entire address space or data space only) and acquisition range (selected 64 KB area)
specified with the debugger's coverage options. The dialog box displayed by selecting [Setting...] from
the [Coverage] menu is used to set the coverage options. For details, see Section 13.8.7, "Coverage".

= The addresses specified here must be within the range of the program memory area available with
each microcomputer model.
An error results if the limit is exceeded or the input one is not a hexadecimal number or a valid
symbol.

= An error results if the start address is larger than the end address.

IGUI utility

[Coverage | Coverage] menu item

Selecting this menu command opens the [Coverage] window.

At this time, the dialog box shown below appears, allowing you to specify the address from which to
start displaying coverage information.

Set Address or Point Enter the address in hexadecimal notation
from which to start displaying coverage
information in the [Start from] text box, then
click the [OK] button. To display coverage

End to | information in the [Coverage] window, you
can leave [End to] blank. Note that the start
and end addresses of the selected 64 KB area
are assumed if start and end addresses are not
oK Cancel entered in these text boxes.

Start from I

S5U1C88000C MANUAL 11 EPSON 187
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

CVC (coverage clear)

I Function

This command clears the coverage information.

I Format

>cvel (direct input mode)

B Gut utility

[Coverage | Coverage Clear] menu item
When this menu item is selected, the cvc command is executed.

188 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

13.9.13 Command File

COM (execute command file)

I Function

This command reads a command file and executes the debug commands written in that file. You can
execute the commands successively, or set an 0 to 256 seconds of interval between each command
execution in 1-second increments.

I Format

(1) >com <file name> [<interval>]0 (direct input mode)

(2) >comO (guidance mode)
File name ? <file name>0
Execute commands 1.successively 2.with wait ...? <1 | 2>0
Interval (0 - 256 seconds) : <interval>0 (appearsonly when "2. With wait" is selected)
>(Display execution progress)

<file name>: Command file name (path can also be specified)
<interval>: Interval (wait seconds) between each command; decimal (0-256)

I Examples

Format (1)
>com bat chl. cndd
> ... Commandsin "batchl.com" are executed successively.

Format (2)

>cont]

File name ? test.cmdOd

Execut e commuands 1. successively 2. with wait ...? 20

Wait time (0O - 256 seconds) : 20

> ... 2sec. of interval isinserted after each command execution.

I Notes

= Any contents other than commands cannot be written in the command file.
= An error results if the file you specified does not exist.

= Another command file can be read from a command file. However, the nesting of command files is
limited to a maximum of 5 levels. An error results if a com (or cmw) command at the sixth level is
encountered, the commands in the file specified by that com (or cmw) command will not be executed,
but the subsequent execution of the commands in upper level files will be executed continuously.

If you specify an interval more than 256 seconds, it is set to 256 by default.

Use the hot key ([CTRL]+[Q]) to stop executing a command file.

B Gun utility

[Run | Command File...] menu item
When this menu item is selected, a dialog box appears allowing selection of a command file.

Enter a file name into the [Command File
Path] text box, then click [Execute]. The
=i Ela e | Browse. | ﬁle name_can b_e selected using a standard
file selection dialog box that appears by
Executing 'wWait Time: ID [with W/ait clicking [Browse...].
To specify an interval, select [With Wait]
— | and enter the number of seconds into the
[Executing Wait Time] text box.

S5U1C88000C MANUAL 11 EPSON 189
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

CMW (execute command file with wait)

I Function

This command reads a command file and executes the debug commands written in that file at prede-
termined time intervals.

The execution interval of each command can be set in a range of 1 to 256 seconds (in 1-second incre-
ments) using the md command. In the initial debugger settings, the execution interval is 1 second.

I Format

@
&)

>cmw <file name>[(direct input mode)

>cmw(] (guidance mode)
File name ? <file name>0
>(Display execution progress)

<file name>: Command file name (path can also be specified)

I Examples

Format (1)
>cnmw bat chl. cndO

Format (2)
>cmav
File nanme ? test.cmdd

I Notes

Any contents other than commands cannot be written in the command file.
An error results if the file you specified does not exist.

Another command file can be read from a command file. However, the nesting of command files is
limited to a maximum of 5 levels. An error results if a cmw (or com) command at the sixth level is
encountered, the commands in the file specified by that cmw (or com) command will not be executed,
but the subsequent execution of the commands in upper level files will be executed continuously.

If the cmw command is written in the command file that you want to be read by the com command,
all other commands following that command in the file (even when a com command is included) will
be executed at predetermined time intervals.

Use the hot key ([CTRL]+[Q]) to stop executing a command file.

B Gut utility

None
However, the same function as the cmw can be executed using [Command File...] in the [Run] menu
(see the com command).

190

EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

FeC (record commands to afile)

I Function

This command records all the debug commands executed following this command to a specified
command file.

I Format

(1) >rec <file name>0 (direct input mode)

(2) >rec (guidance mode) ...See Examples for guidance.

<file name>: Command file name (path can also be specified)

I Examples

(1) First rec execution after debugger startsup

>rect

File nanme ? sanpl e. cndO

1. append 2. clear and open ..?020 ...Displayed if thefileis aready exists.
>

(2) rec command input in the second and following sessions

>recO
Set to record of f nopde. ...Record function toggles when rec is input.

>recld
Set to record on node.

I Notes

< In record on mode, besides the commands directly input in the [Command] window, the commands
executed by selecting from a menu or with a tool bar button (except the [Help] menu command) are
also displayed in the [Command] window, and output to the specified file.
If you modify the register value or data memory contents by direct editing in the [Register] or [Dump]
window, or set breakpoints in the [Source] window by double-clicking the mouse, the corresponding
commands are also displayed in the [Command] window, and output to the specified file.

= At the first time, you should specify the file name to which all debug commands following the rec
command will be output.

= Once an output command file is opened, the recording is suspended and resumed (toggled) every
time you input the rec command. This toggle operation remains effective until you terminate the
debugger. If you want to record following commands to another file, you can use format (1) to specify
the file name, then current output file is closed and all following commands will be recorded in the
newly specified file.

= If you want to execute some commands frequently, you can record them to a file at the first execution,
and then use the com or cmw command to execute that command file you made.

B Gun utility

[Option | Record...] menu item SRS
Selecting this menu command displays a dialog box for Leg P |

specifying a command file. To specify a new command file, B e

enter the command file name in [Current Command File] T =

or click the [New...] button and select from the list that
appears. Fiecord State
If the debugger has already started recording commands,
use the [Record State] radio buttons to turn recording on or
off.

@ Record On " Record OFf

Ok I Cancel

S5U1C88000C MANUAL 11 EPSON 191
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

13.9.14 1og
log (log)
I Function

This command saves the input commands and the execution results to a file.

I Format

(1) >log <file name>0 (direct input mode)
(2) >log (guidance mode) ...See Examples for guidance.

<file name>: Log file name (path can also be specified)

I Examples

(1) First log execution after debugger starts up

>| ogOd

Fil e nane ? debugl. | ogd

1. append 2. clear and open ...? 20 ...Displayed if thefile is already exists.
>

(2) log command input in the second and following sessions
>| ogOd
Set to |log off node. ...Logging function toggles when log is input.
>I ogl]
Set to | og on node.

I Notes

= In log on mode, the contents displayed in the [Command] window are written as displayed directly to
the log file.
The commands executed by selecting from a menu or with a tool bar button are displayed in the
[Command] window. However, the [Help] menu and button commands are not displayed. If you
modify the register value or data memory contents by direct editing in the [Register] or [Dump]
window, or set breakpoints in the [Source] window by double-clicking the mouse, the corresponding
commands and the execution results are also displayed in the [Command] window, and output to the
specified file.

The displayed contents of the [Source], [Dump], [Trace] or [Register] window produced by command
execution are displayed in the [Command] window as well. The on-the-fly information is also dis-
played. However, the updated contents of each window after some execution, as well as the contents
of each window scrolled by scroll bar or arrow keys, are not displayed.

= At the first time, you should specify the file name to which all following debug commands and
execution results will be output.

= Once alog file is open, log output is suspended and resumed (toggled) every time you input the log
command. This toggle operation remains effective until you terminate the debugger. If you want to
specify a new log file, you can use format (1) to specify the file name, then current log file is closed
and following commands and results will be output to the newly specified file.

IGUI utility

Log/Rec Sheet
[Option | Log...] menu item tog |Rec |
Selecting this menu command displays a dialog box for specifying et LogFie
a log file. To specify a new log file, enter the log file name in et | N
[Current Log File] or click the [New...] button and select from the
list that appears. e
If the debugger has already started logging commands, use the Eitoatn Lot
[Log State] radio buttons to turn logging on or off.
oK Cancel
192 EPSON S5U1C88000C MANUAL I

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

13.9.15 Map I nformation

ma (map information)

CHAPTER 13 S1C88 FAMILY DEBUGGER

I Function

This command displays the map information that is set by a parameter file.

I Format

>mall

I Example

(direct input mode)

After the command is input, the system displays the map information in the internal memory area,
external memory area and 170 area.

789 ABCDEF

0 When displaying the map information of the 170 area, the mapped addresses are marked by the letter

>mal]
[Internal nenory]
RAM 00F000 - OOF7FF
STK O0F500 - OOF7FF
LCD 00F800 - 00F842
LCD 00F900 - 00F942
LCD OOFAOO - OOFA42
LCD 00FBOO - 00FB42
LCD 00FCO0 - 00FC42
LCD O0OFDOO - OOFD42
[External nenory]
ROM 000000 - OOBFFF
RAM 080000 - 080001
RAM 100000 - 107FFF
RAM 180000 - 1801FF
[1/0O nenory]
0123456
FFOO * * *
FFlO * * * %
FF20 * * * * * %
FFSO * * * * % *x %
FF4O * * * * * *
FFSO * * * * * %
FF60 * * * %
FF7O * * * * * *x %
FF80
FF90
FFAO
FFBO
FFCO
FFDO
FFEO
FFFO
"o
IGUI utility
None

S5U1C88000C MANUAL 11

EPSON

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

193

CHAPTER 13 S1C88 FAMILY DEBUGGER

13.9.16 FPGA Operation

xfer (xilinx fpga data erase)

I Function

This command erases the contents of the FPGA on the standard peripheral circuit board inserted in
the ICE.

I Format

>xferd (direct input mode)

I Example

>xferld
>

After the command is entered, a dialog box appears to select start or cancel erasing.

I Notes

= Adialog box appears to show the progress of erasing while executing. To abort erasing, click the
[Cancel] button on the dialog box or press the [ESC] key. In this case, the standard peripheral circuit
board cannot be used until the FPGA is erased and reprogrammed.

= Erase time is about TBD minutes TBD seconds (max.).

IGUI utility

None

194 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

XfWr (xilinx fpga data write)

I Function

This command writes peripheral circuit data to the FPGA on the standard peripheral circuit board
inserted in the ICE.

I Format

>xfwr <file name> ;{H | S} [;N]O (direct input mode)
<file name>: FPGA datafile (.mot: Motorola S, .mcs: Intel HEX)
H: Load Intel HEX file
S Load Motorola Sfile
N: Skip erasing before writing data

I Examples

>xfwr ..\ice\fpga\ c88xxx. not ;SO
>

In this example, the main FPGA is erased and then data in the c88xxx.mot file (Motorola S format) is
written to it.

>xfw . .\ice\fpga\c88xxx.mot ;S ; NO
>

In this example, erasing before writing is skipped. However, the main FPGA must be erased before-
hand.

I Notes

= Use the file provided by Seiko Epson as the data to be written without modifying the contents. Also
the file extension cannot be changed as it is .mot (Motorola S) or .mcs (Intel HEX). Specifying an
illegal file results in an error and data cannot be written.

= The N option can be specified when the FPGA has been erased completely using the xfer command.
When writing data to the FPGA that has not been erased, do not specify the N option.

= Adialog box appears to show the progress while executing. To abort execution, click the [Cancel]
button on the dialog box or press the [ESC] key. In this case, the standard peripheral circuit board
cannot be used until the FPGA is erased and reprogrammed.

= Process time including erase is about TBD minutes (max.).

IGUI utility

None

S5U1C88000C MANUAL 11 EPSON 195
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

Xpr (xilinx fpga data compare)

I Function

This command compares the contents between the FPGA and the specified file.

I Format

>xfcp <file name> ;{H | S}O (direct input mode)
<file name>: FPGA datafile (.mot: Motorola S, .mcs: Intel HEX)
H: Intel HEX file
S Motorola Sfile

I Examples

>xfcp ..\ice\fpga\ c88xxx. nmot ; SO

> ...No error has occurred.

>xfcp ..\ice\fpga\c88yyy. not ; SO

Warning : Verify error ...Verify error has occurred.

0X00000 OXFF ...Error addresses and data in the FPGA are displayed.

0X00001 0X84
0X00002 OXAB

>

I Notes

= Data is verified only within the valid address range in the specified file. If the FPGA contains data
outside the range, it is not verified.

= Use the file provided by Seiko Epson as the data to be compared without modifying the contents. Also
the file extension cannot be changed as it is .mot (Motorola S) or .mcs (Intel HEX). Specifying an
illegal file results in an error.

= Adialog box appears to show the progress while executing. To abort execution, click the [Cancel]
button on the dialog box or press the [ESC] key.

B Gut utility

None

196 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

Xdp (xilinx fpga data dump)

I Function

This command displays the content of the FPGA on the standard peripheral circuit board to the
[Command] window in a 16 words/line hexadecimal dump format.

I Format

>xdp <addressl1> [<address2>]0 (direct input mode)
<address1>: Start address to display; hexadecimal
<address2>: End address to display; hexadecimal
Condition: 0 < addressl < address2 < FPGA end address

I Examples

If only <address1> is defined, the debugger displays data for 256 words from <address1>.
>xdp 00O

Addr +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F

00000: FF 84 AB EF F9 D8 FF BB FB BB BF FB BF BF FB BF

00010: BB FB BB BF BB BF FB BB BF BF FB BB FF EE FF EE

00020: EF FE D7 FB FE EE EF EF EE EE FE EE FB FE EF EF

000E0: FF FF FF FF FB FF FF FF BD DF FB FD DF FF FF FF

000F0: FF FF BF FF FF FF FF F9 FF FF FF FF FF FF FF FF
>

If both <address1> and <address2> are defined, the debugger displays data from <address1> to
<address2>.

>xdp 100 1000

Addr +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F

00100: FF

>

I Notes
= An error results if the specified address is not a hexadecimal number.
= An error results if the start address is larger than the end address.

B Gun utility

None

S5U1C88000C MANUAL 11 EPSON 197
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

13.9.17 Quit
g (quit)
I Function

This command quits the debugger.

I Format

>q0 (direct input mode)

IGUI utility

[File | Exit] menu item
Selecting this menu item terminates the debugger.

198 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

13.9.18 Help

? (help)

CHAPTER 13 S1C88 FAMILY DEBUGGER

I Function

This command displays the input format of each command.

I Format

Q2 (direct input mode)

(2) ? <n> (direct input mode)

(3) ? <command> (direct input mode)
<n>: Command group number; decimal

<command>: Command name
Condition: 1<sn<6

I Examples

When you input the command in Format 1 or 2, the system displays a list of commands classified by
function. Use the command in Format 3 if you want to display the input format of each individual

command.

>?0

group 1: data & register
group 2: execution & break
group 3: source & synmbol
group 4: file & flash rom..........
group 5: trace & coverage
group 6: others

. dd,de,df,dmds/rd,rs

. g,9r,s,n,se, rst/bp, bpa, bpr, bc(bpc), bas, ba, bar, bd, bdr, bl , bac
. u,sc,msy/w

. |f, par/xfer,xfw, xfcp, xdp

. td, ts,tf/cv, cve

. par/comcnw, rec/ | og/ ma/ q/ ?

Type "? <group #>" to show group or "? <command>" to get usage of the command.

>? 10

group 1l: data & register

dd (data dunp), de (data enter), df

rd (register display), rs (register

Type "? <conmand>" to get usage of

>? ddO

dd (data dunp): dunp nenory content

usage: dd [addrl] [addr2] [unit]
dd [addrl] [@ize] [unit]

(data fill), dm (data nove), ds (data search)
set)
the comand.

wi th hexadeci mal format
dunp fromOx0 in byte unit if without paraneter
dunp fromOx0 in byte unit if without paraneter

unit: display unit (-B (default) / -W/ -L/ -F/ -D)

B Gun utility

None

S5U1C88000C MANUAL 11
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

EPSON 199

CHAPTER 13 S1C88 FAMILY DEBUGGER

13.10 Error Messages

Debugger error messages

Error message

Description

Error : Address out of range :
use 0x000000 - Oxffffff

The specified address is outside the valid range.

Error : Address out of range, use 0 - OX7FFFFF

The address specified here is outside the program memory area.

Error : Address out of range, use 0 - OXFFFFFF

The address specified here is outside the data memory area.

Error : Cannot open device(ICE88UR)

Failed to connect to the ICE.

Error : Cannot open file

Cannot open the file.

Error : Checksum error

Checksum resulted in an error.

Error : Coverage mode is off or the coverage
mode is not supported

Coverage mode is turned off or the ICE being used does not support
coverage mode.

Error : Data out of range, use 0 - OxFF

The specified value is outside the valid range of data.

Error : DLL Initialization error

Failed to initialize DLL.

Error : End address < start address

The end address specified here is smaller than the start address.

Error : End index < start index

The end cycle specified here is smaller than the start cycle.

Error : Error file type (extension should be CMD)

The specified file extension is not effective as a command file.

Error : Error file type (extension should be PAR)

The specified file extension is not effective as a parameter file.

Error : Failed ICE88UR initialization

Failed to initialize the ICE.

Error : Failed to initialize DLL : %s

Failed to initialize DLL.

Error : Failed to Load DLL

Failed to load DLL needed to start DB88.

Error : Failed to open : %s

Could not open the file.

Error : Failed to read BA

Error occurred when reading the BA register.

Error : Failed to read BR

Error occurred when reading the BR register.

Error : Failed to read CB

Error occurred when reading the CB register.

Error : Failed to read CC

Error occurred when reading the CC register.

Error : Failed to read EP

Error occurred when reading the EP register.

Error : Failed to read file : %s

Error occurred when reading the file.

Error : Failed to read HL

Error occurred when reading the HL register.

Error : Failed to read NB

Error occurred when reading the NB register.

Error : Failed to read PC

Error occurred when reading the PC register.

Error : Failed to read SC

Error occurred when reading the SC register.

Error : Failed to read SP

Error occurred when reading the SP register.

Error : Failed to read X

Error occurred when reading the X register.

Error : Failed to read Y

Error occurred when reading the Y register.

Error : Failed to road DLL : %s

Failed to load DLL.

Error : Failed to write BA

Error occurred when writing to the BA register.

Error : Failed to write BR

Error occurred when writing to the BR register.

Error : Failed to write CB

Error occurred when writing to the CB register.

Error : Failed to write CC

Error occurred when writing to the CC register.

Error : Failed to write EP

Error occurred when writing to the EP register.

Error : Failed to write HL

Error occurred when writing to the HL register.

Error : Failed to write NB

Error occurred when writing to the NB register.

Error : Failed to write PC

Error occurred when writing to the PC register.

Error : Failed to write SC

Error occurred when writing to the SC register.

Error : Failed to write SP

Error occurred when writing to the SP register.

Error : Failed to write X

Error occurred when writing to the X register.

Error : Failed to write Y

Error occurred when writing to the Y register.

Error : ICE88UR Diagnostic error

Detected an error during ICE self-diagnostic processing.

Error : Ice88ur Initialization failed

Failed to initialize the ICE.

Error : Ice88ur is already running

ICE88UR.EXE is up and running.
(DB88 and ICE88UR cannot be started at the same time.)

Error : ICE88UR is turned off

Power to the ICE is turned off.

Error : lllegal initialization packet data

Initialization packet data is in error.

Error : Incorrect number of parameters

The number of parameters for the command is illegal.

Error : Incorrect r/w option, use r/w/*

The R/W option specified here is invalid.

Error : Incorrect register name,
use PC/SP/IX/IYIAIB/HL/BR/ICB/EP/XP/YPISC

The register name specified here is invalid.

Error : Index out of range, use 0 - 8191

The specified trace cycle number is outside the valid range.

Error : Initialization failed!
Please quit and restart!

Failed to initialize DB88. Please restart DB88.

Error : Input address does not exist

The address specified here has no breakpoints set.

Error : Invalid command

The command entered here is invalid.

200

EPSON S5U1C88000C MANUAL I

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

CHAPTER 13 S1C88 FAMILY DEBUGGER

Error message

Description

Error : Invalid data pattern The data pattern entered here is invalid.

Error : Invalid display unit, use -B/-W/-L/-F/-D The display unit specified here is invalid.

Error : Invalid DLL ModulelD DLL identification error

Error : Invalid file name The specified file extension is not effective as a program file or function
option file.

Error : Invalid fsa file The FSA file is invalid.

Error : Invalid hexadecimal string This is an invalid hexadecimal string.

Error : Invalid value The value entered here is invalid.

Error : Maximum nesting level(5) is exceeded, Command files have been nested exceeding the nesting limit.

cannot open file

Error : Memory ranges in %s are invalid or the
file is not exist

The memory range of the CPU INI file is invalid.

Error : No symbol information

No symbol information is found.
(No symbol files have been loaded.)

Error : Number of steps out of range,
use 0 - 65535

The specified number of steps exceeds the limit.

Error : The Memory Area cannot include the
boundary between 0xO0FFFF and 0x010000

The specified area overlaps the 0xO0FFFF-0x010000 address
boundary.

Error : The Memory Area must be above
0x10000, and longer than 256 bytes

Any memory area specified above 0x010000 must be greater than
256 bytes in size.

Error : This command is not supported in
current mode

The trace and coverage commands are not effective when trace or
coverage is turned off.

Error : Unable to get the coverage area number | Failed to get the coverage area number.
Error : Unable to get the coverage mode Failed to get coverage information.

Error : Unable to set SelfFlash check function Could not set the SelfFlash check function.
Error : Unable to set the coverage area number | Failed to set the coverage area number.
Error : Unable to set the coverage mode Failed to set coverage mode.

Error : Wrong Command line parameter The startup parameters are incorrect.

Please load the selfflash library program

Please load the SelfFlash library program.
(When the SelfFlash function is enabled, a library program must be
loaded in the ICE.)

Warning : 64 break addresses are already set

The total number of breakpoints specified here exceeds 64.

Warning : Break address already exists

The specified address has a breakpoint already set.

Warning : Identical break address input Two or more instances of the same address are specified on
the command line.
Warning : Memory may be modified by SelfFlash| Memory contents may have been modified by the SelfFlash program.

Warning : SelfFlash program area is out of the
current software pc break area.
Please clear the break point(Address)

The SelfFlash program area does not match the currently set software
break area. Please clear the breakpoint set at (Address).

(If this breakpoint is not cleared, the program may stop at

an unexpected location.)

S5U1C88000C MANUAL 11
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

EPSON 201

CHAPTER 13 S1C88 FAMILY DEBUGGER

ICE hardware error messages

Error message

Description

Error : Cannot be run in Free-Run mode

The ICE is operating in free-run mode.

Error : Cannot fine specified data

The specified data could not be found.
(The search failed to find matching data.)

Error : ICE88UR is still keep a conservative mode

The ICE is operating in maintenance mode.

Error : ICE88UR power off execution abort

Power to the ICE main unit is off. Execution was aborted.
(Power to the main unit has been shut off while running the program.)

Error : Insufficient memory for loading program

Failed to allocate memory for the program.
(Windows system resources may be insufficient.
Check available resources and quit unnecessary applications.)

Error : Vdd down or no clock

The power supply voltage for the target system is low, the target system
is not powered on, or no clocks are supplied to the target system.
(Effective only when Vdddown is set to 1 in the parameter file.)

Error : Verify error

A verify error occurred.

ICE88UR system error :

?7? illegal packet

Detected an illegal packet.

ICE88UR system error

: Command timeout

Detected a command time-out.

ICE88UR system error :

Firmware packet error

Detected an error in EB: Firmware packet.

ICE88UR system error :

Master reset

Detected MR: master reset.

ICE88UR system error :

Not connected

The ICE is not connected or powered on.

ICE88UR system error :

Not ready

The ICE is not ready.

command version

Internal error : ICE88UR does not support this

The current version of the ICE does not support this command.
(Please shut down the DB88 debugger immediately.)

System crash possible

Internal error : lllegal error code fetched.

Nonexistent error code has been encountered.
(Please shut down the ICE88UR debugger immediately.)

Processing terminated by hitting ESC-key

Processing terminated because the ESC key was pressed.

202

EPSON S5U1C88000C MANUAL I

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX A AssemBLER (Sub tool chain)
A.1 Outline of Package

APPENDIX A ASSEMBLER (Sub tool chain)

A.1.1 Introduction

The "S1C88 Family Assembler" is one of the software development tools of the CMOS 8-bit single chip
microcomputer S1C88 Family. It consists of a cross assembler, linker and utilities to create programs.
This package can commonly be used for all S1C88 Family models and allows for development of pro-

grams with macro function.

A.1.2 Qutline of Software Tools

Figure A.1.2.1 shows the flow of software development using the structured assembler.

o

+ S1C88 Family S —
N B Assembly
Assembler | source file(s)
I
Preprocessor
sap88

file.MS ||

Preprocessed
source file(s)

Assembler
asm88

Assembly =
st file(s) L ue-LSTJ]]

Link command
parameter file Lfile.LCM

H Cross
" reference
file.X file

Object
file(s) F——

file.E Jjist file

Linker
link88

———— Absolute

file.ABS | object file

[
Function Option

Generator winfog

Function option Function option
HEX file document file

[
Segment Option

Generator winsog

Segment option Segment option
HEX file document file

I

Symbol Information
generator rel88

HEX converter
hex88

Symbol ————

information | file.REF

reference file
Symbolic table file
generator sym88

Motorola-S
file.SA | format files

|

Program unused area
filling utility fil88xxx

Program data
file.PSA HEX file

(filled with FF)

[———

Mask Data Checker

Symbolic ———~ winmdc
table file | file.SY P ———
_———— T T T T T T T T T 1 Mask
' ' data file
! In-circuit Emulator (ICE) : S
' b . SEIKO EPSON
R i o _
Fig. A.1.2.1 Software development flow using structured assembler
S5U1C88000C MANUAL Il EPSON 203

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX A ASSEMBLER (Sub tool chain)

The basic functions of each program are as follows.

Structured preprocessor <sap88>

The sap88 structure preprocessor is a preprocessor used to add the macro function on the cross
assembler asma88.

First create assembly source files including macro functions and process them with the sap88 to create
the source files (in which macros are expanded into the S1C88 instructions) that can be assembled
with the asm88.

Cross assembler <asm88>

The asm88 cross assembler assembles the program source file described by the S1C88 instruction set
and pseudo-instruction and converts it into machine language.

The asm88 is compatible with the relocatable assembly for development by module, and creates
relocatable object files used to link other modules via the linker.

Linker <link88>

The relocatable object file created with the asm88 is linked if there is more than one present and then
converted into absolute (binary form) object file.

Other utilities

This package contains the following utility programs in addition to the earlier mentioned major
programs.

Symbol information generator <rel88>
This is a program that obtains symbolic table information of the relocatable object file.
This utility is used for preprocessing of symbolic table generations.

Binary/HEX converter <hex88>

Converts the binary file into a Motorola S2 format HEX file (ASCII file).

This is basically used to convert the absolute object file output from the link88 linker into a HEX
program file. The converted program data HEX file allows for debugging through hardware tools and
creation of mask data.

Symbolic table file generator <sym88>

The sym88 symbolic table file generator converts a symbolic information file generated in file redirect
with the rel88 symbol information generator to a symbolic table file that can be referenced in the ICE.
Loading the symbolic table file and the corresponding relocatable assembly program file in the ICE
makes symbolic debugging possible.

Batch files

Batch files are included to automatically process basic tools and operations to promote efficient
program development. Customize the file accordingly.

= ra88.bat: Batch file for relocatable assembly
= 1k88.bat: Batch file for linking

Details on the batch file and how to create customized files will be explained in Section A.2, respec-
tively under their titles.

204

EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX A ASSEMBLER (Sub tool chain)

A.2 Program Development Procedures

This section will start off by explaining the flow involved in program development and then give details
on how each software tool of this package is used, in accordance with the development flow. Each
software tools will be explained of its basic processing procedures and the flag settings (start-up com-
mand flag) required for the tools in terms of batch file commands. Refer to Appendix C, "Assembly Tool
Reference" for more information on other flags, etc.

A.2.1 Development Flow

The following shows the program development procedure using the asm88 cross assembler.

<Relocatable assembly and link>
— Create the entire program as a multiple module (development by module) —

Relocatable assembly refers to the assembling method in which programs are allocated into several parts
(each allocated part is referred to as a module) according to the processing contents and then undergoing
development procedures by each module.

The cross assembler can input assembly source files created with an editor and the files in which macros
are expanded by the sap88.

Each module (relocatable object file) is linked via the linker after assembling and then consolidated into
one program. The program memory address that allocates each module is determined through the link.
Therefore, the developmental process in which the source program is created can be performed without
regards to the address.

Debugging efficiency is boosted since this method allows for debugging by modules that have been
allocated in small programs.

Figure A.2.1.1 shows the flow of program development upon using the relocatable assembly. This pack-
age contains "ra88.bat" and "1k88.bat" that are batch files containing basic processing tools. Customize
accordingly. (Refer to Sections "A.2.3.4 Batch processing for relocatable assembly (ra88.bat)" and "A.2.4.5
Batch processing for linking (1k88.bat)" for more information on "ra88.bat" and "Ik88.bat".)

Note: Prepare each relocatable module under 32K bytes so that they fit in one bank. Modules exceeding
this capacity will result in an error message during linking. Thus, it will be necessary to allocate the
program so that it is under 32K bytes. Similarly, the data size must be under 64K bytes so that it
fits in one page.

The modules cannot be reallocated so that they span across both banks. In this case, the modules
will be allocated so that it starts from the head of the next bank. The program memory (usable
area) will be wasted if all modules are too large. Give consideration to each module size to prevent
this.

S5U1C88000C MANUAL 11 EPSON 205
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX A ASSEMBLER (Sub tool chain)

1 Create source file Correct after
by editor debugging program
Structured assembly
source files

(create for each module)

2 Execute sap88
Expands macro statements

Assembly source file after expanding
macro statements

ot

3 Execute asm88 :
Assembles source file

Relocatable
object file Assembly
list file
7 Crossreference
“ list file
e
Execute for each module Error
list file

Batch processing for relocatable assembly <ra88.bat>

|
|
,, g

Relocatable
object files
(create for each module)

Link command
parameter file for link88*

* Created by editor

> Symbolic
et taefile

Batch processing for linking <Ik88.bat>

|
|
,, a

3 4 Execute link88 1
! Link
3) Absolute 3
| __aJojeatie :
1 ' 1
3 6 Execute hex88 5 Execute rel88 !
! Converts binary to HEX Creates symbol information ;
: — 3 Program data (= Symbol information 3
1 “ HEX file “ referencefile !
} 7 Execute sym88 |
1 Creates symbolic table file ;

» System code setting and FF filling in
unused program area by fil88XXX.

« Program debugging using ICE.

« Creating mask data of program.

Fig. A.2.1.1 Relocatable assembly development flow

206 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX A ASSEMBLER (Sub tool chain)

A.2.2 Creating Source File
Software used: Editor

Create the source file using an editor.

Small applications can be created solely in assembler language with the entire program as a single
module.

What's more, source files for single module can also be allocated by using the INCLUDE pseudo-instruc-
tion of the sap88 structured preprocessor.

Generally, debugging requires appropriate consideration to module allocation since source files are each
created for respective modules.

Create source files for assembler modules by using the S1C88 CPU instruction set or assembler pseudo-
instructions.

Specify the assembly source file name with a ".s" on the extension.

Each source program statement basically comes in the following form.

Symbol field Mnemonic field Operand field Comment field

« Symbol field:
This field indicates the symbol. Always put a colon (:) immediately after the symbol, other than for
EQU or SET command statements.

e Mnemonic field:
This field indicates the operation code and pseudo-instruction.

* Operand field:
This field indicates the operand, constant, variable, defined symbol, symbol that indicates the
memory address and formula of each instruction.

* Comment field:
A semi-colon (;) at the beginning of this field, then continued with a comment.

Refer to Appendix B of this manual for more information on how to create a source file.

Macro statement offered by the sap88 structured preprocessor and various pseudo-instructions of the
asma88 cross assembler can be used for this assembler.

The following indicates an outlines of these statements and instructions.

<Instruction set>

All S1C88 Family models employs a S1C88 in the core CPU. Therefore, instructions are common for all
models other than for CPU MODELS and mode limitations. Refer to the "S1C88 Core CPU Manual" for
more information on the instructions, and refer to the "S1C88xxx Technical Manual" for control program
examples of the peripheral circuit incorporated in each model.

The asm88 cross assembler is capable of converting all mnemonic instruction settings of the S1C88 into
machine language.

<Macro statement>

Macro is used to priorly define a processing (sequence of instructions) frequently used in the program
with a voluntary name to allow for it to be called out under that specific name. As a result, the need for
routine procedures can be eliminated. (For more information refer to Appendix B.)

Macro statements are offered as pseudo-instructions of the sap88 and by putting it through the sap88 it is
applied in the macro call-out portion in mnemonic form that can be assembled.

S5U1C88000C MANUAL 11 EPSON 207
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX A ASSEMBLER (Sub tool chain)

— Example of macro definition

Before expanding

subtitle "exanpl e"

public mai n, wor k

ext er nal src_address, dst _address, counter
abc equ of fh

dat a
wor k: db [1]

code
EEE R I R R R R R I I R R R S R I I
;E* * macro define * *x

B S S Rk I kS R R R S S S S R R R R

nop3 macro

nop
nop
nop
endm
EEE I IR I R I I I I I I I R I R I I R I I I I R I I I S
;** * exan-ple * * %

EEE R S O O O R S S S
)

mai n:

I d a, #abc

I b b, [wor k]

nop3 : macro call ***
I d i X, #src_address

Id iy, #dst _addr ess

I d hl, [counter]

end

After expanding

subtitle "exanpl e"

public mai n, wor k

ext ernal src_address, dst _address, counter
abc equ offh

dat a
wor k: db [1]

code
EEE R I R R S R R R I I I R R S S S I I I I
;R * macro define * *x

EEE R S O O O
)
EEE R S O O S O
)

-k Kk * exarrple * * %

EEE R S O O O
)

mai n:

Id a, #abc

I'b b, [wor k]

nop

nop

nop

I d i X, #src_address

I d iy, #dst _address
Id hl, [counter]

* k%

Macro definition

]Macrocall

Macro statement expanded into
mnemonics

208 EPSON

S5U1C88000C MANUAL I

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

<Pseudo-instruction>

APPENDIX A ASSEMBLER (Sub tool chain)

Pseudo-instruction by function

Description

Section setting pseudo-instructions
(CODE, DATA)

Use to specify sections.
* Specifies the program area and data area.
(For more details refer to "A.2.3.2 Cross assembler (asm88)".)

Data definition pseudo-instructions
(DB, DW, DL, ASCII, PARITY)

Specifies various data within the program memory.

Symbol definition pseudo-instructions

Allocates constant to symbols (voluntary name) used within

(EQU, SET) the source program.
Location counter control pseudo-instruction Sets the program counter.
(ORG)

External definition and reference pseudo-instructions
(EXTERNAL, PUBLIC)

Allows for symbols and labels to be referenced between modules.

Source file insertion pseudo-instruction
(INCLUDE) sap88 only

Inserts contents of other source filesin voluntary places.

Assembly termination pseudo-instruction
(END)

Specified the assembly end point.

Macro related pseudo-instructions
(MACRO-ENDM, DEFINE, LOCAL, PURGE, UNDEF,
IRP—-ENDR, IRPC-ENDR, REPT-ENDR) sap88 only

Defines the macro statement.

Conditional assembly pseudo-instructions
(IFC-ENDIF, IFDEF-ENDIF, IFNDEF-ENDIF) sap88 only

Assembly or skip can be set according to the definition
of the symbol.

Output list control pseudo-instructions
(LINENO, SUBTITLE, SKIP, NOSKIP, LIST, NOLIST, EJECT)

Controls the output to the assembly list file.

Unlike CPU instructions, pseudo-instructions do not directly compose of application programs upon
executing control instructions to the sap88 and asm88.
The pseudo-instructions that can be used with this assembler are indicated above according to their

functions. (Refer to Appendix B for more details.)

S5U1C88000C MANUAL 11
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

EPSON

209

APPENDIX A ASSEMBLER (Sub tool chain)

A.2.3 Assembly

This section will explain the method to assemble the assembly source file and the relocatable object file
created by the process.

Software used: sap88, asm88

1 Create source file
by editor

Structured assembly
source file (create for each module)

2 Execute sap88
Expands macro statements

Assembly source file after expanding
macro statements

Execute

Assembles source file relocatable assembly

Relocatable — Assembly

objectfile 0 lst file
f———— Crossreference
“ litfile
—— 9 Error
“ list file

Fig. A.2.3.1 Flowchart of relocatable assembly

3 ‘ Execute asm88

Linking

A.2.3.1 Structured preprocessor (sap88)
This assembler system is composed of the sap88 structured preprocessor and asm88 cross assembler.

As indicated in Section A.2.2, the sap88 is responsible in putting the macro statement in mnemonic form.
Since the asm88 cannot read the macro statement, assembly source files included these documents can
not be directly input in the asm88 as a file.

The asm88 is the actual assembler responsible in converting the mnemonic language into machine
language and assembling cannot be performed with sap88.

Therefore, there is a need to used both sap88 and asm88 for the structured assembly. It is advisable to
process it through the sap88 even if the structured assembly is not required, since the process will not
effect the source file.

The sap88 inputs an assembly source file with a ".s" extension and expands the macro statements. After that,
the sap88 outputs a file for assembly. The name of the extension of the output file should be set as ".ms".

A.2.3.2 Cross assembler (asm88)

The asm88 cross assembler assemble the S1C88 Family CPU instructions and the pseudo-instructions of
the asm88 and converts it into machine language.

The asm88 is compatible with the relocatable assembly.

The relocatable assembly creates relocatable object files (".0") that will be linked with other modules using
a linker. The asm88 can input several assembly source files and thus allows for simultaneously assembly
of several relocatable modules.

The asm88 can also output three lists, i.e., assembly list (".1"), error list (".€") and a cross reference list (".x")
for the programmer.

The assembly list consists of the line number, target address, code that corresponds to the source and
source statements. The line number is output in decimals, while the address and code are output in
hexadecimals.

If in case an error takes place during assembling, an error list file containing the source file name, line
number in which the error took place, error level and error message will be created. What's more, the
assembly list file will also note the line in which the error took place with an asterisks "*" beside the line
number. Processing will be continued regardless of an error message unless the error is fatal.

The relation of the symbol definition and reference within the file has been prepared to foster easy
understanding depending on the cross reference list.

File management has been enhanced since they are prepared as separate files.

210 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX A ASSEMBLER (Sub tool chain)

<Control of program and data memory>

This section will explain how to control the memory of the program and data.

The S1C88XXX memory map can be categorized in the program memory (ROM) for the program code
and RAM and 1/0 memory for the data.

For example, even if a certain symbol is noted in a voluntary position in the assembly source file, the
asma88 is not capable of determining whether this is within the program memory or data memory.

For this reason, there is a need to clarify which memory each line comes under by prior instruction
through the section setting pseudo-instructions.

The following explains the section set methods for the relocatable assembly, and the asm88 process
corresponding to the method.

Setting sections
The absolute address allocated within each module of the relocatable assembly will be specified or
determined upon liking. Therefore, an absolute address cannot be specified within the assembly
source file. A relative address specification can be made using an ORG pseudo-instruction, however,
in this case, a standard for a relative address will be required. What's more, there is also a need to
specify the segments of the program and data area for the asm88.
The entire program for this assembler is categorized into CODE and DATA. These basically indicate
the following areas.

CODE section: Program data area written in the ROM
DATA section: Data memory area other than ROM

The asm88 is complete with a CODE and DATA pseudo-instruction to specify the section. The area
can be set through descriptions in the assembly source file.

Specifying the CODE section

If a CODE pseudo-instruction is described within an assembly source file, the asm88 will assemble it
to be allocated to the CODE section until the next DATA pseudo-instruction appears. The CODE
pseudo-instruction can be used in several places within one module. The asm88 assumes the head of
the CODE section within the module as relative address 0000H and will continuously realign them in
the order that the CODE pseudo-instruction appears to consolidate it into one block. In other words, a
CODE specification range of one module will be handled as one CODE section. (Refer to Figure
A23.2.1)

The CODE section of each module is further consolidated as a whole by the linker. The linker will link
in sectional units in accordance with the bank control within the program memory area.

The CODE section consists of CODE sections with one or multiple modules and the maximum size is
limited to 32K bytes as one bank is. (Details on section control will be explained in "A.2.4.2 Section
control".) Therefore, the programmer must be careful not to use more than 32K bytes in the code when
creating a module. The capacity of the CODE section can be verified by using the -ROM# flag when
starting-up the asm88. Use of this feature is advised. For example, when flag specification for "-ROM
32768" is performed, an error message will be displayed if a CODE section of one module exceeds 32K
bytes.

Specifying the DATA section

If a DATA pseudo-instruction is described within an assembly source file, the asm88 will assemble it
to be allocated to the DATA section until the next CODE pseudo-instruction appears. The DATA
pseudo-instruction can be used in several places within one module. The asm88 assumes the head of
the DATA section within the module as relative address 0000H and will continuously realign them in
the order that the DATA pseudo-instruction appears to consolidate it into one block. In other words, a
DATA specification range of one module will be handled as one DATA section. (Refer to Figure
A23.2.1)

The DATA section of each module is further consolidated as a whole by the linker. The linker will link
in sectional units in accordance with the page control within the data memory area.

S5U1C88000C MANUAL 11 EPSON 211
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX A ASSEMBLER (Sub tool chain)

The DATA section consists of DATA sections with one or multiple modules and the maximum size is
limited to 64K bytes as one page is. (Details on section control will be explained in "A.2.4.2 Section
control".) Therefore, the programmer must be careful not to use more than 64K bytes in the code when
creating a module. The capacity of the DATA section can be verified by using the -RAM# flag when
starting-up the asm88. Use of this feature is advised.

For example, when flag specification for "-RAM 65535" is performed, an error message will be dis-
played if a DATA section of one module exceeds 64K bytes.

Assembly source file Object code
CODE
C1 > C1 CODE
! section
D:ATA D1 ><: Cc2
°OPF c2 D1 DATA
D:ATA D2 > D2 section

Fig. A.2.3.2.1 CODE section and DATA section

Note

If either the CODE pseudo-instruction or DATA pseudo-instruction is missing during relocatable
assembling the operation will result in an error. For this reason, it is important that the CODE pseudo-
instruction is used for the program memory and the DATA pseudo-instruction is used for the data
memory.

A.2.3.3 Starting sap88 and asm38
<sap88 operation procedure>
(1) Set the directory in which the structured assembly source file (.s) is presented as the current drive.
(2) Start-up the sap88 with the next format.
sap88_[flag] _input file[d]

_indicates a space key input.
indicates a return key input.

The following indicates the flag used for batch processing of relocatable assembly (ra88.bat).

Flag Description
- o <file name> Specify the file name that is output. (Specify ".ms" as the extension of the file to be output.)
If thisflag is omitted it will be processed as a standard output.

Refer to Appendix C for information on other flags.
Example: C: \ USER>c: \ EPSON\ sap88 -0 sanpl e. ns sanple.s[J

Inputs the assembly source file "sample.s” created in the sub-directory USER of drive C and then
creates assembly source file "sample.ms" to be input in asm88 in the same directory as the input file.
If the PATH to sap88 is set, then there is not need to specify the path before sap88.

Refer to Section "A.2.3.9 Example of assembly execution” for more information on 1/0 files and messages
displayed.

212 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX A ASSEMBLER (Sub tool chain)

<asm@88 operation procedure>

(1) Set the directory in which the assembly source file (.ms) created with the sap88 exists as the current
drive.

(2) Start-up the asm88 with the next format.
asnB88_[flag] _input file[d]

_indicates a space key input.
indicates a return key input.
Flag can be omitted.

The following indicates the flags used for batch processing of relocatable assembly (ra88.bat).

Flag Description
- ROW Specify the ROM capacity in byte units. It is especially useful during relocatable assembling and is
used to verify the size of the CODE area.
- RAMY Specify the RAM capacity in byte units. It is especially useful during relocatable assembling and is
used to verify the size of the DATA area.

Refer to Appendix C for more information on other flags.

Example 1: When continuously assembling several assembly source files through relocatable assembly.
C. \ USER>c: \ EPSON\ asnB88 sanpl el. ns sanpl e2. ns[d]

Inputs the assembly source files "samplel.ms" and "sample2.ms" created in the sub-directory USER of
drive C and starts the relocatable assembly process. Then creates the relocatable object files
"samplel.o" and "sample2.0" in the same directory as the input file.

At the same time, the assembly list files "samplel.l" and "sample2.1", cross reference list files
"samplel.x" and "sample2.x", and error list files "samplel.e" and "sample2.e" will also be created in the
same directory.

If the PATH to asm88 is set, then there is not need to specify the path before asm88.

Example 2: Assembling with the relocatable assembler, including the verification of the ROM and RAM capacity.
C: \ USER>c: \ EPSON\ asnB88 - ROM 32768 - RAM 65536 sanpl e. ns

Inputs assembly source file "sample.ms" created within the sub-directory USER of drive C and starts
relocatable assembly. Then creates the relocatable object file "sample.o" in the same directory as the
input file.

At the same time, creates the assembly list file "sample.l", cross reference list file "sample.x" and error
list file "sample.e" in the same directory.

The capacity of the CODE and DATA sections will be verified during assembling with the

-ROM and -RAM flags. An error will result in this case when the CODE exceeds 32K bytes and the
DATA exceeds 64K bytes.

If the PATH to asm88 is set, then there is not need to specify the path before asm88.

Refer to Section "A.2.3.9 Example of assembly execution” for more information on 170 files and messages
displayed.

S5U1C88000C MANUAL 11 EPSON 213
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX A ASSEMBLER (Sub tool chain)

A.2.3.4 Batch processing for relocatable assembly (ra88.bat)

The start-up procedures for sap88 and asm88 were already discussed in the earlier section, however, it
must be further noted that these can be batch processed by consolidating them into a batch file.

The batch file can voluntarily created by the user, however, since this package contains batch file, i.e.,
ra88.bat for relocatable assembly, the following will introduce the contents of the batch file and how to
use them. This batch file can be used for general processing purposes. Use it advantageously by custom-
izing the flag settings, etc. as needed.

Figure A.2.3.4.1 shows the ra88.bat processing flow.

Structured assembly
sourcefile
(create for each module)

Execute sap88
Expands macro statements

Assembly source file after expanding
macro statements

Execute asm88 !
Assembles source file 3

i Relocatable — Assembly
object file u list file

[~ Crossreference
“ listfile
Execute for each module —
Error
list file

Batch file for relocatable assembly <ra88.bat>

I
I
,, 1

Fig. A.2.3.4.1 ra88.bat processing flow

<Qutline of process>

The ra88.bat inputs the specified assembly source file and then executes sap88 and asma88, respectively to
perform relocatable assembly to create a relocatable object file. Since the sap88 does not permit input of
multiple assembly source files, it is limited to assembly per module other than when several structured
assembly source files are read with the INCLUDE pseudo-instruction of the sap88.

<Input/output files>
The following indicates the input/output files of the ra88.bat.

Input file
Structured assembly source file (relocatable): file_name.s
This is a structured assembly source file (relocatable) created with an editor .

Output files

1. Assembly source file: file_name.ms
An assembly source file in which macros are expanded will be output.

2. Relocatable object file: file_name.o
This is a binary file that has been converted in machine language that can be reallocated through
relocatable assembly. (This is also the file that inputs the 1k88.bat batch file to perform linking.)

3. Assembly list file: file_name.l
This is the file output as a list that corresponds to each source statement when the machine language
and the relocatable address (the head of the CODE or the DATA section is assumed as relative address
000000H) converted with the assembler.

4. Cross reference list file: file_name.x
This is the address list that contains the definition and references of symbols.

5. Error list file: file_name.e
This is the list of error taking place during assembling.

214 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX A ASSEMBLER (Sub tool chain)

<Operation procedure>
(1) Set the directory in which the structured assembly source file (.s) is presented as the current drive.
(2) Start-up the ra88.bat with the next format.

r a88_file name[d]

_indicates a space key input.
indicates a return key input.

Do not input the extensions of file name. It is fixed on the ".s" extension.
Example: C: \ USER>c: \ EPSON\ r a88 sanpl e[d]

Inputs structured assembly source file "sample.s" created within the sub-directory USER of drive C
and starts relocatable assembly. Then creates the following files in the same directory as the input file.

sanpl e. ns, sanple.o, sanple.l, sanple.x, sanple.e
If the PATH to ra88 is set, then there is not need to specify the path before ra88.

Refer to Section "A.2.3.9 Example of assembly execution” for more information on 170 files and messages
displayed.

Customizing ra88.bat

<Customizing ra88.bat execution parameters>
Since the ra88.bat controls the program execution, it has a execution parameter customization field
within it. General parameters are temporarily described in the default position, however, it is advised
that the program is customized in accordance with the user's development method.

1. Setting the ROM capacity (Verification of the size of the CODE section)
set rom = 32768 : The capacity of the ROM of the CODE section that locates errors will be specified
in bytes. (default capacity 32768 = 32K bytes)

2. Setting the RAM capacity (Verification of the size of the DATA section)
set ram = 65536 : The capacity of the RAM of the DATA section that locates errors will be specified in
bytes. (default capacity 65536 = 64K bytes)

Note: There are basically no error checks made on these parameter settings, therefore, do not set the
parameter with settings other than those specified.

<Customizing ra88.bat execution command>
The ra88.bat has the following command line upon execution of the program. Customize these
command lines if a flag without a default setting is to be used.
sap88
%drv¥%sap88 -0 %.nms %.s

asma88
%dr v¥asnB8 - ROM % ontbs - RAM % anto %4. ns

The %drv% is a path that locates the execution command of the ra88.bat. For this reason, it can not be
altered and neither can the SET statement that is defined be altered. The %1 is a file name that is input
from the command line.

The following indicates the ra88.bat program source list and the message list of the ra88.bat. Refer to it
upon customizing the program.

S5U1C88000C MANUAL 11 EPSON 215
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX A ASSEMBLER (Sub tool chain)

ra88.bat program source list

rem

echo of f

rem EE R O R R S I O R R

rem* EOC88 Family Auto Rel ocatabl e Assenbl e Execution Utility

rem* (Ver. X XX)

rem* Copyri ght (C) SEI KO EPSON CORP. 1993-1996
ren]**

rem* custon zed paraneter information

rem*ronF* * : rom capacity(32768 nex.)

rem*rans* * : ram capacity(65536 nex.)
ren]**

rem *x***xxx+% cystonized paraneter area (default) *x**#xxx*x User customization field
rem* caution : custom zed paraneters val ue do not check, t heref ore | Note: There are basically no
rem* pl ease be carefully when you set error checks made on these
rem **xxxkxkxx parameter settings, therefore,
set rom=32768 « Setting the capacity of the ROM do ot 592;7/79 parameter with
set rane65536 . } settings other than those
S€l TallFbo9o0b ~ Setting the capacity of the RAM specified.,

rem

set drv=c:\ of thera88.bat. It is set to root directory by default.

rem
rem
rem
rem
rem

rem

:sap
Ydrv¥sap88 -0 %d.ns %l.s « Start-up command of sap88

*xxxxxxxxx command searching path **xx#xxrxx JThedrvisapaththatIocatestheexecutioncommand

Customizeit if necessary.

L R R R R R R R R I R R R

*mai n program

* if you want to use another option(s), please append

* option flag(s) at command |ine.

EE R I S R R S S R S R S S S S S R R S

istart

echo EOC88 Fanmily Auto Rel ocatable Assenmbl e Execution Utility Ver. X XX
echo Copyright (C) SEI KO EPSON CORP. 1993-1996

if "9d"=="" goto usage

cerror_chk

f not exist %drv%wul goto exitO04

if not exist %.s goto exitO05

if not exist %lrv%ap88. exe goto exit06
f not exist %rv%asnB8. exe goto exit07

(sap88)
88

rem

if errorlevel 1 goto exitOl

(asnB8)

:asnB8
%dr v¥asnB8 - ROM % on®o - RAM % anto %. s ~ Start-up command of asm88

if errorlevel 1 goto exit02
goto end

:usage
echo usage : ra88 needs [input file_nane]
goto skip
texitol
echo Error stop at %lrv%ap88. exe
goto skip
texit02
echo Error stop at %lrv%asnB8. exe
goto skip
cexit03
echo Cannot find %drv%installed EOC88 dev. tools directory
goto skip
cexit04
echo Cannot find input file
goto skip
1exito5
echo Cannot find %rv%ap88. exe
goto skip
1 exito6
echo Cannot find %lrv%asnB8. exe
goto skip
cend
echo ra88.bat utility has been successfully executed
:skip
set ronr
set ranr
set drv=

216

EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX A ASSEMBLER (Sub tool chain)

Message list

1. Start-up message

EOC88 Fanmily Auto Rel ocatable Assenmbl e Execution Utility Ver. X XX
Copyright (C) SEI KO EPSON CORP. 1993-1996

2. Message when terminated normally

rag88.bat utility has been successfully executed.

3. Error message

Error message Explanation
usage : ra88 needs [input file_name] Usage output.
Error stop at [drive and path name] sap88.exe Error occurred in sap88.
Error stop at [drive and path name] asm88.exe Error occurred in asm88.
Cannot find [drive and path name] installed EOC88 dev. | Cannot find [drive or path] in which the S1C88 Family software tools
tools directory isinstalled.
Cannot find input file Cannot find aa88.bat input file (.s).
Cannot find [drive and path name] sap88.exe Cannot find sap88.
Cannot find [drive and path name] asm88.exe Cannot find asm88.

Note: The following operations will be stopped when an error occurs.

<Precautions upon using the batch file>

(1) Some of the messages displayed during batch processing is automatically generated through the MS-
DOS/PC-DOS batch processing function and command. For this reason, it may be placed under MS-
DOS/PC-DOS control when an error occurs and thus force the batch processing to be interrupted.

(2) When an error occurs, the following procedures do not automatically continue. However, it may not
be controllable as noted in reason (1) indicated above.

(3) The ra88.bat and the 1k88.bat (mentioned hereafter) employ the MS-DOS/PC-DOS COPY command in
addition to S1C88 Family tools.
For this reason, it is requested that the COPY command is operable, by setting the PATH, when
executing the batch file.

(4) The execution parameters (user customization field) of the batch file basically do not locate parameter
setting errors. Therefore, do not set the parameters other than specified.

(5) An MS-DOS/PC-DOS environment variable will be used to execute the batch file, therefore, the size
of the environment variable should be allocated with as much space as possible using the
CONFIG.SYS.

S5U1C88000C MANUAL 11 EPSON 217
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX A ASSEMBLER (Sub tool chain)

A.2.3.5 Relocatabl e object file

The relocatable object file is a binary file that is created through the relocatable assembly of the asm88.
Other than when -o flag is specified the file name that is created will be the same file name input with the
asma88 and the extension will be ".0".

This file consists of header information and symbol tables required for reallocation using the linker, in
addition to the object (machine language) code.

A.2.3.6 Assembly list file

The assembly list file is an ASCII file added with an object code (hexadecimal) and code address (hexa-
decimal) in the assembly source file input in the asm88. It is created through asm88 assembly. Each page
will have a header with the file name and date that the file is created.

The file name that is created will be the same as the file name input via the asm88 other than when -o flag
is specified. The extension will be ".1".
The assembly list file consists of the following items:

LINE oo The consecutive line number from the beginning.
ADDRESScccoeviiinen. This refers to the target address of the object code.
CODE ..ot This is the object (machine language) code that corresponds to the source state-

ment in the same line.
SOURCE STATEMENT .. This is the assembly source input in the asm88.

When relocatable assembly is performed, the code address will be a relative address from the beginning
of the CODE section. Similarly, the address of the data area is a relative address from the beginning of the
DATA section.

If an error is occurred, an asterisks "*" will be placed at the beginning of the line in which the error
occurred.

The output of assembly list file can be controlled with the following asm88 pseudo-instructions and flag
specifications upon start-up.

Output list control pseudo-instructions

Pseudo-instruction Description
LINENO Changes the line number (LINE) to the voluntary value.
SUBTITLE Inserts the subtitle line that is voluntarily set after the column explanation line.
SKIP If any line of the code exceeds 5 bytes through ASCII, DB or DW data settings, the exceeding
portion will not be output. (default setting.)
NOSKIP Outputs all codes by canceling the SKIP setting.
LIST The following lines are output in alist when the NOLIST setting is canceled.
NOLIST Prevents output of the list from the line after the pseudo-instruction.
EIECT Adds ainvoluntary page break.

Refer to Appendix B for details of the pseudo-instructions.

Start-up flag
Refer to Appendix C for details of the flag.

Flag Description
-1 Prevents creation of an assembly list file.

218 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX A ASSEMBLER (Sub tool chain)

A.2.3.7 Crossreference list

The cross reference list file is created through asm88 assembly with an ASCII file. This ASCII file is
defined within the module or contains a list of reference symbols.

The name of the file created will be the same as the file name input with the asm88 other than when
specifying -o flag. The extension will be ".x".

The output format of the cross reference list file is as follows.

R SYMBOL A VALUE LINE No. INFORMATION

R Reference definition
G: Global
L: Local

SYMBOL Symbol name (maximum 15 characters)

A Attribute
L: Label
C:. Constant
V: Variable

U: Undefined within the module
VALUE Symbol value (6 digit, hexadecimal expression)

LINE No. INFORMATION
This is a list in which the symbol is defined or referenced line numbers. They are output as
follows.
lineno* lineno lineno lineno
lineno*: The line number in which the target symbol is defined.
lineno: The line number in which the target symbol is referenced.

The LINE No. INFORMATION can consist up to a maximum of 12 line numbers.

The following page header will be output at the head of each page.

The numeric labels are temporary labels. The same name can be used if they are outside the range
defined by the general label. It will not be output on the cross reference list. (Refer to Appendix B for the
numeric labels.)

The cross reference list file can prohibit output using the -x flag of the asm88.

Example of cross reference list
CROSS REFERENCE TABLE OF asnmB8 error.x 1993-06-07 17:28 PAGE 1

L del ay L 000100H 5* 14 15
L delay_00 L 000103H 7* 9
L delay_3tines L 000107H 13*
S5U1C88000C MANUAL I EPSON 219

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX A ASSEMBLER (Sub tool chain)

A.2.38Error list

The errors generated during asm88 assembling will be output as an error list file.

The name of the file created will be the same as the file name input with the asm88 other than when
specifying -o flag. The extension will be ".e".

The output format of the error list is as indicated below.

SOURCE FILE LINE No.: ERROR LEVEL: ERROR MESSAGE

SOURCE FILE Source file name
LINE No. Line number in which the error occurred

ERROR LEVEL Level of error

Warning This is a warning and does not affect the output object.
Severe This is a general error. The output object will be invalid.
Fatal This is a fatal error. Assembly will be interrupted. Fatal errors are displayed on the

CRT without output of an error list file.

ERROR MESSAGE Error content

Refer to Appendix C for the error messages of the asm88.

Example of error list
Terror. s 16: Severe: del ay not defined

When an error is not generated, nothing will be output in the error list file.

A.2.3.9 Example of assembly execution
The following shows example of the assembly execution.

Messages when ra88.bat (relocatable assembly) is executed
C: \ USER>c: \ EPSON\ r a88 sanpl e[d

C: \ USER>echo of f

EOC88 Family Auto Rel ocatable Assenmbl e Execution Uility Ver. X XX
Copyright (C) SEI KO EPSON CORP. 1993-1996

sap88 Structured Assenbl er Preprocessor Version X XX

Copyright (c¢) 1993 by Advanced Data Controls, Corp.
Li cenced to SElI KO EPSON CORP.
asnmB8 Cross Assenbl er Version X XX

Copyright (c) 1993 by Advanced Data Controls, Corp.
Li cenced to SEI KO EPSON CORP.

9 Synbol (s) Used

0 Warning Error(s)

0 Severe Error(s)
ra88.bat utility has been successfully executed.
C: \ USER>

220 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX A ASSEMBLER (Sub tool chain)

A.24Link

This section will explain the linking operations of relocatable modules.
Software used: /ink88

Relocatable object files

Create the link88

S

“— link command
"_-— parameter file by editor

———— Link command

m parameter file

Execute link88
Link

f(—) Absolute
u object file

Creating program
data HEX file

Fig. A.2.4.1 Link processing flow

A.2.4.1 Linking modules

The object codes of each module created with the relocatable assembly of the asm88 is not specified to be
located in a certain portion of the ROM. The allocation address is determined by how each modules are
linked. The link88 linker is the tool used for linking operations.

When linking is successfully performed the relative address for the external reference label that was
undeclared up to this point will be declared and thus, create an absolute object file (.a) that consolidates
all modules into one file. By processing this absolute object file with the binary/HEX converter hex88, as
indicated in Section A.2.5, the program data HEX file to be used to create the program mask data or to
debug the hardware will be created.

A.2.4.2 Section control

The S1C88 Family has a 24-bit width address space (maximum of 16M bytes). By using the topmost 8-bit
for register control using the code bank register (CB), expand page register (EP, XP, YP) and others, the
address space can be allocated into a 32K-byte bank (CODE) or 64K-byte page (DATA) unit. Access
performance can be improved within those ranges. By rewriting the content of the register, the user will
have access of a voluntary bank or page from a voluntary bank. As a result, large programs and data
bases can easily be controlled. However, the bank and page will not automatically be changed with the
execution of the program and thus it must be set in accordance with the program specifications.
Therefore a program as described in linear programs can not be created in the 16M-byte address space.
This indicates that multiple modules can not simply be linked.

For this reason, the link88 employs a multi-section method to resolve this problem by allocate voluntary
modules in voluntary addresses.

Allocation in this method is undertaken by making it possible to specify addresses for block units
referred to as sections.

The section is categorized into a CODE section in which the allocation site is the ROM and the DATA
section which is the data memory. To resolve the aforementioned bank and page problems, the size of one
CODE section can consist of up to 32K bytes and the size of one DATA section is limited to 64K bytes. It is
important to note that this size is based on the fact that they are not allocated over the bank or page limit.
If in case they are allocated in the middle of a bank or page, the size will be limited to the remaining size.

To create an object code for the desired multi-section using the section method, the user must define the
section and supply address information on the allocation of the section to allocate the address.

The section is defined by using the linker's secondary flag (flag used to define section) +code and +data
and the -p flag is used to allocate the address.

Up to a maximum of 255 sections can be defined with one link.

S5U1C88000C MANUAL 11 EPSON 221
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX A ASSEMBLER (Sub tool chain)

<Example of section definition>

Let's look at the section definition procedures through a simple example.

First, the method to actualize a memory mapping as indicated in Figure A.2.4.2.1 will be explained.

It will be assumed that "prgl.s" describing C1 and D1, "prg2.s" describing C2 and "prg3.s" describing C3
is assembled and then each respective relocatable object file "prgl.0", "prg2.0" and "prg3.0" is created.

In this case, C indicates the CODE section and D indicates the DATA section.

The flag to 1ink88 can be specified through input redirect operations.

When the following flag specification is performed and a link command parameter file (filename.1lcm)
that is used to allocate the address and define the section is created following by executing
link88<filename.lcm, a memory mapping as indicated in Figure A.2.4.2.1 will be created.

Memor rgl.o
000000H C1 yA pcg:l
— 100001FH
000100H — D1

C2 <« prg2.0
C3 <« c2
002xxxH
prg3.o
C3
OO0FO000H DL <
00F800H ——]00F7xxH
Vo OOFFFFH

Fig. A.2.4.2.1 Memory mapping example

Contents of the file transferred to 1ink88 (link88<filename.lcm)

-0 prg.a (D
+code - p0x000000 ..(2
+dat a - pOx00f 000 ..(3)
prgl.o ..(4)
+code -p0x000100 ...(5)
prg2.o0 prg3.0 ...(6)

(1) Specifies the absolute object file that is output with the -o flag.

(2) Defines the CODE section that starts with a physical address from 000000H.

(3) Defines the DATA section that starts with a physical address from 00FO00H.

(4) Allocates "prgl.o" to the sections defined in (2) and (3) indicated above.

In this case, the contents of the CODE section C1 in "prgl.0" will be allocated from the beginning
of the CODE section defined in (2) and the contents of the DATA section D1 will be allocated at the
head of the DATA section defined in (3).

(5) Defines the CODE section that starts with a physical address from 000100H. This CODE section is
different from the CODE section defined in (2). The CODE section (2) will be completed when a
new section is defined at this point.

(6) The "prg2.0" CODE section of C2, and "prg3.0" CODE section C3 will be continuously be allocated
in respective order.

In this example, "prg2.0" and "prg3.0" does not have a DATA section. However, if there is a DATA
section then it will be allocated from the address following D1 of the DATA section defined in (3).

There are three sections defined and linked in this example as indicated above. When the link is success-
ful an absolute object file named "prg.a" will be created.

Multiple modules can be allocated in these sections defined as long as it is within the allowable capacity
limit. What's more, multiple sections can be allocated within one bank as well.

222 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX A ASSEMBLER (Sub tool chain)

<Allocation address and relocation of section>

As indicated in the earlier example, the -p flag determines the physical start address of the section
defined immediately before operations.

Let's say, for example, the following settings are made for a certain section.

-p 0x10000

The start address of this section will physically be 10000H. The CODE section will be specified at the
head of bank 2 and the DATA section will be specified at the head of page 1.

The following allocation (reallocation of address information) will be performed for a symbol if a symbol
is defined to be positioned from the head of this section to the 1234H offset and that symbol is used to
reference that address.

(1) When handled as data memory (symbol name will be indicated as "SYMBOL".)

Operand Relocate value
#SYMBOL - #1234H
[SYMBOL] S [1234H]
#POD SYMBOL - 01H

#LOD SYMBOL - 1234H
#HIGH SYMBOL - 12H

#LOW SYMBOL - 34H

[BR.ILOW SYMBOL] - [BR:34H]

(2) When handled as program memory (symbol name will be indicated as "LABEL".)

Operand Relocate value
#BOC LABEL - 02H
#LOC LABEL - 9234H

A relative valued in accordance with the address that allocated by the branch instruction will be
calculated and set for PC relative branch instructions like "JRL LABEL".

The section start address, in the above example, was specified at the head of the bank or page, however,
specifications can be made for it to start in the middle of a bank or page, as indicated below.

-p 0x15000

In this case the start address will physically be 15000H and have a 5000H offset from the head of the bank
or page. The link88 relocates each symbol based on the physical address, therefore, such offsets will also
be properly processed.

All symbol information after reallocation will be recorded in the absolute object file. A list of these
symbols can be created using the rel88 symbol information generating utility. Refer to Section A.2.6.1,
"Creating symbol information (rel88)" for more information on rel88 operations.

A.2.4.3 Module allocation information

As indicated in the example of section definition mentioned earlier, section definitions and command
lines that specify files can be handed over to the 1ink88 through the input redirect function.

The number of modules are limited and the link is simple, as indicated in the example, it will be possible
to create a file similar to that indicated in the example and directly input into the link88.

There will be need to be conscious about the memory efficiency when increasing the number of modules.
One CODE section is limited to 32K bytes and the DATA section is limited to 64K bytes. Thus, it will be
necessary to allocate each module so that it does not exceed the limit. It will be necessary to give consid-
eration to the combination of modules in each section upon allocation. Otherwise, there will be more
unused memory area and thus, require unnecessary memory extension.

S5U1C88000C MANUAL 11 EPSON 223
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX A ASSEMBLER (Sub tool chain)

A.2.4.4 Starting link88
<Operations of link88>

(1) Set the directory in which the relocatable object files (.0) to be linked and the link command parameter
file (.Icm) including link88 command line created with the editor are existed as the current drive.

(2) Start-up the link88 with the next format.
| i nk88_<_link command parameter file name(d]

_indicates a space key input.
indicates a return key input.

Regardless of the input redirect function, the link command parameter file can directly be input in the
command line. The procedures will be omitted since it is not practical. Refer to Appendix B for more
information on formatting.

Details on the flags that compose the command line will also be omitted.

Refer to Appendix B for details of the flags.

Example: Performing linking through the link command parameter file (.lcm)
C:\USER>c: \ EPSON\ | i nk88 < sanpl e. | cmdl

Use the link command parameter file "sample.lcm" created in the USER of the sub-directory of drive C
as the input redirect function to start-up 1ink88 and perform linking. The name of the absolute object
file specified in the link command parameter file will be created in the same directory as the input file.
If the PATH to 1ink88 is set, then there is not need to specify the path before link88.

Refer to Section A.2.4.2 for the link command parameter file.

A.2.4.5 Batch processing for linking (Ik88.bat)

As so with the assembler, this package contains the 1k88.bat batch file for linking.

This batch file is prepared so that it can process the procedures from linking to creation of the program
data HEX file. (Details on processing procedures after linking will be noted later.)

Figure A.2.4.5.1 shows the processing flow of 1k88.bat.

Relocatable

object files
(create for each module)

Link command
parameter file for link88*

* Created by editor

Execute link88

Link
) Absolute
“ object file i

Execute hex88 Execute rel88
Converts binary to HEX Creates symbol information

Program data (= Symbol information
HEX file “ referencefile

Execute sym88
Creates symbolic table file

(= Symbolic
“ tablefile

Batch processing for linking <Ik88.bat>

|
|
,, a

Fig. A.2.4.5.1 |1k88.bat processing flow

iy

224 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX A ASSEMBLER (Sub tool chain)

<Qutline of processing procedures>

The Ik88.bat reads the link command parameter file for the link88 and executes linking operations.
When an absolute object file is created using the link88, it will then use the rel88 symbol information
generator. After reallocation operations are complete a symbolic table information file will be created.
After that, the sym88 will be executed to generate a symbolic table file that is necessary for symbolic
debugging using the ICE.

Then a program data HEX file will be created with the hex88 binary/HEX converter from the absolute
object file.

<Input/output files>

Input files

1. Link command parameter file: file_name.lcm
This is a command parameter file for the link88. It indicates the information to reallocate the
relocatable object of the S1C88 memory space.

2. Relocatable object file: file_name.o
This is a relocatable file in machine language that can be output through relocatable assembly with
the cross assembler.

Output files

1. Absolute object file: file_name.a
This is the multi-section object file created with the linker.

2. Program data HEX file: file_name.sa
This is a Motorola S2 format ASCII record file consisting of an absolute object file that was converted
with the binary/HEX converter.

3. Symbol information reference file: file_name.ref
This is the symbol information reference file of the absolute object file that was reallocated by the
physical address.

4. Symbolic table file: file_name.sy
This file contains symbol names and the address list information for symbolic debugging.

<Operation procedure>

(1) Set the directory including the relocatable object files (.0) to be linked as the current drive.
Put the command parameter file handed over to the link88 in the same directory.

(2) Start-up the 1k88 with the next format.
| k88
indicates a return key input.
Example: C: \ USER>c: \ EPSON\ | k88 [J]

Use the link command parameter file "sample.lcm” created in the USER of the sub-directory of drive C
to start batch processing.

Batch processing will create the absolute object file (.a), symbol information reference file (.ref),
program data HEX file (.sa) and symbolic table file (.sy) in the same directory as the input file.

If the PATH to 1k88 is set, then there is not need to specify the path before 1k88.

S5U1C88000C MANUAL 11 EPSON 225
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX A ASSEMBLER (Sub tool chain)

Customizing 1k88.bat

<Customizing 1k88.bat execution parameters>

Since the 1k88.bat controls the program execution, it has a execution parameter customization field
within it. General parameters are temporarily described in the default position. Always customize the
batch files according to your development method since the parameter will vary depending on your
application style.

Parameter file name to be input
set parfn =file_name: Link command parameter file name (.Icm) input to link88

Output file name
set outfn =file_name : File name of absolute object file and program data HEX file

Use of the symbol information generator (rel88)
set rel88 =y: rel88is used (default)
A symbol information reference file (.ref) will be created.
=n: rel88is not used.

Use of +sec flag (information on individual section) of the symbol information generator (rel88)
set secf =y: +secflagisadded to rel88 (default)
=n: +sec flag is not added to rel88

Note: This parameter will be ignored when rel88 is not used.

Note: There are basically no error checks made on these parameter settings, therefore, do not set the

parameter with settings other than those specified.

<Customizing 1k88.bat execution command>

The Ik88.bat has the following command line upon execution of the program. Customize these
command lines if a flag without a default setting is to be used.

link88
%lr v% i nk88<%parfn% | cm

rel88 (when +sec flag is used)
%lrv% el 88 -v +sec
%out f n% a>%ut f n% r ef

rel88 (when +sec flag is not used)
%drv% el 88 -v %out f n% a>%out f n% r ef

hex88
%dr v¥%hex88 -0 %outfn% sa %outfn% a

sym88
%dr vysynB8 %out f n% ref

The %drv% is a path that locates the execution command of the 1k88.bat. For this reason, it can not be
altered and neither can the SET statement that is defined be altered.

Use the same name for the customized parameter outfn as the name described in the link command
parameter (.lcm).

The following indicates the 1k88.bat program source list and the message list of the 1k88.bat. Refer to it
upon customizing the program.

226

EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX A ASSEMBLER (Sub tool chain)

k88.bat program source list

echo of f

rem R S S Rk S S Rk S R S S S Rk S S Rk
rem* EO0C88 Family Auto Link Execution Utility

rem* (Ver. X.XX)

rem* Copyri ght (C) SEI KO EPSON CORP. 1993-1996

rem R S S Rk S Rk R S S Rk S S

rem* custom zed paraneter information

rem* parfn= : input paraneter file_nanme

rem* (file_nane_lcm for |ink88.exe i.e. c8316xxx.lcm
rem* outfn= : output file_name which is witten

rem* in the input paraneter file_name i.e. c8316xxx
rem* rel=y vy : use rel88 for absolute symbol map generation

rem* =n n : do not use rel 88

rem*

rem* secf=y y : show physical address and nodul e size with absolute
rem* synmbolic table after link procedure

rem* =n n : do not show physical address and nodul e size just

rem* synmbolic table after link procedure

AL E R R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE R EEEEEEEEEEEEEEEEEEEE

rem**x**xx%%x cystom zed paraneter area (default) *x**xx**xxx N
rem* caution : customized paraneters value do not check, therefore | USercustomizationfield
rem* pl ease be carefully when you set Note: There are basically no
rem **xkkxkxkx error checks made on these
set parfn=sanple ~ Name of link command parameter file to be input parameter settings, therefore,
set outfn=sanple ~ Name of file to be output do not set the parameter with
set _rel =y « Useof not of rel88 settings other than those
set secf=y « Useor not of the rel88 + sec flag specified.

remset drv=c:\

rem *****xxxxxx comrand searching path *****x*x*x JThedrvisapaththatIocat&thee(ecutioncommand

Customizeit if necessary.

rem R S S R R S S R R R S S S R S S
rem* main program
rem* if you want to use another option(s), please append
rem* option flag(s) at conmmand |ine
rem R S S R R S S R R R S S S R S S
cstart

echo EOC88 Family Auto Link Execution Utility Ver. X XX

echo Copyright (C) SEI KO EPSON CORP. 1993-1996

cerror_chk
if not exist %lrv%ul goto exit05
if not exist %arfn%I|cmgoto exit06
: chk00
if not exist %lrv% ink88.exe goto exit07
if not exist %lrv% el 88. exe goto exit08
if not exist %lrvy%hex88. exe goto exit09
if not exist %lrv¥%synB8. exe goto exitl0

111 nk88
Y%lr vod i nk88<Yparfn% | cm ~ Start-up command of 1ink88
if errorlevel 1 goto exitO1

rem (rel 88 no sec option)

of the 1k88.bat. It is set to root directory by default.

:rel 88_01
if "%el%=="n" goto hex88
if "%ecf% =="y" goto rel 88_02

Ydrv% el 88 -v Yout fn% a>%out f n% r ef ~ Start-up command of rel88 (no +sec flag)
if errorlevel 1 goto exit02

got o hex88

rem (rel 88 with sec option)

:rel 88_02

Yadrv% el 88 -v _+sec %out fn% a>%outf n% r ef ~ Start-up command of rel88 (with +sec flag)
if errorlevel 1 goto exit02

- hex88

Y%dr v¥%hex88 -0 %outfn% sa Y%utfn%a ~ Start-up command of hex88
if errorlevel 1 goto exit03

S5U1C88000C MANUAL I EPSON 227

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX A ASSEMBLER (Sub tool chain)

1 synB8
%dr v¥%synB88 %outfn% ref « Start-up command of sym88
if errorlevel 1 goto exit04
goto end
cexitol
echo Error stop at %lrv% i nk88. exe
goto skip
texit02
echo Error stop at %lrv% el 88. exe
goto skip
cexit03
echo Error stop at %lrv%ex88. exe
goto skip
cexito4d
echo Error stop at %lrv%synB8. exe
goto skip
cexi t05
echo Cannot find %drv%installed EOC88 dev. tools directory
goto skip
1exito6
echo Cannot find Y%arfn%input paraneter file
goto skip
cexito7
echo Cannot find %lrv% i nk88. exe
goto skip
1exito8
echo Cannot find %lrv% el 88. exe
goto skip
cexi t09
echo Cannot find %drv%ex88. exe
goto skip
cexitl10o
echo Cannot find %drv%ynB8. exe
cend
echo | k88.bat utility has been successfully executed.
:skip
set parfn=
set outfn=
set rel=
set secf=
set drv=

Message list

1. Start-up message

EOC88 Family Auto Link Execution Utility Ver. X XX
Copyright (C) SEI KO EPSON CORP. 1993-1996

2. Message when terminated normally

| k88.bat utility has been successfully executed.

228 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX A ASSEMBLER (Sub tool chain)

3. Error message

Error message Explanation
Error stop at [drive and path name] link88.exe Error occurred in link88.
Error stop at [drive and path name] rel88.exe Error occurred in rel88.
Error stop at [drive and path name] hex88.exe Error occurred in hex88.
Error stop at [drive and path name] sym88.exe Error occurred in sym88.
Cannot find [drive and path name] installed EOC88 dev. | Cannot find [drive or path] in which the S1C88 Family software tools
tools directory isinstalled.
Cannot find [file_name] input parameter file Cannot find input parameter file (.Icm) that is used with the [k88.bat.
Cannot find [drive and path name] link88.exe Cannot find link88.
Cannot find [drive and path name] rel88.exe Cannot find rel88.
Cannot find [drive and path name] hex88.exe Cannot find hex88.
Cannot find [drive and path name] sym88.exe Cannot find sym88.

Note: The following operations will be stopped when an error occurs.

<Precautions upon using the batch file>

(1) Some of the messages displayed during batch processing is automatically generated through the MS-
DOS/PC-DOS batch processing function and command. For this reason, it may be placed under MS-
DOS/PC-DOS control when an error occurs and thus force the batch processing to be interrupted.

(2) When an error occurs, the following procedures do not automatically continue. However, it may not
be controllable as noted in reason (1) indicated above.

(3) The execution parameters (user customization field) of the batch file basically do not locate parameter
setting errors. Therefore, do not set the parameters other than specified.

(4) An MS-DOS/PC-DOS environment variable will be used to execute the batch file, therefore, the size
of the environment variable should be allocated with as much space as possible using the
CONFIG.SYS.

A.2.4.6 Absolute object file

The absolute object file is a binary file created by link88.

The name of the file name created will be the same as that specified with the -o flag.

The files come in a multi-section object format.

This file is composed of an object (machine language) code and various reallocation information.

A.2.4.7 Execution example of linking
The following shows examples of the 1k88 execution.

C:\ USER>c: \ EPSON\ | k88

C. \ USER>echo of f

EOC88 Family Auto Link Execution Utility Ver. X XX
Copyright (C) SEI KO EPSON CORP. 1993-1996

| i nk88 Linker Version X XX

Copyright (c) 1993 by Advanced Data Controls, Corp.
Li cenced to SEI KO EPSON CORP.

| k88.bat utility has been successfully executed.

C: \ USER>

S5U1C88000C MANUAL 11 EPSON 229
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX A ASSEMBLER (Sub tool chain)

A.2.5 Creating Program Data HEX File

This section will explain the program data HEX file and how they can be created using the hex88 binary/

HEX converter.
3 Absolute
_aaeatie

Software used: hex88
Execute hex88

Converts binary to HEX

v

) Program data
“ HEX file

« System code setting and FF filling

in unused program area by fil88XXX.
« Program debugging using ICE.
 Creating mask data of program.

Fig. A.2.5.1 Program data HEX file generation flow

A.2.5.1 Program data HEX file

The program data HEX file is an ASCII file in which the binary object codes were converted in HEX data.
The Motorola S2 format is generally employed at the HEX file format since the S1C88 Family has a 16M-
byte address space. (Refer to Section A.2.5.3 for more information.)

This file will be required to mask program data or to debug program with the ICE.

When development is undertaken for modules according to relocatable assembly, the absolute object file
created by the linker will be converted into HEX data through the hex88 binary/HEX converter and then
create a program data HEX file.

The program data HEX file created through such procedures will set system codes according to each
model and fill FF of the unused built-in ROM area. This is done with the fil88XXX software tool according
to the model.

A.2.5.2 Creating program data HEX file using hex88
The following indicates the direction in creating a program data HEX file using the hex88.

(1) Set the directory in which the absolute object file (.a) is presented as the current drive.
(2) Start-up the hex88 with the next format.
hex88_[flag] _file name[d]

_indicates a space key input.
indicates a return key input.

The following indicates the flag employed during batch processing (Ik88.bat) of links.

Flag Description
- o <file name> Specify the file name that is output. (Specify ".sa" as the extension of thefile to be output.)
If thisflag is omitted it will be processed as a standard outpuit.

Example: Converting sample.a to create program data HEX file
C: \ USER>c: \ EPSON\ hex88 -0 sanpl e.sa sanpl e. alJd

"sample.sa" will be created in the same directory as the input file by inputting the absolute object file
"sample.a" created in the USER of the sub-directory of drive C and converting it into HEX data
format.

If the PATH to hex88 is set, then there is not need to specify the path before hex88.

The batch file can allow for hex88 to be executed after linking. Refer to Section "A.2.4.5 Batch processing
for linking (Ik88.bat)" for more details on such batch processing methods.

230 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX A ASSEMBLER (Sub tool chain)

A.2.5.3 Motorola S2 format
The HEX file in the Motorola S2 format is a collection of records composed of fields like the following.

<S FIELD><COUNT><ADDR><DATA BYTES><CHECKSUM>
All information will be indicated in hexadecimal pairs and each pair will indicate a 1-byte value.
<S FIELD> Indicates the format of that line. "S2" will appear in this field.

<COUNT> Indicates the total number of bytes of <ADDR>, <DATA BYTES> and <CHECKSUM> in
hexadecimal form.

<ADDR> Indicates the address of the first data byte of that line.
The <ADDR> field in S2 format is 3-byte.

<DATA BYTES> Data will be allocated in 1 byte units in order of the increase in address. This field
generally includes the 32-byte (maximum) data.

<CHECKSUM> This is the complement of 1 of the total number of bytes allocated to that line (excluding S
field).

— Motorola S2 format
S224000380788812CF7C8812CFCOCFC1LCFC2CFC3CFCACFC5CFC6 CFC7 CFDOCFD1CFD2CFD3CF7C
S2240003A0D4 CFD5 CFD6 CFD7 CFD8 CFD9 CFDACFDBCFDCCFDDCFDECFDFCFEOCFE1 CFE2 CFE3CF90
S2240003C0E4CFES CFE6CFE7 CFE8 CFEQ CFEACFEBCFECCFEDCFEECFEFCFFOCFF1CFF2CFF3CET L
S2240003E0F4CEF5CEF8CEF9CFFACFFEDD8812C8C8C9C9CACACCCCCCCCCDCDASBA9AAABACAD28
S224000400AEAFCFB4 CFB5CFB6 CFB7 CFBCCFBDAOA1 A2 A3A4A5 A6 A7 CFBOCFB1 CFB2CFB3CFBBAC
S224000420CFB9F6F7CE94CE95CE9688CE97CE90CE91 CEQ288CE93CE9CCE9DCE9E8SBCE9FCE22
S22400044098CE99CE9AB8CE9BCESOCE81CE8288CEB3CES84CE85CE8688CE87 CEB8CES9CESAQE
Su22u4‘000460HOOCE8 BCE8CCES8DCESES88CESFE438E536E634E732CEEQ2 FCEElZCCEEZZQCEESZGP%

| <ADDR> <DATA BYTES> <CHECKSUM>
<COUNT> 32-byte

<S FIELD>

S5U1C88000C MANUAL 11 EPSON 231
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX A ASSEMBLER (Sub tool chain)

A.2.6 Symbol Information

A.2.6.1 Creating symbol information (rel88)

The rel88 is a utility used to create symbol information. It will obtain symbol information from the
specified object file and then create its list. The target object files are the relocatable object file created
with asm88 and the absolute object file created with 1ink88.

Generally, this tool is used for two purposes: one for checking the symbol list after linking and second for
generating a file to be input to the sym88.

The rel88 outputs a list in accordance with the standard output.
The following explains the operations to obtain the symbol list of an absolute object file.

<rel88 operation procedure>
When creating a symbol list for the absolute object file
(1) Set the directory in which the absolute object file (.a) is presented as the current drive.
(2) Start-up the rel88 with the next format.
rel 88_[flag] _input filename_>_output file name[d]

_indicates a space key input.
indicates a return key input.

General flags
Flag Description
+sec Outputs the start address and size of each section.
-V Sorts the sections contents according to the symbol value.

Refer to the following examples for information on the flag effects. Refer to Appendix C for more details
on the flag.

Since the rel88 output corresponds to the standard output, a file will be created according to the output
redirect.

Example: C: \ USER>c: \ EPSON\r el 88 -v +sec sanple.a > sanple.ref

Inputs the absolute object file "sample.a" created in the USER of the sub-director of drive C and then
creates the symbol list file "sample.ref" in the same directory as the input file.
If the PATH to rel88 is set, then there is not need to specify the path before rel88.

The following indicate the list of symbols that are created.

Correlation with flag

*** rel 88 (default) format ***

0x8000c acia.o
0x80b8d acia.o
0x8000C n_getch
0x80bcD _buffer
0x8059C n_recept
0x8045C n_outch
0x80baD _ptlec
0x80b8D _ptecr
0x8082C n_main

*** rel 88 -v format ***

SECTION 1

0x008000 c acia.o

0x008000 C n_getch

0x008045 C n_outch

0x008059 C n_recept

0x008082 C n_main

232 EPSON S5U1C88000C MANUAL 11

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

SECTI ON 2

0x0080b8 d acia.o
0x0080b8 D _ptecr
0x0080ba D _ptlec
0x0080bc D _buffer

*** rel 88 +sec format ***

SECTION 1: code
address = 0x008000 size = 0x000b8

SECTION 2: data
address = 0x0080b8 size = 0x00000

(For reference)

% _a format *

0x000000 ¢ sec: 1 acia.o
0x0000b8 d sec: 2 acia.o
0x0000bc D sec: 2 _buffer
0x0000b8 D sec: 2 _ptecr
0x0000ba D sec: 2 _ptlec
0x000000 C sec: 1 n_getch
0x000082 C sec: 1 n_main
0x000045 C sec: 1 n_outch
0x000059 C sec: 1 n_recept

% -d format *

0x000000 c acia.o
0x0000b8 d acia.o
0x000000 C n_getch
0x0000bc D _buffer
0x000059 C n_recept
0x000045 C n_outch
0x0000ba D _ptlec
0x0000b8 D _ptecr
0x000082 C n_main

***x g format ***

0x000000 C n_getch
0x0000bc D _buffer
0x000059 C n_recept
0x000045 C n_outch
0x0000ba D _ptlec
0x0000b8 D _ptecr
0x000082 C n_main

% +dec format *

APPENDIX A ASSEMBLER (Sub tool chain)

0c acia.o
184 d acia.o
0 C n_getch
188 D _buffer
89 C n_recept
69 C n_outch
186 D _ptlec
184 D _ptecr
130 C n_nmmin
S5U1C88000C MANUAL I EPSON 233

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX A ASSEMBLER (Sub tool chain)

A.2.6.2 Creating symbolic table file (sym88)

The sym88 symbolic table file generator converts symbol information reference (.ref) output from the
rel88 symbol information generator into an information file that contains a symbolic table for symbolic
debugging in the ICE.

<sym@88 operation procedure>

(1) Set the directory in which the symbol information reference file (.ref) is presented as the current drive.
(2) Start-up the sym88 with the next format.
synB8_input file name(d]

_indicates a space key input.
indicates a return key input.

Example: C: \ USER>c: \ EPSON\ synB88 sanpl e. r ef

Inputs the symbol information reference file "sample.ref" created in the USER of the sub-director of
drive C and then creates the symbolic table file "sample.sy" in the same directory as the input file.
If the PATH to sym88 is set, then there is not need to specify the path before sym88.

234 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX B CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

APPENDIX B CREATING PROCEDURE OF ASSEMBLY
Source FiLe (Subtool chain)

B.1 Outline

When you develop a program using the assembly language, first create an assembly source file using the
CPU instructions and the pseudo-instructions included with the cross assembler. The assembly source file
should be created according to the contents and rules to be explained hereafter, using an editor you have.

B.1.1 File Name

As explained in Section A.2.3, this assembler is separated into two programs: the structured preprocessor
sap88 which expands macro instructions into the format that can be assembled by the asm88, and the
cross assembler asm88 which actually executes assembly. Files to be handled in this series of procedures
are an assembly source file. However, since there are some difference in each file, extensions of the file
names are specified as below.

Structured assembly source file: file_name.s
This is an assembly source file which includes macro instructions, etc., and is input into the structured
preprocessor sap88. When you create programs using the assembler language, create assembly source
files to make the file name with the extension ".s".

Assembly source file: file_name.ms
This is an assembly source file in which the macro instructions have been expanded, and is generated
from the structured preprocessor sap88.

In the structured preprocessor sap88 and the cross assembler asm88, files with other extensions can be
input, but generally use the above mentioned extension.

B.1.2 Source File Differences Depending on sap88 and asm88

As explained in the previous section, format of the file to be input to the cross assembler asm88 is differ-
ent from that of the structured preprocessor sap88 as to contents.

The statement (line) such as macro instruction and sap88 pseudo-instruction, which can be used in the
structured preprocessor sap88, cannot be distinguished in the cross assembler asm88, and will cause an
error. Consequently, when using the macro instructions, be sure to expand it to the format which can be
input into the cross assembler asm88, using the structured preprocessor sap88.

In particularly, attention should be paid when modifying the source file ".ms" being input into the asm88
directly.

The pseudo-instructions which are incorporated in the cross assembler asm88 functions will not cause an
error in the structured preprocessor sap88.

In the pseudo-instructions explained later, details for only the structured preprocessor sap88 are indi-
cated by [sap88 only] or the notes are described. Take care when reading.

B.1.3 Macro I nstructions

Macro instruction allows the user to define virtual instructions with instruction sequences. The structured
preprocessor sap88 expands the defined instructions into the source format that can be assembled by the
cross assembler asm88. The following describes the outline of it.

When using the same statement block in multiple parts of a program, previous define the statement block
with an optional name, after this the statement block can be called using the defined name. The defined
statement block is Macro. Describe the macro name that has been defined and necessary parameters in
program, to call the macro. That part is expanded in the contents of the statement block that have been
defined as a macro by the structured preprocessor sap88, and at that point the changing of the specified
parameters is also to be done.

In addition to the macro-definition and the macro-call, some pseudo-instructions related to the macro
have been provided. For details, see Section B.3.8.

S5U1C88000C MANUAL 11 EPSON 235
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX B CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

B.2 General Format of Source File

Assembly source file is composed of statements (lines) such as the CPU instruction set, pseudo-instruc-
tions which are incorporated in the sap88 and asm88, and comments, and is completed by END pseudo-
instruction (pseudo-instruction to terminate assembly). (Statements can be described after the END
pseudo-instruction, however, that part will not be assembled.)

The following explains the asm88 fundamentally. (Functions permitted on the asm88 will not cause an
error on the sap88.)

— Example of sourcefile

subtitle "assenbly source file exanple (sanple.s)"
public mai n
ext ernal src_address, dst_address, counter

code

mai n:
I d i X, [src_address]
I d iy, [dst_address]
I d hl, [counter]
ret
end

The following explains the general particulars such as the composition of the statement and characters
and notation for numerical values which can be used.

Each source program statement should be written using the following format.

Symbol field Mnemonic field Operand field Comment field
Example:

on equ 1000h

start: jrl init ;to initialize

flag: db [1]

val ue: db 080h

In the above sort of format line, the line end normally is the termination, however, the operand may be
described over several lines.

Symbol field: In this field, describe a symbol. A colon () must be used following the symbol except for
the statement of the EQU or SET instruction.
Use symbols properly in accordance with the following definition.

Symbol eLabel (Colon must follow)
=Name (Constant definition by EQU or SET instruction)

Mnemonic field: In this field, describe an operation code or a pseudo-instruction.

Operand field: In this field, describe an operand or constant of each instruction, a variable, a defined
symbol, a symbol that indicates memory address, or an operational expression.

Comment field: Put semicolon (;) at the beginning of this field, and describe a comment following it.

236 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX B CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

B.2.1 Symbol
Symbol is the name in which the specific value is defined. The following two ways are to define a symbol.
(1) Label

The symbol that is put at the beginning of statement of CPU instructions or data definition is defined
as a label. The value that is defined to the symbol is the address of the CPU instruction or data area.

(2) Name
It is defined using the EQU or SET pseudo-instruction. The value that is defined to the symbol is the
value of <expression> that is specified using the EQU or SET pseudo-instruction.

The symbol definition is in accordance with the following rules.

= Although the symbol length is not restricted, a maximum of 15 characters from the front will be
distinguished as a symbol.

= In the case of a label, it can be described from any column, however, a colon (:) must be used at the
end of a label.

= In the case of a name, it must begin from column 1.

= The characters that can be used for symbols are as follows:
Alphabetic characters (A-Z, a-z), Arabic numerals (0-9), _

= To input symbol it does not matter whether capital letters or small letters are used. In the default
setting, capital letters and small letters are not distinguished, therefore symbols ABC and abc are
handled identically. However, when the -c flag is used, they are distinguished.

= A symbol cannot begin with a number.
Symbol names must begin with an alphabetic character or *_".

B.2.2 Mnemonic

A CPU instruction or a pseudo-instruction is placed in the mnemonic field. These are normally composed
of character-strings that end with a blank space. These are discussed later.

In the default setting of the asm88 and sap88, capital letters and small letters are not distinguished. In such
cases, even if inputting the following, they will all be considered as correct and the same.

Examples: byte BYTE DbYtE

In the default setting, it is also permissible for a CPU instruction set to be written either in capital letters
or small letters. When writing programs, it is better to write them with the standard method. However,
when handling the symbol name to distinguish between capital letters and small letters using -c flag, be
sure to describe the CPU instruction set and register name in small letters.

Example:
jrI ABC ;junp to |abel ABC
I d a,b ;A register <- B register

B.2.3 Operand

0 or more operands can be placed in accordance with the content of the mnemonic field. These operands
are allocated by the parameter strings. They begin from a blank character indicating the termination of
the mnemonic field, are delimited by a comma and end with a blank character or semicolon.

B.2.4 Comment

Comments are disregarded in the process of assembly. The comment begins with a ;" (semicolon) and
ends at the termination of the line end (line feed code).

S5U1C88000C MANUAL 11 EPSON 237
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX B CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

B.2.5 Numerical Expression

Bit control is frequently executed in a microcomputer built into the equipment. For this reason, asm88
and sap88 can handle binary, octal, hexadecimal and decimal expressions as the radix of numerical
expression.

The radix is recognized by placement of the following characters after the number.

B: Binary
, Q: Octal
H: Hexadecimal

None: Decimal (D can be used.)
(These may also be written as small letters.)

The numbers must begin with Arabic numerals (0-9). For example, the number "10" can appear as
follows.

10: Decimal

1010B: Binary

12Q: Octal

OAH: Hexadecimal
(To distinguish from names all hexadecimal numbers using letters A to F must have a "0" in front.
eg. 0AH = HEX number, AH = name)

B.2.6 Characters

The sap88 and asm88 have adopted the notation that has been normally called ASCII (American Standard
Code for Information Interchange) for expression of characters and character strings.

B.2.7 ASCI| Character Set

The ASCII character set code is composed of two parts: Table B.2.7.1 ASCII character code table
7 bits data according to the characters and 1 bit parity >H[00 0102 03] 04! 05] 06 07
to check whether there is an error during transfer. The 00 |NUL! DEL ol @ P S p
ASCII character set is classified into the following four ol |soHiDcl| ' 11| Al Q| a! g
types. 02 |stxipc2| "1 2| BIR|b!T
In the asm88, the notation characters can be handled as o3 |eTx'Dc3| #! 3| cCc ! s| ¢! s
a character constant by enclosing them with single o4 |eoTipcal $ 4| D T | d ot
guotation marks such as 'A’, 'Z" and 'X". "\" is particu- 05 ENQENAK %! 5| E ! U|e! u
larly used for the single quotation marks themselves. 06 [ACKISYN| & | 6 | F 'V | f ! v
To express a character which can not be displayed such o7 |BeL'ETB| ' 7| 6w g L w
as a control code, the asm88 permits the following 08| BSiCAN| (I 8| H ! X | h! x
notations for control characters thought to have a 09 | HT | EM) o | iy | i y
particularly high usage frequency. 0a | LFisuB| # ! : 3z j Lz
\a' Bell (07H) Ob | VTIESC| + i 5 | K i [| k|
\n' New-line (0AH) Oc | FEI RS " o< L 1|
\r' Return (ODH) 0Od|CRIGS| - = | M] |[m:}
¢ Tab (09H) oe|so'Rs| . > | NI ARt -
\b' Back space (08H) of | s ius| /1 2| O _ | o ' DEL
:\?' Escape (1BH) 00 01 10 11
\i Shift-in (OFH) Section

o' Shift-out (OEH)

The notation, \nnn (nnn is an octal), can also be used. When this notation is used, bell, for example, can
be written "\007'.
These descriptions by escape sequences are only permitted in character strings. The character string can
be handled by ASCII instruction, and they can also be expressed by sets of characters enclosed by single
quotation marks.

238 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX B CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

B.2.8 Expressions

Constants are set at many points within programs, for example, the operands for CPU instruction set and
the parameters for pseudo-instructions. Moreover, constants can be shown using expressions. The cross
assembler asm88 evaluates expressions and can make the result value into the constant. A variable of the
same size as the numbers used by the CPU or a larger one may be used for the expression evaluation
during assembly.

NOTE:
(1) When a relocatable code is made, the address can only be used within the expression of which the
result will be a quantity that becomes relocatable or a constant.

Consequently, the following expressions may be used.

| abel 1 - | abel 2 ; When two labels are in the same program selection
| abel 1 + <const ant >
| abel 1 - <const ant >

The following expressions may not be used because the result will not be a relocatable quantity or a
constant.

| abel 1 + | abel 2
| abel 1 & | abel 2
| abel 1 * <const ant >
| abel 1 / <constant >
| abel 1 % <const ant >

| abel 1 * | abel 2
| abel 1 [| abel 2
| abel 1 % | abel 2
<constant >+ | abel 2
| abel 1 - | abel 2 ; When two labels are in the different program selection

(2) Since the results do not become relocatable quantity, logic operations using a relocatable address
become errors during assembly.

Expressions are composed of several terms linked by binary operators (for example, +). In the evaluation,
these expressions are calculated with 16-bit precision.
The following terms may be used within the expressions.

1 Numbers

2 Variables which have been defined by the user to use the EQU and SET instructions, and declared
labels

3 Location counters $

When $ is used as the operand for the CPU instructions, the address immediately preceding the instruc-
tion is applied.

The asm88 is a two pass assembler and the values for several variables which are used in program are not
defined in the pass 1 stage. When variables for which values are undefined appear within expressions
during the pass 1 execution, 0 is assigned for them. And if there are variables for which values are still
undefined in pass 2 execution, an error results. Also, if variables which were undefined when used for
the expression in pass 1 are used in pass 2, it causes a phase error. Consequently, you should define the
values for variables prior to using them in an expression.

S5U1C88000C MANUAL 11 EPSON 239
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX B CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

B.2.9 Operators

The asm88 accepts the following operators.

Table B.2.9.1a Unary operator

Table B.2.9.1b Binary operator

Operator Function Operator Function
+a Positive sign atb Addition (32-bit signed integer)
Example: |d a, #+25h Example: sbc [hl], #25h+10h
-a Negative sign a-b Subtraction (32-bit signed integer)
Example: add b, #- 13h Example: sub a, #63h-03h
~a Assigns the values reversing each bit. a*b Multiplication (32-bit signed integer)
Example and a, #~10h Example: xor |, #48h* 5h
LOW a |Assigns alower 8-bit value of an expression. alb Integer division (32-bit signed integer)
Example: or b, #l ow 1234h Example: cp ba, #1256h/ 31h
HIGH a | Assigns alower 8-bit value of an expression after a%b Remainder. Divides the |eft operand by the right
the expression value is shifted 8-bit to the right. operand, and returns the remainder.
Thisis the same as that to return the upper 8-bit of Example: add a, #0d7h%if h
a 16-bit expression. a&b Logical AND. Returnstrueif both operands are
Example: |d h, #hi gh 1020h true. Returnsfalseif either of the operandsisfalse
BOC Calculates a bank value from a physical address. or both operands are false.
This operator is effective for aphysical address. Example: |d sp, #04a1h&2030h
(Bank Of Code) alb Logical OR. Returnstrueif either operand is true
Example: | d a, #boc | abel or both operands are true.
I d nb, a Example: |d i X, #3026h| 1000h
LOC Calculates alogical address within the logical a"b Exclusive OR. Returns true if one operand is true
space from a physical address. This operator is and the other is false. Returns false if both
effective for aphysical address. operands are true or false.
(Logical address Of Code) Example: |d [iy], #44h~10h
Example: |d hl, #l oc | abel a<<b Shift to left. Shifts b (integer) bits to the left.
ip hl Example: adc hl, #5000h<<3
: a>>b Shift to right. Shifts b (integer) bits to the right.
| abel : Example: cp ba, #8130h>>10h
POD Calculates a page value from a physical address.
This operator is effective for aphysical address.
(Page Of Data)
Example: | d a, #pod | abel
I d ep, a
LOD Calculates alogical address within the page from a
physical address. This operator is effective for a
physical address.
(Logical address Of Data)
Example: |d i x, #l od | abel
I d a, [ix]
| abel :
Priority for operators
An expression is evaluated from left to right, Table B.2.9.2 Priority for operators
however, an operator with higher priority is Operators Priority
evaluated earlier than the other operators immedi- ™ & Low
ately in front of or behind it. If there are two or + (addition), - (subtraction) 1
more continued operators equal in priority, the x| 0 <<, >>
operators are evaluated from the left side. BOC, LOC, POD, LOD 1
Every left parenthesis "(" must have a correspond- HIGH, LOW, ~, -, + High
ing right parenthesis ")".
The following table shows the priority for opera-
tors.
240 EPSON S5U1C88000C MANUAL II

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX B CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

Operation rules for BOC, LOC, POD and LOD
In the unary operators, four operators BOC, LOC, POD and LOD are peculiar to the S1C88, and possesses
original rules for operation as the below.

BOC (physical address & 0x7f8000) >> 15
LOC If (physical address & 0x7f8000)
(physical address & 0x7fff) | 0x8000
else
(physical address & 0x7fff) | 0x0000
POD (physical address & 0xff0000) >> 16
LOD (physical address & 0xffff)

In the above, the value indicates the physical value possessed by the operand. During assembly, the
asm88 only generates special relocation information corresponding to each operator and the actual
address calculation is done by the 1ink88 during linking.

B.2.10 I nstruction Set

The asm88 accepts each of the following instructions as CPU instruction set.

— S1C88 Family instruction list

adc cp inc neg rete sep swap
add cpl int nop rets sla upck
and dec jp or ri sl xor

bit div jrl pack rlc slp
call djr jrs pop rr sra
carl ex | d push rrc srl
cars halt mt ret sbc sub

B.2.11 Register Name

The CPU register names indicated in the following have been reserved as keywords in the asm88. Refer to
the "S1C88 Core CPU Manual" for information on the respective register functions.

a Dataregister A

b Dataregister B
ba A and B register pair

h Dataregister H

| Dataregister L

hi Index register HL

[Index register 1X

iy Index register 1Y
sp Stack pointer SP

br Base register BR
sc System condition flag SC
pc Program counter PC
nb New code bank register NB
cb Code bank register CB
ep Expand page register EP
Xp XP expand page register for IX
yp Y P expand page register for I'Y
ip XP and Y P register
S5U1C88000C MANUAL I EPSON 241

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX B CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

B.2.12 Addressing Mode

The S1C88 determines the execution address according to the following 12 types of addressing modes.

Table B.2.12.1 List of S1C88 addressing modes

Addressing mode

P
(=]

Immediate data addressing

Register direct addressing

Register indirect addressing

Register indirect addressing with displacement

Register indirect addressing with index register

8-hit absolute addressing

16-bit absolute addressing

8-bit indirect addressing

O O NG~ WIN|F

16-bit indirect addressing

=
o

Signed 8-hit PC relative addressing

[
[

Signed 16-bit PC relative addressing

Juy
N

Implied register addressing

Refer to the "S1C88 Core CPU Manual" for details on each addressing mode. The notation rules for the

operands corresponding to these addressing modes are as follows.

Table B.2.12.2 Notation rules for operands

No. Notation rule
1 A "#" isto be placed in front of numeric expressions and symbols
2 Register name is to be written directly
3 Index register isto be enclosed by brackets ([])

4 Index register and displacement are to be enclosed by brackets ([])
5 Index register + L isto be enclosed by brackets ([])
6 A "BR:" isto be placed in front of numeric expressions and enclosed by brackets ([])
7 Numeric expressions and symbols are to be enclosed by brackets ([])
8 Numeric expressions and symbols are to be enclosed by brackets ([])
9 Numeric expressions and symbols are to be enclosed by brackets ([])

10 Numeric expressions and symbols are to be written directly

11 Numeric expressions and symbols are to be written directly

12 None

242 EPSON S5U1C88000C MANUAL II

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX B CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

B.2.13 Example for Mnemonic Notation

The examples for mnemonic notation in each addressing mode are shown in the below.

Addressing Constant Name Label (default Default definition
name equ 50h label: address 00ffh

#nn eg.) Id a#0ffh eg.) Id a#name eg.)ld a#label | -
0 to 255
#mmnn eg.) Id ba#1000h eg.) Id ba#name eg.) Ild ba#label | 0 -
0 to 65535
[br:1] eg.) Id b,[br:0ffh] eg.) Id b,[br:name] eg.) Id b,[br:label] [br:low lod label]
0 to 255
[hhil] eg.) Id 1,[1000h] eg.) Id I,[name] eg.) Id I,[label] [lod label]
0 to 65535
[ix+dd] eg.) Id [ix+10h],a eg.) ld [ix*namel,a | = - | e
[iy+dd]
[sp+dd]
-128 to 127
#hh eg.) Id br#0ffh eg.) Id br#name eg.) Id br#label high lod label
0 to 255
#pp eg.) Id ep,#05h eg.) Id ep,#name eg.) Id ep,#label pod label
0 to 255
#bb eg.) Id nb#05h eg.) Id nb,#name eg.) Id nb,#abel boc label
0 to 255
rr eg.) jrs 10h €g.) jrs name eg.) jrs label loc label
-128 to 127
(kK] eg.) jp [10h] eg.) jp [name] eg.) jp [label] [low lod Iabel]
0 to 255
qqrr eg.) jrl 1000h eg.) jrl name eg.) jrl label loc Iabel
-32768 to 32767

= Meaning of the above mentioned default definitions are as follows:
For example, when "jrl label" has been described, the cross assembler asm88 judges as "jrl loc label".

jrl label — jrl 1loc |abel
The program sequence is long jumped to the logical address converted from the physical address.

= An error occurs when the operand exceeding the above mentioned addressing range has been speci-
fied, or when it is judged to exceed it.

= In programming, pay attention to the following points when using the short branch or long branch

instruction.
jrs(l) 10H..... Jumps to the address at a distance of (10+1)H from current address
jrs(l) $+10H... Jumps to the address at a distance of 10H from current address

Except for the above, notations described in the "S1C88 Core CPU Manual" can be used as is.

S5U1C88000C MANUAL 11
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

EPSON 243

APPENDIX B CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

B.3 Pseudo-lnstructions

In this chapter the usage of each type of pseudo-instruction supported by the asm88 and sap88 is ex-
plained in the form classified by function. The format as explained below has been adopted for each
explanation to permit reference to it at any time.

View of the explanation
The explanation contents of each pseudo-instruction have been configured as the following format.

1) Name
Name of the pseudo-instruction . . . Function of the instruction

2) Format
Here the instruction format is described. The format is explained using notations according to the
following rules.
The explanations of the respective terms used in the operand notations are as follows.

<Expression>
General expression composed of symbols and constants including operators

<Numerical expression>
Constant expression using a numerical value expression (including name which has been defined as
constant by EQU instruction)

<Label>
Symbols having a definition within the self-module that has a relocatable property

<Name>
Symbols defined by EQU and SET instructions

<Symbol>
Name to be defined for the specific value
<Character string>

Character strings enclosed by double quotation marks
The following symbols have been given special meanings.

{} ... The enclosed part indicated an optional selection.

{}*.. This option may be placed repeatedly any number of times.

| | |.. When different parameters of a number of different types can be adopted, one among them that
is delimited by this symbol must necessarily be used as a parameter.

Other symbols
Commas ","s, brackets "[" and "]", and parentheses "(" and ")" may be input as assembler sources.

3) Functions
Here the operations of the instruction are explained in detail.

4) Examples
Here usage examples are indicated. Several types may be written depending on the instruction.

5) Related items
Here instructions that function in a similar manner and instructions that assist in understanding are
indicated.

6) Restriction
Here restrictions for use are provided. Also, causes of errors that occur in the use of an instruction
(forgetting the separator, for example) are explained.

244 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX B CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

B.3.1 Section Setting Pseudo-I nstructions

The section setting pseudo-instructions set each section (code section and data section) and decides
program area. The section setting pseudo-instructions are as follows:

CODE DATA

The section setting pseudo-instruction of the cross assembler asm88 has been defined on assumption that
the code section should be allocated into ROM and data section into RAM. It aims that the non-volatile
data such as program codes and constant data should not be assigned into RAM, since the microcom-
puter to built into an equipment has RAM area that the initial values become undefined. Therefore, when
the non-volatile data such as program codes and constant data are described, it must be described within
code section to set the code section by CODE pseudo-instruction. When the volatile data such as work
area and stack area are described, it must be described within data section to set the data section by
DATA pseudo-instruction.

Correspondence of each pseudo-instruction, setting section, area used, and contents to be described are
shown in table below.

Section name Area used Contents to be described
Code section ROM Data allocation that is necessary to decide from the power on, such as
(CODE) program code, constant data, and table.
Data section RAM Reservation for data area that does not matter if the initial valueis
(DATA) undefined at power on, such aswork area, stack area, flags, and buffers.

Name:
CODE.....Definition of program section

Format:
CODE

Functions:
This instruction is used to allocate the program and constants in the CODE section (ROM area). An
optional number of CODE sections may be defined within one module and resumed during assembly.
Since this instruction specifies the section with the same function as the DATA pseudo-instruction, be
sure to specify which when in the assembly. When it has not been specified, an error message is
output.

Example:
Defines the program and constants in the code section.
code
trans: Id TJiy],[ix]
inc ix
inc iy
dir nz,trans
ret
db 01h, 02h, 03h, 04h, 05h
Related items:
DATA, ORG
S5U1C88000C MANUAL I EPSON 245

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX B CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

Name:
DATA.....Definition of data section

Format:
DATA

Functions:

This instruction is used to reserve and allocate the data area in the DATA section (RAM area). An
optional number of DATA sections may be defined within one module and resumed during assembly.
Normally, the data section definition performs only area reservation, and it is not output to the object
as a result of the assembly. However, this section is a RAM area. When using equipment with built in
microcomputer, pay attention that the RAM area is undefined at the power on and the initial values
are invalidated.

Since this instruction specifies the section with the same function as the CODE pseudo-instruction, be
sure to specify which when in the assembly for the data section. When it has not been specified, an
error message is output.

Example:
Reserves an area for flag and buffer table in the data section.
dat a
flag: db [1]
buffer: db [256* 8]
Related items:
CODE, ORG
246 EPSON S5U1C88000C MANUAL I

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX B CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

B.3.2 Data Definition Pseudo-I nstructions

Data definition pseudo-instruction is the pseudo-instruction to define data to be stored into the memory.
The data definition pseudo-instructions are as follows:

DB DW DL ASCIl PARITY

Name:
DB Reserve/constant setting of the byte unit data area

Format 1:
DB <expression> {,<expression>}*

Format 2:
DB <expression> (<numeric expression>) {,<expression> (<numeric expression>)}*

Format 3:
DB [<numeric expression>] {,[<numeric expression>]}*

Functions:
This instruction is used to reserve the 1 byte unit data area and to set the constant. The setting of
constants are done according to a string of numeric values delimited by a comma or the specification
for the repeat number. The parameters for this instruction can be described over several lines, but you
should take care that the relocation information for linking are not included. Further when this
instruction is used, it should be described within the DATA (RAM) area when reserving data area, and
within the CODE (ROM) area when setting constant. The code generation rules for each format are as
follows.

e Format 1
This format defines the optional constant as the optional number of object codes in 1 byte unit and
multiple expressions can be specified for an operand field. The expression is handled as constant
value of 1 byte and when multiple specifications are made, the object codes are generated in the order
of specification.

e Format 2
This format repeat defines the optional constant in 1 byte units and sets the repeat number in a
<numeric expression> enclosed by parentheses.

e Format 3
This format reserves the area for the number of bytes that have been assigned by the <numeric
expression> enclosed by brackets. The code generated within the object at this time is 0.

Integer numeric constants, character constants and symbols can be used as the expressions for formats
1 and 2, but they must necessarily have an absolute numeric attribute. The value of the expression
must also be within the range of -128 to 255. When an operation result is outside the above range, it
will be made an error and the value of the lower 1 byte will be made the evaluation value. Each
format can be premixed for one instruction.

Examples:
buffer: db [50] ; Reserves 50 bytes area
tratbl: db '0",'2','2","3,'4" ,'5",'¢6",'7",'8,'9,'A,'B,'C,'D,'E,'F
; Reserves 16 bytes data as the constant

xhrbuf: db ' ' (64) ; Reserves 64 bytes and initializes at the character code for the space
db ' *' (64) ; Reserves 64 bytes ™' as the constant
Related items:
DWw, DL
S5U1C88000C MANUAL i EPSON 247

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX B CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

Name:
DW Reserve/constant setting of the word unit data area

Format 1:
DW <expression> {,<expression>}*

Format 2:
DW <expression> (<numeric expression>) {,<expression> (<numeric expression>)}*

Format 3:
DW [<numeric expression>] {,[<numeric expression>]}*

Functions:
This instruction is used to reserve the word (2 bytes) unit data area and to set the constant. The setting
of constants are done according to a string of numeric values delimited by a comma or the specifica-
tion for the repeat number. The parameters for this instruction can be described over several lines.
Further when this instruction is used, it should be described within the DATA (RAM) area when
reserving data area, and within the CODE (ROM) area when setting constant. The code generation
rules for each format are as follows.

e Format 1
This format defines the optional constant as the optional number of object codes in word (2 bytes)
units and multiple expressions can be specified for an operand field. The expression is handled as a
long word constant value or symbol value and when multiple specifications are made, the object
codes are generated in the order of specification.

e Format 2
This format repeat defines the optional constant in word units and sets the repeat number in a
<numeric expression> enclosed by parentheses.

e Format 3
This format reserves the area for the number of words that have been assigned by the <numeric
expression> enclosed by brackets. The code generated within the object at this time is 0.

Integer numeric constants, character constants and symbols can be used as the expressions for formats
1 and 2. When the expression has a relocatable quality, the logical address of the location where the
concerned symbol has been allocated is rearranged during linking. The value of the expression must
also be within the range of -32766 to 65535. When an operation result is outside the above range, it
will be made an error and the value of the lower 2 bytes will be made the evaluation value. Each
format can be premixed for one instruction.

Examples:
array: dw [10] ; Reserves10word size area

external funcl, func2, func3, func4, funch
j mpt bl : dw funcl, func2, func3, func4, funch
; Jump table of the functions
Related items:
DB, DL

248 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX B CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

DL Reserve/constant setting of the long word unit data area

Format 1:
DL <expression> {,<expression>}*

Format 2:
DL <expression> (<numeric expression>) {,<expression> (<numeric expression>)}*

Format 3:
DL [<numeric expression>] {,[<numeric expression>]}*

Functions:
This instruction is used to reserve the long word (4 bytes) unit data area and to set the constant. The
setting of constants are done according to a string of numeric values delimited by a comma or the
specification for the repeat number. The parameters for this instruction can be described over several
lines. Further when this instruction is used, it should be described within the DATA (RAM) area when
reserving data area, and within the CODE (ROM) area when setting constant. The code generation
rules for each format are as follows.

e Format 1
This format defines the optional constant as the optional number of object codes in long word (4
bytes) units and multiple expressions can be specified for an operand field. The expression is handled
as a long word constant value or symbol value and when multiple specifications are made, the object
codes are generated in the order of specification.

e Format 2
This format repeat defines the optional constant in long word units and sets the repeat number in a
<numeric expression> enclosed by parentheses.

e Format 3
This format reserves the area for the number of long words that have been assigned by the <numeric
expression> enclosed by brackets. The code generated within the object at this time is 0.

Integer numeric constants, character constants and symbols can be used as the expressions for formats
1 and 2. When the expression has a relocatable quality, the lower 16 bits value is rearranged as a valid
value during linking. Each format can be premixed for one instruction.

Examples:
lubarr: dl [10] ; Reserves 10 4 byte size areas
Il onum dl 13768 ; Setsthe constant lonum with along word size integer

Related items:
DB, DW

S5U1C88000C MANUAL 11 EPSON 249
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX B CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

Name:
ASCII.....ASCII text storing in memory

Format:
ASCIl character expression {, character expression}*
character expression = character string | character constant | byte constant

Functions:

This instruction is used to store the ASCII character code in memory.

For the area reserved by this instruction, the ASCII text assigned by the parameter must be stored in
the memory. The character string for the parameter is decoded and stored in the memory sequentially
from low-order addresses.

The area size becomes the number of bytes for the decoded parameter. The operand is a character
string of one or more characters enclosed by double quotation marks.

The ASCII instruction stores the character code of each character of the character string in the
memory, however, since the information showing the length and the termination of the character
string is not output, the character strings may be set without a limitation.

Examples:
ascii "S1C88 Fam |y"
ascii "bell","\a' ; bell and BELL code
ascii "bell\07" ; Other format example
ascii "bell","\07' ; Other format example
ascii 62h, 65h, 6¢ch, 6¢ch, 07h ; Other format example
Related item:

Table of ASCII character set

Name;
PARITYSetting/resetting of parity bit

Format:
PARITY <operand>

Functions:
The alphabet that has been adopted in the cross assembler asm88 is an ASCII character set. The ASCI|I
character data are indicated with 7 bits and the most significant bit shows the parity. This bit can be
optionally set or reset either always 0 or always 1 using the PARITY instruction. In addition, the total
number for 1 bit can be made odd or even. The following parities can be specified for an <operand>.

PARITY 7 Sets the parity bit at 0 (default)

PARITY 8 Sets the parity bitat 1

PARITY ODD Itis set such that "1" within the 8 bits becomes odd
PARITY EVEN It is set such that "1" within the 8 bits becomes even

Related item:
Table of ASCII character set

250 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX B CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

B.3.3 Symbol Definition Pseudo-I nstructions

Symbol definition pseudo-instruction is the pseudo-instruction to define an expression with a name. The
symbol definition pseudo-instructions are as follows:

EQU SET
Name:
EQU.....Name value setting

Format:

<name> EQU <expression>

Functions:

This instruction is used to define the <expression> with a <name>. The value of a name that has been
defined by this instruction may not be changed later. Nor may an EXTERNAL declared symbol be
placed on the right side of the equals sign.

Length of the expression is not restricted, but up to a 6 character hexadecimal number can be output
to the assembly list. When a 7 or more character hexadecimal number has been defined, a warning is

output.

In the sap88, the name defined by the EQU can be used in the conditional expression of the IFC
statement that hereafter occurs, or it can be used as the parameter for the IFDEF/IFNDEF statements.
[sap88 only]

Examples:
fal se
true
t abl en
nul
soh
St x
et x
eot
eng

equ
equ
equ
equ
equ
equ
equ
equ
equ

Related items:
SET, IFC, IFDEF, IFNDEF, REPT

Limitation:

0 ; Initialization

-1

TABFI N- TABSTA ; Calculation of table length

00h ; Defines a character string indicating ASCII characters
01h

02h

03h

04h

05h

The <name> description must begin from the 1st column.

S5U1C88000C MANUAL 11

EPSON 251

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX B CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

Name:

SET....Name value setting

Format:

<name> SET <expression>

Functions:

This instruction is the same as the EQU instruction, it is intended, among others, to improve mainte-
nance of the assembler source code and it serves to link <numeric expressions> with the <names>.
Unlike in the case of the EQU instruction, a name defined by the SET instruction can be redefined any
number of times for other values and can be treated as an assembler variable. Among the attributes of
the cross-reference list, which is one of the output lists of the assembler, those are defined as variables
take this symbol. The right side of the equals sign must be defined before this instruction. The main
object of this instruction is to use the name as a conditional assemble or macro variable and it serves
as a valuable function in the structured preprocessor sap88. However, it does not have too much
application in the cross assembler asm88 itself, other than functioning to permit the redefining of
names.

Length of the expression is not restricted, but up to a 6 character hexadecimal number can be output
to the assembly list. When a 7 or more character hexadecimal number has been defined, a warning is
output.

In the sap88, the name defined by the SET can be used in the conditional expression of the IFC
statement that hereafter occurs, or it can be used as the parameter for the IFDEF/IFNDEF statements.
[sap88 only]

Examples:
abc set 1
I d a, #abc
abc set 2
I d a, #abc
Related items:

EQU, IFC, IFDEF, IFNDEF, REPT

Limitation:

The <name> description must begin from the 1st column.

252

EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX B CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

B.3.4 Location Counter Control Pseudo-I nstruction
The location counter control pseudo-instruction is as follows:
ORG

Name:
ORG.....Changing of location counter value

Format:
ORG <expression>

Functions:
This instruction is used to specify addresses where program has been placed. <expression> must be a
relative value from a label within the current program section. At this time, an attempt to insert an
absolute address into the program counter results as an error.
Length of the expression can be defined up to a 6 digit hexadecimal number, and an error occurs if 7
digits or more has been defined.

Examples:
sizstk equ 200h ; The stack sizeis 512 bytes
topst k: ; Reserves space for the stack
org topstk+sizstk
Related items:
CODE, DATA
S5U1C88000C MANUAL I EPSON 253

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX B CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

B.3.5 External Definition and External Reference Pseudo-I nstructions

External definition and external reference pseudo-instructions are the pseudo-instructions to define and
refer symbols which are commonly used between modules.

« External reference pseudo-instruction EXTERNAL
 External definition pseudo-instruction PUBLIC

Name:
EXTERNAL..Symbol external definition declaration

Format:
EXTERNAL <symbol> {,<symbol>}*

Functions:
EXTERNAL and PUBLIC instructions are used so that the same symbol will be used between multiple
modules. Declaration must be done with an EXTERNAL instruction to reference symbols not defined
within the self-module, but rather defined within other modules. If a declaration is made in EXTER-
NAL, it will simultaneously be made in PUBLIC as well.

Example:

ext ernal sqrt
carl sqrt

Related item:
PUBLIC

Name;
PUBLIC.....Global declaration of symbol

Format:
PUBLIC <symbol> {,<symbol>}*

Functions:

When optional symbols are used in multiple modules, they are declared with the PUBLIC and
EXTERNAL instructions. PUBLIC is used for declaration of symbols, such that there is a definition
within the self-module that permits reference from other modules.

Example:
public sqrt ; SQRT permits reference from other modules
sqrt: ; Routine that computes the square root of an integer
etc.
Related item:
EXTERNAL
254 EPSON S5U1C88000C MANUAL I

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX B CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

B.3.6 Source File I nsertion Pseudo-1 nstruction [sap88 only]

Source file insertion pseudo-instruction is a pseudo-instruction to read and insert other files into the
optional location of source file.

INCLUDE
* This instruction can only be used in the structured preprocessor sap88. The sap88 expands this instruc-

tion and creates the source file in which the specified file is inserted. In the cross assembler asm88, this
instruction cannot be used and will cause an error if used.

Name:
INCLUDE.....Another file insertion

Format:
INCLUDE <file name>

Functions:
This instruction reads the specified file in the following an INCLUDE statement.
Including can be nested to optional depths. Another file can be further included into a file that is
already included.

The sap88 analyses this pseudo-instruction and creates the output file in which the specified file is
inserted. This pseudo-instruction is not transferred to the asm88 as is.

Examples:

i ncl ude chargen. s ; Character generator

i nclude utilsub ; General purpose subroutine group
Limitation:

This instruction can only be used in the structured preprocessor sap88. In the cross assembler asm88,
it cannot be used and will cause an error if used.

S5U1C88000C MANUAL 11 EPSON 255
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX B CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

B.3.7 Assembly Termination Pseudo-I nstruction
Assembly termination pseudo-instruction terminates each source program.
END

Name:
END.....Assembly stop
Format:
END {<Label>}
Functions:

This instruction is used to stop the assembly. A list for the portion following this instruction is output,
but not assembled.

256 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX B CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

B.3.8 Macro-Related Pseudo-I nstructions [sap88 only]

The following pseudo-instructions are related to the macro functions, and they perform a macro defini-
tion, a macro deletion, a repeat definition, and the like.

MACRO ~ ENDM
DEFINE

LOCAL

PURGE

UNDEF

IRP ~ ENDR
IRPC ~ ENDR
REPT ~ ENDR

* These pseudo-instructions can only be used in the structured preprocessor sap88. The sap88 outputs
the source file in which the setting contents of these pseudo-instructions are expanded into a form that
can be assembled by the cross assembler asm88. Further these macro-related pseudo-instructions
cannot be accepted in the asm88 and will cause an error if used.

Name:
MACRO.....Macro definition

Format:

<macro nhame> MACRO [<parameter> [, <parameter>] *]
<statement string>
[EXITM]
<statement string>

[<macro name>] ENDM

Functions:
This instruction performs a macro definition. If the specified macro name is already used, the previ-
ous definition will be overridden and this current definition will redefine the macro. Names including
any characters except blank characters, brackets "(", ")", "{","}", "[", "]" and a colon ":" can be used as
macro names. It is not necessary to define the macro name for the ENDM line except the case that the
macro definition was nested. Moreover, there is no limitation as to the number of parameters.
Arguments delimited by a comma "," can be specified by the number of your choice at the time of a
macro call. The number of arguments should not necessarily be equal to the number of parameters at
the time of a macro definition. If a character string identical to one parameter exists in the macro body,
it will be replaced with the corresponding argument character string at the time of a macro call. If any
corresponding argument does not exit it will be replaced with a blank character string. It is also
possible to specify a blank character string on arguments. In this case, specification should be done
using the characters which are not included in the blank character string. For example, if it is specified
as shown below at the time of a certain macro "xmac" call :

Xmac 1,,2

The second argument will become a blank character string. At the same time, the number of argument
at the time of the call will be replaced with the sap88 system parameters NARG and narg. The blank
character string arguments at this time will also be counted.

All the parameters are not necessarily independent as tokens. Some will be replaced with arguments
even when they occur inside character strings. In order to reduce substitution, it is advisable to use
special symbols so that too much substitution can be evaded. All symbols except a comma "," and
brackets "(", ™", "{","}", "[", "]" can be used for parameters and arguments.

S5U1C88000C MANUAL 11 EPSON 257
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX B CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

For example :
sum macr o c,d
I d a, [c]
add a, d
sld [c],a
endm
sum total, #20

The above will be interpreted as follows :

| #20 a,[total]
a#20#20 a, #20
| #20 [total], a

If you redefine your macro definition as shown below, your input will be correctly replaced :

sum macr o c, &
I d a, [c]
add a, &
I d [c],a
endm

The blank characters before and after parameters and arguments will be discarded. The blank charac-
ters inside parameters and arguments, however, are valid. Please take caution in this respect. A macro
call from inside the body of the macro for a macro definition can also be done. In this case, a macro
call should be initiated at the time the macro call generates.
For example :
maca macro X,
X

add
endm

< <

mach macr o
maca
endm

mach a, #2 — add a, #2

maca nmaecro X,y
sub X, Y
endm
mach a, #2 - sub a, #2

A macro call from the body of the macro can be executed according to the depth of your choice.
However, if the call enters a loop, the macro call will be suspended. Take a simple example for
instance :

add macr o X
| d a,
add a
| d X
endm

When the macro defined as above is called, it is expanded as follows :

| d a, b
add b, #2 - add a, #2
I d b, a

"add a,y" in the third line will call itself. The macro call, therefore, will not occur. It will turn out to be
a simple "add" instruction. If we take a look at a little more complicated example :

maca macro X,y
mach X, Y
nmacc X,y
endm

258

EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX B CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

mach macr o X,y
macc X,y
maca X,y
endm
macc macro X,y
maca X,y
mach X,y
endm
mace 10, #2 maca r0, #2
mach ro0, #2< mach ro0, #2
maca 1o, #2
maca r0, #2
maca 1o, #2
Macc 10, #2 macc r0, #2
mach 10, #2G maca r0, #2

When performing a conditional assembly using the IFC statement inside the body of the macro, the
judgment will be made at the time of the macro call. If an EXITM line occurs at this time, the macro
expansion will be suspended and the macro call will end at that moment.

For example :
Xnmac macro X,y
ifc MODE ==
exitm
endi f
endm
MODE set 2

Xmac #3, #4
When called as shown above, the macro expansion will end at the EXITM line.

MODE set 1
Xmac #3, #4

When called as shown above, the macro expansion will be executed to the last.

It is possible to include a macro definition in the body of the macro. In this case, however, the macro
name of the MACRO line corresponding to the ENDM line will be required :

X macr o
y mRcr o
z mRcr o
z endm
y endm

endm

With the case shown above, the macro "y" definition will be executed at the time the macro "x" is

called. In this case, however, it is not necessary to specify a macro name for the outermost macro

definition ("X" in the above example) of the ENDM line. Nesting can be done to the depth of your
choice.

Related items:
EQU, IFC, IFDEF, IFNDEF, IRP, IRPC, PURGE, SET

Limitation:
This pseudo-instruction can only be used in the structured preprocessor sap88. It cannot be accepted
in the asm88 and will cause an error if used.

S5U1C88000C MANUAL 11 EPSON 259
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX B CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

Name:
DEFINE.....Character-string macro definition

Format:
DEFINE <character-string macro name> [<substitute character-string>]
Functions:

This instruction performs a character-string macro definition. The token identical to the character-
string macro name in the source after the DEFINE statement will be replaced with a macro instruction
in the specified substitute character-string prior to the evaluation of all the statements except the
IFDEF and IFNDEF statements. In the case that a substitute character-string is not specified, it will be
replaced with a blank character-string. In addition, a character-string macro name will be subject to be
evaluated in the IFDEF or IFNDEF statements.

Example:
define XMAX #128
cp a, XMAX
l
cp a, #128
Related items:

IDEF, IFNDEF, UNDEF
Limitation:

This pseudo-instruction can only be used in the structured preprocessor sap88. It cannot be accepted
in the asm88 and will cause an error if used.

260 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX B CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

Name:
LOCAL.....Definition of local label

Format:
LOCAL [<local label name> [,<local label name>] *]

Functions:
This instruction declares a local label. When a token with the name identical to that of a local label
occurs inside a macro definition, it will be replaced in macros by a different label name, which will be
automatically generated at each macro expansion. According to the rule of local label generation, the
numerals in four digits starting with 0001 should follow the front character string "L". The front
character string can be changed if specified at the start-up of the sap88.

Example:
macl macr o
| ocal X
cp a, #3
jr C, X
I d d, r0
X:
endm
macl
macl
cp a, #3
jr c, Loo1
| d d, a
LOO01:
cp a, #3
jr c, L002
| d d,a
L002:
Related item:
MACRO
Limitation:

This pseudo-instruction can only be used in the structured preprocessor sap88. It cannot be accepted
in the asm88 and will cause an error if used.

S5U1C88000C MANUAL 11 EPSON 261
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX B CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

Name:
PURGE.....Macro deletion

Format:
PURGE [<macro name>]
Functions:
Once this instruction is executed, the macro definition of specified name that occur thereafter will be

deleted. When name is not specified, all the macro definitions will be deleted. It is also possible to
specify undefined macro name.

Example:

purge add ; delete the macro add
add ba, #10 ; usethe add instruction

Related item:
MACRO

Limitation:
This pseudo-instruction can only be used in the structured preprocessor sap88. It cannot be accepted
in the asm88 and will cause an error if used.

Name;
UNDEF.....Deletion of a character string macro

Format:
UNDEF <character string macro name>

Functions:
The character-string macro definition will be deleted of the specified name that occur after this
instruction is executed. It is also possible to specify undefined character-string macro name.

Example:
undef XMAX ; delete the character string macro XMAX
Related items:

DEFINE, IFDEF, IFNDEF
Limitation:

This pseudo-instruction can only be used in the structured preprocessor sap88. It cannot be accepted
in the asm88 and will cause an error if used.

262 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX B CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

Name:
IRP.....Repetition using character strings

Format:

IRP <parameter>, <argument> [, <argument>] *
<statement string>
ENDR

Functions:
With this instruction, arguments will be assigned to parameters in sequence from the left and expan-
sion will be repeatedly performed up to the ENDR line by the times equal to the number of the
arguments. If, at this time, a character string identical to the parameter exists between the IRP line and
the ENDR line, such a character string will be replaced with the character string keyed by the argu-
ment.

All the parameters are not necessarily independent as tokens. Even when they occur inside character
strings, they will be replaced with arguments. In order to reduce substitution, it is advisable to use

special symbols for parameters so that too much substitution can be evaded. All except a comma ",
and brackets " (",")","{","}","[", "] " can be used as special symbols.

For example :

irp w, 10, 20, 30
dw w

endr

The above will be interpreted as :

dio 10

d20 20

d30 30
If you modify the symbols as follows, your input will be correctly replaced:
irp &w, 10, 20, 30

dw &w

endr

The blank characters before or after parameters or arguments can be discarded. However, the blank
characters located inside parameters and arguments are valid. Please take caution in this regard.

Each statement of IRP, IRPC and REPT can be nested to the depth of your choice. The ENDR line at
this time will correspond to the inside IRP/IRPC/REPT lines.

Example:
irp char, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39
c_char: dw charh
endr
d
c_30: dw 30h
c_31: dw 31h
c_32: dw 32h
c_33: dw 33h
c_34: dw 34h
c_35: dw 35h
c_36: dw 36h
c_37: dw 37h
c_38: dw 38h
c_39: dw 39h
Related items:

IRPC, MACRO, REPT

Limitation:
This pseudo-instruction can only be used in the structured preprocessor sap88. It cannot be accepted
in the asm88 and will cause an error if used.

S5U1C88000C MANUAL 11 EPSON 263
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX B CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

Name:
IRPC.....Repetition by characters

Format:
IRPC <parameter>, <argument character string>
<statement string>
ENDR

Functions:
With this instruction, the characters of argument character strings will be assigned to parameters one
by one in sequence from the left. The expansion will be repeatedly performed till the ENDR line by
the times equal to the number of characters of arguments. If, at this time, the character strings identi-
cal to the parameters exist between the IRPC line and the ENDR line, such strings will be replaced
with the characters keyed by the arguments.

All the parameters are not necessarily independent as tokens. Even when they occur inside character
strings, they will be replaced with arguments. In order to reduce substitution, it is advisable to use
special symbols so that excessive substitution can be prevented. All symbols except a comma"," and
brackets "(", ™", "{","}", "[", "]" can be used as special symbols for parameters and arguments. For
example :
irpc w, abc

dw "w
endr

The above will be interpreted as :

da "a'
db 'b'
dc ‘¢!

If you modify the symbols as follows, your input will be correctly replaced :

irpc &w, abc
dw " &wW
endr

The blank characters before or after the parameters or arguments will be discarded. However, the
blank characters inside the parameters and arguments are valid. Please take caution in this respect.
Each statement of IRP, IRPC and REPT can be nested to the depth of your choice. The ENDR line at
this time will correspond to the inside IRP/IRPC/REPT lines.

Example:
irp char, Hell o, worl d!
dw 'char'
endr

dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw

Related items:
IRPC, MACRO, REPT

Limitation:
This pseudo-instruction can only be used in the structured preprocessor sap88. It cannot be accepted
in the asm88 and will cause an error if used.

264 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX B CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

Name:
REPT Repetition by the specified number of times

Format:

REPT <operation expression>
<statement string>
ENDR

Functions:

The portion between the REPT line and the ENDR line will be repeatedly expanded by the number of
times equal to the value of the operation expression. If there is any undefined name in the operation
expression, the value of such a name will be evaluated as "0".

Each statement of IRP, IRPC and REPT can be nested to the depth of your choice. The ENDR line at
this time will correspond to the inside IRP/IRPC/REPT lines.

Example:
rept 4 ; 4-bit shift
sl | a
endr
Related items:

EQU, IRP, IRPC, SET
Limitation:

This pseudo-instruction can only be used in the structured preprocessor sap88. It cannot be accepted
in the asm88 and will cause an error if used.

S5U1C88000C MANUAL 11 EPSON 265
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX B CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

B.3.9 Conditional Assembly Pseudo-I nstructions [sap88 only]

The conditional assembly pseudo-instructions decide whether or not to perform the assembly within the
specified range by the evaluation result of the conditional expression or whether the name has been
defined or not. The conditional assembly pseudo-instructions are as follows:

IFC ~ ENDIF
IFDEF ~ ENDIF
IFNDEF ~ ENDIF

* These pseudo-instructions can only be used in the structured preprocessor sap88. The sap88 outputs
the source file in which the statements subject for assembly are included. Further these conditional
assembly pseudo-instructions cannot be accepted in the asm88 and will cause an error if used.

Name;
IFC..... Conditional assembly by conditional expression

Format:

IFC <conditional expression>
<statement string> [
ELSEC
<statement string>]
ENDIF

Functions:
This instruction evaluates a conditional expression. If an expression is evaluated as "true”, the state-
ments following the IFC line will become a subject to be assembled until either an ELSEC line or an
ENDIF line appears. If it is evaluated as "false", the statements following the IFC line will not be
considered a subject to be assembled. In the case that there is an ELSEC line, the portion between the
ELSEC and ENDIF lines will become a subject to be assembled if the conditional expression of the IFC
line is "false". If it is "true", the ELSEC line through the ENDIF line will not become a subject for
assembly.

Each statement of IFC, IFDEF and IFNDEF can be nested to the depth of your choice. The ELSEC line
and the ENDIF line at this time will correspond to the inside IFC/IFDEF/IFNDEF lines.

As explained in the following, the conditional expression comes in three cases :

1) <operation expression>
When only an operation expression is used, a decision will be made as to whether the value of the
expression is "0" or not "0". If itis "0", the value will be considered as "false". If it is not "0", the value
will be considered as "true". In the case that there is any undefined name in the operation expression,
the value of such a name will be evaluated as "0". For instance :

| FC ee
will be decided as equivalent to
IFC ee !=0

2) <operation expression> <relational operator> <operation expression>
The values of each operation expression are compared. If, at this time, there is any undefined name in
the operation expressions, the value of the undefined name will be evaluated as "0".
The following relational operators are available :

== "true" if the value of the left side is equal to that of the right side
I= "true" if the value of the left side is not equal to that of the right side

< "true" if the left side is smaller than the right side
> "true" if the left side is larger than the right side
<= "true" if the left side is smaller than, or equal to the right side
>= "true" if the left side is larger than, or equal to around the right side
266 EPSON S5U1C88000C MANUAL II

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX B CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

3) [<conditional expression>] <logical operator> <conditional expression>
A complex conditional expression can be expressed using a logical operator. The logical operation
expressions include the following :

Unary operator:
! "true" if the conditional expression is "false"
Binary operator:

&& "true" if the left side is "true" and the right side is also "true”
| "true" if the left side is "true" or the right side is "true"

The operators will be classified as follows from high to low precedence : either an operation expres-
sion or a conditional expression enclosed by a round bracket > a unary operator > an operator of an
ordinary operation expression > a relational operator > &&> | |

The same operator precedence will take effect inside a round bracket. A unary operator is defined as a
unary operator of an ordinary operation expression and "!" of a logical operator.

In addition, "character string" can be used as an operation expression.

When such character strings occurs on both sides of a relational operator, a character string will be
compared to another character string. Otherwise, the value of the length of character strings will be
compared.

Example:
tabl e macroé&l, &2
ifc narg ==
ifc ! USE_DEFAULT || DEFAULT_SI ZE<64
&1: db 0(64)
el sec
&1: db O(DEFAULT_SI ZE)
endi f
el sec
&1: db 0(&2)
endi f
endm
Related items:
EQU, IFDEF, IFNDEF, SET
Limitation:

This pseudo-instruction can only be used in the structured preprocessor sap88. It cannot be accepted
in the asm88 and will cause an error if used.

S5U1C88000C MANUAL 11 EPSON 267
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX B CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

Name:

IFDEF Conditional assembly by the name either defined or undefined

Format:

IFDEF <name>
<statement string> [
ELSEC
<statement string>]
ENDIF

Functions:

If the name is defined by either the EQU statement or the SET statement, or is a character-string macro
name which is defined by the DEFINE statement, the statements following the IFDEF line will become
a subject to be assembled until either the ELSEC line or ENDIF line occurs. If the name is undefined,
the statements following the IFDEF line will not become a subject to be assembled. In the case that
there is an ELSEC line, the portion between the ELSEC line and the ENDIF line corresponding to the
IFDEF line will become a subject to be assembled if the name of the IFDEF line is not defined. If the
name is defined, the ELSEC line through the ENDIF line will not become a subject to be assembled.

Each statement of IFC, IFDEF and IFNDEF can be nested to the depth of your choice. The ELSEC line
and the ENDIF line at this time corresponds to the inside IFC/IFDEF/IFNDEF lines.

Example:
i fdef EXTRA_MEMORY
stack_start equ 4000h
stack_si ze equ 1000h
el sec
stack_start equ 3800h
stack_si ze equ 800h
endi f

Related items:

DEFINE, EQU, IF, IFNDEF, SET

Limitation:

This pseudo-instruction can only be used in the structured preprocessor sap88. It cannot be accepted
in the asm88 and will cause an error if used.

268

EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX B CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

Name:
IFNDEF Conditional assembly by the name either undefined or defined

Format:
IFNDEF <name>
<statement string> [
ELSEC
<statement string>]
ENDIF

Functions:
If the name is not defined neither by the EQU statement or SET statement, nor defined by the DEFINE
statement as a character-string macro name, the statements following the IFNDEF line will become a
subject to be assembled until either the ELSEC line or the ENDIF line occurs. If the name is defined,
the statements following the IFNDEF line will not be processed as a subject to be assembled. In
addition, in the case that there is an ELSEC line, the portion between the ELSEC line and the ENDIF
line corresponding to the IFNDEF line will become a subject to be assembled if the name of the
IFNDEF line is defined. If not defined, the portion will not become a subject to be assembled.

Each statement of IFC, IFDEF and IFNDEF can be nested to the depth of your choice. The ELSEC line
and the ENDIF line at that time will correspond to the inside IFC/IFDEF/IFNDEF lines.

Example:
i f ndef SVALL_MEMORY
stack_start equ 3800h
stack_si ze equ 800h
el sec
stack_start equ 4000h
stack_si ze equ 1000h
endi f

Related items:

DEFINE, EQU, IF, IFNDEF, SET

Limitation:
This pseudo-instruction can only be used in the structured preprocessor sap88. It cannot be accepted
in the asm88 and will cause an error if used.

S5U1C88000C MANUAL 11 EPSON 269
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX B CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

B.3.10 Output List Control Pseudo-I nstructions

The output list control pseudo-instructions are used for that can be easily referred, and are as following 7
types:

LINENO

SUBTITLE

SKIP

NOSKIP

LIST

NOLIST

EJECT

Name;
LINENO ... Change of line number for assembly list file

Format:
LINENO <numeric expression>

Functions:

This instruction forcibly changes the line number for the assembly list file to the following line
number set by the <numeric expression>. The line number can be changed up to 65535, and starts
from 0 if it exceeds the upper limit.

Example:
lineno 99 ; line number begins from 100

Name;
SUBTITLE Subtitle setting to assembly list file

Format:
SUBTITLE <character string>

Functions:
The SUBTITLE instruction is used for outputting optional character string as subtitles onto the 4th
line of the list output. After the first page, SUBTITLE appearing within the current page is used as the
subtitle of the following page and continue to be used until a new SUBTITLE appears.
The character string should be enclosed by double quotation marks.

Example:
subtitle "asnB8 Special function library"

270 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX B CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

Name:
SKIPSuppresses all initialization codes output that exceed 4 bytes to assembly list file

Format:
SKIP

Functions:
When this instruction appears, even when there is an initialization that exceeds a one line assembly
list file, that is, a size greater than 5 bytes in each of the following instructions ASCII, DB, DL and DW,
it will output a 1 line code only to the assembly list file and will suppress code outputs that do not fit
on the assembly list file. The NOSKIP instruction serves to counter this function, however, SKIP is set
in the default.

Example:
noski p
db 1,2,3,4,5,6,7,8,9,0
; All the hexadecimal codes output to the assembly list file
skip
ascii "1234567890"
; ASCII codes output to list file as one line only

Related item:
NOSKIP

Name:
NOSKIP Outputs all initialization codes to assembly list file

Format:
NOSKIP

Functions:

This instruction is used to reverse the function of the SKIP instruction (default) that suppresses output
of codes exceeding 4 bytes to the assembly list file. When this instruction appears, thereafter, if
initialization codes are set for each of the ASCII, DB, DL and DW instructions, all of these codes will
be output onto the list.

Example:
noski p
db 1,2,3,4,5,6,7,8,9,0
; All the hexadecimal codes output to the assembly list file
skip
ascii "1234567890"
; ASCII codes output to list file as one line only

Related item:
SKIP

S5U1C88000C MANUAL 11 EPSON 271
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX B CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)

Name:
LIST....Assembly list file output
Format:
LIST
Functions:
When this instruction appears, thereafter, the assembly list file will be output. In the default, LIST is
set.
Related item:
NOLIST

Name:
NOLIST ... Prohibition of assembly list file output

Format:
NOLIST

Functions:
When this instruction appears, thereafter, the assembly list file output will be prohibited. In order to
resume the assembly list file output, use the LIST instruction. Further the line number is updated if
the assembly list file output has been prohibited by NOLIST.

Related item:
LIST

Name;
EJECT....Form feed of assembly list file

Format:
EJECT

Functions:
When this instruction appears, the form feed with the page header is inserted to the assembly list file
same as an auto form feed. This instruction itself is shown in the first line of the page after form
feeding.

272 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX C ASSEMBLY TOOL REFERENCE (Sub tool chain)

APPENDIX C AssemBLY TooL REFERENCE
(Sub tool chain)

The explanation for each software tool has been arranged by the items shown below.

PROGRAM NAME
Shows the program name.

SUMMARY
Functions of the software tool are explained.

INPUT/OUTPUT FILES
Shows the execution flow and input/output files.

START-UP FORMAT

Shows the start-up command format of the software
tool. This format includes the main component
elements of the command line; the name of tool
itself and all the flags that can be received in the
tool. The command cannot be started up if you
input invalid flags and/or arguments and forget the
necessary arguments.

Flags are listed in [] by a delimiter "-" and the
names. In principle, the flags are listed in alphabeti-
cal order. Flags that are composed of values alone,
are listed behind all other flags. In the case of flags
that accompany some values, the type of concerned
value as well is shown by one of the below codes
(assigned immediately following the flag name).

Code Types of value
* Character string
Integer (word size)
Integer (long word size)
? Single character

The hash mark # shows word size (2-byte) integers.
Double hash marks ## show long word size (4-byte)
integers. When integers begin with 0x or 0X they
may be interpreted as hexadecimal numbers. When
they begin with O as octal numbers and in other
cases as decimal numbers, they can optionally be
preceded by either plus + or minus - signs.

A caret "N" immediately follows the value code, of
formats of the type where there are two or more
assignments per flag such that the values are
stacked.

For example, the asm88 utility format is as follows:

asnB8 -[all c | o* g RAW ROW
sig# suf* x] [drive] <files>[J

We know that the asma88 receives the following 10
different sorts of flags.

That means, a word size integer value is assigned to
the flags -RAM, -ROM and -sig. The flags -all, -c, -1, -q
and -x do not have values. Character strings are
assigned to -0 and -suf.

Be careful of flags which normally have a hyphen
placed immediately in front, appearing without one.
(Provided there is no particular specification and a
hyphen is assumed.)

When specifying the flag individually, RAM# in the
list shown above should be assigned as -RAM#.
Furthermore, flags without values can continuously
be specified by placing a "-" (hyphen) only for the
head of the flags to be specified, for example, -clg.
The location and meaning of a non-flag argument is
indicated by a word within < and > (<files> in the
above example). Each meta-concept shows 0 or 1 or
more arguments on the command line. When
inputting command lines, type all the command
line where meta-concepts appear in their position
on the concerned line. In the case of the asm88,
input one or more file names in the position shown
by <files>. Meta-concepts in brackets are optional
specifications. It is all right if they appear, and they
may appear more than once.

FLAGS

Functions of all flags are listed. In some cases,
supplementary explanations follow them depend-
ing on the situation.

ERROR MESSAGES
A list of error messages displayed during execution.

RETURN VALUE

When execution has been completed, each tool
returns either of two values, "success" or "failure”.
This item describes the conditions under which
either of the two are returned by the tool. Generally,
the return value of "success" indicates that the tool
executed all the necessary file processing.

This return value is used to evaluate an execution
result of the tool when executing batch processing.

EXAMPLE
Here is an example using the software tool.

NOTE
Here notes for use are described.

S5U1C88000C MANUAL 11
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

EPSON 273

APPENDIX C ASSEMBLY TOOL REFERENCE <sap88>

C.1 Structured Preprocessor <sap88>

PROGRAM NAME
sap88.exe

SUMMARY

The structured preprocessor sap88 adds the macro functions to the cross assembler asm88.
The sap88 expands the macro and structured control statements included in the specified S1C88
assembly source file into a format that can be assembled by the asm88, and outputs it. At this time, the

sap88 also executes the processing for including of the modularized S1C88 assembly source files and
conditional assembly.

When file name has not been specified, the sap88 reads from the standard input (console).

INPUT/OUTPUT FILE
* Execution flow * Input file

Structured assembly source files Structured assembly sourcefile: file_name.s

This is a structured assembly source file which is created by
an editor such as EDLIN.

i

* Output file

Assembly sourcefile: file_name.ms
sap88 This is the output file in which the macros in the structured
assembly source file are expanded into the S1C88 instruc-
tions that can be assembled by the asm88. This file becomes

an input file of the asm88. The output file extension should
file_name.ms be made as ".ms".

Assembly source file sap88 execution flow

START-UP FORMAT
sap88 -[d*"N | * o* q] [drive] <files@

flags:

Character strings enclosed with [] mean flags. Explanations for each flag are discussed later.
drive:

In case theinput file is not in current drive, input the drive name in front of the input file name. It can be omitted if
theinput fileisin current drive.

file:
Specify the file name to be input to the sap88. This file name can be input using either capital letters or small letters.
When <file> has not been specified, the sap88 reads from the standard input.

Note: The extension for the structured assembly source file should be made as ".s".

274 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX C ASSEMBLY TOOL REFERENCE <sap88>

FLAGS
The sap88 can accept the following flags. The flags should be input with small letters.
Function Flag Explanation
Character-string -d*n A character-string macro is defined prior to reading in an input file.

macro definition

"*" has the following format:
<character-string macro name> = <substitution character string>
If the substitution character string is not defined and only the
<character-string macro name>
is defined, only the character-string macro will be defined and the substitution character
string will become ablank character string. The character-string macros using the
-d flag can be defined up to a maximum of 20.

Front character string -1 * The front character string of alabel name that is created at the time of the expansion of
specification the structured control statement is designated. Itis"L" in default.
Creating output file - 0* An output file name isturned to *. The default status is standard output.

Suppression of start-up message | - q

Does not output any message related to processing of the structured preprocessor.

ERROR MESSAGES

Error message

Description

unexpected EOF in ~

Thefileisterminated in the middie of ~.

can't include ~ ~ cannot be included.

illegal ~ ~isincorrect.

illegal define "define" statement isincorrect.

illegal expression at ~ ~in the expression isincorrect.

illegal undef "undef" statement is incorrect.
RETURN VALUE

The sap88 returns "success" if there is no syntax error in the input file. If there is a syntax error,
"failure" is returned even if the contents of the input file are correct.

EXAMPLE

Expands the structured assembly source file "sample.s" to the assembly source file "sample.ms".
C>sap88 -0 sanple.ns sanple.sd

NOTE

If there is no syntax error in a macro statement, the sap88 expands it normally even though it contains
illegal operands such as wrong register names. This error will be detected by the assembler asma88.

S5U1C88000C MANUAL 11

EPSON 275

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX C ASSEMBLY TOOL REFERENCE <asm88>

C.2 CrossAssembler <asm88>

PROGRAM NAME
asma88.exe

SUMMARY

The cross assembler asm88 converts an assembly source file to machine language by assembling the
assembly source file in which the macros are expanded by the structured preprocessor sap88. The
asma88 is a high speed assembler whose functions have been simplified to increase speed, and all the
added functions, such as macro and conditional assembly, are supplemented with another utility
(sap88).

The asm88 deals with the relocatable assembly for modular development.

In the relocatable assembly, the relocatable object file to link up with the other modules using the
linker link88 is created.

In addition, the asm88 can directly input an assembly source file and in such case, the source program
can be described in free format as the following format.

Label: Mnemonic Operand ;Comment

In the above format, ":" indicates the end of the label and ";" indicates the beginning of the comment.
It is possible to format freely by using these separators.

The asm88 also outputs three types of lists for the programmer, an assembly list, an error list and a
cross-reference list. The assembly list is composed of a line number, address and a machine code
corresponding to each source statement. The line number is output as a decimal number and the
address and machine code as a hexadecimal number. When errors occur during assembly, an error list
file is created that is composed of a file name, the line number that generated the error, the error level
and an English error message.

Also in the assembly list file, a mark "*" is placed at the line number in which an error has been
generated.

It has also been designed such that the relationship between the definitions and the references of the
symbols within the files can be easily understood by a cross-reference list. Since these are created as
individual files, file management has also been simplified. Processing can continue even when an
error occurs, provided it is not a fatal error.

INPUT/OUTPUT FILES

e Execution flow
The asm88 inputs assembly source files and
outputs relocatable object files, an assembly
list file, a cross reference list file and an error
list file after assembly.

Assembly
source files

— 3
. =
file_name.ms I

asm88
- - <
asma8 execution flow w
Cross reference Error Relocatable Assembly
list file list file object file list file
276 EPSON S5U1C88000C MANUAL II

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX C ASSEMBLY TOOL REFERENCE <asm88>

* Input file
Assembly sourcefile: file_name.ms
This is an assembly source file created by the sap88. In the default of the asm88, ".ms" is set as the
input file extension. Although the extension can be changed by specifying an option, do not change
the default setting if unnecessary.

e Qutput files

1. Relocatable object file: file_name.o
This is the file output from the asm88 after converting the assembly source file to the relocatable
S1C88 machine language by the relocatable assembly. This file becomes an input file for the linker
link8s.

2. Assembly list file: file_namell
This is the file in which the machine language converted by assembly and the address are output as a
list corresponding to each source statement. The addresses are output as relative addresses that the
head of the CODE section or the DATA section in the file assume as "000000H". The creating of this file
can be prohibited by a start-up flag.

3. Crossreferencelist file: file_name.x
This is a list of addresses in which a symbol has been defined and referred. Creating this file can be
prohibited by a start-up flag.

4. Error listfile: file_name.e
This is a list of errors that have been generated during assembly.

START-UP FORMAT
asnB8 -[all ¢ | o* q RAM# ROW sig# suf* x] [drive] <filess@

flags:
Character strings enclosed with [] mean flags. Explanations for each flag are discussed | ater.

drive:
In case the input file is not in current drive, input the drive name in front of the input file name. It can be omitted if
theinput fileisin current drive.

files:
Specify the file name to be input to the asm88. This file name can be input using either capital |etters or small letters,
and specifying two or more source filesis possible. An error will occur when <files> are not specified.

Note: Up to eight characters are available for the source file name. Furthermore, the extension ".ms"
must be input.

S5U1C88000C MANUAL 11 EPSON 277
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX C ASSEMBLY TOOL REFERENCE <asm88>

FLAGS

The asm88 can accept the following flags.
-ROM# and -RAM# should be input using capital letters and the others should be input using small

letters.
Function Flag Explanation
All symbols output -al | Outputs al symbolsincluding local symbolsto asymbol table. In default, only global
symbols and undefined symbols are output.
Differentiation between capital | - ¢ Differentiates capital and small letters within the input source. Since capital and small
and small letters within source letters are not differentiated in default, ABC and abc are handled as the same symbol.
program When thisflag is specified, the CPU instructions and the register names must be
described using small letters.
Prohibition of assembly list -1 Prohibits the creation of an assembly list file. In default, an assembly list file with the
generation extension ".I" is created.
Creating output file - 0* Creates output files with the name "*". In default, the output file name is the same as
theinput file and the extension becomes ".0" when the input file extensionis".ms".
When the input file extension is other than *.ms", the default output file name becomes "xeq".
Example: When creating "out.0" from "sample.ms', specify as below.
asnB8 -0 out.o sanple.ns(J
Suppression of start-up message | - q Does not output any messages related to the assembly processing.
RAM capacity setting - RAME | Setsthe RAM capacity in byte units with # When the total size of the DATA section
exceeds the value set by thisflag, an error is output.
Example: When theinternal RAM capacity is set in 2K (2048 bytes), specify as below.
asnB88 - RAM 2048 sanpl e. ns[d
ROM capacity setting - ROV | Setsthe ROM capacity in byte units with # When the total size of the CODE section
exceeds the value set by thisflag, an error is output.
Example: When the internal ROM capacity is set in 16K (16384 bytes), specify as below.
asnB8 - ROM 16384 sanpl e. ns(d
Setting character numbers -si g# | Character numbers of symbolsthat are significant can be set with a# vaue.
of symbols In default the #is set to 15 characters.
Change of input file extension | - suf * | Changes the extension of the input fileto * (aseparator "." is not included).

The default is".ms".
Example: When the extension of an input source file (sample.ms) is changed to ".bs",
specify as below.

asnB8 -suf bs sanple. bs[d

Prohibition of cross reference
list file creation

Prohibits the creation of a crossreference list file. In default, across referencelist file
with the extension ".x" is created.

When one or more <files> without the -o flag are specified and the file name extension of the input
file name is the suffix of the default file name, the asm88 outputs the object files with the same name
as the input files and the extension ".0".

asnB8 filel.ns file2.ns files3.ns

By inputting the above, the three object files filel.o, file2.0 and file3.0 are automatically created. Be
aware that the -o flag will not function, when multiple files have been specified for <files>.

278

EPSON S5U1C88000C MANUAL I

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

ERROR MESSAGE
» Fatal errors

APPENDIX C ASSEMBLY TOOL REFERENCE <asm88>

Error message

Description

can't create <file>

<file> cannot be created.

can't open <file>

<file> cannot be opened.

can't read tmp file

Temporary file cannot be read.

can't writetmp file

Temporary file cannot be written.

namelist full

Name list tableisfull.

noi/pfile

There isno input file specification.

insufficient memory

There is not enough memory.

can't seek on vmem file

Seeking of virtual memory file has failed.

can't seek to end of vmem file

Cannot reach the end of virtual memory file.

no swappable page

There is no swap space.

read error on vmem file

Reading of virtual memory file has failed.

write error on vmem file

Writing to virtual memory file has failed.

e Severe errors

Error message

Description

<numeric label> already defined

The numeric label has been defined previously.

<identifier> wrong type

Anillegal identifier has appeared.

<token> expected

A token is needed.

' missing

A quotation mark is missing.

attempted division by zero

Attempt has been made to divide by zero.

attempt to redefine <identifier>

Attempt has been made to redefine an identifier.

constant expected

A constant expression is required.

end expected

There is no end instruction.

encountered too early end of line

The line has terminated in the middle.

field overflow

The field to be secured has overflowed.

invalid branch address

An external defined symbol is used for the operand of the short branch instruction.

invalid byte relocation

The byterelocation isinvalid.

invalid character

Threeisanillegal character.

invalid flag

Theflagisinvalid.

invalid operand

The operand isinvalid.

invalid relocation item

Therelocation item isinvalid.

invalid register

Theregister isinvalid.

invalid register pair

The register combination isinvalid.

invalid symbol define

The symbol definition isinvalid.

invalid word relocation

The word relocation isinvalid.

new origin incompatible with current psect

There is an absolute origin within the relocatable section (rel ocatable mode).

non terminated string

The termination of a string cannot be located.

<identifier> not defined

Undefined identifier has appeared.

missing numeric expression

A numeric expression is missing.

carsor jrsout of range

Branch destination by cars or jrsisout of range.

carl or jrl out of range

Branch destination by carl or jrl is out of range.

operand expected

Thereis no operand.

psect name required

A section hame must be specified.

phase error <identifier>

The label addressis different between pass 1 and pass 2.

CODE or DATA missing

Thereis no section setting pseudo-instruction.

ROM capacity overflow

ROM capacity has overflowed.

RAM capacity overflow

RAM capacity has overflowed.

relocation error in expression

A relocation error has appeared within the expression.

<identifier> reserved word

<identifier> is areserved word.

syntax error <token> expected

Syntax error due to insufficient token(s)

syntax error <token> unexpected

Syntax error due to excess token(s)

syntax error - invalid identifier <identifier>

Syntax error due to an illegal identifier

syntax error <token> invalid in expression

Syntax error due to an illegal token

system error < > <token>

System error due to an illegal token

unsupported instruction

Unsupported instruction has appeared.

unsupported operand

Unsupported operand has appeared.

S5U1C88000C MANUAL 11
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

EPSON 279

APPENDIX C ASSEMBLY TOOL REFERENCE <asm88>

e Warning errors

Error message Description
directiveisignored in relocatable mode The pseudo-instruction is skipped because it isin the relocatable mode.
possibly missing relocatability Relocatability may lose.
constant overflow Seven or more digits has been defined for the name.
expected operator Thereis no operator (BOC, LOC, POD, LOD).
RETURN VALUE

When there is no syntax error within the input file nor pass 2 error, and all the processing is success-
fully completed, the asm88 returns "success".
EXAMPLE

Performs relocatable assembly of the file "sample.ms" to simultaneously obtain the list file "sample.I".
C>asnB8 sanpl e. ns[J

280 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX C ASSEMBLY TOOL REFERENCE <link88>

C.3 Linker <link88>

PROGRAM NAME
link88.exe

SUMMARY

The 1ink88 links multi-section relocatable object files for the S1C88 and creates an absolute object file.
The absolute object file is used to create a program data HEX file that is used for debugging with the
ICE by inputting to the binary/HEX converter hex88. It will also be used to create absolute symbol
information (rel88) after linking the relocatable assembled file.

The basic functions of the 1ink88 process are as follows.
1) The global flag controls the overall link88 process.
2) It defines the new CODE section and DATA section by the addition of a flag and a file.

3) It relocates sections, rearranging them in optional locations of the physical memory and permits
them to be mutually "stacked" (chaining) in appropriate storage boundaries.

4) Each object file input affects the current CODE section and DATA section.

5) The final output starts with the header, thereafter (in the named order) all CODE sections, all
DATA sections, symbolic table and the relocation stream for all CODE sections and all DATA
sections. The respective component elements for these sorts of outputs are controlled through use
of the appropriate global flag which will be described later.

6) Since all the sections are continuous in the linker output, the binary/HEX converter hex88 must be
used for writing the section into the appropriate physical location, in order to execute itin a
special location within the memory.

The S1C88 has a 24-bit wide address space (maximum 16M bytes). It splits that address space into a
32K-hyte bank (code section) or a 64K-byte page (data section) by controlling the most significant 8-bit
by registers such as the code bank register (CB) and the expanded page registers (EP, XP and YP) in an
effort to expand the access performance within that range. It is possible to access an optional bank or
page from an optional bank or page by rewriting the content of the register, thus permitting easy
management of such things as large programs and data bases. However, since the register will not be
automatically renewed, even if the bank and the register are crossed, a load module image permitting
the 16M-byte address space to be described linearly cannot be created.

The S1C88 adopts a multi-segment system for linking relocatable objects, in order to create load
images to be laid out in the optional physical addresses of the address spaces managed by it.

This is a technique in which "All the spaces are split into optional sections of 64K-byte (page) or 32K-
byte (bank) units and the address information necessary for the memory layout determines all the
address information in accordance with the assignment to each segment unit."

In this technique, since the creation of continuous data objects whose size exceeds 64K bytes (page)
and 32K bytes (bank) for one section is not permitted, a limitation is imposed whereby the total size
for the CODE sections included in the modules of assembly units cannot exceed 32K bytes and the
total size for the DATA section cannot exceed 64K bytes. This restriction reflects the address restriction
of the CPU itself and even if a diagnosis of a data overflow generated during assembly were over-
looked, it is set up such that it would be rediagnosed during linking.

However, it outputs an error when the size exceeds 64K bytes in default, but does not output when
the size exceeds 32K bytes. Consequently, a flag must be specified for judgment when the size exceeds
32K hytes.

S5U1C88000C MANUAL 11 EPSON 281
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX C ASSEMBLY TOOL REFERENCE <link88>

INPUT/OUTPUT FILES

e Execution flow * Input files
Link Comma.nd Rel.ocat?‘ble 1. Relocatable object file: file_name.o
parameter file object files

This is a relocatable file in machine
language that is output through
relocatable assembly with the cross
assembler asm88.

file_name.lcm

—
. =
file_name.o I

2. Link command parameter file:
file_name.lcm
This is a link command parameter
file that is directly described by the
user.

link88<file_name.lcm

* Output file
Absolute object file: file_name.a
This is a multi-section object file
created by the 1ink88.

-
1ink88 execution flow

Absolute object file

Note: Multi-section object file is an absolute object image whose format is composed of a global header,
a section descriptor, objects within all CODE sections, objects within all DATA sections, objects
within all DEBUG sections, objects within all ZPAG section, a symbolic table, a debug symbolic
table, and all relocation information.

START-UP FORMAT
Iink88 -[c cd +dead nmax## o* q] <sections>

<sections> includes one or more following contents.

-[+code +data m## p##] [drive]

flags:
Character string enclosed with [] mean flags. Flags within the first [] are global flags and flags within the[]
included in <sections> are local flags.

drive:

In case of the relocatable object files or the libraries are not in current drive, input the drive name in front of these
file names. It can be omitted if these files arein current drive.

Note: The extension for the relocatable object files should be made as ".0".

282 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX C ASSEMBLY TOOL REFERENCE <link88>

FLAGS
The link88 can accept the following flags. The flags should be input with small letters.
« Global flags
Function Flag Explanation
Distinction between capital -C Distinguishes capital and small letters used for symbols within the relocatable object file.
and small letters within symbols In default, they are not distinguished, therefore ABC and abc are handled as the same symbol.

Deletion of DATA codepart | - cd Does not output the code part for the DATA section. -cd is used to create modules that define
only symbol values for such purposes as specification of the addresses for the common library.
Listing of undefined symbols | +dead | Outputsalist of dead wood symbols on the CRT, that is, symbols that have been
defined, but are not referred as absolute.

Setting of maximum section size| - max## | Sets the maximum section size at ## bytes. The default value is FFFFFFH (16M bytes).
Thisvalueis used when sections are linked. When it exceeds this value, an error will occur.
Setting of output file name - o* Writes the output module on the file *. The default output file nameis xeq.

Skip start-up message -q Does not output any message related to link processing.

When the arguments on the command line are not transferred to the 1ink88, the list of flags and files
that become arguments of the 1ink88 are transferred from standard input. When a "-" (hyphen) first
appears in the argument list of the command line, a standard input is incorporated into the argument
list in place of the "-". The occurrences of "-" following thereafter are disregarded.

The specified <files> are linked in that order.

e Local flags

Flagsfor sections

Function Flag Explanation
Beginning CODE section +code | Beginsanew CODE section, then processes the local flag for that section.
Beginning DATA section +dat a | Beginsanew DATA section, then processes the local flag for that section.

A new section of a specified format is not actually created, when the final section of that format has a
zero size. However, a new local flag is processed and overwrites the preceding value. These two flags
must immediately precede the local flag set to appropriately process the flags and to decide to what
flag is to be applied.

Flags used only together with +code or +data

Function Flag Explanation
Setting of individual - mi# Sets the maximum size of the individual segment as ## bytes. The default size is 8000H
section size (CODE section) or 10000H (DATA section). An error will occur if the section size
exceeds this setting value.
Physical address setting - p##t Sets the physical address of the beginning of the section as ##.
S5U1C88000C MANUAL Il EPSON 283

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX C ASSEMBLY TOOL REFERENCE <link88>

ERROR MESSAGES

Error message

Description

bad file format: 'FILE NAME'

Format of theinput file'FILE NAME' isincorrect.

bad relocation item

Thereislong integer type relocation information.

bad symbol number: 'NUMBER'

'NUMBER' is detected asillegal symbol code.

can't create 'FILE NAME'

Thefile 'FILE NAME' cannot be created.

can't create tmp file

Temporary file cannot be created.

can't open: 'FILE NAME'

Theinput file'FILE NAME' cannot be opened.

can't read binary header: 'FILE NAME'

Header of thefile 'FILE NAME' cannot be read.

can't read file header: 'FILE NAME'

First two bytes of the file 'FILE NAME' cannot be read.

can't read symbol table: 'FILE NAME'

Symbol table cannot be read from the file 'FILE NAME'.

can't read tmp file

Temporary file cannot be read.

can't write output file

Cannot write into output file.

can't writetmp file

Cannot write into temporary file.

field overflow

Branch destination by cars or jrsis out of range.

inquiry phase error: 'SYMBOL NAME'

Symbol value of the'SYMBOL NAME! is different between pass 1
and pass 2.

link: early EOF in pass2

Unexpected EOF is detected during pass 2 processing.

multiply defined 'SYMBOL NAME'

'SYMBOL NAME' is multiply defined.

no object files

No input object files exist.

no relocation bits: 'FILE NAME'

The relocation information corresponding to the file'FILE NAME' is
suppressed.

'SECTION NAME' overflow

The section sizein the 'SECTION NAME' exceeds the upper limit value.

phase error: 'SYMBOL NAME'

Symbol value of the'SYMBOL NAME! is different between pass 1
and pass 2.

previous reference blocked: 'SYMBOL NAME' range error

The information related relocation bit width is unmatched.

read error in pass2

Read error is generated during pass 2 processing.

undefined 'SYMBOL NAME'

'SYMBOL NAME' has not been defined.

RETURN VALUE

When an error message is not output to the standard output, in other words, no undefined symbol

remains and all reads and writes have succeeded, the 1ink88 returns "success". If not, it returns

"failure".

EXAMPLE
Links the sample.o by the 1ink88 via standard input.

A>l i nk88

-0 c88xxx.a +code -p0x100 +data -p0Ox8000[

sanpl e. 0
/\Z
A>

A>l i nk88 < sanple.lcmJd

284 EPSON S5U1C88000C MANUAL I

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX C ASSEMBLY TOOL REFERENCE <rel88>

C.4 Symbol Information Generator <rel88>

PROGRAM NAME
rel88.exe

SUMMARY

The rel88 checks the multi-section relocatable objects. The files that become the object of such checks
are relocatable object files output by the cross assembler asm88 and absolute object files output by the
1ink88. The rel88 can be used to check the size and configuration of relocatable object files and to
output symbol information in absolute object files output from the link88.

TNPUT/OUTPUT FILES
» Execution flow * Input file
Absolute object file: file_name.a
Inputs an absolute object file created by the link88.

Absolute object file

file_name.a

* Output file
Standard output or
Symbol information referencefile: file_name.ref

The rel88 outputs a symbol information reference file
that is allocated in the physical address from the
absolute object file.

rel88>file_name.ref

¥

i

@ file_name.ref
rel88 execution flow
Standard output Symbol information
reference file
START-UP FORMAT

rel 88 -{a +dec d g +in +sec v] [drive] <files@

flags:
Character strings enclosed with [] mean flags. Explanations for each flag are discussed later.

drive:
In case an input file isnot in current drive, input the drive name in front of the input file name. It can be omitted if an
input fileisin current drive.

files:
Specify the file name to be input into the rel88. This file name can be input using either capital or small letters and
specifying two or more filesis possible. An error will occur when <files> is not specified.

S5U1C88000C MANUAL 11 EPSON 285
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX C ASSEMBLY TOOL REFERENCE <rel88>

FLAGS
The rel88 can accept the following flags. The flags should be input with small letters.
Function Flag Explanation
Sorting of symbol names -a Sorts outputs in aphabetical order of the symbol names.
Decimal output +dec Outputs symbol values and segment sizesin decimal numbers.
The default is a hexadecimal number.
Output of defined symbols -d Outputs all defined symbols within each file, one per line. The symbol value, the

"relocation code" showing to what the value is related and the symbol name are entered
on each line. Values are output in the number of digits needed to indicate the integersin
the S1C88. The meanings of the relocation codes in the outputs are as follows.

« Cindicates CODE relativity

* D indicates DATA relativity

* A indicates absol ute (not relocatable)

« ?indicates rel88 cannot recognize it.

Small letters are used to indicate local symbols.

Capital letters are used for global symbols.
Output only global symbols -g Outputs global symbols only.

Standard input +in Takes <files> from standard input and adds them to command line.
Redirecting is aso possible and is valid when many files are specified.

Physical address and size of +sec Outputs the physical address and size of each section of multi-segment output files.
multi-section
Sorting by symbol values -V Sorts theinside of section by symbol values. The aforementioned -d flag is tacitly
specified. Symbols that have the same value are sorted in alphabetic order. Absolute
(non-relocatable) symbols are displayed first and are followed by CODE relative
symbols and DATA relative symbols.

<files> are zero, or one or more files and they must have a multi-section format. When two or more
files are specified, the name of each file or module precedes the information that is output pertaining
to it. Each name is followed by a colon and a new-line. When there is no <files> specification, or when
a "-" appears on the command line, xeq is used as an input file.

ERROR MESSAGE
Error message Description
can't read binary header Reading of the object header excluding magic number and configuration
byte hasfailed.
can't read header Reading of the first two bytes of the object header (magic number and
configuration byte) has failed.
can't read symbol table Reading of the symbolic table in the object has failed.
RETURN VALUE

When a diagnostic message has not been created (in other words, when all the reads have succeeded
and all the file formats are valid), rel88 returns "success".

286 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX C ASSEMBLY TOOL REFERENCE <rel88>

EXAMPLE

Obtains a list of all the symbols within the module in alphabetic order in hexadecimal numbers.
Crel 88 -a alloc.o@
0x0074C _all oc
0x0000D _exit
0x01feC _free
0x00beC _nall oc
0x0000D _sbreak
0x0000D _write

NOTE

When no symbol is in the object or local symbols only exist, rel88 outputs a "no memory" message.
However, the local symbols are registered in the symbolic table by setting the -all flag of the asm88 (all
symbols output). If you wish to refer to all symbols, set the -all flag of the asm88.

S5U1C88000C MANUAL 11 EPSON 287
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX C ASSEMBLY TOOL REFERENCE <sym88>

C.5 Symbolic Table File Generator <sym88>

PROGRAM NAME
sym88.exe

SUMMARY

The symbolic table file generator sym88 converts a symbolic information file (file_name.ref) generated
in file redirect with the symbol information generating utility rel88 to a symbolic table file
(file_name.sy) that can be referenced in the ICE. Loading the symbolic table file and the correspond-
ing relocatable assembly program file in the ICE makes symbolic debugging possible.

INPUT/OUTPUT FILE

* Execution flow * Input file
Symbol information Symbol information referencefile: file_name.ref
reference file Inputs a symbol information reference file created by the rel88.

* Output file
Symbolic tablefile: file_name.sy

The sym88 converts a symbol information file into a format that
symss can be loaded to the ICE and outputs a symbolic table file.

file_name.ref

file_name.sy

Symbolic table file sym88 execution flow

START-UP FORMAT
synB8 <file>

file:

Specify the symbol information file (.ref) to be input to the sym88.
This file name can be input using either capital letters or small letters.
An error will occur when <file> is not specified.

ERROR MESSAGE

Error message Description
No Input File Input file ".ref" has not been specified.

288 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX C ASSEMBLY TOOL REFERENCE <sym88>

RETURN VALUE
The syma88 returns "success" if there is no error in the input file and an output file is created. If there is
an error in the input file or internal created file, "failure" is returned.

EXAMPLE
Converts the symbol information reference file sample.ref into the symbolic table file sample.sy.
A\ >synB8 sanpl e. r ef

NOTES
1. Drives and directories for input files can not be specified in the startup command of the sym88.
Therefore, be sure to start up the sym88 after setting the directory of the input file as the current

directory.
2. The sym88 does not check the format of the input file. Therefore, the symbol information file to be
input to the sym88 must only be generated using the symbol information generating utility rel88

with the flags shown below.
A:\>rel 88 -v +sec sanpl e.a>sanpl e. ref

S5U1C88000C MANUAL 11 EPSON 289
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

APPENDIX C ASSEMBLY TOOL REFERENCE <hex88>

C.6 Binary/HEX Converter <hex88>

PROGRAM NAME
hex88.exe

SUMMARY

The hex88 converts an absolute object file created by the 1ink88 into a hexadecimal data conversion
format (program data HEX file). This system adopted Motorola S record format. An absolute object
file is read from the <ifile>. When an <ifile> is not assigned, or when an assigned file name is a "-"
(hyphen), file xeq is read.

Further, S2 format in Motorola S record (can convert up to 3-byte address) is used since the S1C88 has
a maximum 16M-byte address space (000000-FFFFFFH).

INPUT/OUTPUT FILES

* Execution flow e Input file
The hex88 is a tool to convert an absolute Absolute object file: file_name.a
object file output from the linker (link88) File to be input into the hex88 is an absolute
into a program data HEX file in hexadecimal object file output from linker.
format. The execution flow is shown below.
Absolute object file * Output file
— Standard output
or Program data HEX file: file_name.sa

The hex88 converts an absolute object file to an
ASCII file that can be input to the unused area
filling utility fil88XXX.

hex88

@ file_name.sa hex88 execution flow

Standard output Program data HEX file

-
%

START-UP FORMAT
hex88 -[o0*] [drive] <ifilesa

flag:
Character string enclosed with [] means flag. Explanations for the flag is discussed later.
drive:

In case an absolute object fileis not in current drive, input the drive name in front of the file name. It can be omitted
if aninput fileisin current drive.

ifile:
Specify the file name input to the hex88. This file name can be input using either capital or small |etters. When an
<ifile> is not assigned, or when an assigned file nameisa"-" (hyphen), file xeq is read.

Note: The extension for the absolute object file should be made as ".a".

290 EPSON S5U1C88000C MANUAL I
WORKBENCH/DEV TOOLS/OLD ASSEMBLER

FLAG

APPENDIX C ASSEMBLY TOOL REFERENCE <hex88>

The hex88 can accept the following flag. The flag should be input with small letters.
Function Flag Explanation
Output file specification - 0* Writes the output module for the file *.

The default is standard output. (hex88 fixed setting flag)

ERROR MESSAGE

Error message

Description

bad file format

Input file format isincorrect.

can't read <input file>

Reading of the <input file> has failed.

can't write <output file>

Writing to the <output file> has failed.

RETURN VALUE

If an error message is not printed, in other words if all the records have meanings, and all the reading

and writing is successful, the hex88 returns "success". Otherwise, the hex88 returns "failure”.

EXAMPLE

Converts the absolute object file sample.a into the program data HEX file in the Motorola S2 format.
A>hex88 -0 sanpl e.sa sanple. ald

S5U1C88000C MANUAL 11

EPSON

WORKBENCH/DEV TOOLS/OLD ASSEMBLER

2901

S1C88 Family Development Tools

Quick Reference

Software Development Flow Development Flow

Text editor
(prepared by customer)

[Buwld Main tool chain

Workbench Control program R, C source f Assembl;
file.C_) _file s Y D
‘ wh88.exe ‘ cc88.exe g files *——_JJ source files ,n?gr‘rc:auon _

definition file
Function option
generator wi fog.exe

C compiler
c88.exe

Preprocessor
sap88.exe

file

file.mS ||

Assembler
asm88.exe

Make program
mk88.exe

Assembly
files

Preprocessed
source files

Function option Function option
HEX file document file

Bitmap editor
(prepared by customer)

———— Bitmap
file(s)

WB

Assembler
as88.exe

Assembly
list file

[Object

file.O
s I modules

Segment option

Cross Error
generator winsol

reference list file
file

xe

Bitmap utility BmpUtil.exe
(Simulator package)

Object reader
pr88.exe

Link command
parameter file

Library maintainer
args.exe

Segment option Segment option
HEX file document file

Object Linker

library link8s
e . Ea[?| ‘ ink88.exe
definition able file Linker Absolute Il
file k88.exe file.ABS | object

fil Program unused area
e

Linker

S —
description file.OUT | Object file file Symbol information generator| ‘ HEX converter ‘
files 54 —r
| fil module Advanced locator relgs.exe hex88.exe SVOGI'am
file.INF lata HEX file|
m _ definition file Symbol
Build ! ¥ Build fle.REF | information fie.5A | oorola s

Error Locator 0;5 Advanced locator reference file object file

fi|ev ' T ICSE‘.exe alca?.exe Symbolic table file generator

| file.ELC | T ‘ syms.exe

o Absolute Symbolic
B Locate - load Motorola S ﬁ table Symbolic Mask
ile.MAP | map file.ABS module file.SA_] opject file file.SY | file table file data file
,,,,,,,,,,,,,,, fle _ po_mewe T o I ==
Symbolic
table file w WEB

[T T s Eri ided svstem simulator | ICE Peripheral i
. mbedded system simulator . eripheral) Manufactured in
‘ Bitmap Y | parameter ~ circuit board ICE ROM writer control software Seiko Epson
! file LIe- . file FPGA data ini file
| 7 = =]
' Auto evaluation system LCD panel customize utility Port setting utility ' model PARZ [model. MOT]
! AutoEva.exe LcdUtil.exe PrtUtil.exe ! ﬁ
‘ LCD Port ‘ We
I e e Sy —Y— Por . Debugger
| file.Mxx file.LCD | definition setting | db88.exe (under development)
i Command Reference Result file file i ices8ur.exe
' file data file data file :
| = 2 |
1 Component [———— Simulator
! mapping file Lfile-CMP file-SPJ | project file !
i Check ¥ ‘
' sheet file '
‘ Simulator ‘ Target board
I sim88.exe '

Can be invoked from the workbench w88 Tools executed automatically during build process by wb88.
+1: If the error file is generated, wb88 displays the contents of the file in the message view and allows a tag jump function. #2: Created using a text editor. +3: Created using a bitmap editor. *4: Created using the wh88 section editor (or a text editor). +*5: Selected by wb88.

Work Bench wb88 (1)

Work Bench

Outline

This software provides an integrated development environment with

Windows GUI. Creating/editing source files using an editor, selecting

files and the major start-up options for C compiler Tool Chain, and the
start-up of each tool can be made with simple Windows operations.

Windows

Project view

Est (51C88348) -WBS8

File “iew Souwce Build Debug Tool

Help

B BB sEEE 28 |2

3 Source Files(C)

: ning.c

calc.c
catart.c

43 Source Files[ASM)

This area shows the currently opened
work space folder and lists all the files
that can be edited by the user in the
project, with a structure similar to
Windows Explorer.

Double-clicking a source file icon
invokes the specified editor to open
the source file.

Message view

This area displays the messages
delivered from the executed tools in
a build or compile process.
Double-clicking a syntax error
message with a source line number
displayed in this window invokes the
specified editor. The editor opens the
corresponding source and displays
the source line in which the error has
occurred (available when an editor
with the tag jump function that can be
specified by wb88 is used).

file0.asm

4 Header Files

: ascifont.h

43 Definttion Files
z1cB88348.cpu
31c88348 dsc
31c88348. mem
88348 par

C Dptionsl A5M Options ~ Linker Options | Locater Dptionsl Sect Options

Memary Model [-bd=] [C and Asm Compile Option)

™ Case Insensitive [Apply Link Option [-C] and Asm Optiot [-c])

¥ Seaich for Spstem Libraries [-L]
Additional Search Path:

Fieference |

‘warning Level [-w]
™ Tum Off Overaying [-N]

™ Generate Link Map [-4]
™ Generats Call Graph File [c]

P sl

™ Suppress Undefined Symbol Diagnostics [-1]
™ Print Name of Processing File (Verbose) [-v]

Linking with user libraries [Full path]

Option view

Other Options:

CAEPSON\31CE8\bin\5y88.exe samplel.map ;l
samplel.SY file is made
ccf -osamplel.abs samplel.out .\defis1cB8348.dsc -TIc"-M" -icee
Build End Samplel |
Ready MLIM o

This area displays the selected
options of the C compiler, assembler,
linker, locator and segment editor, and
also allows option selection.

The option view changes its display
contents according to the selection in
the project view (whether node or file)
as well as clicking a tool name tab.

Work Bench wb88 (2)

Work Bench

Buttons

Tool bar

3

E P K

[New Project] button
Creates a new project.

[Save Project] button
Saves the project being edited. The file will be overwritten.
This button becomes inactive if a project is not opened.

[Insert a file] button
Inserts the specified source/header file into the current opened project.
This button becomes inactive if a project is not opened.

[Remove afile] button
Removes the selected file from the project.

[Open] button
Opens a document. A dialog box will appear allowing selection of the file to be opened.
When a source or header file is selected, the specified editor activates and opens the file.

[Compile/Assemble] button
Compiles or assembles the source file selected in the option view according to the source
format.

[Build] button
Builds the currently opened project using a general make process.

[Rebuild] button
Builds the currently opened project. All the source files will be compiled/assembled
regardless of whether they are updated or not.

[Stop Build] button
Stops the build process being executed.

[BMPULil] button
Invokes the bitmap utility BmpUtil.

[WinFOG] button
Invokes the function option generator winfog.

[WinMDC] button
Invokes the mask data checker winmdc.

Tool bar

[PrtUtil] button
Invokes the port setting utility PrtUtil.

[LCDULil] button
Invokes the LCD panel customize utility LCDUTMil.

[Sim88] button
Invokes the simulator Sim88.

[AutoEva] button
Invokes the auto evaluation system AutoEva.

[ICE88UR] button
Invokes the ice88ur debugger.

[DB88] button
Invokes the db88 debugger.

[ROM Writer] button
Invokes the on-board ROM writer control software.

[About] button
Displays the version of wh88.

@ e 8 e | e

Work Bench wb88 (3)

Work Bench

Menus

[File] menu

| File(E]

Hew b

Open Ctrl+0

Open wWorkspace
Save Warkspage
LCloze Workzpage

1 CAEPSOMS.. harchfilel. azm

2 ohepzonte]cB8htestvarcining. o
3 cihepzont. Atestharchostart.c

4 cihepzonte]cBBhtestharchoale.o

5 Test.wpj

E xitfi]

The file names listed in this menu are recently
used source and project files. Selecting one
opens the file.

New - C Source File
Creates a new C source file.
(Invokes editor)

New - Asm Source File
Creates a new assembly source file.
(Invokes editor)

New - Header File

Creates a new header file.
(Invokes editor)

New - Project

Creates a new project.
Open ([Ctrl]+[O])

Opens a source file, header file or project file.

Open Workspace

Opens a project.

Save Workspace

Saves the currently opened project.
Close Workspace

Closes the currently opened project.
Exit

Terminates wb88.

[View] menu

| Wiew

v Tool Bar
v Statuz Bar

Tool Bar

Shows or hides the tool bar.
Status Bar

Shows or hides the status bar.

[Source] menu

| Source
Inzert file into Project
Hemove file fram Praject

Insert file into Project

Adds the specified source file in the currently
opened project.

Remove file from Project

Removes the source file selected in the Project

view from the currently opened project.

[Build] menu

| Build
Compileftezemble
Ewuild
BeBuild Al
Stop Build

Compile/Assemble

Compiles or assembles the source file selected in the
option view according to the source format.

Build

Builds the currently opened project using a general make
process.

ReBuild All

Builds the currently opened project.

Stop Build

Stops the build process being executed.

[Debug] menu
Debug
SIb88 Sirnulator
DE&8 Debuager
ICEZ3UR Debuager

Sim88 Simulator

Invokes the Sim88 simulator.
DB88 Debugger

Invokes the db88 debugger.
ICE88UR Debugger

Invokes the ice88ur debugger.

[Tools] menu

Tool

Simulator To
Dev Toolz
On-Board BOk Writer

-

Sim38 Configuration
Editor Configuration

Auta Evaluation Syztem
Bitrnap Ltility

LCD Panel Custarmize Ltility
Part Setting Lltility

Simulator Tools - Auto Evaluation System
Invokes the auto evaluation system AutoEva.
Simulator Tools - Bitmap Utility

Invokes the bitmap utility BmpUtil.

Simulator Tools - LCD Panel Customize Utility
Invokes the LCD panel customize utility LCDUTMil.
Simulator Tools - Port Setting Utility

Invokes the port setting utility PrtUtil.

Work Bench wb88 (4)

Work Bench

Menus

[Tools] menu

| Tool

Simulatar T ools r

D

u Function Option Generator
On-Board BOk Writer

Mazk Data Checker

Dev Tools - Function Option Generator

Invokes the function option generator winfog.

Dev Tools - Mask Data Checker

Invokes the mask data checker winmdc.
On-Board ROM Writer

Invokes the on-board ROM writer control software.
Sim88 Configuration

Displays a dialog box for setting the path to the
simulator Sim88.exe.

Editor Configuration

Displays a dialog box for setting the editor path and
the command line options.

SimB3 Configuration
Editor Configuration

About WB88
Displays a dialog box showing the version of the work
bench.

[Help] menu

| Help

About WESS

Error Messages
System error

not enough memory There is insufficient memory to run wb88.

Error output when generating a project

The file is not a WB88 project file. The file <filename> is not a wb88 project file.
(<filename>)

The version of the project file is not supported.
(<filename>)

This version of the project file <filename> is not
supported.

Unable to create a project : cannot access.
<filename>

Unable to generate a project because the file
<filename> could not be accessed correctly.

Unable to create a project : Unable to copy
DEF file.(<filename>)

Unable to generate a project because wh88
failed to copy the definition file <filename>.

The project is already existed.(<filename>) Unable to create a project because the file
<filename> already exists. Two or more
projects with the same name cannot be

created in the same folder.

Error Messages

Error output when generating a project

Unable to create a project : Dev Directory of
S1C88 family package does not exist.

Unable to create a project because no
DEV directories exist. The DEV directory
of the package contains various definition
files required for build task. No projects
can be built without this directory.

Error output when adding files to the project

The file cannot be added to the project.
It is not a C file.(<filename>)

The file <filename> cannot be added to
the project because it is not a C source file.

The file cannot be added to the project.
Itis not an ASM file.(<filename>)

The file <filename> cannot be added to the
project because it is not an assembly source file.

The file cannot be added to the project.
It is not a header file.(<filename>)

The file <filename> cannot be added to the
project because it is not a header file.

The file is already existed in the project.
It cannot be added in the project.(<filename>)

The file <filename> cannot be added to
the project because it already exists.

WB88 does not support such source file type.
(<filename>)

Eile error

This source type file is not supported by wb88.

Failed to access the file.(<filename>)

Failed to operate on the file <filename>.

Unable to open the file.(<filename>)

Error output when starting a tool

Failed to open the file <filename>.

Unable to execute ICE88UR.exe :
Unable to access <filename>.

Cannot start S5U1C88000H5 because
whb88 could not access the file <filename>.

Unable to execute Sim88 :
Unable to access the DEF file.(<filename>)

Cannot start Sim88 because wb88 could
not access the definition file.

Unable to execute <toolname>.

Error output when building

Unable to start <toolname>.

Select a C or an ASM file.

Select a C source or assembly source file.
Before source files can be compiled, you
must select the target file from tree view.

Build Command needs an active project.

The build target must be project.

No target file is found in the project.

Other error

No target files to build are found in the
project. Source files must be registered to
a project before they can be built.

The command needs an active project.

The command requires a project. This error
message is displayed if, in the absence of a
project, a function is executed for which a project
must be present.

C Compiler c88 (1)

Main Tool Chain

Startup Command

c88 [[option]...[file]...]...

Error/Warning Messages

I: information E: error F: fatal error S:internal compiler error W: warning

. Frontend
Options F1. evaluation expired Your product evaluation period has expired.
W 2: unrecognized option: 'option' The option you specified does not exist.

Include options E 4: expected number more The preprocessor part of the compiler found the ‘#if’,

-f file Read options from file ‘#endif ‘#ifdef' or ‘#ifndef' directive but did not find a corresponding
-H file Include file before starting compilation ‘#endif' in the same source file.
-ldirectory Look in directory for include files E5: no source modules You must specify at least one source file to compile.

F 6: cannot create "file" The output file or temporary file could not be created.

Preprocess options F 7. cannot open "file" Check if the file you specified really exists.

-Dmacro[=def] Define preprocessor macro F 8: attempt to overwrite input The output file must have a different name than the input
file "file" file.

Code generation options E 9: unterminated constant This error can occur when you specify a string without a
-M{s|c|d]I} Select memory model: small, compact code, compact data or large character or string closing double-quote (") or when you specify a character
-0{0|1} Control optimization constant without a closing single-quote (').

F 11: file stack overflow This error occurs if the maximum nesting depth (50) of file

Output file options inclusion is reached.

-e Remove output file if compiler errors occur F 12: memory allocation error All free space has been used.
-0 file Specify name of output file W 13: prototype after forward call Check that a prototype for each function is present before
-s Merge C-source code with assembly output or old style declaration the actual call.

- ignored

Diagnostic options E 14: ') inserted An expression statement needs a semicolon.

-V Display version header only E 15: missing filename after The -o option must be followed by an output filename.
-err Send diagnostics to error list file (. err) -0 option
-g Enable symbolic debug information E 16: bad numerical constant A constant must conform to its syntax. Also, a constant
-w[num] Suppress one or all warning messages may not be too large to be represented in the type to which
it was assigned.
E 17: string too long This error occurs if the maximum string size (1500) is
reached.
E 18: illegal character The character with the hexadecimal ASCII value
(Oxhexnumber) Oxhexnumber is not allowed here.
E 19: newline character in The newline character can appear in a character constant
constant or string constant only when it is preceded by a backslash
().
E 20: empty character constant A character constant must contain exactly one character.
Empty character constants (") are not allowed.
E 21: character constant overflow A character constant must contain exactly one character.
Note that an escape sequence is converted to a single
character.
E 22: ‘#define’ without valid You have to supply an identifier after a '#define'.

identifier

C Compiler c88 (2)

Main Tool Chain

Error/Warning Messages

Frontend Frontend
E 23: ‘#else' without '#if' ‘#else' can only be used within a corresponding ‘#if', E 41: ‘#elif' without "#if' The '#elif' directive did not appear within an '#if', ‘#ifdef' or
‘#ifdef' or '#ifndef' construct. ‘#ifndef' construct.
E 24: ‘#endif' without matching '#if' ‘#endif' appeared without a matching ‘#if', ‘#ifdef' or E 42: syntax error, expecting A syntax error occurred in a parameter list a declaration or
‘#ifndef' preprocessor directive. parameter type/declaration/ a statement.
E 25: missing or zero line number ‘#line' requires a non-zero line number specification. statement
E 26: undefined control A control line (line with a ‘#identifier’) must contain one of E 43: unrecoverable syntax error, The compiler found an error from which it could not
the known preprocessor directives. skipping to end of file recover.
W 27: unexpected text after control '#ifdef' and #ifndef' require only one identifier. Also, 144: ininitializer "name" Informational message when checking for a proper
‘#else' and ‘#endif' only have a newline. ‘#undef' requires constant initializer.
exactly one identifier. E 46: cannot hold that many The value stack may not exceed 20 operands.
W 28: empty program The source file must contain at least one external operands
definition. A source file with nothing but comments is E 47: missing operator An operator was expected in the expression.
considered an empty program. E 48: missing right parenthesis ')’ was expected.
E 29: bad '#include' syntax A '#include' must be followed by a valid header name W 49: attempt to divide by zero An expression with a divide or modulo by zero was found.
syntax. - potential run-time error
E 30: include file "file" not found Be sure you have specified an existing include file after a E 50: missing left parenthesis ‘(" was expected.
‘#include' directive. Make sure you have specified the E 51: cannot hold that many The state stack may not exceed 20 operators.
correct path for the file. operators
E 31: end-of-file encountered The compiler found the end of a file while scanning a E 52: missing operand An operand was expected.
inside comment comment. Probably a comment was not terminated. E 53: missing identifier after An identifier is required in a #if defined(identifier).
E 32: argument mismatch for The number of arguments in invocation of a function-like ‘defined’ operator
macro "name" macro must agree with the number of parameters in the E 54: non scalar controlling Iteration conditions and 'if' conditions must have a scalar
definition. Also, invocation of a function-like macro requires expression type (not a struct, union or a pointer).
aterminating ")" token. E 55: operand has not integer type The operand of a '#if' directive must evaluate to an integral
E 33: "name" redefined The given identifier was defined more than once, or a constant.
subsequent declaration differed from a previous one. W 56: '<debugoption><level>' no There is no associated debug action with the specified
W 34: illegal redefinition of A macro can be redefined only if the body of the redefined associated action debug option and level.
macro "name" macro is exactly the same as the body of the originally W 58: invalid warning number: The warning number you supplied to the -w option does
defined macro. number not exist.
E 35: bad filename in ‘#line' The string literal of a #line (if present) may not be a F 59: sorry, more than number Compilation stops if there are more than 40 errors.
"wide-char" string. errors
W 36: 'debug’ facility not installed ‘#pragma debug' is only allowed in the debug version of E 60: label "label' multiple defined A label can be defined only once in the same function.
the compiler. E 61: type clash The compiler found conflicting types.
W 37: attempt to divide by zero A divide or modulo by zero was found. E 62: bad storage class for "name" The storage class specifiers aut o and r egi st er may not
E 38: non integral switch A swi t ch condition expression must evaluate to an appear in declaration specifiers of external definitions.
expression integral value. Also, the only storage class specifier allowed in a
F 39: unknown error number: This error may not occur. parameter declaration is r egi st er .
number E 63: "name" redeclared The specified identifier was already declared. The compiler

W 40:

non-standard escape
sequence

Your escape sequence contains an illegal escape
character.

uses the second declaration.

C Compiler c88 (3)

Main Tool Chain

Error/Warning Messages

Frontend

Frontend

E 64:

incompatible redeclaration
of "name"

The specified identifier was already declared.

E 89:

illegal bitfield declarator

A bit field may only be declared as an integer, not as a
pointer or a function for example.

W 66: function "name": variable A variable is declared which is never used. E 90: #error message The message is the descriptive text supplied in a ‘#error’
"name" not used preprocessor directive.
W 67: illegal suboption: option The suboption is not valid for this option. W 91: no prototype for function Each function should have a valid function prototype.
W 68: function "name": parameter A function parameter is declared which is never used. "name"
"name" not used W 92: no prototype for indirect Each function should have a valid function prototype.
E 69: declaration contains more Type specifiers may not be repeated. function call
than one basic type specifier 194: hiding earlier one Additional message which is preceded by error E 63. The
E 70: ‘'break’ outside loop or switch A br eak statement may only appear in a swi t ch ora second declaration will be used.
loop (do, f or or whi | e). F 95: protection error: message Something went wrong with the protection key initialization.
E 71: illegal type specified The type you specified is not allowed in this context. E 96: syntax error in #define #def i ne id(requires a right-parenthesis ')'.
W 72: duplicate type modifier Type qualifiers may not be repeated in a specifier list or E 97: ".."incompatible with If one function has a parameter type list and another
qualifier list. old-style prototype function, with the same name, is an old-style declaration,
E 73: object cannot be boundto Use only one memory attribute per object. the parameter list may not have ellipsis.
multiple memories E 98: function type cannot be At ypedef cannot be used for a function definition.
E 74: declaration contains more A declaration may contain at most one storage class inherited from a typedef
than one class specifier specifier. F 99: conditional directives ‘#if', ‘#ifdef' or ‘#ifndef' directives may not be nested
E 75: ‘continue’ outside a loop cont i nue may only appear in a loop body (do, f or or nested too deep deeper than 50 levels.
whi | e). E 100: case or default label not The case: ordef aul t: label may only appear inside a
E 76: duplicate macro parameter The given identifier was used more than one in the formatl inside switch switch.
"name" parameter list of a macro definition. E 101: vacuous declaration Something is missing in the declaration.
E 77: parameter list should be An identifier list, not part of a function definition, must be E 102: duplicate case or default Switch case values must be distinct after evaluation and
empty empty. label there may be at most one def aul t : label inside a
E 78: ‘void' should be the only Within a function prototype of a function that does not switch.
parameter except any arguments, void may be the only parameter. E 103: may not subtract pointer The only operands allowed on subtraction of pointers is
E 79: constant expression A constant expression may not contain a comma. Also, the from scalar pointer - pointer, or pointer - scalar.
expected bit field width, an expression that defines an enum array- E 104: left operand of operator has The first operand of a '." or ->' must have a st ruct or
bound constants and swi t ch case expressions must all not struct/union type uni on type.
be integral constant expressions. E 105: zero or negative array size Array bound constants must be greater than zero.
E 80: '# operator shall be followed The '#' operator must be followed by a macro argument. - ignored
by macro parameter E 106: different constructors Compatible function types with parameter type lists must
E 81: '## operator shall not occur The '##' (token concatenation) operator is used to paste agree in number of parameters and in use of ellipsis. Also,
at beginning or end of a together adjacent preprocessor tokens, so it cannot be the corresponding parameters must have compatible
macro used at the beginning or end of a macro body. types.
W 86: escape character truncated The value of a hexadecimal escape sequence (a backslash, E 107: different array sizes Corresponding array parameters of compatible function
to 8 bit value \, followed by a 'x' and a number) must fit in 8 bits storage. types must have the same size.
E 87: concatenated string too long The resulting string was longer than the limit of 1500 E 108: different types Corresponding parameters must have compatible types

characters.

W 88:

"name" redeclared with
different linkage

The specified identifier was already declared.

and the type of each prototype parameter must be
compatible with the widened definition parameter.

C Compiler c88 (4)

Main Tool Chain

Error/Warning Messages

Frontend

Frontend

E 109:

floating point constant
out of valid range

A floating point constant must have a value that fits in the
type to which it was assigned.

E 131:

bad operand type(s) of
operator

The operator needs an operand of another type.

E 110: function cannot return A function may not have a return type that is of type array W 132: value of variable "name" This warning occurs if a variable is used before it is
arrays or functions or function. A pointer to a function is allowed. is undefined defined.
1111: parameter list does not Check the parameter list or adjust the prototype. The E 133: illegal struct/union A function cannot be a member of a st ruct or uni on.
match earlier prototype number and type of parameters must match. member type Also, bit fields may only have type i nt or unsi gned.
E 112: parameter declaration If the declarator is a prototype, the declaration of each E 134: bitfield size out of range The bit field width may not be greater than the number of
must include identifier parameter must include an identifier. Also, an identifier -setto 1l bits in the type and may not be negative.
declared as at ypedef name cannot be a parameter W 135: statement not reached The specified statement will never be executed.
name. E 138: illegal function call You cannot perform a function call on an object that is not
E 114: incomplete struct/union The st ruct oruni on type must be known before you can a function.
type use it. E 139: operator cannot have The type name in a (cast) must be a scalar (nota st ruct,
E 115: label "name" undefined A got o statement was found, but the specified label did aggregate type uni on or a pointer) and also the operand of a (cast) must
not exist in the same function or module. be a scalar.
W 116: label "name" not referenced The given label was defined but never referenced. The E 140: type cannot be appliedto For example, the '&' operator (address) cannot be used on
reference of the label must be within the same function or a register/bit/bitfield object registers and bit fields.
module. or builtin/inline function
E 117: "name" undefined The specified identifier was not defined. A variable's type E 141: operator requires The operand of the '++', or '--' operator and the left
must be specified in a declaration before it can be used. modifiable Ivalue operand of an assignment or compound assignment
W 118: constant expression out of A constant expression used in a case label may not be too (Ivalue) must be modifiable.
valid range large. Also when converting a floating point value to an E 143: too many initializers There may be no more initializers than there are objects.
integer, the floating point constant may not be too large. W 144: enumerator "name" value An enumconstant exceeded the limit for ani nt .
E 119: cannot take 'sizeof' bitfield The size of a bit field or voi d type is not known. So, the out of range
or void type size of it cannot be taken. E 145: requires enclosing curly A complex initializer needs enclosing curly braces.
E 120: cannot take 'sizeof' function The size of a function is not known. So, the size of it braces
cannot be taken. E 146: argument #number. With prototypes, the memory spaces of arguments must
E 121: not a function declarator This is not a valid function. memory spaces do not match.
E 122: unnamed formal parameter The parameter must have a valid name. match
W 123: function should return A return in a non-voi d function must have an expression. W 147: argument #number. With prototypes, the types of arguments must be
something different levels of indirection assignment compatible.
E 124: array cannot hold functions An array of functions is not allowed. W 148: argument #number. With prototypes, both the prototyped function argument
E 125: function cannot return Ar et ur n with an expression may not appear in a voi d struct/union type does not and the actual argument was a st r uct or uni on, but they
anything function. match have different tags. The tag types should match.
W 126: missing return A non-voi d function with a non-empty function body must E 149: object "name" has zero A struct or union may not have a member with an
(function "name") have ar et ur n statement. size incomplete type.
E 129: cannot initialize "name" Declarators in the declarator list may not contain W 150: argument #number. With prototypes, the pointer types of arguments must be
initializations. Also, an ext er n declaration may have no pointers to different types compatible.
initializer. W 151: ignoring memory specifier Memory specifiers for a struct, union or enum are ignored.
W 130: operands of operator are Pointer operands of an operator or assignment ('="), must E 152: operands of operator Be sure the operands point to the same memory space.

pointers to different types

have the same type.

are not pointing to the same
memory space

C Compiler c88 (5)

Main Tool Chain

Error/Warning Messages

Frontend

Frontend

E 153: 'sizeof' zero sized object

An implicit or explicit si zeof operation references an
object with an unknown size.

E 154: argument #number.

struct/union mismatch

With prototypes, only one of the prototyped function
argument or the actual argument was a st ruct or uni on.
The types should match.

E 176:

address of automatic is
not a constant

Unlike a static variable, an automatic variable does not
have a fixed memory location and therefore, the address of
an automatic is not a constant.

W 177:

static variable "name" not
used

A static variable is declared which is never used.

E 155: casting Ivalue 'type' to

'type' is not allowed

The operand of the '++', or '--' operator or the left operand
of an assignment or compound assignment (lvalue) may
not be cast to another type.

E 157: "name" is not a formal If a declarator has an identifier list, only its identifiers may
parameter appear in the declarator list.
E 158: right side of operator is The second operand of " or '->' must be a member of the

W 178:

static function "name" not
used

A static function is declared which is never called.

E 179:

inline function "name" is
not defined

Possibly only the prototype of the inline function was
present, but the actual inline function was not.

E 180:

illegal target memory
(memory) for pointer

The pointer may not point to memory.

operator do not match

of the operator must be the same.

allowed

not a member of the designated st r uct or uni on. W 182: argument #number. With prototypes, the types of arguments must be
designated struct/union different types compatible.

E 160: pointer mismatch at Both operands of operator must be a valid pointer. 1185: (prototype synthesized at ~ This is an informational message containing the source file
operator line number in "name") position where an old-style prototype was synthesized.

E 161: aggregates around The contents of the structs, unions or arrays on both sides E 186: array of type bit is not An array cannot contain bit type variables.

different level of indirection assignment compatible.

E 164: operands of operator may

The operands of operator may not have operand (voi d *).

not have type 'pointer to void'

W 165: operands of operator are
incompatible: pointer vs.

pointer to array

The types of pointers or addresses of the operator must be
assignment compatible. A pointer cannot be assigned to a
pointer to array.

E 166: operator cannot make

something out of nothing

Casting type voi d to something else is not allowed.

inline function "name"

E 170: recursive expansion of An _inline function may not be recursive.
inline function "name"
E 171: too much tail-recursion in If the function level is greater than or equal to 40 this error

is given.

bit-type fields is forced into
bitaddressable area

E 162: operator requires an lvalue The '&' (address) operator requires an lvalue or function E 187: illegal structure definition A structure can only be defined (initialized) if its members
or function designator designator. are known.
W 163: operands of operatorhave The types of pointers or addresses of the operator must be E 188: structure containing This error occurs when you use a bitaddressable storage

type for a structure containing bit-type members.

E 189:

pointer is forced to
bitaddressable, pointer to
bitaddressable is illegal

A pointer to bitaddressable memory is not allowed.

W 190: "long float" changed to In ANSI C floating point constants are treated having type
"float" doubl e, unless the constant has the suffix 'f'.
E 191: recursive struct/union A struct oruni on cannot contain itself.

definition

E 192:

missing filename after
-f option

The -f option requires a filename argument.

E 194:

cannot initialize typedef

You cannot assign a value to a t ypedef variable.

operator, no '--" operator and no functions are allowed.

parameters

W 172: adjacent strings have When concatenating two strings, they must have the same F 199: demonstration package The demonstration package has certain limits which are
different types type. limits exceeded not present in the full version.

E 173: 'void' function argument A function may not have an argument with type voi d. W 200: unknown pragma - ignored The compiler ignores pragmas that are not known.

E 174: not an address constant A constant address was expected. Unlike a static variable, W 201: "name" cannot have storage A egi st er variable or an automatic/parameter cannot
an automatic variable does not have a fixed memory type - ignored have a storage type.
location and therefore, the address of an automatic is not a E 202: "name" is declared with You cannot call a function with an argument when the
constant. ‘void' parameter list function does not accept any (voi d parameter list).

E 175: not an arithmetic constant In a constant expression no assignment operators, no '++' E 203: too many/few actual With prototyping, the number of arguments of a function

must agree with the prototype of the function.

C Compiler c88 (6)

Main Tool Chain

Error/Warning Messages

Frontend

Backend

W 204:

U suffix not allowed on
floating constant - ignored

A floating point constant cannot have a ‘U’ or 'u’ suffix.

W 517:

conversion of long address
to short address

This warning is issued when pointer conversion is needed.

W 205: F suffix not allowed on An integer constant cannot have a 'F' or 'f' suffix. F 524: illegal memory model See the compiler usage for valid arguments of the -M
integer constant - ignored option.
E 206: 'name' named bit-field A bit field must be an integral constant expression with a E 526: function qualifier '_asmfunc' _asnf unc is only allowed in the function prototype.
cannot have 0 width value greater than zero. not allowed in function
E 212: "name": missing static A function with a st at i ¢ prototype misses its definition. definition
function definition E 528: _at() requires a numerical You can only use an expression that evaluates to a
W 303: variable 'name' possibly Possibly an initialization statement is not reached, while a address numerical address.
uninitialized function should return something. E 529: _at() address out of range The absolute address is not present in the specified
E 327: too many arguments to An _asnf unc function uses a fixed register-based interface for this type of object memory space.
pass in registers for between C and assembly, but the number of arguments E 530: _at() only valid for global Only global variables can be placed on absolute
_asmfunc 'name' that can be passed is limited by the number of available variables addresses.
registers. With function name this limit was reached. E 531: _at() only allowed for Absolute variables cannot be initialized.
uninitialized variables
Backend E 532: _at() has no effect on When declared ext er n the variable is not allocated by the
W 501: function qualifier used on A function qualifier can only be used on functions. external declaration compiler.
non-function W 533: ¢88 language extension A language extension keyword is a reserved word, and
E 502: Intrinsic function '_int()' The argument of the _i nt () intrinsic function must be an keyword used as identifier reserved words cannot be used as an identifier.
needs an immediate value integral constant expression rather than any type of E 536: illegal syntax used for See the description of the -R option for the correct syntax.
as parameter integral expression. default section name
E 503: Intrinsic function '_jrsf()’ The given number must be a constant value between 0 'name' in -R option
needs an immediate value 0..3 and 3. E 537: default section name See the description of the -R option for the correct syntax.
W 508: function qualifier duplicated Only one function qualifier is allowed. 'name' not allowed
E 511: interrupt function must A function declared with _i nt er rupt (n) may not accept W 538: default section name Only use one of the -R option or the renamesect pragma or
have void result and void any arguments and may not return anything. 'name' already renamed to use another name.
parameter list 'new_name'
W 512: 'number illegal interrupt The interrupt vector number must be 0, or in the range 3 to W 542: optimization stack underflow, This warning occurs if you use a #pr agma endopti m ze
number (0, or 3 to 251) 251. Any other number is illegal. no optimization options are while there were no options saved by a previous #pr agna
- ignored saved with #pragma endopti m ze.
E 513: calling an interrupt routine, An interrupt function cannot be called directly, you must optimize
use '_swi()' use the intrinsic function _swi (). W 555: current optimization level You could have HLL debug conflicts with these
E 514: conflictin '_interrupt'/ The attributes of the current function qualifier declaration could reduce debugging optimization settings.
'_asmfunc' attribute and the previous function qualifier declaration are not the comfort (-g)
same. E 560: Float/Double: not yet Floating point will be supported in a following version.
E 515: different '_interrupt' number The interrupt number of the current function qualifier implemented
declaration and the previous function qualifier declaration
are not the same.
E 516: 'memory_type'is illegal The storage type is not valid for this function.

memory for function

C Compiler c88 (7)

Main Tool Chain

Library

<ctype.h> isalnum, isalpha, isascii, iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace,
isupper, isxdigit, toascii, _tolower, tolower, _toupper, toupper

<errno.h> Error numbers
No C functions.

<float.h> Constants for floating-point operation

<limits.h> Limits and sizes of integral types
No C functions.

<locale.h> localeconv, setlocale
Delivered as skeletons.

<math.h> acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod, frexp, Idexp, log,
log10, modf, pow, sin, sinh, sgrt, tan, tanh

<setjmp.h> longjmp, setjmp

<signal.h> raise, signal
Functions are delivered as skeletons.

<simio.h> _simi, _simo

<stdarg.h> va_arg, va_end, va_start

<stddef.h> offsetof, definition of special types

<stdio.h> clearerr, fclose, _fclose, feof, ferror, fflush, fgetc, fgetpos, fgets, fopen, _fopen,
fprintf, fputc, fputs, fread, freopen, fscanf, fseek, fsetpos, ftell, fwrite, getc,
getchar, gets, _ioread, _iowrite, _Iseek, perror, printf, putc, putchar, puts, _read,
remove, rename, rewind, scanf, setbuf, setvbuf, sprintf, sscanf, tmpfile, tmpnam,
ungetc, viprintf, vprintf, vsprintf, _write

<stdlib.h> abort, abs, atexit, atof, atoi, atol, bsearch, calloc, div, exit, free, getenv, labs,
Idiv, malloc, mblen, mbstowcs, mbtowc, gsort, rand, realloc, srand, strtod, strtol,
strtoul, system, wcstombs, wctomb

<string.h> memchr, memcmp, memcpy, memmove, memset, strcat, strchr, strcmp, strcol,
strcpy, strespn, strerror, strlen, strncat, strncmp, strncpy, strpbrk, strrchr, strspn,
strstr, strtok, strxfrm

<time.h> asctime, clock, ctime, difftime, gmtime, localtime, mktime, strftime, time

All functions are delivered as skeletons.

Assembler as88 (1)

Main Tool Chain

Startup Command

as88 [option]...source-file [map-file]

Options

Functions

@ unct i on_nane(argunent [, argunent] . . .

Mathematical Functions

ABS Absolute value

MAX Maximum value
-C file Include file before source MIN Minimum value
-Dmacro[=def] Define preprocessor macro SGN Return sign
-L[flag...] Remove specified source lines from list file
-M[s|c|d]] Specify memory model String Functions
-V Display version header only CAT Catenate strings
-C Switch to case insensitive mode (default case sensitive) LEN Length of string
-e Remove object file on assembly errors POS Position of substring in string
-err Redirect error messages to error file SCP Compare strings
-f file Read options from file SuUB Substring from a string
-ifllg] Default label style local or global
-l Generate listing file Macro Functions
-0 filename Specify name of output file ARG Macro argument function
-t Display section summary CNT Macro argument count
-V Verbose mode. Print the filenames and numbers of the passes while they progress MAC Macro definition function
-w[num] Suppress one or all warning messages MXP Macro expansion function

Assembler Mode Functions

AS88 Assembler executable name
DEF Symbol definition function
LST LIST control flag value

MODEL Selected model of the assembler

Address Handling Functions

CADDR Code address

COFF Code page offset

CPAG Code page number

DADDR Data address

DOFF Data page offset

DPAG Data page number

HIGH 256 byte page number

LOW 256 byte page offset

Assembler as88 (2)

Main Tool Chain

Assembler Directives

Debugging Macros and Conditional Assembly
CALLS Pass call information to object file. Used to build a call tree at link time for DUP Duplicate sequence of source lines
overlaying overlay sections. DUPA Duplicate sequence with arguments
SYMB Pass symbolic debug information DUPC Duplicate sequence with characters
DUPF Duplicate sequence in loop
Assembly Control ENDIF End of conditional assembly
ALIGN Specify alignment ENDM End of macro definition
COMMENT Start comment lines. This directive is not permitted in IF/ELIF/ELSE/ENDIF EXITM Exit macro
constructs and MACRO/DUP definitions. IF Conditional assembly directive
DEFINE Define substitution string MACRO Macro definition
DEFSECT Define section name and attributes PMACRO Purge macro definition
END End of source program
FAIL Programmer generated error message
INCLUDE Include secondary file
MSG Programmer generated message
RADIX Change input radix for constants
SECT Activate section
UNDEF Undefine DEFINE symbol
WARN Programmer generated warning

Symbol Definition

EQU Equate symbol to a value; accepts forward references
EXTERN External symbol declaration; also permitted in module body
GLOBAL Global symbol declaration; also permitted in module body
LOCAL Local symbol declaration

NAME Identify object file

SET Set symbol to a value; accepts forward references

Data Definition/Storage Allocation

ASCII Define ASCII string

ASCIZ Define NULL padded ASCII string
DB Define constant byte

DS Define storage

DW Define constant word

Assembler as88 (3)

Main Tool Chain

Error Messages

Warnings (W)

Warnings (W)

W 101:

use option at the start of
the source; ignored

Primary options must be used at the start of the source.

W 102:

duplicate attribute
"attribute" found

An attribute of an EXTERN directive is used twice or more.
Remove one of the duplicate attributes.

W 120:

assembler debug
information: cannot emit
non-tiof expression for label

The SYMB record contains an expression with operations
that are not supported by the IEEE-695 object format.

W 121:

changed alignment size to size

W 104:

expected an attribute but
got attribute; ignored

W 123:

expression: type-error The expression performs an illegal operation on an
address or combines incompatible memory spaces.

W 105:

section activation expected,
use name directive

Use the SECT directive to activate a section.

W 124:

cannot purge macro during
its own definition

W 106:

conflicting attributes
specified "attributes"

You used two conflicting attributes in an EXTERN
statement directive.

W 125:

"symbol" is not a DEFINE
symbol

You tried to UNDEF a symbol that was not previously
DEFINEd or was already undefined.

W 107:

memory conflict on object
"name"

A label or other object is explicit or implicit defined using
incompatible memory types.

W 126:

redefinition of
"define-symbol"

The symbol is already DEFINEd in the current scope. The
symbol is redefined according to this DEFINE.

W 108:

object attributes redefinition
"attributes”

A label or other object is explicit or implicit defined using
incompatible attributes.

W 127:

redefinition of macro
"macro"

The macro is already defined. The macro is redefined
according to this macro definition.

W 109:

label "label" not used

The label label is defined with the GLOBAL directive and
neither defined nor referred, or the label is defined with the
LOCAL directive and not referenced.

W 110:

extern label "label" defined
in module, made global

The label label is defined with an EXTERN directive and
defined as a label in the source. The label will be handled
as a global label.

W 128:

number of macro arguments
is less than definition

You supplied less arguments to the macro than when
defining it.

W 129:

number of macro arguments
is greater than definition

You supplied more arguments to the macro than when
defining it.

W 130:

DUPA needs at least one
value argument

The DUPA directive needs at least two arguments, the
dummy parameter and a value parameter.

W 111: unknown $LIST flag You supplied an unknown flag to the $LIST control. W 131: DUPF increment value The step value supplied with the DUPF macro will skip the
"flag" gives empty macro DUPF macro body.

W 112: text found after END; An END directive designates the end of the source file. All W 132: IF started in previous file The ENDIF or ELSE pre-processor directive matches with
ignored text after the END directive will be ignored. "file", line line an IF directive in another file.

W 113: unknown $MODEL You supplied an unknown model. W 133: currently no macro The @CNT() and @ARG() functions can only be used

specifier; ignored

expansion active inside a macro expansion.

W 114:

$MODEL may only be
specified once, it remains
"model'; ignored

You supplied more than one model.

W 115:

use ON or OFF after
control name

The control you specified must have either ON or OFF
after the control name.

W 134:

"directive" is not supported,
skipped

The supplied directive is not supported by this assembler.

W 135:

define symbol of
"define-symbol' is not an
identifier; skipped definition

You supplied an illegal identifier with the -D option on the
command line.

W 116:

unknown parameter
"parameter” for
control-name control

See the description of the control for the allowed
parameters.

W 118:

inserted "extern name"

The symbol name is used inside an expression, but not
defined with an EXTERN directive.

W 119:

"name" section has not the
MAX attribute; ignoring
RESET

W 137:

label "label" defined
attribute and attribute

The label is defined with an EXTERN and a GLOBAL
directive.

W 138:

warning: WARN-directive-
arguments

Output from the WARN directive.

W 139:

expression must be between
hex-value and hex-value

W 140:

expression must be between
value and value

Assembler as88 (4)

Main Tool Chain

Error Messages

Warnings (W) Errors (E)
W 141: global/local label "name" The label is declared and used but not defined in the E 217: description There was an error found during assembly of the mnemonic.
not defined in this module; source file. E 218: unknown mnemonic: "name" The assembler found an unknown mnemonic.

made extern E 219: this is not a hardware The assembler found a generic instruction, but the -Oh
W 170: code address maps to The code offset you specified to the @CPAG function is in instruction (use $OPTIMIZE (hardware only) option or the $OPTIMIZE ON "H" control
zero page the zero page. OFF "H") was specified.
W 171: address offset must be The offset you specified in the @CADDR or @DADDR E 223: unknown section "name" The section name specified with a SECT directive has not
between 0 and FFFF function was too large. (yet) been defined with a DEFSECT directive.
W 172: page number must be The page number you specified in the @CADDR or E 224: unknown label "name" A label was used which was not defined.
between 0 and FF @DADDR function was too large. E 225: invalid memory type You supplied an invalid memory modifier.
E 226: unknown symbol attribute:
Errors (E) attribute
E 200: message; halting assembly The assembler stops the further processing of your source E 227: invalid memory attribute The assembler found an unknown location counter or
file. memory mapping attribute.
E 201: unexpected newline or line The syntax checker found a newline or line delimiter that E 228: attr attribute needs a number The attribute aftr needs an extra parameter.
delimiter does not confirm to the assembler grammar. E 229: only one of the name
E 202: unexpected character: The syntax checker found a character that does not attributes may be specified
‘character confirm to the assembler grammar. E 230: invalid section attribute: The assembler found an unknown section attribute.
E 203: illegal escape character in The syntax checker found an illegal escape character in name
string constant the string constant that does not confirm to the assembler E 231: absolute section, expected An absolute section must be specified using an ‘AT
grammar. "AT" expression address' expression.
E 204: 1/O error: open intermediate The assembler opens an intermediate file to optimize the E 232: MAX/OVERLAY sections Sections with the MAX or OVERLAY attribute must have a
file failed (file) lexical scanning phase. The assembler cannot open this file. need to be named sections name, otherwise the locator cannot overlay the sections.
E 205: syntax error: expected The syntax checker expected to find a token but found E 233: type section cannot have Code sections may not have the CLEAR or OVERLAY
token at token another token. attribute attribute attribute.
E 206: syntax error: token The syntax checker found an unexpected token. E 234: section attributes do not In an previous definition of the same section other
unexpected match earlier declaration attributes were used.
E 207: syntax error: missing "' The syntax checker found a label definition or memory E 235: redefinition of section An absolute section of the same name can only be located
space modifier but missed the appended semi-colon. once.
E 208: syntax error: missing ')’ The syntax checker expected to find a closing parentheses. E 236: cannot evaluate expression Some functions and directives must evaluate their
E 209: invalid radix value, The RADIX directive accepts only 2, 8, 10 or 16. of descriptor arguments during assembly.
should be 2, 8, 10 or 16 E 237: descriptor directive must Some directives need to have a positive argument.
E 210: syntax error The syntax checker found an error. have positive value
E 211: unknown model Substitute the correct model, one of s, ¢, d or I. E 238: Floating point numbers not The DB directive does not accept floating point numbers.
E 212: syntax error: expected The syntax checker expected to find a token but found allowed with DB directive
token nothing. E 239: byte constant out of range The DB directive stores expressions in bytes.
E 213: label "/abel' defined The label is defined with a LOCAL and a GLOBAL or E 240: word constant out of range The DW directive stores expressions in words.
attribute and attribute EXTERN directive. E 241: Cannot emit non tiof Floating point expressions and some functions can not be
E 214: illegal addressing mode The mnemonic used an illegal addressing mode. functions, replaced with represented in the IEEE-695 object format.
E 215: not enough operands The mnemonic needs more operands. integral value '0'
E 216: too many operands The mnemonic needs less operands. E 242: the name attribute must be A section must have the CODE or DATA attribute.

specified

Assembler as88 (5)

Main Tool Chain

Error Messages

Errors (E)

Errors (E)

E 243: use $OBJECT OFF or
$OBJECT "object-file"

E 264:

cannot evaluate: "symbol",
value depends on an

Could not evaluate the argument of a ‘%' or '?' operator
within a macro expansion.

value is unknown at this point

expansion has not been defined.

E 244: unknown control "name" The specified control does not exist. unknown symbol
E 246: ENDM within IF/ENDIF The assembler found an ENDM directive within an E 265: cannot evaluate argument of The arguments of the DUP directive could not be
IF/ENDIF pair. dup (unknown or location evaluated.
E 247: illegal condition code The assembler encountered an illegal condition code dependant symbols)
within an instruction. E 266: dup argument must be The argument of the DUP directive must be integral.
E 248: cannot evaluate origin All origins of absolute sections must be evaluated before integral
expression of org creation of the object file. E 267: dup needs a parameter Check the syntax of the DUP directive.
"name: address" E 268: ENDM without a The assembler found an ENDM directive without an
E 249: incorrect argument types The supplied argument(s) evaluated to a different type corresponding MACRO or corresponding MACRO or DUP definition.
for function "function" than expected. DUP definition
E 250: tiof function not yet The supplied object format function is not yet implemented. E 269: ELSE without a The assembler found an ELSE directive without an
implemented: "function" corresponding IF corresponding IF directive.
E 251: @POS(,,start) start The start argument is larger than the length of the string in E 270: ENDIF without a The assembler found an ENDIF directive without an
argument past end of string the first parameter. corresponding IF corresponding IF directive.
E 252: second definition of label The label is defined twice in the same scope. E 271: missing corresponding The assembler found an IF or ELSE directive without an
"label' ENDIF corresponding ENDIF directive.
E 253: recursive definition of The evaluation of the symbol depends on its own E 272: label not permitted with this Some directives do not accept labels.
symbol "symbol' value. directive
E 254: missing closing >' in The syntax checker missed the closing '>' bracket in the E 273: wrong number of arguments The function needs more or less arguments.
include directive INCLUDE directive. for function
E 255: could not open include file ~ The assembler could not open the given include-file. E 274: illegal argument for function An argument has the wrong type.
include-file E 275: expression not properly aligned
E 256: integral divide by zero The expression contains an divide by zero. E 276: immediate value must be The immediate operand of the instruction does only accept
E 257: unterminated string All strings must end on the same line as they are started. between value and value values in the given range.
E 258: unexpected characters after Spaces are not permitted between macro parameters. E 277: address must be between The address operand is not in the range mentioned.
macro parameters, possible $address and $address
illegal white space E 278: operand must be an address The operand must be an address but has no address
E 259: COMMENT directive not This assembler does not permit the usage of the attributes.
permitted within a macro COMMENT directive within MACRO/DUP definitions or E 279: address must be short
definition and conditional IF/ELSE/ENDIF constructs. E 280: address must be short The operand must be an address in the short range.
assembly E 281: illegal option "option" The assembler found an unknown or misspelled command
E 260: definition of "macro" The macro definition is not terminated with an ENDM line option.
unterminated, missing "endm" directive. E 282: "Symbols:" part not found in The map file may be incomplete.
E 261: macro argument name may MACRO and DUP arguments may not start with an map file "name"
not start with an ' ' underscore. E 283: "Sections:" part not found in The map file may be incomplete.
E 262: cannot find "symbol' Could not find a definition of the argument of a ‘%' or '?' map file "name"
operator within a macro expansion. E 284: module "name" not found in The map file may be incomplete.
E 263: cannot evaluate: "symbol', The symbol used with a '%' or '?' operator within a macro map file "name"

Assembler as88 (6)

Main Tool Chain

Error Messages

Errors (E) Fatal Error (F)
E 285: file-kind file will overwrite The assembler warns when one of its output files will F 410: Assembler internal error: The assembler renames all symbols local to a scope to
file-kind file overwrite the source file you gave on the command line or duplicate mufom "symbol' unique symbols. In this case the assembler did not
another output file. during rename succeed into making an unigue name.
E 286: $CASE options must be The $CASE options may only be given before any symbol F 411: symbolic debug error: An error occurred during the parsing of the SYMB
given before any symbol is defined. "message" directive.
definition F 412: macro calls nested too deep There is a limit to the number of nested macro expansions.
E 287: symbolic debug error: The assembler found an error in a symbolic debug (SYMB) (possible endless recursive Currently this limit is set to 1000.
message instruction. call)
E 288: error in PAGE directive: The arguments supplied to the PAGE directive do not F 413: cannot evaluate "function" A function call is encountered although it should have been
message conform to the restrictions. processed.
E 290: fail: message Output of the FAIL directive. This is an user generated error. F 414: cannot recover from Due to earlier errors the assembler internal state got
E 291: generated check: message Integrity check for the coupling between the C compiler previous errors, stopped corrupted and stops assembling your program.
and assembler. F 415: error opening temporary file The assembler uses temporary files for the debug
E 293: expression out of range An instruction operand must be in a specified address information and list file generation. It could not open or
range. create one of those temporary files.
E 294: expression must be between F 416: internal error in optimizer The optimizer found a deadlock situation. Try to assemble
hexvalue and hexvalue without any optimization options. Please fill out the error
E 295: expression must be between report form and send it to Seiko Epson.
value and value
E 296: optimizer error: message The optimizer found an error.
E 297: jump address must be a Jumps and jump-subroutines must have a target address
code address in code memory.
E 298: size depends on location, The size of some constructions (notably the align

cannot evaluate

Fatal Error (F)

directives) depend on the memory address.

F 401: memory allocation error A request for free memory is denied by the system. All
memory has been used.
F 402: duplicate input filename The assembler requires one input filename on the
"file" and "file" command line.
F 403: error opening file-kind file: ~ The assembler could not open the given file.
"file-name"
F 404: protection error: message No protection key or not a IBM compatible PC.
F 405: 1/O error The assembler cannot write its output to a file.
F 406: parser stack overflow
F 407: symbolic debug output error The symbolic debug information is incorrectly written in the
object file.
F 408: illegal operator precedence The operator priority table is corrupt.

F 409:

Assembler internal error

The assembler encountered internal inconsistencies.

Linker Ik88 (1)

Main Tool Chain

Startup Command

1 k88 [option]...file...

Error Messages

Warnings (W)

W 100:

Cannot create map file The given file could not be created.
filename, turned off -M option

Options W 101: lllegal filename (filename) A filename with an illegal extension was detected.
detected
-C Link case insensitive (default case sensitive) W 102: Incomplete type specification, An unknown type reference.
-L directory Additional search path for system libraries type index = Thexnumber
-L Skip system library search W 103: Object name (name) differs Internal name of object file not the same as the filename.
-M Produce alink map (. I nl) from filename
-N Turn off overlaying W 104: '-o filename' option Second -0 option encountered, previous name is lost.
-O name Specify basename of the resulting map files overwrites previous
-V Display version header only -0 filename'
-C Produce a separate call graph file (. cal) W 105: No object files found No files where specified at the invocation.
-e Clean up if erroneous result W 106: No search path for system System library files (those given with the -l option) must
-err Redirect error messages to error file (. el k) libraries. Use -L or env have a search path, either supplied by means of the
-f file Read command line information from file, - means st di n "variable" environment, or by means of the option -L.
-l x Search also in system library | i bx. a W 108: lllegal option: option An illegal option was detected.
-0 filename Specify name of output file (-H or -\? for help)
-r Suppress undefined symbol diagnostics W 109: Type not completely Not a complete type specification in either the current file
-u symbol Enter symbol as undefined in the symbol table specified for symbol or the mentioned file.
-vor -t Verbose option. Print name of each file as it is processed <symbol> in file
-w n Suppress messages above warning level n W 110: Compatible types, different Name conflict between compatible types.

definitions for symbol
<symbol> in file

W 111:

Signed/unsigned conflict for Size of both types is correct, but one of the types contains
symbol <symbol> in file an unsigned where the other uses a signed type.

W 112:

Type conflict for symbol A real type conflict.
<symbol> in file

W 113:

Table of contents of file out The ar library has a symbol table which is not up to date.
of date, not searched.
(Use ar ts <name>)

W 114:

No table of contents in file, The ar library has no symbol table.
not searched.
(Use ar ts <name>)

W 115:

Library library contains
ucode which is not supported

Ucode is not supported by the linker.

W 116:

Not all modules are The library file has an unknown format, or is corrupted.
translated with the same
threshold (-G value)

W 117:

No type found for <symbol>. No type has been generated for the symbol.
No type check performed

Linker Ik88 (2)

Main Tool Chain

Error Messages

Warnings (W)

Errors (E)

W 118:

Variable <name>, has
incompatible external
addressing modes with

A variable is not yet allocated but two external references
are made by non overlapping addressing modes.

E 215:

Section <name> has a
different address from the
already linked one

Two absolute sections may be linked (overlaid) on some
conditions. They must have the same address.

file <filename> E 216: Variable <name>, name A variable is allocated outside a referencing addressing
W 119: error from the Embedded If the embedded environment is readable for the linker, the <name> has incompatible space.
Environment: message, addressing mode check is relaxed. For instance, a variable external addressing modes
switched off relaxed defined as data may be accessed as huge. E 217: Variable <name>, has A variable is not yet allocated but two external references
addressing mode check incompatible external are made by non overlapping addressing modes.
addressing modes with
Errors (E) file <filename>
E 200: lllegal object, assignment The MUFOM variable did not exist. Corrupted object file. E 218: Variable <name>, also An attempt was made to link different address formats
of non existing var var referenced in <name>has between the current file and the mentioned file.
E 201: Bad magic number The magic number of a supplied library file was not ok. an incompatible address
E 202: Section name does not Named section with different attributes encountered. format
have the same attributes E 219: Not supported/illegal feature An option/feature is not supported or illegal in given object
as already linked files in object format format format.
E 203: Cannot open filename A given file was not found. E 220: page size (Oxhexvalue) Section is too big to fit into the page.
E 204: lllegal reference in address lllegal MUFOM variable used in value expression of a overflow for section <name>
of name variable. Corrupted object file. with size Oxhexvalue
E 205: Symbol 'name' already A symbol was defined twice. E 221: message Error generated by the object.
defined in <name> E 222: Address of <name> not No address was assigned to the variable. Corrupted object
E 206: lllegal object, multi The MUFOM variable was assigned more than once defined file.
assignment on var probably due to a previous error ‘already defined’, E 205.
E 207: Object for different Bits per MAU, MAU per address or endian for this object Fatal Errors (F)
processor characteristics differs with the first linked object. F 400: Cannot create file filename The given file could not be created.
E 208: Found unresolved external(s): There were some symbols not found. F 401: lllegal object: Unknown An unknown command was detected in the object file.
E 209: Object format in file not The object file has an unknown format, or is corrupted. command at offset offset Corrupted object file.
supported F 402: lllegal object: Corrupted Wrong byte count in hex number. Corrupted object file.
E 210: Library format in file not The library file has an unknown format, or is corrupted. hex number at offset offset
supported F 403: lllegal section index A section index out of range was detected. Corrupted
E 211: Function <function> cannot The overlay pool has already been built in a previous linker object file.
be added to the already action. F 404: lllegal object: Unknown An unknown variable was detected in the object file.
built overlay pool <name> hex value at offset offset Corrupted object file.
E 212: Duplicate absolute section Absolute sections begin on a fixed address. They cannot F 405: Internal error number Internal fatal error.
name <name> be linked. F 406: message No key no IBM compatible PC.
E 213: Section <name> does not A section with the EQUAL attribute does not have the F 407: Missing section size for Each section must have a section size command in the
have the same size as the same size as other, already linked, sections. section <name> object. Corrupted object file.
already linked one F 408: Out of memory An attempt to allocate more memory failed.
E 214: Missing section address for Each absolute section must have a section address F 409: lllegal object, offset offset Inconsistency found in the object module.

absolute section <name>

command in the object. Corrupted object file.

Linker Ik88 (3)

Main Tool Chain

Error Messages

Fatal Errors (F)

F 410: lllegal object

Inconsistency found in the object module at unknown
offset.

F 413: Only name object can be
linked

It is not possible to link object for other processors.

F 414: Input file file same as
output file

Input file and output file cannot be the same.

F 415: Demonstration package
limits exceeded

Verbose (V)

One of the limits in this demo version was exceeded.

V 000: Abort!

The program was aborted by the user.

V 001: Extracting files

Verbose message extracting file from library.

V 002: File currently in progress:

Verbose message file currently processed.

V 003: Starting pass number

Verbose message, start of given pass.

V 004: Rescanning....

Verbose message rescanning library.

V 005: Removing file file

Verbose message cleaning up.

V 006: Object file file format format

Named object file does not have the standard tool chain
object format TIOF-695.

V 007: Library file format format

Named library file does not have the standard tool chain
ar88 format.

V 008: Embedded environment
name read, relaxed
addressing mode check
enabled

Embedded environment successfully read.

Advanced Locator alc88 Main Tool Chain

Startup Command Error Messages
al C88 project_path file out file.inf illegal Inf File Advanced locator definition file (.inf) is invalid.
Duplicate Memory Memory allocations in Oxnnnn—0xnnnn and

-- Oxnnnn ~ 0xnnnn & Oxnnnn ~ Oxnnnn_ Oxnnnn—=0xnnnn are duplicated.

No physical memory available for xxxx No specified addresses exist to which symbol xxxx
can be assigned.

Duplicate Symbol Name -- xxxx There are duplicates of symbol name xxxx.

Cannot find Oxnnnn bytes for xxxx section No Oxnnnn bytes of memory are available as
needed to map section xxxx.

Found unresolved external -- xxxx No information is available for external symbol
(Extern) xxxx.

There is no stack area No memory can be allocated for the stack because
internal RAM lacks sufficient space.

Absolute address Oxnnnn occupied The absolute address section area beginning with

oxnnnn is already occupied by another area.

Locator 1c88 (1)

Main Tool Chain

Startup Command

1C88 [option]...[file€]...

Error Messages

Warnings (W)

W 100: Maximum buffer size for For the given format, a maximum buffer size is defined.
. name is size (Adjusted)
Options W 101: Cannot create map file The given file could not be created.
filename, turned off -M option
-M Produce a locate map file (. map) W 102: Only one -g switch allowed, Only one .out file can be debugged.
-S space Generate specific space ignored -g before name
-V Display version header only W 104: Found a negative length Only stack sections can have a negative length.
-d file Read description file information from file, -' means st di n for section name, made it
-e Clean up if erroneous result positive
-err Redirect error messages (. el c) W 107: Inserted 'name' keyword A missing keyword in the description file was inserted.
-f file Read command line information from file, - means st di n at line line
-f format Specify output format W 108: Object name (name) Internal name of object file not the same as the filename.
-0 filename Specify name of output file differs from filename
-p Make a proposal for a software part on st dout W 110: Redefinition of system Usually only one load module will access the system table
-V Verbose option. Print name of each file as it is processed start point (__lc_pm).
-w n Suppress messages above warning level n W 111: Two -0 options, output Second -0 option, the message gives the effective name.

name will be name

W 112:

Copy table not referenced, If you use a copy statement in the layout part, the initial
initial data is not copied data is located in rom.

W 113:

No .out files found to locate No files where specified at the invocation.

W 114:

Cannot find start label label No start point found.

W 116:

Redefinition of name at line Identifier was defined twice.
line

W 119:

File filename not found in Al files to be located must be given as an argument.
the argument list

W 120:

unrecognized name option Wrong option assignment. Check the manual for
<name> at line line possibilities.
(inserted 'name)

W 121: Ignored illegal sub-option An illegal format sub option was detected.
'name' for name
W 122: lllegal option: option An illegal option was detected.

(-H or -\? for help)

W 123:

Inserted character at line The given character was missing in the description file.
line

W 124:

Attribute attribute at line An unknown attribute was specified in the description file.
line unknown

W 125:

Copy table not referenced, Sections with attribute blank are detected, but the copy

blank sections are not table is not referenced. The locator generates info for the

cleared startup module in the copy table for clearing blank sections
at startup.

Locator Ic88 (2)

Main Tool Chain

Error Messages

Warnings (W)

Errors (E)

W 127: Layout name not found

The used layout in the named file must be defined in the
layout part.

E 208: Cannot find a cluster for
section name

No writable memory available, or unknown addressing
mode.

W 130: Physical block name It is not possible to assign a block more than once to a E 210: Unrecognized keyword An unknown keyword was used in the description file.
assigned for the second layout block. <name> at line line
time to a layout E 211: Cannot find Oxhexnumber ~ One of virtual or physical memory was occupied, or there

W 136: Removed character at line The character is not needed here. bytes for section name was no physical memory at all!
line (fixed mapping)

W 137: Cluster name declared The named cluster is declared twice. E 213: The physical memory of A mapping failed. There was no virtual address space left.
twice (layout part) name cannot be addressing

W 138: Absolute section name at Absolute section with an address outside physical memory. in space name
non-existing memory E 214: Cannot map section name, An absolute mapping failed.
address Oxhexnumber virtual memory address

W 139: message Warning message from the embedded environment. occupied

W 140: File filename not found as All processes defined in the locator description file E 215: Available space within The available addressing space for an addressing mode
a parameter (software part) must be specified on the invocation line. name exceeded by number has been exceeded.

W 141: Unknown space <name> An unknown space name was specified with a -S option. bytes for section name
in -S option E 217: No room for section name The size of the cluster as defined in the .dsc file is too

W 142: No room for section name A section with attribute read-only could not be placed in in cluster name small.
in read-only memory, trying read-only memory, the section will be placed in writable E 218: Missing identifier at line line This identifier must be specified.
writable memory ... memory. E 219: Missing)" at line line Matching bracket missing.

E 220: Symbol 'symbol already A symbol was defined twice.
Errors (E) defined in <name>

E 200: Absolute address An absolute address was requested, but the address was E 221: lllegal object, multi The MUFOM variable was assigned more than once,
Oxhexnumber occupied already occupied by another section. assignment on var probably due to an error of the object producer.

E 201: No physical memory An absolute address was requested, but there is no E 223: No software description Each input file must be described in the software
available for section name physical memory at this address. found description in the .dsc file.

E 202: Section name with mau A bit section cannot be located in a byte oriented E 224: Missing <length> keyword No length definition found in hardware description.
size size cannot be located addressing mode. in block 'name' at line line
in an addressing mode with E 225: Missing <keyword> keyword For the given mapping, the keyword must be specified.
mau size size in space 'name’ at line line

E 203: lllegal object, assignment The MUFOM variable did not exist. E 227: Missing <start> keyword in No start definition found in hardware description.
of non existing var var block 'name' at line line

E 204: Cannot duplicate section The process must be located more than once, but the E 230: Cannot locate section name, An absolute address was requested, but the address was
'name' due to hardware section is mapped to a virtual space without memory requested address occupied already occupied by another process or section.
limitations management possibilities. E 232: Found file filename not All files to be located need a definition record in the

E 205: Cannot find section for name Found a variable without a section, should not be possible. defined in the description file description file.

E 206: Size limit for the section Small sections do not fit in a page any more. E 233: Environment variable too Found environment variable in the dsc file contains too
group containing section long in line line many characters.
name exceeded by E 235: Unknown section size for No section size found in this .out file. In fact a corrupted
Oxhexnumber bytes section name .out file.

E 207: Cannot open filename A given file was not found.

Locator 1c88 (3)

Main Tool Chain

Error Messages

Errors (E) Fatal Errors (F)

E 236: Unrecoverable specification An unrecoverable error was made in the description file. F 400: Cannot create file filename The given file could not be created.
at line line F 401: Cannot open filename A given file was not found.

E 238: Found unresolved At locate time all externals should be satisfied. F 402: lllegal object: Unknown An unknown command was detected in the object file.
external(s): command at offset offset Corrupted object file.

E 239: Absolute address addr.addr In the given space the absolute address was not found. F 403: lllegal filename (name) A filename with an illegal extension was detected on the
not found detected command line.

E 240: Virtual memory space name In the description files software part for the given file, a non F 404: lllegal object: Corrupted Wrong byte count in hex number. Corrupted object file.
not found existing memory space was mentioned. hex number at offset offset

E 241: Object for different Bits per MAU, MAU per address or endian for this object F 405: lllegal section index A section index out of range was detected.
processor characteristics differs with the first linked object. F 406: lllegal object: Unknown An unknown variable was detected in the object file.

E 242: message Error generated by the object. hex value at offset offset Corrupted object file.

E 244: Missing name part The given part was not found in the description file, F 407: No description file found The locator must have a description file with the description

possibly due to a previous error. of the hardware and the software of your system.

E 245: lllegal name value at line line A non valid value was found in the description file. F 408: message No protection key or not an IBM compatible PC.

E 246: Identifier cannot be a A non valid identifier was found in the description file. F 410: Only one description file The locator accepts only one description file.
number at line line allowed

E 247: Incomplete type specification, An unknown type was referenced by the given file. F 411: Out of memory An attempt to allocate more memory failed.
type index = Thexnumber Corrupted object file. F 412: lllegal object, offset offset Inconsistency found in the object module.

E 250: Address conflict between Overlapping addresses in the memory part of the F 413: lllegal object Inconsistency found in the object module at unknown
block block1 and block2 description file. offset.
(memory part) F 415: Only name .out files can It is not possible to locate object for other processors.

E 251: Cannot find Oxhexnumber ~ No room in the physical block in which the section must be be located
bytes for section sectionin located. F 416: Unrecoverable error at line An unrecoverable error was made in the description file in
block block line, name the given part.

E 255: Section 'name' defined Sections cannot be declared more than once in one F 417: Overlaying not yet done Overlaying is not yet done for this .out file, link it first
more than once at line /ine layout/loadmod part. without -r flag!

E 258: Cannot allocate reserved The memory for a reserved piece of space was occupied. F 418: No layout found, or layout If there are syntax errors in the layout, it may occur that the
space for process number not consistent layout is not usable for the locator.

E 261: User assert: message User-programmed assertion failed. F 419: message Fatal from the embedded environment.

E 262: Label 'name' defined more Labels defined in the description file must be unique. F 420: Demonstration package One of the limits in this demo version was exceeded.
than once in the software part limits exceeded

E 264: message Error from the embedded environment.

E 265: Unknown section address ~ No section address found in this .out file. In fact a
for absolute section name corrupted .out file.

E 266: %s %s not (yet) supported The requested functionality is not (yet) supported in this

release.

Locator Ic88 (4)

Main Tool Chain

Error Messages

Verbose (V)

V 000: File currently in progress: Verbose message. On the next lines single filenames are
printed as they are processed.

V 001: Output format: name Verbose message for the generated output format.

V 002: Starting pass number Verbose message, start of given pass.

V 003: Abort ! The program was aborted by the user.

V 004: Warning level number Verbose message, report the used warning level.

V 005: Removing file file Verbose message cleaning up.

V 006: Found file <filename> via The description (include) file was not found in the standard

path pathname directory.
V 007: message Verbose message from the embedded environment.

Main Tool Chain

Keyword
address Specify absolute memory address
amode Specify the addressing modes
assert Error if assertion failed
attribute Assign attributes to clusters, sections, stack or heap
block Define physical memory area
bus Specify address bus
chips Specify cpu chips
cluster Specify the order and placement of clusters
copy Define placement of ROM-copies of data sections
cpu Define cpu part
dst Destination address
fixed Define fixed point in memory map
gap Reserve dynamic memory gap
heap Define heap
label Define virtual address label
layout Start of the layout description
length Length of stack, heap, physical block or reserved space
load_mod Define load module (process)
map Map a source address on a destination address
mau Define minimum addressable unit (in bits)
mem Define physical start address of a chip
memory Define memory part
regsfr Specify register file for use by debugger
reserved Reserve memory
section Define how a section must be located
selection Specify attributes for grouping sections into clusters
size Size of address space or memory
software Define the software part
space Define an addressing space or specify memory blocks
src Source address
stack Define a stack section
start Give an alternative start label

table

Define a table section

Function Option Generator winfog (1) Development Tools

Outline
The function option generator winfog is the software tool for creating
the file necessary to generate mask patterns of several hardware
specifications such as 1/0O port functions. In addition, simultaneously
with this file, winfog can create a mask option setup file that are
required when debugging programs with the ICE.

Windows

FileE} TooliT) Help(H)
@l’@l @lﬁ‘l iI Option list area

Lists mask options set in the device information definition file
=] (s1c88xxx.ini). Use the check boxes in this area to select
each option. A selected option has its check box marked by v

Root -

#%* OPTION NO.1 *%%
-—— 0SC1 STYSTEM CLOCK ——-

[crystal(3z.763KHz) Crystal (32.768KHz) —--- Selected
[CR 6OKHz OPTOL101 01

[Moo 2 03C3 SY¥YITEM CLOCK

[y CR 200KHz -—— 0OSC3 SYSTEM CLOCE ——-—
~[] CR Type 1.5NHz CR Z00EHz —--- Selected

[Ceramic 4MH=z OFTO201 01

- No.l 03C1 3YITEN CLOCKE

FEEE S S

#®F OPTION NO.Z2 *%%¥

FEEE S S

Function option document area

*
~[7/ CR external resistor w #%% OPTION NO.3 #%+ Displays the contents of selected options in the function
No.3 INPUT FPORT FULL UP RES * ——— INPUT PCORT PULL UP RESISTOR --—— option document format. The contents displayed in this area
. EOO + KOO With Besistor ——-- Selected are output to the function option document file. When you
. . + KO1 With Resistor —--- Selected change any selected item in the option list area, the display
----- [With Resistor -, o .
+ K02 With Resistor ——--— Selected in this area is immediately updated.
""" [] Gate Direct * K03 With Resistor —--- Selected
=] O * K10 With Resistor ——-- 3elected
_____ |7 With Resistor +* Kll1 With Resistor ---- Zelected
. * K1Z With Resistor ---- Selected
""" [Gate Direct * K13 With Resistor —--- Selected
i PTOANT N1 i
4| | 3| 4 P | »
Haking file(s) is completed Message area

When you create a file by selecting [Generate] from the [Tool]
menu or clicking the [Generate] button, this area displays a
message showing the result of the selected operation.

Function Option Generator winfog (2)

Development Tools

Buttons

Error Messages

_|
o
=3
o
o
<

o2 |&s @

[Open] button
Opens a function option document file.

[Generate] button

Creates a file according to the selected contents of the option list.

[Setup] button

Sets the date of creation, output file name and a comment included in the function
option document file.

[Device INI Select] button

Loads the device information definition file (s1c88xxx.ini).

[Help] button

Displays the version of winfog.

Menus
[File] menu Open
FilatEs Opens a function option document file.
= End
OpentQ? Terminates winfog.
End ()
[Tool] menu Generate
IW Creates a file according to the selected contents of the option list.
= Setup
Generate (& Sets the date of creation, output file name and a comment included
Setupis) in the function option document file.

Device IMNI Selact

Device INI Select
Loads the device information definition file (s1c88xxx.ini).

[Help] menu
HelptH:
Warzion () |

Version
Displays the version of winfog.

File name error

Number of characters in the file name or extension exceeds the limit.

lllegal character

Prohibited characters have been entered.

Please input file name

File name has not been entered.

Can't open File : xxxx

File (xxxx) cannot be opened.

INI file is not found

Specified device information definition file (.ini) does not exist.

INI file does not include FOG
information

Specified device information definition file (.ini) does not contain
function option information.

Function Option document file
is not found

Specified function option document file does not exist.

Function Option document file
does not match INI file

Contents of the specified function option document file do not match
device information definition file (.ini).

A lot of parameter

Too many command line parameters are specified.

Making file(s) is completed
[xxxx is no data exist]

Finished creating the file, but the created file (xxxx) does not contain
any data.

Can't open File: xxxx
Making file(s) is not completed

File (xxxx) cannot be opened when executing Generate.

Can't write File: xxxx
Making file(s) is not completed

Warning Message

File (xxxx) cannot be written when executing Generate.

Are you file update?
Xxxx is already exist

Overwrite confirmation message
(Specified file already exists.)

Segment Option Generator winsog (1)

Development Tools

Outline

The segment option generator winsog is the software tool for creating the
file necessary to generate mask patterns of LCD output specifications and
LCD output pin assignments. In addition, simultaneously with this file,
winsog can create a mask option setup file that are required when

debugging programs with the ICE.

Windows

File!Ed ToolfTd HelpiH)

9zRE 2 2|

Option setup area

|Hemory Address/Data bit (20X

SEGMENT DECODE TAELE

como [comy [come [coms [srEc

SECD

SEGL

SEGZ

SEC2

SEC4

SEGE

SEGE

SEG7

SEGE

SEGS

SEG10D

SEG11

SEG1Z

SEGL3

SEGL4

SEGLE

SEG1E

SEGL7

SECG1E

SEG13

ooo ool ooz ifuic)
o044 ons aos oo7
010 011 olz olz
014 (EN R ole 017
0zo0 0zl 0zz 0z2
0zd 0zE 0ze 0z7
0z0 03l 03 033
034 035 036 037
040 041 04z 043
044 04t 04& 047
ul=ti) OEl 1143 052
054 OEL Ote 0LE?
0g0 Ogl OgE i3]
0654 085 111y 0e7
a70 071 ave 073
074 075 07s 77
020 021 o2z 0232
024 (uf=3 o2e 027
os0 031 Qs 09z
054 0ss ass 097

OUTPUT
Option

Se

LB} i)

Bzl

Nehi—

Making file(=s) i= completed.

Comprised of a display memory map, a segment decode
table, and buttons to select pin specifications. By clicking on
cells in the display memory map and segment decode table,
you can assign display memory addresses and bits.

Sey Selects LCD segment output.
Comp Selects DC-complementary output.
Peh- Selects DC-Pch open-drain output.
Hch- Selects DC-Nch open-drain output.
n Selects segment/common shared output.

Delate | Clears selected segment assignments.

Message area

When you create a file by selecting [Generate] from the [Tool]
menu or clicking the [Generate] button, this area displays a
message showing the result of the selected operation.

Segment Option Generator winsog (2)

Development Tools

Error Messages

=

o2 |[E|¢ % |Da

[Open] button

Opens a segment option document file.

[Save] button

Saves the current option settings to a file (segment assignment data file).
[Load] button

Loads a segment assignment data file.

[Generate] button

Creates a file according to the contents of segment options set.

[Setup] button

Sets the date of creation or output file name or a comment included in the segment
option document file.

[Device INI Select] button

Loads the device information definition file (s1c88xxx.ini).

[Help] button
Displays the version of winsog.

Menus

[File] menu

File{E}

Openio)

Open
Opens a segment option document file.
Record - Save
| Saves the current option settings to a file (segment assignment
data file).
Record - Load
Loads a segment assignment data file.
End
Terminates winsog.

Savel3)
Load(L}

Device INI Select

[Tool] menu Generate
IW Creates a file according to the contents of segment options set.
= Setup
Generate (G Sets the date of creation or output file name or a comment
Setupis) included in the segment option document file.

Device INI Select

Loads the device information definition file (s1c88xxx.ini).

HelptH:

[Help] menu

Version
Displays the version of winsog.

Wersion(@) |

File name error

Number of characters in the file name or extension exceeds the limit.

lllegal character

Prohibited characters have been entered.

Please input file name

File name has not been entered.

Can't open File : xxxx

File (xxxx) cannot be opened.

INI file is not found

Specified device information definition file (.ini) does not exist.

INI file does not include SOG
information

Specified device information definition file (.ini) does not contain
segment option information.

Function Option document file
is not found

Specified function option document file does not exist.

Function Option document file
does not match INI file

Contents of the specified function option document file do not match
device information definition file (.ini).

Segment Option document file
is not found

Specified segment option document file does not exist.

Segment Option document file
does not match INI file

Contents of the specified segment option document file do not match
device information definition file (.ini).

Segment assignment data file
is not found

Specified segment assignment data file does not exist.

Segment assignment data file
does not match INI file

Contents of the specified segment assignment data file do not match
device information definition file (.ini).

Can't open File: xxxx
Making file(s) is not completed

File (xxxx) cannot be opened when executing Generate.

Can't write File: xxxx
Making file(s) is not completed

File (xxxx) cannot be written when executing Generate.

ERROR: SPEC is not set
Making file(s) is not completed

Warning Message

One or more SPEC cells are left blank when executing Generate.

Are you file update?
Xxxx is already exist

Overwrite confirmation message
(Specified file already exists.)

Mask Data Checker winmdc (1)

Development Tools

Outline
The Mask Data Checker winmdc checks the format of the internal ROM
HEX files generated by the program unused area filling utility fil88xxx and
the option document files generated by the function option generator
winfog and segment option generator winsog, and create a file necessary
to generate mask patterns. winmdc also has a function for restoring the
created mask data file into the original file format.

ToolD Help(H

Tléa| B ?

Flowchart

Device information Built-in ROM data
definition file HEX file

Segment option
document file

Function option
document file

E i S
$1c88xxXx.ini

Mask data created

_

winmdc (packed)
> packfile .
c88x0x-yyy.paN (mask data file) —> To Seiko Epson
- ‘ Data restored
winmdc

(unpacked)

Mask Data Checker winmdc (2)

Development Tools

Buttons

1/0 Error Messages

Tool bar

me | [Pack] button
"= | Packs the ROM data file and option document file to create a mask data file for
= presentation to Seiko Epson.
=

[Unpack] button
Restores files in the original format from a packed file.

Loads the device information definition file (s1c88xxx.ini).

[Help] button
Displays the version of winmdc.

e
(=)=
% [Device INI Select] button

[File] menu End
Fils (e Terminates winmdc.

End (4 |

[Tool] menu Pack
IW Packs the ROM data file and option document file to create a mask
= data file for presentation to Seiko Epson.
Pack (P} Unpack
Unpack (L0

Restores files in the original format from a packed file.
Device INI Select
Loads the device information definition file (s1c88xxx.ini).

Device INI Select

File name error

Number of characters in the file name or extension
exceeds the limit.

lllegal character

Prohibited characters have been entered.

Please input file name

File name has not been entered.

INI file is not found

Specified device information definition file (.ini)
does not exist.

INI file does not include MDC information

Specified device information definition file (.ini)
does not contain MDC information.

Can't open file : xxxx

File (xxxx) cannot be opened.

Can't write file: xxxx

ROM Data Error Messages

File (xxxx) cannot be written.

Hex data error: Not S record.

Data does not begin with "S".

Hex data error: Data is not sequential.

Data is not listed in ascending order.

Hex data error: lllegal data.

Invalid character is included.

Hex data error: Too many data in one line.

Too many data entries exist in one line.

Hex data error: Check sum error.

Checksum does not match.

Hex data error: ROM capacity over.

Data is large. (Greater than ROM size)

Hex data error: Not enough the ROM data.

Data is small. (Smaller than ROM size)

Hex data error: lllegal start mark.

Start mark is incorrect.

Hex data error: lllegal end mark.

End mark is incorrect.

Hex data error: lllegal comment.

Model name shown at the beginning of data is incorrect.

Function Option Data Error Messages

Version
Displays the version of winmdc.

[Help] menu

HelptH:

Option data error :

lllegal model name.

Model name is incorrect.

Option data error :

lllegal version.

Version is incorrect.

Option data error :

lllegal option number.

Option No. is incorrect.

Option data error :

lllegal select number.

Selected option number is incorrect.

Option data error :

Mask data is not enough.

Mask data is insufficient.

Option data error :

lllegal start mark.

Start mark is incorrect.

Option data error :

lllegal end mark.

Yergion (A |

End mark is incorrect.

Segment Option Data Error Messages

LCD segment data error :

lllegal model name.

Model name is incorrect.

LCD segment data error :

lllegal version.

Version is incorrect.

LCD segment data error :

lllegal segment No.

Segment No. is incorrect.

LCD segment data error :

lllegal segment area.

Display memory address is out of range.

LCD segment data error :

output specification.

lllegal segment

Specified output mode is incorrect.

LCD segment data error :

lllegal data in this line.

Data is not hex number or output mode.

LCD segment data error :

Data is not enough.

Segment data is insufficient.

LCD segment data error :

lllegal start mark.

Start mark is incorrect.

LCD segment data error :

lllegal end mark.

End mark is incorrect.

Debugger db88 (1)

Development Tools

Outline
This software performs debugging by controlling the ICE hardware
tool. Commands that are used frequently, such as break and step, are
registered on the tool bar, minimizing the necessary keyboard
operations. Moreover, sources, registers, and command execution
results can be displayed in multiple windows, with resultant increased
efficiency in the debugging tasks.

Displays the program with disassemble codes, source codes or

Displays register values and memory data pointed by the registers.

Displays the monitored symbol values.

Displays the contents of the memory.

Windows
(=B8R MEIE
Filz Run Break Trace Coverage View Opfion Window Help S ind
= ource] window
BE QN =S R L]
[T BREIE —mx| D
| Address: [1002AE | W = PC:02AE SP:AAAA IX:AAAA IY:AAAA disassemble and source codes.
> : - B:AA AzAn HzAn L:An BR:AA
* 0n exit the program will fall into an endless loop. ill CB-81 NE-81 EP-08 XP-68 VP08
* SE: 11 IBUDMNUCZ CC: F3 F2 F1 FO
. ; ; 1 186080008 1111 R :
poid RS [HL] A0 [1X]:A0 [15+L] A2 [Register] window
_ H : : :
extern int main { woid); [SP1:n0 [1¥]:A0 [1¥+L]:A2
extern void _copytable(void); 1ol x|
_interrupt({ BxBEE8) /= Startup vector =/ P Addr]01234567]01234567]Count] il [Coverage] window
void _start_cpt{ void) 800010 * 1 -
{ BOE100 exxxxxxx xxxxxxxx 16 Displays coverage data.
% |[8062AE 00:02AE CFGEOOFS __START: LD SP,H#F200h +[[]998110 xxxxxxxx xxxxxxxx 16
BBB128 xxxxxxxx xxxxxxxx 16
< | o .
2]|008130 *sexmxxxe eexxxxxx 16 B
i S | [Symbol] window
INS. | P &ddr| L Addr | Code | Wnenonic «] |[Address | Symbaol [=] _loix| Displays symbol information.
0000 BOO81F 00:O81F =||"eoeuns _ ANDXL | | —
8801 0BAS20 0O: 0828 BOBMER _ BLCPS Symbol Name Yalus .
0062 G6AR20 BO:0828 CEY RL B BOB4C6 _ CHPSL saveflg 9x00 [Watch] window
0003 660821 00:0821 808568 _ CHPUL pHou OxF1E4
0004 860822 00: 0822 8002CE _ DIUSI pHext BxF1E4
|| oossee prvur g_keybuffer BxBOF1E4L "™
I | |l anpzn DI =l hd T ind
ol == [Trace] window
>ma 21| | Address: [o00000 [ere =I| 10 < » w Displays traced data.
“gg;"g;éaggmf"ﬂ”” Address| +0 +1 12 13 +4 45 16 +7 +8 19 1A +B +C 4D +E +F|Valus A]
STK BOFSO8 - BOF7FF 880868 AE 02 FB FB CY 62 FB FB FB FB FB FB FB FB] [Dump] window
LCD BEFEDS - BEFEED 000016 00 84 EO 48 BA 09 E6 80 FE FA FC BB 3E FF
LOD BEF988 — BEF9H2 000026 BF F9 AE BB AF FB FA FA B8 AR 98 68 A0 68
LOD BEFABD - BEFALD 000030 CO B2 66 12 82 00 16 88 3E AF EF FB FB BF
LCD BOFROS - BEFDL2 000040 FB FB FB FB FB FB FB FB FB FB FB FB FB FB
LCD BEFCHS - BEFCE? 000658 96 OA 18 28 BA 4A AB B8 FC FB FF AB 6F FE
0D BEFDBS - BEFDE? 000060 BB EE AB BF BB AR A2 EE A4 22 AA 24 A8 8A
[External memory] 000076 ©2 A9 04 BA 02 08 62 02 BF BE FF FB F7 FD
i||opeese FB FB FB FB FB FB FB FB FB FB FB FB FB FB .
ROW 000600 - BOBFFF Command] window
RAH 086600 - BBRGET _.||900696 80 86 20 10 RO 93 80 40 1B DA FB FB FF FC []
e A7 | K1

Used to enter debug commands and display the execution results.

Debugger db88 (2)

Development Tools

Buttons Menu

Tool bar buttons [File] menu Load File...
[Load File] button lﬁ Loads a program fil_e or a function option file into the debugger.
Loads a program file or a function option file into the debugger. - Load Fie Load Parameter File...

AEEEcRrYEE oW

[Load Parameter] button

Loads a parameter file into the debugger.

[Key Break] button

Forcibly breaks execution of the target program.
[Break] button

Sets or clears a breakpoint at the address where the cursor is located in the [Source] window.

[Break All Clear] button

Clears all break conditions.

[Go] button

Executes the program from the current PC address.
[Go to Cursor] button

Executes the program from the current PC address to the cursor position in the [Source] window.

[Go after Reset] button

Resets the CPU and then executes the program after fetching the reset vector.

[Step] button

Executes one instruction step at the current PC address.

[Next] button

Executes one step at the current PC address. The subroutines are executed as one step.
[Step Exit] button

Executes the program to exit the current subroutine.

[Reset CPU] button

Resets the CPU.

o]

E=E0mn

uttons in the [Source] window

[Disassemble] button

Switches the [Source] window into disassemble display mode.
[Source] button

Switches the [Source] window into source display mode.

[Mix] button

Switches the [Source] window into mix display mode.

[Find] button

Searches the specified strings in the [Source] window.

[Find Next] button

Searches the specified strings toward the end of the program.

[Find Previous] button

Searches the specified strings toward the beginning of the program.
[Watch] button

Registers the symbol selected in the [Source] window to the [Watch] window.

Load Parameter File...

1 clkdemo.abs
2 Samplel.psa

Loads a parameter file into the debugger.
Exit
Terminates the debugger.

Exit
[Run] menu Go
Eun Executes the program from the current PC address.
Go to Cursor
Eia 721, Executes the program from the current PC address to the cursor position
G to Curser in the [Source] window.
Go after Reset Go after Reset
Step (F11) Resets the CPU and then executes the program after fetching the
Mext (F10] reset vector.
Step Exit Step
St [ESLE] Executes one instruction step at the current PC address.
Reset CPU Next
— Executes one step at the current PC address. The subroutines are
ething...

Command File...

executed as one step.

Step Exit

Executes the program to exit the current subroutine.
Stop

Forcibly breaks execution of the target program.
Reset CPU

Resets the CPU.

Setting...

Sets options related to program execution.
Command File...

Reads a command file and executes the debug commands written in it.

[Break] menu

Break
Breakpoint Setting
Break List
Break All Clear

Setting...

Breakpoint Setting

Sets or clears breakpoints and break conditions.
Break List

Displays all the break conditions that have been set.
Break All Clear

Clears all break conditions.

Setting...

Sets break options.

Debugger db88 (3)

Development Tools

Menu

[Trace] menu

Trace

Trace
Trace Search...
Trace File...

Setting...

Trace

Displays the trace information.

Trace Search...

Searches trace information from the trace memory.

Trace File...

Saves the specified range of the trace information to a file.
Setting...

Sets a trace mode.

[Coverage] menu

Coverage

Coverage
Coverage Clear

Setting...

Coverage

Displays the coverage information acquired in the ICE.
Coverage Clear

Clears the coverage information.

Setting...

Selects coverage options.

[Option] menu
Option
Log...
Recard...
Setting...

Log...

Starts or stops logging.

Record...

Starts or stops recording of commands executed.
Setting...

Sets system options.

[Window] menu

Window

LCascade
Til=

v 1 Command
2 Redgister
3 Dump

Cascade

Cascades the opened windows.
Tile

Tiles the opened windows.

This menu shows the currently opened window names.
Selecting one activates the window.

[View] menu

Wiew

Command

Dump
Begister
Trace
Coverage
Svmbol
Watch

v Toolbar
v Statuz Bar

Command
Activates the [Command] window.

Source (Disassemble, Source, Mix)

Disassemble [Opens or activates the [Source] window and displays the
Source program from the current PC address in the display mode
Mix selected from the sub menu items.
Dump
Opens or activates the [Dump] window and displays the memory contents.
Register
Opens or activates the [Register] window and displays the register values.
Trace
Opens or activates the [Trace] window and displays the trace data.
Coverage
Opens or activates the [Coverage] window and displays the coverage
information.
Symbol
Opens or activates the [Symbol] window and displays the symbol information.
Watch
Opens or activates the [Watch] window and displays the symbol value.
Toolbar
Shows or hides the toolbar.
Status Bar

Shows or hides the status bar.

[Help] menu
Help
About DBBS... |

About DB88...
Displays an About dialog box for the debugger.

Debugger db88 (4)

Development Tools

Debug Commands

Memory operation

Program display

dd [<addrl> [<addr2>] [{-B|-W|-L|-F|-D}]]
<addrl> <@size>] [{-B|-W|-L|-F|-D}]]

Dump memory data

u [<addr>]

Disassemble code display

sc [<addr>]

Source display

de [<addr> <datal> [..<datal6>]]

Enter memory data

Fill memory area

dm [<addrl> <addr2> <addr3>]

[
[
df [<addrl> <addr2> <data>]
[
[<addrl> <@size> <addr3>]

Copy memory area

m [<addr>]

Symbol information

Mix display

sy [/4]

Display symbol list

ds <addrl> {<addr2>|@<byte>}...
.f'<str>"|<data>[:{B|W|L}]} [S=<step>]

Search memory data

w__ <symbol> [;{H|D|QIB}] [/A]

Display symbol information

Program execution

SC|I1]I0]U[DIN|V|Z|C}

Load file
Register operation If [<file>] Load program/option HEX file
rd Display register values par [<file>] Load parameter file
rs [<reg> <value>] Modify register value
reg={PC|SP|IX|IY|A|B|HL|BR|CB|EP|XP|YP| Trace

td [<cycle>]

Display trace information

ts [{pc|dr|dw} <addr>]

Search trace information

tf [<file> [<cyclel> [<cycle2>]]]

Save trace information

bp {-|+| }<addr>

Set software breakpoints

bpa <addrl> <addr2>

Set software break area

Map information

g [<addr>] Execute successively from current PC
gr [<addr>] Reset CPU and execute successively Coverage
S [<step>] Single stepping from current PC cv [<addrl> [<addr2>]] Display coverage information
n_ [<step>] Single stepping with skip function/subroutine cve Clear coverage information
se Exit from function/subroutine
Command file, logging
CPU reset com <file> [<interval>]] Load and execute command file
rst Reset CPU cmw [<file>] Load and execute command file with interval
rec [<file>] Record executed commands to file
Break log [<file>] Logging

bpr
bc [<addr>]
bpc [<addr>]

Clear software breakpoints

ma

FPGA operation

Display map information

bas {0]1]2]3} Set sequential break mode xfer Erase FPGA
ba <ch> <addr> [<count>] Set hardware breakpoints xfwr <file> ;{H|S} [;N] Write FPGA data
<ch> {-|+|_} xfcp <file> ;{H|S} Compare FPGA data
bar Clear hardware breakpoints xdp <addrl> [<addr2>] Dump FPGA data
bd <ch> [A=<addr>][D=<data>][{R|W|}] Set hardware data break condition
<ch>{-]+|_} Quit
bdr Clear hardware data break condition q Quit debugger
bl Display all break conditions
bac Clear all break conditions Help
?

Display command usage

Debugger db88 (5)

Development Tools

Debugger Messages
Debugger error

Debugger error

Error : Address out of range : The specified address is outside the valid range. Error : Failed to write EP Error occurred when writing to the EP register.

use 0x000000 - Oxffffff Error : Failed to write HL Error occurred when writing to the HL register.

Error : Address out of range, The address specified here is outside the program Error : Failed to write NB Error occurred when writing to the NB register.

use 0 - OX7TFFFFF memory area. Error : Failed to write PC Error occurred when writing to the PC register.

Error : Address out of range, The address specified here is outside the data Error : Failed to write SC Error occurred when writing to the SC register.

use 0 - OXFFFFFF memory area. Error : Failed to write SP Error occurred when writing to the SP register.

Error : Cannot open device (ICE88UR) Failed to connect to the ICE. Error : Failed to write X Error occurred when writing to the X register.

Error : Cannot open file Cannot open the file. Error : Failed to write Y Error occurred when writing to the Y register.

Error : Checksum error Checksum resulted in an error. Error : ICE88UR Diagnostic error Detected an error during ICE self-diagnostic processing.

Error : Coverage mode is off or the Coverage mode is turned off or the ICE being used Error : Ice88ur Initialization failed Failed to initialize the ICE.

coverage mode is not supported does not support coverage mode. Error : Ice88ur is already running ICE88UR.EXE is up and running.

Error : Data out of range, use 0 - OXFF The specified value is outside the valid range of data. Error : ICE88UR is turned off Power to the ICE is turned off.

Error : DLL Initialization error Failed to initialize DLL. Error : lllegal initialization packet data Initialization packet data is in error.

Error : End address < start address The end address specified here is smaller than the Error : Incorrect number of parameters The number of parameters for the command is illegal.
start address. Error : Incorrect r/w option, use r/w/* The R/W option specified here is invalid.

Error : End index < start index The end cycle specified here is smaller than the start cycle. Error : Incorrect register name, use PC/ The register name specified here is invalid.

Error : Error file type (extension should

The specified file extension is not effective as

be CMD) a command file.
Error : Error file type (extension should The specified file extension is not effective as
be PAR) a parameter file.

Error : Failed ICE88UR initialization

Failed to initialize the ICE.

SP/IX/1Y/A/B/HL/BR/CB/EP/XP/YP/SC

Error : Index out of range, use 0 - 8191

The specified trace cycle number is outside the valid
range.

Error : Initialization failed!

Please quit and restart!

Failed to initialize DB88.
Please restart DB88.

Error : Failed to initialize DLL : %s

Failed to initialize DLL.

Error : Input address does not exist

The address specified here has no breakpoints set.

Error : Failed to Load DLL

Failed to load DLL needed to start DB88.

Error :

Invalid command

The command entered here is invalid.

Error : Failed to open : %s

Could not open the file.

Error : Invalid data pattern

The data pattern entered here is invalid.

Error : Failed to read BA

Error occurred when reading the BA register.

Error : Failed to read BR

Error occurred when reading the BR register.

Error : Invalid display unit,

use -B/-W/-L/-F/-D

The display unit specified here is invalid.

Error : Failed to read CB Error occurred when reading the CB register. Error : Invalid DLL ModulelD DLL identification error

Error : Failed to read CC Error occurred when reading the CC register. Error : Invalid file name The specified file extension is not effective as a
Error : Failed to read EP Error occurred when reading the EP register. program file or function option file.

Error : Failed to read file : %s Error occurred when reading the file. Error : Invalid fsa file The FSA file is invalid.

Error : Failed to read HL Error occurred when reading the HL register. Error : Invalid hexadecimal string This is an invalid hexadecimal string.

Error : Failed to read NB Error occurred when reading the NB register. Error : Invalid value The value entered here is invalid.

Error : Failed to read PC Error occurred when reading the PC register. Error : Maximum nesting level(5) is Command files have been nested exceeding

Error : Failed to read SC

Error occurred when reading the SC register.

exceeded, cannot open file

the nesting limit.

Error : Failed to read SP

Error occurred when reading the SP register.

Error : Failed to read X

Error occurred when reading the X register.

Error : Memory ranges in %s are invalid

or the file is not exist

The memory range of the CPU INI file is invalid.

Error : Failed to read Y

Error occurred when reading the Y register.

Error : No symbol information

No symbol information is found.

Error : Failed to road DLL : %s

Failed to load DLL.

Error : Failed to write BA

Error occurred when writing to the BA register.

Error : Number of steps out of range,

use 0 - 65535

The specified number of steps exceeds the limit.

Error : Failed to write BR

Error occurred when writing to the BR register.

Error : Failed to write CB

Error occurred when writing to the CB register.

Error : Failed to write CC

Error occurred when writing to the CC register.

Error : The Memory Area cannot include
the boundary between 0xO0FFFF and

0x010000

The specified area overlaps the 0x00FFFF-0x010000
address boundary.

Debugger db88 (6)

Development Tools

Debugger Messages
Debugger error

ICE error

Error : The Memory Area must be above
0x10000, and longer than 256 bytes

Any memory area specified above 0x010000 must be
greater than 256 bytes in size.

Error : Cannot be run in Free-Run mode

The ICE is operating in free-run mode.

Error : Cannot fine specified data

The specified data could not be found.

Error : This command is not supported
in current mode

The trace and coverage commands are not effective
when trace or coverage is turned off.

Error : ICE88UR is still keep a
conservative mode

The ICE is operating in maintenance mode.

Error : Unable to get the coverage area
number

Failed to get the coverage area number.

Error : ICE88UR power off execution
abort

Power to the ICE main unit is off. Execution was
aborted.

Error : Unable to get the coverage mode

Failed to get coverage information.

Error : Unable to set SelfFlash check
function

Could not set the SelfFlash check function.

Error : Unable to set the coverage area
number

Failed to set the coverage area number.

Error : Insufficient memory for loading
program

Failed to allocate memory for the program.

Error : Vdd down or no clock

The power supply voltage for the target system is low,
the target system is not powered on, or no clocks are
supplied to the target system.

Error : Unable to set the coverage mode

Failed to set coverage mode.

Error : Verify error

A verify error occurred.

Error : Wrong Command line parameter

The startup parameters are incorrect.

ICE88UR system error : ?? illegal packet

Detected an illegal packet.

Please load the selfflash library program

Please load the SelfFlash library program.

Warning : 64 break addresses are
already set

The total number of breakpoints specified here
exceeds 64.

Warning : Break address already exists

The specified address has a breakpoint already set.

ICE88UR system error : Command
timeout

Detected a command time-out.

ICE88UR system error : Firmware

packet error

Detected an error in EB: Firmware packet.

Warning : Identical break address input

Two or more instances of the same address are
specified on the command line.

ICE88UR system error : Master reset

Detected MR: master reset.

ICE88UR system error : Not connected

The ICE is not connected or powered on.

Warning : Memory may be modified by
SelfFlash

Memory contents may have been modified by the
SelfFlash program.

Warning : SelfFlash program area is out
of the current software pc break area.
Please clear the break point(Address)

The SelfFlash program area does not match the
currently set software break area. Please clear the
breakpoint set at (Address).

ICE88UR system error : Not ready

The ICE is not ready.

Internal error : ICE88UR does not
support this command version

The current version of the ICE does not support
this command.

Internal error : lllegal error code fetched.
System crash possible

Nonexistent error code has been encountered.

Processing terminated by hitting
ESC-key

Processing terminated because the ESC key was
pressed.

Structured Preprocessor sap88

Sub Tool Chain

Outline
The structured preprocessor sap88 adds the macro functions to the cross
assembler asm88.
The sap88 expands the macro and structured control statements included in
the specified S1C88 assembly source file into a format that can be assembled
by the asm88, and outputs it. At this time, the sap88 also executes the
processing for including of the modularized S1C88 assembly source files and
conditional assembly.

Startup Command
sap88 [flags] <file nane>

Pseudo-Instructions

Flags

-d<macro> A character-string macro is defined prior to reading in an input file.

<macro>: <character-string macro name> = <substitution character string>
or <character-string macro name>

-I<label> The front character string of a label name that is created at the time of
the expansion of the structured control statement is designated. It is "L"
in default.

-o<file name> An output file name is turned to *. The default status is standard output.

-q Does not output any message related to processing of the structured
preprocessor.

Error Messages

unexpected EOF in ~ The file is terminated in the middle of ~.

can't include ~ ~ cannot be included.

illegal ~ ~ is incorrect.

illegal define "define" statement is incorrect.
illegal expression at ~ ~ in the expression is incorrect.
illegal undef "undef" statement is incorrect.

INCLUDE <file> Another file insertion

<macro> MACRO [<param>,...] Macro definition
<statements>
[EXITM]
<statements>

[<macro>] ENDM

DEFINE <macro> [<character string>] Character-string macro definition

LOCAL [<label>,...] Definition of local label

PURGE [<macro>] Macro deletion

UNDEF <macro> Deletion of a character string macro

IRP <param>,<arg>[,<arg>...] Repetition by character strings
<statements>

ENDR

IRPC <param>,<arg> Repetition by characters
<statements>

ENDR

REPT <expression> Repetition by the specified number of times
<statements>

ENDR

IFC <condition> Conditional assembly by conditional expression
<statements>[

ELSEC
<statements>]

ENDIF

IFDEF <name> Conditional assembly by the name either defined or
<statements>[undefined

ELSEC
<statements>]

ENDIF

IFNDEF <name> Conditional assembly by the name either undefined or
<statements>[defined

ELSEC
<statements>]

ENDIF

Cross Assembler asm88 (1)

Sub Tool Chain

Outline

The cross assembler asm88 converts an assembly source file to machine
language by assembling the assembly source file in which the macros are

expanded by the structured preprocessor sap88. The asm88 deals with the

relocatable assembly for modular development.

In the relocatable assembly, the relocatable object file to link up with the other

modules using the linker 1ink88 is created.

Startup Command
asnB88 [flags] <file names>

Flags
-all Outputs all symbols including local symbols to a symbol table.
-C Differentiates capital and small letters within the input source.

Prohibits the creation of an assembly list file.

-o<file name>

Creates output files with the name <file name>.

-q Does not output any messages related to the assembly processing.
-RAM<size> Sets the RAM capacity in byte units with <size>.
-ROM<size> Sets the ROM capacity in byte units with <size>.

-sig<number>

Character numbers of symbols that are significant can be set with a
<number> value.

-suf<ext> Changes the extension of the input file to <ext> (a separator "." is not
included).
-X Prohibits the creation of a cross reference list file.

Pseudo-Instructions

CODE Definition of CODE section

DATA Definition of DATA section

DB <exp>[,<exp>...] Reserve/constant setting of the byte unit data area

DW <exp>[,<exp>...] Reserve/constant setting of the word (2-byte) unit data area

DL <exp>[,<exp>...] Reserve/constant setting of the long word (4-byte) unit data
area

ASCII <exp>[,<exp>...] ASCI!I text storing in memory

PARITY Setting/resetting of parity bit

<name> EQU <exp> Name value setting

<name> SET <exp> Name value setting

ORG <exp> Changing of location counter value

EXTERNAL <symbol>[,<symbol>]

Symbol external definition declaration

PUBLIC <symbol>[,<symbol>]

Global declaration of symbol

LINENO <exp>

Change of line number for assembly list file

SUBTITLE <title>

Subtitle setting to assembly list file

SKIP Suppresses all initialization codes output that exceed 4 bytes
to assembly list file

NOSKIP Outputs all initialization codes to assembly list file

LIST Assembly list file output

NOLIST Prohibition of assembly list file output

EJECT Form feed of assembly list file

END [<label>] Assembly stop

Sub Tool Chain

Cross Assembler asm88 (2)

Error Messages

Fatal errors

Severe errors

can't create <file>

<file> cannot be created.

operand expected

There is no operand.

can't open <file>

<file> cannot be opened.

psect name required

A section name must be specified.

can't read tmp file

Temporary file cannot be read.

phase error <identifier>

The label address is different between pass 1 and pass 2.

can't write tmp file

Temporary file cannot be written.

CODE or DATA missing

There is no section setting pseudo-instruction.

namelist full

Name list table is full.

ROM capacity overflow

ROM capacity has overflowed.

no i/p file

There is no input file specification.

RAM capacity overflow

RAM capacity has overflowed.

insufficient memory

There is not enough memory.

relocation error in expression

A relocation error has appeared within the expression.

can't seek on vmem file

Seeking of virtual memory file has failed.

<identifier> reserved word

<identifier> is a reserved word.

can't seek to end of vmem file

Cannot reach the end of virtual memory file.

syntax error <token> expected

Syntax error due to insufficient token(s)

no swappable page

There is no swap space.

syntax error <token> unexpected

Syntax error due to excess token(s)

read error on vmem file

Reading of virtual memory file has failed.

write error on vmem file

Severe errors

Writing to virtual memory file has failed.

syntax error - invalid identifier
<identifier>

Syntax error due to an illegal identifier

syntax error <token> invalid in
expression

Syntax error due to an illegal token

<numeric label> already defined

The numeric label has been defined previously.

system error < > <token>

System error due to an illegal token

<identifier> wrong type

An illegal identifier has appeared.

unsupported instruction

Unsupported instruction has appeared.

<token> expected

A token is needed.

' missing

A quotation mark is missing.

attempted division by zero

Attempt has been made to divide by zero.

unsupported operand

Warnings

Unsupported operand has appeared.

attempt to redefine <identifier>

Attempt has been made to redefine an identifier.

constant expected

A constant expression is required.

directive is ignored in relocatable
mode

The pseudo-instruction is skipped because it is in the
relocatable mode.

end expected

There is no end instruction.

possibly missing relocatability

Relocatability may lose.

encountered too early end of line

The line has terminated in the middle.

constant overflow

Seven or more digits has been defined for the name.

field overflow

The field to be secured has overflowed.

invalid branch address

An external defined symbol is used for the operand of the short
branch instruction.

invalid byte relocation

The byte relocation is invalid.

invalid character

Three is an illegal character.

invalid flag

The flag is invalid.

invalid operand

The operand is invalid.

invalid relocation item

The relocation item is invalid.

invalid register

The register is invalid.

invalid register pair

The register combination is invalid.

invalid symbol define

The symbol definition is invalid.

invalid word relocation

The word relocation is invalid.

new origin incompatible with
current psect

There is an absolute origin within the relocatable section
(relocatable mode).

non terminated string

The termination of a string cannot be located.

<identifier> not defined

Undefined identifier has appeared.

missing numeric expression

A numeric expression is missing.

cars or jrs out of range

Branch destination by cars or jrs is out of range.

carl or jrl out of range

Branch destination by carl or jrl is out of range.

expected operator

There is no operator (BOC, LOC, POD, LOD).

Linker link88

Sub Tool Chain

Outline

The link88 links multi-section relocatable object files for the S1C88 and
creates an absolute object file. The absolute object file is used to create a
program data HEX file that is used for debugging with the ICE by inputting to
the binary/HEX converter hex88. It will also be used to create absolute symbol
information (rel88) after linking the relocatable assembled file.

Startup Command

1ink88 [gl obal flags] [local flags] [<drive name>:]
Flags

Global flags

-C Distinguishes capital and small letters used for symbols within the
relocatable object file.

-cd Does not output the code part for the DATA section.

+dead Outputs a list of dead wood symbols on the CRT, that is, symbols that
have been defined, but are not referred as absolute.

-max<size> Sets the maximum section size at <size> bytes.

-o<file name> Writes the output module on the file <file name>.

-q Does not output any message related to link processing.

Local flags

+code Begins a new CODE section, then processes the local flag for that
section.

+data Begins a new DATA section, then processes the local flag for that
section.

-m<size> Sets the maximum size of the individual segment as <size> bytes.

-p<addr> Sets the physical address of the beginning of the section as <addr>.

Error Messages

bad file format: 'FILE NAME'

Format of the input file 'FILE NAME' is incorrect.

bad relocation item

There is long integer type relocation information.

bad symbol number: 'NUMBER'

'NUMBER' is detected as illegal symbol code.

can't create 'FILE NAME'

The file 'FILE NAME' cannot be created.

can't create tmp file

Temporary file cannot be created.

can't open: 'FILE NAME'

The input file 'FILE NAME' cannot be opened.

can't read binary header: 'FILE NAME'

Header of the file 'FILE NAME' cannot be read.

can't read file header: 'FILE NAME'

First two bytes of the file 'FILE NAME' cannot be read.

can't read symbol table: 'FILE NAME'

Symbol table cannot be read from the file 'FILE NAME'.

can't read tmp file

Temporary file cannot be read.

can't write output file

Cannot write into output file.

can't write tmp file

Cannot write into temporary file.

field overflow

Branch destination by cars or jrs is out of range.

inquiry phase error: 'SYMBOL NAME'

Symbol value of the 'SYMBOL NAME!' is different between
pass 1 and pass 2.

link: early EOF in pass2

Unexpected EOF is detected during pass 2 processing.

multiply defined 'SYMBOL NAME'

'SYMBOL NAME' is multiply defined.

no object files

No input object files exist.

no relocation bits: 'FILE NAME'

The relocation information corresponding to the file 'FILE
NAME' is suppressed.

'SECTION NAME' overflow

The section size in the 'SECTION NAME' exceeds the upper
limit value.

phase error: 'SYMBOL NAME'

Symbol value of the 'SYMBOL NAME' is different between
pass 1 and pass 2.

previous reference blocked:
'SYMBOL NAME' range error

The information related relocation bit width is unmatched.

read error in pass2

Read error is generated during pass 2 processing.

undefined 'SYMBOL NAME'

'SYMBOL NAME' has not been defined.

Symbol Information Generator rel88

Sub Tool Chain

Outline

The rel88 checks the multi-section relocatable objects. The files that become
the object of such checks are relocatable object files output by the cross
assembler asm88 and absolute object files output by the link88. The rel88 can
be used to check the size and configuration of relocatable object files and to
output symbol information in absolute object files output from the link88.

Startup Command
rel 88 [flags] <file names>

Flags
-a Sorts outputs in alphabetical order of the symbol names.
+dec Outputs symbol values and segment sizes in decimal numbers.
-d Outputs all defined symbols within each file, one per line.
-g Outputs global symbols only.
+in akes <file names> from standard input and adds them to command line.
+sec Outputs the physical address and size of each section of multi-segment output
files.
-v Sorts the inside of section by symbol values. The aforementioned -d flag is

tacitly specified.

Error Messages

can't read binary header

Reading of the object header excluding magic number and
configuration byte has failed.

can't read header

Reading of the first two bytes of the object header (magic number
and configuration byte) has failed.

can't read symbol table

Reading of the symbolic table in the object has failed.

Symbolic Table File Generator sym88 Sub Tool Chain

Outline Error Message
The symbolic table file generator sym88 converts a symbolic information file No Input File Input file ".ref* has not been specified.
(file_name.ref) generated in file redirect with the symbol information
generating utility rel88 to a symbolic table file (file_name.sy) that can be
referenced in the ICE. Loading the symbolic table file and the corresponding
relocatable assembly program file in the ICE makes symbolic debugging
possible.

Startup Command
synB8 <file nanme>

Binary/HEX Converter hex88

Sub Tool Chain

Outline Error Messages
The hex88 converts an absolute object file created by the 1ink88 into a bad file format Input file format is incorrect.
hexadecimal data conversion format (program data HEX file). This system can't read <input file> Reading of the <input file> has failed.
adopted Motorola S record format. can't write <output file> Writing to the <output file> has failed.

Startup Command
hex88 [-o<file name>] <file name>

Flags

-o<file name> Writes the output module for the file <file name>.

EPSON

International Sales Operations

AMERICA ASIA
EPSON ELECTRONICS AMERICA, INC. EPSON (CHINA) CO., LTD.
HEADQUARTERS 7F, Jinbao Bldg., No.89 Jinbao St., Dongcheng District

2580 Orchard Parkway

San Jose, CA 95131, U.S.A.
Phone: +1-800-228-3964 Fax: +1-408-922-0238
SALES OFFICE

Northeast

301 Edgewater Place, Suite 210

Wakefield, MA 01880, U.S.A.

Phone: +1-800-922-7667 Fax: +1-781-246-5443

EUROPE

EPSON EUROPE ELECTRONICS GmbH

HEADQUARTERS
Riesstrasse 15 Muenchen Bayern
80992 GERMANY

Phone: +49-89-14005-0 Fax: +49-89-14005-110

Beijing 100005, CHINA
Phone: +86-10-6410-6655 Fax: +86-10-6410-7320

SHANGHAI BRANCH

7F, Block B, Hi-Tech Bldg., 900, Yishan Road

Shanghai 200233, CHINA

Phone: +86-21-5423-5522 Fax: +86-21-5423-5512

EPSON HONG KONG LTD.

20/F, Harbour Centre, 25 Harbour Road
Wanchai, Hong Kong
Phone: +852-2585-4600
Telex: 65542 EPSCO HX

Fax: +852-2827-4346

EPSON (CHINA) CO., LTD.
SHENZHEN BRANCH

12/F, Dawning Mansion, Keji South 12th Road
Hi-Tech Park, Shenzhen
Phone: +86-755-2699-3828 Fax: +86-755-2699-3838

EPSON TAIWAN TECHNOLOGY & TRADING LTD.

14F, No. 7, Song Ren Road
Taipei 110
Phone: +886-2-8786-6688 Fax: +886-2-8786-6660

EPSON SINGAPORE PTE., LTD.

1 HarbourFront Place

#03-02 HarbourFront Tower One, Singapore 098633
Phone: +65-6586-5500 Fax: +65-6271-3182

SEIKO EPSON CORPORATION
KOREA OFFICE

50F, KLI 63 Bldg., 60 Yoido-dong
Youngdeungpo-Ku, Seoul, 150-763, KOREA
Phone: +82-2-784-6027 Fax: +82-2-767-3677

GUMI OFFICE
2F, Grand B/D, 457-4 Songjeong-dong
Gumi-City, KOREA

Phone: +82-54-454-6027 Fax: +82-54-454-6093

SEIKO EPSON CORPORATION
SEMICONDUCTOR OPERATIONS DIVISION

IC Sales Dept.

IC International Sales Group

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN

Phone: +81-42-587-5814 Fax: +81-42-587-5117

S5U1C88000C Manual I1
(Integrated Tool Package for S1C88 Family)
Workbench/Development Tools/Assembler Package Old Version

SEIKO EPSON CORPORATION

Il EPSON Electronic Devices Website

Document code: 411391600

First issue October, 2001
Printed March, 2008 in Japan ©B

	1 GENERAL
	1.1 Features
	1.2 S1C88 Family Integrated Development Environment

	2 INSTALLATION
	2.1 Package Components
	2.2 Operating Environment
	2.3 Installation Method
	2.4 Directories and Files after Installation
	2.5 Environment Settings

	3 WORK BENCH
	3.1 Features
	3.2 Starting Up and Terminating the Work Bench
	3.3 Work Bench Windows
	3.4 Toolbar and Buttons
	3.5 Menus
	3.5.1 [File] Menu
	3.5.2 [View] Menu
	3.5.3 [Source] Menu
	3.5.4 [Build] Menu
	3.5.5 [Debug] Menu
	3.5.6 [Tools] Menu
	3.5.7 [Help] Menu

	3.6 Project and Work Space
	3.6.1 Creating a New Project
	3.6.2 Inserting Sources into a Project
	3.6.3 Removing a Source from the Project
	3.6.4 Project View
	3.6.5 Opening and Closing a Project
	3.6.6 Saving the Project

	3.7 Creating/Editing Source Files
	3.7.1 Specifying an Editor
	3.7.2 Creating a New Source or Header File
	3.7.3 Editing Files
	3.7.4 Tag Jump Function

	3.8 Build Task
	3.8.1 Preparing a Build Task
	3.8.2 Building an Executable Object
	3.8.3 Running only the Compiler or Assembler

	3.9 Setting Tool Options
	3.9.1 Compiler Options
	3.9.2 Assembler Options
	3.9.3 Linker Options
	3.9.4 Locator Options
	3.9.5 Section Editor

	3.10 Debugging
	3.10.1 Simulator
	3.10.2 In-circuit Emulator (S5U1C88000H5) and Debugger

	3.11 Executing Other Tools
	3.12 File List
	3.13 Error Messages

	4 OUTLINE OF THE MAIN TOOL CHAIN
	5 ADVANCED LOCATOR <alc88>
	5.1 Functions of alc88
	5.2 Input/output Files
	5.3 Using alc88
	5.4 Error Messages
	5.5 Precautions

	6 OUTLINE OF THE DEVELOPMENT TOOLS
	7 PROGRAM UNUSED AREA FILLING UTILITY <fil88xxx>
	7.1 Outline of fil88xxx
	7.2 Input/output Files
	7.3 Using fil88xxx
	7.4 Error Messages
	7.5 Example of Input/output Files

	8 FUNCTION OPTION GENERATOR <winfog>
	8.1 Outline of winfog
	8.2 Input/output Files
	8.3 Using winfog
	8.3.1 Starting Up
	8.3.2 Window
	8.3.3 Menus and Toolbar Buttons
	8.3.4 Operation Procedure

	8.4 Error Messages
	8.5 Example Output Files

	9 SEGMENT OPTION GENERATOR <winsog>
	9.1 Outline of winsog
	9.2 Input/output Files
	9.3 Using winsog
	9.3.1 Starting Up
	9.3.2 Window
	9.3.3 Menus and Toolbar Buttons
	9.3.4 Option Selection Buttons
	9.3.5 Operation Procedure

	9.4 Error Messages
	9.5 Example Output Files

	10 MASK DATA CHECKER <winmdc>
	10.1 Outline of winmdc
	10.2 Input/output Files
	10.3 Using winmdc
	10.3.1 Starting Up
	10.3.2 Menus and Toolbar Buttons
	10.3.3 Operation Procedure

	10.4 Error Messages
	10.5 Example Output File

	11 SELF-DIAGNOSTIC PROGRAM <t88xxx>
	11.1 Outline of t88xxx
	11.2 File Configuration
	11.3 Operation Procedure

	12 88xxx.par FILE
	12.1 Contents of 88xxx.par File
	12.2 Description of the Parameters
	12.3 Emulation Memory

	13 S1C88 FAMILY DEBUGGER
	13.1 Overview
	13.2 Input/output Files
	13.3 Starting and Terminating the Debugger
	13.3.1 Starting the Debugger
	13.3.2 Terminating the Debugger

	13.4 Windows
	13.4.1 Basic Structure of Window
	13.4.2 [Command] Window
	13.4.3 [Source] Window
	13.4.4 [Dump] Window
	13.4.5 [Register] Window
	13.4.6 [Symbol] Window
	13.4.7 [Watch] Window
	13.4.8 [Trace] Window
	13.4.9 [Coverage] Window

	13.5 Menu
	13.6 Tool Bar
	13.7 Method for Executing Commands
	13.7.1 Entering Commands from Keyboard
	13.7.2 Executing from Menu or Tool Bar
	13.7.3 Executing from a Command File
	13.7.4 Log File

	13.8 Debug Functions
	13.8.1 Loading Files
	13.8.2 Source Display and Symbolic Debugging Function
	13.8.3 Displaying/Modifying Memory and Register Data
	13.8.4 Executing Program
	13.8.5 Break Functions
	13.8.6 Trace Functions
	13.8.7 Coverage
	13.8.8 Writing Data to the FPGA on the Standard Peripheral Circuit Board
	13.8.9 System Options

	13.9 Command Reference
	13.9.1 Command List
	13.9.2 Reference for Each Command
	13.9.3 Memory Operation
	dd (data dump)
	de (data enter)
	df (data fill)
	dm (data move)
	ds (data search)

	13.9.4 Register Operation
	rd (register display)
	rs (register set)

	13.9.5 Program Execution
	g (go)
	gr (go after reset CPU)
	s (step)
	n (next)
	se (step exit)

	13.9.6 CPU Reset
	rst (reset CPU)

	13.9.7 Break
	bp (software breakpoint set)
	bpa (software area breakpoint set)
	bpr / bc / bpc (software breakpoint clear)
	bas (sequential break setting)
	ba (hardware breakpoint set)
	bar (hardware breakpoint clear)
	bd (hardware data breakpoint set)
	bdr (hardware data breakpoint clear)
	bl (breakpoint list)
	bac (break all clear)

	13.9.8 Program Display
	u (unassemble)
	sc (source code)
	m (mix)

	13.9.9 Symbol Information
	sy (symbol list)
	w (symbol watch)

	13.9.10 Load File
	lf (load file)
	par (load parameter file)

	13.9.11 Trace
	td (trace data display)
	ts (trace search)
	tf (trace file)

	13.9.12 Coverage
	cv (coverage)
	cvc (coverage clear)

	13.9.13 Command File
	com (execute command file)
	cmw (execute command file with wait)
	rec (record commands to a file)

	13.9.14 log
	log (log)

	13.9.15 Map Information
	ma (map information)

	13.9.16 FPGA Operation
	xfer (xilinx fpga data erase)
	xfwr (xilinx fpga data write)
	xfcp (xilinx fpga data compare)
	xdp (xilinx fpga data dump)

	13.9.17 Quit
	q (quit)

	13.9.18 Help
	? (help)

	13.10 Error Messages

	APPENDIX
	A ASSEMBLER (Sub tool chain)
	A.1 Outline of Package
	A.1.1 Introduction
	A.1.2 Outline of Software Tools

	A.2 Program Development Procedures
	A.2.1 Development Flow
	A.2.2 Creating Source File
	A.2.3 Assembly
	A.2.3.1 Structured preprocessor (sap88)
	A.2.3.2 Cross assembler (asm88)
	A.2.3.3 Starting sap88 and asm88
	A.2.3.4 Batch processing for relocatable assembly (ra88.bat)
	A.2.3.5 Relocatable object file
	A.2.3.6 Assembly list file
	A.2.3.7 Cross reference list
	A.2.3.8 Error list
	A.2.3.9 Example of assembly execution

	A.2.4 Link
	A.2.4.1 Linking modules
	A.2.4.2 Section control
	A.2.4.3 Module allocation information
	A.2.4.4 Starting link88
	A.2.4.5 Batch processing for linking (lk88.bat)
	A.2.4.6 Absolute object file
	A.2.4.7 Execution example of linking

	A.2.5 Creating Program Data HEX File
	A.2.5.1 Program data HEX file
	A.2.5.2 Creating program data HEX file using hex88
	A.2.5.3 Motorola S2 format

	A.2.6 Symbol Information
	A.2.6.1 Creating symbol information (rel88)
	A.2.6.2 Creating symbolic table file (sym88)

	B CREATING PROCEDURE OF ASSEMBLY SOURCE FILE (Sub tool chain)
	B.1 Outline
	B.1.1 File Name
	B.1.2 Source File Differences Depending on sap88 and asm88
	B.1.3 Macro Instructions

	B.2 General Format of Source File
	B.2.1 Symbol
	B.2.2 Mnemonic
	B.2.3 Operand
	B.2.4 Comment
	B.2.5 Numerical Expression
	B.2.6 Characters
	B.2.7 ASCII Character Set
	B.2.8 Expressions
	B.2.9 Operators
	B.2.10 Instruction Set
	B.2.11 Register Name
	B.2.12 Addressing Mode
	B.2.13 Example for Mnemonic Notation

	B.3 Pseudo-Instructions
	B.3.1 Section Setting Pseudo-Instructions
	B.3.2 Data Definition Pseudo-Instructions
	B.3.3 Symbol Definition Pseudo-Instructions
	B.3.4 Location Counter Control Pseudo-Instruction
	B.3.5 External Definition and External Reference Pseudo-Instructions
	B.3.6 Source File Insertion Pseudo-Instruction [sap88 only]
	B.3.7 Assembly Termination Pseudo-Instruction
	B.3.8 Macro-Related Pseudo-Instructions [sap88 only]
	B.3.9 Conditional Assembly Pseudo-Instructions [sap88 only]
	B.3.10 Output List Control Pseudo-Instructions

	C ASSEMBLY TOOL REFERENCE (Sub tool chain)
	C.1 Structured Preprocessor <sap88>
	C.2 Cross Assembler <asm88>
	C.3 Linker <link88>
	C.4 Symbol Information Generator <rel88>
	C.5 Symbolic Table File Generator <sym88>
	C.6 Binary/HEX Converter <hex88>

	Quick Reference
	Development Flow
	Software Development Flow

	Work Bench
	Work Bench wb88

	Main Tool Chain
	C Compiler c88
	Assembler as88
	Linker lk88
	Advanced Locator alc88
	Locator lc88
	DELFEE

	Development Tools
	Function Option Generator winfog
	Segment Option Generator winsog
	Mask Data Checker winmdc
	Debugger db88

	Sub Tool Chain
	Structured Preprocessor sap88
	Cross Assembler asm88
	Linker link88
	Symbol Information Generator rel88
	Symbolic Table File Generator sym88
	Binary/HEX Converter hex88

