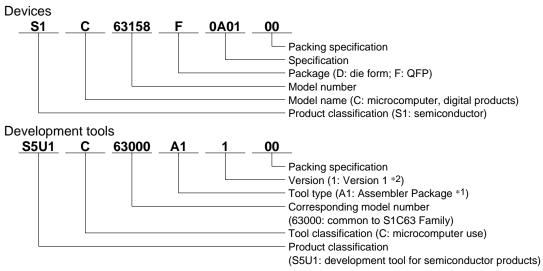


CMOS CALLING NUMBER IDENTIFICATION RECEIVER IC S1C05250 Technical Manual S1C05250 Technical Hardware

SEIKO EPSON CORPORATION

NOTICE


No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from the Ministry of International Trade and Industry or other approval from another government agency.

All the product names mentioned herein are trademarks and/or registered trademarks of their respective owners.

The information of the product number change

Starting April 1, 2001, the product number will be changed as listed below. To order from April 1, 2001 please use the new product number. For further information, please contact Epson sales representative.

Configuration of product number

*1: For details about tool types, see the tables below. (In some manuals, tool types are represented by one digit.) *2: Actual versions are not written in the manuals.

Comparison table between new and previous number

S1C63 Family processors

Previous No.	New No.	Previous No. New No.
E0C63158	S1C63158	E0C63467 S1C63467
E0C63256	S1C63256	E0C63557 S1C63557
E0C63358	S1C63358	E0C63558 S1C63558
E0C63P366	S1C6P366	E0C63567 S1C63567
E0C63404	S1C63404	E0C63F567 S1C6F567
E0C63406	S1C63406	E0C63658 S1C63658
E0C63408	S1C63408	E0C63666 S1C63666
E0C63F408	S1C6F408	E0C63F666 S1C6F666
E0C63454	S1C63454	E0C63A08 S1C63A08
E0C63455	S1C63455	E0C63B07 S1C63B07
E0C63458	S1C63458	E0C63B08 S1C63B08
E0C63466	S1C63466	E0C63B58 S1C63B58
E0C63P466	S1C6P466	· · · · ·

S1C63 Family peripheral products

Previous No.	New No.
E0C5250	S1C05250
E0C5251	S1C05251

Comparison table between new and previous number of development tools

Development tools for the S1C63 Family

Previous No.	New No.
ADP63366	S5U1C63366X
ADP63466	S5U1C63466X
ASM63	S5U1C63000A
GAM63001	S5U1C63000G
ICE63	S5U1C63000H1
PRC63001	S5U1C63001P
PRC63002	S5U1C63002P
PRC63004	S5U1C63004P
PRC63005	S5U1C63005P
PRC63006	S5U1C63006P
PRC63007	S5U1C63007P
URS63366	S5U1C63366Y

Development tools for the S1C63/88 Family

Previous No.	New No.
ADS00002	S5U1C88000X1
GWH00002	S5U1C88000W2
URM00002	S5U1C88000W1

CONTENTS

1 Ove	rview	.1
	1.1 Features	1
	1.2 Block Diagram	2
	1.3 Pin Assignment	2
	1.4 Pin Description	3
2 Pow	ver Supply Block and Initial Reset	.5
	2.1 Power Supply	5
	2.2 Initial Reset	5
3 Fun	ctional Description	.6
	3.1 Register Description	6
	3.2 Input Amp Circuit	11
	3.3 Ring/Line Reversal Signal Detection	12
	3.4 FSK Demodulation	12
	3.5 Dual-Tone Detection	13
4 Pred	cautions on Mounting	14
5 Elec	ctrical Characteristics	16
•	5.1 Absolute Maximum Ratings	
	5.2 Recommended Operating Conditions	
	5.3 DC Characteristics	
	5.4 Current Consumption	
	5.5 Crystal Oscillation Characteristics	
	5.6 FSK Demodulation Circuit Characteristics	
	5.6.1 FSK AC Characteristics	
	5.6.2 FSK Switching Characteristics	17
	5.7 Dual-Tone (CAS) Detection Circuit Characteristics	
	5.7.1 CAS AC Characteristics	
	5.7.2 CAS Switching Characteristics	
	5.8 Call Progress Mode (CPM) Detection Circuit Characteristics 5.8.1 CPM AC Characteristics	
	5.8.2 CPM Switching Characteristics	
	5.9 Serial Interface Circuit Characteristics	
	5.9.1 Serial Interface AC Characteristics	
	5.9.2 FSK Demodulated Data Read Mode	
	5.9.3 CAS Detection Circuit Control-Register Write Mode	
	5.10 S1C05250 Timing Chart	
	5.10.1 Bellcore On-Hook Data Transfer 5.10.2 Bellcore Off-Hook Data Transfer	
	5.10.2 Belicore Oli-Hook Data Transler	
	5.10.4 BT Loop State CLI Service	
	5.11 External Wiring Diagram (Example)	
	5.11.1 Example of Bellcore-Compatible Telephone Circuit	24
	5.11.2 Example of Bellcore-Compatible Auxiliary Circuit	25

6 Package	
7 Pad Layout	
7.1 Pad Layout Diagram	27
7.2 Pad Coordinates	27

1 Overview

The S1C05250 (CAS + FSK IC) is a CMOS IC for calling number identification with a Call Waiting function. It provides an interface to various call information delivery services based on Bellcore GR-30-CORE, such as CND (Calling Number Delivery), CNAM (Calling Name Delivery), and CIDCW (Calling Identity on Call Waiting), as well as British Telecom's CLIP (Calling Line Identification Service) and Cable Communications Association's CDS (Caller Display Service).

The S1C05250 incorporates power-down, ring detection, and carrier detection circuits, a synchronous receive data output function, and a clock-synchronized serial interface. All these features make it suitable for various applications such as those listed below.

- Calling number delivery service with a Call Waiting function
- · Telephone sets and similar auxiliary equipment
- Telephone answering equipment
- Multifunction telephones
- Facsimiles
- Computer peripheral circuits

1.1 Features

- Conforms to Bellcore GR-30-CORE and SR-TSV-002476
- Conforms to British Telecom SIN227 and SIN242
- Can detect Bellcore CPE alert signal (CAS) and British Telecom idle-tone alert signal using a programmable band-pass filter
- FSK demodulation circuit based on ITU-T V.23 and BELL202
- Filter bypass mode to detect call progress mode (CPM) signal
- Programmable alert-signal detection level
- Carrier/ring detection output
- Supports 3.57945 MHz crystal oscillator or external clock input
- · Serial-receive data output
- · Serial host interface
- Power-down mode
- Power supply voltage: 2.7 V to 5.5 V
- Operating temperature range: -20°C to 70°C
- Current consumption: 3 mA when operating

1 μA during power-down

• Shipping form: SOP1-24pin package (plastic) or chip

1.2 Block Diagram

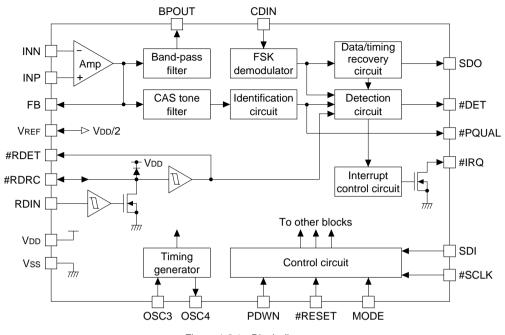
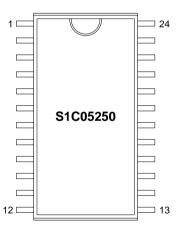



Figure 1.2.1 Block diagram

1.3 Pin Assignment

SOP1-24pin

No.	Pin name						
1	INP	7	#RDET	13	OSC3	19	#SCLK
2	INN	8	PDWN	14	OSC4	20	SDI
3	FB	9	#RESET	15	N.C.	21	SDO
4	Vref	10	N.C.	16	#PQUAL	22	CDIN
5	RDIN	11	MODE	17	#DET	23	BPOUT
6	#RDRC	12	Vss	18	#IRQ	24	Vdd

Figure 1.3.1 Pin assignment

Note: The signal and pin names prefixed by # in this manual are those of active-low signals and pins.

Pin name	Pin No.	Туре	Power-down state	Description
INP	1	Input Analog	Off	Positive input: Non-inverted amp input Connect this pin to the RING side of the twisted-pair telephone line through an input-gain setting resistor and DC-decoupling capacitor. In power-down mode, this pin is disconnected from the internal circuit.
INN	2	Input Analog	Off	Negative input: Inverted amp input Connect this pin to the TIP side of the twisted-pair telephone line through an input-gain setting resistor and DC-decoupling capacitor. In power-down mode, this pin is disconnected from the internal circuit.
FB	3	Output Analog	High-Z	Amp output Connect a feedback resistor to set the gain between this pin and the INN pin. In power-down mode, this pin goes to a high-impedance state.
Vref	4	Output Analog	Vdd level	Reference voltage output This pin outputs a voltage that is $1/2$ of VDD. Connect this pin to Vss via a 0.1 -µF capacitor. In power-down mode, this pin outputs a voltage equal to VDD.
RDIN	5	Schmitt trigger input	Active	Ring detection input For ring detection, attenuate the ring signal before inputting it to this pin. This input circuit remains active even in power-down mode.
#RDRC	6	Open-drain output Schmitt trigger input	Active	Ring detection RC pin Connect an RC network to this pin and set the delay time for ring signal detection. This output circuit remains active even in power- down mode.
#RDET	7	Output	Active	Ring detection output This pin outputs the #RDRC signal after it is passed through a Schmitt trigger buffer. Upon detection of the ring signal, this pin changes to Low level.
PDWN	8	Input	Active	Power-down input This pin must be held at Low level during normal operation. When the pin is set to High level, the S1C05250 is placed in power-down mode. During power-down mode, each pin on the S1C05250 is placed in the state shown in this table.
#RESET	9	Input	Active	Reset input All of the internal registers are reset to the default state when the pin is set to Low level. Before any data can be written to the internal registers, this pin must be set to High level.
MODE	11	Input	Active	Mode selection input: <u>Selects CAS mode or FSK/CPM mode</u> CAS mode is selected by setting this input to High level, so that CAS detection is enabled while FSK function/CPM detection is disabled. Also, in this state, data can be written from the host device to the internal registers using the SDI and #SCLK pins. Note that before writing data to the internal registers, the serial interface must be synchronized to the data write sequence by temporarily setting this pin to Low level. FSK/CPM mode is selected by setting this input to Low level, in which case CAS detection is disabled and FSK function/CPM detection is enabled. In this state, the host device can read out receive data from the SDO pin.
Vss	12	Power supply (-)		Negative power-supply pin Connect this pin to the ground line of the system.
OSC3	13	Input	Off	Crystal oscillator input/external clock input Connect a crystal resonator between this pin and the OSC4 pin and an appropriate capacitance between this pin and the Vss pin. This pin can also be used for external clock input. In power-down mode, this pin is disconnected from the internal circuit.

Pin name	Pin No.	Туре	Power-down state	Description	
OSC4	14	Output	High level	Crystal oscillator output Connect a crystal resonator between this pin and the OSC3 pin and an appropriate capacitance between this pin and the Vss pin. When connecting external clock input to the OSC3 pin, leave this pin open. During power-down mode, this pin changes to High level.	
#PQUAL	16	Output	High level	I Prequalify output The prequalify status of the CAS tone can be monitored from this in CAS mode. This pin returns to High level when the CAS tone is detected.	
#DET	17	Output	Active	Detection output During power-down mode, this pin changes to Low level when a ring signal is input or pulled to Low level by the Line Reversal signal. During normal operation in FSK mode, this pin goes to Low level when an FSK signal is input. During normal operation in CPM mode, this pin outputs the input signal in pulse form at the amplitude level of VDD and Vss. By measuring the frequency of the pulse from the host side, the CPM (dial) tone can be identified. During normal operation in CAS mode, this pin goes to Low level when a CAS tone signal is input.	
#IRQ	18	Open-drain output	Active	Interrupt request output In power-down mode, this pin changes to Low level when a ring signal is input or pulled to Low level by the Line Reversal signal. During normal operation in FSK mode, this pin changes to Low level when receive data is latched into the internal register and is ready to be read by the host. Then, when the host reads the first bit of the receive data, this pin returns to High level. During normal operation in CPM mode, this pin changes to Low level when a signal with a frequency of 200 Hz or above, such as the dial tone, is input. During normal operation in CAS mode, this pin changes to Low level when the CAS tone is detected. This pin is held at Low level while the CAS tone is being input.	
#SCLK	19	Input	Active	Serial clock input When the host writes to the internal register or reads receive data, a clock signal is fed from the host into this pin. The receive data read out by the host is sequentially shifted at falling edges of the clock signal fed to this pin.	
SDI	20	Input	Active	Serial data input When the host writes to the internal register, the write data is input from this pin.	
SDO	21	Output	High level	Serial data output This pin outputs the receive data read out by the host. When asynchronous mode is selected, data in asynchronous mode is output. When synchronous mode is selected, data is output synchronously with the clock signal fed to the #SCLK pin by the host. In power-down, CPM, or CAS mode, this pin is held at High level.	
BPOUT	22	Input Analog	Vref	Capacitor connecting pin Connect a 0.1 - μ F capacitor between this pin and the CDIN pin.	
CDIN	23	Output Analog	High-Z	Capacitor connecting pin Connect a 0.1-μF capacitor between this pin and the BPOUT pin.	
Vdd	24	Power supply		Positive power supply	
N.C.	10,15	Open		Unconnected	

2 Power Supply Block and Initial Reset

2.1 Power Supply

The following shows the operating power supply voltage of the S1C05250.

Power supply voltage: 2.7 V to 5.5 V

The S1C05250 is operated in the above voltage range by a single power supply that is connected between VDD and Vss. The voltage required for internal operation (VREF = 1/2 VDD) is generated by the IC itself.

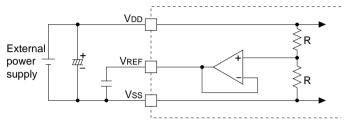


Figure 2.1.1 Power supply block

2.2 Initial Reset

The S1C05250 contains control registers that can be accessed by the external CPU through a serial interface. The control registers are initialized by an initial reset which is applied from the #RESET pin.

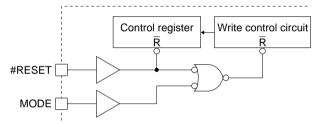


Figure 2.2.1 Initial reset circuit

Specifically, the control registers are reset by pulling the #RESET pin to Low level (VSS) from outside of the IC. Then, the reset state is eliminated by releasing the #RESET pin back to High level (VDD). Also, the write control circuit for the control register is reset when the #RESET pin or MODE pin is at Low level. Before data can be written to the control register, both #RESET and MODE must be at High level.

3 Functional Description

3.1 Register Description

The S1C05250 contains eight 4-bit registers that can be accessed by the CPU.

The CPU can access these CPU interface registers through the serial interface pins (SDI, #SCLK, and MODE) and control the mode of the S1C05250. The CPU uses the first four bits of transmit data to specify the address A[3:0] of the internal register to be accessed. The data is transmitted beginning with the LSB (A0). The four bits that follow the LSB are data bits D[3:0] which are the data to be written to the specified register. This data is also transmitted beginning with the LSB (D0).

Table 3.1.1 shows registers and control bit assignments.

Register	Address	Initial value	Data bit				
name	A[3:0]		D3	D2	D1	D0	
MDR	0000	0000	TEST	FSK/CPM	Bellcore/BT	ASYNC/SYNC	
GLR	0001	0100	GL3	GL2	GL1	GL0	
GHR	0010	0100	GH3	GH2	GH1	GH0	
TLR	0011	0110	TL3	TL2	TL1	TLO	
THR	0100	XXX1	X	Х	Х	TH0	
AVR	0101	X011	X	AV2	AV1	AV0	
WLR	0110	0001	WL3	WL2	WL1	WLO	
WHR	0111	0001	WH3	WH2	WH1	WH0	

Table 3.1.1 Register structure

Each register is detailed below.

MDR: Mode Register (Address = 0h)

			Table 3.1.2 MDR register
Bit	Bit name	Initial value	Description
DO	ASYNC/SYNC	0	Asynchronous/synchronous mode selection This bit is used to select asynchronous or synchronous mode. <u>ASYNC/SYNC bit</u> <u>Mode</u> 0 Selects asynchronous mode 1 Selects synchronous mode Asynchronous mode is selected by setting this bit to 0, in which case the 8-bit serial data output from the SDO pin is forwarded in asynchronous mode. Synchronous mode is selected by setting this bit to 1. When the FSK signal is received in FSK mode, serial data is output from the SDO pin and read by the CPU synchronously with the clock signal fed from the CPU to the #SCLK pin. Also, in synchronous mode, when the receive data is ready for output, the #IRQ
D1	Bellcore/BT	0	pin changes to Low level, indicating that the CPU can read the data. Bellcore/BT selection This bit is used to select Bellcore or BT (British Telecom) mode. Bellcore/BT bit Mode 0 Selects Bellcore mode 1 Selects BT mode When this bit is set to 0, the gain in the dual-tone filter is set directly by the GLR and GHR registers. When this bit is set to 1, the value set by the GLR and GHR registers plus 6 dB is set as the gain in the dual-tone filter.
D2	FSK/CPM	0	CPM mode selection This bit is used to select FSK or CPM mode when the MODE pin is low. <u>FSK/CPM bit</u> 0 Selects FSK mode 1 Selects CPM mode If this bit is set to 1 when the MODE pin is held at Low level (FSK/CPMmode), the receive filter is bypassed, and when the CPM tone is input to the INP/INN pin, the #IRQ pin goes to Low level. Also, since the pulse generated from the CPM tone signal is output from the #DET pin, the CPM (dial) tone can be identified by measuring the frequency of the pulse. If this bit is set to 0 when the MODE pin is held at Low level (FSK/CPMmode), the FSK function is enabled. When the MODE pin is high (CAS mode), settings on this pin do not affect the device operation.
D3	TEST	0	Test mode selection This bit is used to test the IC. This bit normally must be fixed to 0.

GLR: Low-Tone Gain Setting Register (Address = 1h)

				Table	3.1.3 GLR re	egister				
Bit	Bit name	Initial value		Description						
D0 D1 D2 D3	GL0 GL1 GL2 GL3	0100	These b <u>GL3</u> 0 1 1 GL1 and change f	its cont GL2 0 1 0 1 1 GL0 c the gair	n in increments	GL1 0 1 1 in increm of 4 dB.	GL0 0 1 0 1 nents of The ale	<u>Gain (dB)</u> 0 -1 -2 -3 f 1 dB, wherea	as GL3 and GL2 ion level is attenua	ated
				119 13 10	wordu) by an a		quai to	the total gains	sectione.	

GHR: High-Tone Gain Setting Register (Address = 2h)

Bit	Bit name	Initial value	Description						
D0 D1 D2	GH0 GH1 GH2	0100	These bi	ts cont	gain selection rol gain in the 2				
D3	GH3		1		0 0			<u>Gain (dB)</u> 0 -1 -2 -3 of 1 dB, whereas rt-tone detection	GH3 and GH2 level is attenuate

Table 3.1.4 GHR register

r		1	Tab	le 3.1.	5 TLR	and T	HR reg	gisters
Bit	Bit name	Initial value					I	Description
D0 D1 D2 D3	TL0 TL1 TL2 TL3	0110		its con	trol the	minim	um dur	ation of tone with which the CAS tone is is the MSB of the threshold set. Threshold value (msec)
D0 D1 D2 D3	THO X X X	XXX1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0	0 0 0 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 0	0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 1 1 1 1 1 1 1 1 1 1 1 1	5 9 12 16 19 21 23 26 29 32 34 36 39 43 46 48 50 53 56 59 61 64 67 70 73 76 78 81 84 87 90
								Invalid (Cannot be set) to Bellcore and British Telecom Loop State sponds to British Telecom Idle State service.

TLR, THR: Detection Threshold Setting Registers (Address = 3h, 4h)

AVR: Average Divide-Ratio Select Register (Address = 5h)

				Table	e 3.1.6	AVR register	
Bit	Bit name	Initial value	Description				
D0 D1 D2	AV0 AV1 AV2	X011	These b	Average counter divide-ratio selection These bits control the frequency divide ratio of the internal average counter. Setting to 011 is recommended.			
D3	X		AV2 0 0 0 1 1	AV1 0 1 1 0 0	AV0 0 1 0 1 0 1 0	Divide ratio 1/1 1/2 1/4 1/8 1/16 1/32 1/64	

				Table	3.1.7	WLR r	egister
Bit	Bit name	Initial value					Description
D0	WL0	0001	Low-ton	e wind	ow wid	th selec	tion
D1	WL1		These b	its are	used t	he low-t	one record window width of the identification block. A
D2	WL2		tone car	n be ide	entified	when o	ne cycle of it is within the specified range.
D3	WL3		WL3	M/I 2	WL1	WL O	Window width (%)
			0	0	0	0	
			0	0	0	1	0.51, -0.50 0.57, -0.56
			0	0	1	0	
			-	-			0.63, -0.62
			0	0	1	1	0.69, -0.68
			0	1	0	0	0.75, -0.74
			0	1	0	1	0.81, -0.80
			0	1	1	0	0.87, -0.85
			0	1	1	1	0.93, -0.91
			1	0	0	0	0.99, -0.97
			1	0	0	1	1.06, -1.03
			1	0	1	0	1.12, -1.09
			1	0	1	1	1.18, -1.15
			1	1	0	0	1.24, -1.20
			1	1	0	1	1.30, -1.26
			1	1	1	0	1.36, -1.32
			1	1	1	1	1.42, -1.38
				n Loop			default value. Bit setting 0010 corresponds to British and setting 1100 corresponds to British Telecom Idle

WLR: Low-Tone Record Window Select Register (Address = 6h)

WHR: High-Tone Record Window Select Register (Address = 7h)

Bit	Bit name	Initial value	Description					
D0 D1 D2 D3	WH0 WH1 WH2 WH3	0001	These b identifica	High-tone window width selection These bits are used to select the high-tone record window width of the identification block. A tone can be identified when one cycle of it is within the specified range.				
			WH3	WH2	WH1	WH0	Window width (%)	
			0	0	0	0	0.51, -0.49	
			0	0	0	1	0.59, -0.56	
			0	0	1	0	0.67, -0.64	
			0	0	1	1	0.75, -0.71	
			0	1	0	0	0.83, -0.79	
			0	1	0	1	0.90, -0.86	
			0	1	1	0	0.98, -0.94	
			0	1	1	1	1.06, -1.02	
			1	0	0	0	1.14, -1.09	
			1	0	0	1	1.22, -1.17	
			1	0	1	0	1.30, -1.24	
			1	0	1	1	1.37, -1.32	
			1	1	0	0	1.45, -1.39	
			1	1	0	1	1.53, -1.46	
			1	1	1	0	1.61, -1.54	
			1	1	1	1	1.69, -1.61	
				Loop			default value. Bit setting 0010 corresponds to British and setting 1001 corresponds to British Telecom Idle	

Table 3.1.8 WHR register

3.2 Input Amp Circuit

The amp at the input stage must have its circuit configured to allow gain to be set correctly. For this reason, it requires five to six external resistors.

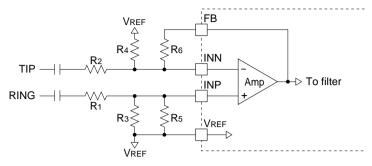


Figure 3.2.1 Input amp circuit

The gain in the input amp can be set depending on values R1 to R6 as shown below. Note that R3 and R5 may be replaced by one resistor.

$$G A MP = \frac{R5}{R1} = \frac{R6}{R2}$$
 [times] (W hen R1 = R2, R3 = R4, R5 = R6)

To set the FSK and CAS tone signal-detection levels, determine each resistance value with respect to VDD as shown below.

$$GAMP = \frac{R5}{R1} = \frac{R6}{R2} = \frac{VDD}{5} \times 0.562 [times]$$

VDD is the power supply voltage fed to the VDD pin of the S1C05250. For R3 and R4, Seiko Epson recommends using a resistance of about 100 k Ω for noise prevention.

Tables 3.2.1 and 3.2.2 show typical resistance values and amp gain for the case where VDD = 5 V and VDD = 3 V, respectively.

Iau	e 5.2.1 Resistance van	ues anu gain (VDD = 5 V)	
Parameter	Va	Condition	
T didition	Bellcore	BT	Condition
R1, R2	499 kΩ	499 kΩ	1%
R3, R4	100 kΩ	100 kΩ	1%
R5, R6	281 kΩ	281 kΩ	1%
Input amp gain	0.562 times (-5dB)	0.562 times (-5dB)	
FSK/CPM - CD ON level (Typ.)	-42.9 dBm	-45.1 dBV	
FSK/CPM - CD OFF level (Typ.)	-44.9 dBm	-47.1 dBV	
CAS - CD ON level (Typ.)	-35.8 dBm	-44.0 dBV	Tone filter gain = -4dB

Table 3.2.1 Resistance values and gain (VDD = 5 V)

Table 3.2.2 Resistance values and gain (VDD = 3 V)

Parameter	Va	Condition		
1 diameter	Bellcore	BT	Condition	
R1, R2	499 kΩ	499 kΩ	1%	
R3, R4	100 kΩ	100 kΩ	1%	
R5, R6	168 kΩ	168 kΩ	1%	
Input amp gain	0.3372 times (-9.4dB)	0.3372 times (-9.4dB)		
FSK/CPM - CD ON level (Typ.)	-42.9 dBm	-45.1 dBV		
FSK/CPM - CD OFF level (Typ.)	-44.9 dBm	-47.1 dBV		
CAS - CD ON level (Typ.)	-35.8 dBm	-44.0 dBV	Tone filter gain = -4dB	

3.3 Ring/Line Reversal Signal Detection

Figure 3.3.1 shows a typical circuit used to detect the Bellcore ring signal and British Telecom Line Reversal signal. When the S1C05250 is in power-down mode, this circuit detects the ring signal or Line Reversal signal. The Line Reversal or ring signal causes the voltage on the RDIN pin to rise, which drives the Schmitt rigger output high. This causes the Nch transistor to turn on and the #RDRC pin to change to Low level. Since the RDIN pin is normally at the Vss level, the #RDRC pin is at the High level. When the ring signal is input or the Line Reversal signal is generated, the capacitor of the #RDRC pin discharges, causing the #RDRC pin to change state from High to Low. The #RDET pin operates in the same way, except that in any mode other than power-down mode, the #RDET pin always responds to input on the RDIN pin.

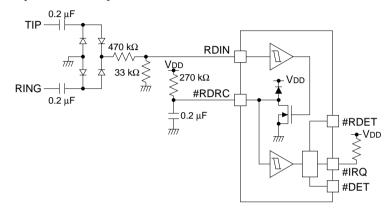


Figure 3.3.1 Ring/Line Reversal signal detection circuit

3.4 FSK Demodulation

The received FSK-modulated signal, after being processed by the band-pass filter, is demodulated by the FSK demodulation circuit. If the FSK signal is input when the PDWN pin is set to Low level and FSK mode has been selected by the host CPU, the #DET pin changes to Low level. The received data is read out from the SDO pin by the host CPU. Also, the #IRQ pin is driven Low each time one byte is received. This demodulation circuit supports a FSK-modulated signal that conforms to ITU-T V.23 or Bell202.

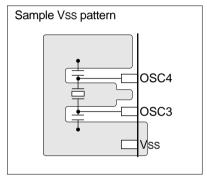
Parameter	Bellcore	BT		
Mark frequency	1200 Hz ±1%	1300 Hz ±1.5%		
Space frequency	2200 Hz ±1%	2100 Hz ±1.5%		
Receive signal level	Mark: -32 dBm to -12 dBm Space: -36 dBm to -12 dBm	Mark: -40 dBV to -14 dBV Space: -36 dBV to -8 dBV		
Signal distortion	≥25 dB	≥20 dB		
Transfer rate	1200 baud ±1%	1200 baud ±1%		

Table 3.4.1 FSK data characteristics

3.5 Dual-Tone Detection

Dual tones (Bellcore CPE alert signal (CAS), British Telecom tone alert signal) are detected using two tone filters and digital identification circuits. If dual tones are received when the PDWN pin is set low and CAS mode has been selected by the host CPU, the #DET pin and the #IRQ pin changes to Low level.

Bellcore	BT (tone alert signal)			
(CPE alert signal)	Line disconnected	Line connected		
2130 Hz ±0.5%	2130 Hz ±1.1%	2130 Hz ±0.6%		
2750 Hz ±0.5%	2750 Hz ±1.1%	2750 Hz ±0.6%		
-32 dBm to -14 dBm/tone,	-40 dBV to -2 dBV/tone,	-40 dBV to -8 dBV/tone,		
off-hook	on-hook	off-hook		
≤ -45 dBm	≤-46 dBV			
0 to 6 dB	0 to 7 dB	0 to 7 dB		
75 msec to 85 msec	88 msec to 110 msec	80 msec to 85 msec		
Yes	No	Yes		
	(CPE alert signal) 2130 Hz ±0.5% 2750 Hz ±0.5% -32 dBm to -14 dBm/tone, off-hook ≤ -45 dBm 0 to 6 dB 75 msec to 85 msec	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		

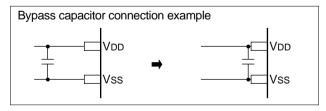

Table 3.5.1	Dual-tone characteristics

4 Precautions on Mounting

<Oscillation Circuit>

- Oscillation characteristics change depending on conditions (board pattern, components used, etc.). In particular, when a crystal oscillator is used, use the oscillator manufacturer's recommended values for constants such as capacitance.
- Disturbances of the oscillation clock due to noise may cause a malfunction. Consider the following points to prevent this:
 - (1) Components which are connected to the OSC3, OSC4 terminals, such as oscillators and capacitors, should be connected in the shortest line.
 - (2) As shown in the right hand figure, make a VSS pattern as large as possible at circumscription of the OSC3, OSC4 terminals and the components connected to these terminals.
 Eurthermore do not use this VSS pattern for any purpose other than the escillation system

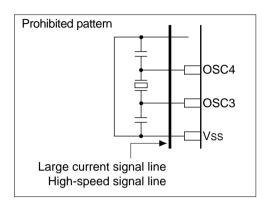
Furthermore, do not use this VSS pattern for any purpose other than the oscillation system.


(3) When supplying an external clock to the OSC3 terminal, the clock source should be connected to the OSC3 terminal in the shortest line.

Furthermore, do not connect anything else to the OSC4 terminal.

• In order to prevent unstable operation of the oscillation circuit due to current leak between OSC3 and VDD, please keep enough distance between OSC3 and VDD or other signals on the board pattern.

<Power Supply Circuit>


- Sudden power supply variation due to noise may cause malfunction. Consider the following points to prevent this:
 - (1) The power supply should be connected to the VDD, VSS and VREF terminals with patterns as short and large as possible.
 - (2) When connecting between the VDD and VSS terminals with a bypass capacitor, the terminals should be connected as short as possible.

<Arrangement of Signal Lines>

• In order to prevent generation of electromagnetic induction noise caused by mutual inductance, do not arrange a large current signal line near the circuits that are sensitive to noise such as the oscillation unit.

When a signal line is parallel with a high-speed line in long distance or intersects a high-speed line, noise may generated by mutual interference between the signals and it may cause a malfunction.
 Do not arrange a high-speed signal line especially near circuits that are sensitive to noise such as the oscillation unit.

<Precautions for Visible Radiation (when bare chip is mounted)>

- Visible radiation causes semiconductor devices to change the electrical characteristics. It may cause this IC to malfunction. When developing products which use this IC, consider the following precautions to prevent malfunctions caused by visible radiations.
 - (1) Design the product and implement the IC on the board so that it is shielded from visible radiation in actual use.
 - (2) The inspection process of the product needs an environment that shields the IC from visible radiation.
 - (3) As well as the face of the IC, shield the back and side too.

5 Electrical Characteristics

5.1 Absolute Maximum Ratings

	Та	ble 5.1.1 Absolute maximum ratings	
Parameter	Symbol	Rated value	Unit
Power supply voltage	Vdd	-0.5 to 7	V
Input voltage	VI	-0.3 to VDD+0.3	V
Total output current	ΣIVDD	±10	mA
Power dissipation	PD	250	mW
Storage temperature	TSTG	-65 to 150	°C
Solder temperature	TSOL	255	°C
Soldering time	tsol	10	Sec
Operating temperature	TOPR	-20 to 70	°C
Electrostatic withstand voltage	VE	EIAJ test (C=200pF): 150V or more	V
		MIL test (C=100pF, R=1.5kΩ): 1200V or more	

The voltages are referenced to the Vss pin as the ground level.

5.2 Recommended Operating Conditions

	Table 5.2	2.1 Recommended operating conditions		
Parameter	Symbol	Condition		Unit
Power supply voltage	Vdd	2.7 to 5.5		V
Crystal/clock frequency	f CLK	3.579545	I	MHz
Crystal/clock frequency error	ferr	±0.01		%

The voltages are referenced to the Vss pin as the ground level.

5.3 DC Characteristics

Table 5.3.1 DC characteristics

Unless otherwise noted: VDD=2.7V to 5.5V, Vss=0V, fcLk=3.579545MHz, Ta=-20 to 70°C

Parameter	Symbol		Condition	Min.	Тур.	Max.	Unit
High level input voltage (1)	VIH1		OSC3, MODE, #SCLK, SDI, PDWN, #RESET	0.8Vdd		Vdd	V
High level input voltage (2)	VIH2		RDIN, #RDRC	0.7Vdd		Vdd	V
Low level input voltage (1)	VIL1		OSC3, MODE, #SCLK, SDI, PDWN, #RESET	0		0.2Vdd	V
Low level input voltage (2)	VIL2		RDIN, #RDRC	0		0.3Vdd	V
High level input current	Ін	Vih=Vdd	RDIN, OSC3, MODE, #SCLK, SDI, PDWN, #RESET, #IRQ #RDRC (RDIN = Low)	0		0.5	μA
Low level input current	lı∟	VIL=VSS	RDIN, OSC3, MODE, #SCLK, SDI, PDWN, #RESET, #RDRC, #IRQ	-0.5		0	μA
High level output current	Юн	Voh=0.9Vdd	SDO, #DET, #RDET, #PQUAL			-1.5	mA
Low level output current	IOL	Vol=0.1Vdd	SDO, #DET, #RDET, #PQUAL, #IRQ, #RDRC	2.5			mA
VREF output voltage	VREF				Vdd/2		V
Input impedance	RIN		INP, INN	10			MΩ
	RCDIN		CDIN	140	200	260	kΩ

5.4 Current Consumption

Unless otherwise noted: '

Table 5.4.1 Current consumption

VDD=2.7V to 5.5V, Vss=0V, fcLk=3.579545MHz, Ta=-20 to 70°C	
--	--

Parameter	Symbol	Condition	Condition		Тур.	Max.	Unit
Current consumption	IOP	During power-down (PDWN = Hig			1.0	μA	
		When operating (no signal input)	Vdd=5V		3.0		mA
			VDD=3V		1.8		mA

5.5 Crystal Oscillation Characteristics

Table 5.5.1 Crystal oscillation characteristics

Unless otherwise noted: VDD=2.7V to 5	.5V, Vss=0∖	/, CG=CD=18pF, Ta=25°C				
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Oscillation start time	tsta	3.579545MHz oscillator			20	msec

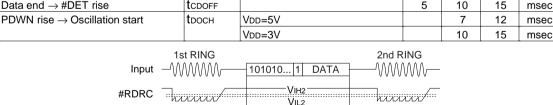
5.6 FSK Demodulation Circuit Characteristics

5.6.1 FSK AC Characteristics

Table 5.6.1 FSK AC characteristics	
------------------------------------	--

Unless otherwise noted: VDD=5.0/3.0V, Vss=0V, fcLk=3.579545MHz, Ta=-20 to 70°C

Onless otherwise hoted. VDD=3.0/3.0V, VSS=0V, ICLK=3.379343Wi12, Ta=-2010 70 C								
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit		
Transfer rate	TRATE		1188	1200	1212	Baud		
Bell 202 mark (logic 1) frequency	fB1		1188	1200	1212	Hz		
Bell 202 space (logic 0) frequency	fB0		2178	2200	2222	Hz		
ITU-T V.23 mark (logic 1) frequency	f∨1		1280	1300	1320	Hz		
ITU-T V.23 space (logic 0) frequency	f∨2		2068	2100	2132	Hz		
SN ratio	SNR		20	-	-	dB		
Carrier-detect ON sensitivity *1	CDONFSK	VDD=5V	-44.9	-42.9	-40.9	dBm		
(input level at TPI/RING)		Input amp gain (GAMP)=-5dB	-47.1	-45.1	-43.1	dBV		
		VDD=3V	-44.9	-42.9	-40.9	dBm		
		Input amp gain (GAMP)=-9.4dB	-47.1	-45.1	-43.1	dBV		
Carrier-detect OFF sensitivity *1	CDOFFFSK	VDD=5V	-46.9	-44.9	-42.9	dBm		
		Input amp gain (GAMP)=-5dB	-49.1	-47.1	-45.1	dBV		
		VDD=3V	-46.9	-44.9	-42.9	dBm		
		Input amp gain (GAMP)=-9.4dB	-49.1	-47.1	-45.1	dBV		


*1 When the gain in the input amp is set to GAMP (dB), the CDONFSK and CDOFFFSK values (Typ.) can be calculated from the equation below.

$$\begin{split} \text{CDonfsk} & [dBm] = -\text{Gamp} - 47.9 + 20 \text{log}(\frac{\text{VDD}}{5}) \text{ [dBm]}, \quad \text{CDonfsk} & [dBV] = -\text{Gamp} - 50.1 + 20 \text{log}(\frac{\text{VDD}}{5}) \text{ [dBV]} \\ \text{CDofffsk} & [dBm] = -\text{Gamp} - 49.9 + 20 \text{log}(\frac{\text{VDD}}{5}) \text{ [dBm]}, \quad \text{CDofffsk} & [dBV] = -\text{Gamp} - 52.1 + 20 \text{log}(\frac{\text{VDD}}{5}) \text{ [dBV]} \end{split}$$

5.6.2 FSK Switching Characteristics

Table 5.6.2 FSK switching characteristics

Unless otherwise noted: VDD=5.0/3.0V	, Vss=0V, fc	LK=3.579545MHz, Ta=-20 to 70°C	, C∟=50p	νF		
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
PDWN fall \rightarrow FSK	tsupd				20	msec
Carrier detect start time	t CDON		5	10	15	msec
Data and \ #DET rise	topore		5	10	15	meac

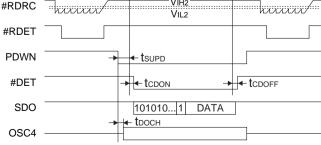


Figure 5.6.1 FSK switching characteristics

5.7 Dual-Tone (CAS) Detection Circuit Characteristics

5.7.1 CAS AC Characteristics

Linless otherwise noted: Voo-		e 5.7.1 CAS AC characteristics 0V, fcLk=3.579545MHz, Ta=-20 to	70°€			
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Carrier-detect sensitivity *1 (input level at TPI/RING)	CDONTONE	VDD=5V, Bellcore mode Input amp gain (GAMP)=-5dB Tone filter gain=-4dB	-39.8	-35.8	-35.1	dBm
		VDD=5V, BT mode *2 nput amp gain (GAMP)=-5dB Tone filter gain=-4dB	-48.0	-44.0	-40.0	dBV
		VDD=3V, BT mode *2 nput amp gain (GAMP)=-9.4dB Tone filter gain=-4dB	-39.8	-35.8	-35.1	dBm
		VDD=3V, BT mode *2 nput amp gain (GAMP)=-9.4dB Tone filter gain=-4dB	-48.0	-44.0	-40.0	dBV
Low tone frequency	f LTONE	Bellcore (±0.5%)	2119.35	2130	2140.65	Hz
		BT line disconnected	2110	2130	2150	Hz
		BT line connected (±0.6%)	2117.22	2130	2142.78	Hz
High tone frequency	f htone	Bellcore (±0.5%)	2736.25	2750	2763.75	Hz
		BT line disconnected	2720	2750	2780	Hz
		BT line connected (±0.6%)	2733.50	2750	2766.50	Hz

*1 When the gain in the input amp is set to GAMP (dB), the CDONTONE value (Typ.) can be calculated from the equation below.

(When the internal tone filter gain = -4 dB)

CDONTONE [dBm] = -GAMP - 40.8 + $20\log(\frac{VDD}{5})$ [dBm], CDONTONE [dBV] = -GAMP - 49 + $20\log(\frac{VDD}{5})$ [dBV]

*2 BT mode is selected by setting the mode register (address = 0h) bit 2 to 1. By this setting, the gain in each dualtone filter is raised +6 dB for adjustment to the British Telecom CD level.

5.7.2 CAS Switching Characteristics

Table 5.7.2 CAS switching characteristics

otherwise noted.	$V_{DD} = 5.0/3.0 V$	V = 0 V	fcLK=3.579545MHz,	T_{2-2} to 70	1° C C = 50 pE
Juliel wise holeu.	vDD=3.0/3.0v,	vss=0v,	ICLK=3.37934310112,	1a=-20 10 / 1	J C, CL=30pr

Unless otherwise noted: VDD=5.0/3.0V, Vss=0V, fcLK=3.579545MHz, Ta=-20 to 70°C, CL=50pF							
Symbol	Min.	Тур.	Max.	Unit			
t CASAQ		2.8×(N+2)+16.9		msec			
t CASDH		2.8×(31-N)+13.1		msec			
tcasw	75	80	85	msec			
	Symbol tcasaQ tcasDH	Symbol Min. tcasaq tcasbh	Symbol Min. Typ. tcasaq 2.8×(N+2)+16.9 tcasdH 2.8×(31-N)+13.1	Symbol Min. Typ. Max. tcASAQ 2.8×(N+2)+16.9 tcASDH 2.8×(31-N)+13.1			

 $N = TH0 \times 16 + TL3 \times 8 + TL2 \times 4 + TL1 \times 2 + TL0$

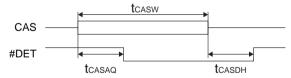


Figure 5.7.1 CAS switching characteristics

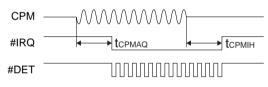
5.8 Call Progress Mode (CPM) Detection Circuit Characteristics

5.8.1 CPM AC Characteristics

Unless otherwise noted: VDD=5.0/3.0V, Vss=0V, fcLκ=3.579545MHz, Ta=-20 to 70°C							
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	
Carrier-detect ON sensitivity *1	CDONCPM	Vdd=5V	-44.9	-42.9	-40.9	dBm	
(input level at TPI/RING)		Input amp gain (GAMP)=-5dB	-47.1	-45.1	-43.1	dBV	
		VDD=3V	-44.9	-42.9	-40.9	dBm	
		Input amp gain (GAMP)=-9.4dB	-47.1	-45.1	-43.1	dBV	
Carrier-detect OFF sensitivity *1	rrier-detect OFF sensitivity *1 CDOFFCPM V		-46.9	-44.9	-42.9	dBm	
		Input amp gain (GAMP)=-5dB	-49.1	-47.1	-45.1	dBV	
		VDD=3V	-46.9	-44.9	-42.9	dBm	
		Input amp gain (GAMP)=-9.4dB	-49.1	-47.1	-45.1	dBV	

Table 5.8.1 CPM AC characteristics

*1 When the gain in the input amp is set to GAMP (dB), the CDONCPM and CDOFFCPM values (Typ.) can be calculated from the equation below.


$$\begin{split} & \text{CDonCPM} \left[dBm \right] = -\text{Gamp} - 47.9 + 20 \text{log}(\frac{\text{VDD}}{5}) \left[dBm \right], \quad \text{CDonCPM} \left[dBV \right] = -\text{Gamp} - 50.1 + 20 \text{log}(\frac{\text{VDD}}{5}) \left[dBV \right] \\ & \text{CDoffCPM} \left[dBm \right] = -\text{Gamp} - 49.9 + 20 \text{log}(\frac{\text{VDD}}{5}) \left[dBm \right], \quad \text{CDoffCPM} \left[dBV \right] = -\text{Gamp} - 52.1 + 20 \text{log}(\frac{\text{VDD}}{5}) \left[dBV \right] \end{split}$$

5.8.2 CPM Switching Characteristics

Table 5.8.2 CPM switching characteristics

Unless otherwise noted: VDD=5.0/3.0V, Vss=0V, fcLk=3.579545MHz, Ta=-20 to 70°C, CL=50pF

Parameter	Symbol	Min.	Тур.	Max.	Unit
CPM tone-detect capture time	t CPMAQ		25		msec
CPM tone end \rightarrow #IRQ rise	tсрмін		30		msec

5.9 Serial Interface Circuit Characteristics

5.9.1 Serial Interface AC Characteristics

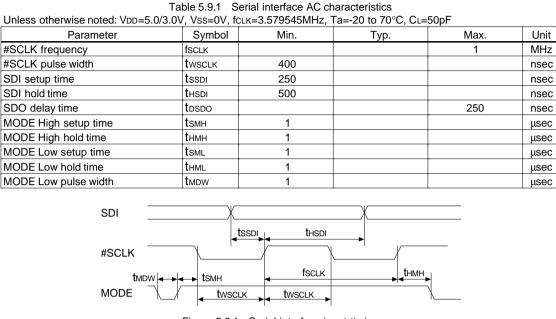


Figure 5.9.1 Serial interface input timing

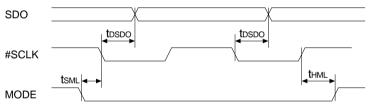


Figure 5.9.2 Serial interface output timing

5.9.2 FSK Demodulated Data Read Mode

The FSK signal fed to the INP and INN pins is demodulated into 8-bit asynchronous (start-stop) data. The demodulated data is then sampled by the internal 8-bit shift register. When the data has been stored in the shift register, the #IRQ pin changes to Low level, indicating that the data can be read by the host CPU.

If the MODE pin is set to Low level and synchronous mode has been selected (MDR[0] = 1), the host CPU reads out the 8-bit data synchronously with the clock signal fed from the host CPU to the #SCLK pin. Figure 5.9.3 shows the timing at which this data is read. Each bit of the 8-bit data is output from the SDO pin synchronously with falling edges of the #SCLK clock signal, beginning with bit 0. The host CPU latches each bit into the internal logic at rising edges of the #SCLK clock signal.

If the MODE pin is set to Low level and asynchronous mode has been set (MDR[0] = 0), the data is output from the SDO pin at a transfer rate of 1,200 baud. The clock signal from the host CPU is unnecessary. The host CPU latches the data synchronously with the start bit.

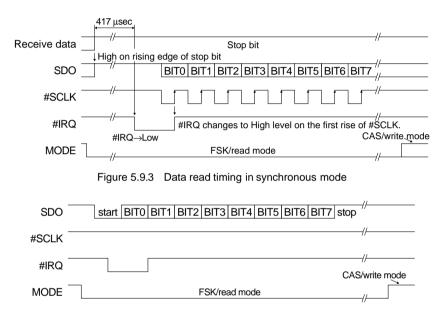
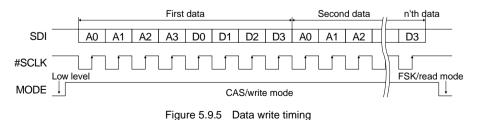



Figure 5.9.4 Data read timing in asynchronous mode

5.9.3 CAS Detection Circuit Control-Register Write Mode

The host CPU can write 4-bit data to the internal registers through the SDI pin in order to set each control bit. The host CPU must temporarily pull the MODE pin to Low level to initialize the write control circuit before it can write data. Then, after releasing the MODE pin back to High level, the host CPU must be held at High level while writing data to the internal register. The data input to the SDI pin is sampled at rising edges of the clock signal fed from the host CPU to the #SCLK pin. The first four bits of data sent from the host CPU are the address A[3:0] of the internal register to be accessed. The subsequent four bits are the data bits D[3:0] to be written to the specified register. The data is input beginning with the LSB.

5.10 S1C05250 Timing Chart

5.10.1 Bellcore On-Hook Data Transfer



Figure 5.10.1 Bellcore on-hook data transfer timing chart

5.10.2 Bellcore Off-Hook Data Transfer

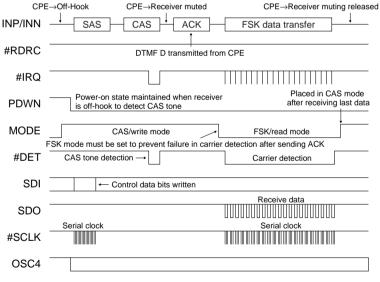


Figure 5.10.2 Bellcore off-hook data transfer timing chart

5.10.3 BT Idle State CLI Service

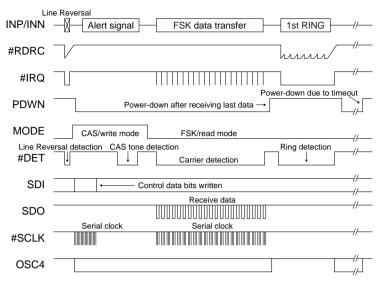


Figure 5.10.3 BT Idle State CLI service timing chart

5.10.4 BT Loop State CLI Service

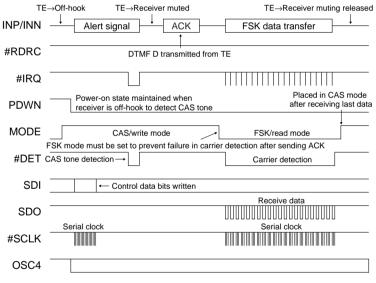
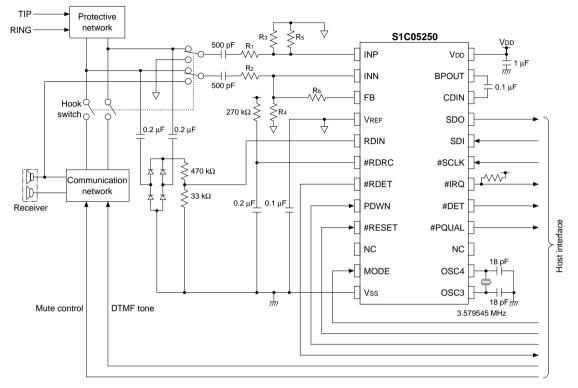
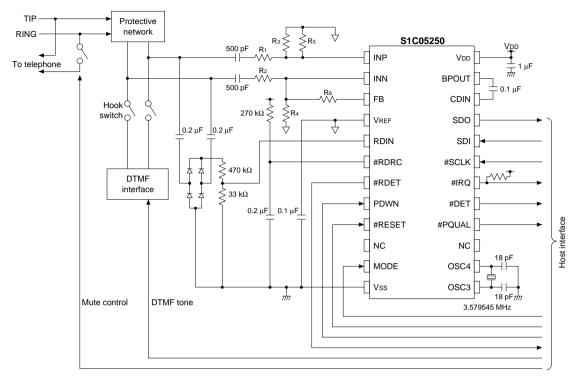



Figure 5.10.4 BT Loop State CLI service timing chart

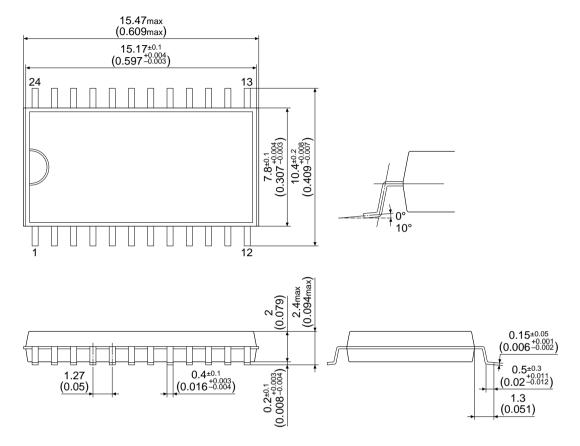

5.11 External Wiring Diagram (Example)

5.11.1 Example of Bellcore-Compatible Telephone Circuit

Figure 5.11.1 Example of Bellcore-compatible telephone circuit

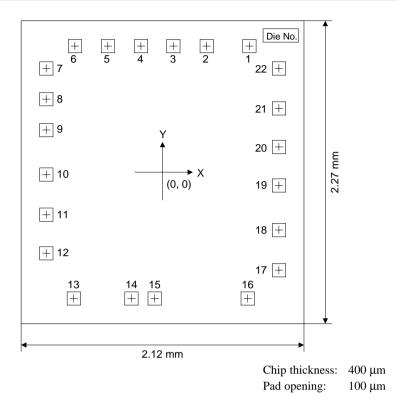
- Note: The above circuit diagram is merely an example, and does not guarantee the operation of the circuit.
- * See Section 3.2, "Input Amp Circuit", for the R1 to R6 values.

5.11.2 Example of Bellcore-Compatible Auxiliary Circuit


Figure 5.11.2 Example of Bellcore-compatible auxiliary circuit

- Note: The above circuit diagram is merely an example, and does not guarantee the operation of the circuit.
- * See Section 3.2, "Input Amp Circuit", for the R1 to R6 values.

6 Package


SOP1-24pin Plastic Package

Unit: mm (inch)

7 Pad Layout

7.1 Pad Layout Diagram

7.2 Pad Coordinates

							(Unit: µm)
Pad No.	Pad name	X coordinate	Y coordinate	Pad No.	Pad name	X coordinate	Y coordinate
1	CDIN	650	946	12	#RESET	-872	-607
2	BPOUT	330	946	13	MODE	-666	-946
3	Vdd	80	946	14	Vss	-234	-946
4	INP	-162	946	15	OSC3	-60	-946
5	INN	-410	946	16	OSC4	637	-946
6	FB	-657	946	17	#PQUAL	872	-734
7	Vref	-872	778	18	#DET	872	-433
8	RDIN	-872	548	19	#IRQ	872	-99
9	#RDRC	-872	317	20	#SCLK	872	190
10	#RDET	-872	-17	21	SDI	872	479
11	PDWN	-872	-318	22	SDO	872	778

EPSON International Sales Operations

AMERICA

EPSON ELECTRONICS AMERICA, INC.

- HEADQUARTERS -

1960 E. Grand Avenue El Segundo, CA 90245, U.S.A. Phone: +1-310-955-5300 Fax: +1-310-955-5400

- SALES OFFICES -

West

150 River Oaks Parkway San Jose, CA 95134, U.S.A. Phone: +1-408-922-0200 Fax: +1-408-922-0238

Central

101 Virginia Street, Suite 290 Crystal Lake, IL 60014, U.S.A. Phone: +1-815-455-7630 Fax: +1-815-455-7633

Northeast

301 Edgewater Place, Suite 120 Wakefield, MA 01880, U.S.A. Phone: +1-781-246-3600 Fax: +1-781-246-5443

Southeast

3010 Royal Blvd. South, Suite 170 Alpharetta, GA 30005, U.S.A. Phone: +1-877-EEA-0020 Fax: +1-770-777-2637

EUROPE

EPSON EUROPE ELECTRONICS GmbH

- HEADQUARTERS -

Riesstrasse 15 80992 Munich, GERMANY Phone: +49-(0)89-14005-0 Fax: +49-(0)89-14005-110

SALES OFFICE

Altstadtstrasse 176 51379 Leverkusen, GERMANY Phone: +49-(0)2171-5045-0 Fax: +49-(0)2171-5045-10

UK BRANCH OFFICE

Unit 2.4, Doncastle House, Doncastle Road Bracknell, Berkshire RG12 8PE, ENGLAND Phone: +44-(0)1344-381700 Fax: +44-(0)1344-381701

FRENCH BRANCH OFFICE

 1 Avenue de l' Atlantique, LP 915
 Les Conquerants

 Z.A. de Courtaboeuf 2, F-91976
 Les Ulis Cedex, FRANCE

 Phone: +33-(0)1-64862350
 Fax: +33-(0)1-64862355

BARCELONA BRANCH OFFICE

Barcelona Design Center

Edificio Prima Sant Cugat Avda. Alcalde Barrils num. 64-68 E-08190 Sant Cugat del Vallès, SPAIN Phone: +34-93-544-2490 Fax: +34-93-544-2491

ASIA

EPSON (CHINA) CO., LTD.

28F, Beijing Silver Tower 2# North RD DongSanHuan ChaoYang District, Beijing, CHINA Phone: 64106655 Fax: 64107319

SHANGHAI BRANCH

4F, Bldg., 27, No. 69, Gui Jing Road Caohejing, Shanghai, CHINA Phone: 21-6485-5552 Fax: 21-6485-0775

EPSON HONG KONG LTD.

20/F., Harbour Centre, 25 Harbour Road Wanchai, Hong Kong Phone: +852-2585-4600 Fax: +852-2827-4346 Telex: 65542 EPSCO HX

EPSON TAIWAN TECHNOLOGY & TRADING LTD.

10F, No. 287, Nanking East Road, Sec. 3 Taipei Phone: 02-2717-7360 Fax: 02-2712-9164 Telex: 24444 EPSONTB

HSINCHU OFFICE

13F-3, No. 295, Kuang-Fu Road, Sec. 2 HsinChu 300 Phone: 03-573-9900 Fax: 03-573-9169

EPSON SINGAPORE PTE., LTD.

No. 1 Temasek Avenue, #36-00 Millenia Tower, SINGAPORE 039192 Phone: +65-337-7911 Fax: +65-334-2716

SEIKO EPSON CORPORATION KOREA OFFICE

50F, KLI 63 Bldg., 60 Yoido-dong Youngdeungpo-Ku, Seoul, 150-763, KOREA Phone: 02-784-6027 Fax: 02-767-3677

SEIKO EPSON CORPORATION ELECTRONIC DEVICES MARKETING DIVISION

Electronic Device Marketing Department

IC Marketing & Engineering Group 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-(0)42-587-5816 Fax: +81-(0)42-587-5624

ED International Marketing Department Europe & U.S.A.

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-(0)42-587-5812 Fax: +81-(0)42-587-5564

ED International Marketing Department Asia

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5110

EPSON Electronic Devices Website

http://www.epson.co.jp/device/