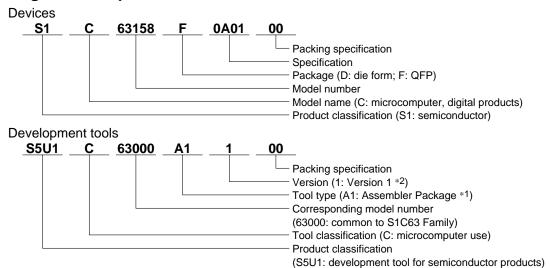


CMOS 4-BIT SINGLE CHIP MICROCOMPUTER **S5U1C63007P** Manual

(Peripheral Circuit Board for S1C63557/63558/63567)



The information of the product number change

Starting April 1, 2001, the product number will be changed as listed below. To order from April 1, 2001 please use the new product number. For further information, please contact Epson sales representative.

Configuration of product number

^{*1:} For details about tool types, see the tables below. (In some manuals, tool types are represented by one digit.)

Comparison table between new and previous number

S1C63 Family processors

Previous No.	New No.
E0C63158	S1C63158
E0C63256	S1C63256
E0C63358	S1C63358
E0C63P366	S1C6P366
E0C63404	S1C63404
E0C63406	S1C63406
E0C63408	S1C63408
E0C63F408	S1C6F408
E0C63454	S1C63454
E0C63455	S1C63455
E0C63458	S1C63458
E0C63466	S1C63466
E0C63P466	S1C6P466

Previous No.	New No.
E0C63467	S1C63467
E0C63557	S1C63557
E0C63558	S1C63558
E0C63567	S1C63567
E0C63F567	S1C6F567
E0C63658	S1C63658
E0C63666	S1C63666
E0C63F666	S1C6F666
E0C63A08	S1C63A08
E0C63B07	S1C63B07
E0C63B08	S1C63B08
E0C63B58	S1C63B58

S1C63 Family peripheral products

Previous No.	New No.
E0C5250	S1C05250
E0C5251	S1C05251

Comparison table between new and previous number of development tools

Development tools for the S1C63 Family

Previous No.	New No.
ADP63366	S5U1C63366X
ADP63466	S5U1C63466X
ASM63	S5U1C63000A
GAM63001	S5U1C63000G
ICE63	S5U1C63000H1
PRC63001	S5U1C63001P
PRC63002	S5U1C63002P
PRC63004	S5U1C63004P
PRC63005	S5U1C63005P
PRC63006	S5U1C63006P
PRC63007	S5U1C63007P
URS63366	S5U1C63366Y

Development tools for the S1C63/88 Family

Previous No.	New No.
ADS00002	S5U1C88000X1
GWH00002	S5U1C88000W2
URM00002	S5U1C88000W1

^{*2:} Actual versions are not written in the manuals.

S5U1C63007P Manual (Peripheral Circuit Board for S1C63557/63558/63567)

This manual describes how to use the S1C63 Family Peripheral Circuit Board (S5U1C63007P). This circuit board is used to provide emulation functions when it is installed in the ICE (S5U1C63000H1), a debugging tool for the 4-bit Single Chip Microcomputer S1C63 Family.

For details on ICE functions and how to operate the debugger, refer to the separately prepared manuals.

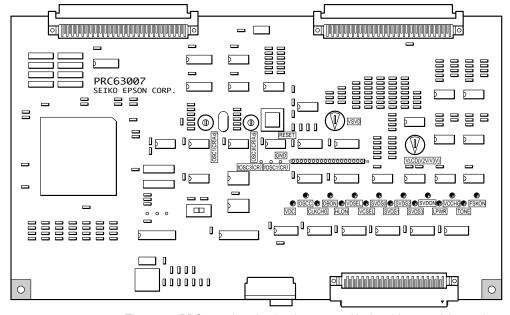
Contents

CHAPTER 1	Introduction	1
	1.1 Outline of S5U1C63007P	
	1.2 Components of S5U1C63007P	
	1.3 External View of S5U1C63007P	
CHAPTER 2	Installing S5U1C63007P	2
	2.1 Installing the S5U1C63007P in the ICE (S5U1C63000H1)	
CHAPTER 3	Precautions on Using the S5U1C63007P	
	Peripheral Circuit Board	3
	3.1 Operation Precautions	
	3.2 Differences from an Actual IC	
CHAPTER 4	Name and Function of Each Part	6
CHAPTER 5	Connecting the S5U1C63007P to the Target System	8
CHAPTER 6	Product Specifications	10

CHAPTER 1 INTRODUCTION

1.1 Outline of S5U1C63007P

The S5U1C63007P provides on a board all the peripheral circuits of S1C63 Family microcomputers other than the core CPU. By installing this board in the ICE (S5U1C63000H1) you can use it to emulate each model in the S1C63 Family. For the models that can be supported by this board, refer to "Precautions on Using the S5U1C63007P Peripheral Circuit Board" included in this package.


Note that this board can be set to your intended model by loading mask option data (generated by "FOG63XXX" software tool) into the ICE using the debugger command.

1.2 Components of S5U1C63007P

After unpacking your S5U1C63007P package, check to see that all of the following components are included.

(1) S5U1C63007P main unit	1 board
(2) I/O cable (80-pin/40-pin × 2 flat type)	1 pair
(3) Target system I/O connector (40-pin)	2 pcs.
(4) S5U1C63007P Manual (Peripheral Circuit Board for S1C63557/63558/63567)	1 сору
(5) Warranty card	1 card
(6) User registration card	1 card
(7) Precautions on Using the SSUIC63007P Peripheral Circuit Board	

1.3 External View of S5U1C63007P

* The name 'PRC63007' on the development tool is the old name of the product.

Fig. 1.3.1 External view of S5U1C63007P

CHAPTER 2 INSTALLING S5U1C63007P

2.1 Installing the S5U1C63007P in the ICE (S5U1C63000H1)

- (1) Unfasten the screws located on the left and right sides of the front panel of the ICE by turning them counterclockwise, then remove the front panel.
- (2) Insert the S5U1C63007P board into the ICE along the its uppermost guide rails until the tip of the board touches the back of the ICE. If some other board is mounted on the uppermost guide rails, remove that board by using the jig supplied with the ICE before you insert the S5U1C63007P board (see Figure 2.1.3).
- (3) Once the S5U1C63007P board has been inserted almost fully into the ICE, secure it in position by using the jig supplied with the ICE (see Figure 2.1.2).
- (4) When the above is done, replace the front panel.

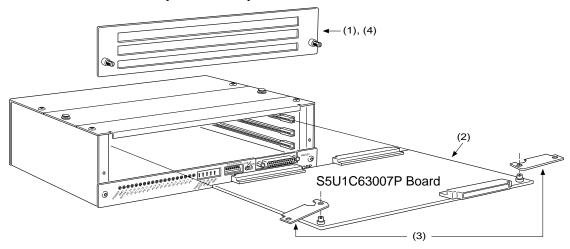


Fig. 2.1.1 Installing the S5U1C63007P board in the ICE

Installing the S5U1C63007P board

Set the jig included with the ICE into position as shown below. Using this jig as a lever, push it toward the inside of the board evenly on the left and right sides. After confirming that the S5U1C63007P board has been firmly fitted into the internal slot of the ICE, remove the jig.

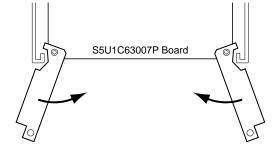


Fig. 2.1.2 Installing the S5U1C63007P board

Dismounting the S5U1C63007P board

Set the jig included with the ICE into position as shown below. Using this jig as a lever, push it toward the outside of the board evenly on the left and right sides. After confirming that the S5U1C63007P board has been dismounted from the backboard connector, pull the S5U1C63007P board out of the ICE.

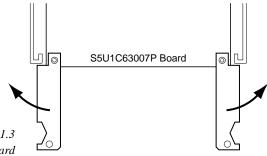


Fig. 2.1.3 Dismounting the S5U1C63007P board

CHAPTER 3 PRECAUTIONS ON USING THE S5U1C63007P PERIPHERAL CIRCUIT BOARD

Follow the precautions described below to ensure that your S5U1C63007P board is used properly. Note, however, that some functions described here may not be available with some models. For details, refer to the technical hardware manual for each model.

3.1 Operation Precautions

- (1) Always be sure to power off all connected equipment before connecting or disconnecting the cable.
- (2) Do not turn the power on and do not load any mask option data while the input ports (K00–K03) are all set to low level. It may cause a simultaneous key input reset.

3.2 Differences from an Actual IC

The S5U1C63007P emulation board differs in terms of functionality and characteristics from an actual IC, a fact with requires your attention. If these differences are ignored, there is a possibility that your circuit will not operate properly on an actual IC even though it might have performed well on the ICE.

(1) Difference in I/O

<Interface voltage>

The interface voltage between the S5U1C63007P board and the target system is fixed at +5 V. Therefore, if your emulation requires using the same interface voltage as that of an actual IC, add a level shifter circuit or some other appropriate circuit to the target system to satisfy this requirement.

<Output port drive capability>

The drive capability of each output port on the S5U1C63007P board is somewhat higher than that of an actual IC. Check the drive capacity of each output terminal on the model by referring to its technical hardware manual before you design the system and software.

<Protective diode at each port>

The S5U1C63007P board contains VDD and Vss protective diodes at all I/O ports and the interface voltage with the target is fixed at +5 V. Therefore, you cannot set the output ports on the S5U1C63007P board for open-drain output and interface them with a voltage level exceeding VDD.

<Pull-up resistance>

The pull-up resistors on the S5U1C63007P board are fixed to a resistance value of about 220 k Ω which is different from that of an actual IC. Consult the technical hardware manual to check the pull-up resistance of the actual IC.

When turning input terminals high with pull-up resistors, note that there is a difference in the time it takes to set up the high level. For example, if you configure a key matrix circuit using a combination of output and input ports, and pull the configuration high with pull-up resistors at the input ports, a difference may result in a rise time delay.

(2) Difference in current consumption

Current consumption in the S5U1C63007P board greatly differs from that in an actual IC. Check the LEDs on the S5U1C63007P board to estimate the approximate current consumption of the board. The following lists the items that greatly affect the amount of current consumption:

- Those that can be estimated by checking LEDs and monitor pins
 - a) CPU operating voltage switching circuit (VDC)...Unused
- b) OSC3 oscillation ON/OFF circuit (OSCC)
- c) CPU clock switching circuit (CLKCHG)

CHAPTER 3: PRECAUTIONS ON USING THE S5U1C63007P PERIPHERAL CIRCUIT BOARD

- d) Voltage doubler ON/OFF circuit (DBON)
- e) Voltage halver ON/OFF circuit (HLON)
- f) Oscillation system voltage regulator power supply select circuit (VDSEL)
- g) LCD system voltage regulator power supply select circuit (VCSEL)
- h) SVD criteria voltage setting circuit (SVDS0-3)
- i) SVD ON/OFF circuit (SVDON)
- j) LCD power supply ON/OFF circuit (LPWR)
- k) LCD constant-voltage switching circuit (VCCHG)
- l) DTMF tone output circuit (TONE)
- m) FSK ON/OFF circuit (FSKON)
- Those that require attention during system and software design
 - n) Currents consumed by internal pull-up resistors
 - o) Input ports in a floating state

(3) Functional difference

<LCD power supply circuit>

There is a delay between the time the LCD power supply circuit (LPWR) is turned on and the time the LCD drive waveform is output. This delay on the S5U1C63007P board is set to 107 msec. The delay on an actual IC is different, however. Consult the technical hardware manual.

<SVD circuit>

- This board also supports SVD circuit that detects the voltage supplied from outside the terminal. The reference voltage is set to approximately 1.05 V. The SVD function for the internal voltage is evaluated by artificially changing the power-supply voltage using the VSVD control on the S5U1C63007P board.
- There is a delay between the time the power to the SVD circuit is turned on and the time the SVD data is detected. This delay on the S5U1C63007P board is set to between 61 and 92 μ sec. For the delay on an actual IC, consult the technical hardware manual to ensure that there is a sufficient delay before the output voltage is detected.

<Oscillator circuit>

- There must be a waiting period between the time the OSC3 oscillation control circuit (OSCC) is turned on and the moment at which oscillation stabilizes. The oscillator on the S5U1C63007P board can operate when it is switched to OSC3 without the insertion of a waiting period. Therefore, consult the technical hardware manual to set an appropriate waiting period on the actual IC.
- Separate instructions should be used to switch the clock from OSC3 to OSC1, and to stop the OSC3 circuit from oscillating. If these operations are performed simultaneously by one instruction, care should be exercised. Although such operations are performed normally on the S5U1C63007P board, an actual IC may not perform correctly.
- When using an external clock, make sure that it is adjusted for an amplitude of 5 V \pm 5% and for a duty cycle of within 50% \pm 10%, and that it is input from the I/O connectors OSC1 and OSC3 with Vss set for GND.
- The actual IC does not support CR oscillation for both OSC1 and OSC3.
- Since the logic level on the S5U1C63007P board is high, its oscillation starting and oscillation stopping times are different from those of an actual IC.
- The S5U1C63007P board contains oscillators for the OSC1 and OSC3. If the OSC3 oscillator is not used on an actual IC, care should be exercised because operations are performed on the emulation board by using its OSC3 circuit.

<Access to undefined address space>

If undefined address space in the ROM or RAM is accessed for read or write, the read or written values become indeterminate. Furthermore, since the way these values become indeterminate is different in the S5U1C63007P board and an in actual IC, care should be exercised. Note that the ICE has a function to cause program execution to break when access to an undefined address space is attempted.

<Reset circuit>

- The S5U1C63007P board does not contain an oscillation stop detection circuit (to generate a system reset signal when the oscillation has stopped). Note that the oscillation stop detection circuit does not guarantee operation with 100% accuracy.
- The sequence of operations from when the ICE is powered on until the program starts operating is different in the S5U1C63007P board and an actual IC. The ICE enters a ready state when the user program, etc., as well as option data are loaded on the S5U1C63007P board.

<Internal power supply circuit>

- For VDC, DBON, HLON, VDSEL, and VCSEL, the S5U1C63007P board only contains registers and does not actually control the voltages. Moreover, in the actual IC S1C63557/558 that is supported S5U1C63007P, the resisters mentioned above cannot be used.
- Although the S5U1C63007P board has a control (VLCD) to adjust the LCD drive voltage, an actual IC in almost all cases does not have such an adjustment facility; therefore, be careful. Note that this control is useful for only those models whose LCD drive bias is 1/2 or 1/3.
- The operating frequency range that can be used depends on the internal power-supply voltage. Therefore, consult the technical hardware manual to ensure that your system will not be operated with an improper combination of operating frequency and internal power-supply voltage.

<FSK demodulator>

The S5U1C63007P provides the FSK demodulator shown in Figure 3.2.1 using the NPC SM8220P CMOS IC. The TIP and RING pins are provided with an exclusive connector.

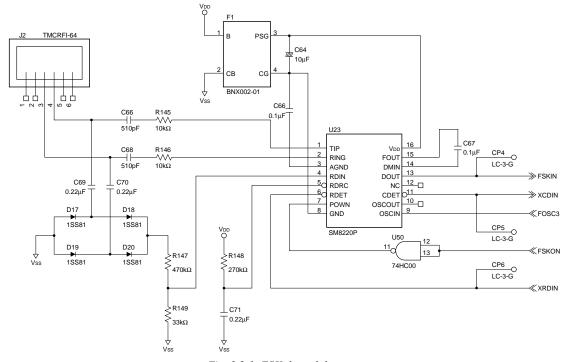


Fig. 3.2.1 FSK demodulator

CHAPTER 4 NAME AND FUNCTION OF EACH PART

This chapter describes the name and function of each part of the S5U1C63007P board.

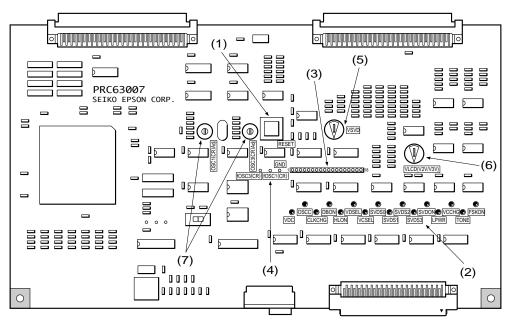


Fig. 4.1 Top view of the S5U1C63007P board

(1) RESET switch

This switch resets the internal circuits of the S5U1C63007P board, and supplies a reset signal to the ICE.

(2) Register monitor LED

The LED lights up when the corresponding register contains logic 1 and goes out when the register contains logic 0.

(3) Register monitor pin

The pin is driven high when the corresponding register contains logic 1 and driven low when the register contains logic 0.

No.	Name	No.	Name	No.	Name	No.	Name
1	VDC	5	HLON	9	SVD1	13	LPWR
2	OSCC	6	VDSEL	10	SVD2	14	VCCHG
3	CLKCHG	7	VCSEL	11	SVD3	15	TONE
4	DBON	8	SVD0	12	SVDON	16	FSKON

(4) CR oscillation frequency monitor pin

This pin allows you to monitor on an oscilloscope the clock waveform generated by the CR oscillation circuit. Output on this pin is always active regardless of how the oscillation circuit is controlled.

Name	Function	
GND	Ground (Vss)	
fosci (CR)	OSC1 CR oscillation clock	
fosc3 (CR)	OSC3 CR oscillation clock	

(5) VSVD control

This control artificially changes the power-supply voltage to check whether the power-supply voltage detection function is working properly.

Note that in a model that can detect 16 voltage levels, one position on this control indicates two voltage values. The set power-supply voltages increase when the control is turned clockwise and decrease when the control is turned counterclockwise.

(6) VLCD control

This control is used to adjust the LCD power supply voltage, and can be used only with models whose LCD drive voltage is biased 1/2 or 1/3. Note, however, that an actual IC in almost all cases has its LCD drive voltage fixed; therefore, be careful with the LCD drive voltage. The LCD display becomes dark when the control is turned clockwise and becomes light when the control is turned counterclockwise.

(7) CR oscillation frequency adjusting control

This control allows, adjustment of the CR oscillation frequency using a screwdriver, etc. The adjustment range is approx. 30 kHz to 190 kHz for the OSC1, and approx. 190 kHz to 2.6 MHz for the OSC3. Note that not all actual ICs operate in this frequency range. Therefore, consult the technical hardware manual to ensure that the oscillation frequency is adjusted within the stipulated frequency range. The oscillation frequency increases when the control is turned clockwise and decreases when the control is turned counterclockwise.

Further, the actual IC does not support CR oscillation for both OSC1 and OSC3.

CHAPTER 5 CONNECTING THE S5U1C63007P TO THE TARGET SYSTEM

This chapter describes how to connect the S5U1C63007P board to the target system.

To connect the S5U1C63007P board to the target system, use the I/O connection cable (80-pin/40-pin × 2, flat type) included with this package. Handle with this connector carefully as the power (VDD) is supplied through this connector.

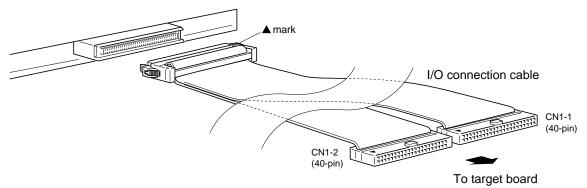


Fig. 5.1 Connecting the S5U1C63007P to the target system

Table 5.1 I/O connector pin assignment

40-pin CN1-1 connector 40-pin CN1-2 connector						
No.	Pin name	Pin function	No. Pin name Pin function			
1	V _{DD}	Power supply (+)	1	V _{DD}	Power supply (+)	
2	VDD	Power supply (+)	2	V _{DD}	Power supply (+)	
3	K00	K00 port	3	R00	R00 port	
4	K01	K01 port	4	R01	R01 port	
5	K02	K02 port	5	R02	R02 port	
6	K03	K03 port	6	R03	R03 port	
7	K10	K10 port	7	R10	R10 port	
8	K11	K11 port	8	R11	R11 port	
9	K12	K12 port	9	R12	R12 port	
10	K13	K13 port	10	R13	R13 port	
11	Vss	Power supply (–)	11	Vss	Power supply (–)	
12	Vss	Power supply (–)	12	Vss	Power supply (–)	
13	P00	P00 port	13	R20	R20 port	
14	P01	P01 port	14	R21	R21 port	
15	P02	P02 port	15	R22	R22 port	
16	P03	P03 port	16	R23	R23 port	
17	P10	P10 port	17	_	Cannot be connected	
18	P11	P11 port	18	_	Cannot be connected	
19	P12	P12 port	19	_	Cannot be connected	
20	P13	P13 port	20	_	Cannot be connected	
21	VDD	Power supply (+)	21	Vdd	Power supply (+)	
22	VDD	Power supply (+)	22	Vdd	Power supply (+)	
23	P20	P20 port	23	_	Cannot be connected	
24	P21	P21 port	24		Cannot be connected	
25	P22	P22 port	25	_	Cannot be connected	
26	P23	P23 port	26	-	Cannot be connected	
27	P30	P30 port	27	TONE	TONE terminal for DTMF	
28	P31	P31 port	28	ECLK1	External clock input (OSC1)	
29	P32	P32 port	29	XDP	XDP terminal for DTMF	
30	P33	P33 port	30	ECLK3	External clock input (OSC3)	
31	Vss	Power supply (–)	31	Vss	Power supply (–)	
32	Vss	Power supply (–)	32	Vss	Power supply (–)	
33	_	Cannot be connected	33	VC1	VC1 power supply	
34	_	Cannot be connected	34	VC23	VC23 power supply	
35	_	Cannot be connected	35	_	Cannot be connected	
36	_	Cannot be connected	36	VC4	VC4 power supply	
37	SVD	External SVD terminal	37	VC5	VC5 power supply	
38	_	Cannot be connected	38	RESET	System reset input	
39	Vss	Power supply (–)	39	Vss	Power supply (–)	
40	Vss	Power supply (–)	40	Vss	Power supply (–)	

Note that some pin names are not existed in the actual IC depending on the model. Moreover, the TIP and RING pins are connected to a different connector.

CHAPTER 6 PRODUCT SPECIFICATIONS

The components specifications of the S5U1C63007P are listed below.

S5U1C63007P

Dimension: $254 \text{ mm (wide)} \times 144.8 \text{ mm (depth)} \times 13 \text{ mm (height)}$ (including screws)

Weight: Approx. 180 g

Power supply: DC 5 V \pm 5%, less than 1 A (supplied from ICE main unit)

I/O connection cable

S5U1C63007P connector: KEL8830E-80-170LD Cable connector (80-pin): KEL8822E-80-171

Cable connector (40-pin): 3M7940-6500SC 1 pair Cable: 40-pin flat cable 1 pair

Interface: CMOS interface (5 V)
Length: Approx. 40 cm

Accessories

40-pin connector for connecting to target system:

 $3M3432\text{-}6002LCSC \times 2$

EPSON International Sales Operations

AMERICA

EPSON ELECTRONICS AMERICA, INC.

- HEADQUARTERS -

1960 E. Grand Avenue El Segundo, CA 90245, U.S.A.

Phone: +1-310-955-5300 Fax: +1-310-955-5400

- SALES OFFICES -

150 River Oaks Parkway San Jose, CA 95134, U.S.A.

Phone: +1-408-922-0200 Fax: +1-408-922-0238

Central

101 Virginia Street, Suite 290 Crystal Lake, IL 60014, U.S.A.

Phone: +1-815-455-7630 Fax: +1-815-455-7633

Northeast

301 Edgewater Place, Suite 120 Wakefield, MA 01880, U.S.A.

Phone: +1-781-246-3600 Fax: +1-781-246-5443

Southeast

3010 Royal Blvd. South, Suite 170 Alpharetta, GA 30005, U.S.A.

Phone: +1-877-EEA-0020 Fax: +1-770-777-2637

EUROPE

EPSON EUROPE ELECTRONICS GmbH

- HEADQUARTERS -

Riesstrasse 15

80992 Munich, GERMANY

Phone: +49-(0)89-14005-0 Fax: +49-(0)89-14005-110

SALES OFFICE

Altstadtstrasse 176

51379 Leverkusen, GERMANY

Phone: +49-(0)2171-5045-0 Fax: +49-(0)2171-5045-10

UK BRANCH OFFICE

Unit 2.4, Doncastle House, Doncastle Road Bracknell, Berkshire RG12 8PE, ENGLAND

Phone: +44-(0)1344-381700 Fax: +44-(0)1344-381701

FRENCH BRANCH OFFICE

1 Avenue de l' Atlantique, LP 915 Les Conquerants Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE Phone: +33-(0)1-64862350 Fax: +33-(0)1-64862355

BARCELONA BRANCH OFFICE

Barcelona Design Center

Edificio Prima Sant Cugat Avda. Alcalde Barrils num. 64-68 E-08190 Sant Cugat del Vallès, SPAIN

Phone: +34-93-544-2490 Fax: +34-93-544-2491

ASIA

EPSON (CHINA) CO., LTD.

28F, Beijing Silver Tower 2# North RD DongSanHuan

ChaoYang District, Beijing, CHINA

Phone: 64106655 Fax: 64107319

SHANGHAI BRANCH

4F, Bldg., 27, No. 69, Gui Jing Road Caohejing, Shanghai, CHINA

Phone: 21-6485-5552 Fax: 21-6485-0775

EPSON HONG KONG LTD.

20/F., Harbour Centre, 25 Harbour Road

Wanchai, Hong Kong

Phone: +852-2585-4600 Fax: +852-2827-4346

Telex: 65542 EPSCO HX

EPSON TAIWAN TECHNOLOGY & TRADING LTD.

10F. No. 287, Nanking East Road, Sec. 3

Taipei

Phone: 02-2717-7360 Fax: 02-2712-9164

Telex: 24444 EPSONTB

HSINCHU OFFICE

13F-3, No. 295, Kuang-Fu Road, Sec. 2

HsinChu 300

Phone: 03-573-9900 Fax: 03-573-9169

EPSON SINGAPORE PTE., LTD.

No. 1 Temasek Avenue, #36-00 Millenia Tower, SINGAPORE 039192

Fax: +65-334-2716 Phone: +65-337-7911

SEIKO EPSON CORPORATION KOREA OFFICE

50F, KLI 63 Bldg., 60 Yoido-dong

Youngdeungpo-Ku, Seoul, 150-763, KOREA Phone: 02-784-6027 Fax: 02-767-3677

SEIKO EPSON CORPORATION **ELECTRONIC DEVICES MARKETING DIVISION**

Electronic Device Marketing Department

IC Marketing & Engineering Group 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN

Phone: +81-(0)42-587-5816 Fax: +81-(0)42-587-5624

ED International Marketing Department Europe & U.S.A.

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN

Phone: +81-(0)42-587-5812 Fax: +81-(0)42-587-5564

ED International Marketing Department Asia

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5110

S5U1C63007P Manual (Peripheral Circuit Board for S1C63557/63558/63567)

SEIKO EPSON CORPORATION ELECTRONIC DEVICES MARKETING DIVISION

■ EPSON Electronic Devices Website

http://www.epson.co.jp/device/