MF1097-03 EPSON

CMOS 32-BIT SINGLE CHIP MICROCOMPUTER

S1C33000
Core CPU Manual

SEIKO EPSON CORPORATION

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko
Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any
liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or
circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such
as medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there
is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright
infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic
products under the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from
the Ministry of International Trade and Industry or other approval from another government agency.

© SEIKO EPSON CORPORATION 2001 All rights reserved.

CMOS 32-BIT SINGLE CHIP MICROCOMPUTER

S1C33000 Core CPU Manual

This manual explains the functions and instructions of
the S1C33000 32-hit RISC CPU which isused asthe core
of the S1C33 Family 32-hit single chip microcomputers.
Refer to the "Technical Manua" of each S1C33 Family
model for details of the hardware including the on-chip
peripheral circuits.

Conventions
This manual describes data sizes and numbers as follows:
Datasize
8 hits. Byte, B

16 bits: Half word, H
32 bits: Word, W

Numbers
Hexadecimal numbers:; 0x0000000, OXFF etc.
Binary numbers: 0b0000, 0b1111 etc.

Others are decimal numbers. However, "0b" may be
omitted if the number can be distinguished as a binary
number.

Instructions
Description of the instructions and examples uses small
letters (ato z). Capital letters can be used for actual
descriptions. See Section 4.1, "Symbol Meanings", for
symbols used as operands of the instructions and used
in the function descriptions.

The information of the product number change
Starting April 1, 2001, the product number will be changed as listed below. To order from April 1,
2001 please use the new product number. For further information, please contact Epson sales
representative.

Configuration of product number

Devices

S1 C 33104 _F 0AO01 _ 00

Packing specification

Specification

Package (D: die form; F: QFP)

Model number

Model name (C: microcomputer, digital products)
Product classification (S1: semiconductor)

Development tools
S5U1 C 33L01 D1 1 00

L

Packing specification

Version (1: Version 1 [2)

Tool type (D1: Development Tool 1)

Corresponding model number (33L01: for S1C33L01)
Tool classification (C: microcomputer use)

Product classification

(S5U1: development tool for semiconductor products)

[L: For details about tool types, see the tables below. (In some manuals, tool types are represented by one digit.)
[2: Actual versions are not written in the manuals.

Comparison table between | Comparison table between new and previous
new and previous number |number of development tools
S1C33 Family processors Development tools for the S1C33 Family
Previous No. New No. Previous No. New No. Previous No. New No.
EOC33A104 | S1C33104 ICE33 S5U1C33104H | |DMT33LIF S5U1C330L1D1
E0C33202 $1C33202 EM33-4M S5U1C33104E | |DMT33SMT S5U1C330S1D1
E0C33204 S1C33204 PRC33001 S5U1C33104P1 | | DMT33LCD26 S5U1C330L2D1
Egggg;gg ziggzggg POD33001 S5U1C33104P2 | [DMT33LCD37 S5U1C330L3D1
Foca3otor | s1c33TOL ICD33 S5U1C33000H | |EPOD33001 S5U1C33208E1
E0C332L01 S1033L01 DMT33004 S5U1C33104D1 | [EPOD33001LV |S5U1C33208E2
E0C332102 S1C33L02 DMT33004PD S5U1C33104D2 | | EPOD33208 S5U1C33208E3
E0C332S08 S1C33S01 DMT33005 S5U1C33208D1 EPOD33208LV S5U1C33208E4
E0C332129 S1C33221 DMT33005PD S5U1C33208D2 | |[EPOD332L01LV |S5U1C33L01EL
E0C33264 $1C33222 DMT33006LV S5U1C33L01D1 | [EPOD332T01 S5U1C33TO1EL
EOC332F128 | S1C33240 DMT33006PDLV S5U1C33L01D2 | |[EPOD332TO1LV |S5U1C33TO1E2
DMT33007 S5U1C33208D3 | |EPOD33209 S5U1C33209E1
: DMT33007PD S5U1C33208D4 | |[EPOD33209LV | S5U1C33209E2
Previous No. New No. DMT33008LV S5ULC33T01D1 | | EPOD332128 S5ULC33220E1
CC33 S5U1C33000C
oF33 SEU10330C1S DMT33008PDLV S5U1C33T01D2 | |[EPOD332128LV | S5U1C33220E2
COSIM33 S5U1C330C25 DMT332S08LV S5U1C33S01D1 | [EPOD332S08LV | S5U1C33S01E1
GRAPHIC33 S5U1C330G1S DMT332S08PDLV | S5U1C33S01D2 | | MEM33201 S5U1C33001M1
HMM33 S5U1C330H1S DMT33209LV S5U1C33209D1 | [MEM33201LV S5U1C33001M2
JPEG33 S5U1C330J1S DMT33209PDLV S5U1C33209D2 | | MEM33202 S5U1C33002M1
MON33 S5U1C330M2S DMT332F128LV S5U1C33240D1 | [MEM33202LV S5U1C33002M2
MELODY33 S5U1C330M1S DMT33MON S5U1C330M1D1| | MEM33203 S5U1C33003M1
PEN33 SS5ULC330P1S DMT33MONLVY S5U1C330M2D1 | | MEM33203LV S5U1C33003M2
ROS33 S5UIC330R1S DMT33AMP S5U1C330A1D1 | |MEM33DIP42 S5U1C330D1M1L
SOUND33 S5U1C330S1S DMT33AMP2 S5U1C330A2D1 | |MEM33TSOP48 |S5U1C330T1M1
SMT33 S5U1C330S2S
o33 SEU1C330T1S DMT33AMP3 S5U1C330A3D1 | |[EPOD176CABLE |S5U1C33TO0E31
USB33 S5U1C330U1S DMT33AMP4 S5U1C330A4D1 | |[EPOD100CABLE |S5U1C33S00E31
VOX33 S5ULC330VIS DMT33CF S5U1C330C1D1 | [EPOD33SRAMSY | S5U1C33000S
VRE33 S5U1C330V2S DMT33CPLD400KLV| S5U1C330C2D1 | |EPOD33SRAM3V |S5U1C33001S

CHAPTER 1

CHAPTER 2

CONTENTS

CONTENTS
OuTLINE
L1 FEAIUMES....oci it 1
1.2 BlOCK DIAQram ..c..ccueceeeeieeeeeiceeseste s ettt te e s e e s eneeneene e 2
1.3 1/O Sgnal eCifiCationcccceoereiere i 3
ARCHITECTURE
N 2 0T (= = SRS 4
2.1.1 General-purpose registers (ROt0 R15)ccccoeveveereeiecieeesese e 4
2.1.2 Program COUNEr (PC)cceieriereeieeeeeesese e ste e e e s e 4
2.1.3 Processor status register (PSR)cccccvvvevinesesiereseeseeee e 5
AR IS = Yo 00 1= 6
2.1.5 Arithmetic operation register (ALR, AHR)cccooeveveieieieceeeen 7
2.1.6 Register notation and register NUMDESoevvrreereierenereeneneneenns 8
A T - N 1Y/ oS 9
RGN AYo (0| €= SR o= oS 12
2.4 BOO AGUINESS ...ttt sttt et e e see e e e s 13
2.5 INSEIUCHION SEL ...ttt st 14
2.5. 1 Type Of INSLIUCLIONSceivieeeeeree et 14
2.5.2 AAAreSSING MOEc.covieiieieie it 16
2.5.3 Immediate extension (EXT) iNStrUCtionccoeeeveeenenenenenenenienene 18
2.5.4 Data transfer iNSIrUCtiONSoveverenereree e 21
2.5.5Logic operation iNSITUCHIONSc.ceereeirieeriee e 21
2.5.6 Arithmetic operation iNStrUCLIONSc.eovreierenenenenesese e 21
2.5.7 Multiplication and diviSiON iNSIrUCtioNSceceeeeenenenenesesenieenne 22
2.5.8 Multiplication and accumulation iNStructionc.ccceeeveeereenene 25
2.5.9 Shift and rotation INSIFUCLIONScoeierereeeeeeeee e 26
2.5.10 Bit operation iNSrUCLIONSc.ccoeveeirieireesee e 27
2.5.11 Push and pop iNSIFUCHIONS.........corvereeerieeeriee e 27
2.5.12 Branch instructions and delayed instructions............cccoceeevenenienenn. 28
2.5.13 System control INSIFUCLIONScvvveirieirieene e 31
2.5.14 SCaN INSLIUCLIONS.....c.eiviriiieeieesie e 31
2.5.15 Swvap and Mirror iNStrUCLIONScoceereeerieeree e 32

cHAPTER 3 CPU OPERATION AND PROCESSING STATUS

3.1 Processing SatuS Of CPUccccooveiiinirienieesie s 33
3.2 Program EXECULION SALUScceeeeeeeeieereerieseeseseseesesnessessessessessessessenenns 34
3.2.1 Fetching and eXecuting Program...........ccceeeeeeeeeeieeeseseseseseseeseenes 34
3.2.2 Number of instruction execution CYCIESccocevvveiinenesenerenenieenns 34
3.3 Trap (Interrupts and EXCEPLIONS)cceceieierierieceeieeseesesees e e e e e eeeneens 35
33 L TraAPtADIE . s 35
3.3.2TraP PrOCESSING ..eveiveieereiesieseeseeeeseeseeseeeeeeseesessessessessessessessessessenees 36
T =S 37
CRCRZ WA= (o X0 [AV/ESTo gl = 1ol o1 oo N 38
3.3.5 Address error EXCEPLIONccevveriereeeeeeee e st e e seees 38
3.3.6 NMI (Non-maskabl € iNtErFUPL)ecveeeeeeeieeeeere s e see e seeneas 38
3.3.7 SOftWare EXCEPLIONcvveieeiciere e 38
3.3.8 Maskable external iINtErruPLScovevvereereereeeeeece e 39

S1C33000 CORE CPU MANUAL EPSON

CONTENTS

3.4 Power DOWN MOGE........cciiieieee ettt s e 40
BALHALT MOGE ...cuiitiieiiieteseeestee sttt 40
342 LEEP MOUOE ...cveveteieiesiete ettt 40

3.5 BUSREEASE SALUSoccviiieieecieee ettt s re e 41

3.6 DEBUGGING MOUE........ocueieeeieciececeeee e e st s e 42
3.6.1 Functions of debugging MOdE.........ccccvvvverereseseereereeee e 42
3.6.2Configuration Of AFEA 2ccveerieveeieeree e 42
3.6.3 Transition from user mode to debugging mode.........cc.ccoevvvvvervrennnn. 43
3.6.4 Registersfor debuggingcccoveeevevenenie s 43
3.6.5Trapsin debugging MOEcccevevererevesere e 45
3.6.6 Smultaneous occurrence of debugging exceptionsccoceveveeenee. 45

CHAPTER 4 DETAILED EXPLANATION OF | NSTRUCTIONS 46

4.1 SYMDOI MEANINGSveveieiteiete ettt e b e e e e seene s 46
A1 1 REJISIEIS ittt e 46
1 10101 = o = | (=TSR 46
A L3 MEMOMIES ..ottt ettt ettt sttt e s be et e sbeeresaeesresanas 46
4.1.4Bitsand bit fleldscceceeiieeeece e 47
A LB FIBYS ettt b e eb e b e 47
4.1.6 Functions and OthErScccevieie e 47

4.2 INSruction CodE ClasSccceeieiieiiesie ettt 48

4.3 Referencefor Individual INStructioncccoceeeveiiciece e 53

APPENDIX

S1C33000 QUICK REFEIENCEocvvveeeeiceeeeee e Appendix-1
Memory Map and Trap Tablecccoveeveeeevceeeeecce e Appendix-1
L S 01 (= T Appendix-1
S Y100 = Appendix-2
Data Transfer INStruCtioNS........covevevereeeeireeeees e Appendix-3
Logic Operation INStrUCtIONS.......c.cieiveriereereeeeeeeeeeesese e Appendix-4
Arithmetic Operation INStrUCtioNScccvvveevevesese e Appendix-4
Shift and Rotation INSLrUCIONScccevvveerieiereereeeeee e Appendix-5
Bit Operation INStrUCtiONSccccoveverienereseee e Appendix-5
Immediate EXtension INSIrUCLIONccvveveveerieeeeeeecese e Appendix-5
Push and Pop INSLIUCLIONScccoceverienese e Appendix-5
Branch INSIrUCLIONS........ccccoviirieice e Appendix-6
Multiplication and Accumulation INStructioncccceeeeeeveresenennn, Appendix-7
System Control INSIFUCLIONSccevvecere e Appendix-7
Other INSITUCHIONSecviiiicciece e e Appendix-7
Immediate EXtension List (1) ...ccccoeeeereveerienereeseeeeieeese s sre e Appendix-8
Immediate EXteNSiON LiSt (2) ...cccvveeeveieerireseeseeeeeseeesese e e e Appendix-9

INSEFUCETION TNAEX ...ttt Appendix-10

i EPSON S1C33000 CORE CPU MANUAL

CHAPTER 1: OUTLINE

CHAPTER 1 OUTLINE

The S1C33000 is a Seiko Epson original 32-bit RISC-type core CPU for the S1C33 Family microproces-
sors. This CPU was devel oped for high-performance embedded applications such as peripheral equip-
ment for personal computers, portable equipment and other products which need high-speed data pro-
cessing with low power consumption.

The S1C33000 employs pipeline processing and |oad-store architecture that attains a MIPS val ue exceed-
ing the operating frequency. The instruction set is optimized for developing in C language, and it is
possible to generate compact object codes with the C compiler. Furthermore, the S1C33000 can imple-
ment a multiplier and has a multiplication and accumulation instruction (MAC) as an option, it makes it
possible to realize on-chip DSP functions.

The S1C33 Family microcomputers consist of the S1C33000 as the core and on-chip peripheral circuits
such as ROM, RAM and other high-performance circuits. The S1C33000 core CPU and S1C33 Family
microprocessors can realize most user demand functions in one chip.

1.1 Features

CPU type:
* Seiko Epson origina 32-bit RISC CPU
 32-hit internal data processing
Operating frequency:
» DC to 33 MHz (differs depending on the S1C33 Family model)
Instruction set:
» Code size: 16 bits per instruction (fixed)
* Number of instructions: 105 instructions are available.
* Principal instructions can be executed in one cycle.
< Animmediate extending instruction is available for immediate extension of instruction codes up
to 32 hits.
Multiplication and accumulation instruction:
* 64-bit multiplication and accumulation operation (MAC instruction) is available. (16 bits x 16
bits + 64 bits)
Register set:
« Sixteen 32-bit general-purpose registers
» Three 32-bit specia registers
» Two 32-bit arithmetic operation registers for multiplier
Memory space and external bus:
* A linear space including code, dataand 1/0 aress.
A maximum 256M B (28 bits) memory space is accessible.
Supports 8 and 16-bit external devices.
Can output 19 area select signals that allow to not expand any glue logic circuit.
DRAM and other types of memories can be driven directly (differs depending on the S1C33
Family model).
 Harvard architecture
* Little endian format
Interrupts:
 Supports Reset, NM| and 128 external interrupts.
* Four software exceptions and two execution error exceptions.
» The CPU can directly branch the program flow to the trap handler routine by reading the vector
from the trap table.
Reset:
 Cold reset (for resetting all conditions)
» Hot reset (reset except for bus and port status)
Power down mode:
 Halt mode (core CPU stops)
« Sleep mode (core CPU and high-speed oscillation circuit stop)

S1C33000 CORE CPU MANUAL EPSON 1

CHAPTER 1: OUTLINE

1.2 Block Diagram

S1C33000 Core CPU

#INTREQ

4é\mo
<+—[]Vss

INTLEV(3:0)

INTVEC(7:0)

CLK

Interrupt
Controller

Bus Control Unit

Clock
Generator

A(27:0)

D(15:0)

\ 4

[1BCLK

#WAIT

#RD

#WRL, #WRH

YyVvyY

#CE(18:4)

BTA3

#BUSREQ

\4

#BUSACK

#NMI

#RESET

Fig. 1.2.1 S1C33000 block diagram

The diagram is an overview only for principal blocks and signals, it does not indicate the actual circuit

configuration.

The actual S1C33 Family processors consist of the above blocks as the main unit and on-chip peripheral

circuits.

EPSON

S1C33000 CORE CPU MANUAL

CHAPTER 1: OUTLINE

1.3 1/0O Signal Specification

Table 1.3.1 lists the principal input/output signals related to the operation of the S1C33000 core.

Table 1.3.1 S1C33000 I/O signals

(Internal signal)

Signal name 1/0 Description
VDD [Power supply + (supply voltage is different depending on the model)
Vss | Power supply - (GND)
CLK | Input clock (clock frequency is different depending on the model)

BCLK O |Busclock
A bus cycle clock is output.

D(15:0) I1/0 |Databus
D[15:0] is a 16-bit bidirectional data bus.

A(27:0) O | Address bus
A[27:0] is a 28-bit address bus.

#WAIT | Wait cycle reguest signal
This signal is output from low-speed devices to the CPU. The CPU extends the current bus cycle while
this signal is active and waits until the device finishes the bus operation.

#RD O |Readsignd
This signal is output when the CPU reads data from the data bus. The selected device outputs data to
the data bus while this signal is active.

#WRL O |Writesignals

#WRH This signal is output when the CPU writes data to the device connected to the data bus. The selected
device inputs data from the data bus while this signal is active.
#WRL isthe low-order byte write signal and #WRH is the high-order byte write signal.
The S1C33000 also supports bus strobe signals (#WR/#BSL/#BSH).

#CE(18:4) O | Chipenablesignals
These are chip select signals corresponding to each of the 19 memory areas and are assigned when the
CPU accesses the device of each area.

#RESET | Initial reset signal
The CPU isreset when this signal goes low level.
#RESET=0 & #NMI=1: Cold reset
#RESET=0 & #NMI=0: Hot reset

BTA3 | Boot address setting signal
Specifies a boot address.
BTA3=1: Booting from internal ROM (Area 3).
BTA3=0: Booting from external ROM (Area 10).

#NMI | NMI reguest signal
Thisis the non-maskable interrupt request signal. This signal puts the CPU in trap processing status.
The signal is also used for specifying the initial reset condition.

#INTREQ | Interrupt request signal

(Internal signal) Thisis the maskable interrupt request signal from external devices to the CPU.
Usually, the on-chip interrupt controller outputs this signal in the S1C33 Family microprocessors.
When this signal is assigned and interrupt conditions are met, the CPU goes into trap processing
status.

INTLEV(3:0) | Interrupt level

(Internal signal) The interrupt level of the peripheral circuit that has requested the interrupt is input. The contents of the
signals are set to the IL field in the processor status register (PSR) when the CPU accepts the interrupt.
After that, interrupts that have lower levels than the set level are disabled.

INTVEC(7:0) | Interrupt vector number

(Internal signal) The vector number of the peripheral circuit that has requested the interrupt is input. The CPU reads the
specified vector from the trap table to branch the program to the interrupt service routine when the
CPU accepts the interrupt.

#BUSREQ | Bus request signal
Thisisthe bus request signal output from the external bus master devices.

#BUSACK O | Busacknowledge signal

Indicates that the CPU has accepted the bus request by the external bus master. The CPU changes the
bus status in high-impedance to release the bus to the external bus master while this signal is active.
The bus control returns to the CPU when the external bus master finishes the bus operation and
negates the #BUSREQ signal.

prefixed the signal names indicate that the signal is low active.

Refer to the "Technical Manual" of each S1C33 Family model for the actual input/output signals and

terminals.

S1C33000 CORE CPU MANUAL

EPSON 3

CHAPTER 2: ARCHITECTURE

CHAPTER 2 ARCHITECTURE

2.1 Register Set
The S1C33000 has sixteen 32-bit general -purpose registers and five 32-hit special registers.

General-purpose register Special register
31 0 31

R15
R14
R13
R12

[PC | Program counter
l

R11 [SP | Stack pointer
l
l

PSR | Processor status register

R10
R9
R8
R7
R6
R5
R4
R3
R2
R1
RO

ALR] Arithmetic operation low register (option)

AHR] Arithmetic operation high register (option)

Fig. 2.1.1 Register set

2.1.1 General-purpose registers (RO to R15)

16 registers RO to R15 are 32-hit general-purpose registers that can be used for any purpose, such as data
operations, data transfers and addressing memories. The register datais always handled as a 32-bit data
or an address. Data less than 32 bits is sign-expanded or zero-expanded when it is loaded to the register.
When using register data as an address, the high-order 4 bits are invalidated because the address busis 28
bit size. However, effective address size differs depending on the memory configuration of each model.
The general-purpose registers must be initialized before using if necessary, because the register datais
undefined at initial reset.

2.1.2 Program counter (PC)

31 2827 10
[Invalid | Effective address o] PC

Fig. 2.1.2.1 PC

The program counter (hereinafter described as the PC) is a 32-bit counter that maintains the address of
the instruction being executed. In the S1C33000 instruction set, all instructions are 16-bit fixed size.
Therefore, the LSB (bit 0) of the PC is always fixed at 0. Furthermore, high-order 4 bits are invalidated
because the address bus is 28-bit size. However, effective address size differs depending on the memory
configuration of each model.

Programs cannot directly access the PC. Only the following cases change the PC.

(1) At initial reset
Initial reset loads the boot address to the PC and the program starts executing from the address. The
boot address is stored in either 0x0080000 in the internal ROM or 0xOC00000 in the external ROM
according to the BTA3 terminal setting.

(2) When an instruction is executed
The PC isincremented (+2) every time the CPU executes an instruction and always indicates the
address being executed.

(3) When program branches
When the program branches the process flow such as a jump, subroutine call/return or trap processing
for interrupts and exceptions, the CPU loads the destination address to the PC.
In subroutine calls and trap processing that need a return operation, the contents of the PC are saved
in the stack and it returns to the PC when the return instruction is executed.

4 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 2: ARCHITECTURE

2.1.3 Processor status register (PSR)

The processor status register (hereinafter described as the PSR) is a 32-bit register that indicates the CPU
status and the content changes according to the instruction executed. It can be read and written using the
load instruction.
Since the PSR also affects program execution, when an interrupt or exception occurs, the contents of the
PSR are saved into the stack before branching to the handler routine. The saved contents return to the
PSR when the return (reti) instruction is executed.
At initial reset, each bit in the PSR is set to 0.
The following shows the function of each bit.
31 30 13 12 11
[-T-7 [T

0 9 8 7 6 5 4 3 2 1 0
IL(3:0) [MO[Ds| - JIEEJc]V]Z][N]
Fig. 2.1.3.1 Processor status register

"-" indicates unused bit. Writing operation isinvalid and 0 is always read.

N (bit 0): Negative flag
Indicates a sign: positive or negative. When alogic operation, arithmetic operation or a shift instruc-
tion is executed, the MSB (bit 31) of the result (loaded in the destination register) is copied to the N
flag. When a step division is executed, the sign bit of the divisor is copied to the N flag and it affects
the division.

Z (bit 1): Zero flag
Indicates that the operation result is zero. The Z flag is set to 1 when the operation result (loaded in
the destination register) of alogic operation, arithmetic operation or a shift instruction is zero, and is
reset to O when the result is not zero.

V (bit 2): Overflow flag

Indicates that an overflow or underflow has occurred. TheV flag is set to 1 when an overflow or

underflow occurs due to an execution of an addition or subtraction instruction that handles the values

as signed 32-hit integers. It isreset to 0 when the addition/subtraction result is within the signed 32-

bit data range. The following shows the conditions that set the V flag:

(1) The sign bit (MSB) of the result is O (positive) when a negative integer is added to a negative
integer.

(2) The sign bit (MSB) of the result is 1 (negative) when a positive integer is added to a positive
integer.

(3) The sign bit (MSB) of the result is 1 (negative) when a negative integer is subtracted from a
positive integer.

(4) The sign bit (MSB) of the result is O (positive) when a positive integer is subtracted from a
negative integer.

C (bit 3): Carry flag

Indicates acarry or aborrow. The C flag is set to 1 when the execution result of an addition or

subtraction instruction that handles the values as unsigned 32-bit integers exceeds the unsigned 32-bit

datarange. It isreset to 0 when the addition/subtraction result is within the unsigned 32-hit data

range. The following shows the conditions that set the V flag:

(1) When an addition instruction is executed as the result will be bigger than the unsigned 32-hit
maximum val ue OXFFFFFFFF,

(2) When a subtraction instruction is executed as the result will be smaller than the unsigned 32-bit
maximum val ue 0x00000000.

IE (bit 4): Interrupt enable bit

Enables or disables accepting maskable external interrupts. When the |E bit is set to 1, the CPU can
accept maskable external interrupts and when it isreset to 0 it cannot.
See Section 3.3.8, "Maskable external interrupts’, for details of the IE bit.

S1C33000 CORE CPU MANUAL EPSON 5

CHAPTER 2: ARCHITECTURE

DS (bit 6): Dividend sign flag
The step division copies the sign bit of the dividend to the DS flag. The DS flag affects the division.

MO (bit 7): MAC (Multiply and accumulate) overflow flag
Indicates that an overflow has occurred due to a multiply and accumul ate operation. The MO flag is
set to 1 when the temporary result of the multiply and accumulate (mac) operation exceeds the
effective range of the signed 64-hit data. The operation continues at the |ast stage regardless of the
overflow, therefore the MO flag should be read after the operation has finished to decide whether the
result isvalid or not. When the MO flag is set to 1, it is maintained until the MO flag is reset by
program or initial reset.

IL (bit 8 to bit 11): Interrupt level
Indicates the acceptable interrupt level of the CPU. Maskable external interrupt requests are accepted
only when the interrupt level is higher than the level set in the IL field. Furthermore, when an inter-
rupt is accepted, the IL field is set to the accepted interrupt level. After that, interrupts that have the
same or lower levels than the IL field are disabled until the program changesthe IL field or the
interrupt handler routine is terminated with the "reti" instruction.

2.1.4 Stack pointer

31 2827 210
[Invalid] Effecive address [0]0] SP

Fig. 2141 P

The stack pointer (hereinafter described as the SP) is a 32-bit register that maintains the stack beginning
address.

The stack is an area allocable anywhere in the RAM and is extended toward to the low address from the
address initially set in the SP according to the data number saved (pushed). When writing (pushing) data
into the stack, the SP is decremented (-4; word units) before writing data to reserve the word area for the
data. When getting (popping) data from the stack, word data is retrieved from the address specified by the
SP, and then the SP isincremented (+4) to release the word area.

A. Push to the stack

Before pushing (1) SP decrement (2) Register evacuation
Register (PC, PSR, Rx)
Address Stack Stack 31 24 23 1615 87 0 Stack
High 7 0 7 0 [H [MH [ML L] |z d
+ SP - l
> H
> MH
> ML
SP=SP-4 -, — L ~ SP
!
Low
B. Pop from the stack
Before popping (1) Return of the register (2) SP increment
Register (PC, PSR, Rx)
Address Stack Stack 31 24 23 1615 87 0 Stack
High 7 0 7 a H [MH [ML [L] . o
1 SP=SP+4 -
H H Q H
MH MH MH
ML ML ML
SP - L SP - L L
!

Low

Fig. 2.1.4.2 SP and stack

6 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 2: ARCHITECTURE

Datathat is pushed into the stack is only 32-bit internal register data, therefore the low-order 2 bits of the
SPisfixed at 0 indicating a word boundary. Furthermore the high-order 4 bits are invalidated because the
address bus is 28-hit size. However, effective address size differs depending on the memory configuration
of each model.

Data push and pop from/to the stack is done in the following cases:

(1) When the call instruction is executed
"call" is the subroutine call instruction and uses 1 word from the stack area. The "call" instruction
pushes the contents of the PC (return address; the next address of "call") into the stack before branch-
ing. The pushed addressis loaded to the PC by the "ret" (return) instruction at the end of the subrou-
tine and the program execution returns to the routine that called the subroutine.

(2) When an interrupt or exception occurs
When atrap such as an interrupt and software exception by the "int" instruction occurs, the CPU
pushes the contents of the PC and the PSR into the stack before branching to the handler routine. This
is because the trap processing changes these registers. The PC and PSR data is pushed into the stack
asshownin Figure 2.1.4.3.
The "reti" instruction that returns the PC and PSR data should be used for return from handler
routines.

Before occurrence of a trap Evacuation of PC and PSR Termination of the trap handler
Address by trap processing routine by the "reti" instruction
High Stack Stack Stack
p SP - SP -
(XXXXXXXXH) PC (XXXXXXXXH) PC - PSR is returned
SP - PSR PSR - PC s returned

(o000o0H-8) Trap handler routine

Low

Fig. 2.1.4.3 Stack operation when an interrupt or exception occurs

(3) When the " pushn" or " popn" instruction is executed
The "pushn" instruction saves the contents of RO to the specified general-purpose register. The "popn”
instruction returns the saved data to each register.

The stack area size is restricted according to the RAM size and the area used for storing general data. Pay
attention that both areas are not duplicated.

The SPisundefined at initial reset, therefore write an address (stack end address +4; low-order 2 bits are
0) at the head of the initial routine. The stack address can be written using the load instruction. When an
interrupt or an exception occurs before setting the stack, the PC and PSR are saved to an undefined
location. It cannot guarantee proper operation. Conseguently, NMI that cannot be controlled by software
is masked by the hardware until the SP isinitialized.

2.1.5 Arithmetic operation register (ALR, AHR)

The arithmetic operation low register (hereinafter described as the ALR) and arithmetic operation high
register (AHR) in the special registers are used for multiplication, division and multiplication and
accumulation operations. These are 32-bit data registers and data can be transferred from/to general-
purpose registers using the load instructions.

The multiplication instruction and the multiplication and accumulation instruction place the low-order 32
bits of the result to the ALR and the high-order 32 bits to the AHR.

The division instruction places the quotient to the ALR and the remainder to the AHR.

Atinitial reset, the ALR and AHR are undefined.

The ALR and the AHR can be used only in the models that have a built-in multiplier.

S1C33000 CORE CPU MANUAL EPSON 7

CHAPTER 2: ARCHITECTURE

2.1.6 Register notation and register number

The following shows register notation and register numbers used in the S1C33000 instruction set.
Register specification uses a 4-bit field in the instruction code. The specified register number is set in the
field. In the mnemonics, "%" must be prefixed to register names.

(1) General-purpose registers

%rs

%rd

%rb

rsisthe metasymbol indicating a general -purpose register that contains source data for opera-
tion or transfer. Actually describe as %r0 to %r15.

rd is the metasymbol indicating a general-purpose register used as destination (operated or data
|oaded). Actually describe as %r0 to %r15.

rb is the metasymbol indicating a general-purpose register that contains the base address of the
memory to be accessed. In this case, the register works as an index register.

Actually, enclose the register name to be specified with [] that indicate register indirect
addressing like [%r0] to [%r15]. The S1C33000 allows aregister indirect addressing with post
increment function for sequential memory accessing. When using this function, postfix "+"
like [%r0]+ to [%r15]+. In this case, the base address in the specified register isincremented
according to the accessed data size after the memory has been accessed.
rbisalsousedinthe"call" and "jp" instructions and indicates aregister that contains a destina-
tion address for branching. In this case, [] are not necessary, just describe as %r0 to %r15.

The register number of the general-purpose registers is the same as the number in the register name. 0
to 15 (0b0000-0b1111) entersin the register hit field of the instruction code according to the register
to be specified.

(2) Special registers

% ss

% sd

ss isthe metasymbol indicating a special register that contains source data to be transferred to
ageneral-purpose register. This symbol is used only in the "ld.w %rd, %ss" instruction.

sd is the metasymbol indicating a special register in which datais loaded from a general-
purpose register. This symbol isused only in the "ld.w %sd, %rs" instruction.

Table 2.1.6.1 shows the special register number and the actual notation.

Table 2.1.6.1 Special register number and notation

Special register name Register number Notation
Processor status register 0 Y%psr
Stack pointer 1 %sp
Arithmetic operation low register 2 Yoalr
Arithmetic operation high register 3 %ahr

0b00 enters in the high-order 2 hits of the register bit field and a register number 0-3 (0b00—-0b11)
enters in the low-order 2 hits.

EPSON S1C33000 CORE CPU MANUAL

CHAPTER 2: ARCHITECTURE

2.2 Data Type

The S1C33000 can handle 8-bit, 16-bit and 32-bit data.
This manual describes each data size as follows:

8-bit data: Byteor B

16-bit data: Half word or H

32-bit data: Word or W

Note that some other manual's describe 16-bit data as Word and 32-bit data as Long word.

Data size can be selected only in data transfers (using a load instruction) between memory and a general-
purpose register and between general-purpose registers.

Processing in the CPU coreis performed in 32 bits. Consequently, in 16-hit data transfer and 8-bit data
transfer to a general-purpose register, the transfer data is sign-extended or zero-extended into 32 bits
when it isloaded to the register. The extension type, sign or zero, is decided according to the load
instruction to be used.

In 16-bit data transfer or 8-bit data transfer from a general-purpose register, the low-order half word or
the low-order byteis transferred, respectively.

Memory is accessed in byte, half word or word units with the little endian method. The address to be
specified must be a half word boundary address (MSB is 0) for half word data accessing, and aword
boundary address (low-order 2 bits are 0) for word data accessing, otherwise an address error exception
will occur.

Figure 2.2.1 shows the types of data transfer.

(1) Unsigned 8-bit data transfer (register — register)

31 24 23 16 15 8 7 0
Source register | X [X [X [Bytedata |
I |
Zero extended @
[T 1
Destination register [00000000 | 00000000 | 00000000 [Bytedata |
31 24 23 16 15 8 7 0

(2) Signed 8-bit data transfer (register — register)

31 2423 16 15 8 7 0
Source register | X [X [X [s]Byte data |
Sign extended ; G
[T 1
Destination register [ssssssss | ssssssss | ssssssss | Bytedata |
31 2423 16 15 8 7 0

(3) 8-hit data transfer (register -~ memory)

31 24 23 16 15 8 7 0
Source register | X [X X [Bytedata |
R

7 Memory 0
Any address can be specified within the memory that can be written. Byte data

(4) Unsigned 8-bit data transfer (memory — register)

, Memory
Any address can be specified within the memory that can be read,fl Byte data
Zero extended
[T 1
Destination register [00000000 [00000000 | 00000000 | Bytedata |
31 2423 16 15 8 7 0

S1C33000 CORE CPU MANUAL EPSON 9

CHAPTER 2: ARCHITECTURE

(5) Signed 8-bit data transfer (memory - register)

; Memory
Any address can be specified within the memory that can be read. ”——I S \ Byte data
|
Sign extended ¢ - =
[T 1
Destination register [ssssssss | ssssssss | ssssssss__ | Bytedata |
31 2423 16 15 8 7 0
(6) Unsigned 16-bit data transfer (register — register)

31 16 15 0

Source register | X Half word data |

L |

Zero extended < =

[17 1
Destination register | 00000000 00000000 [Half word data |

31 16 15 0

(7) Signed 16-bit data transfer (register — register)

31 16 15 0
Source register | X [s] Half word data |

Ly |

Zero extended ¥ - =

[17 1
Destination register | SSSSSSSS SSSSSSSS [Half word data |

31 16 15 0

(8) 16-bit data transfer (register — memory)

31 16 15 8 7 0
Source register | X [Half word data |
L T) High
7 Memory 0 A
UA half word boundary address can be specified > Data(15:8)
within the memory that can be written. L ———>| Data(7:0) ol
Low

(9) Unsigned 16-bit data transfer (memory — register)
" Memory High
UA half word boundary address can be specified 7 0 A

within the memory that can be read. Data(15:8)

1]
f} Data(7:0) [
Zero extended Low
17 17 1

[
Destination register | 00000000 00000000 [Half word data |
31 16 15 8 7 0

(10) Signed 16-bit data transfer (memory - register)
UA half word boundary address can be specified
within the memory that can be read. s ‘ Data(15:8)

1]
f} Data(7:0) o
Sign extended v Low
T T 1

[
Destination register | SSSSSSSS SSSSSSSS [Half word data |
31 16 15 8 7 0

Memory 0 High
1

(11) 32-bit data transfer (register — register)

31 0

Source register | Word data |

L |

[1

Destination register | Word data |
31 0

10 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 2: ARCHITECTURE

(12) 32-bit data transfer (register -~ memory)

Destination register | Word data
31 2423 16 15 8 7 0

31 24 23 16 15 8 7 0
Source register | Word data |
L IL IL IL | :
— —— —— 7 Memory 0 Hngh
>| Data(31:24)
>| Data(23:16)
>| Data(15:8)
Data(7:0) o i
OA word boundary address can be specified within the memory that can be written. Low
(13) 32-bit data transfer (memory - register)
- L Memory High
OA word boundary address can be specified within the memory that can be read. |7 1
1| Data(31:24)
1| Data(23:16)
1| Data(15:8)
Data(7:0) ot
J L J L J & Low
[T T T \l

Fig. 2.2.1 Data transfer type

S1C33000 CORE CPU MANUAL EPSON

11

CHAPTER 2: ARCHITECTURE

2.3 Address Space

The S1C33000 has a 28-bit (256MB) address space.
Memories are all allocated within the space. Furthermore the S1C33000 employs a memory mapped |/O
method, thus control registers of 1/0 modules are also allocated in this space and they can be accessed as
well as general memories.
Figure 2.3.1 shows the basic memory map.

Area No.

Area 18

Area 17

Area 16

Area 15

Area 14

Area 13

Area 12

Area 11

Area 10

Area 9

Area 8

Area 7

Area 6

Area 5

Area 4

Area 3

Area 2

Area 1

Area 0

Address
OxFFFFFFF
0xC000000
OxBFFFFFF
0x8000000
Ox7FFFFFF
0x6000000
Ox5FFFFFF
0x4000000
Ox3FFFFFF
0x3000000
Ox2FFFFFF
0x2000000
Ox1FFFFFF
0x1800000
Ox17FFFFF
0x1000000
OxOFFFFFF
0x0C00000
OxO0BFFFFF
0x0800000
0x07FFFFF
0x0600000
Ox05FFFFF
0x0400000
0x03FFFFF
0x0300000
0x02FFFFF
0x0200000
Ox01FFFFF
0x0100000
OxO00FFFFF
0x0080000
0x007FFFF
0x0060000
0x005FFFF
0x0040000
0x003FFFF
0x0000000

External memory

External memory

External memory

External memory

External memory

External memory

External memory

External memory

External memory

External memory

External memory

External memory

External I/O

External memory

External memory

Internal ROM

Reserved area for ICE

Internal peripheral circuit

Internal RAM

Fig. 2.3.1 Memory map

Area size
64MB

64MB

32MB

32MB

16MB

16MB

8MB

8MB

4MB

4MB

2MB

2MB

1MB

1MB

1MB

512KB

128KB

128KB

256KB

Asshown in the figure, the S1C33000 manages the address space by dividing it into 19 areas. The type of
modules that can be connected are predefined in each area. Area 0 isfor theinternal RAM in the S1C33
Family, Area 1 isfor internal peripheral circuits and Area 3 isfor the internal ROM.

Area 10 can be used as an external ROM areaincluding a boot address.

Area 2 isan internal area, but do not use it because Area 2 isreserved for ICE software (See Section 3.6,

"Debugging Mode").

Each area for external modules can specify the device type to be used, data size and number of wait
cycles. The specifiable items differ depending on the S1C33 Family model.

The S1C33000 has a built-in address decoder, it makes it possible to output 19 select signals correspond-
ing to the 19 areas. Thus the system that follows the basic memory map does not need any external glue
logic, and external devices can be directly connected.

The internal memory capacity, /O memory size and address bus size differ depending on the S1C33
Family model. Therefore, the memory map shown in Figure 2.3.1 does not apply to all models. Refer to
the "Technical Manual" of each model for the actual memory map.

12

EPSON

S1C33000 CORE CPU MANUAL

2.4 Boot Address

CHAPTER 2: ARCHITECTURE

In the S1C33000, the trap table location can be selected from either Area 3 (internal ROM) or Area 10
(external ROM) by the BTA3 terminal setting. The trap table begins from the head of the area and the
reset vector for booting is placed at the head of the table, so the boot addressis placed at the beginning

address of the selected area.

Table 2.4.1 Boot address setting

Terminal level

Area selected

Boot address

BTA3=1 (High)

Area 3 (internal ROM)

0x0080000

BTA3=0 (Low)

Area 10 (external ROM)

0x0C00000

General models of the S1C33 Family have a built-in ROM and can boot from both areas.

Models that have no built-in ROM can only boot from the external ROM.
Refer to the "Technical Manual" of each model for boot address settings.

S1C33000 CORE CPU MANUAL

EPSON

13

CHAPTER 2: ARCHITECTURE

2.5

| nstruction Set

The S1C33000 instruction set contains 61 basic instructions (105 instructionsin al). The instruction
codes are al fixed at the 16-bit size. The CPU can execute the principal instructionsin 1 cycle with
pipeline processing and load-store type architecture. The instruction set has an optimized code system
that can generate compact object codes even if developing in C language.

This section explains the function overview of the S1C33000 instruction set.

See Chapter 4, "Detailed Explanation of Instructions", for details of each instruction.

2.5.1 Type of instructions

Table 2.5.1.1 lists the instructions.

Table 2.5.1.1 Instruction list

Classification Mnemonic Function
Logic and %rd, %rs AND between general-purpose registers
operation %rd, sign6 AND between general-purpose register and immediate data (with sign extension)
or %rd, %rs OR between general-purpose registers
%rd, sign6 OR between general-purpose register and immediate data (with sign extension)
xor %rd, %rs XOR between general-purpose registers
%rd, sign6 XOR between general-purpose register and immediate data (with sign extension)
not %rd, %rs NOT for general-purpose registers
%rd, sign6 NOT for immediate data (with sign extension)
Arithmetic | add %rd, %rs Addition between general-purpose registers
operation %rd, imm6 Addition of immediate data to general-purpose registers (with zero extension)
%sp, imm10 Addition of immediate data to SP (with zero extension)
adc %rd, %rs Addition with carry between general-purpose registers
sub %rd, %rs Subtraction between general -purpose registers
%rd, imm6 Subtraction of immediate data from general-purpose register (with zero extension)
%sp, imm10 Subtraction of immediate data from SP (with zero extension)
shc %rd, %rs Subtraction with borrow between general -purpose registers
cmp | %rd, %rs Comparison between general -purpose registers
%rd, sign6 Comparison between general -purpose register and immediate data (with sign extension)
mit.h | %rd, %rs Multiplication for signed integers (16 bits x 16 bits = 32 hits) <option>
mitu.h | %rd, %rs Multiplication for unsigned integers (16 bits x 16 bits = 32 hits) <option>
mitw | %rd, %rs Multiplication for signed integers (32 bits x 32 bits = 64 hits) <option>
mltu.w | %rd, %rs Multiplication for unsigned integers (32 bits x 32 bits = 64 hits) <option>
div0s | %rs Signed division 1st step <option>
divOu | %rs Unsigned division 1st step <option>
divl | %rs Step division execution <option>
div2s | %rs Data correction 1 for signed division result <option>
div3s Data correction 2 for signed division result <option>
Shift srl %rd, %rs Logical shift to right (shift count is specified with register)
& Rotate %rd, imm4 Logical shift to right (shift count is specified with immediate data)
sl %rd, %rs Logical shift to left (shift count is specified with register)
%rd, imm4 Logical shift to left (shift count is specified with immediate data)
sra %rd, %rs Arithmetic shift to right (shift count is specified with register)
%rd, imm4 Arithmetic shift to right (shift count is specified with immediate data)
sla %rd, %rs Arithmetic shift to left (shift count is specified with register)
%rd, imm4 Arithmetic shift to left (shift count is specified with immediate data)
rr %rd, %rs Rotation to right (shift count is specified with register)
%rd, imm4 Rotation to right (shift count is specified with immediate data)
rl %rd, %rs Rotation to left (shift count is specified with register)
%rd, imm4 Rotation to left (shift count is specified with immediate data)
Branch jrat sign8 PC relative conditional jump; Branch condition: 1Z & (N * V)
jrgt.d (".d" allows delayed branch.)
jrge sign8 PC relative conditional jump; Branch condition: (N * V)
jrged (".d" allows delayed branch.)
jrit sign8 PC relative conditional jump; Branch condition: N~V
jrit.d (".d" allows delayed branch.)
jrie sign8 PC relative conditional jump; Branch condition: Z |N *V
jrled (".d" allows delayed branch.)
jrugt |sign8 PC relative conditional jump; Branch condition: 1Z & !C
jrugt.d (".d" allows delayed branch.)
jruge |[sign8 PC relative conditional jump; Branch condition: !C
jruge.d (".d" allows delayed branch.)
14 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 2: ARCHITECTURE

Classification Mnemonic Function
Branch jrult |sign8 PC relative conditional jump; Branch condition: C
jrult.d (".d" allows delayed branch.)
jrule |[sign8 PC relative conditional jump; Branch condition: Z | C
jruled (".d" allows delayed branch.)
jreq sign8 PC relative conditional jump; Branch condition: Z
jreq.d (".d" allows delayed branch.)
jrne [sign8 PC relative conditional jump; Branch condition: !Z
jrne.d (".d" allows delayed branch.)
ip sign8 PC relative jump (".d" allows delayed branch.)
jp.d %rb Absolute jump (".d" alows delayed branch.)
call sign8 PC relative call (".d" allows delayed branch.)
cal.d |%rb Absolute call (".d" allows delayed branch.)
ret Return from subroutine
ret.d (".d" allows delayed branch.)
reti Return from interrupt/exception handler routine
retd Return from debugging routine
int imm2 Software exception
brk Debugging exception
Data Id.b %rd, %rs General-purpose register (byte) . General-purpose register (with sign extension)
transfer %rd, [Yorb Memory (byte) — General-purpose register (with sign extension)
%rd, [Yorb]+ "+" is specification for address post-increment function.
%rd,[%sp+imm6] | Stack (byte) - General-purpose register (with sign extension)
%rb], %rs General-purpose register (byte) - Memory
%rb]+, %rs "+" is specification for address post-increment function.
Y%sp+immé],%rs| General-purpose register (byte) - Stack
Id.ub | %rd, %rs General-purpose register (byte) . General-purpose register (with zero extension)
%rd, [Yorb Memory (byte) -~ General-purpose register (with zero extension)
%rd, [Yorb]+ "+" is specification for address post-increment function.
%rd,[%sp+imm6] | Stack (byte) — General-purpose register (with zero extension)
Id.h %rd, %rs General-purpose register (half word) - General-purpose register (with sign extension)
%rd, [Yorb Memory (half word) - General-purpose register (with sign extension)
%rd, [Yorb]+ "+" is specification for address post-increment function.
%rd,[%sp+imm6] | Stack (half word) — General-purpose register (with sign extension)
%rb], Y%rs General-purpose register (half word) - Memory
%rb]+, %rs "+" is specification for address post-increment function.
Y%sp+immé],%rs| General-purpose register (half word) — Stack
Id.uh | %rd, %rs General-purpose register (half word) — General-purpose register (with zero extension)
%rd, [Yorb Memory (half word) - General-purpose register (with zero extension)
%rd, [Yorb]+ "+" is specification for address post-increment function.
%rd,[%sp+imm6] | Stack (half word) - General-purpose register (with zero extension)
Idw | %rd, %rs General-purpose register (word) — General-purpose register
%rd, %ss Special register (word) — General-purpose register
%sd, %rs General-purpose register (word) — Special register
%rd, sign6 Immediate data — General-purpose register (with sign extension)
%rd, [Yorb Memory (word) — General-purpose register
%rd, [Yorb]+ "+" is specification for address post-increment function.
%rd,[%sp+imm6] | Stack (word) — General-purpose register
[%rb], %rs General-purpose register (word) — Memory
%rb]+, %rs "+" is specification for address post-increment function.
Y%sp+immé],%rs| General-purpose register (word) — Stack
System nop No operation
control halt Sets CPU to HALT mode
slp Sets CPU to SLEEP mode
Immediate |ext imm13 Extends the operand (immediate data) of the following instruction.
extension
Bit btst %rb], imm3 | Tests the specified bit in the memory data (byte)
operation | bclr %rb], imm3 | Clears the specified bit in the memory data (byte)
bset %rb], imm3 | Sets the specified bit in the memory data (byte)
bnot %rb], imm3 | Reverses the specified bit in the memory data (byte)
Others scan0 | %rd, %rs "0" bit search
scanl | %rd, %rs "1" bit search
swap | %rd, %rs Swap of the byte data order in word data (upper byte - lower byte)
mirror | %rd, %rs Swap of the bit order in each byte of word data (upper bit ~ lower bit)
mac | %rs Multiplication and accumulation (16 bits x 16 bits + 64 bits - 64 bits) <option>
pushn | %rs Pushes %rs—%r0 register data into stack.
popn | %rd Pops %r0—%rd register data from stack.
S1C33000 CORE CPU MANUAL EPSON 15

CHAPTER 2: ARCHITECTURE

2.5.2 Addressing mode

The S1C33000 instruction set has six addressing modes. The CPU accesses data according to the ad-
dressing mode specified by the operand in each instruction.

(1) Immediate addressing

This mode uses an immediate data in the instruction code such asimmX (unsigned immediate data)
and signX (signed immediate data) as the source data. This mode can be used in the logic operation
(and, or, xor, not), arithmetic operation (add, sub, cmp), immediate data load ("Id.w %rd, sign6"),
shift & rotate (srl, i, sra, sla, rr, rl), bit operation (btst, bclr, bset, bnot) and immediate extension
(ext) instructions.

The number in the immediate symbols indicates the usable immediate data size (e.g. imm4 = un-
signed 4-hit data, sign6 = signed 6-hit data).

Immediate data except for shift & rotate operations can be extended using the "ext" instruction (see
the next section).

(2) Register direct addressing

This mode uses the contents of the specified register as source data. When aregister is specified as the

destination of the instruction, the operation result or transfer datais|oaded to the register. The

instructions that have an operand below are executed in this mode.

%rs rsisthe metasymbol indicating a general-purpose register that contains source data for opera-
tion or transfer. Actualy describe as %r0 to %r15.

%rd rdisthe metasymbol indicating a general-purpose register used as destination. Actually
describe as %r0 to %r15. It may be used as a source data.

%ss ssisthe metasymbol indicating a special register that contains source data to be transferred to
a general-purpose register.

%sd sdisthe metasymbol indicating a special register in which datais loaded from a general-

purpose register.

The special register names should actually be described as follows:
Processor status register Yopsr

Stack pointer %sp

Arithmetic operation low register Yoalr
Arithmetic operation high register ~ %ahr

"%" must be prefixed to the register names in order to distinguish from symbol names.

(3) Register indirect addressing

This mode accesses a memory indirectly using the register that contains an address. It is applied to
only the load instructions that have [%rb] as an operand. The register name should be enclosed with
[] in actual specification as [%r0] to [%r15].

The CPU transfers data in data type according to the load instruction using the contents of the speci-
fied register as the base address of the memory to be accessed.

In half word data transfers and word data transfers, the base address to be set in the register must be
pointed at a half word boundary (LSB is 0) and a word boundary (low-order 2 bits are 0), respec-
tively. If not, an address error exception will occur.

(4) Register indirect addressing with post-increment

The general-purpose register specifies amemory to be accessed the same as register indirect addressing.
When the data transfer has finished, this mode increments the base address in the specified register
according to the transferred data size*. Thus continuous reading/writing from/to the memory can be
done by setting the beginning address only.

Olncrement size

Byte transfer (Id.b, Id.ub): rb—rb+1
Half word transfer (Id.h, Id.uh): rbrb+2
Word transfer (Id.w): rb—rb+4

This mode should be specified by enclosing the register name with [] and postfixing "+". Actually
describe as [%r0] + to [%r15] +.

16

EPSON S1C33000 CORE CPU MANUAL

CHAPTER 2: ARCHITECTURE

(5) Register indirect addressing with displacement

This mode accesses the memory specified with aregister as the base address and an immediate data

as the displacement (the displacement is added to the base address). This mode is applied only to the

load instructions that have [%sp+imme6] as an operand excluding the case of the "ext" instruction.

Example:

ld. b % 0, [%sp+0x10] ; Loadsthe bytedatastored in the address that is specified by the
contents of the SP + 0x10 to the RO register. The 6-bit immediate
datais directly added as a displacement in the byte data transfer.

Id.h % 0, [%sp+0x10] ; Loadsthe half word data stored from the address that is specified
by the contents of the SP + 0x20 to the RO register. In half word
datatransfer, the doubled 6-bit immediate data (LSB is always 0)
is added as a displacement to specify a half word boundary.

ld.w %0, [%p+0x10] ; Loadstheword datastored from the addressthat is specified by
the contents of the SP + 0x40 to the RO register. In word data
transfer, the quadrupled 6-bit immediate data (low-order 2 bits
are always 0) is added as a displacement to specify aword
boundary.

The "ext" instruction (explained in the next section) changes the following register indirect addressing
instruction ([%rb]) to this mode using the immediate data specified in the "ext" instruction as the
displacement.

Example:

ext i mml3

ld. b % d, [% b] ; Functionsas"ld.b %rd, [%rb+imm13]".

(6) Signed PC relative addressing
This mode is applied to the branch instructions (jr*, jp, call) that have a signed 8-bit immediate data
(sign8) as the operand. Those instructions branch the program flow to the address specified by the
current PC + sign8 x 2.
The displacement (sign8) can be extended using the "ext" instruction (see the next section).

S1C33000 CORE CPU MANUAL EPSON 17

CHAPTER 2: ARCHITECTURE

2.5.3 Immediate extension (EXT) instruction

All the instruction codes are 16-bit size, so it limits the immediate size included in the code. The "ext"
instruction is mainly used to extend the immediate size.

The "ext" instruction should be described prior to the target instruction (to extend the immediate data).
The "ext" instruction can specify a 13-bit immediate data and up to two "ext" instructions can be used at
atime for more extension. The "ext" instruction is valid only if the instruction that follows the "ext"
instruction can be extended. It isinvalid for all other instructions. If three or more "ext" instructions are
described consecutively, only the two instructions at the first and the last (prior to the target instruction)
are validated. The middle "ext" instructions are ignored.

The following shows the functions of the "ext" instruction.

Note: Examples of the "ext" instruction use imml13 for the immediate data of the first "ext"
instruction and imm13' for the second "ext" instruction.

(1) Immediate extension in immediate addressing instructions

» Extension of imm®6
Target instructions: "add %rd, imm6", "sub %rd, imm6"
The above instructions can use a 6-bit immediate data by itself.
The immediate data can be extended into 19-bit size or 32-bit size by describing the "ext" instruction
prior to these instructions.

When one" ext" instruction is used:

ext i mm3

add % d, i b ; Executed as"add %rd, imm19".

The "ext" instruction extends the imm6 (6 bits) into imm19 (19 bits). The imm13in the "ext" instruc-
tion becomes the high-order 13 bits of the imm19. Theimm19 is zero-extended into 32 bits and
operation to the rd register is done in 32-hit size.

When two " ext" instructions are used:

ext i N3
ext i N3’
sub % d, i nmb ; Executed as"sub %rd, imm32".

The "ext" instructions extend the imm6 (6 bits) into imm32 (32 bits). The imm32 is configured in the
order of imm13, imm13' and imm6 from the high-order side.

Extension of sign6

Target instructions: "and %rd, sign6", "or %rd, sign6", "xor %rd, sign6", "not %rd, sign6",
"cmp %rd, sign6", "ld.w %rd, sign6"

The above instructions can use a signed 6-bit immediate data by itself.

The immediate data can be extended into signed 19 bits or signed 32 bits by describing the "ext"

instruction prior to these instructions.

When one" ext" instruction is used:

ext i mm3

and % d, si gné ; Executed as"and %rd, sign19".

The "ext" instruction extends the sign6 (signed 6-bit data) into sign19 (signed 19-hit data). The
imm13 in the "ext" instruction becomes the high-order 13 hits of the sign19. The sign19issign-
extended into 32 bits using the MSB as the sign bit (0=+, 1=-) and operation to the rd register is done
in signed 32-hit size.

When two " ext" instructions are used:

ext i mm3
ext i M3’
cnp % d, si gné ; Executed as"cmp %rd, sign32".

The "ext" instructions extend the imm6 (signed 6-bit data) into sign32 (signed 32-bit data). The
sign32 is configured in the order of imm13, imm13' and sign6 from the high-order side. The MSB of
the 1st sign13 becomes the sign bit of the sign32.

18 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 2: ARCHITECTURE

(2) Displacement extension in register indirect addressing

» Adding a displacement to [%rb]

Target instructions: 1d.* %rd, [%rb]" (Id.*: Id.b, Id.ub, Id.h, Id.uh, Id.w), "Id.* [%rb], %rs" (Id.*:
Id.b, Id.h, Id.w), "btst [%rb], imm3", "bclr [%rb], imm3", "bset [%rb], imm3",
"bnot [%rb], imm3"

The above instructions access memories in register indirect addressing mode using the contents of the

rb register as the base address.

The addressing mode changes into register indirect addressing with displacement by describing the

"ext" instruction prior to these instructions.

When one " ext" instruction is used:

ext i ml3

ld. b % d, [% b] ; Executed as"ld.b %rd, [%rb+imm13]".

The extended instruction accesses the memory specified by adding the 13-bit displacement (imm13)
to the base address stored in the rb register. The imm13 is zero-extended at the address operation.

When two " ext" instructions are used:

ext i mml3
ext i i3’
bt st [%d],imB ; Executed as"btst [%rb+imm26], imm3".

The extended instruction accesses the memory specified by adding the 26-bit displacement (imm26)
to the base address stored in the rb register. The imm26 is configured in the order of imm13 and
imm13' from the high-order side. The imm26 is zero-extended at the address operation.

This extension is not applied to the instructions for register indirect addressing with post increment
([%rb]+).

Extending the displacement of [%sp+imm6]
Target instructions: "ld.* %rd, [%sp+imm6]" (Id.*: Id.b, Id.ub, Id.h, Id.uh, Id.w)

"ld.* [%sp+imme], %rs’ (Id.*: Id.b, Id.h, Id.w)
The above instructions access memories in register indirect addressing with displacement using the
contents of the rb register as the base address and the immediate data (imme6) in the code as the 6-bit,
7-bit or 8-bit displacement.

Byte data transfer (Id.b, Id.ub): 6-hit displacement = imm6 = {imm6}
Half word datatransfer (Id.h, Id.uh): 7-bit displacement = imm6 x 2 = {imm6, 0}
Word data transfer (Id.w): 8-hit displacement = imm6 x 4 = {imme, 00}

The displacement size can be extended into 19 bits or 32 bits by describing the "ext" instruction prior
to these instructions.

When one " ext" instruction is used:

ext i mml3

ld. b % d, [Ysp+i 6] ; Executed as"ld.b %rd, [%sp+imm19]".

The extended instruction accesses the memory specified by adding the 19-bit displacement (imm19)
to the stack beginning address stored in the SP. Theimm13 in the "ext" instruction is placed at the
high-order 13 hits of the imm19 and the imm6 in the load instruction is used for the low-order 6 bits.
However in half word data transfer and word data transfer, the immé6 is used as below to prevent the
occurrence of an address error exception.

Byte data transfer (1d.b, Id.uby): imm19 = {imm13, imm6)
Half word datatransfer (Id.h, 1d.uh): imm19 = {imm13, imm6(5:1), O}
Word data transfer (Id.w): imm219 = { Imm13, imm6(5:2), 00}

Theimm19 is zero-extended at the address operation.

S1C33000 CORE CPU MANUAL EPSON 19

CHAPTER 2: ARCHITECTURE

When two " ext" instructions are used:

ext i mm3

ext i Mmi3'

ld.w [Y%p+i mb], % s; Executed as"ld.w [%sp+imm32], %rs".

The extended instruction accesses the memory specified by adding the 32-bit displacement (imm32)
to the stack beginning address stored in the SP. The imm32 is configured in the order of imm13,
imm13' and imm6 from the high-order side. However in half word data transfer and word data
transfer, the imm6 is used as below to prevent the occurrence of an address error exception.

Byte data transfer (Id.b, Id.ub): imm32 = {imm13, imm13', imm6)
Half word datatransfer (Id.h, Id.uh): imm32 = {imm13, imm13', imm6(5:1), 0}
Word data transfer (Id.w): imm32 = {1mm13, imm13', imm6(5:2), 00}

Theimm32 is handled as an unsigned 32-bit data for the address operation. If the value after adding
the displacement exceeds the effective address range (28 bits max.), the exceeded part is invalidated.

(3) Extending the instructions between registers operation into 3 operands instruction

Target instructions: "add %rd, %rs", "sub %rd, %rs’, "cmp %rd, %rs", "and %rd, %rs", "or %rd,
%rs", "xor %rd, %rs'

The above instructions operate with the contents of the rd and rs registers, and then stores the results

into the rd register.

When the "ext" instruction is described prior to the instructions, they operate with the rsregister and

the immediate datain the "ext" instruction and then the results are stored into the rd register. The

contents of the rd register do not affect the operation.

When one" ext" instruction is used:

ext i M3

add %d, %s ; Executedas'rd « rs+immil3".

Theimm13 is zero-extended into 32 bits because the operation is performed in 32-hit size.

When two " ext" instructions are used:

ext i mml3
ext i M3’
sub % d, % s ;. Executed as"rd ~ rs-immz26".

Theimm26 is configured in order of imm13 and imm13' from the high-order side.
Theimm?26 is zero-extended into 32 bits because the operation is performed in 32-hit size.

(4) Displacement extension for the PC relative branch instructions

The PC relative branch instructions that have a sign8 (signed 8-bit immediate data) as the operand
branch the program flow to the address specified by the current PC address + doubled sign8 (9-bit
displacement). The "ext" instruction extends the displacement into 22 bits (when one "ext" is used) or
32 bits (when two "ext" are used). See Section 2.5.12, "Branch instructions and delayed instructions"
for more information.

20

EPSON S1C33000 CORE CPU MANUAL

CHAPTER 2: ARCHITECTURE

2.5.4 Data transfer instructions

The S1C33000 instruction set supports data transfers between registers and between aregister and
memory. Transfer data size and data extension type can be specified by the instruction code. The classifi-
cations on the mnemonic notation are as follows:

Id.b Signed byte data transfer

Id.ub Unsigned byte data transfer

Id.h Signed half word data transfer
Id.uh Unsigned half word data transfer
Id.w Word data transfer

In asigned byte/half word transfer to a register, the source datais sign-extended into 32 bits. In an
unsigned byte/half word transfer, the source data is zero-extended into 32 bits.

In adatatransfer that specifies aregister as the source, the specified size of low-order bitsin the register
istransferred.

2.5.5 Logic operation instructions
Four types of logic operation instructions are available in the S1C33000 instruction set.

and Logical product
or Logical sum
xor Exclusive OR
not Negation

All the logic operations use a general -purpose register (R0—R15) as the destination. Two types of sources
can be used: 32-bit data in a general-purpose register or signed immediate data (6, 19 or 32 hits).

2.5.6 Arithmetic operation instructions

The S1C33000 instruction set supports addition, subtraction, comparison, multiplication and division for
arithmetic operation (see the next section for the multiplication/division instructions).
add Addition

adc Addition with carry

sub Subtraction

sbc Subtraction with borrow
cmp Comparison

The arithmetic operations are performed between general -purpose registers (RO-R15) or between a
general-purpose register and an immediate data. Furthermore the "add" and "sub" instructions supports
an operation between the SP and an immediate data. The immediate data other than word size is zero-
extended at the operation excluding the "cmp" instruction.

The "cmp" instruction compares two operands and sets/resets the flags according to the comparison
results. Generally it is used to set a condition for the conditional jump instruction. When an immediate
data other than word size is specified for the source, it is sign-extended at comparison.

S1C33000 CORE CPU MANUAL EPSON 21

CHAPTER 2: ARCHITECTURE

2.5.7 Multiplication and division instructions

Multiplication and division functions have been implemented in the S1C33000 instruction set. However,
they can be used only in the models which have a built-in multiplier by option. Refer to the "Technical
Manual" of each model for confirming whether the model has the multiplier or not.

(1) Multiplication instructions
The S1C33000 instruction set has contained four multiplication instructions.

mit.h 16 bits x 16 bits — 32 bits (signed multiplication)
mitu.h 16 bits x 16 bits — 32 bits (unsigned multiplication)
mit.w 32 bits x 32 bits - 64 bits (signed multiplication)
mitu.w 32 bits x 32 bits - 64 bits (unsigned multiplication)

These instructions use data in the specified general -purpose registers (R0-R15) for the multiplier and
the multiplicand. In 16-bit multiplication, the low-order 16 bits in the specified registers are used. The
signed multiplication instructions handle the MSBs of the multiplier and multiplicand as the sign bits.
16 bits x 16 bits of multiplication stores the result into the ALR. 32 bits x 32 bits of multiplication
stores the high-order 32 bits of the result into the AHR and the low-order 32 bitsinto the ALR.

The S1C33000 executes a 16 bits x 16 bits multiplication in one cycle and a 32 bits x 32 bitsin five
cycles.

(2) Division instructions
The signed and unsigned step division functions have been implemented in the S1C33000.
Instructions used for signed step divisions: div0s, divl, div2s, div3s
Instructions used for unsigned step divisions: divOu, divl

The following shows the executing procedure and functions of the step division:

1 Pre-process of the step division (div0s, divOu)
Prepare adividend in the ALR and adivisor in an rsregister (general-purpose register RO—R15)
before starting a step division, then execute the "div0s" (for signed division) or "divOu" (for unsigned
division) instruction.
These instructions operate as follows:

divOs (pre-processfor signed step division

 Extends the dividend in the ALR into 64 bits with asign and setsit in { AHR, ALR}.
When the dividend is a positive number, the AHR is set to 0x00000000.
When the dividend is a negative number, the AHR is set to OxFFFFFFFF.

* Setsthe sign bit of the dividend (MSB of ALR) to the DS flag in the PSR.
When the dividend is a positive number, the DS flag isreset to 0.
When the dividend is a negative number, the DS flag is reset to 1.

* Setsthe sign bit of the divisor (MSB of the rsregister) to the N flag in the PSR.
When the divisor is a positive number, the N flag isreset to 0.
When the divisor is a negative number, the N flag isreset to 1.

divOu (pre-process for unsigned step division
* Clears the AHR to 0x00000000.

* Resetsthe DSflag in the PSR to 0.

* Resetsthe N flag inthe PSR to 0.

22 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 2: ARCHITECTURE

2 Executing the step division
Execute the "div1" instruction for the necessary steps. For example, in 32 bits + 32 bits division, the
"div1" instruction should be executed 32 times.
The "div1" instruction is commonly used for signed and unsigned division.
One "div1" instruction step performs the following process:

1) Shiftsthe 64-bit data (dividend) in { AHR, ALR} 1 bit to the left (to upper side). (ALR(0) = 0)

2) Addsrstothe AHR or subtracts rs from the AHR and modifies the AHR and the ALR according to
the results.
The addition/subtraction uses the 33-hit data created by extending the contents of the AHR with
the DS flag as the sign bit and the 33-hit data created by extending the contents of the rs register
with the N flag as the sign hit.
The process varies according to the DS and N flags in the PSR as shown below. "tmp(32)" in the
explanation indicates the bit-33 value of the addition/subtraction results.

In the case of DS =0 (dividend is positive) and N = O (divisor is positive):

2-1) Executestmp={0,AHR} - {0, rs}

2-2) If tmp(32) = 1, executesAHR =tmp(31:0) and ALR(0) = 1 and then terminates.
If tmp(32) = 0, terminates without changing the AHR and ALR.

In the case of DS =1 (dividend is negative) and N = 0 (divisor is positive):

2-1) Executestmp={1, AHR} +{0, rs}

2-2) If tmp(32) = 0, executesAHR =tmp(31:0) and ALR(0) = 1 and then terminates.
If tmp(32) = 1, terminates without changing the AHR and ALR.

In the case of DS = 0 (dividend is positive) and N = 1 (divisor is negative):

2-1) Executestmp ={0,AHR} + {1, rs}

2-2) If tmp(32) = 1, executesAHR = tmp(31:0) and ALR(0) = 1 and then terminates.
If tmp(32) = O, terminates without changing the AHR and ALR.

In the case of DS =1 (dividend is negative) and N = 1 (divisor is negative):

2-1) Executestmp={1,AHR} - {1, rs}

2-2) If tmp(32) = 0, executesAHR = tmp(31:0) and ALR(0) = 1 and then terminates.
If tmp(32) = 1, terminates without changing the AHR and ALR.

In unsigned division, the results are obtained from the following registers by executing the necessary
"div1" instruction steps.
The results of unsigned division: ALR = Quotient, AHR = Remainder

In signed division, the results should be corrected as shown bel ow.

3 Correcting the results of signed division
In signed division, execute the "div2s" and "div3s" instructions sequentially to correct the results after
the necessary steps of the "div1l" instruction are executed.
Unsigned division does not need to execute the "div2s" and "div3s" instructions. If executed, they
function the same as the "nop" instruction and do not affect the operation results.

The following shows the functions of the "div2s" and "div3s" instructions:

div2s (correction stage 1 for the results of signed step division)

When the dividend is a negative number and zero resultsin adivision step (execution of divl), the
remainder (AHR) after completing all the steps may be the same as the divisor and the quotient
(AHR) may be 1 short from the actual absolute value. The "div2s" instruction corrects such aresult.

In the case of DS =0 (dividend is positive):
This problem does not occur when the dividend is a positive number, so the "div2s" instruction
terminates without any execution (same as the "nop" instruction).

S1C33000 CORE CPU MANUAL EPSON 23

CHAPTER 2: ARCHITECTURE

In the case of DS =1 (dividend is negative):
1) If N =0 (divisor is positive), executestmp = AHR +rs
If N =1 (divisor is negative), executestmp = AHR - rs

2) According to the result of step 1).
If tmpis zero, executes AHR = tmp(31:0) and ALR = ALR + 1 and then terminates.
If tmp is not zero, terminates without changing the AHR and ALR.

div3s (correction stage 2 for the result of signed step division)

Step division always stores a positive number of quotient into the ALR. When the signs of the divi-
dend and divisor are different, the result must be a negative number. The "div3s" instruction corrects
the sign in such cases.

In the case of DS = N (dividend and divisor have the same sign):
This problem does not occur, so the "div3s" instruction terminates without any execution (same as
the "nop" instruction).

In the case of DS=IN (dividend and divisor have different signs):
Reverses the sign bit of the ALR (quotient).

In signed division, the results are obtained from the following registers after executing the "div2s" and
"div3s" instructions.
The results of unsigned division: ALR = Quotient, AHR = Remainder

Execution examples of division

(1) Signed division (32 bits + 32 bits)
When the dividend has been set to the RO register and the divisor to the R1 register:

ldw %lr,%O0 ; Set thedividend to the ALR
divos %1 ; Initialization for signed division
divl % 1 ; Step division

divl % 1 ; Executing divl 32 times
div2zs %1 ; Correction 1

di v3s ; Correction 2

Executing the above instructions store the quotient into the ALR and the remainder into the AHR.
This example completes execution in 36 cycles.

In signed division, the remainder has the same sign as the dividend.
Examples: (-8) +5=-1 remainder =-3
8+ (-5) =-1 remainder =3
(2) Unsigned division (32 bits + 32 bits)
When the dividend has been set to the RO register and the divisor to the R1 register:

ld.w %lr,%0 ; Set thedividend to the ALR
divou %1 ; Initialization for signed division
divl % 1 ; Step division

divl % 1 ; Executing divl 32 times

Executing the above instructions store the quotient into the ALR and the remainder into the AHR.
This example completes execution in 34 cycles.

24

EPSON S1C33000 CORE CPU MANUAL

CHAPTER 2: ARCHITECTURE

2.5.8 Multiplication and accumulation instruction

The S1C33000 supports a multiplication and accumulation function that executes "64 bits + 16 bits x 16
bits" the specified number of times. This function realizes on-chip digital signal processing without an
external DSP chip. However, this function is only available in the models which have a built-in multi-
plier. Refer to the "Technical Manual" of each model for confirming whether the model has the multiplier
or not.

The multiplication and accumulation operation is executed by the "mac" instruction.

The"mac %rs" instruction repeats execution of the "{AHR, ALR} —~ {AHR, ALR} + H[<rs+1>]+ x
H[<rs+2>]+" operation for the count number specified by the rs register.

The repeat count should be set in the rsregister before starting multiplication and accumulation opera-
tion. Thersregister is used as a counter and is decremented by each operation. The "mac"” instruction
terminates operation when the rs register becomes 0. Thusit is possible to repeat operation up to 232-1
(4,294,967,295) times. When the "mac" instruction is executed by setting the rs register to 0, the "mac”
instruction does not perform a multiplication and accumulation operation and does not change the AHR
and the ALR. Thersregister is not decremented asit is 0.

<rs+1> and <rs+2> are the general-purpose registers which follow the rsregister.
Example: When the RO register is specified for rs; <rs+1>=R1 register, <rs+2>=R2 register
When the R15 register is specified for rs; <rs+1>=R0 register, <rs+2>=R1 register

H[<rs+1>]+ and H[<rs+2>]+ indicate the half word data stored from the base address specified by the
register.

The "mac" instruction multiplies these data as signed 16-hit data, and adds the results to the { AHR,
ALR} register pair. "+" indicates that the base address (contents of the <rs+1> and <rs+2> registers) is
incremented (+2) every time the operation step is finished.

Example: When the "mac %r0" is executed after setting R0=16, R1=0x100, R2=0x120, AHR=ALR=0:
1) {AHR,ALR} =0+ H[0x100] x H[0x120]
2) {AHR,ALR} ={AHR,ALR} + H[0x102] x H[0x122]
3) {AHR,ALR} ={AHR,ALR} + H[0x104] x H[0x124]

16) {AHR, ALR} = {AHR, ALR} + H[Ox11E] x H[Ox13E]

The operation result is obtained as a 64-bit data from the AHR for the high-order 32 bits and the ALR for
the low-order 32 bits.
The register values are changed as RO = 0, R1 = 0x120 and R2 = 0x140.

Overflow during multiplication and accumulation operation
When the temporary result overflows the signed 64-bit range during multiplication and accumulation
operation, the MO flag in the PSR is set to 1. However, the operation continues until the repeat count
that is set in the rs register goesto 0. Since the MO flag stays 1 until it is reset by software, itis
possible to check whether the result is valid or not by reading the MO flag after completing execution
of the "mac" instruction.

Interrupts during multiplication and accumulation operation
Interrupts are accepted even if the "mac" instruction is executing halfway through the repeat count.
The trap processing saves the address of the "mac" instruction into the stack as the return address
before branching to the interrupt handler routine. Thus when the interrupt handler routine is finished
by the "reti" instruction, the suspended "mac" instruction resumes execution. The content of thers
register at that point is used as the remaining repeat count, therefore if the interrupt handler routine
has modified the rs register the "mac" instruction cannot obtain the expected results. Similarly, when
the <rs+1> and/or <rs+2> registers have been modified in the interrupt handler routine, the resumed
"mac" instruction cannot be executed properly.

S1C33000 CORE CPU MANUAL EPSON 25

CHAPTER 2: ARCHITECTURE

2.5.9 Shift and rotation instructions
The S1C33000 instruction set has shift and rotation instructions for register data.
srl Logical shift to right

31 0
rd register 0| - b
sll Logical shift to left
31 0
rd register + - le-0
sra Arithmetical shift to right
31 0
rd register Iil | - S
Sign bit (MSB)
sla Arithmetical shift to left
31 0
rd register + - le-0

rr Rotation to right

\—#31 0 FJ
rd register -

rl Rotation to left
le 0 FJ
rd register -

These instructions shift the contents of the specified general-purpose registers as shown in each figure.
The shift count can be specified from 0 to 8 bits using a general -purpose register or an immediate data.

Instruction %rd, %rs Shifts/rotates the content of the rd register by the shift count specified
with the rsregister.
Bits 0 to 3 of the rs register are effective for the shift count (0 to 8).

Instruction %rd, imm4 Shifts/rotates the content of the rd register by the shift count specified
with the unsigned 4-bit immediate data (imm4).

Thersregister and imm4 specify the shift count as follows:

rs(3:0)/imm4 Shift count

Ixxx 8bits (x: 1or Q)
0111 7 bits
0110 6 bits
0101 5 bits
0100 4 hits
0011 3 bits
0010 2 bits
0001 1 hit
0000 0 bit

26 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 2: ARCHITECTURE

2.5.10 Bit operation instructions

The following four instructions are available for handling memory datain bit units. These instructions
alow direct modification of display memory bits and 1/0O control bits.

btst [%orb], imm3 Sets Z flag if the specified bit is O.
bclr [%rb], imm3 Clears the specified bit to 0.

bset [%rb], imm3 Sets the specified bit to 1.

bnot [%orb], imm3 Reverses the specified bit (1 ~ 0).

The bit operation is performed for the memory address specified by the rb (general-purpose) register. The
imm3 specifies the bit number (bit 0 to bit 7) of the byte data stored in the address.

These instructions (excluding "btest") change the specified hit only, however, the specified addressis
rewritten since the memory access is performed in byte units. Therefore, pay attention to the operation of
the address that contains an I/O control bit affected by writing.

2.5.11 Push and pop instructions

The push and pop instructions are used to evacuate and return the contents of the general-purpose
registers from/to the stack.

Push instruction pushn %rs
Saves the contents of the rsto the RO registers sequentially into the stack.

Pop instruction popn %rd
Loads the stack data to the RO to the rd registers sequentialy.

Example:
— pushn %r5 — popn %r5
Before execution After execution Before execution After execution
Stack Stack Stack Stack
SP - SP'=SP+24 _
R5 R5 R5
R4 R4 R4
R3 R3 To RO-R5 R3
R2 R2 registers R2
R1 R1 R1
SP'=SP-24 - RO SP - RO RO
! !
Low Low

Fig. 2.5.11.1 Evacuation and return of general-purpose registers

The "pushn" and "popn" instructions should be used as a pair that specify the same registers.
These instructions modify the SP according to the register count to be evacuated/returned.

Besides the push and pop instructions, some load instructions that execute in register indirect addressing
with displacement mode ([%sp+imme6]) are provided. They can load/store register data individually from/
to the stack using the SP as the base address. However in this case, the SP is not modified.

S1C33000 CORE CPU MANUAL EPSON 27

CHAPTER 2: ARCHITECTURE

2.5.12 Branch instructions and delayed instructions

Classification of branch instructions

(1) PC relativejump instructions (" jr* sign8","jp sign8")
The PC relative jJump instruction adds the signed displacement in its operand to the current PC
address (address of the branch instruction) for branching the program flow to the address. It allows
rel ocatable programming.
Since al theinstruction size isfixed at 16 bits, the sign8 specifies a half word address in 16-bit units.
Consequently, the displacement that is added to the PC becomes a signed 9-bit data (L SB is always 0)
by doubling the sign8, and it always specifies an even address. When the PC value exceeds the 28-hit
address space after adding the displacement, the exceeded part (high-order 4 hits) isinvalidated.
The displacement can be extended using the "ext" instruction as shown below.

Independent use of the branch instruction:

ip si gn8 ; Executed as"jp sign9". (sign9 = {sign8, 0})

When using a branch instruction independently, a signed 8-bit displacement (sign8) can be specified.
Since the sign8 is arelative value in 16-bit units, the specifiable branch rangeis [PC - 256 to PC +
254].

When one" ext" instruction is used:

ext i Mmi3

ip sign8 ; Executed as"jp sign22". (sign22 = {imm13, sign8, 0})

The sign8 is extended into a sign22 using the imm13 of the "ext" instruction as the high-order 13 bits.
The specifiable branch range is [PC - 2,097,152 to PC + 2,097,150].

When two " ext" instructions are used:

ext i Mmi3
ext i Mmi3'
ip sign8 ; Executed as"jp sign32".

Theimm13 of the first "ext" instruction is used as the high-order 10 bits of the sign32, therefore only
10 bits from Bit 12 to Bit3 are effective (the low-order 3 bits are ignored). The sign32 is configured as
follows:

sign32 = {imm13(12:3), imm13', sign8, O}
The specifiable branch rangeis [PC - 2,147,483,648 to PC + 2,147,483,646].

The branch ranges above are just alogical value. Actually it is limited to the memory range of the
model to be used.

Branch conditions

The"jp" instruction is an unconditional branch instruction that always branches the program.
Theinstructions that begin with "jr* are conditional branch instructions. Each instruction has a branch
condition specified with a combination of the flags, and branches the program flow only when the
condition has been met. If not, it does not branch.

Usually the conditional branch instructions are used to judge the results of the "cmp" instruction that
compares two values. For this purpose, each instruction name contains the letters that indicate the
relation.

Table 2.5.12.1 lists the conditional branch instructions and their conditions.

28 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 2: ARCHITECTURE

Table 2.5.12.1 Conditional branch instructions and conditions

Instruction Flag condition |Result of "cmp A, B" Remarks
jrat (Greater Than) 1Z& I(N"V) A>B for signed data comparison
jrge (Greater or Equal) I(N~V) A=B
jrit (Less Than) N~V A<B
jrle (Less or Equal) Z|(N"V) A<B
jrugt (Unsigned, Greater Than) 1Z&!C A>B for unsigned data comparison
jruge (Unsigned, Greater or Equal) IC A=B
jrult (Unsigned, Less Than) C A<B
jrule (Unsigned, Less or Equal) Z|C=1 A<B
jreg (Equa) z A=B for signed and
jrne (Not equal) 1Z AZB unsigned comparison

The program branches if the logic equation of the flags are true (1). (!: NOT, |: OR, &: AND, ~: XOR)

(2) Absolute jump instruction ("jp %rb")
The absolute jump instruction "jp %rb" unconditionally branches the program flow to the absolute
address specified by the rb register.
The LSB of therb register goesto 0 when the register datais loaded to the PC, and the high-order 4
bits that are out of the address range are also invalidated.

(3) PC relative call instruction (" call sign8")
The PC relative call instruction adds the signed displacement in its operand to the current PC address
(address of the branch instruction) to unconditionally branch to the subroutine that begins from the
address. It allows relocatable programming.
The address of the following instruction (or address of the second from the call instruction in delayed
branch) is saved into the stack as the return address before branching. Executing the "ret” instruction at
the end of the subroutine |oads the saved address to the PC, and the program returns from the subroutine.

Since all theinstruction sizeisfixed at 16 bits, the sign8 specifies a half word addressin 16-bit units.
Consequently, the displacement that is added to the PC becomes a signed 9-bit data (L SB is always 0)
by doubling the sign8, and it always specifies an even address. When the PC value exceeds the 28-bit
address space after adding the displacement, the exceeded part (high-order 4 bits) isinvalidated.

The displacement can be extended using the "ext" instruction the same as the PC relative jump
instruction. See "PC relative jump instructions" on the previous page for the displacement extension.

(4) Absolute call instruction (" call %rb")
The absolute call instruction "call %rb" unconditionally calls a subroutine that begins from the
absolute address specified by the rb register.
The LSB of the rb register goes to 0 when the register data is loaded to the PC, and the high-order 4
bits that are out of the address range are also invalidated.

(5) Software exception ("int imm2")
The software exception instruction "int immz2" issues a software exception to execute the specified
trap handler routine. Up to four handler routines can be created and the imm2 specifies the vector
number of the handler routine to be executed. When a software exception occurs, the CPU saves the
PSR and the address of the instruction that follows the "int" instruction into the stack and then reads
the specified vector from the trap table to execute the trap handler routine. Therefore, the "reti”
instruction that returns the saved PSR must be used for returning from the trap handler routine.
See Section 3.3, "Trap (Interrupts and Exceptions)”, for details of the software exceptions.

(6) Return instructions ("ret", "reti")
The "ret" instruction is the return instruction that corresponds to the "call" instruction. It ends the
subroutine by loading the return address saved in the stack to the PC. The SP must contain the same
value (that points the return address) as the beginning of the subroutine when the "ret" instruction is
executed.

S1C33000 CORE CPU MANUAL EPSON 29

CHAPTER 2: ARCHITECTURE

The "reti" instruction is the return instruction for exclusive use of trap handler routines. The trap
processing of the CPU saves a return address and the PSR into the stack, therefore the "reti" instruc-
tion must be used for returning the contents of the PSR. Aswell asthe "ret" instruction, the SP must
contain the same value (that points the return address) as the beginning of the trap handler routine
when the "reti” instruction is executed.

(7) Debugging exceptions (" brk", " retd")
The"brk" and "retd" instructions are used for calling a debugging routine and return. Since these
instructions are provided for the ICE software, do not use them in the application program.
See Section 3.6, "Debugging Mode", for the functions of these instructions.

Delayed branch function

The S1C33000 executes an instruction and fetches an instruction simultaneously by pipe-line processing.
When executing a branch instruction, the following instruction has been fetched by the CPU. By execut-
ing the fetched instruction before branching, the execution cycles of the branch instruction can be
reduced for 1 cycle. Thisis the delayed branch function and the following instruction that is executed
before branching is called a delayed instruction.

The instructions below can use the delayed branch function. In the mnemonic notation, ".d" should be
postfixed to the branch instruction.

Delayed branch instructions
jrgt.d jrged jrit.d jrled jrugt.d jruged jrult.d jruled jreqd jrmed cal.d jp.d retd

Delayed instructions
The delayed instruction must meet all the following conditions:
* 1 cycleinstruction
» Does not access memories
* Not extended with the "ext" instruction

The following instructions can be used as a delayed instruction:

ld.w %rd, %rs ldw %rd, sign6

add %rd, %rs add %rd, imm6 add %sp, imm10 adc %rd, %rs
sub %rd, %rs sub %rd, imm6 sub %sp, imm10 sbc %rd, %rs
mit.h %rd, %rs mitu.h %rd, %rs

cmp %rd, %rs cmp %rd, sign6

and %rd, %rs and %rd, sign6

or %rd, %rs or %rd, sign6

xor %rd, %rs xor %rd, sign6

not %rd, %rs not %rd, sign6

sl %rd, %rs srl %rd, imm4 i %rd, %rs dli %rd, imm4
sra %rd, %rs sra %rd, imm4 sla %rd, %rs sla %rd, imm4
rr %rd, %rs r %rd, imm4 rl %rd, %rs rl %rd, imm4
scan0 %rd, %rs scanl %rd, %rs

swap %rd, %rs mirror %rd, %rs

Note: Do not use instructions that do not meet the conditions of a delayed instruction, if used
the operation cannot be guaranteed.

The delayed instruction is executed regardless of the delayed instruction type (conditional or uncondi-
tional branch) and whether the program flow is branched or not.

When a branch instruction without a delayed function (that has no ".d") is executed, the instruction at the
next address will not be executed if the program flow branches. If the branch instruction is a conditional
branch instruction and the program flow does not branch, the instruction at the next address is executed
following the branch instruction.

The"call.d" instruction saves the address of the instruction that follows the delayed instruction into the
stack as the return address. The delayed instruction is not executed when returning from the subroutine.

Traps such as interrupts and exceptions do not occur between a delayed branch instruction and the
delayed instruction because the hardware masks traps.

30 EPSON S1C33000 CORE CPU MANUAL

2.5.13 System control instructions
The following three instructions are used for controlling the system and do not affect the registers and

memories:
nop No operation (increments PC only)
halt Sets the CPU to HALT mode.
slp Sets the CPU to SLEEP mode.

See Section 3.4, "Power Down Mode", for HALT and SL EEP modes.

2.5.14 Scan instructions

The scan instruction scans 0 or 1 bit within the high-order 8 bits of the specified general-purpose register
from the MSB, and returns the first found bit position.

scan0 %rd, %rs

CHAPTER 2: ARCHITECTURE

Scans the high-order 8 bits of the rs register from the MSB. When abit of 0 is found, the bit position
(offset from the MSB) is loaded to the rd register. Bit 31 to Bit 4 of the rd register are all set to 0. If
there is no 0, 0x00000008 is loaded to the rd register and the C flag is set to 1.

Example:
High-order 8 bits of rs | Low-order 8 bits of rd PSR

C \% z N
OXXX XXXX 0000 0000 0 0 1 0
10XX XXXX 0000 0001 0 0 0 0
1210x XXXX 0000 0010 0 0 0 0
1110 xxxx 0000 0011 0 0 0 0
1111 Oxxx 0000 0100 0 0 0 0
1111 10xx 0000 0101 0 0 0 0
1111 110x 0000 0110 0 0 0 0
1111 1110 0000 0111 0 0 0 0
1111 1111 0000 1000 1 0 0 0

scanl %rd, %rs

Scans the high-order 8 bits of the rs register from the MSB. When abit of 1 isfound, the bit position
(offset from the MSB) is loaded to the rd register. Bit 31 to Bit 4 of the rd register are all set to 0. If
thereisno 1, 0x00000008 is loaded to the rd register and the C flag is set to 1.

Example:
High-order 8 bits of rs | Low-order 8 bits of rd PSR

C \% z N
XXX XXXX 0000 0000 0 0 1 0
O1XX XXXX 0000 0001 0 0 0 0
001x XxXXx 0000 0010 0 0 0 0
0001 xxxx 0000 0011 0 0 0 0
0000 1xxx 0000 0100 0 0 0 0
0000 01xx 0000 0101 0 0 0 0
0000 001x 0000 0110 0 0 0 0
0000 0001 0000 0111 0 0 0 0
0000 0000 0000 1000 1 0 0 0

S1C33000 CORE CPU MANUAL

EPSON

31

CHAPTER 2: ARCHITECTURE

2.5.15 Swap and mirror instructions
The swap and mirror instructions replace the bit order of a general-purpose register as shown bel ow.
Swap instruction: swap %rd, %rs

31 24 23 16 15 8 7 0
rs register[1]0]0]o]o]1]o]oo[1]o]oo]o]1][o]o]o[1]o]o[o]0]1]0]0]0 1]0]0]0]0]
L] L] L] L]

e

T 1 T 1 T 1 T 1
rd register[0]0]0]1]o]o]oJoJo]oJ1]o]oJoJo]1]o]1]oJo]o]o]1]o]1]0]0]0]0]1]0]0O]
31 24 23 16 15 8 7 0

Mirror instruction: mirror %rd, %rs

31 24 23 16 15 8 7 0
rs register[1]0]1]0]1]o]1]o]1]o]1]o1]o]2]o]1]o 1]o]2a]o]2]o]r]o 2 0 2]0]2]0]

rd register[0]1]0]1]0]1]o]1]o[1]o[1][0[1][0]1]o]1]o]1]o]1]0]1]0]1]0[1][0[1]0]1]
31 24 23 16 15 8 7 0

32 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 3: CPU OPERATION AND PROCESSING STATUS

cHAPTER 3 CPU OPERATION AND PROCESSING STATUS

This chapter describes the outline of the CPU processing status and operations. Refer to the "Technical
Manua" of each S1C33 Family model for more information.

3.1 Processing Status of CPU
Figure 3.1.1 shows the status transition of the S1C33000.

User mode Debugging mode
Reset status
#RESET=L
| #RESET=H Debugging
Trap exception |
Trap processing
status brk executed |
y End of trap) .
processing | Program execution Debugging status
Interrupt factor occurred status | retd executed

Power down| SLEEP |« slp executed

status HALT |« halt executed

#BUSREQ=L

Bus release status #BUSREQ=H

Fig. 3.1.1 Satustransition diagram
User mode

The S1C33000 executes the application program in the user mode.
At initial reset, the S1C33000 is set to this mode. In this mode, the S1C33000 is placed in one of the
following five processing statuses:

(1) Reset status
In the reset status, the CPU initializes the internal circuits and stops operation.
(2) Program execution status
In this status, the CPU executes the user program sequentially.
(3) Trap processing status
Thisisatransition period after an interrupt or exception occurs. The CPU branches the program to
the handler routine for the trap.
(4) Power down status
In this status, the CPU stops operation to reduce current consumption.
(5) Busrelease status
In this status, the CPU releases the bus and waits until the external bus master finishes the bus
operation.

Debugging mode

The S1C33000 has the debugging support functions for efficient development. Those functions can be
used only in the debugging mode. The "brk" instruction and debugging exceptions switch the CPU
from the user mode to this mode. Usually, the CPU does not enter this mode.

S1C33000 CORE CPU MANUAL EPSON 33

CHAPTER 3: CPU OPERATION AND PROCESSING STATUS

3.2 Program Execution Status

Usually the CPU operates in this status, and executes the user program in the ROM/RAM sequentially.
The PC (program counter) maintains the address being executed and is incremented every time an
instruction is executed. When a branch instruction is executed, the branch destination address is loaded to
the PC and the program branches to the address.

The program execution status is suspended by the occurrence of atrap, execution of the "halt" or "slp"
instruction or a bus request from a peripheral circuit, then the CPU enters the processing status according
to the factor that has occurred.

3.2.1 Fetching and executing program

The S1C33000 performs three stages of pipe-line processing that executes an instruction and fetches an
instruction expected to execute simultaneously in order to increase the processing speed. Further the CPU
can access the internal ROM (program memory) and the internal RAM (data memory) at the same time
with the Harvard architecture.

7 a0 7J5r 75 7 7

Fetching Decoding and Execution and
instruction address calculation register write
Fetching Decoding and Execution and
instruction address calculation register write
Fetching Decoding and Execution and
instruction address calculation register write

Fig. 3.2.1.1 Fetch and execution of program

3.2.2 Number of instruction execution cycles

The S1C33000 can execute the principle instructions in 1 cycle. See the instruction list in the Appendix
for the number of execution cycles of each instruction. Note that this manual describes the execution
cycles only when the program in the internal ROM and datain the internal ROM are accessed. The
following supplements the execution cycles when external memory/devices are used for reference when
calculating execution times. However, the following indicates simplified calcul ation methods. Actual
execution cycles may vary due to the combination of instructions and memory map settings.

(1) When fetching instructions from an external memory area, the execution time will be prolonged for
[wait cycle count + 1] cycles. (The wait cycle count varies depending on the device of each area.)

(2) When reading/writing data from/to an area other than the internal RAM using aload instruction, the
execution time will be prolonged for [wait cycle count + 1] cycles.

(3) When accessing the internal RAM for both fetching instructions and writing/reading data, the execu-
tion time will be prolonged for 1 cycle per one data accessing.

(4) Fetching instructions and writing/reading data execute 1, 2 or 4 bus operations according to the
transfer data size and the connected device size. The execution time will be prolonged according to
the bus operation count. Further wait cycles will be added to each bus operation. For example, when
fetching an instruction from an 8-bit external ROM without await cycle, 2 bus operations will be
executed and the execution time will be prolonged for 3 cycles.

(5) Besides the above factors, the following factors among the external bus conditions that have been set
in the BCU (bus control unit) affect the execution cycle count:
« Output disable cycles set for the device on the external bus
* RAS cycles, pre-charge cycles and refresh cycles for the DRAM
« Wait cycles using the external #WAIT terminal

34 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 3: CPU OPERATION AND PROCESSING STATUS

(6) Theinstructions below access data several times. Therefore the execution time will be prolonged for
[wait cycle count + 1] cycles per one data access.
« Bit operation instructions (btst) 1 (data access count)
* Bit operation instructions (bset, bclr, bnot) 2
« Push and pop instructions (pushn, popn) n
 Multiplication and accumulation instruction (mac) 2n
« Software exception (int) 3
« Return from trap handler routine (reti) 2
« Debugging exception (brk) 3
* Return from debugging routine (retd) 2
(7) Delay by interlock
When using the destination register (%rd) of the previous load instruction that transferred memory
datato the general-purpose register as the operation source of the next instruction (when the %rs or
%rd is the same as the previous %rd), the execution time will be prolonged for 1 cycle to eliminate
the interlock.

Refer to the "Technical Manual" of each S1C33 Family model for the BCU and external bus conditions
such as the wait cycle.

3.3 Trap (Interrupts and Exceptions)

The CPU goes to the trap processing status when a trap factor (interrupt or exception) occurs during
program execution. The trap processing statusis a transition period until the CPU branches the program
flow to the user handler routine corresponding to the interrupt/exception factor that has occurred. The
CPU returns to the program execution status after branching.

3.3.1 Trap table
Table 3.3.1.1 lists the traps of the S1C33000.

Table 3.3.1.1 Trap list

Trap name Sync./Async. | Classification Vector Priority Interrupt Ie.vel
address after trapping
Reset Async. Interrupt base+0x0 |Highest| Level 0
Reserved base+Ox4~0xC | 1t Unchanged
Zero division Sync. Exception base+0x10 Unchanged
Reserved base+0x14 Unchanged
Address error exception Sync. Exception base+0x18 Unchanged
Debugging exception (brk, others) Sync. Exception | 0x0 or 0x60000 Unchanged
NMI Async. Interrupt base+0x1C Unchanged
Reserved base+0x20~0x2C Unchanged
Software exception 0 Sync. Exception base+0x30 Unchanged
Software exception 3 Sync. Exception base+0x3C Unchanged
Maskable external interrupt O Async. Interrupt base+0x40 Interrupt level (Level O to 15)
: : : : ! of the peripheral circuit that
Maskable external interrupt 215 Async. Interrupt base+0x39C | Lowest | requested the interrupt.

The S1C33000 has seven trap factors listed in the Trap name column (details are described later).

"Sync./Async." indicates either the trap factor will occur in synchronization with program execution or
asynchronously. This manual classifies the trap factors into two types: "Exception” that will occur in
synchronization with program execution and "Interrupt” that will occur asynchronously. However, this
manual uses "Trap Processing” for al trap processing of the CPU.

The vector address stores the vector (branch destination address) of the user handler routine that is
executed when each trap occurs. The vector addresses are arranged at a word boundary address because
they store an address. The memory areafor vector storageis called atrap table. The "base" in the vector
address column indicates the trap table beginning address.

S1C33000 CORE CPU MANUAL EPSON 35

CHAPTER 3: CPU OPERATION AND PROCESSING STATUS

The S1C33000 allows the base (starting) address of the trap table to be set by the TTBR register.
TTBRO =D(9:0)/0x48134: Trap table base address (9:0) ... fixed at 0

TTBR1 =D(F:A)/0x48134: Trap table base address (15:10)

TTBR2 =D(B:0)/0x48136: Trap table base address (27:16)

TTBR3 =D(F:C)/0x48136: Trap table base address (31:28) ... fixed at O

After acold start (see Section 3.3.3), the TTBR register is set to the boot address determined by the
BTAS pin status.

Table 3.3.1.2 Trap table location
BTA3 terminal Trap table location
High Area 3 (Top of the internal ROM; base=0x0080000)
Low Area 10 (Top of the external ROM; base=0x0C00000)

Therefore, even when the trap table position is changed, it is necessary that at |east the reset vector be
written to the above address for cold starting. A hot start does not change the TTBR setting.

TTBRO and TTBR3 are read-only registers which are fixed at “0". Therefore, the trap table starting
address always begins with a 1KB boundary address.

The TTBR registers are normally write-protected to prevent them from being inadvertently rewritten. To
remove this write protection function, another register, the TBRP register (D(7:0)/0x4812D), is provided.
A write to the TTBR register is enabled by writing "0x59" to the TBRP register and is disabled back
again by awrite to the most significant byte of the TTBR register (0x48137). Consequently, awriteto the
TTBR register needs to begin with the low-order half-word first. However, since an occurrence of NMI or
the like between writes of the low-order and high-order half-words would cause a mafunction, it is
recommended that the register be written in words.

The accessible memory space differs depending on the model. A word sized areais reserved for each
vector, however the lower effective bit size only is actually used for the vector. Furthermore the LSB of
the vector is handled as 0 because the vector is an address in the program memory.

Thetrap table sizeis decided by the number of the maskable interrupts of each model.

The priority indicates which trap is accepted first when two or more traps occur at the same time. Excep-
tions do not occur at the same time because they occur when an instruction is executed. The reset factor
is accepted taking priority over all other processing. The priority of maskable interrupts are also managed
by the interrupt levels (described later). Therefore the priority of the maskable interrupts shown in Table
3.3.1.1 assumes that all interrupts have same priority.

See Section 3.3.8, "Maskable external interrupts”, for the interrupt level after trapping.

3.3.2 Trap processing

The CPU executes the trap processing shown below when a trap except for reset and debugging excep-
tions occurs. However the following processing does not apply to the reset processing. It is explained in
the next section. The debugging exception is explained in Section 3.6.

(1) Terminates or cancels the instruction being executed.

(2) Saves the contents of the PC and the PSR sequentially into the stack.

(3) Resets the | E (interrupt enable) bit in the PSR to disable maskable interrupts after this point.
Modifiesthe IL (interrupt level) field in the PSR to the occurred interrupt level if thetrapisa
maskable interrupt.

(4) Reads the vector corresponding to the trap factor from the trap table and loads it to the PC. It
branches the processing to the user handler routine.

The above sequence is the trap processing of the CPU.

When the "reti" instruction is executed at the end of the user handler routine, the contents of the PSR and
the PC that have been saved into the stack return to each register and the processing that is suspended by
the trap resumes execution.

The "ret" instruction cannot be used for return from trap handler routines because the instruction does not
return the PSR.

36 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 3: CPU OPERATION AND PROCESSING STATUS

The CPU masks trapsin the following cases, and traps except for reset are not accepted until the masking
factors are canceled:

(1) When the " ext" instruction is executed:
When the "ext" instruction is executed, traps are masked until finishing execution of the following
target instruction. However address error exception is excluded.

(2) When a delayed branch instruction is executed:
When a delayed branch instruction (.d) is executed, traps are masked until starting execution of the
following delayed instruction.

(3) NM1 before setting SP
When the CPU isreset, the NMI is masked until datais written to the SP (stack addressis set) in
order to prevent program runaways.
Exceptions are not masked because they can be predicted. Maskable interrupts are al so not masked
because they have been masked by the |E bit in the PSR after reset.

3.3.3 Reset

The CPU isreset when alow pulseisinput to the #RESET terminal. The initial reset clears all the bitsin
the PSR and makes other registers undefined.

The CPU starts operating at the rising edge of the #RESET pulse and executes the reset processing. The

reset processing reads the reset vector from the top of the trap table and sets it to the PC. It starts execut-
ing the user initial routine.

The reset processing has priority over all other processing.

The S1C33000 supports two reset methods: Hot start and Cold start. The #NM1 terminal is used with the
#RESET terminal to set this condition.

Cold start (#RESET =L, #NMI =H)
The S1C33 Family MPU cold-starts when it is reset by setting the #RESET terminal to low and the
#NMI terminal to high. Since cold start initializes all the on-chip peripheral circuits as well as the
CPU, it isuseful as a power-on reset.

Cold start is generated
¢ (#RESET=L & #NMI=H)

#NMI _/
#RESET \ /

#NMI must be set to H as longer than
the reset pulse width.

Fig. 3.3.3.1 Cold start timing

Hot start (#RESET =L, #NMI| =L)
The S1C33 Family MPU hot-starts when it is reset by setting the #RESET and #NMI terminals to
low. Hot start initializes the CPU but does not initialize some peripheral circuits such as the external
bus control unit and the input/output ports. It is useful as areset that maintains the external memory
and external input/output statuses.

Hot start is generated
¢ (#RESET=L & #NMI=L)

#NMI
#RESET \ /

#NMI must be set to L as longer than
the reset pulse width.

Fig. 3.3.3.2 Hot start timing

Refer to the "Technical Manual" of each S1C33 Family model for the reset timing and the initialization
for the peripheral circuits.

S1C33000 CORE CPU MANUAL EPSON 37

CHAPTER 3: CPU OPERATION AND PROCESSING STATUS

3.3.4 Zero division exception

A zero division exception will occur if the divisor is O when the division instruction is executed.

This exception may occur with the "div0s" or "divOu" instruction for preprocessing of division. If the
divisor is 0, the CPU executes the trap processing after finishing execution of the instruction. The trap
processing saves the next instruction address (usually "div1") into the stack as the return address.
However, the exception may occur at the next instruction due to the pipe line processing.

3.3.5Address error exception

The load instructions for accessing amemory or 1/0O area have a predefined transfer data size. The
address to be specified must be a boundary address according to the data size.

Instruction Transfer data size Address

Id.b/ld.ub Byte (8 hits) Byte boundary (any address can be specified within the usable area)
Id.h/ld.uh Half word (16 bits) Half word boundary (LSB of the address must always be 0)
Id.w Word (32 bits) Word boundary (low-order 2 bits must always be 0)

If the specified address of aload instruction does not meet the condition, the CPU regardsiit as an address
error and executes the trap processing. In this case, the CPU does not execute the load instruction and
saves the load instruction address into the stack as the return address.

Normally, traps are masked when the "ext" instruction is executed until the next instruction is executed.
However only the address error exception is not masked. Therefore if an address error exception occurs
in aload instruction that follows the "ext" instruction (the load instruction has to be executed in register
indirect addressing with displacement), the CPU entersin the trap processing before executing the load
instruction. Be aware that it may be a problem if return from the trap handler routine is done by simply
executing the "reti" instruction. In this case, the load instruction is executed independently in register
indirect addressing mode without displacement.

The address error exception may also occur by the multiplication and accumulation (mac) instruction
because it handles half word data. The trap processing saves the "mac" instruction address into the stack
as the return address, so the "mac" instruction will resume the remaining multiplication and accumulation
after returning from the trap handler routine.

Theload instructions that use the SP for specifying the base address do not issue an address error excep-
tion because the address is adjusted at the boundary according to the transfer data size.

In the branch instructions ("call %rb", "jp %rb"), this exception does not occur because the LSB of the
PC isalwaysfixed at 0. It is the same for trap processing vectors.

3.3.6 NMI (Non-maskable interrupt)

When the #NMI signal (low) is assigned to the CPU, an NMI occurs at the falling edge.

When an NMI occurs, the CPU executes the trap processing after finishing the instruction being ex-
ecuted. The trap processing saves the next instruction address into the stack as the return address.

The NMI cannot be masked. However, when the CPU isreset (both cold start and hot start), the #NMI
input is masked by the hardware until the SPis set by the "ld.w %sp, %rs" instruction in order to prevent
program runaways due to undefined SP.

3.3.7 Software exception

A software exception occurs when the "int imm?2" instruction is executed. The trap processing saves the
address of the instruction that follows the "int" instruction into the stack as the return address. The imm2
in the "int" instruction specifies a vector address among four software exceptions. The CPU reads the
vector from the address cal culated by adding 4 x imm2 to base + 48 (vector address for software excep-
tion 0) for branching to the handler routine.

38 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 3: CPU OPERATION AND PROCESSING STATUS

3.3.8 Maskable external interrupts

The S1C33000 can accept up to 128 maskable external interrupts (except for the NMI).

Maskable interrupts are accepted to the CPU only when the |E (interrupt enable) bit in the PSR has been
set. Further, the IL (interrupt level) field in the PSR also affects the acceptance. The IL field contains an
interrupt level number (0 to 15) that indicates the acceptable interrupt level. The CPU can only accept
interrupts that have an interrupt level higher than the IL value.

The |E bit and the IL field can be set by software. Furthermore, when atrap occurs, the | E bit isreset to O
(interrupt is disabled) after saving the PSR into the stack. Therefore maskable interrupts are disabled

until the |E bit is set in the handler routine or the handler routine is terminated by the "reti" instruction
that returns the PSR.

ThelL field isalso set to the interrupt level that has occurred. To enable multiple interrupt processing, set
the |E flag in the interrupt handler routine. It allows acceptance of interrupts that have higher levels than
the currently processed interrupt.

Resetting the CPU initializes the PSR to 0, therefore maskable interrupts are disabled and the interrupt
level isset to O (levels 1 to 15 are enabled).

All the S1C33 Family models have an on-chip interrupt controller, and the controller manages the
interrupt request to the CPU.

The following shows the interrupt request procedure of the on-chip interrupt controller and the trap
processing of the CPU:

(1) The on-chip interrupt controller requests an interrupt by setting the #iINTREQ terminal to low. At the
sametime, it delivers the interrupt level to the INTLEV(3:0) terminals and the vector number to the
INTVEC(7:0) terminals.

(2) When the CPU accepts the interrupt request, it saves the PC and the PSR into the stack, then resets
the |E bit in the PSR and setsthe IL field to the level according to the INTLEV signal.

(3) The CPU reads the vector from the vector address specified by the INTVEC signal and setsit to the
PC for branching to the interrupt handler routine.

Refer to the "Technical Manual" of each model for use of the interrupt controller.

S1C33000 CORE CPU MANUAL EPSON 39

CHAPTER 3: CPU OPERATION AND PROCESSING STATUS

3.4 Power Down Mode

The CPU can stop operating in order to reduce current consumption when program execution is not
necessary, in particular standby status awaiting a key entry. For this purpose, the S1C33000 has two
power down modes: HALT mode and SL EEP mode.

Theinternal registers maintain the contents in the power down mode.

3.4.1HALT mode

When the CPU executes the "halt" instruction, it suspends the program execution and goes into the HALT
mode.

In the HALT mode, the CPU stops operating. The on-chip peripheral circuits keep operating since the
clocks are supplied.

The HALT mode is canceled by initial reset or an interrupt including NMI. The CPU transits to program
execution status through trap processing for the trap factor. When an interrupt cancels the HALT mode,
the trap processing saves the address of the instruction that follows the "halt" instruction into the stack.
Therefore, when the interrupt handler routine finishes by the "reti" instruction, the program flow returns
to the instruction that follows the "halt" instruction.

3.4.2 SLEEP mode

When the CPU executes the "slp" instruction, it suspends the program execution and goes into the
SLEEP mode.

In the SLEEP mode, the CPU and the on-chip peripheral circuits stop operating. Thus the SLEEP mode
can greatly reduce current consumption in comparison to the HALT mode.

The SLEEP mode is canceled by initial reset or an interrupt including NMI. The CPU transits to program
execution status through trap processing for the trap factor. When an interrupt cancels the SLEEP mode,
the trap processing saves the address of the instruction that follows the "slp" instruction into the stack.
Therefore, when the interrupt handler routine finishes by the "reti" instruction, the program flow returns
to the instruction that follows the "slp" instruction.

Since the SL EEP mode stops the on-chip oscillation circuit, the peripheral circuits that use the oscillation
clock also stop. Therefore the SLEEP mode is canceled by a key-entry interrupt.

When the SLEEP mode is canceled, the on-chip oscillation circuit starts oscillating. The CPU waits until
the oscillation stabilizes then starts operating.

Refer to the "Technical Manual" of each model for peripheral circuit status in the HALT mode and
SLEEP mode and the cancellation method.

40 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 3: CPU OPERATION AND PROCESSING STATUS

3.5 BusRedease Status

The external busin which external peripheral devices are connected is normally controlled by the CPU. It
can be released for external devicesin order to support the DMA (direct memory access) functions and
multiprocessor systems.

The #BUSREQ and #BUSACK terminals are used for bus arbitration.

The bus release sequence is as follows:

(1) The external device which requests the bus authority sets the #BUSREQ terminal to low.

(2) The CPU always monitors the #BUSREQ status. When the terminal goes to low level, the CPU
finishes the bus cycle being executed and waits 1 cycle, then switches the address bus (A27-A0), data
bus (D15-D0) and bus control signals (#RD, #WRL, #WRH) into high-impedance status.

1 cyclelater the CPU sets the #BUSACK terminal to low level indicating that the busis released to
the external device.

(3) After Step (2), the external device becomes the external bus master and executes its bus cycles. The
external bus master must fix the #BUSREQ terminal at low level while executing the bus cycles.

(4) The external bus master returns the bus to high-impedance and the #BUSREQ terminal to high level
after completing the necessary bus cycles.

(5) When the #BUSREQ terminal goesto high level, the CPU sets the #BUSACK terminal to high level
1 cyclelater and resumes the suspended processing.

In the some models, the CPU has to take back the bus authority in the bus release status (for example,
models using DRAM need refresh cycles). In this case, the CPU requests returning bus authority using a
peripheral circuit such as an output port. The external bus master device has to handle the signal. Refer to
the "Technical Manual" of each S1C33 Family model for details.

S1C33000 CORE CPU MANUAL EPSON 41

CHAPTER 3: CPU OPERATION AND PROCESSING STATUS

3.6 Debugging Mode

The S1C33000 has a specia operating mode called a debugging mode.
This mode has been implemented to support debugging during development and is not used in the
application program on the products. This section describes the outline as a CPU function.

3.6.1 Functions of debugging mode
The S1C33000 has incorporated the following debugging functions:

 Single step
A debugging exception can be generated before executing each instruction of the user target program.
* Instruction break
Up to three instruction break points can be set. A debugging exception can be generated before
executing the instructions at the set addresses.
* Data break
A data break address and a read/write condition can be set. The specified data access can generate a
debugging exception. When the specified address is accessed in the specified read/write condition, a
debugging exception occurs after 1 or several instructions is executed from the data access.
« Softwar e break
By executing the "brk" instruction, a debugging exception can be generated. The debugging exception
saves the address following the "brk" instruction into the stack for the debugging mode.

When a debugging exception occurs, the CPU executes a trap processing that differs from the user mode
and enters the debugging mode.

In the debugging mode, the user target program can be suspended at any address and executed in single
stepping by executing debugging routines which are created by the user or provided by Seiko Epson.

3.6.2 Configuration of Area 2

The S1C33000 has reserved Area 2 (0x0060000 to 0x007FFFF, 128K B) in the address space for ICE (in-
circuit emulator) use. In this area, the debug-control registers are allocated.

Addresses 0x0060010 to 0x0077FFF are reserved for the | CE control software and the area from address
0x0078000 is reserved for the debug-control registers and exclusive use of the CPU.

Note that writing data to the registersin Area 2 is not allowed in the user mode. It should be done in the
debugging mode after a debugging exception occurs. The debugging mode has no such restriction, so all
the areas can be accessed.

Registers for debugging

IBAR2
0x0078014| Instruction break address register #2
Area 2 0x0078012| DSR Debugging status register 2
0x0078010| DCR Debugging control register 2
Area for CPU DBAR
32KB 0x007800C Data break address register
IBAR1

0x0078018

0x007FFFF

0x0078000 ; f
Instruction break address register #1
0x0077FFF 0x0078008 IBARO ’

Area for ICE control software
96KB 0x0078004 | Instruction break address register #0
DSR Debugging status register 1
0x0078002
0x0060000 0x0078000 | _DCR Debugging control register 2

for user (Note) for ICE
0x0000010 / 0x0060010)
0x000000C / 0x006000C Stack for RO register
0x0000008 / 0x0060008 Stack for PC

0x0000000 | 0x0000004 / 0x0060004) reserved
0x0000000 / 0x0060000 | Debugging exception processing vector

Vector and stack for debugging

Internal RAM area

Fig. 3.6.2.1 Configuration of Area 2

Note: When the user sets the debugging mode, the debugging exception processing vector will
be read from address 0x0000000. The PC and RO register values are saved to address
0x0000008 and 0x000000C, respectively.

The MON33 (debug monitor) was created for this condition.

42 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 3: CPU OPERATION AND PROCESSING STATUS

3.6.3 Transition from user mode to debugging mode

When a debugging exception occurs (e.g. the "brk" instruction is executed), the CPU executes the
debugging exception processing to switch from the user mode to the debugging mode. The differences
between debugging exception processing and normal exception processing are shown as follows:
« It does not use the normal trap table; a vector for entering in the debugging mode isread from
address 0x0000000 in Area 0 or address 0x0060000 for ICE use.
« The RO register and PC values are saved (PSR is not saved) and the stack area for the normal modeis
not used. The RO register is saved to address 0x0000000C or address 0x006000C for ICE use and the
PC value is saved to address 0x0000008 or address 0x0060008 for | CE use.

To switch from the debugging mode to the user mode, execute the "retd" instruction. The "retd" instruc-
tion restores the saved RO and PC values before returning to the user mode.

3.6.4 Registersfor debugging

The registers that control the debugging function are arranged in Area 2, and can be written only in the
debugging mode. The following shows the contents and functions of each register:

DCR (Debugging Control Register): 0x0078000/Byte size, 0x0078010/Byte size

7 6 5 4 3 2 1 0
0x0078000[- [MWRBE | MRDBE | DBE | IBE(1:0) | s | DM | RW (DM:R only)
0x0078010[- [- [(Note) | (Note) | (Note) | (Note) | (Note) | IBE(2) | RW

Note: Be sure to set bits 5 to 1 in address 0x0078010 to the values as follows. Other settings
will cause the debugging mode to not function normally.
Bits 5 and 4: Fixed at 0. Bits 3—1: Fixed at 1.

The DCR enableg/disables the debugging functions. At initial reset, all the bitsin the DCR are reset to 0.
0x0078000

Name |[Bit No. 1 Bit status 0 Function
DM 0 Debugging User Debugging Mode: Indicates that the CPU is in the debugging mode.
mode mode | When a debugging exception occurs, the DM is set (1) and the CPU enters the

debugging mode. When the "retd" instruction is executed in the debugging
routine, the DM isreset (0) and the CPU returns to the user mode. The DM isa
read only bit, so it cannot be modified by software.

SE 1 Enabled | Disabled |Single Step Enable: Enables and disables the single step function.

When the SE is set (1), the single step function is enabled and a debugging
exception will occur before executing each instruction of the user program in the
user mode. The debugging mode does not perform single step operations.

When the SE isreset (0), the single step function is disabled.

IBE(1:0) 2,3 Enabled Disabled | Instruction Break Enable: Enables and disables the instruction break function.
IBE(O) (bit 2) and IBE(1) (bit 3) correspond to the instruction break points #0
and #1, respectively. When the IBE(0) (IBE(1)) bit is set (1), the break address
that has been set in the IBARO (IBARL1) register becomes effective. When the
instruction of the address is fetched during program execution in the user mode,
a debugging exception occurs before executing the instruction. In the debugging
mode, the instruction break does not occur.

When the IBE hit is reset (0), the instruction break point is invalidated.

DBE 4 Enabled | Disabled |DataBreak Enable: Enables and disables the data break function.

When the DBE is set (1), the data break address that has been set in the DBAR
register becomes effective. When the address is accessed during program
execution in the user mode, a debugging exception occurs after accessing data.
In the debugging mode, the data break does not occur. A data access condition
(read, write, read/write) for generating a break can be specified using the
MRDBE and MWRBE bits.

When the DBE is reset (0), the data break function is disabled.

When both the MRDBE (read) and MWRBE (write) are reset, a data break does
not occur even if the DBE has been set.

S1C33000 CORE CPU MANUAL EPSON 43

CHAPTER 3: CPU OPERATION AND PROCESSING STATUS

Name |Bit No. 1 Bit status 0 Function
MRDBE 5 Enabled | Disabled |Memory Read Break Enable: Enables and disables the memory read data break
function.

When the DBE and the MRDBE are set (1), adata break will occur after the
CPU reads data in the specified address.

When the MRDBE is reset (0), the memory read data break function is disabled.
MWRBE 6 Enabled | Disabled |Memory Write Break Enable: Enables and disables the memory write data break
function.

When the DBE and the MWRBE are set (1), a data break will occur after the
CPU writes data to the specified address.

When the MWRBE is reset (0), the memory write data break function is

disabled.
0x0078010
Name |Bit No. 1 Bit status 0 Function
IBE(2) 0 Enabled | Disabled |Instruction Break Enable: Enables and disables the instruction break function.

IBE(2) corresponds to the instruction break point #2. When the IBE(2) bit is set
(2), the break address that has been set in the IBAR2 register becomes effective.
When the instruction of the address is fetched during program execution in the
user mode, a debugging exception occurs before executing the instruction. In the
debugging mode, the instruction break does not occur.

When the IBE(2) bit isreset (0), the instruction break point is invalidated.

DSR (Debugging Status Register): 0x0078002/ Byte size, 0x0078012/ Byte size

7 6 5 4 3 2 1 0
0x0078002[BKF | MWRB | MRDB | DB | 1BL | 1BO | SS | DR _|RW
oxoo78012[- [- [- [-] -] - T - 1 B2 |RrRW

The DSR is the status register that indicates the debugging exception that has occurred. When a debug-
ging exception occurs, the same vector is used to execute the debugging exception processing. Therefore,
the debugging exception service routine must identify the occurred debugging exception type by reading
the DSR.

0x0078002

Name |Bit No. 1 Bit status 0 Function

DR 0 Occurred Non Debug Request: Indicates that the external debugging request was assigned. The
DRisset (1) at the falling edge of the external debugging request signa #DBGREQ.
Thisfunction is only for the ICE, general chips do not have the #DBGREQ terminal.

SS 1 Occurred Non Single Step: Indicates that a single step break occurred. The SSis set (1) when a
debugging exception occurs by the single step factor.

IBO 2 Occurred Non Instruction Break O: Indicates that the instruction break #0 occurred. The IBO is
set (1) when a debugging exception occurs by the instruction break #0 factor.

IB1 3 Occurred Non Instruction Break 1: Indicates that the instruction break #1 occurred. The IB1 is
set (1) when a debugging exception occurs by the instruction break #1 factor.

DB 4 Occurred Non Data Break: Indicates that the data break occurred. The DB is set (1) when a
debugging exception occurs by the data break factor.

MRDB 5 Occurred Non Memory Read Break: Indicates that the memory read data break occurred. The
MRDB is set (1) when a debugging exception occurs by the data break with a
memory read.

MWRB 6 Occurred Non Memory Write Break: Indicates that the memory write data break occurred. The
MWRSB is set (1) when a debugging exception occurs by the data break with a
memory write.

BKF 7 Occurred Non Break Flag: Indicates that the "brk" instruction was executed. The BKF is set
when a debugging exception occurs by executing the "brk" instruction.

0x0078012
Name |Bit No. 1 Bit status 0 Function

1B2 0 Occurred Non Instruction Break 2: Indicates that the instruction break #2 occurred. The IB2 is

set (1) when a debugging exception occurs by the instruction break #2 factor.

44 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 3: CPU OPERATION AND PROCESSING STATUS

IBARO (Instruction Break Address Register #0): 0x0078006 (bits 27-16), 0x0078004 (bits 15-0)
IBAR1 (Instruction Break Address Register #1): 0x007800A (bits 27-16), 0x0078008 (bits 15-0)
IBAR2 (Instruction Break Address Register #2): 0x0078016 (bits 27-16), 0x0078014 (bits 15-0)
| 0x0078007 \ 0x0078006 | 0x0078005 | 0x0078004 |

31 27 10
[Invalid | IBARO o] RIW
I 0x007800B 0x007800A I 0x0078009 0x0078008 I
31 27 10
[Invalid | IBAR1 lo] RIW
I 0x0078017 0x0078016 I 0x0078015 0x0078014 I
31 27 10
[nvalid | IBAR2 0] RIW

Three instruction break addresses #0—#2 can be set to these registers. The LSB is aways handled as 0O,
and only bits from bit 27 to bit 1 are effective.

When IBE(0)/IBE(1)/IBE(2) in the DCR has been set (1), the content of IBARO/IBAR1/IBAR2 is
compared with the PC during program execution in the user mode. A debugging exception will occur if
they are matched. These registers enable read/write operation.

DBAR (Data Break Address Register): 0x007800E (bits 27-16), 0x007800C (bits 15-0)

I 0x007800F I 0x007800E I 0x007800D I 0x007800C I
31 27 0

[nvalid | DBAR | RIW

A data break address can be set in this register.

When the DBE in the DCR has been set (1), the content of the DBAR is compared with the accessed
memory address during program execution in the user mode. A debugging exception will occur if they
are matched and the specified read/write condition is met. This register enables read/write operation.
The data break does not occur if all the bitsin the DBAR are not completely matched to the base address
of the accessed memory. Therefore, when generating a data break by reading/writing word data, the
address to be specified must point aword boundary address (low-order 2 bits are 0). Similarly, a half
word boundary address (L SB is 0) should be set in this register for generating by half word access.

3.6.5 Trapsin debugging mode

In the debugging mode, the exceptions except for reset, address error, zero division, software exception
("int" instruction) and interrupts (including NM1) are masked and do not occur. The normal exception
processing is executed when an address error, zero division or a software exception occurs.

Furthermore, when the CPU returns to the user mode from the debugging mode by the "retd" instruction,
exceptions other than reset and address error and interrupts are masked until the instruction at the return
address is executed. Exceptions and interrupts after the instruction is executed are not masked.

3.6.6 Simultaneous occurrence of debugging exceptions

When two or more debugging exception factors occur at the same time, one debugging exception is only
generated but the status bitsin the DSR corresponding to all the occurred factors are set.

S1C33000 CORE CPU MANUAL EPSON 45

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

CHAPTER 4 DETAILED EXPLANATION OF | NSTRUCTIONS

This chapter explains each instruction in the S1C33000 instruction set in alphabetical order.

4.1 Symbol Meanings

4.1.1 Registers

The following symbols indicate a register or the content:

%rd, rd: Indicates a general-purpose register (RO-R15) used as the destination or the content of the register.

%rs,rs: Indicates a general-purpose register (R0-R15) used as the source or the content of the register.

%rb, rb: Indicates a general-purpose register (R0-R15) that has stored a base address accessed in
the register indirect addressing mode or the content of the register.

%sd, sd: Indicates a special register (PSR, SP, ALR, AHR) used as the destination or the content of

the register.
%ss, ss. Indicates a special register (PSR, SP, ALR, AHR) used as the source or the content of the register.
% sp, sp: Indicates the stack pointer (SP) or the content of the SP.

In the mnemonic notation, a"%" must be prefixed to the register name in order to distinguish from symboals.
General-purpose registers. %r0, %r1, %r2 - - - %r15, or %R0, %R1, %R2 - - - %R15
Special registers: PSR.... %pst, or %PSR

SP.... %sp, or %SP

ALR...%alr, or %ALR

AHR .. %ahr, or %AHR

Theregister field (rd, rs, sd, ss) in the instruction code contains the specified register number.
General-purpose registers (rd, rs): RO = 0b0000, R1 =0b0001 - - - R15=0b1111
Special registers (sd, ss): PSR = 0b0000, SP = 0b0001, ALR = 0b0010, AHR = 0b0011

4.1.2 Immediate

The following symbols indicate an immediate data:

immX: Indicates an unsigned X-bit immediate data. X isanumber that indicates the bit size.

signX: Indicates a signed X-bit immediate data. X is anumber that indicates the bit size. The MSB
of the immediate data is handled as the sign hit.

4.1.3 Memories
The following symbols indicate a memory specification or the contents of the memory:

[%rb]: Specifies the register indirect addressing mode. The content of the general-purpose register
(rb) is used as the base address to be accessed.
[%rb]+: Specifies the register indirect addressing with post-increment mode. The content of the

general-purpose register (rb) is used as the base address to be accessed. The content of the
rb register isincremented according the data size after accessing the memory.

[%sp+immX]: Specifies the register indirect addressing with displacement mode and used for specifying
an address in the stack. The base address to be accessed is specified by adding the immedi-
ate data (immX) to the content of the SP.

B[rb]: Indicates the memory address specified by the general-purpose register (rb) or the byte data
stored in the address.

B[rb+immX]: Indicates the memory address specified by adding the immediate data (immX) to the
content of the general-purpose register (rb) or the byte data stored in the address.

B[sp+immX]: Indicates the memory address specified by adding the immediate data (immX) to the
content of the SP or the byte data stored in the address.

H[rb]: Indicates the half word (16-bit) areain which the base address is specified by the content of
the general-purpose register (rb) or the half word data stored in the area. Data in the base
address is handled as the low-order byte.

46 EPSON S1C33000 CORE CPU MANUAL

H[rb+immX]:

H[sp+immX]:

W[rb]:

W[rb+immX]:

W([sp]:

W[sp+immX]:

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

Indicates the half word (16-bit) areain which the base address is specified by adding the
immediate data (immX) to the content of the general-purpose register (rb) or the half word
data stored in the area. Data in the base address is handled as the low-order byte.

Indicates the half word (16-bit) areain which the base address is specified by adding the
immediate data (immX) to the content of the SP or the half word data stored in the area.
Datain the base address is handled as the low-order byte.

Indicates the word (32-bit) areain which the base address is specified by the content of the
general-purpose register (rb) or the word data stored in the area. Datain the base addressis
handled as the least significant byte.

Indicates the word (32-bit) areain which the base address is specified by adding the
immediate data (immX) to the content of the general-purpose register (rb) or the word data
stored in the area. Data in the base address is handled as the least significant byte.
Indicates the word (32-bit) areain which the base address is specified by the content of the
SP or the word data stored in the area. Data in the base address is handled as the |east
significant byte.

Indicates the word (32-bit) areain which the base address is specified by adding the
immediate data (immX) to the content of the SP or the word data stored in the area. Datain
the base address is handled as the least significant byte.

4.1.4 Bits and hit fields

The symbols below indicate a bit number or a bit field of registers and memory data. They are used with
aregister or memory symbol.

x):
(xX:Y):
{X,Yy.. .}

4.1.5Flags

Indicates Bit X in data. LSB isindicated as (0).

Indicates a bit field from Bit X to Bit.

Indicates a bit (data) configuration. The left item is the high-order bit (data). It is also used
to describe the 64-bit register pair {AHR, ALR}.

The following symbols indicate the flags in the PSR or set/reset status:

IL[3:0]:
MO:
DS:

IE:

LZN<O

o .

0:

Interrupt level field

MAC overflow flag

Dividend sign flag

Interrupt enable

Carry flag

Overflow flag

Zeroflag

Negative flag

Indicates that the instruction does not affect the flag.
Indicates that the instruction sets (1) or resets (0) the flag.
Indicates that the instruction resets (0) the flag.

4.1.6 Functions and others
The following symbols are used for function explanation:;

—.

x

X w2 e

Indicates that the right item isloaded or set to the left item.
Addition

Subtraction

AND

OR

XOR

NOT

Multiplication

Division

The following symbol is used for indicating two or more codes or mnemonics with one word:

O

A number either 1 or O, or any letter from ato z.

S1C33000 CORE CPU MANUAL EPSON a7

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

4.2

I nstruction Code Class

In the S1C33000 instruction set, all the instructions are 16-bit fixed size.

The bit configuration of the instruction code is classified into 8 types (Class 0 to Class 7) according to the

function and addressing mode. The high-order 3 bits indicate a Class.

Instructions for multiplication and division can be executed only in the models that have an optional
multiplier. The following instructions function the same as the "nop" instruction in the models that have

no multiplier and the AHR and the ALR cannot be used:
mit.h
div0s
mac
Id.w %rd, Y%ahr
Id.w %ahr, %rs

Class 0

multu.h
divOu

mlt.w
divl

multu.w

div2s div3s

ld.w %rd, %alr
Id.w %alr, %rs

This class contains one-operand instructions and branch instructions.

15 13 12 9 8 7 6 5 4 3 0
[0]O]O] opl [d] op2 JO]O] imm2irdirs |

opl op2 Mnemonic Function
0000 | 00 |nop No operation
0000 | 01 |dp SLEEP mode
0000 | 10 |halt HALT mode
0000 | 11 |reserved
0001 | 00 |pushn Y%rs Push for general-purpose registers
0001 | 01 |popn %rd Pop for general-purpose registers
0001 | 10 |reserved
0010 | 00 |brk Debugging exception
0010 | 01 |retd Return from debugging routine
0010 | 10 |int imm2 Software exception
0010 | 11 |reti Return from trap handler routine
0011 | 00 |cal %rb Subroutine call
0011 | O1 |ret Return from subroutine
0011 | 10 |jp %rb Unconditional jump
0011 | 11 |reserved
15 13 12 9 8 0
[0JOJO] opl [d] sign8 |
opl Mnemonic Function
0100 |jrgt sign8 PC relative conditional jump Condition=1Z & (N V)
0101 |jrge sign8 PC relative conditional jump Condition =!(N " V)
0110 |jrit sign8 PC relative conditional jump Condition =N "V
0111 |jrle sign8 PC relative conditional jump Condition =2 | (N~ V)
1000 |jrugt sign8 PC relative conditional jump Condition=1Z & IC
1001 |jruge sign8 PC relative conditional jump Condition=!C
1010 (jrult sign8 PC relative conditional jump Condition = C
1011 |jrule sign8 PC relative conditional jump Condition=27|C
1100 |jreq sign8 PC relative conditional jump Condition = Z
1101 (jrne sign8 PC relative conditional jump Condition =1Z
1110 |call sign8 PC relative subroutine call
1111 |jp sign8 PC relative unconditional jump

48

EPSON

S1C33000 CORE CPU MANUAL

Class 1

This class contains data transfer instructions between a general -purpose register and memory, and

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

logic/arithmetic operation instructions between general -purpose registers.

15 13 12 10 9 8 7 4 3 0
[0JOJ1] opl [op2 | rb | rs/rd |
opl op2 Mnemonic Function
000 00 |ldb %rd,[%rb] |Byte datatransfer from memory to general-purpose register
(with sign extension)
001 00 |ld.ub %rd,[%rb] |Byte datatransfer from memory to general-purpose register
(with zero extension)
010 | 00 |(Id.h %rd,[%rb] | Half word data transfer from memory to general -purpose register
(with sign extension)
011 00 |ld.uh %rd,[%rb] |Half word datatransfer from memory to general-purpose register
(with zero extension)
100 00 |ldw %rd,[%rb] |Word datatransfer from memory to general-purpose register
101 00 |ldb [%rb],%rs | Byte datatransfer from general-purpose register to memory
110 00 |ld.h [%rb],%rs | Half word data transfer from general -purpose register to memory
111 00 |ldw [%rb],%rs | Word data transfer from general -purpose register to memory
000 | 01 |(Idb %rd,[%rb]+ | Byte data transfer from memory to general-purpose register
(with sign extension)
001 01 |ld.ub %rd,[%rb]+ |Byte datatransfer from memory to general-purpose register
(with zero extension)
010 | 01 |(Id.h %rd,[%rb]+ |Half word data transfer from memory to general -purpose register
(with sign extension)
011 01 |ld.uh %rd,[%rb]+ |Half word datatransfer from memory to general-purpose register
(with zero extension)
100 | 01 |ldw %rd,[%rb]+ |Word datatransfer from memory to general-purpose register
101 01 |ldb [%rb]+,%rs | Byte data transfer from general-purpose register to memory
110 01 |ld.h [%rb]+,%rs | Half word data transfer from general-purpose register to memory
111 01 |ldw [%rb]+,%rs |Word datatransfer from general-purpose register to memory
15 13 12 10 9 8 7 4 3 0
[0JOJ1] opl | op2 rs | rd |
opl op2 Mnemonic Function
000 10 |add %rd,%rs Addition between general-purpose registers
001 10 |sub %rd,%rs Subtraction between general -purpose registers
010 10 (cmp %rd,%rs Comparison between general -purpose registers
011 10 (ldw %rd,%rs Data transfer between general -purpose registers
100 10 |and %rd,%rs Logical product between general -purpose registers
101 10 |or %rd,%rs Logical sum between general-purpose registers
110 10 |xor %rd,%rs Exclusive OR between general -purpose registers
111 10 |not %rd,%rs Negation of general-purpose registers
mm 11 |reserved

S1C33000 CORE CPU MANUAL

EPSON

49

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

Class 2
This class contains data transfer instructions in the register indirect addressing with displacement
mode using the SP.
15 13 12 10 9 4 3 0
[0]1]0] op1 | imm6 | rs/rd |
opl Mnemonic Function

000 (ld.b %rd,[%sp+imm6] Byte data transfer from stack to general-purpose register
(with sign extension)

001 (ld.ub %rd,[%sp+imm6] Byte data transfer from stack to general-purpose register
(with zero extension)

010 (Id.h %rd,[%sp+immeé] Half word data transfer from stack to general-purpose register
(with sign extension)

011 (Id.uh %rd,[%sp+imm6] Half word data transfer from stack to general-purpose register
(with zero extension)

100 |ldw %rd,[%sp+imme6] Word data transfer from stack to general-purpose register

101 |ld.b [Yosp+imm6],%rs Byte data transfer from general-purpose register to stack

110 |Id.h [%sp+imme6],%rs Half word data transfer from general -purpose register to stack
111 |ldw [%sp+imm6],%rs Word data transfer from general-purpose register to stack

Class 3
This class contains data transfer and logic/arithmetic operation instructions using a 6-bit immediate data.
15 13 12 10 9 4 3 0

[0J1]1] opl] imm6/sign6 | rd |
opl Mnemonic Function
000 |add %rd,imm6 Addition of immediate data to general-purpose register
001 |sub %rd,imm6 Subtraction of immediate data from general-purpose register
010 (cmp %rd,sign6 Comparison between general -purpose register and immediate data
011 (ldw %rd,sign6 Immediate data transfer to general-purpose register
100 |and %rd,sign6 Logical product between general -purpose register and immediate data
101 |or %rd,sign6 Logical sum between general-purpose register and immediate data
110 |xor %rd,sign6 Exclusive OR between general-purpose register and immediate data
111 |not %rd,sign6 Negation of immediate data

Class 4
This class contains arithmetic instructions for the SP, shift/rotation instructions and division instructions.
15 13 12 10 9 0

[T]O]JO] opl] imm10 |
opl Mnemonic Function
000 |add %sp,imm10 Addition of immediate data to the SP
001 |sub %sp,imm10 Subtraction of immediate data from the SP

50 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

15 13 12 10 9 8 7 4 3 0
1JoJO0[] opl | op2 imméirs | rd |

opl op2 Mnemonic Function

010 00 |sfl %rd,imm4 | Logical shift to right (8-bit shift count with imm4)
011 00 |d %rd,imm4 | Logical shift to left (8-bit shift count with imm4)

100 00 |sra %rd,imm4 | Arithmetical shift to right (8-bit shift count with imm4)
101 00 |dla %rd,imm4 | Arithmetical shift to left (8-bit shift count with imm4)

110 00 |rr %rd,imm4 | Rotation to right (8-bit shift count with imm4)
111 00 |(rl %rd,imm4 | Rotation to left (8-bit shift count with imm4)
010 01 (s %rd,%rs Logical shift to right (8-bit shift count with rs)
011 01 |d %rd,%rs Logical shift to left (8-bit shift count with rs)

100 01 |sra %rd,%rs Arithmetical shift to right (8-bit shift count with rs)
101 01 |dla %rd,%rs Arithmetical shift to |eft (8-bit shift count with rs)

110 01 |rr %rd,%rs Rotation to right (8-bit shift count with rs)
111 o1 |(rl %rd,%rs Rotation to left (8-bit shift count with rs)
15 13 12 10 9 8 7 4 3 0
[1J0JO] opl | op2 rs | rd |
opl op2 Mnemonic Function

010 10 |scanO0 %rd,%rs Bit search for "0"

011 10 |scanl %rd,%rs Bit search for "1"

100 10 |swap %rd,%rs Swap in byte units

101 10 |mirror %rd,%rs Change of bit order in byte units
110 | 10 |reserved

010 11 |divOs %rs Signed division 1st step

011 11 |divOu %rs Unsigned division 1st step

100 11 |divl %rs Step division

101 11 |div2s %rs Data correction 1 for signed division
110 11 |div3s Data correction 2 for signed division

111 11 |reserved

Class 5
This class contains data transfer instructions between a general-purpose register and a special register
or between general-purpose registers, bit operation instructions, multiplication instructions and a
multiplication and accumulation instruction.

15 13 12 10 9 8 7 4 3 0
[T]O]1] opl [op2] rs/ss | sdird |
opl op2 Mnemonic Function

000 00 |ldw %sd,%rs Word data transfer from general-purpose register to special register
001 00 |ldw %rd,%ss Word data transfer from special register to general-purpose register

1 7 4 3 0

0 9 8
[op2 | rb [0,mm3 |

15 13 12
[1]0]1] op1
opl op2 Mnemonic Function
010 | 00 |btst [%rb],imm3 | Bit test for memory data

011 | 00 |bclr [%rb],imm3 | Bit clear for memory data

100 00 |bset [%rb],imm3 | Bit set for memory data
101 | 00 |bnot [%rb],imm3 | Bit reversion for memory data

S1C33000 CORE CPU MANUAL EPSON 51

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

15 3 12 10 9 8 7 4 3 0
[1]JoJ1] opl [op2 | rs | rd |

opl op2 Mnemonic Function
110 00 |adc %rd,%rs Addition with carry between general-purpose registers

111 00 |sbc %rd,%rs Subtraction with borrow between general -purpose registers

000 01 |ldb %rd,%rs Byte data transfer between general -purpose registers
(with sign extension)

001 01 |ld.ub %rd,%rs Byte data transfer between general-purpose registers
(with zero extension)

010 01 |ld.h %rd,%rs Half word data transfer between general-purpose registers
(with sign extension)

011 01 |ld.uh %rd,%rs Half word data transfer between general-purpose registers
(with zero extension)

10 01 |reserved

000 10 |mith %rd,%rs Signed 16-bit multiplication

001 10 |mltu.h 9%rd,%rs Unsigned 16-bit multiplication

010 10 |mltw %rd,%rs Signed 32-bit multiplication

011 10 |mltu.w %rd,%rs Unsigned 32-bit multiplication

100 10 |mac %rs Multiplication and accumulation operation

101 10 |reserved

110 10 |reserved

I 11 |reserved

Class 6
This class contains an immediate extension instruction only.
15 13 12 0
[1]1]0] imm13 |
Mnemonic Function
ext imm13 Immediate extension
Class 7
This classisreserved for expansion in future.
15 13 12 0
[(1]2]1] -

52 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

4.3 Referencefor Individual Instruction
This section explains all the instructionsin alphabetical order.

The explanations contain the following items.

Function:
Indicates the functions of the instruction.
"Standard" shows the function when the instruction is executed without extension.
"Extension 1" shows the function when the operand or immediate data is extended by one "ext"
instruction described prior to the instruction.
"Extension 2" shows the function when the operand or immediate data is extended by two "ext"
instructions described prior to the instruction.
If the "Extension" function is described as"Invalid”, the instruction cannot be extended. And the
previous "ext" instruction is invalidated.

Code:
Indicates the instruction code.

Flags:
Indicates the flag statuses after executing the instruction.

Mode:
Indicates the addressing mode. " Src" shows the addressing mode for the source and "Dst" shows it for
the destination.

Clock:
Indicates the number of execution cycles for the instruction. The described cycle count is only when
executing the instruction in the internal ROM and accessing data in the internal RAM.
See Section 3.2.2, "Number of instruction execution cycles', for the number of execution cycles when
external memory is used or under other conditions and delay by interlock.

Description:
Explains the functions.

Example:
Shows an exampl e of how to describe in assembler level.

Note:
Shows notes on using.

S1C33000 CORE CPU MANUAL EPSON 53

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

adc %rd, %rs

Function: Addition with carry
Standard: rd « rd+rs+C
Extension 1: Invalid
Extension 2: Invalid
Code: 15 13 12 10 9 8 7 4 3 0
class 5 opl op2 rs rd
1JoJ1J1J1Jo]Jo]oO rs rd 0xB800-0xB8FF
15 12 11 8 7 4 3 0
Flags: IL(3:0) MO DS IE C \% z N
- [- T -T-T el Tl T7]«]
Mode: Src: Register direct (%rs = %r0—%r15)
Dst: Register direct (%rd = %r0—%r15)
Clock: lcycle
Description: (1) Standard
Adds the contents of the rsregister and C (carry) flag to the rd register.
(2) Delayed instruction
Thisinstruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set.
Examples: adc % 0, % 1 ; r0=r0+rl1 +C
Addition of 64-bit data
datal ={r2, r1}, data2 = {r4, r3}, result = {r2, r1}
add %1, %3 ; Addition of the | ow order word
adc % 2, % 4 ; Addition of the high-order word
54 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

add %ord, %rs

Function:

Code:

Flags:

Mode:

Clock:

Description:

Examples:

Addition

Standard: rd « rd+rs
Extension 1: rd — rs+imml3
Extension 2: rd — rs+imm26

15 13 12 10 9 8 7 4 3 0

class 1 opl 1|0 rs rd
oJoJ1JoJoJoJ1]o0 rs rd 0x2200-0x22FF
15 12 11 8 7 4 3 0
IL(3:0) MO DS IE C \% z N

-l -1 -T-T««T« 1«71«
Src: Register direct (%rs = %r0-%r15)
Dst: Register direct (%rd = %r0—%r15)

1cycle

(1) Standard
add %rd, %rs ;rd « rd+rs
Adds the contents of the rsregister to the rd register.

(2) Extension 1
ext imm13
add %rd, %rs ;rd « rs +imm13
Adds the 13-bit immediate data (imm13) to the contents of the rs register, and then stores the
results to the rd register. It does not change the contents of the rs register.

(3) Extension 2

ext imm13 ; =imm26(25:13)
ext imm13' ; =imm26(12:0)
add %rd, %rs ird < rs +imm26

Adds the 26-bit immediate data (imm26) to the contents of the rs register, and then stores the
results to the rd register. The imm26 is zero-extended into 32 bits prior to the operation. It does
not change the contents of the rs register.

(4) Delayed instruction
Thisinstruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set. In this case, thisinstruction cannot be extended with the
"ext" instruction.

add % 0, % 0 7 r0o=r0+r0
ext 0Ox1

ext Ox1fff

add % 1, % 2 ;orl =r2 + Ox3fff

S1C33000 CORE CPU MANUAL EPSON 55

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

add %rd, imm6

Function: Addition
Standard: rd « rd + imm6
Extension 1: rd — rd +imm19
Extension 2: rd — rd +imm32

Code: 15 13 12 10 9 4 3 0
class 3 opl imm6 rd
0OJ1J1]0oJo]Jo immé rd 0x6000-0x63FF
15 12 11 8 7 4 3 0
Flags: IL(3:0) MO DS IE C \Y% z N
L-T-T-T-T«« T+« T« 1%«
Mode: Src: Immediate data (unsigned)

Dst: Register direct (%rd = %r0—%r15)
Clock: lcycle

Description: (1) Standard
add %rd, imm6 ;rd — rd +imm6
Adds the 6-bit immediate data (immé6) to the rd register. The immé is zero-extended into 32 hits
prior to the operation.

(2) Extension 1
ext imm13 ; =imm19(18:6)
add %rd, imm6 ;rd — rd + imm19, imm6 = imm219(5:0)
Adds the 19-bit immediate data (imm19) extended with the "ext" instruction to the rd register.
The imm19 is zero-extended into 32 bits prior to the operation.

(3) Extension 2

ext imm13 ; =imm32(31:19)
ext imm13' ; =imm32(18:6)
add %rd, imm6 ;rd « rd + imm32, imm6 = imm32(5:0)

Adds the 32-bit immediate data (imm32) extended with the "ext" instructions to the rd register.

(4) Delayed instruction
Thisinstruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set. In this case, this instruction cannot be extended with the
"ext" instruction.

Examples: add % 0, Ox3f ;7 r0 =r0 + Ox3f
ext Ox1fff
ext Ox1fff
add % 1, Ox3f ;orl =l + Oxffffffff

56 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

add %sp, imm10

Function:

Code:

Flags:

Mode:

Clock:

Description:

Example:

Addition

Standard: Sp — sp+imml0x 4
Extension 1: Invalid

Extension 2: Invalid

15 13 12 10 9 0

class 4 opl imm10

1JoJoJoJo]Jo imm10 0x8000-0x83FF
15 12 11 8 7 4 3 0

IL(3:0) MO DS IE C \% z N
(-TT-1T-T-7T-1T-T-7T=-"1
Src: Immediate data (unsigned)

Dst: Register direct (SP)

1cycle

(1) Standard

Quadruples the 10-bit immediate data (imm10) and adds it to the stack pointer SP. Theimm10 is
zero-extended into 32 bits prior to the operation.

(2) Delayed instruction
Thisinstruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set.

add %p, 0x100 ; Sp = sp + 0x400

S1C33000 CORE CPU MANUAL EPSON 57

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

and %rd, %rs

Function: Logical product
Standard: rd - rd&rs
Extension 1: rd — rs& imm13
Extension 2: rd — rs& imm26

Code: 15 13 12 10 9 8 7 4 3 0
class 1 opl 1|0 rs rd
OJoJ1]1JoJo[1]0 rs rd 0x3200-0x32FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C \Y% z N

-l -1 -T-T-T=-T+«1T1T%1]

Mode: Src: Register direct (%rs = %r0—%r15)

Dst: Register direct (%rd = %r0—%r15)
Clock: lcycle

Description: (1) Standard
and %rd, %rs ;rd < rd &rs
ANDs the contents of the rs and rd registers, and stores the results to the rd register.

(2) Extension 1
ext imm13
and %rd, %rs ;rd < rs & imm13
ANDs the contents of the rs register and the 13-bit immediate data (imm13), and stores the
results to the rd register. The imm13 is zero-extended into 32 bits prior to the operation. It does
not change the contents of the rs register.

(3) Extension 2

ext imm13 ; =imm26(25:13)
ext imm13' ; =imm26(12:0)
and %rd, %rs ird < rs & imm26

ANDs the contents of the rs register and the 26-bit immediate data (imm26), and stores the
results to the rd register. The imm26 is zero-extended into 32 bits prior to the operation. It does
not change the contents of the rs register.

(4) Delayed instruction
Thisinstruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set. In this case, thisinstruction cannot be extended with the
"ext" instruction.

Examples: and % 0, % 0 ; 10 =10 &r0
ext 0x1
ext Ox1fff
and % 1, % 2 ; rl = r2 & 0x00003fff

58 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

and %rd, sign6

Function:

Code:

Flags:

Mode:

Clock:

Description:

Examples:

Logical product

Standard: rd — rd & sign6
Extension 1: rd — rd & sign19
Extension 2: rd — rd & sign32

15 13 12 10 9 4 3 0

class 3 opl sign6 rd

0OJ1J1J1Jo]Jo signé rd 0x7000-0x73FF
15 12 11 8 7 4 3 0

IL(3:0) MO DS IE C \% z N
L-T-T-T-T-T=-T« 1T+«
Src: Immediate data (signed)

Dst: Register direct (%rd = %r0—%r15)

1cycle

(1) Standard
and %rd, sign6 ;rd — rd & sign6
ANDs the contents of the rd register and the 6-bit immediate data (sign6), and stores the results
to the rd register. The sign6 is sign-extended into 32 bits prior to the operation.

(2) Extension 1
ext imm13 ; = sign19(18:6)
and %rd, sign6 ; rd — rd & sign19, sign6 = sign19(5:0)
ANDs the contents of the rd register and the 19-bit immediate data (sign19) extended with the
"ext" instruction, and stores the results to the rd register. The signl9 is sign-extended into 32 bits
prior to the operation.

(3) Extension 2

ext imm13 ; = sign32(31:19)
ext imm13' ; = sign32(18:6)
and %rd, sign6 ; rd — rd & sign32, sign6 = sign32(5:0)

ANDs the contents of the rd register and the 32-bit immediate data (sign32) extended with the
"ext" instructions, and stores the results to the rd register.

(4) Delayed instruction
Thisinstruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set. In this case, thisinstruction cannot be extended with the
"ext" instruction.

and % 0, Ox3e 7 r0 =r0 & Oxfffffffe
ext Ox7ff
and % 1, Ox3f ;rl =rl1 & Ox0001ffff

S1C33000 CORE CPU MANUAL EPSON 59

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

bclr [%rb], imm3

Function:

Code:

Flags:

Mode:

Clock:

Description:

Examples:

Bit clear

Standard: B[rb](imm3) — 0
Extension 1. B[rb +imm13](imm3) — 0
Extension 2: B[rb +imm26](imm3) — 0

15 13 12 10 9 8 7 4
class 5 opl rb

op2
1JoJ1JoJ1J1]J0]o0 rb
15 12 11 8 7 4

imm3 0xXACO00-0xACF7

w|o|o|w
5
3
w

IL(3:0) MO DS IE C \% z N
(- T -T1T-T-T-T-T-7T=-"1]
Src: Immediate data (unsigned)

Dst: Register indirect (%rb = %r0—%r15)

3cycles

(1) Standard
bclr [Yorb], imm3 ; B[rb](imm3) « O
Clears adata hit of the byte data in the address specified with the rb register. The 3-bit immedi-
ate data (imm3) specifies the bit number to be cleared (7-0).

(2) Extension 1
ext imm13
bclr [Yorb], imm3 ; B[rb + imm13](imm3) « 0
The"ext" instruction changes the addressing mode to register indirect addressing with displace-
ment. The extended instruction clears the data bit specified with the imm3 in the address
specified by adding the 13-bit immediate data (imm13) to the contents of the rb register. It does
not change the contents of the rb register.

(3) Extension 2
ext imm13 ; =imm26(25:13)
ext imm13' ; =imm26(12:0)
bclr [%rb], imm3 ; B[rb + imm26](imm3) ~ 0
The "ext" instructions change the addressing mode to register indirect addressing with displace-
ment. The extended instruction clears the data bit specified with the imm3 in the address
specified by adding the 26-bit immediate data (imm26) to the contents of the rb register. It does
not change the contents of the rb register.

Id.w % 0, [%sp+0x10] ; Sets the menory address to be accessed
; to the RO register.

belr [% 0], OxO ; Clears Bit 0 of data in the specified
; address.

ext 0x1
bel r [% 0], Ox7 ; Clears Bit 7 of data in the follow ng
; address.

60

EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

bnot [%rb], imm3

Function:

Code:

Flags:

Mode:

Clock:

Description:

Examples:

Bit negation

Standard: B[rb](imm3) ~ !B[rb](imm3)

Extension 1: B[rb +imm13](imm3) — !B[rb + imm13](imm3)
Extension 2: B[rb + imm26](imm3) — !B[rb + imm26](imm3)

15 13 12 10 9 8 7 4 3 0

class 5 opl op2 rb 0 imm3
1JoJ1[1JoJ1]o0]Jo0O rb 0] imm3 0xB400-0xB4F7
15 12 11 8 7 4 3 0

IL(3:0) MO DS IE C \% z N
(-TT-1T-T-7T-1T-T-7T=-"1
Src: Immediate data (unsigned)

Dst: Register indirect (%rb = %r0—%r15)

3cycles

(1) Standard
bnot [Yorb], imm3 ; B[rb](imm3) — !B[rb](imm3)
Reverses a data bit of the byte datain the address specified with the rb register. The 3-hit
immediate data (imm3) specifies the bit number to be reversed (7-0).

(2) Extension 1
ext imm13
bnot [Yorb], imm3 ; B[rb + imm13](imm3) « !B[rb + imm13](imm3)
The "ext" instruction changes the addressing mode to register indirect addressing with displace-
ment. The extended instruction reverses the data bit specified with the imm3 in the address
specified by adding the 13-bit immediate data (imm13) to the contents of the rb register. It does
not change the contents of the rb register.

(3) Extension 2

ext imm13 ; =imm26(25:13)
ext imm13' ; =imm26(12:0)
bnot [%rb], imm3 ; B[rb + imm26](imm3) — !B[rb + imm26](imm3)

The "ext" instructions change the addressing mode to register indirect addressing with displace-
ment. The extended instruction reverses the data bit specified with the imm3 in the address
specified by adding the 26-bit immediate data (imm26) to the contents of the rb register. It does
not change the contents of the rb register.

Id.w % 0, [%sp+0x10] ; Sets the menory address to be accessed
; to the RO register.

bnot [% 0], OxO ; Reverses Bit 0 of data in the specified
; address.

ext Ox1

bnot [% 0], Ox7 ; Reverses Bit 7 of data in the follow ng
; address.

S1C33000 CORE CPU MANUAL EPSON 61

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

brk

Function: Debugging exception
Standard: W[0x8(or 0x60008)] — pc + 2, W[0xC(or 0x6000C)] — r0, pc — W[0x0(or 0x60000)]
Extension 1: Invalid
Extension 2: Invalid

- 15 13 12 9 8 7 6 5 4 3 0

Code: class 0 opl 0[op2 [O]O -
OJoJo[oJoJi1]o|o]oJo]o|O0|O0JO[O[0O] Ox0400
1 2 1 8 7 4 3 0

Flags: IL(3:0) MO DS IE C \% z N
[- T -T-Too1 -T7T-T1T-1T1+=-"1

Clock: 10 cycles

Description: Calls a debugging handler routine.
The "brk" instruction stores the address that follows this instruction and the contents of the RO
register into the stack for debugging, then reads the vector for the debugging handler routine from
the debugging vector address (0x0000000 or 0x0060000) and sets it to the PC. Thus the program
branches to the debugging handler routine. Furthermore the CPU enters the debugging mode.
The "retd" instruction must be used for return from the debugging handler routine.
Thisinstruction is provided for ICE control software. Do not useit in general programs.

Example: br k ; Executes the debuggi ng handl er routine.

62 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

bset [%rb], imm3

Function:

Code:

Flags:

Mode:

Clock:

Description:

Examples:

Bit set

Standard: B[rb](imm3) ~ 1
Extension 1: B[rb+imm13](imm3) — 1
Extension 2: B[rb +imm26](imm3) — 1

15 13 12 10 9 8 7 4 3 0

class 5 opl op2 rb 0 imm3
1JoJ1[1JoJofo]Jo rb 0] imm3 0xB000-0xBOF7
15 12 11 8 7 4 3 0

IL(3:0) MO DS IE C \% z N
(-TT-1T-T-7T-1T-T-7T=-"1
Src: Immediate data (unsigned)

Dst: Register indirect (%rb = %r0—%r15)

3cycles

(1) Standard
bset [Yorb], imm3 ; B[rb](imm3) ~ 1
Sets adata bit of the byte datain the address specified with the rb register. The 3-bit immediate
data (imm3) specifies the bit number to be set (7-0).

(2) Extension 1
ext imm13
bset [Yorb], imm3 ; B[rb + imm13](imm3) ~ 1
The "ext" instruction changes the addressing mode to register indirect addressing with displace-
ment. The extended instruction sets the data bit specified with the imm3 in the address specified
by adding the 13-bit immediate data (imm13) to the contents of the rb register. It does not
change the contents of the rb register.

(3) Extension 2

ext imm13 ; =imm26(25:13)
ext imm13' ; =imm26(12:0)
bset [%rb], imm3 ; B[rb + imm26](imm3) ~ 1

The "ext" instructions change the addressing mode to register indirect addressing with displace-
ment. The extended instruction sets the data bit specified with the imm3 in the address specified
by adding the 26-bit immediate data (imm26) to the contents of the rb register. It does not
change the contents of the rb register.

Id.w % 0, [%sp+0x10] ; Sets the menory address to be accessed
; to the RO register.

bset [% 0], OxO ; Sets Bit 0 of data in the specified
; address.

ext Ox1

bset [% 0], Ox7 ; Sets Bit 7 of data in the follow ng
; address.

S1C33000 CORE CPU MANUAL EPSON 63

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

btst [%rb], imm3

Function:

Code:

Flags:

Mode:

Clock:

Description:

Example:

Bit test

Standard: Zflag « 1if B[rb](imm3)=0e€lseZflag - 0
Extension 1. Zflag — 1if B[rb+imm13](imm3) =0e€elseZflag - 0
Extension 2; Z flag — 1if B[rb+imm26](imm3) =0e€elseZflag - 0

15 13 12 10 9 8 7 4 3

class 5 opl rb 0 imm3
0
3

op2
1JoJ1JoJ1Jo]Jo]Jo rb imm3 0XA800-0xA8F7
15 12 11 8 7 4

0

IL(3:0) MO DS IE C \% z N
(-T-T-T-T-T=-T+« 1=
Src: Immediate data (unsigned)

Dst: Register indirect (%rb = %r0—%r15)

3cycles

(1) Standard
btst [%rb], imm3 ; Zflag « 1if B[rb](imm3)=0else Z flag — 0
Tests a data bit of the byte data in the address specified with the rb register and sets the Z (zero)
flag if the bit is 0. The 3-bit immediate data (imm3) specifies the bit number to be tested (7-0).

(2) Extension 1
ext imm13
btst [Yorb], imm3 ; Zflag — 1if B[rb + imm13](imm3) =0else Zflag — 0
The"ext" instruction changes the addressing mode to register indirect addressing with displace-
ment. The extended instruction tests the data bit specified with the imm3 in the address specified
by adding the 13-hit immediate data (imm13) to the contents of the rb register. It does not
change the contents of the rb register.

(3) Extension 2
ext imm13 ; =imm26(25:13)
ext imm13' ; =imm26(12:0)
btst [%rb], imm3 ; Z flag —~ 1if B[rb + imm26](imm3) =0 else Z flag — O
The "ext" instructions change the addressing mode to register indirect addressing with displace-
ment. The extended instruction tests the data bit specified with the imm3 in the address specified
by adding the 26-bit immediate data (imm26) to the contents of the rb register. It does not
change the contents of the rb register.

Id.w % 0, [%sp+0x10] ; Sets the menory address to be accessed
; to the RO register.

bt st [% 0], Ox7 ; Tests Bit 7 of data in the specified
; address.

jreq PCSI TI VE ; Junps if the bit is O.

64

EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

call %rb/call.d %rb

Function:

Code:

Flags:

Mode:
Clock:

Description:

Example:

Note:

Subroutine call

Standard: Sp — P-4, W[sp] —« pc+2,pc — rb
Extension 1: Invalid

Extension 2: Invalid

15 13 12 9 8 7 6 5 4 3 0

class 0 opl d| op2 |00 rb
oJoJoJoJoJiJ1i]|d|oJoJo]JoO rb 0x0600-0x060F, 0x070F—0x070F
15 12 11 8 7 4 3 0

IL(3:0) MO DS IE C \% z N

-1l -1T-T-T-T-T=-17T=-"
Register direct (%rb = %r0—%r15)

cal: 3cycles
cal.d: 2cycles

(1) Standard
call %rb
Stores the address of the following instruction into the stack, then sets the contents of the rb
register to the PC for calling the subroutine that starts from the address set to the PC. The LSB of
the rb register isinvalid and is always handled as 0. When the "ret" instruction is executed in the
subroutine, the program flow returns to the instruction following the "call" instruction.

(2) Delayed branch (d bit = 1)
call.d %rb
When "call.d" is specified, the d bit in the instruction code is set and the following instruction
becomes a delayed instruction.
The delayed instruction is executed before branching to the subroutine. Therefore the address
(PC+4) of theinstruction that follows the delayed instruction is stored into the stack as the return
address.
When the "call.d" instruction is executed, interrupts and exceptions cannot occur because traps
are masked between the "call.d" and delayed instructions.

cal l 9% 0 ; Calls the subroutine that starts fromthe
; address stored in the RO register.

When using the "call.d" instruction (delayed branch), the next instruction must be an instruction
available for adelayed instruction. Be aware that the operation is undefined if another instruction is
executed. See the instruction list in the Appendix for available instructions.

S1C33000 CORE CPU MANUAL EPSON 65

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

call sign8/call.d sign8

Function:

Subroutine call

Standard: sp — sp-4, W[sp] « pc+ 2, pc — pc+sign8 x 2
Extension 1. sp « sp-4, W[sp] « pc+ 2, pc — pc + sign22
Extension 2: sp « sp-4, W[sp] « pc+ 2, pc — pc + sign32

13 12 9 8 7 0

Code: 15

Flags:

class 0

opl

sign8

1J1]1]0

sign8

0J0]0
15

IL(3:0)

12 11

MO DS

d
d
8

4 3

0x1CO00-0x1DFF

Mode: Signed PC relative

Clock: cal: 3cycles
cal.d: 2cycles

(1) Standard
call sign8 ; = "call sign9", sign8 = sign9(8:1), sign9(0) =0
Stores the address of the following instruction into the stack, then doubles the signed 8-hit
immediate data (sign8) and adds it to the PC for calling the subroutine that starts from the
address. The sign8 specifies a half word address in 16-bit units. When the "ret" instruction is
executed in the subroutine, the program flow returns to the instruction following the "call"
instruction.
The sign8 (x2) allows branches within the range of PC-0x100 to PC+0xFE.

Description:

(2) Extension 1
ext imm13 ; = sign22(21:9)
call sign8 ; = "call sign22", sign8 = sign22(8:1), sign22(0) =0
The"ext" instruction extends the displacement into 22 bits using its 13-bit immediate data
(imm13). The 22-hit displacement is sign-extended and added to the PC.
The sign22 allows branches within the range of PC-0x200000 to PC+0x1FFFFE.

(3) Extension 2
ext imm13
ext imm13' ; = sign(21:9)
call sign8 ; = "call sign32", sign9 = sign32(8:1), sign32(0) =0
The "ext" instructions extend the displacement into 32 bits using their 13-bit immediate data
(imm13 and imm13'). The displacement covers the entire address space.

(4) Delayed branch (d bit = 1)
call.d sign8
When "call.d" is specified, the d bit in the instruction code is set and the following instruction
becomes a delayed instruction.
The delayed instruction is executed before branching to the subroutine. Therefore the address
(PC+4) of the instruction that follows the delayed instruction is stored into the stack as the return
address.
When the "call.d" instruction is executed, interrupts and exceptions cannot occur because traps
are masked between the "call.d" and delayed instructions.

Example: ext Ox1fff
cal | 0x0 ; Calls the subroutine that starts fromthe
; address specified by PC 0x200.

; imm13(12:3)= sign32(31:22)

Note: When using the "call.d" instruction (delayed branch), the next instruction must be an instruction
available for adelayed instruction. Be aware that the operation is undefined if another instruction is
executed. See the instruction list in the Appendix for available instructions.

66 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

cmp %rd, %rs

Function:

Code:

Flags:

Mode:

Clock:

Description:

Examples:

Comparison

Standard: rd-rs
Extension 1: rs-imm13
Extension 2: rs-imm26

15 13 12 10 9 8 7 4 3 0

class 1 opl 1|0 rs rd
oJoJ1JoJ1JoJ1]o0 rs rd 0x2A00-0x2AFF
15 12 11 8 7 4 3 0

IL(3:0) MO DS IE C \% z N

-l -1 -T-T««T« 1«71«
Src: Register direct (%rs = %r0-%r15)
Dst: Register direct (%rd = %r0—%r15)

1cycle

(1) Standard
cmp %rd, %rs ;rd-rs
Subtracts the contents of the rs register from the contents of the rd register, and sets or resets the
flags (C, V, Z and N) according to the results. It does not change the contents of the rd register.

(2) Extension 1
ext imm13
cmp %rd, %rs ;rs -immi3
Subtracts the 13-bit immediate data (imm13) from the contents of the rs register, and sets or
resets the flags (C, V, Z and N) according to the results. It does not change the contents of therd
and rsregisters.

(3) Extension 2

ext imm13 ; =imm26(25:13)
ext imm13' ; =imm26(12:0)
cmp %rd, %rs ;IS -imm26

Subtracts the 26-bit immediate data (imm26) from the contents of the rs register, and sets or
resets the flags (C, V, Z and N) according to the results. It does not change the contents of the rd
and rsregisters.

(4) Delayed instruction
Thisinstruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set. In this case, thisinstruction cannot be extended with the
"ext" instruction.

cnp % 0, % 1 ; Changes the flags according to the results of
; ro - rl.

ext Ox1

ext Ox1fff

cnp %1, % 2 ; Changes the flags according to the results of
;r2 - Ox3ff.

S1C33000 CORE CPU MANUAL EPSON 67

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

cmp %rd, sign6

Function: Comparison
Standard: rd - sign6
Extension 1: rd - sign19
Extension 2: rd - sign32
Code: 15 13 12 10 9 4 3 0
class 3 opl sign6 rd
0J1J1]o]J1]o0 signé rd 0x6800-0x6BFF
15 12 11 8 7 4 3 0
Flags: IL(3:0) MO DS IE C \Y% z N
L-T-T-T-T«« T+« T« 1%«
Mode: Src: Immediate data (signed)
Dst: Register direct (%rd = %r0—%r15)
Clock: lcycle
Description: (1) Standard
cmp %rd, sign6 ; rd - sign6
Subtracts the signed 6-bit immediate data (sign6) from the contents of the rd register, and sets or
resets the flags (C, V, Z and N) according to the results. The sign6 is sign-extended into 32 hits
prior to the operation. It does not change the contents of the rd register.
(2) Extension 1
ext imm13 ; = sign19(18:6)
cmp %rd, sign6 ; rd - signl9, sign6 = sign19(5:0)
Subtracts the signed 19-bit immediate data (sign19) from the contents of the rd register, and sets
or resets the flags (C, V, Z and N) according to the results. The sign19 is sign-extended into 32
bits prior to the operation. It does not change the contents of the rd register.
(3) Extension 2
ext imm13 ; = sign32(31:19)
ext imm13' ; = sign32(18:6)
cmp %rd, sign6é ; rd - sign32, imm6 = sign32(5:0)
Subtracts the signed 32-bit immediate data (sign32) extended with the "ext" instruction from the
contents of the rd register, and sets or resets the flags (C, V, Z and N) according to the results. It
does not change the contents of the rd register.
(4) Delayed instruction
Thisinstruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set. In this case, thisinstruction cannot be extended with the
"ext" instruction.
Examples: cmp % 0, Ox3f ; Changes the flags according to the results of
; r0 - Ox3f.
ext Ox1f ff
ext Ox1fff
cnp % 1, Ox3f ; Changes the flags according to the results of
;orl - Oxffffffff.
68 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

divOs %rs (option)

Function:

Code:

Flags:

Mode:
Clock:

Description:

Example:

Note:

Signed division 1st step

Standard: Initialization for division
Extension 1: Invalid

Extension 2: Invalid

15 13 12 10 9 8 7 4 3 0

class 4 opl op2 rs rd
1JoJoJoJ1JoJ1]1 rs 0[O0JOJO0]| 0x8B00-0x8BFO
15 12 11 8 7 4 3 0

IL(3:0) MO DS IE C \% z N

-l -1T-7T-T-T-T=-171T="1
Register direct (%rs = %r0—%r15)

1cycle

When performing a signed division, first execute the "div0s" instruction after setting the dividend to
the ALR and the divisor to the rsregister. The "div0s" instruction initializes the register and flags as
follows:

1) Extendsthe dividend inthe ALR into 64 bitswith asign and setsit in {AHR, ALR}.

2) Setsthesign bit of the dividend (MSB of ALR) to the DS flag in the PSR.

3) Setsthesign bit of the divisor (MSB of the rsregister) to the N flag in the PSR.

Therefore, it is necessary that the dividend and divisor in the ALR and the rs register have been sign-
extended into 32 bits.

The "div1" instruction should be executed after executing the "div0s' instruction. Then correct the
results using the "div2s" and "div3s" instructionsin signed division.

Signed division (32 bits + 32 bits)
When the dividend has been set to the RO register and the divisor to the R1 register:

ld. w %l r, % 0 ; Set the dividend to the ALR

divos %1 ; Initialization for signed division.
divl % 1 ; Executing divl 32 tines.

divl % 1

di v2s % 1 ; Correction 1

di v3s ; Correction 2

Executing the above instructions store the quotient into the ALR and the remainder into the AHR.

A zero-division exception occurs if the "div0s" instruction is executed by setting the rsregister to 0.
Up to 32-bit data can be used for both dividends and divisors.

This instruction can be executed only in the models that have an optional multiplier. In other models,
this instruction functions the same as the "nop" instruction.

S1C33000 CORE CPU MANUAL EPSON 69

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

divOu %rs (option)

Function:

Code:

Flags:

Mode:
Clock:

Description:

Example:

Note:

Unsigned division 1st step
Standard: Initialization for division
Extension 1: Invalid

Extension 2: Invalid

15 13 12 10 9 8 7 4 3 0

class 4 opl op2 rs rd
1JoJoJoJ1J1J1]1 rs 0[O0JOJO0]| Ox8FO0-0x8FFO
15 12 11 8 7 4 3 0
IL(3:0) MO DS IE C \% Z N

- [- JTo [-T-T-T=-1T%®0]

Register direct (%rs = %r0—%r15)
lcycle

When performing an unsigned division, first execute the "divOu" instruction after setting the
dividend to the ALR and the divisor to the rs register. The "divOu" instruction initializes the register
and flags as follows:

1) ClearstheAHRto 0.

2) Resetsthe DSflag inthe PSR to 0.

3) Resetsthe N flag in the PSR to 0.

The "div1" instruction should be executed after executing the "divOu" instruction. In unsigned
division, it is not necessary to correct the division results of the "div1" instruction.

Unsigned division (32 bits + 32 bits)
When the dividend has been set to the RO register and the divisor to the R1 register:

ld.w Y%alr, % 0 ; Sets the dividend to the ALR

divou %1 ; Initialization for unsigned division.
divi % 1 ; Executing divl 32 tines.

divi % 1

Executing the above instructions store the quotient into the ALR and the remainder into the AHR.

A zero-division exception occurs if the "divOu" instruction is executed by setting the rs register to 0.
Up to 32-hit data can be used for both dividends and divisors.

Thisinstruction can be executed only in the models that have an optional multiplier. In other models,
this instruction functions the same as the "nop" instruction.

70

EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

divl %rs (option)

Function: Division
Standard: Step division
Extension 1: Invalid
Extension 2: Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 4 opl op2 rs rd
1JoJof1JoJo]1]1 rs 0JO0J0]0] 0x9300-0x93F0
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C \Y z N
- -1 -T-T-T-T1-1-1

Mode: Register direct (%rs = %r0—%r15)

Clock: 1cycle

Description: The"div1" instruction executes a step division and is used for both signed division and unsigned
division. Thisinstruction must be executed a number of times according to the data size of the
dividend after finishing the initialization by the "div0s" (for signed division) or "divOu" (for un-
signed division) instruction. For example, execute 32 "div1" instructions for 32 bits + 32 bits, and 16
for 16 bits + 16 bits.

One "div1" instruction step performs the following process:

1) Shiftsthe 64-bit data (dividend) in { AHR, ALR} 1 bit to the left (to upper side). (ALR(0) = 0)

2) Addsrstothe AHR or subtracts rs from the AHR and modifies the AHR and the ALR according
to the results.
The addition/subtraction uses the 33-bit data created by extending the contents of the AHR with
the DS flag as the sign bit and the 33-bit data created by extending the contents of the rs register
with the N flag as the sign hit.
The process varies according to the DS and N flags in the PSR as shown below. "tmp(32)" in the
explanation indicates the hit-33 value of the addition/subtraction results.

In the case of DS = 0 (dividend is positive) and N = 0 (divisor is positive):
2-1) Executestmp ={0, AHR} - {0, rs}
2-2) If tmp(32) = 0, executesAHR = tmp(31:0) and ALR(0) = 1 and then terminates.
If tmp(32) = 1, terminates without changing the AHR and ALR.

In the case of DS = 1 (dividend is negative) and N = O (divisor is positive):
2-1) Executestmp ={1, AHR} +{0, rs}
2-2) 1f tmp(32) = 1, executesAHR = tmp(31:0) and ALR(0) = 1 and then terminates.
If tmp(32) = 0, terminates without changing the AHR and ALR.

In the case of DS = 0 (dividend is positive) and N = 1 (divisor is negative):
2-1) Executestmp ={0,AHR} + {1, rs}
2-2) 1f tmp(32) = 0, executesAHR = tmp(31:0) and ALR(0) = 1 and then terminates.
If tmp(32) = 1, terminates without changing the AHR and ALR.

In the case of DS = 1 (dividend is negative) and N = 1 (divisor is negative):
2-1) Executestmp={1, AHR} - {1, rs}
2-2) 1f tmp(32) = 1, executesAHR = tmp(31:0) and ALR(0) = 1 and then terminates.
If tmp(32) = 0, terminates without changing the AHR and ALR.

In unsigned division, the results are obtained from the following registers by executing the
necessary "div1" instruction steps.
The results of unsigned division: ALR = Quoatient, AHR = Remainder

In signed division, it is necessary to correct the results using the "div2s" and "div3s" instructions.

S1C33000 CORE CPU MANUAL EPSON 71

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

Examples:

Note:

Unsigned division (32 bits + 32 bits)
When the dividend has been set to the RO register and the divisor to the R1 register:

ld.w
di vOu
divil

divi

Y%alr, % 0 ; Sets the dividend to the ALR

9% 1 ; Initialization for unsigned division.
9% 1 ; Executing divl 32 tines.

9% 1

Executing the above instructions store the quotient into the ALR and the remainder into the AHR.

Signed division (32 bhits + 32 hits)
When the dividend has been set to the RO register and the divisor to the R1 register:

ld.w
di vOs
di vl
di vl
di v2s
di v3s

%l r, % 0 ; Set the dividend to the ALR

% 1 ; Initialization for signed division.
% 1 ; Executing divl 32 tinmes.

% 1

% 1 ; Correction 1

; Correction 2

Executing the above instructions store the quotient into the ALR and the remainder into the AHR.

Thisinstruction can be executed only in the models that have an optional multiplier. In other models,
this instruction functions the same as the "nop" instruction.

72

EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

div2s %rs (option)

Function:

Code:

Flags:

Mode:
Clock:

Description:

Example:

Note:

Correction step 1 for signed division results

Standard: Correction process for the execution results of signed division
Extension 1: Invalid

Extension 2: Invalid

15 13 12 10 9 8 7 4 3 0

class 4 opl op2 rs rd
1JoJof1JoJ1J1]1 rs 0[O0JOJO0]| 0x9700-0x97F0
15 12 11 8 7 4 3 0

IL(3:0) MO DS IE C \% z N

-1l -1T-T-T-T-T=-17T=-"
Register direct (%rs = %r0—%r15)

1cycle

The "div2s" instruction corrects the results of signed division. It is not necessary to execute the
"div2s" instruction in unsigned division.

When the dividend is a negative number and zero results in a division step (execution of divl), the
remainder (AHR) after completing all the steps may be the same as the divisor and the quotient
(AHR) may be 1 short from the actual absolute value. The "div2s" instruction corrects such results.
The "div2s" instruction operates as follows:

In the case of DS = 0 (dividend is positive):
This problem does not occur when the dividend is a positive number, so the "div2s" instruction
terminates without any execution (same as the "nop" instruction).

In the case of DS = 1 (dividend is negative):
1) If N=0((divisor ispositive), executestmp = AHR +rs
If N = 1 (divisor is negative), executes tmp = AHR - rs
2) According to the results of step 1).
If tmp is zero, executes AHR = tmp(31:0) and ALR = ALR + 1 and then terminates.
If tmp is not zero, terminates without changing the AHR and ALR.

Signed division (32 bits + 32 bits)
When the dividend has been set to the RO register and the divisor to the R1 register:

ld. w %l r, % 0 ; Set the dividend to the ALR

divos %1 ; Initialization for signed division.
divl % 1 ; Executing divl 32 tines.

divl % 1

di v2s % 1 ; Correction 1

di v3s ; Correction 2

Executing the above instructions stores the quotient into the ALR and the remainder into the AHR.

This instruction can be executed only in the models that have an optional multiplier. In other models,
this instruction functions the same as the "nop" instruction.

S1C33000 CORE CPU MANUAL EPSON 73

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

div3s (option)
Function: Correction step 2 for signed division results
Standard: Correction process for the execution results of signed division
Extension 1: Invalid
Extension 2: Invalid
Code: 15 13 12 10 9 8 7 4 3 0
class 4 opl op2 rs rd
1JoJoJ1J1JoJ1]1 rs 0[O0JOJO0] 0x9BOO-0x9BFO
15 12 11 8 7 4 3 0
Flags: IL(3:0) MO DS IE C \Y% z N
(- T -T1T-T-T-T-T-7T=-"1]
Clock: 1lcycle
Description: The"div3s" instruction corrects the results of signed division. It is not necessary to execute the
"div3s" instruction in unsigned division.
Step division always stores a positive number of quotient into the ALR. When the signs of the
dividend and divisor are different, the results must be a negative number. The "div3s" instruction
corrects the sign in such cases.
The "div2s" instruction operates as follows:
In the case of DS = N (dividend and divisor have the same sign):
This problem does not occur, so the "div3s" instruction terminates without any execution (same
as the "nop" instruction).
In the case of DS = !N (dividend and divisor have different sign):
Reverses the sign bit of the ALR (quotient).
In signed division, the results are obtained from the following registers after executing the "div2s"
and "div3s' instructions.
The results of unsigned division: ALR = Quotient, AHR = Remainder
Example: Signed division (32 bhits + 32 hits)
When the dividend has been set to the RO register and the divisor to the R1 register:
Id.w Yalr, %0 ; Set the dividend to the ALR
divos %1 ; Initialization for signed division.
di vl % 1 ; Executing divl 32 tinmes.
divl % 1
divzs %1 ; Correction 1
di v3s ; Correction 2
Executing the above instructions store the quotient into the ALR and the remainder into the AHR.
Note: Thisinstruction can be executed only in the models that have an optional multiplier. In other models,
this instruction functions the same as the "nop" instruction.
74 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

ext imm13

Function:

Code:

Flags:

Mode:
Clock:

Description:

Example:

Note:

Immediate extension

Standard: Extends the immediate data/operand of the following instruction.
Extension 1: Up to two "ext" instructions can be used sequentially.

Extension 2: Invalid

15 13 12 0
class 6 imm13

1J1]o0 imm13 0XCO00-0xDFFF
1 12 11 8 7 4 3 0

IL(3:0) MO DS IE C \Y YA N

[- T -T-T-T-T-T7T=-"1
Immediate data (unsigned)

1cycle

Extends the immediate data or operand of the following instruction.

When extending an immediate data, the immediate datain the "ext" instruction will be placed on the
high-order side and the immediate data in the target instruction to be extended is placed on the low-
order side.

Up to two "ext" instructions can be used sequentially. In this case, the immediate data in the first
"ext" instruction is placed on the most upper part. If three or more "ext" instructions are described
sequentially, only two instructions, the first and the last (prior to the target instruction) are effective
and the middles are invalidated.

See descriptions of each instruction for the extension contents and the usage.

Traps except for reset and address error are masked by the hardware while executing the "ext"
instruction and the following target instruction, and they do not occur.

ext 0x1000 ; Valid

ext Ox1 ; Invalid

ext Ox1fff ; Valid

add % 1, Ox3f ; rl =rl + Ox8007ffff

When aload instruction that transfers data between memory and aregister follows the "ext" instruc-
tion, an address error exception may occur before executing the load instruction (if the address that
is specified with the immediate datain the "ext" instruction as the displacement is not a boundary
address according to the transfer data size). When an address error occurs, the trap processing saves
the address of the load instruction into the stack as the return address. If the trap handler routineis
returned by simply executing the "reti" instruction, the previous "ext" instruction is invalidated.
Therefore, it is necessary to modify the return address in that case.

S1C33000 CORE CPU MANUAL EPSON 75

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

halt
Function: HALT
Standard: Sets the CPU to HALT mode.
Extension 1: Invalid
Extension 2: Invalid
Code: 15 13 12 9 8 7 6 5 4 3 0
class 0 opl 0 op2 |00 -
0|O|O O|0|0|0 0 1|0 0|0 0|0|0|O 0x0080
15 12 11 8 7 4 3 0
Flags: IL(3:0) MO DS IE C \Y; z N
[- T - T -T-T-T-7T-1T-1
Clock: 1lcycle
Description: Setsthe CPU to HALT mode.
In HALT mode, the CPU stops operating, so current consumption can be reduced.
On-chip peripheral circuits operate in HALT mode.
HALT mode is canceled by an interrupt. When HALT mode is canceled, the program flow returns to
the next instruction of the "halt" instruction after executing the interrupt handler routine.
Example: hal t ; Sets the CPU in HALT nopde.
76 EPSON S1C33000 CORE CPU MANUAL

int imm2

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

Function:

Code:

Flags:

Mode:
Clock:

Description:

Example:

Software exception
Standard: P« P-4, W[sp] « pc+2,5p « sp-4, W[sp] — psr, pc — Software exception vector
Extension 1: Invalid
Extension 2: Invalid

15 13 12 9 8 7 6 5 4 3 0

class 0 opl 0| op2 |0 |0 imm2
oJoJoJoJoJ1Jo|o]1]o[ofo]Jo]JoO]imm2]| 0x0480-0x0483
1 12 11 8 7 4 3 0
IL(3:0) MO DS IE (] \Y% Z N

- -T-T17 -T-T-T=-1]

Immediate data (unsigned)
10 cycles

Generates a software exception.
The"int" instruction saves the address of the next instruction and the contents of the PSR into the
stack, then reads the software exception vector from the trap table and sets it to the PC. By this
processing, the program flow branches to the specified software exception handler routine.
The S1C33000 supports four types of software exceptions and the software exception number (0 to
3) is specified by the 2-bit immediate data (imm2).

imm2 Vector address

Software exception 0 0 Base + 48
Software exception 1 1 Base + 52
Software exception 2 2 Base + 56
Software exception 3 3 Base + 60

The Base is the trap table beginning address. It is address 0x0080000 for the system that boots from
the internal ROM (BTA3 terminal is high) or address 0xOC00000 for the system that boots from the
external ROM (BTA3 terminal islow).

The "reti" instruction should be used for return from the handler routine.

i nt 2 ; Executes the software exception 2 handler routine.

S1C33000 CORE CPU MANUAL EPSON 7

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

jp %rb/jp.d %rb

Function: Unconditional jump
Standard: pc « rb
Extension 1: Invalid
Extension 2: Invalid
Code: 15 13 12 9 8 7 6 5 4 3 0
class 0 opl d|{ op2 |00 rb
0OJoJoJoJoJaJi[d[1]o]0]0O rb 0x0680-0x068F, 0x0780-0x078F
15 12 11 8 7 4 3 0
Flags: IL(3:0) MO DS IE C \% z N
- -1 -T1T-7T-T-T=-71T="1
Mode: Register direct (%orb = %r0—%r15)
Clock: jp: 2cycles
jp.d: 1cycle
Description: (1) Standard
ip %rb
L oads the contents of the rb register to the PC for branching the program flow to the address.
The LSB of the rb register isignored and is always handled as 0.
(2) Delayed branch (d bit = 1)
jp.d %rb
The"jp.d" instruction sets the d bit in the instruction code, so the following instruction becomes
adelayed instruction. The delayed instruction is executed before branching.
Traps that may occur between the "jp.d" instruction and the next delayed instruction are masked,
thus interrupts and exceptions cannot occur.
Example: ip % 0 ; Junps to the address specified by the RO register.
Note: When using the "jp.d" instruction (for delayed branch), the following instruction must be an instruc-
tion that can be used as a delayed instruction. Be aware that the operation will be undefined if other
instructions are executed. See the instruction list in the Appendix for the instructions that can be used
as delayed instructions.
78 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

jp sign8/jp.d sign8

Function:

Code:

Flags:

Mode:
Clock:

Description:

Example:

Note:

Unconditional PC relative jump
Standard: pCc — pc+sign8 x 2
Extension 1. pc — pc + sign22
Extension 2: pc — pc + sign32

15 13 12 9 8 7 0

class 0 opl d sign8

oOJoJoJ1iJ1J1J1]d sign8 Ox1E00-Ox1FFF
15 12 11 8 7 4 3 0

IL(3:0) MO DS IE C \Y z N
(-TT-1T-T-7T-1T-T-7T=-"1
Signed PC relative
jp: 2cycles
jp.d: 1cycle
(1) Standard

ip sign8 ; ="jp sign9", sign8 = sign9(8:1), sign9(0)=0

Doubles the signed 8-bit immediate data (sign8) and adds it to the PC. The program flow
branches to the address. The sign8 specifies a half word address in 16-bit units.
The sign8 (x2) allows branches within the range of PC-0x100 to PC+0xFE.

(2) Extension 1
ext imm13 ; = sign22(21:9)
ip sign8 :="jp sign22", sign8 = sign22(8:1), sign22(0)=0
The"ext" instruction extends the displacement to be added to the PC into signed 22 bits using its
13-bit immediate data (imm13). The sign22 allows branches within the range of PC-0x200000 to
PC+0x1FFFFE.

(3) Extension 2

ext imm13 ; imm13(12:3)= sign32(31:22)
ext imm13' ; = sign32(21:9)
ip sign8 ;="jp sign32", sign8 = sign32(8:1), sign32(0)=0

The "ext" instructions extend the displacement to be added to the PC into signed 32 bits using
their 13-bit immediate data (imm13 and imm13'). The displacement covers the entire address
space. Note that the low-order 3 bits of the first imm13 are ignored.

(4) Delayed branch (d bit = 1)
jp.d sign8
The "jp.d" instruction sets the d bit in the instruction code, so the following instruction becomes
adelayed instruction. The delayed instruction is executed before branching.
Traps that may occur between the "jp.d" instruction and the next delayed instruction are masked,
thus interrupts and exceptions cannot occur.

ext 0x8
ext 0x0
ip 0x80 ; Junps to the address specified by PC+0x400100.

When using the "jp.d" instruction (for delayed branch), the following instruction must be an instruc-
tion that can be used as a delayed instruction. Be aware that the operation will be undefined if other
instructions are executed. See the instruction list in the Appendix for the instructions that can be used
as delayed instructions.

S1C33000 CORE CPU MANUAL EPSON 79

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

jreq sign8/jreqg.d sign8

Function: Conditional PC relative jump
Standard: pc — pc+sign8 x 2if Zistrue
Extension 1. pc — pc + sign22 if Z istrue
Extension 2: pc — pc +sign32if Z istrue

Code: 15 13 12 9 8 7 0

class 0 opl d sign8
oJoJoJ1]1]Jo]Jo]d sign8 0x1800-0x19FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C \Y% z N
(- T -T1T-T-T-T-T-7T=-"1]

Mode: Signed PC relative

Clock: jreq: 1 cycle (when not branched), 2 cycles (when branched)
jreq.d: 1cycle

Description: (1) Standard

jreq sign8 ; = "jreq sign9", sign8 = sign9(8:1), sign9(0) =0
If the condition below has been met, this instruction doubles the signed 8-bit immediate data
(sign8) and adds it to the PC for branching the program flow to the address. It does not branch if
the condition has not been met.
«Zflag=1(eg."A =B" hasresulted by "cmp A, B")
The sign8 specifies a half word address in 16-bit units.
The sign8 (x2) allows branches within the range of PC-0x100 to PC+0xFE.

(2) Extension 1
ext imm13 ; = sign22(21:9)
jreq sign8 ; = "jreq sign22", sign8 = sign22(8:1), sign22(0) = 0
The"ext" instruction extends the displacement to be added to the PC into signed 22 bits using its
13-bit immediate data (imm13). The sign22 allows branches within the range of PC-0x200000 to
PC+Ox1FFFFE.

(3) Extension 2
ext imm13 ; imm13(12:3)= sign32(31:22)
ext imm13' ; = sign32(21:9)
jreq sign8 ; = "jreq sign32", sign8 = sign32(8:1), sign32(0) = 0
The "ext" instructions extend the displacement to be added to the PC into signed 32 bits using
their 13-bit immediate data (imm13 and imm13'). The displacement covers the entire address
space. Note that the low-order 3 bits of the first imm13 are ignored.

(4) Delayed branch (d bit = 1)
jreq.d sign8
The "jreq.d” instruction sets the d bit in the instruction code, so the following instruction
becomes a delayed instruction. The delayed instruction is executed before branching.
Traps that may occur between the "jreq.d" instruction and the next delayed instruction are
masked, thus interrupts and exceptions cannot occur.

Example: cmp % 0, % 1
jreq 0x2 ; Skips the next instruction if rl1 =r0.

Note: When using the "jreq.d" instruction (for delayed branch), the following instruction must be an
instruction that can be used as a delayed instruction. Be aware that the operation will be undefined if
other instructions are executed. See the instruction list in the Appendix for the instructions that can
be used as delayed instructions.

80 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

jrge sign8/jrge.d sign8

Function:

Code:

Flags:

Mode:
Clock:

Description:

Example:

Note:

Conditional PC relative jump (for judgment of signed operation results)
Standard: pc — pc+sign8 x 2if I(NAV) istrue

Extension 1: pc — pc + sign22 if |(N*V) istrue

Extension 2: pc — pc + sign32 if |(N*V) istrue

15 13 12 9 8 7 0

class 0 opl d sign8

oJoJoJoJ1JoJ1]d sign8 0X0A00-0X0BFF
15 12 11 8 7 4 3 0

IL(3:0) MO DS IE C \Y z N
(-TT-1T-T-7T-1T-T-7T=-"1
Signed PC relative
jrge: 1 cycle (when not branched), 2 cycles (when branched)
jrged: lcycle
(1) Standard

jrge sign8 ; = "jrge sign9", sign8 = sign9(8:1), sign9(0) =0

If the condition below has been met by a signed operation, this instruction doubles the signed 8-
bit immediate data (sign8) and adds it to the PC for branching the program flow to the address. It
does not branch if the condition has not been met.

*Nflag=V flag (e.g. "A = B" hasresulted by "cmp A, B")

The sign8 specifies a half word address in 16-bit units.

The sign8 (x2) allows branches within the range of PC-0x100 to PC+0xFE.

(2) Extension 1
ext imm13 ; = sign22(21:9)
jrge sign8 ; = "jrge sign22", sign8 = sign22(8:1), sign22(0) =0
The"ext" instruction extends the displacement to be added to the PC into signed 22 bits using its
13-hit immediate data (imm13). The sign22 allows branches within the range of PC-0x200000 to
PC+0x1FFFFE.

(3) Extension 2

ext imm13 ; imm13(12:3)= sign32(31:22)
ext imm13' ; = sign32(21:9)
jrge sign8 ; = "jrge sign32", sign8 = sign32(8:1), sign32(0) =0

The "ext" instructions extend the displacement to be added to the PC into signed 32 bits using
their 13-bit immediate data (imm13 and imm13'). The displacement covers the entire address
space. Note that the low-order 3 bits of the first imm13 are ignored.

(4) Delayed branch (d bit = 1)
jrge.d sign8
The"jrge.d" instruction sets the d bit in the instruction code, so the following instruction
becomes a delayed instruction. The delayed instruction is executed before branching.
Traps that may occur between the "jrge.d" instruction and the next delayed instruction are
masked, thus interrupts and exceptions cannot occur.

cnp % 0, % 1 ; r0 and r1 contain signed data.
jrge 0x2 ; Skips the next instructionif r0 = r1.

When using the "jrge.d" instruction (for delayed branch), the following instruction must be an
instruction that can be used as a delayed instruction. Be aware that the operation will be undefined if
other instructions are executed. See the instruction list in the Appendix for the instructions that can
be used as delayed instructions.

S1C33000 CORE CPU MANUAL EPSON 81

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

jrogt sign8/jrgt.d sign8

Function:

Code:

Flags:

Mode:
Clock:

Description:

Example:

Note:

Conditional PC relative jump (for judgment of signed operation results)

Standard: pc — pc+sign8 x 2if 1Z&!(N"V) istrue

Extension 1. pc — pc + sign22 if 1Z&!(N"V) istrue

Extension 2: pc — pc + sign32if 1Z&!(N"V) istrue

15 13 12 9 8

class 0 opl d sign8

d
8

0J0J0|01]O0]O sign8 0Xx0800-0X09FF
15 12 11 7 4 3 0

IL(3:0) MO DS IE C \% z N
(- T -T1T-T-T-T-T-7T=-"1]
Signed PC relative

jrgt: 1 cycle (when not branched), 2 cycles (when branched)
jrogt.d: 1cycle

(1) Standard
jrgt sign8 ; = "jrgt sign9", sign8 = sign9(8:1), sign9(0) =0
If the condition below has been met by a signed operation, this instruction doubles the signed 8-
bit immediate data (sign8) and adds it to the PC for branching the program flow to the address. It
does not branch if the condition has not been met.
«Zflag=0and N flag=V flag (e.g. "A > B" hasresulted by "cmp A, B")
The sign8 specifies a half word address in 16-bit units.
The sign8 (x2) allows branches within the range of PC-0x100 to PC+0xFE.

(2) Extension 1
ext imm13 ; = sign22(21:9)
jrgt sign8 ; = "jrgt sign22", sign8 = sign22(8:1), sign22(0) =0
The"ext" instruction extends the displacement to be added to the PC into signed 22 bits using its
13-bit immediate data (imm13). The sign22 allows branches within the range of PC-0x200000 to
PC+0x1FFFFE.

(3) Extension 2
ext imm13 ; imm13(12:3)= sign32(31:22)
ext imm13' ; = sign32(21:9)
jrat sign8 ; = "jrgt sign32", sign8 = sign32(8:1), sign32(0) =0
The "ext" instructions extend the displacement to be added to the PC into signed 32 bits using
their 13-bit immediate data (imm13 and imm13'). The displacement covers the entire address
space. Note that the low-order 3 bits of the first imm13 are ignored.

(4) Delayed branch (d bit = 1)
jrgt.d sign8
The "jrgt.d" instruction sets the d bit in the instruction code, so the following instruction
becomes a delayed instruction. The delayed instruction is executed before branching.
Traps that may occur between the "jrgt.d" instruction and the next delayed instruction are
masked, thus interrupts and exceptions cannot occur.

cnmp % 0, % 1 ; 0 and r1 contain signed data.
jrgt 0x2 ; Skips the next instruction if r0 > rl.

When using the "jrgt.d" instruction (for delayed branch), the following instruction must be an
instruction that can be used as a delayed instruction. Be aware that the operation will be undefined if
other instructions are executed. See the instruction list in the Appendix for the instructions that can
be used as delayed instructions.

82

EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

jrle sign8/jrled sign8

Function:

Code:

Flags:

Mode:
Clock:

Description:

Example:

Note:

Conditional PC relative jump (for judgment of signed operation results)
Standard: pc — pc+sign8 x 2if Z | (N*V) istrue

Extension 1: pc « pc +sign22if Z | (N*V) istrue

Extension 2: pc « pc +sign32if Z | (N*V) istrue

15 13 12 9 8 7 0

class 0 opl d sign8

oJoJoJoJ1J1J1]d sign8 OXOE00-0XOFFF
15 12 11 8 7 4 3 0

IL(3:0) MO DS IE C \Y z N
(-TT-1T-T-7T-1T-T-7T=-"1
Signed PC relative
jrle: 1 cycle (when not branched), 2 cycles (when branched)
jrled: 1cycle
(1) Standard

jrle sign8 ; = "jrle sign9", sign8 = sign9(8:1), sign9(0) =0

If the condition below has been met by a signed operation, this instruction doubles the signed 8-
bit immediate data (sign8) and adds it to the PC for branching the program flow to the address. It
does not branch if the condition has not been met.

«Zflag=1lorNflag#V flag (e.g. "A < B" hasresulted by "cmp A, B")

The sign8 specifies a half word address in 16-bit units.

The sign8 (x2) allows branches within the range of PC-0x100 to PC+0xFE.

(2) Extension 1
ext imm13 ; = sign22(21:9)
jrle sign8 ; = "jrle sign22", sign8 = sign22(8:1), sign22(0) =0
The"ext" instruction extends the displacement to be added to the PC into signed 22 bits using its
13-hit immediate data (imm13). The sign22 allows branches within the range of PC-0x200000 to
PC+0x1FFFFE.

(3) Extension 2

ext imm13 ; imm13(12:3)= sign32(31:22)
ext imm13' ; = sign32(21:9)
jrle sign8 ; = "jrle sign32", sign8 = sign32(8:1), sign32(0) =0

The "ext" instructions extend the displacement to be added to the PC into signed 32 bits using
their 13-bit immediate data (imm13 and imm13'). The displacement covers the entire address
space. Note that the low-order 3 bits of the first imm13 are ignored.

(4) Delayed branch (d bit = 1)
jrle.d sign8
The "jrle.d" instruction sets the d bit in the instruction code, so the following instruction be-
comes a delayed instruction. The delayed instruction is executed before branching.
Traps that may occur between the "jrle.d" instruction and the next delayed instruction are
masked, thus interrupts and exceptions cannot occur.

cnp % 0, % 1 ; r0 and r1 contain signed data.
jrle 0x2 ; Skips the next instructionif r0 < r1.

When using the "jrle.d" instruction (for delayed branch), the following instruction must be an
instruction that can be used as a delayed instruction. Be aware that the operation will be undefined if
other instructions are executed. See the instruction list in the Appendix for the instructions that can
be used as delayed instructions.

S1C33000 CORE CPU MANUAL EPSON 83

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

jrit sign8/jrit.d sign8

Function:

Code:

Flags:

Mode:
Clock:

Description:

Example:

Note:

Conditional PC relative jump (for judgment of signed operation results)

Standard: pc — pc+sign8 x 2 if NAV istrue

Extension 1. pc — pc + sign22 if NV istrue

Extension 2: pc — pc + sign32 if NV istrue

15 13 12 9 8

class 0 opl d sign8

d
8

0Jo0Jo0|O0[1]L]O sign8 0Xx0C00-OXODFF
15 12 11 7 4 3 0

IL(3:0) MO DS IE C \% z N
(- T -T1T-T-T-T-T-7T=-"1]
Signed PC relative

jrit: 1 cycle (when not branched), 2 cycles (when branched)
jrit.d: 1cycle

(1) Standard
jrit sign8 ; = "jrlt sign9", sign8 = sign9(8:1), sign9(0) = 0
If the condition below has been met by a signed operation, this instruction doubles the signed 8-
bit immediate data (sign8) and adds it to the PC for branching the program flow to the address. It
does not branch if the condition has not been met.
*Nflag#V flag (e.g. "A < B" hasresulted by "cmp A, B")
The sign8 specifies a half word address in 16-bit units.
The sign8 (x2) allows branches within the range of PC-0x100 to PC+0xFE.

(2) Extension 1
ext imm13 ; = sign22(21:9)
jrit sign8 ; = "jrlt sign22", sign8 = sign22(8:1), sign22(0) =0
The"ext" instruction extends the displacement to be added to the PC into signed 22 bits using its
13-bit immediate data (imm13). The sign22 allows branches within the range of PC-0x200000 to
PC+0x1FFFFE.

(3) Extension 2
ext imm13 ; imm13(12:3)= sign32(31:22)
ext imm13' ; = sign32(21:9)
jrit sign8 ; = "jrlt sign32", sign8 = sign32(8:1), sign32(0) =0
The "ext" instructions extend the displacement to be added to the PC into signed 32 bits using
their 13-bit immediate data (imm13 and imm13'). The displacement covers the entire address
space. Note that the low-order 3 bits of the first imm13 are ignored.

(4) Delayed branch (d bit = 1)
jrit.d sign8
The "jrit.d" instruction sets the d bit in the instruction code, so the following instruction becomes
adelayed instruction. The delayed instruction is executed before branching.
Traps that may occur between the "jrit.d" instruction and the next delayed instruction are
masked, thus interrupts and exceptions cannot occur.

cnmp % 0, % 1 ; 0 and r1 contain signed data.
jrit 0x2 ; Skips the next instruction if r0 < rl.

When using the "jrit.d" instruction (for delayed branch), the following instruction must be an
instruction that can be used as a delayed instruction. Be aware that the operation will be undefined if
other instructions are executed. See the instruction list in the Appendix for the instructions that can
be used as delayed instructions.

84

EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

jrne sign8/jrne.d sign8

Function:

Code:

Flags:

Mode:
Clock:

Description:

Example:

Note:

Conditional PC relative jump

Standard: pc — pc+sign8 x 2if 1Z istrue
Extension 1. pc — pc + sign22 if 1Z istrue
Extension 2: pc — pc +sign32if !1Z istrue

15 13 12 9 8 7 0

class 0 opl d sign8

oOJoJoJ1J1JoJ1]d sign8 0x1A00-0x1BFF
15 12 11 8 7 4 3 0

IL(3:0) MO DS IE C \Y z N
(-TT-1T-T-7T-1T-T-7T=-"1
Signed PC relative
jrne: 1 cycle (when not branched), 2 cycles (when branched)
jrne.d: 1cycle
(1) Standard

jrne sign8 ; = "jrne sign9", sign8 = sign9(8:1), sign9(0) =0

If the condition below has been met, this instruction doubles the signed 8-bit immediate data
(sign8) and adds it to the PC for branching the program flow to the address. It does not branch if
the condition has not been met.

«Zflag=0(eg."A #B" hasresulted by "cmp A, B")

The sign8 specifies a half word address in 16-bit units.

The sign8 (x2) allows branches within the range of PC-0x100 to PC+0xFE.

(2) Extension 1
ext imm13 ; = sign22(21:9)
jrne sign8 ; = "jrne sign22", sign8 = sign22(8:1), sign22(0) =0
The"ext" instruction extends the displacement to be added to the PC into signed 22 bits using its
13-hit immediate data (imm13). The sign22 allows branches within the range of PC-0x200000 to
PC+0x1FFFFE.

(3) Extension 2

ext imm13 ; imm13(12:3)= sign32(31:22)
ext imm13' ; = sign32(21:9)
jre sign8 ; ="jrne sign32", sign8 = sign32(8:1), sign32(0) =0

The "ext" instructions extend the displacement to be added to the PC into signed 32 bits using
their 13-bit immediate data (imm13 and imm13'). The displacement covers the entire address
space. Note that the low-order 3 bits of the first imm13 are ignored.

(4) Delayed branch (d bit = 1)
jrne.d sign8
The "jrne.d" instruction sets the d bit in the instruction code, so the following instruction
becomes a delayed instruction. The delayed instruction is executed before branching.
Traps that may occur between the "jrne.d" instruction and the next delayed instruction are
masked, thus interrupts and exceptions cannot occur.

cnp % 0, % 1
jrne 0x2 ; Skips the next instructionif rl #rO.

When using the "jrne.d" instruction (for delayed branch), the following instruction must be an
instruction that can be used as a delayed instruction. Be aware that the operation will be undefined if
other instructions are executed. See the instruction list in the Appendix for the instructions that can
be used as delayed instructions.

S1C33000 CORE CPU MANUAL EPSON 85

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

jruge sign8/jruged sign8

Function: Conditional PC relative jump (for judgment of unsigned operation results)
Standard: pc — pc+sign8 x 2if !Cistrue
Extension 1. pc — pc + sign22if ICistrue
Extension 2: pc — pc + sign32if !Cistrue

Code: 15 13 12 9 8 7 0

class 0 opl d sign8
oJoJoJ1JoJo]1]d sign8 0x1200-0x13FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C \Y% z N
(- T -T1T-T-T-T-T-7T=-"1]

Mode: Signed PC relative

Clock: jruge: 1 cycle (when not branched), 2 cycles (when branched)
jruged: 1cycle

Description: (1) Standard

jruge sign8 ; = "jruge sign9", sign8 = sign9(8:1), sign9(0) = 0
If the condition below has been met by an unsigned operation, this instruction doubles the signed
8-hit immediate data (sign8) and adds it to the PC for branching the program flow to the address.
It does not branch if the condition has not been met.
«Cflag=0(e.g."A = B" hasresulted by "cmp A, B")
The sign8 specifies a half word address in 16-bit units.
The sign8 (x2) allows branches within the range of PC-0x100 to PC+0xFE.

(2) Extension 1
ext imm13 ; = sign22(21:9)
jruge sign8 ; = "jruge sign22", sign8 = sign22(8:1), sign22(0) = 0
The"ext" instruction extends the displacement to be added to the PC into signed 22 bits using its
13-bit immediate data (imm13). The sign22 allows branches within the range of PC-0x200000 to
PC+Ox1FFFFE.

(3) Extension 2
ext imm13 ; imm13(12:3)= sign32(31:22)
ext imm13' ; = sign32(21:9)
jruge sign8 ; = "jruge sign32", sign8 = sign32(8:1), sign32(0) = 0
The "ext" instructions extend the displacement to be added to the PC into signed 32 bits using
their 13-bit immediate data (imm13 and imm13'). The displacement covers the entire address
space. Note that the low-order 3 bits of the first imm13 are ignored.

(4) Delayed branch (d bit = 1)
jruge.d sign8
The "jruge.d" instruction sets the d bit in the instruction code, so the following instruction
becomes a delayed instruction. The delayed instruction is executed before branching.
Traps that may occur between the "jruge.d” instruction and the next delayed instruction are
masked, thus interrupts and exceptions cannot occur.

Example: cmp % 0, % 1 ; 10 and r1 contain unsigned data.
jruge 0x2 ; Skips the next instruction if r0O = rl.

Note: When using the "jruge.d" instruction (for delayed branch), the following instruction must be an
instruction that can be used as a delayed instruction. Be aware that the operation will be undefined if
other instructions are executed. See the instruction list in the Appendix for the instructions that can
be used as delayed instructions.

86 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

jrugt sign8/jrugt.d sign8

Function: Conditional PC relative jump (for judgment of unsigned operation results)
Standard: pc — pc+sign8 x 2if 1Z&!Cistrue
Extension 1. pc — pc + sign22if 1Z&!Cistrue
Extension 2: pc — pc + sign32if 1Z&!Cistrue

Code: 15 13 12 9 8 7 0
class 0 opl d sign8
oOJoJoJ1JoJoJo]d sign8 0x1000-0x11FF
15 2 1 8 7 4 3 0
Flags: IL(3:0) MO DS IE C \% z N
(-1 -1 -1T-1T-T-T=-1T=1
Mode: Signed PC relative
Clock: jrugt: 1 cycle (when not branched), 2 cycles (when branched)
jrugt.d: 1cycle

Description: (1) Standard
jrugt sign8 ; = "jrugt sign9”, sign8 = sign9(8:1), sign9(0) =0
If the condition below has been met by an unsigned operation, this instruction doubles the signed
8-hit immediate data (sign8) and adds it to the PC for branching the program flow to the address.
It does not branch if the condition has not been met.
«Zflag=0and Cflag=0(e.g."A > B" hasresulted by "cmp A, B")
The sign8 specifies a half word address in 16-bit units.
The sign8 (x2) allows branches within the range of PC-0x100 to PC+0xFE.

(2) Extension 1
ext imm13 ; = sign22(21:9)
jrugt sign8 ; = "jrugt sign22", sign8 = sign22(8:1), sign22(0) =0
The"ext" instruction extends the displacement to be added to the PC into signed 22 bits using its
13-hit immediate data (imm13). The sign22 allows branches within the range of PC-0x200000 to

PC+Ox1FFFFE.
(3) Extension 2
ext imm13 ; imm13(12:3)= sign32(31:22)
ext imm13' ; = sign32(21:9)
jrugt sign8 ; = "jrugt sign32", sign8 = sign32(8:1), sign32(0) = 0

The "ext" instructions extend the displacement to be added to the PC into signed 32 bits using
their 13-bit immediate data (imm13 and imm13'). The displacement covers the entire address
space. Note that the low-order 3 bits of the first imm13 are ignored.

(4) Delayed branch (d bit = 1)
jrugt.d sign8
The "jrugt.d" instruction sets the d bit in the instruction code, so the following instruction
becomes a delayed instruction. The delayed instruction is executed before branching.
Traps that may occur between the "jrugt.d” instruction and the next delayed instruction are
masked, thus interrupts and exceptions cannot occur.

Example: cnp % 0, % 1 ; r0 and r1 contain unsigned data.
j rugt 0x2 ; Skips the next instruction if r0 > rl.
Note: When using the "jrugt.d" instruction (for delayed branch), the following instruction must be an

instruction that can be used as a delayed instruction. Be aware that the operation will be undefined if
other instructions are executed. See the instruction list in the Appendix for the instructions that can
be used as delayed instructions.

S1C33000 CORE CPU MANUAL EPSON 87

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

jrule sign8/jruled sign8

Function: Conditional PC relative jump (for judgment of unsigned operation results)
Standard: pc « pc+sign8 x 2if Z | Cistrue
Extension 1: pc « pc +sign22if Z | Cistrue
Extension 2: pc « pc +sign32if Z | Cistrue

Code: 15 13 12 9 8 7 0

class 0 opl d sign8
oJoJoJ1JoJ1]1]d sign8 0x1600-0x17FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C \Y% z N
(- T -T1T-T-T-T-T-7T=-"1]

Mode: Signed PC relative

Clock: jrule: 1 cycle (when not branched), 2 cycles (when branched)
jruled: 1 cycle

Description: (1) Standard

jrule sign8 ; = "jrule sign9", sign8 = sign9(8:1), sign9(0) = 0
If the condition below has been met by an unsigned operation, this instruction doubles the signed
8-hit immediate data (sign8) and adds it to the PC for branching the program flow to the address.
It does not branch if the condition has not been met.
«Zflag=1lorCflag=1(eg."A <B" hasresulted by "cmp A, B")
The sign8 specifies a half word address in 16-bit units.
The sign8 (x2) allows branches within the range of PC-0x100 to PC+0xFE.

(2) Extension 1
ext imm13 ; = sign22(21:9)
jrule sign8 ; = "jrule sign22", sign8 = sign22(8:1), sign22(0) =0
The"ext" instruction extends the displacement to be added to the PC into signed 22 bits using its
13-bit immediate data (imm13). The sign22 allows branches within the range of PC-0x200000 to
PC+Ox1FFFFE.

(3) Extension 2
ext imm13 ; imm13(12:3)= sign32(31:22)
ext imm13' ; = sign32(21:9)
jrule sign8 ; = "jrule sign32", sign8 = sign32(8:1), sign32(0) =0
The "ext" instructions extend the displacement to be added to the PC into signed 32 bits using
their 13-bit immediate data (imm13 and imm13'). The displacement covers the entire address
space. Note that the low-order 3 bits of the first imm13 are ignored.

(4) Delayed branch (d bit = 1)
jrule.d sign8
The "jrule.d" instruction sets the d bit in the instruction code, so the following instruction
becomes a delayed instruction. The delayed instruction is executed before branching.
Traps that may occur between the "jrule.d" instruction and the next delayed instruction are
masked, thus interrupts and exceptions cannot occur.

Example: cmp % 0, % 1 ; 10 and r1 contain unsigned data.
jrule 0x2 ; Skips the next instruction if r0O < rl.

Note: When using the "jrule.d" instruction (for delayed branch), the following instruction must be an
instruction that can be used as a delayed instruction. Be aware that the operation will be undefined if
other instructions are executed. See the instruction list in the Appendix for the instructions that can
be used as delayed instructions.

88 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

jrult sign8/jrult.d sign8

Function: Conditional PC relative jump (for judgment of unsigned operation results)
Standard: pc — pc+sign8 x 2if Cistrue
Extension 1. pc — pc + sign22 if Cistrue
Extension 2: pc — pc + sign32if Cistrue

Code: 15 13 12 9 8 7 0
class 0 opl d sign8
oOJoJoJ1JoJ1Jo]d sign8 0x1400-0x15FF
15 12 11 8 7 4 3 0
Flags: IL(3:0) MO DS IE C \Y z N
(-TT-1T-T-7T-1T-T-7T=-"1
Mode: Signed PC relative
Clock: jrult: 1 cycle (when not branched), 2 cycles (when branched)
jrult.d: 1cycle

Description: (1) Standard
jrult sign8 ; = "jrult sign9”, sign8 = sign9(8:1), sign9(0) = 0
If the condition below has been met by an unsigned operation, this instruction doubles the signed
8-hit immediate data (sign8) and adds it to the PC for branching the program flow to the address.
It does not branch if the condition has not been met.
«Cflag=1(e.g."A <B" hasresulted by "cmp A, B")
The sign8 specifies a half word address in 16-bit units.
The sign8 (x2) allows branches within the range of PC-0x100 to PC+0xFE.

(2) Extension 1
ext imm13 ; = sign22(21:9)
jrult sign8 ; = "jrult sign22", sign8 = sign22(8:1), sign22(0) =0
The"ext" instruction extends the displacement to be added to the PC into signed 22 bits using its
13-hit immediate data (imm13). The sign22 allows branches within the range of PC-0x200000 to

PC+Ox1FFFFE.
(3) Extension 2
ext imm13 ; imm13(12:3)= sign32(31:22)
ext imm13' ; = sign32(21:9)
jrult sign8 ; = "jrult sign32", sign8 = sign32(8:1), sign32(0) = 0

The "ext" instructions extend the displacement to be added to the PC into signed 32 bits using
their 13-bit immediate data (imm13 and imm13'). The displacement covers the entire address
space. Note that the low-order 3 bits of the first imm13 are ignored.

(4) Delayed branch (d bit = 1)
jrult.d sign8
The "jrult.d" instruction sets the d bit in the instruction code, so the following instruction
becomes a delayed instruction. The delayed instruction is executed before branching.
Traps that may occur between the "jrult.d" instruction and the next delayed instruction are
masked, thus interrupts and exceptions cannot occur.

Example: cnp % 0, % 1 ; r0 and r1 contain unsigned data.
jrult 0x2 ; Skips the next instruction if r0 < rl.
Note: When using the "jrult.d" instruction (for delayed branch), the following instruction must be an

instruction that can be used as a delayed instruction. Be aware that the operation will be undefined if
other instructions are executed. See the instruction list in the Appendix for the instructions that can
be used as delayed instructions.

S1C33000 CORE CPU MANUAL EPSON 89

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

ld.b %rd, %rs

Function: Signed byte data transfer
Standard: rd(7:0) < rs(7:0), rd(31:8) — rs(7)
Extension 1: Invalid
Extension 2: Invalid
Code: 15 13 12 10 9 8 7 4 3 0
class 5 opl op2 rs rd
1JoJ1JoJoJoJo]J1 rs rd OxA100-OxA1FF
15 12 11 8 7 4 3 0
Flags: IL(3:0) MO DS IE C \% z N
- -1 -T1T-7T-T-T=-71T="1
Mode: Src: Register direct (%rs = %r0-%r15)
Dst: Register direct (%rd = %r0-%r15)
Clock: lcycle
Description: Extends the low-order 8 bits (byte data) of the rs register into signed 32 bits (sign extended) and
loads it to the rd register.
Example: ld. b % 0, % 1 ; rO<loworder 8 bits of the rl register
; With sign extension
90 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

ld.b %rd, [%rb]

Function:

Code:

Flags:

Mode:

Clock:

Description:

Example:

Signed byte data transfer

Standard: rd(7:0) — BJ[rb], rd(31:8) ~ B[rb](7)

Extension 1: rd(7:0) — B[rb +imm13], rd(31:8) « B[rb +imm13](7)
Extension 2: rd(7:0) — B[rb +imm26], rd(31:8) — B[rb +imm26](7)

15 13 12 10 9 8 7 4 3 0

class 1 opl op2 rb rd
oJoJ1JoJoJoJo]JoO rb rd 0x2000-0x20FF
15 12 11 8 7 4 3 0

IL(3:0) MO DS IE C \% z N
(-TT-1T-T-7T-1T-T-7T=-"1
Src: Register indirect (%rb = %r0—%r15)

Dst: Register direct (%rd = %r0—%r15)

1-2 cycles

(Note) Thisinstruction isnormally executed in 1 cycle. However, it takes one more cycle if the rd
register which is used in thisinstruction is also used in the operand of the following instruc-
tion as %rd, %rs or %rb.

(1) Standard
Id.b %rd, [%rb] ; Memory address =rb
Extends the byte data in the specified memory into signed 32 hits (sign extended) and loads it to
the rd register. The accessed memory address is specified by the rb register.

(2) Extension 1
ext imm13
Id.b %rd, [%rb] ; Memory address =rb + imm13
The "ext" instruction changes the addressing mode to register indirect with displacement. Thus
the byte data in the address that is specified by adding the 13-bit immediate data (imm13) to the
contents of the rb register isloaded to the rd register. The rb register is not modified.

(3) Extension 2

ext imm13 ; =imm26(25:13)
ext imm13' ; =imm26(12:0)
Id.b %rd, [%rb] ; Memory address = rb + imm26

The "ext" instructions change the addressing mode to register indirect with displacement. Thus
the byte data in the address that is specified by adding the 26-bit immediate data (imm26) to the
contents of the rb register is loaded to the rd register. The rb register is not modified.

ext 0x10
Id.b % 0, [% 1] ; r0<~B[r1+0x10] with sign extension

S1C33000 CORE CPU MANUAL EPSON 91

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

ld.b %rd, [%6rb]+

Function: Signed byte data transfer
Standard: rd(7:0) < B[rb], rd(31:8) — B[rb](7),rb —« rb+1
Extension 1: Invalid
Extension 2: Invalid
Code: 15 13 12 10 9 8 7 4 3 0
class 1 opl op2 rb rd
oJoJ1]oJoJo]o]1 rb rd 0x2100-0x21FF
15 12 11 8 7 4 3 0
Flags: IL(3:0) MO DS IE C \Y z N
[- T - T -T-T-T-7T-1T-1
Mode: Src: Register indirect with post increment (%rb = %r0—%r15)
Dst: Register direct (%rd = %r0—%r15)
Clock: 2 cycles
Description: Extends the byte data in the specified memory into signed 32 hits (sign extended) and loads it to the
rd register. The accessed memory address is specified by the rb register. The address stored in the rb
register isincremented (+1) after the data transfer.
Example: Id. b % 0, [% 1] + ; T0<B[rl1l] with sign extension, rlerl+l
Note: If the same register is specified for rd and rb, the incremented address after transferring datais
loaded to the rd register.
92 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

Id.b %rd, [%sp + imm6]

Function:

Code:

Flags:

Mode:

Clock:

Description:

Example:

Signed byte data transfer

Standard: rd(7:0) « B[sp +imm6], rd(31:8) — B[sp + imm6](7)
Extension 1: rd(7:0) — B[sp +imm19], rd(31:8) — B[sp +imm19](7)
Extension 2: rd(7:0) — B[sp +imm32], rd(31:8) — B[sp +imm32](7)

15 13 12 10 9 4 3 0

class 2 opl imm6 rd

0J1JoJoJo]Jo immé rd 0x4000-0x43FF
15 12 11 8 7 4 3 0

IL(3:0) MO DS IE C \% z N
(-TT-1T-T-7T-1T-T-7T=-"1
Src: Register indirect with displacement

Dst: Register direct (%rd = %r0—%r15)

1-2 cycles

(Note) Thisinstruction isnormally executed in 1 cycle. However, it takes one more cycle if the rd
register which is used in thisinstruction is also used in the operand of the following instruc-
tion as %rd, %rs or %rb.

(1) Standard
Id.b %rd, [%sp + imm6] ; Memory address = sp + imm6
Extends the byte data in the specified memory into signed 32 hits (sign extended) and loads it to
the rd register. The accessed memory address is specified by adding the 6-bit immediate data
(imm6) as the displacement to the contents of the current SP.

(2) Extension 1
ext imm13 ; =imm19(18:6)
Id.b %rd, [%sp + imm6] ; Memory address = sp +imm19, imm6 = imm19(5:0)
The"ext" instruction extends the displacement into 19 bits. Thus the byte data in the address that
is specified by adding the 19-bit immediate data (imm19) to the contents of the SPis loaded to
the rd register.

(3) Extension 2

ext imm13 ; =imm32(31:19)
ext imm13' ; =imm32(18:6)
Id.b %rd, [%sp +imm6] ; Memory address = sp + imm32, imm6 = imm32(5:0)

The "ext" instructions extend the displacement into 32 bits. Thus the byte data in the address that
is specified by adding the 32-bit immediate data (imm32) to the contents of the SP isloaded to
the rd register.

ext Ox1
Id. b % 0, [Ysp+0x1] ; T0-B[sp+0x41] with sign extension

S1C33000 CORE CPU MANUAL EPSON 93

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

Id.b [%rb], %rs

Function: Byte data transfer
Standard: B[rb] « rs(7:0)
Extension 1. B[rb +imm13] — rs(7:0)
Extension 2: B[rb +imm26] — rs(7:0)
Code: 15 13 12 10 9 8 7 4 3 0
class 1 opl op2 rb rs
oJoJ1i]1JoJ1]o]oO rb rs 0x3400-0x34FF
15 12 11 8 7 4 3 0
Flags: IL(3:0) MO DS IE C \Y% z N
-l -1 -T-T-T-T-1T=1]
Mode: Src: Register direct (%rs = %r0-%r15)
Dst: Register indirect (%rb = %r0—%r15)
Clock: lcycle
Description: (1) Standard
Id.b [Yrb], %rs ; Memory address = rb
Transfers the low-order 8 bits of the rs register to the specified memory. The accessed memory
addressis specified by the rb register.
(2) Extension 1
ext imm13
Id.b [%rb], %rs ; Memory address =rb +imm13
The"ext" instruction changes the addressing mode to register indirect with displacement. Thus
the low-order 8 bits of the rsregister are transferred to the address specified by adding the 13-bit
immediate data (imm13) to the contents of the rb register. The rb register is not modified.
(3) Extension 2
ext imm13 ; =imm26(25:13)
ext imm13' ; =imm26(12:0)
Id.b [Yorb], %rs ; Memory address = rb + imm26
The "ext" instructions change the addressing mode to register indirect with displacement. Thus
the low-order 8 bits of the rsregister are transferred to the address specified by adding the 26-bit
immediate data (imm26) to the contents of the rb register. The rb register is not modified.
Example: ext 0x10
Id. b [%1],9% 0 ; B[r1+0x10] <l oworder 8 bits of r0
94 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

Id.b [%rb]+, %rs

Function:

Code:

Flags:

Mode:

Clock:

Description:

Example:

Byte data transfer
Standard: B[rb] « rs(7:0),rb « rb+1
Extension 1: Invalid
Extension 2: Invalid

15 13 12 10 9 8 7 4 3 0

class 1 opl op2 rb rs
0OJoJ1J1JoJ1Jo]1 rb rs 0x3500-0x35FF
15 12 11 8 7 4 3 0

IL(3:0) MO DS IE C \% z N

-1 -1 -T1T-1
Src: Register direct (%rs = %r0—%r15)
Dst: Register indirect with post increment (%rb = %r0—%r15)

1cycle

Transfers the low-order 8 bits of the rs register to the specified memory. The accessed memory
address is specified by the rb register. The address stored in the rb register isincremented (+1) after
the data transfer.

Id. b [% 1]+, %0 ; B[rl] <loworder 8 bits of r0, rleril+l

S1C33000 CORE CPU MANUAL EPSON 95

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

Id.b [%sp + imm6], %ors

Function: Byte data transfer
Standard: B[sp + imm6] — rs(7:0)
Extension 1. B[sp +imm19] — rs(7:0)
Extension 2: B[sp +imm32] — rs(7:0)
Code: 15 13 12 10 9 4 3 0
class 2 opl imm6 rs
0J1JoJ1]Jo0]1 immé rs 0Xx5400-0x57FF
15 12 11 8 7 4 3 0
Flags: IL(3:0) MO DS IE C \Y% z N
-l -1 -T-T-T-T-1T=1]
Mode: Src: Register direct (%rd = %r0-%r15)
Dst: Register indirect with displacement
Clock: lcycle
Description: (1) Standard
Id.b [Yosp + imm6], %rs ; Memory address = sp + imm6
Transfers the low-order 8 bits of the rs register to the specified memory. The accessed memory
address is specified by the rb register. The accessed memory addressis specified by adding the 6-
bit immediate data (imm6) as the displacement to the contents of the current SP.
(2) Extension 1
ext imm13 ; =imm19(18:6)
Id.b [Yosp + imm6], %rs ; Memory address = sp +imm19, imm6 = imm19(5:0)
The"ext" instruction extends the displacement into 19 bits. Thus the low-order 8 bits of thers
register are transferred to the address specified by adding the 19-bit immediate data (imm19) to
the contents of the SP.
(3) Extension 2
ext imm13 ; =imm32(31:19)
ext imm13' ; =imm32(18:6)
Id.b [Yosp + imm6], %rs ; Memory address = sp + imm32, imm6 = imm32(5:0)
The "ext" instructions extend the displacement into 32 bits. Thus the low-order 8 bits of the rs
register are transferred to the address specified by adding the 32-bit immediate data (imm32) to
the contents of the SP.
Example: ext 0x1
Id. b [%sp+0x1], % 0O ; B[sp+0x41] <l oworder 8 bits of r0
9 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

l[d.h %rd, %rs

Function:

Code:

Flags:

Mode:

Clock:

Description:

Example:

Signed half word data transfer

Standard: rd(15:0) ~ rs(15:0), rd(31:16) ~ rs(15)
Extension 1: Invalid

Extension 2: Invalid

15 13 12 10 9 8 7 4 3 0

class 5 opl op2 rs rd
1JoJ1]JoJ1JoJo]1 rs rd OxA900-0xA9FF
15 12 11 8 7 4 3 0

IL(3:0) MO DS IE C \% z N

-1 -1 -T1T-1
Src: Register direct (%rs = %r0—%r15)
Dst: Register direct (%rd = %r0—%r15)

1cycle

Extends the low-order 16 bits (half word data) of the rs register into signed 32 hits (sign extended)
and loadsit to the rd register.

Id. h % 0, % 1 ; rO~loworder 16 bits of the rl1 register
; With sign extension

S1C33000 CORE CPU MANUAL EPSON 97

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

ld.h %rd, [%rb]

Function: Signed half word data transfer
Standard: rd(15:0) — HJ[rb], rd(31:16) — H[rb](15)
Extension 1: rd(15:0) — H[rb +imm13], rd(31:16) — H[rb +imm13](15)
Extension 2: rd(15:0) — H[rb +imm26], rd(31:16) — H[rb + imm26](15)
Code: 15 13 12 10 9 8 7 4 3 0
class 1 opl op2 rb rd
0OJoJ1]oJ1JoJo0]Jo0O rb rd 0x2800-0x28FF
15 12 11 8 7 4 3 0
Flags: IL(3:0) MO DS IE C \Y% z N
(- T -T1T-T-T-T-T-7T=-"1]
Mode: Src: Register indirect (%rb = %r0—%r15)
Dst: Register direct (%rd = %r0—%r15)
Clock: 1-2 cycles
(Note) Thisinstruction is normally executed in 1 cycle. However, it takes one more cycle if the rd
register which is used in thisinstruction is also used in the operand of the following instruc-
tion as %rd, %rs or %rb.
Description: (1) Standard
Id.h %rd, [%rb] ; Memory address =rb
Extends the half word data in the specified memory into signed 32 bits (sign extended) and loads
it to the rd register. The accessed memory address is specified by the rb register.
(2) Extension 1
ext imm13
Id.h %rd, [%rb] ; Memory address =rb + imm13
The"ext" instruction changes the addressing mode to register indirect with displacement. Thus
the half word datain the address that is specified by adding the 13-bit immediate data (imm13)
to the contents of the rb register isloaded to the rd register. The rb register is not modified.
(3) Extension 2
ext imm13 ; =imm26(25:13)
ext imm13' ; =imm26(12:0)
Id.h %rd, [%rb] ; Memory address = rb + imm26
The "ext" instructions change the addressing mode to register indirect with displacement. Thus
the half word data in the address that is specified by adding the 26-bit immediate data (imm26)
to the contents of the rb register isloaded to the rd register. The rb register is not modified.
Example: ext 0x10
Id.h % 0, [% 1] ; TO~H r1+0x10] with sign extension
Note: The rb register and the displacement must specify a half word boundary address (LSB = 0). Specify-
ing an odd address causes an address error exception.
The data transfer is performed using data in the specified address as the low-order 8 bits and datain
the next address as the high-order 8 bits.
98 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

ld.h %rd, [%rb]+

Function:

Code:

Flags:

Mode:

Clock:

Description:

Example:

Notes:

Signed half word data transfer

Standard: rd(15:0) — Hirb], rd(31:16) — H[rb](15),rb « rb+2
Extension 1: Invalid

Extension 2: Invalid

15 13 12 10 9 8 7 4 3 0

class 1 opl op2 rb rd
0OJoJ1JoJ1JoJo]1 rb rd 0x2900-0x29FF
15 12 11 8 7 4 3 0

IL(3:0) MO DS IE C \% z N
(-TT-1T-T-7T-1T-T-7T=-"1
Src: Register indirect with post increment (%rb = %r0—%r15)
Dst: Register direct (%rd = %r0—%r15)

2 cycles

Extends the half word data in the specified memory into signed 32 bits (sign extended) and loads it
to the rd register. The accessed memory address is specified by the rb register. The address stored in
the rb register isincremented (+2) after the data transfer.

Id. h % 0,[% 1] + ; TO<Hrl1l] with sign extension, rler1+2

» Therb register must specify a half word boundary address (LSB = 0). Specifying an odd address
causes an address error exception.
The data transfer is performed using data in the specified address as the |low-order 8 bits and data
in the next address as the high-order 8 hits.

« If the sameregister is specified for rd and rb, the incremented address after transferring datais
loaded to the rd register.

S1C33000 CORE CPU MANUAL EPSON 99

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

Id.h %rd, [Y%sp + imm6]

Function: Signed half word data transfer
Standard: rd(15:0) — H[sp+imm6 x 2], rd(31:16) — H[sp + imm6 x 2](15)
Extension 1: rd(15:0) — H[sp +imm19], rd(31:16) — H[sp + imm19](15)
Extension 2: rd(15:0) — H[sp +imm32], rd(31:16) —~ H[sp + imm32](15)
Code: 15 13 12 10 9 4 3 0
class 2 opl imm6 rd
0J1JoJo]J1]o0 immé rd 0x4800-0x4BFF
15 12 11 8 7 4 3 0
Flags: IL(3:0) MO DS IE C \Y% z N
(- T -T1T-T-T-T-T-7T=-"1]
Mode: Src: Register indirect with displacement
Dst: Register direct (%rd = %r0—%r15)
Clock: 1-2 cycles
(Note) Thisinstruction is normally executed in 1 cycle. However, it takes one more cycle if the rd
register which is used in thisinstruction is also used in the operand of the following instruc-
tion as %rd, %rs or %rb.
Description: (1) Standard
Id.h %rd, [%sp + imm6] ; Memory address = sp + imm6 x 2
Extends the half word data in the specified memory into signed 32 bits (sign extended) and loads
it to the rd register. The accessed memory address is specified by adding the doubled 6-bit
immediate data (imm6) as the displacement to the contents of the current SP. The imm6 specifies
a half word address in 16-bit units. The LSB of the displacement is always fixed at 0.
(2) Extension 1
ext imm13 ; =imm19(18:6)
Id.h %rd, [%sp + imm6] ; Memory address = sp +imm19, imm6 = imm19(5:0)
The "ext" instruction extends the displacement into 19 bits. Thus the half word datain the
address that is specified by adding the 19-bit immediate data (immZ19) to the contents of the SPis
loaded to the rd register.
Specify a half word boundary address (LSB = 0) for the imm6.
(3) Extension 2
ext imm13 ; =imm32(31:19)
ext imm13' ; =imm32(18:6)
Id.h %rd, [%sp +imm6] ; Memory address = sp + imm32, imm6 = imm32(5:0)
The "ext" instructions extend the displacement into 32 bits. Thus the half word datain the
address that is specified by adding the 32-bit immediate data (imm32) to the contents of the SP is
loaded to the rd register.
Specify ahalf word boundary address (LSB = 0) for the immé.
Example: ext 0x1
ext 0x0
Id. h % 1, [Ysp+0x2] ; rl<H SP+0x80002] with sign extension
Note: When extending the displacement, the LSB of the imm6 will always be fixed at 0 to point to a half
word boundary address. Thus an address error exception will not occur.
The data transfer is performed using data in the specified address as the low-order 8 bits and datain
the next address as the high-order 8 bits.
100 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

Id.h [%rb], %rs

Function:

Code:

Flags:

Mode:

Clock:

Description:

Example:

Note:

Half word data transfer

Standard: H[rb] < rs(15:0)
Extension 1: H[rb +imm13] ~ rs(15:0)
Extension 2: H[rb +imm26] — rs(15:0)

15 13 12 10 9 8 7 4 3 0

class 1 opl op2 rb rs
0OJoJ1J1J1Jo]Jo]JoO rb rs 0x3800-0x38FF
1 12 11 8 7 4 3 0

IL(3:0) MO DS IE C \% z N

-1l -1T-T-T-T-T=-17T=-"
Src: Register direct (%rs = %r0—%r15)
Dst: Register indirect (%rb = %r0—%r15)

1cycle

(1) Standard
Id.h [Yrb], %rs ; Memory address = rb
Transfers the low-order 16 bits of the rs register to the specified memory. The accessed memory
address is specified by the rb register.

(2) Extension 1
ext imm13
Id.h [Yorb], %rs ; Memory address =rb +imm13
The "ext" instruction changes the addressing mode to register indirect with displacement. Thus
the low-order 16 hits of the rsregister are transferred to the address specified by adding the 13-
bit immediate data (imm13) to the contents of the rb register. The rb register is not modified.

(3) Extension 2

ext imm13 ; =imm26(25:13)
ext imm13' ; =imm26(12:0)
Id.h [%rb], %rs ; Memory address = rb + imm26

The "ext" instructions change the addressing mode to register indirect with displacement. Thus
the low-order 16 bits of the rsregister are transferred to the address specified by adding the 26-
bit immediate data (imm26) to the contents of the rb register. The rb register is not modified.

ext 0x10
Id. h [%1],%0 ; H r1+0x10] <l oworder 16 bhits of r0

The rb register and the displacement must specify a half word boundary address (LSB = 0). Specify-
ing an odd address causes an address error exception.

The data transfer is performed using data in the specified address as the |ow-order 8 bits and datain
the next address as the high-order 8 bits.

S1C33000 CORE CPU MANUAL EPSON 101

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

Id.h [%rb]+, %rs

Function: Half word data transfer
Standard: H[rb] < rs(15:0),rb « rb+2
Extension 1: Invalid
Extension 2: Invalid
Code: 15 13 12 10 9 8 7 4 3 0
class 1 opl op2 rb rs
oOJoJ1]1J1Jo]o]1 rb rs 0x3900-0x39FF
15 12 11 8 7 4 3 0
Flags: IL(3:0) MO DS IE C \% z N
- -1 -T1T-7T-T-T=-71T="1
Mode: Src: Register direct (%rs = %r0-%r15)
Dst: Register indirect with post increment (%rb = %r0-%r15)
Clock: lcycle
Description: Transfers the low-order 16 bits of the rs register to the specified memory. The accessed memory
address is specified by the rb register. The address stored in the rb register isincremented (+2) after
the data transfer.
Example: Id.h [% 1]+, %0 ; Hrl] <«loworder 16 bits of r0, rl<ril+2
Note: The rb register must specify a half word boundary address (LSB = 0). Specifying an odd address
causes an address error exception.
The data transfer is performed using data in the specified address as the low-order 8 bits and datain
the next address as the high-order 8 bits.
102 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

Id.h [%sp + imm6], %rs

Function:

Code:

Flags:

Mode:

Clock:

Description:

Example:

Note:

Half word data transfer

Standard: H[sp +imm6 x 2] — rs(15:0)
Extension 1. H[sp +imm19] — rs(15:0)
Extension 2: H[sp +imm32] — rs(15:0)

15 13 12 10 9 4 3 0

class 2 opl imm6 rs

0OJ1JoJ1J1]o immé rs 0x5800-0x5BFF
1 12 11 8 7 4 3 0

IL(3:0) MO DS IE C \% z N

Src: Register direct (%rs = %r0—%r15)
Dst: Register indirect with displacement

1cycle

(1) Standard
Id.h [Yosp + imm6], %rs ; Memory address = sp +imm6 x 2
Transfers the low-order 16 bits of the rs register to the specified memory. The accessed memory
address is specified by adding the doubled 6-bit immediate data (immé6) as the displacement to
the contents of the current SP. The imm6 specifies a half word address in 16-bit units. The LSB
of the displacement is always fixed at 0.

(2) Extension 1
ext imm13 ; =imm19(18:6)
Id.h [Yosp + imm6], %rs ; Memory address = sp +imm19, imm6 = imm19(5:0)
The"ext" instruction extends the displacement into 19 bits. Thus the low-order 16 bits of thers
register are transferred to the address that is specified by adding the 19-bit immediate data
(imm19) to the contents of the SP.
Specify a half word boundary address (LSB = 0) for the immé.

(3) Extension 2

ext imm13 ; =imm32(31:19)
ext imm13' ; =imm32(18:6)
Id.h [Yosp + imm6], %rs ; Memory address = sp + imm32, imm6 = imm32(5:0)

The "ext" instructions extend the displacement into 32 bits. Thus the low-order 16 bits of thers
register are transferred to the address that is specified by adding the 32-bit immediate data
(imm32) to the contents of the SP.

Specify ahalf word boundary address (LSB = 0) for the immé.

ext Ox1
ext 0x0
Id. h [¥%sp+0x2], % 1 ; H[SP+0x80002] —| oworder 16 bits of r1l

When extending the displacement, the LSB of the imm6 will always be fixed at 0 to point to a half
word boundary address. Thus an address error exception will not occur.

The data transfer is performed using data in the specified address as the |low-order 8 bits and datain
the next address as the high-order 8 bits.

S1C33000 CORE CPU MANUAL EPSON 103

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

[d.ub %rd, %rs

Function: Unsigned byte data transfer
Standard: rd(7:0) < rs(7:0), rd(31:8) —~ 0
Extension 1: Invalid
Extension 2: Invalid
Code: 15 13 12 10 9 8 7 4 3 0
class 5 opl op2 rs rd
1JoJ1JoJoJ1]Jo0]1 rs rd OxA500-0XA5FF
15 12 11 8 7 4 3 0
Flags: IL(3:0) MO DS IE C \% z N
- -1 -T1T-7T-T-T=-71T="1
Mode: Src: Register direct (%rs = %r0-%r15)
Dst: Register direct (%rd = %r0—%r15)
Clock: lcycle
Description: Extends the low-order 8 bits (byte data) of the rs register into unsigned 32 bits (zero extended) and
loadsit to the rd register.
Example: | d.ub % 0, % 1 ; rO~loworder 8 bits of the rl register
; With zero extension
104 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

Id.ub %rd, [%rb]

Function:

Code:

Flags:

Mode:

Clock:

Description:

Example:

Unsigned byte data transfer

Standard: rd(7:0) « B[rb], rd(31:8) - 0
Extension 1: rd(7:0) — B[rb +imm13], rd(31:8) — 0
Extension 2: rd(7:0) — B[rb +imm26], rd(31:8) — 0

15 13 12 10 9 8 7 4 3 0

class 1 opl op2 rb rd
oJoJ1JoJoJ1]o]JoO rb rd 0x2400-0x24FF
15 12 11 8 7 4 3 0

IL(3:0) MO DS IE C \% z N
(-TT-1T-T-7T-1T-T-7T=-"1
Src: Register indirect (%orb = %r0—%r15)

Dst: Register direct (%rd = %r0—%r15)

1-2 cycles

(Note) Thisinstruction isnormally executed in 1 cycle. However, it takes one more cycle if the rd
register which is used in thisinstruction is also used in the operand of the following instruc-
tion as %rd, %rs or %rb.

(1) Standard
Id.ub %rd, [%rb] ; Memory address =rb
Extends the byte data in the specified memory into unsigned 32 bits (zero extended) and loads it
to the rd register. The accessed memory address is specified by the rb register.

(2) Extension 1
ext imm13
Id.ub %rd, [%rb] ; Memory address =rb + imm13
The "ext" instruction changes the addressing mode to register indirect with displacement. Thus
the byte data in the address that is specified by adding the 13-bit immediate data (imm13) to the
contents of the rb register isloaded to the rd register. The rb register is not modified.

(3) Extension 2
ext imm13 ; =imm26(25:13)
ext imm13' ; =imm26(12:0)
Id.ub %rd, [%rb] ; Memory address = rb + imm26
The "ext" instructions change the addressing mode to register indirect with displacement. Thus
the byte datain the address that is specified by adding the 26-bit immediate data (imm26) to the
contents of the rb register is loaded to the rd register. The rb register is not modified.

ext 0x10
I d.ub % 0, [% 1] ; r0<~B[r1+0x10] with zero extension

S1C33000 CORE CPU MANUAL EPSON 105

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

Id.ub %rd, [%rb]+

Function: Unsigned byte data transfer
Standard: rd(7:0) — B[rb], rd(31:8) —~ O,rb —« rb+1
Extension 1: Invalid
Extension 2: Invalid
Code: 15 13 12 10 9 8 7 4 3 0
class 1 opl op2 rb rd
oJoJ1JoJoJ1]o]1 rb rd 0x2500-0x25FF
15 12 11 8 7 4 3 0
Flags: IL(3:0) MO DS IE C \% z N
(-1 -T-7T-T-T-T=-7T=1]
Mode: Src: Register indirect with post increment (%rb = %r0—%r15)
Dst: Register direct (%rd = %r0—%r15)
Clock: 2 cycles
Description: Extends the byte data in the specified memory into unsigned 32 bits (zero extended) and loads it to
the rd register. The accessed memory address is specified by the rb register. The address stored in the
rb register isincremented (+1) after the data transfer.
Example: | d. ub %O, [%W1]+ ; rO-B[rl] with zero extension, rlrl+1
Note: If the same register is specified for rd and rb, the incremented address after transferring datais
loaded to the rd register.
106 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

Id.ub %rd, [%sp + imm6]

Function:

Code:

Flags:

Mode:

Clock:

Description:

Example:

Unsigned byte data transfer

Standard: rd(7:0) « B[sp +imm6], rd(31:8) — 0
Extension 1: rd(7:0) — B[sp +imm19], rd(31:8) -~ 0
Extension 2: rd(7:0) — B[sp +imm32], rd(31:8) — 0

15 13 12 10 9 4 3 0

class 2 opl imm6 rd

0J1JoJoJoJ1 immé rd 0x4400-0x47FF
15 12 11 8 7 4 3 0

IL(3:0) MO DS IE C \% z N
(-TT-1T-T-7T-1T-T-7T=-"1
Src: Register indirect with displacement

Dst: Register direct (%rd = %r0—%r15)

1-2 cycles

(Note) Thisinstruction isnormally executed in 1 cycle. However, it takes one more cycle if the rd
register which is used in thisinstruction is also used in the operand of the following instruc-
tion as %rd, %rs or %rb.

(1) Standard
Id.ub %rd, [%sp + imm6] ; Memory address = sp + imm6
Extends the byte data in the specified memory into unsigned 32 bits (zero extended) and loads it
to the rd register. The accessed memory address is specified by adding the 6-bit immediate data
(imm6) as the displacement to the contents of the current SP.

(2) Extension 1
ext imm13 ; =imm19(18:6)
Id.ub %rd, [%sp + imm6] ; Memory address = sp +imm19, imm6 = imm19(5:0)
The"ext" instruction extends the displacement into 19 bits. Thus the byte data in the address that
is specified by adding the 19-bit immediate data (imm19) to the contents of the SPis loaded to
the rd register.

(3) Extension 2
ext imm13 ; =imm32(31:19)
ext imm13' ; =imm32(18:6)
Id.ub %rd, [%sp + imm6] ; Memory address = sp + imm32, imm6 = imm32(5:0)
The "ext" instructions extend the displacement into 32 bits. Thus the byte data in the address that
is specified by adding the 32-bit immediate data (imm32) to the contents of the SP isloaded to
the rd register.

ext 0x1
I d.ub % 0, [%sp+0x1] ; T0-B[sp+0x41] with zero extension

S1C33000 CORE CPU MANUAL EPSON 107

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

Id.uh %rd, %rs

Function: Unsigned half word data transfer
Standard: rd(15:0) — rs(15:0), rd(31:16) — 0
Extension 1: Invalid
Extension 2: Invalid
Code: 15 13 12 10 9 8 7 4 3 0
class 5 opl op2 rs rd
1JoJ1JoJ1J1]Jo0]1 rs rd O0xADO00-O0xADFF
15 12 11 8 7 4 3 0
Flags: IL(3:0) MO DS IE C \% z N
- -1 -T1T-7T-T-T=-71T="1
Mode: Src: Register direct (%rs = %r0-%r15)
Dst: Register direct (%rd = %r0-%r15)
Clock: lcycle
Description: Extends the low-order 16 bits (half word data) of the rs register into unsigned 32 bits (zero extended)
and loads it to the rd register.
Example: | d. uh % 0, % 1 ; rO~loworder 16 bits of the rl register
; With zero extension
108 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

Id.uh %rd, [%rb]

Function:

Code:

Flags:

Mode:

Clock:

Description:

Example:

Note:

Unsigned half word data transfer

Standard: rd(15:0) — Hirb], rd(31:16) -~ 0
Extension 1: rd(15:0) — H[rb +imm13], rd(31:16) — O
Extension 2: rd(15:0) — H[rb +imm26], rd(31:16) — O

15 13 12 10 9 8 7 4 3 0

class 1 opl op2 rb rd
oJoJ1JoJ1J1]o]oO rb rd 0x2C00-0x2CFF
1 12 11 8 7 4 3 0

IL(3:0) MO DS IE C \Y YA N

Src: Register indirect (%orb = %r0—%r15)
Dst: Register direct (%rd = %r0—%r15)

1-2 cycles

(Note) Thisinstruction isnormally executed in 1 cycle. However, it takes one more cycle if the rd
register which is used in thisinstruction is also used in the operand of the following instruc-
tion as %rd, %rs or %rb.

(1) Standard
Id.uh %rd, [%rb] ; Memory address =rb
Extends the half word data in the specified memory into unsigned 32 bits (zero extended) and
loads it to the rd register. The accessed memory address is specified by the rb register.

(2) Extension 1
ext imm13
Id.uh %rd, [%rb] ; Memory address =rb + imm13
The "ext" instruction changes the addressing mode to register indirect with displacement. Thus
the half word datain the address that is specified by adding the 13-bit immediate data (imm13)
to the contents of the rb register isloaded to the rd register. The rb register is not modified.

(3) Extension 2
ext imm13 ; =imm26(25:13)
ext imm13' ; =imm26(12:0)
Id.uh %rd, [%rb] ; Memory address = rb + imm26
The "ext" instructions change the addressing mode to register indirect with displacement. Thus
the half word data in the address that is specified by adding the 26-bit immediate data (imm26)
to the contents of the rb register isloaded to the rd register. The rb register is not modified.

ext 0x10
I d.uh % 0, [% 1] ; TO-H r1+0x10] with zero extension

The rb register and the displacement must specify a half word boundary address (LSB = 0). Specify-
ing an odd address causes an address error exception.

The data transfer is performed using data in the specified address as the |ow-order 8 bits and datain
the next address as the high-order 8 bits.

S1C33000 CORE CPU MANUAL EPSON 109

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

Id.uh %rd, [%rb]+

Function: Unsigned half word data transfer
Standard: rd(15:0) — HJ[rb], rd(31:16) « O,rb — rb+2
Extension 1: Invalid
Extension 2: Invalid
Code: 15 13 12 10 9 8 7 4 3 0
class 1 opl op2 rb rd
oJoJ1JoJ1J1]o]1 rb rd 0x2D00-0x2DFF
15 12 11 8 7 4 3 0
Flags: IL(3:0) MO DS IE C \% z N
(-1 -T-7T-T-T-T=-7T=1]
Mode: Src: Register indirect with post increment (%rb = %r0—%r15)
Dst: Register direct (%rd = %r0—%r15)
Clock: 2 cycles
Description: Extends the half word data in the specified memory into unsigned 32 bits (zero extended) and loads
it to the rd register. The accessed memory address is specified by the rb register. The address stored
in therb register isincremented (+2) after the data transfer.
Example: | d. uh %O, [%W1]+ ; rO~Hrl] with zero extension, rlerl+2
Notes: » Therb register must specify a half word boundary address (LSB = 0). Specifying an odd address
causes an address error exception.
The data transfer is performed using data in the specified address as the |ow-order 8 bits and data
in the next address as the high-order 8 hits.
* If the same register is specified for rd and rb, the incremented address after transferring datais
loaded to the rd register.
110 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

Id.uh %rd, [%sp + imm6]

Function:

Code:

Flags:

Mode:

Clock:

Description:

Example:

Note:

Unsigned half word data transfer

Standard: rd(15:0) — H[sp +imm6 x 2], rd(31:16) — 0
Extension 1: rd(15:0) — H[sp +imm19], rd(31:16) — 0
Extension 2: rd(15:0) — H[sp +imm32], rd(31:16) — 0

15 13 12 10 9 4 3 0

class 2 opl imm6 rd

0J1JoJoJ1]1 immé rd 0x4C00-0x4FFF
15 12 11 8 7 4 3 0

IL(3:0) MO DS IE C \% z N
(-TT-1T-T-7T-1T-T-7T=-"1
Src: Register indirect with displacement

Dst: Register direct (%rd = %r0—%r15)

1-2 cycles

(Note) Thisinstruction isnormally executed in 1 cycle. However, it takes one more cycle if the rd
register which is used in thisinstruction is also used in the operand of the following instruc-
tion as %rd, %rs or %rb.

(1) Standard
Id.uh %rd, [%sp + imm6] ; Memory address = sp + imm6 x 2
Extends the half word data in the specified memory into unsigned 32 bits (zero extended) and
loads it to the rd register. The accessed memory address is specified by adding the doubled 6-bit
immediate data (imm6) as the displacement to the contents of the current SP. The immé6 specifies
a half word address in 16-bit units. The LSB of the displacement is always fixed at 0.

(2) Extension 1
ext imm13 ; =imm19(18:6)
Id.uh %rd, [%sp + imm6] ; Memory address = sp +imm19, imm6 = imm19(5:0)
The "ext" instruction extends the displacement into 19 bits. Thus the half word datain the
address that is specified by adding the 19-bit immediate data (immZ19) to the contents of the SPis
loaded to the rd register.
Specify a half word boundary address (LSB = 0) for the immé.

(3) Extension 2
ext imm13 ; =imm32(31:19)
ext imm13' ; =imm32(18:6)
Id.uh %rd, [%sp + imm6] ; Memory address = sp + imm32, imm6 = imm32(5:0)
The "ext" instructions extend the displacement into 32 bits. Thus the half word datain the
address that is specified by adding the 32-bit immediate data (imm32) to the contents of the SPis
loaded to the rd register.
Specify a half word boundary address (LSB = 0) for the imme.

ext 0x1
ext 0x0
| d. uh % 1, [¥%sp+0x2] ; rl—H SP+0x80002] with zero extension

When extending the displacement, the LSB of the imm6 will always be fixed at 0 to point to a half
word boundary address. Thus an address error exception will not occur.

The data transfer is performed using data in the specified address as the |low-order 8 bits and datain
the next address as the high-order 8 bits.

S1C33000 CORE CPU MANUAL EPSON 111

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

l[d.w %rd, %rs

Function: Word data transfer
Standard: rd — rs
Extension 1: Invalid
Extension 2: Invalid
Code: 15 13 12 10 9 8 7 4 3 0
class 1 opl 1|0 rs rd
oJoJ1iJoJ1J1]1]0 rs rd 0X2E00-0x2EFF
15 12 11 8 7 4 3 0
Flags: IL(3:0) MO DS IE C \Y; z N
- - T -1T-1T-T-T-171T=-"1
Mode: Src: Register direct (%rs = %r0-%r15)
Dst: Register direct (%rd = %r0—%r15)
Clock: lcycle
Description: Transfers the contents of the rs register (word data) to the rd register.
Example: ld.w % 0, % 1 r0<ril
Note: The ALR and the AHR can be used only in the models that have an optional multiplier. When using
the ALR or the AHR for the source register in other models, this instruction functions the same as
the "nop" instruction.
112 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

l[d.w %rd, %ss

Function:

Code:

Flags:

Mode:

Clock:
Description:
Example:

Note:

Word data transfer
Standard: rd — ss
Extension 1: Invalid
Extension 2: Invalid

15 13 12 10 9 8 7 4 3 0

class 5 opl op2 ss rd
1JoJ1]oJoJ1]o0]JoO ss rd O0xA400-0xA43F
15 12 11 8 7 4 3 0

IL(3:0) MO DS IE C \% z N

-1l -1T-T-T-T-T=-17T=-"
Src: Register direct (%ss = %sp, %opsr, %alr, %ahr)
Dst: Register direct (%rd = %r0—%r15)

1cycle
Transfers the contents of the special register (SP, PSR, ALR, AHR) to the rd register.
ld.w % 0, Y%psr ; r0—psr

The ALR and the AHR can be used only in the models that have an optional multiplier. When using
the ALR or the AHR for the source register in other models, this instruction functions the same as
the "nop" instruction.

S1C33000 CORE CPU MANUAL EPSON 113

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

ldw %rd, [%rb]

Function: Word data transfer
Standard: rd — W[rb]
Extension 1. rd — W[rb +imm13]
Extension 2: rd — W[rb + imm26]
Code: 15 13 12 10 9 8 7 4 3 0
class 1 opl op2 rb rd
0OJoJ1]1JoJoJo0]Jo0O rb rd 0x3000-0x30FF
15 12 11 8 7 4 3 0
Flags: IL(3:0) MO DS IE C \Y% z N
(- T -T1T-T-T-T-T-7T=-"1]
Mode: Src: Register indirect (%rb = %r0—%r15)
Dst: Register direct (%rd = %r0—%r15)
Clock: 1-2 cycles
(Note) Thisinstruction is normally executed in 1 cycle. However, it takes one more cycle if the rd
register which is used in thisinstruction is also used in the operand of the following instruc-
tion as %rd, %rs or %rb.
Description: (1) Standard
Id.w %rd, [%rb] ; Memory address =rb
Transfers the word data stored in the specified memory to the rd register. The accessed memory
address is specified by the rb register.
(2) Extension 1
ext imm13
Id.w %rd, [%rb] ; Memory address =rb + imm13
The"ext" instruction changes the addressing mode to register indirect with displacement. Thus
the word data in the address that is specified by adding the 13-bit immediate data (imm13) to the
contents of the rb register isloaded to the rd register. The rb register is not modified.
(3) Extension 2
ext imm13 ; =imm26(25:13)
ext imm13' ; =imm26(12:0)
Id.w %rd, [%rb] ; Memory address = rb + imm26
The "ext" instructions change the addressing mode to register indirect with displacement. Thus
the word data in the address that is specified by adding the 26-bit immediate data (imm26) to the
contents of the rb register isloaded to the rd register. The rb register is not modified.
Example: ext 0x10
Id.w % 0, [% 1] ; r0O~Wr1+0x10]
Note: Therb register and the displacement must specify aword boundary address (low-order 2 bits = 0).
Specifying other addresses causes an address error exception.
The data transfer is performed for 1 word (4 addresses) using data in the specified address as the
low-order 8 bits.
114 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

ldw %rd, [%rb]+

Function:

Code:

Flags:
Mode:
Clock:

Description:

Example:

Notes:

Word data transfer
Standard: rd « W[rb],rb « rb+4
Extension 1: Invalid
Extension 2: Invalid

15 13 12 10 9 8 7 4 3 0

class 1 opl op2 rb rd
0OJoJ1J1JoJoJo]1 rb rd 0x3100-0x31FF
15 12 11 8 7 4 3 0

IL(3:0) MO DS IE C \% z N
(-TT-1T-T-7T-1T-T-7T=-"1
Src: Register indirect with post increment (%rb = %r0—%r15)
Dst: Register direct (%rd = %r0—%r15)

2 cycles

Transfers the word data stored in the specified memory to the rd register. The accessed memory
address is specified by the rb register. The address stored in the rb register isincremented (+4) after
the data transfer.

ld. w % 0, [% 1] + ; TOWrl], rlerl+4

» Therb register must specify aword boundary address (low-order 2 bits = 0). Specifying other
addresses causes an address error exception.
The data transfer is performed for 1 word (4 addresses) using data in the specified address as the
low-order 8 bits.

« If the sameregister is specified for rd and rb, the incremented address after transferring datais
loaded to the rd register.

S1C33000 CORE CPU MANUAL EPSON 115

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

Id.w %rd, [%sp + imm6]

Function: Word data transfer
Standard: rd « W[sp +imm6 x 4]
Extension 1. rd — W[sp +imm19]
Extension 2: rd — W[sp +imm32]
Code: 15 13 12 10 9 4 3 0
class 2 opl imm6 rd
0OJ1JoJ1]Jo]o0O immé rd 0x5000-0x53FF
15 12 11 8 7 4 3 0
Flags: IL(3:0) MO DS IE C \Y% z N
(- T -T1T-T-T-T-T-7T=-"1]
Mode: Src: Register indirect with displacement
Dst: Register direct (%rd = %r0—%r15)
Clock: 1-2 cycles
(Note) Thisinstruction is normally executed in 1 cycle. However, it takes one more cycle if the rd
register which is used in thisinstruction is also used in the operand of the following instruc-
tion as %rd, %rs or %rb.
Description: (1) Standard
Id.w %rd, [%sp + imm6] ; Memory address = sp + imm6 x 4
Transfers the word data stored in the specified memory to the rd register. The accessed memory
address is specified by adding the quadrupled 6-bit immediate data (imm6) as the displacement
to the contents of the current SP. The imm6 specifies aword address in 32-bit units. The low-
order 2 bits of the displacement is always fixed at 0.
(2) Extension 1
ext imm13 ; =imm19(18:6)
ld.w %rd, [%sp + imm6] ; Memory address = sp +imm19, imm6 = imm19(5:0)
The"ext" instruction extends the displacement into 19 bits. Thus the word datain the address
that is specified by adding the 19-bit immediate data (imm19) to the contents of the SPisloaded
to the rd register.
Specify aword boundary address (low-order 2 bits = 0) for the imm6.
(3) Extension 2
ext imm13 ; =imm32(31:19)
ext imm13' ; =imm32(18:6)
Id.w %rd, [%sp + imm6] ; Memory address = sp + imm32, imm6 = imm32(5:0)
The"ext" instructions extend the displacement into 32 bits. Thus the word data in the address
that is specified by adding the 32-bit immediate data (imm32) to the contents of the SP is |oaded
to the rd register.
Specify aword boundary address (low-order 2 bits = 0) for the immé.
Example: ext 0x1
ext 0x0
ld.w % 1, [Ysp+0x4] i r1—W SP+0x80004]
Note: When extending the displacement, the low-order 2 bits of the imm6 will always be fixed at O to point
to aword boundary address. Thus an address error exception will not occur.
The data transfer is performed for 1 word (4 addresses) using data in the specified address as the
low-order 8 bits.
116 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

Id.w %rd, sign6

Function:

Code:

Flags:

Mode:

Clock:

Description:

Example:

Word data transfer

Standard: rd(5:0) « sign6(5:0), rd(31:6) — sign6(5)
Extension 1: rd(18:0) — sign19(18:0), rd(31:19) ~ sign19(18)
Extension 2: rd — sign32

15 13 12 10 9 4 3 0

class 3 opl sign6 rd

0OJ1J1JoJ1]1 signé rd 0X6C00-0X6FFF
15 12 11 8 7 4 3 0

IL(3:0) MO DS IE C \% z N
(-TT-1T-T-7T-1T-T-7T=-"1
Src: Immediate data (Signed)

Dst: Register direct (%rd = %r0—%r15)

1cycle

(1) Standard
Id.w %rd, sign6 ; rd — sign extension — sign6
Extends the 6-bit immediate data (sign6) into signed 32 bits (sign extended) and loadsiit to the rd
register.

(2) Extension 1
ext imm13 ; = sign19(18:6)
Id.w %rd, sign6 ; rd — sign extension « sign19, sign6 = sign19(5:0)
Extends the 19-bit immediate data (sign19) extended by the "ext" instruction into signed 32 hits
(sign extended) and loads it to the rd register.

(3) Extension 2

ext imm13 ; = sign32(31:19)
ext imm13' ; = sign32(18:6)
Id.w %rd, sign6é ; rd ~ sign32, sign6 = sign32(5:0)

L oads the 32-bit immediate data (sign32) extended by the "ext" instruction to the rd register.

(4) Delayed instruction
Thisinstruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set. In this case, thisinstruction cannot be extended with the
"ext" instruction.

ld.w % 0, Ox3f ; TOOxffffffff

S1C33000 CORE CPU MANUAL EPSON 117

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

l[d.w %sd, %rs

Function: Word data transfer
Standard: sd ~rs
Extension 1: Invalid
Extension 2: Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 5 opl op2 rs sd
1JoJ1]JoJoJoJo]Jo rs sd 0xA000—-0xAO0F3
15 12 11 8 7 4 3 0
Flags: IL(3:0) MO DS IE C \% Z N
- I = T =T -1 -=1T-="1T =1 =1 (Allthe bits change if %sd=%psr)
Mode: Src: Register direct (%rs = %r0-%r15)

Dst: Register direct (%osd = %sp, %pst, Y%oalr, %ahr)
Clock: lcycle
Description: Transfers the contents of the rsregister (word data) to the special register (SP, PSR, ALR, AHR).
Example: ld.w Y%sp, % 0 ; Sp~r0

Note: The ALR and the AHR can be used only in the models that have an optional multiplier. When using
the ALR or the AHR for the destination register in other models, this instruction functions the same
as the "nop" instruction.

118 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

Id.w [%rb], %rs

Function:

Code:

Flags:

Mode:

Clock:

Description:

Example:

Note:

Word data transfer

Standard: W[rb] < rs
Extension 1: W[rb+imml3] — rs
Extension 2: W[rb +imm26] — rs

15 13 12 10 9 8 7 4 3 0

class 1 opl op2 rb rs
oOJoJ1iJ1J1J1]o]oO rb rs 0x3C00-0x3CFF
1 12 11 8 7 4 3 0

IL(3:0) MO DS IE C \% z N

-1l -1T-T-T-T-T=-17T=-"
Src: Register direct (%rs = %r0—%r15)
Dst: Register indirect (%rb = %r0—%r15)

1cycle

(1) Standard
Id.w [Yorb], %rs ; Memory address = rb
Transfers the contents of the rsregister (word data) to the specified memory. The accessed
memory address is specified by the rb register.

(2) Extension 1
ext imm13
Id.w [%rb], %rs ; Memory address =rb +imm13
The "ext" instruction changes the addressing mode to register indirect with displacement. Thus
the contents of the rs register (word data) are transferred to the address specified by adding the
13-hit immediate data (imm13) to the contents of the rb register. The rb register is not modified.

(3) Extension 2

ext imm13 ; =imm26(25:13)
ext imm13' ; =imm26(12:0)
Id.w [%rb], %rs ; Memory address = rb + imm26

The "ext" instruction changes the addressing mode to register indirect with displacement. Thus
the contents of the rs register (word data) are transferred to the address specified by adding the
26-bit immediate data (imm26) to the contents of the rb register. The rb register is not modified.

ext 0x10
ld. w [%1],% 0 ;o Wr1+0x10] <r0

The rb register and the displacement must specify aword boundary address (low-order 2 bits = 0).
Specifying other addresses causes an address error exception.

The data transfer is performed for 1 word (4 addresses) using data in the specified address as the
low-order 8 bits.

S1C33000 CORE CPU MANUAL EPSON 119

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

d.w [%rb]+, %rs

Function: Word data transfer
Standard: WI[rb] « rs,rtb « rb+4
Extension 1: Invalid
Extension 2: Invalid
Code: 15 13 12 10 9 8 7 4 3 0
class 1 opl op2 rb rs
oOJoJ1J1J1J1]o0]1 rb rs 0x3D00-0x3DFF
15 12 11 8 7 4 3 0
Flags: IL(3:0) MO DS IE C \% z N
- -1 -T1T-7T-T-T=-71T="1
Mode: Src: Register direct (%rs = %r0-%r15)
Dst: Register indirect with post increment (%rb = %r0-%r15)
Clock: lcycle
Description: Transfers the contents of the rs register (word data) to the specified memory. The accessed memory
address is specified by the rb register. The address stored in the rb register isincremented (+4) after
the data transfer.
Example: ld.w [% 1]+, %0 i Wrl] «r0, rlerl+4
Note: The rb register must specify aword boundary address (low-order 2 bits = 0). Specifying other
addresses causes an address error exception.
The data transfer is performed for 1 word (4 addresses) using data in the specified address as the
low-order 8 bits.
120 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

ld.w [%sp + iImm6], %rs

Function:

Code:

Flags:

Mode:

Clock:

Description:

Example:

Note:

Word data transfer

Standard: W[sp+imm6 x 4] — rs
Extension 1: W[sp +imm19] — rs
Extension 2: W[sp +imm32] — rs

15 13 12 10 9 4 3 0

class 2 opl imm6 rs

0OJ1JoJ1J1]1 imm6 rs 0x5C00-0x5FFF
15 12 11 8 7 4 3 0

IL(3:0) MO DS IE C \Y YA N

-1l -1T-T-T-T-T=-17T=-"
Src: Register direct (%rs = %r0—%r15)
Dst: Register indirect with displacement

1cycle

(1) Standard
Id.w [Yosp + imm6], %rs ; Memory address = sp +imm6 x 4
Transfers the contents of the rsregister (word data) to the specified memory. The accessed
memory address is specified by adding the quadrupled 6-bit immediate data (imm6) as the
displacement to the contents of the current SP. The imm6 specifies aword address in 32-bit
units. The low-order 2 bits of the displacement is always fixed at 0.

(2) Extension 1
ext imm13 ; =imm19(18:6)
Id.w [Yosp + imm6], %rs ; Memory address = sp +imm19, imm6 = imm19(5:0)
The "ext" instruction extends the displacement into 19 bits. Thus the contents of the rs register
(word data) are transferred to the address that is specified by adding the 19-bit immediate data
(imm19) to the contents of the SP.
Specify aword boundary address (low-order 2 bits = 0) for the immé.

(3) Extension 2

ext imm13 ; =imm32(31:19)
ext imm13' ; =imm32(18:6)
Id.w [Yosp + imm6], %rs ; Memory address = sp + imm32, imm6 = imm32(5:0)

The "ext" instructions extend the displacement into 32 bits. Thus the contents of the rs register
(word data) are transferred to the address that is specified by adding the 32-bit immediate data
(imm32) to the contents of the SP.

Specify aword boundary address (low-order 2 bits = 0) for the imm6.

ext 0Ox1
ext 0x0
ld. w [¥%sp+0x4], % 1 ; H[SP+0x80004] ~r1

When extending the displacement, the low-order 2 bits of the imm6 will always be fixed at 0 to point
to aword boundary address. Thus an address error exception will not occur.

The data transfer is performed for 1 word (4 addresses) using data in the specified address as the
low-order 8 bits.

S1C33000 CORE CPU MANUAL EPSON 121

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

mac %rs

(option)

Function:

Code:

Flags:

Mode:
Clock:

Description:

Example:

Note:

Multiplication and accumulation
Standard: Repeats "{ ahr, alr} —{ahr, alr} + H[<rs+1>] x H[<rs+2>], <rs+1> <rs+1> + 2,
<rs+2> <rs+2> + 2" x rstimes

Extension 1: Invalid

Extension 2: Invalid

15 13 12 10 9 8 7 4 3 0
class 5 opl op
1JoJ1J1JoJo]1]
15 12 11

ILE0) MO DS E C VvV _zZ N
- T -T-T-T-T=-7T=-1T~=1

Register direct (%rs = %r0—%r15)

0xB200-0xB2F0

o o™
-
w
w o
o
— |
o
oo

2xN+4 cycles (N: A repeat count that is set to the rs register)

The "mac %rs" instruction repeats execution of the "{ AHR, ALR} — {AHR, ALR} + H[<rs+1>]+ x
H[<rs+2>]+" operation (64 bits + 16 hits x 16 bits) for the count number specified by the rsregister.
Thersregister is used as a counter and is decremented by each operation. The "mac" instruction
terminates operation when the rs register becomes 0. Thus it is possible to repeat operation up to
232-1 (4,294,967,295) times. When the "mac" instruction is executed by setting the rs register to O,
the "mac" instruction does not perform multiplication and accumulation and does not change the
AHR and the ALR. The rsregister is not decremented asit isO.

<rs+1> and <rs+2> are the general-purpose registers which follow the rs register.
Example: When the RO register is specified for rs. <rs+1>=R1 register, <rs+2>=R2 register
When the R15 register is specified for rs; <rs+1>=RO0 register, <rs+2>=R1 register

The "mac" instruction uses the data stored in the addresses that are specified by these registers as the
base address as signed 16-bit data for multiplication. The base addresses are incremented (+2) in
each operation step.

The operation result is obtained as a 64-bit data from the AHR for the high-order 32 bits and the
ALR for the low-order 32 bits.

When the temporary result overflows the signed 64-bit range during multiplication and accumula-
tion, the MO flag in the PSR is set to 1. However, the operation continues until the repeat count that
isset in the rsregister goesto 0. Since the MO flag stays 1 until it isreset by software, it is possible
to check whether the results are valid or not by reading the MO flag after completing execution of
the "mac" instruction.

Interrupts are accepted even if the "mac” instruction is executing halfway through the repeat count.
The trap processing saves the address of the "mac” instruction into the stack as the return address
before branching to the interrupt handler routine. Thus when the interrupt handler routine is finished
by the "reti" instruction, the suspended "mac" instruction resumes execution. The contents of the rs
register at that point are used as the remaining repeat count, therefore if the interrupt handler routine
has modified the rs register the "mac” instruction cannot obtain the expected results. Similarly, when
the <rs+1> and/or <re+2> registers have been modified in the interrupt handler routine, the resumed
"mac" instruction cannot be executed properly.

nac % 1 ; Repeats "{ahr, alr} —{ahr,alr}+Hr2]+ x
; Hr3]1+" rl tines

The <rs+1> and <rs+2> registers must specify half word boundary addresses (LSB = 0). Specifying
an odd address causes an address error exception.

This instruction can be executed only in the models that have an optional multiplier. In other models,
this instruction functions the same as the "nop" instruction.

122

EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

mirror %rd, %rs

Function:

Code:

Flags:

Mode:

Clock:

Description:

Example:

Mirror

Standard: rd(31:24) — rs(24:31), rd(23:16) — rs(16:23), rd(15:8) — rs(8:15), rd(7:0) — rs(0:7)
Extension 1: Invalid

Extension 2: Invalid

15 13 12 10 9 8 7 4 3 0

class 4 opl op2 rs rd
1JoJoJ1JoJ1[1]o rs rd 0Xx9600-0x96FF
15 12 11 8 7 4 3 0

IL(3:0) MO DS IE C \% z N

-1 -1 -T1T-1
Src: Register direct (%rs = %r0-%r15)
Dst: Register direct (%rd = %r0—%r15)

1cycle

(1) Standard
Swaps the bit order of the rsregister high and low in byte data units and loads the results to the
rd register.

31 24 23 16 15 8 7 0
rsregister[1[0]1]0[1]o1]0]1]o[1]o1]0o]1][0]1]0o]1]0]1][0]1][0]1]0]1[0]1][0]1]0O]

rd register[0]1]0]1]0]1]o[1]o[1]o[1][0]1][0]1]o]1]o[1]o]1]o]1]0]1]0[1][0]1]0]1]
31 24 23 16 15 8 7 0

(2) Delayed instruction
Thisinstruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set.

When rl contains 0x88442211.

mrror 9%0,%1 ; r0-0x11224488
Mirror operation for 32-bit data (when r1 contains 0x44332211)
swap %1, %1 ; rl<0x11223344
mrror %1, %1 ; r1-0x8844CC22

S1C33000 CORE CPU MANUAL EPSON 123

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

mit.h %rd, %rs (option)

Function:

Signed 16-bit multiplication
Standard: ar < rd(15:0) x rs(15:0)
Extension 1: Invalid

Extension 2: Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 5 opl op2 rs rd
1JoJ1JoJoJoJ1]o rs rd 0XA200-0xA2FF
15 12 11 8 7 4 3 0
Flags: IL(3:0) MO DS IE C \% z N
- -1 -T1T-7T-T-T=-71T="1
Mode: Src: Register direct (%rs = %r0—%r15)
Dst: Register direct (%rd = %r0—%r15)
Clock: lcycle
Description: (1) Standard
Multiplies the low-order 16 bits of the rd register and the low-order 16 hits of the rs register with
the signs and loads the results to the ALR.
(2) Delayed instruction
Thisinstruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set.
Example: mt.h % 0, % 1 ;alr = r0(15:0) x r1(15:0)
; signed nultiplication
Note: This instruction can be executed only in the models that have an optional multiplier. In other models,
this instruction functions the same as the "nop" instruction.
124 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

mitu.h %rd, %rs (option)

Function:

Code:

Flags:

Mode:

Clock:

Description:

Example:

Note:

Unsigned 16-bit multiplication
Standard: ar < rd(15:0) x rs(15:0)
Extension 1: Invalid

Extension 2: Invalid

15 13 12 10 9 8 7 4 3 0

class 5 opl op2 rs rd
1JoJ1]JoJoJ1[1]o rs rd OxA600-0XAG6FF
15 12 11 8 7 4 3 0

IL(3:0) MO DS IE C \% z N

-1 -1 -T1T-1
Src: Register direct (%rs = %r0-%r15)
Dst: Register direct (%rd = %r0—%r15)

1cycle

(1) Standard
Multiplies the low-order 16 bits of the rd register and the low-order 16 bits of the rs register
without signs and loads the results to the ALR.

(2) Delayed instruction
Thisinstruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set.

mtuh %0, %1 ;o alr = r0(15:0) x r1(15:0)
; unsigned nultiplication

This instruction can be executed only in the models that have an optional multiplier. In other models,
this instruction functions the same as the "nop" instruction.

S1C33000 CORE CPU MANUAL EPSON 125

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

mit.w %rd, %rs (option)

Function: Signed 32-bit multiplication
Standard: {ahr, alr} « rdxrs
Extension 1: Invalid
Extension 2: Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 5 opl op2 rs rd
1JoJ1JoJ1JoJ1]o0 rs rd OXAAO00-OXAAFF
15 12 11 8 7 4 3 0
Flags: IL(3:0) MO DS IE C \Y% z N
-l -1 -T-T-T-T-1T=1]
Mode: Src: Register direct (%rs = %r0—%r15)

Dst: Register direct (%rd = %r0—%r15)
Clock: 5 cycles

Description: Multiplies the 32-bit datain the rd register and the 32-bit datain the rs register with the signs and
loads the 64-hit result to the AHR (high-order 32 hits) and the ALR (low-order 32 hits).

Example: mt.w %0,%1 ; {ahr, alr} =r0 xrl1l signed nultiplication

Note: This instruction can be executed only in the models that have an optional multiplier. In other models,
this instruction functions the same as the "nop" instruction.

126 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

mitu.w %rd, %rs (option)

Function:

Code:

Flags:

Mode:

Clock:

Description:

Example:

Note:

Unsigned 32-bit multiplication
Standard: {ahr,dr} « rdxrs
Extension 1: Invalid
Extension 2: Invalid

15 13 12 10 9 8 7 4 3 0

class 5 opl op2 rs rd
1JoJ1JoJ1J1[1]o0 rs rd OXAE00-OXAEFF
15 12 11 8 7 4 3 0

IL(3:0) MO DS IE C \Y YA N

-1l -1T-T-T-T-T=-17T=-"
Src: Register direct (%rs = %r0-%r15)
Dst: Register direct (%rd = %r0—%r15)

5 cycles

Multiplies the 32-bit datain the rd register and the 32-bit datain the rs register without signs and
|oads the 64-hit result to the AHR (high-order 32 bits) and the ALR (low-order 32 hits).

mtuw %0,%1 ; {ahr, alr} =r0 xrl1 wunsigned multiplication

This instruction can be executed only in the models that have an optional multiplier. In other models,
this instruction functions the same as the "nop" instruction.

S1C33000 CORE CPU MANUAL EPSON 127

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

nop
Function: No operation
Standard: No operation
Extension 1: Invalid
Extension 2: Invalid
Code: 15 13 12 9 8 7 6 4 3 0
class 0 opl 0| op2 |O|O0O|O|O|O|O
0|O|O 0|O|O|O 0 0|0 0|{0|0|0|0| 0| 0x0000
15 12 11 8 7 4 3 0
Flags: IL(3:0) MO DS IE C \Y% z N
(-1 -T-7T-T-T-T=-7T=1]
Clock: lcycle

Description: The "nop" instruction just takes 1 cycle and no operation results. The PC isincremented (+2).

Example: nop
nop ; Waits 2 cycles

128 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

not %rd, %rs

Function:

Code:

Flags:

Mode:

Clock:

Description:

Example:

Logical negation
Standard: rd < !rs
Extension 1: Invalid
Extension 2: Invalid

15 13 12 10 9 8 7 4 3 0

class 1 opl 1|0 rs rd
oJoJ1iJ1iJ1J1]1]o0 rs rd 0x3E00-0x3EFF
15 12 11 8 7 4 3 0

IL(3:0) MO DS IE C \% z N

-l -1 -T-T-T-T+<171T=-1
Src: Register direct (%rs = %r0-%r15)
Dst: Register direct (%rd = %r0—%r15)

1cycle

(1) Standard
Reverses all the bits of the rsregister and loads them to the rd register.

(2) Delayed instruction
Thisinstruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set.

When the r1 register contains 0x5555555:
not % 0, % 1 ;10 = OXAAAAAAAA

S1C33000 CORE CPU MANUAL EPSON 129

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

not %rd, sign6

Function: Logical negation
Standard: rd — ! sign6
Extension 1: rd — ! sign19
Extension 2: rd — ! sign32
Code: 15 13 12 10 9 4 3 0
class 3 opl sign6 rd
0OJ1J1]1]1]1 sign6 rd 0x7C00-0x7FFF
15 12 11 8 7 4 3 0
Flags: IL(3:0) MO DS IE C \Y% z N
L-T-T-T-T-T=-T+« 1T+«
Mode: Src: Immediate data (signed)
Dst: Register direct (%rd = %r0—%r15)
Clock: lcycle
Description: (1) Standard
not %rd, sign6 ;rd — !sign6
Extends the signed 6-bit immediate data (sign6) into signed 32-bits (sign extended) and reverses
al the bits, then loads the results to the rd register.
(2) Extension 1
ext imm13 ; = sign19(18:6)
not %rd, sign6 ; rd — !signl9, sign6 = sign19(5:0)
Extends the signed 19-bit immediate data (sign19) into signed 32-bits (sign extended) and
reverses al the bits, then loads the results to the rd register.
(3) Extension 2
ext imm13 ; = sign32(31:19)
ext imm13' ; = sign32(18:6)
not %rd, sign6é ;rd — !sign32, sign6 = sign32(5:0)
Reverses all the bits of the signed 32-bit immediate data (sign32) extended by the "ext" instruc-
tions, then loads the results to the rd register.
(4) Delayed instruction
Thisinstruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set. In this case, thisinstruction cannot be extended with the
"ext" instruction.
Examples: not % 0, Ox1f ; r0 = oxffffffel
ext Ox7ff
not % 1, Ox3f ; rl = oxfffe0000
130 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

or %rd, %rs

Function:

Code:

Flags:

Mode:

Clock:

Description:

Examples:

Logical sum

Standard: rd ~ rd|rs
Extension 1: rd — rs|imm13
Extension 2: rd — rs|imm26

15 13 12 10 9 8 7 4 3 0

class 1 opl 1|0 rs rd
oJoJ1iJ1JoJ1]1]o0 rs rd 0x3600-0x36FF
15 12 11 8 7 4 3 0

IL(3:0) MO DS IE C \% z N

-l -1 -T-T-T-T+<171T=-1
Src: Register direct (%rs = %r0-%r15)
Dst: Register direct (%rd = %r0—%r15)

1cycle

(1) Standard
or %rd, %rs ;rd < rd|rs
ORs the contents of the rsregister and rd register and loads the results to the rd register.

(2) Extension 1
ext imm13
or %rd, %rs ;rd « rs|imml13
ORs the contents of the rsregister and the 13-bit immediate data (imm13) with zero extension
and loads the results to the rd register. It does not change the contents of the rsregister.

(3) Extension 2

ext imm13 ; =imm26(25:13)
ext imm13' ; =imm26(12:0)
or %rd, %rs ;rd < rs | imm26

ORs the contents of the rsregister and the 26-bit immediate data (imm26) with zero extension
and loads the results to the rd register. It does not change the contents of the rs register.

(4) Delayed instruction
Thisinstruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set. In this case, this instruction cannot be extended with the
"ext" instruction.

or % 0, % 0 ; rO=r0] r0

ext Ox1

ext Ox1fff

or % 1, % 2 ; rl =r2 | 0x00003fff

S1C33000 CORE CPU MANUAL EPSON 131

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

or %rd, sign6

Function: Logical sum
Standard: rd < rd|sign6
Extension 1: rd — rd|sign19
Extension 2: rd ~ rd|sign32
Code: 15 13 12 10 9 4 3 0
class 3 opl sign6 rd
0J1J1]1]Jo0]1 sign6 rd 0x7400-0x77FF
15 12 11 8 7 4 3 0
Flags: IL(3:0) MO DS IE C \Y% z N
L-T-T-T-T-T=-T+« 1T+«
Mode: Src: Immediate data (signed)
Dst: Register direct (%rd = %r0—%r15)
Clock: lcycle
Description: (1) Standard
or %rd, sign6é ;rd — rd | sign6
ORs the contents of the rd register and the 6-bit immediate data (sign6) with sign extension and
loads the results to the rd register.
(2) Extension 1
ext imm13 ; = sign19(18:6)
or %rd, sign6é ; rd — rd | signl9, sign6 = sign19(5:0)
ORs the contents of the rd register and the 19-bit immediate data (sign19) with sign extension
and loads the results to the rd register.
(3) Extension 2
ext imm13 ; = sign32(31:19)
ext imm13' ; = sign32(18:6)
or %rd, sign6é ; rd — rd | sign32, sign6 = sign32(5:0)
ORs the contents of the rd register and the signed 32-bit immediate data (sign32) extended by the
"ext" instructions and loads the results to the rd register.
(4) Delayed instruction
Thisinstruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set. In this case, thisinstruction cannot be extended with the
"ext" instruction.
Examples: or % 0, Ox3e ; r0O =r0 | Oxfffffffe
ext Ox7ff
or % 1, Ox3f ; rl =rl1 | OxO0001ffff
132 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

popn %rd

Function: Pop
Standard: IN « W[sp], sp « sp+ 4, repeatsrn =r0tord
Extension 1: Invalid
Extension 2: Invalid

Code: 15 13 12 9 8 7 6 4 3 0
class 0 opl 0| op2 |0 |0 rd
0OJoJo]oJoJoJi]oJo[1]0]0O rd 0x0240-0x024F
15 2 1 8 4 3 0

Flags: IL(3:0) MO DS IE C \Y z N
- -1 -T-T-T-T1-1-1

Mode: Register direct (%rd = %r0—%r15)

Clock: N cycles (N = number of registers to be returned)

Description: Returns data of the general-purpose registers that have been evacuated in the stack by the "pushn"
instruction to each register.
The "popn" instruction first returns the word data in the address indicated by the SP to the rO
register, then increments the SP by 1 word (4 bytes). It repeats a similar operation up to therd
register sequentially. The rd register must be the same register specified by the corresponding
"pushn" instruction.

MSB LSB

Stack rd register |

SP after executing "popn" —» | [Sp+4N] T 'Y 7\ Fy

[sp+4N-1]

[sp+4N-2]

[sp+4N-3]

[sp+4N-4]
A

MSB LSB
r0 register \

[SIOI+3] T T

[sp+2]
[sp+1]
SP before executing "popn" —» [sp]

Example: popn % 3 ; Returns the stacked data to r0, r1, r2 and r3.

S1C33000 CORE CPU MANUAL EPSON 133

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

pushn %rs

Function:

Push

Standard: sp — sp-4, W[sp] — N, repeatsrN =rstor0

Extension 1: Invalid
Extension 2: Invalid

Code: 15 13 12 9 8 7 6 4 0
class 0 opl 0 op2 |00 rs
0OJoJo]oJoJoJi1]o]oJo]o]O rs 0x0200-0x020F
15 12 11 8 7 4 0
Flags: IL(3:0) MO DS IE C \Y z N
- -1 -T-T-T-71T-71-
Mode: Register direct (%rd = %r0—%r15)
Clock: N cycles (N = number of registers to be evacuated)
Description: Saves data of the general-purpose registers into the stack.
The "pushn” instruction first decrements the current SP value by 1 word (4 bytes), then saves the
contents of the rs register to the address. It repeats a similar operation up to the rO register sequen-
tially.
MSB LSB
Stack s register | \ \ \ \
SP before executing "pushn” —» [sp]
[sp-1]
[sp-2] |«
[sp-3] |«
[sp-4] |«
! MSB LSB
; 10 register | \ \ \ \
v <—,
[sp-4N+3] ‘
[sp-4N+2] |«
[sp-4N+1] |«
SP after executing "pushn” —» | [sp-4N] |«
Example: pushn % 3 ; Saves r3, r2, rl and rO0
134 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

ret/ret.d
Function: Return from subroutine
Standard: pc — W[sp],sp « sp+4
Extension 1: Invalid
Extension 2: Invalid
Code: 15 13 12 9 8 7 6 4 3 0
class 0 opl d| op2 |0]| O -
OJoJo|oJoJaJi[d|[o[1][0[0[O0JO0]0O[0]| 0x0640,0x0740
1 12 11 8 4 3 0
Flags: IL(3:0) MO DS IE C \% z N
L-1r1-1r-r1r-r-71r-1r-71~=1]
Clock: ret: 4cycles
ret.d: 3 cycles
Description: (1) Standard
ret
Returns the PC value (return address) that was saved into the stack when the "call" instruction
was executed for returning the program flow from the subroutine to the routine that called the
subroutine. The SP isincremented by 1 word.
If the SP has been modified in the subroutine, it is necessary to return the SP value before
executing the "ret" instruction.
(2) Delayed branch (d bit = 1)
ret.d
The "ret.d" instruction sets the d bit in the instruction code, so the following instruction becomes
adelayed instruction. The delayed instruction is executed before return from the subroutine.
Traps that may occur between the "ret.d" instruction and the next delayed instruction are masked,
thus interrupts and exceptions cannot occur.
Example: ret.d
add % 0, % 1 ; Executed before return fromthe subroutine.
Note: When using the "ret.d" instruction (for delayed branch), the following instruction must be an

instruction that can be used as a delayed instruction. Be aware that the operation will be undefined if
other instructions are executed. See the instruction list in the Appendix for the instructions that can
be used as delayed instructions.

S1C33000 CORE CPU MANUAL EPSON 135

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

retd
Function: Return from debugging routine
Standard: r0 — W[0xC (or 0x6000C)], pc — W[0x8 (or 0x60008)]
Extension 1: Invalid
Extension 2: Invalid
Code: 15 13 12 9 8 7 6 4 3 0
class 0 opl 0 op2 |00 -
0|O|O 0|O|1|O 0 0|1 0|0 0|0|0|0 0x0440
15 12 11 8 7 4 3 0
Flags: IL(3:0) MO DS IE C \% z N
(- T -T-1T-T-T-T-T=-"1
Clock: 5 cycles
Description: Returns the RO and PC values that were saved into the stack for debugging when the "brk™ instruc-
tion was executed for returning the program flow from the debugging routine (debugging mode).
Thisinstruction is provided for ICE control software. Do not useit in general programs.
Example: retd ; Returns from debuggi ng node.
136 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

reti

Function: Return from trap handler routine
Standard: pst —« W[sp],sp « sp+4,pc —« W[sp],sp « sp+4
Extension 1: Invalid
Extension 2: Invalid

Code: 15 13 12 9 8 7 6 4 3 0
class 0 opl 0| op2 |0 |0 -
OJoJo|oJoJaJoJo[1]1]o]o0JO0JO0J0O]0O] Ox04CO
15 12 11 8 4 3 0

Flags: IL(3:0) MO DS IE C \Y z N
Lol o[o] el el el oT]«]

Clock: 5 cycles

Description: Returnsthe PSR and PC values that were saved into the stack when the exception or interrupt
occurred for returning the program flow from the trap handler routine. The SP isincremented by 2
words.

Example: reti ; Returns fromthe trap handl er routine.

S1C33000 CORE CPU MANUAL EPSON 137

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

rl %rd, %rs

Function: Rotation to left
Standard: Rotates the contents of the rd register to the left by the shift count (0-8) specified with
thersregister; LSB —« MSB
Extension 1: Invalid
Extension 2: Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 4 opl op2 rs rd
1JoJoJ1J1J1]o]1 rs rd 0x9D00-0x9DFF
15 12 11 8 7 4 3 0
Flags: IL(3:0) MO DS IE C \% Z N
- T -T-T-T-T=-T+«71%«]
Mode: Src: Register direct (%rs = %r0-%r15)

Dst: Register direct (%rd = %r0—%r15)
Clock: lcycle

Description: (1) Standard
Rotates the hits of the rd register as in the figure below. The shift count can be specified from 0
to 8 using the low-order 4 bits of the rsregister.

L_{Sl 0 HJ
rd register -

rs(3:0) Ixxx 0111 0110 0101 0100 0011 0010 0001 0000
Shift count 8 7 6 5 4 3 2 1 0

(2) Delayed instruction
Thisinstruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set.

Example: In the case of rl register = 0x55555555 and r0 register = 1:
rl % 1, % 0 ;o rl = OXAAAAAAAA

138 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

rl %rd, imm4

Function:

Code:

Flags:

Mode:

Clock:

Description:

Example:

Rotation to left

Standard: Rotates the contents of the rd register to the left by the shift count (0-8) specified with
theimm4; LSB - MSB

Extension 1: Invalid

Extension 2: Invalid

15 13 12 10 9 8 7 4 3 0

class 4 opl op2 imm4 rd
IJO0JO0[I]1]1]0]JO imm4 rd 0x9C00-0x9CFF
15 12 11 8 7 4 3 0

IL(3:0) MO DS IE C \Y% Z N

L-T-1T-T-T-T-T«1T=%1
Src: Immediate data (unsigned)
Dst: Register direct (%rd = %r0—%r15)

1cycle

(1) Standard
Rotates the hits of the rd register as in the figure below. The shift count can be specified from 0
to 8 using the 4-hit immediate data (imm4).

L_{Sl OFJ
rd register -

imm4 Ixxx 0111 0110 0101 0100 0011 0010 0001 0000
Shift count 8 7 6 5 4 3 2 1 0

(2) Delayed instruction
Thisinstruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set.

In the case of rl register = 0x01010101:
ri % 1, 0x4 ; rl = 0x10101010

S1C33000 CORE CPU MANUAL EPSON 139

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

rr %rd, %rs

Function: Rotation to right
Standard: Rotates the contents of the rd register to the right by the shift count (0-8) specified
with the rsregister; MSB — LSB
Extension 1: Invalid
Extension 2: Invalid
Code: 15 13 12 10 9 8 7 4 3 0
class 4 opl op2 rs rd
1JoJoJ1J1JoJo]1 rs rd 0x9900-0x99FF
15 12 11 8 7 4 3 0
Flags: IL(3:0)0 MO DS IE C \Y% z N
- T -T-T-T-T-T=«1T=%1
Mode: Src: Register direct (%rs = %r0-%r15)
Dst: Register direct (%rd = %r0—%r15)
Clock: lcycle
Description: (1) Standard
Rotates the hits of the rd register as in the figure below. The shift count can be specified from 0
to 8 using the low-order 4 bits of the rsregister.
u?:l 0 }_J
rd register -
rs(3:0) Ixxx 0111 0110 0101 0100 0011 0010 0001 0000
Shift count 8 7 6 5 4 3 2 1 0
(2) Delayed instruction
Thisinstruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set.
Example: In the case of rl register = 0x55555555 and r0 register = 1:
rr % 1, % 0 ;o rl = OXAAAAAAAA
140 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

rr %rd, imm4

Function:

Code:

Flags:

Mode:

Clock:

Description:

Example:

Rotation to right

Standard: Rotates the contents of the rd register to the right by the shift count (0-8) specified
with theimm4; MSB ~ LSB

Extension 1: Invalid

Extension 2: Invalid

15 13 12 10 9 8 7 4 3 0

class 4 opl op2 imm4 rd
I[O0JO0[I]1]0]O0JO imm4 rd 0x9800-0x98FF
15 12 11 8 7 4 3 0

IL(3:0) MO DS IE C \Y% Z N

L-T-1T-T-T-T-T«1T=%1
Src: Immediate data (unsigned)
Dst: Register direct (%rd = %r0—%r15)

1cycle

(1) Standard
Rotates the hits of the rd register as in the figure below. The shift count can be specified from 0
to 8 using the 4-hit immediate data (imm4).

u:’;l OJ
rd register -

imm4 Ixxx 0111 0110 0101 0100 0011 0010 0001 0000
Shift count 8 7 6 5 4 3 2 1 0

(2) Delayed instruction
Thisinstruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set.

In the case of rl register = 0x01010101:
rr % 1, 0x4 ; rl = 0x10101010

S1C33000 CORE CPU MANUAL EPSON 141

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

sbc %rd, %rs

Function: Subtraction with borrow
Standard: rd « rd-rs-C
Extension 1: Invalid
Extension 2: Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 5 opl op2 rs rd
1JoJ1J1J1J1]J0]o0 rs rd 0XBCO0-0xBCFF
15 12 11 8 7 4 3 0
Flags: IL(3:0) MO DS IE C \Y% z N
-l - T -T-T«T««1]T« 1T+
Mode: Src: Register direct (%rs = %r0—%r15)

Dst: Register direct (%rd = %r0—%r15)
Clock: lcycle

Description: (1) Standard
Subtracts the contents of the rs register and C (carry) flag from the rd register.

(2) Delayed instruction
Thisinstruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set.

Example: sbc % 0, % 1 ; r0O=r0-r11-C

Subtraction of 64-bit data

datal={r2, r1}, data2 = {r4, r3}, result = {r2, r1}

sub %1, % 3 ; Subtraction of the |l oworder word

sbc % 2, % 4 ; Subtraction of the high-order word
{r2,r1} < {r2,r1} - {r4,r3}

142 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

scan0 %rd, %rs

Function:

Code:

Flags:

Mode:

Clock:

Description:

Example:

0 bit scan

Standard: rd — O bit offset inrs(31:24)
Extension 1: Invalid

Extension 2: Invalid

15 13 12 10 9 8 7 4 3 0

class 4 opl op2 rs rd
1JoJoJoJ1Jof1]o rs rd 0X8A00-0x8AFF
15 12 11 8 7 4 3 0
IL(3:0) MO DS IE C \Y VA N

- - T -T-T«T0T] - T0]

Src: Register direct (%rs = %r0-%r15)
Dst: Register direct (%rd = %r0—%r15)

1cycle

(1) Standard
Scans the most significant byte (bits 31 to 24) of the rsregister. When a0 bit isfound, it loads
the location (offset from MSB) to the rd register. If the MSB is 0, 0 is loaded to the rd register
and the Z flag is set. If thereis no 0 bit in the most significant byte of the rs register, 0x00000008
isloaded in the rd register and the C flag is set.
Bits 31 to 4 of the rd register become 0.

High-order 8 bits of rs | Low-order 8 bits of rd C \ z N
OXXX XXXX 0000 0000 0 0 1 0
10XX XXXX 0000 0001 0 0 0 0
1210x XXXX 0000 0010 0 0 0 0
1110 xxxx 0000 0011 0 0 0 0
1111 Oxxx 0000 0100 0 0 0 0
1111 10xx 0000 0101 0 0 0 0
1111 110x 0000 0110 0 0 0 0
1111 1110 0000 0111 0 0 0 0
11111111 0000 1000 1 0 0 0

(2) Delayed instruction
Thisinstruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set.

Bit scan for 32-bit data
rO = temporary register, rl = bit-scan source data, r2 = result

scan0 % 0, % 1 ; 1lst bit-scan
sl | % 1, % 0
I d.w % 2, % 0
scan0 % 0, % 1 ; 2nd bit-scan
sl | % 1, % 0
add % 2, %0
scan0 %0, % 1 ; 3rd bit-scan
sl % 1, % 0
add % 2,% 0
scan0 % 0, % 1 ; 4th bit-scan
sl | % 1, % 0
add % 2, % 0

S1C33000 CORE CPU MANUAL EPSON 143

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

scanl %rd, %rs

Function: 1 bit scan
Standard: rd — 1 bit offset in rs(31:24)
Extension 1: Invalid
Extension 2: Invalid
Code: 15 13 12 10 9 8 7 4 3 0
class 4 opl op2 rs rd
1JoJoJoJ1J1J1]o0 rs rd OX8E00-OX8EFF
15 12 11 8 7 4 3 0
Flags: IL(3:0) MO DS IE C \Y% z N
- [- 1T -T-T-T7T07«T]T20]
Mode: Src: Register direct (%rs = %r0—%r15)
Dst: Register direct (%rd = %r0—%r15)
Clock: lcycle
Description: (1) Standard
Scans the most significant byte (bits 31 to 24) of the rsregister. When a 1 bit isfound, it loads
the location (offset from MSB) to the rd register. If the MSB is 1, 0 isloaded to the rd register
and the Z flag is set. If thereis no 1 bit in the most significant byte of the rs register, 0x00000008
isloaded in the rd register and the C flag is set.
Bits 31 to 4 of the rd register become 0.
High-order 8 bits of rs | Low-order 8 bits of rd C V Z N
IXXX XXXX 0000 0000 0 0 1 0
OLXX XXXX 0000 0001 0 0 0 0
001X XXXX 0000 0010 0 0 0 0
0001 xxxx 0000 0011 0 0 0 0
0000 1xxx 0000 0100 0 0 0 0
0000 01xx 0000 0101 0 0 0 0
0000 001x 0000 0110 0 0 0 0
0000 0001 0000 0111 0 0 0 0
0000 0000 0000 1000 1 0 0 0
(2) Delayed instruction
Thisinstruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set.
Example: Bit scan for 32-bit data
rO = temporary register, rl1 = bit-scan source data, r2 = result
scanl % 0, % 1 ; 1st bit-scan
sl % 1, % 0
ld.w % 2, %0
scanl % 0, % 1 ; 2nd bit-scan
sl % 1, % 0
add % 2, % 0
scanl %0,% 1 ; 3rd bit-scan
sl % 1, % 0
add % 2, % 0
scan0 9% 0, % 1 i 4th bit-scan
sl % 1, % 0
add % 2,% 0
144 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

da %rd, %rs

Function: Arithmetical shift to left
Standard: Shifts the contents of the rd register to the left by the shift count (0-8) specified with
thersregister; LSB — 0
Extension 1: Invalid
Extension 2: Invalid
Code: 15 13 12 10 9 8 7 4 3 0
class 4 opl op2 rs rd
1JoJoJ1JoJ1]Jo]1 rs rd 0x9500-0x95FF
15 12 11 8 7 4 3 0
Flags: IL(3:0) MO DS IE C \% z N
L-T-T-T-T-T=-T+<T1%«]
Mode: Src: Register direct (%rs = %r0-%r15)
Dst: Register direct (%rd = %r0—%r15)
Clock: 1cycle
Description: (1) Standard
Shifts the bits of the rd register as in the figure below. The shift count can be specified from 0 to
8 using the low-order 4 bits of the rs register. 0 enters to the L SB.
31 0
rd register + - le-0
rs(3:0) Ixxx 0111 0110 0101 0100 0011 0010 0001 0000
Shift count 8 7 6 5 4 3 2 1 0
(2) Delayed instruction
Thisinstruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set.
Example: In the case of r1 register = 0x55555555 and r0 register = 1:
sla % 1,% 0 7 1l = OXAAAAAAAA
S1C33000 CORE CPU MANUAL EPSON

145

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

da %rd, imm4

Function: Arithmetical shift to left
Standard: Shifts the contents of the rd register to the left by the shift count (0-8) specified with
theimm4; LSB « 0
Extension 1: Invalid
Extension 2: Invalid
Code: 15 13 12 10 9 8 7 4 3 0
class 4 opl op2 imm4 rd
1JoJoJ1JoJ1]Jo0]oO imm4 rd 0x9400-0x94FF
15 12 11 8 7 4 3 0
Flags: IL(3:0)0 MO DS IE C \Y% z N
- T -T-T-T-T-T=«1T=%1
Mode: Src: Immediate data (unsigned)
Dst: Register direct (%rd = %r0—%r15)
Clock: lcycle
Description: (1) Standard
Shifts the bits of the rd register asin the figure below. The shift count can be specified from 0 to
8 using the 4-bit immediate data (imm4). 0 enters to the LSB.
31 0
rd register + - le-0
imm4 Ixxx 0111 0110 0101 0100 0011 0010 0001 0000
Shift count 8 7 6 5 4 3 2 1 0
(2) Delayed instruction
Thisinstruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set.
Example: In the case of rl register = 0x01010101:
sla % 1, 0x4 ; rl = 0x10101010
146

EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

dl %rd, %rs

Function:

Code:

Flags:

Mode:

Clock:

Description:

Example:

Logical shift to left

Standard: Shifts the contents of the rd register to the left by the shift count (0-8) specified with
thersregister; LSB — 0

Extension 1: Invalid

Extension 2: Invalid

15 13 12 10 9 8 7 4 3 0

class 4 opl op2 rs rd
I[O0JO0[O0J1IJ1[0]1 rs rd 0x8D00-0x8DFF
15 12 11 8 7 4 3 0

IL(3:0) MO DS IE C \Y% Z N

L-T-1T-T-T-T-T«1T=%1
Src: Register direct (%rs = %r0-%r15)
Dst: Register direct (%rd = %r0—%r15)

1cycle

(1) Standard
Shifts the bits of the rd register as in the figure below. The shift count can be specified from 0 to
8 using the low-order 4 bits of the rs register. 0 enters to the L SB.
31 0
rd register + - le-0
rs(3:0) Ixxx 0111 0110 0101 0100 0011 0010 0001 0000
Shift count 8 7 6 5 4 3 2 1 0

(2) Delayed instruction
Thisinstruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set.

In the case of rl register = 0x55555555 and rO register = 1:
sl | % 1, %0 ;o rl = OXAAAAAAAA

S1C33000 CORE CPU MANUAL EPSON 147

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

dl %rd, imm4

Function:

Logical shift to left

Standard: Shifts the contents of the rd register to the left by the shift count (0-8) specified with
theimm4; LSB « 0

Extension 1: Invalid

Extension 2: Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 4 opl op2 imm4 rd
1JoJoJoJ1J1]J0]o0O imm4 rd 0x8CO00-0x8CFF
15 12 11 8 7 4 3 0
Flags: IL(3:0)0 MO DS IE C \Y% z N
- T -T-T-T-T-T=«1T=%1
Mode: Src: Immediate data (unsigned)
Dst: Register direct (%rd = %r0—%r15)
Clock: lcycle
Description: (1) Standard
Shifts the bits of the rd register asin the figure below. The shift count can be specified from 0 to
8 using the low-order 4 bits of the rs register. 0 enters to the L SB.
31 0
rd register + - le-0
imm4 Ixxx 0111 0110 0101 0100 0011 0010 0001 0000
Shift count 8 7 6 5 4 3 2 1 0
(2) Delayed instruction
Thisinstruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set.
Example: In the case of rl register = 0x01010101:
sl % 1, 0x4 ; rl = 0x10101010
148 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

sp
Function: SLEEP
Standard: Sets the CPU to SLEEP mode
Extension 1: Invalid
Extension 2: Invalid
Code: 15 13 12 9 8 7 6 5 4 3 0
class 0 opl 0| op2 |0 |0 -
OJoJo|oJoJoJoJo|o[1]0|0|0J0[0O]0O] Ox0040
15 12 11 8 4 3 0
Flags: IL(3:0) MO DS IE C \Y z N
(-TT-1T-T-7T-1T-T-7T=-"1
Clock: 1cycle
Description: Sets the CPU to SLEEP mode.
In SLEEP mode, the CPU and the on-chip peripheral circuits stop operating, so current consumption
can greatly be reduced.
SLEEP mode is canceled by an interrupt. When SLEEP mode is canceled, the program flow returns
to the next instruction of the "slp" instruction after executing the interrupt handler routine.
Example: slp ; Sets the CPU to SLEEP node.

S1C33000 CORE CPU MANUAL EPSON 149

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

sra %rd, %rs

Function: Arithmetical shift to right
Standard: Shifts the contents of the rd register to the right by the shift count (0-8) specified with
the rsregister; MSB — MSB
Extension 1: Invalid
Extension 2: Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 4 opl op2 rs rd
1JoJo[1JoJoJoJ1 rs rd 0x9100-0x91FF
15 12 11 8 7 4 3 0
Flags: IL(3:0) MO DS IE C \% Z N
- T -T-T-T-T=-T+«71%«]
Mode: Src: Register direct (%rs = %r0-%r15)

Dst: Register direct (%rd = %r0—%r15)
Clock: lcycle

Description: (1) Standard

Shifts the bits of the rd register asin the figure below. The shift count can be specified from 0 to
8 using the low-order 4 bits of the rs register. The sign bit is copied to the MSB.

31 0
rd register Iil | N b

Sign bit (MSB)

rs(3:0) Ixxx 0111 0110 0101 0100 0011 0010 0001 0000
Shift count 8 7 6 5 4 3 2 1 0

(2) Delayed instruction

Thisinstruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set.

Example: In the case of rl register = 0x55555555 and r0 register = 1:
sra % 1, % 0 7 rl = Ox2AAAAAAA

150 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

sra %rd, imm4

Function: Arithmetical shift to right
Standard: Shifts the contents of the rd register to the right by the shift count (0-8) specified with
theimm4; MSB — MSB
Extension 1: Invalid
Extension 2: Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 4 opl op2 imm4 rd
I[0J0[1]0J0JO0JO imm4 rd 0x9000-0x90FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C \% z N
- T -T-T-T-T-T%-71T+*

Mode: Src: Immediate data (unsigned)

Dst: Register direct (%rd = %r0—%r15)
Clock: 1cycle

Description: (1) Standard

Shifts the bits of the rd register as in the figure below. The shift count can be specified from 0 to
8 using the low-order 4 bits of the rs register. The sign bit is copied to the MSB.

31 0
rd register Iil | N >

Sign bit (MSB)

imm4 Ixxx 0111 0110 0101 0100 0011 0010 0001 0000
Shift count 8 7 6 5 4 3 2 1 0

(2) Delayed instruction

Thisinstruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set.

Example: In the case of r1 register = 0x81010101:
sra % 1, 0x4 ; rl = 0xF8101010

S1C33000 CORE CPU MANUAL EPSON 151

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

srl %rd, %rs

Function: Logical shift to right
Standard: Shifts the contents of the rd register to the right by the shift count (0-8) specified with
thersregister; MSB — 0
Extension 1: Invalid
Extension 2: Invalid
Code: 15 13 12 10 9 8 7 4 3 0
class 4 opl op2 rs rd
1JoJoJoJ1JoJo]J1 rs rd 0x8900-0x89FF
15 12 11 8 7 4 3 0
Flags: IL(3:0)0 MO DS IE C \Y% z N
- T -T-T-T-T-T=«1T=%1
Mode: Src: Register direct (%rs = %r0-%r15)
Dst: Register direct (%rd = %r0—%r15)
Clock: lcycle
Description: (1) Standard
Shifts the bits of the rd register asin the figure below. The shift count can be specified from 0 to
8 using the low-order 4 bits of the rs register. 0 enters to the MSB.
31 0
rd register 0| N >
rs(3:0) Ixxx 0111 0110 0101 0100 0011 0010 0001 0000
Shift count 8 7 6 5 4 3 2 1 0
(2) Delayed instruction
Thisinstruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set.
Example: In the case of rl register = 0x55555555 and r0 register = 1:
srl % 1, %0 7 rl = OX2AAAAAAA
152 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

srl %rd, imm4

Function:

Code:

Flags:

Mode:

Clock:

Description:

Example:

Logical shift to right

Standard: Shifts the contents of the rd register to the right by the shift count (0-8) specified with
theimm4; MSB — 0

Extension 1: Invalid

Extension 2: Invalid

15 13 12 10 9 8 7 4 3 0

class 4 opl op2 imm4 rd
I[0J0[0J1]0JO0JO imm4 rd 0x8800-0x88FF
15 12 11 8 7 4 3 0

IL(3:0) MO DS IE C \Y% Z N

L-T-1T-T-T-T-T«1T=%1
Src: Immediate data (unsigned)
Dst: Register direct (%rd = %r0—%r15)

1cycle

(1) Standard
Shifts the bits of the rd register as in the figure below. The shift count can be specified from 0 to
8 using the low-order 4 bits of the rs register. 0 enters to the MSB.
31 0
rd register 0 - >
imm4 Ixxx 0111 0110 0101 0100 0011 0010 0001 0000
Shift count 8 7 6 5 4 3 2 1 0

(2) Delayed instruction
Thisinstruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set.

In the case of rl register = 0x01010101:
srl 9% 1, 0x4 ; rl = 0x00101010

S1C33000 CORE CPU MANUAL EPSON 153

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

sub %rd, %rs

Function: Subtraction
Standard: rd « rd-rs
Extension 1: rd — rs-imm13
Extension 2: rd — rs-imm26
Code: 15 13 12 10 9 8 7 4 3 0
class 1 opl 1|0 rs rd
0OJoJ1]oJoJa1]o0 rs rd 0x2600-0x26FF
15 12 11 8 7 4 3 0
Flags: IL(3:0) MO DS IE C \Y% z N
- [- T -T-T el Tl T7]«]
Mode: Src: Register direct (%rs = %r0—%r15)
Dst: Register direct (%rd = %r0—%r15)
Clock: lcycle
Description: (1) Standard
sub %rd, %rs ;rd < rd-rs
Subtracts the contents of the rs register from the rd register.
(2) Extension 1
ext imm13
sub %rd, %rs ;rd < rs-imm13
Subtracts the 13-bit immediate data (imm213) from the contents of the rs register, and then stores
the results to the rd register. It does not change the contents of the rs register.
(3) Extension 2
ext imm13 ; =imm26(25:13)
ext imm13' ; =imm26(12:0)
sub %rd, %rs crd < rs-imm26
Subtracts the 26-bit immediate data (imm26) from the contents of the rs register, and then stores
the results to the rd register. It does not change the contents of the rs register.
(4) Delayed instruction
Thisinstruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set. In this case, thisinstruction cannot be extended with the
"ext" instruction.
Examples: sub % 0, % 0 ; r0=r0-r10
ext Ox1
ext Ox1fff
sub % 1, % 2 ; rl =r2 - Ox3fff
154 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

sub %rd, imm6

Function:

Code:

Flags:

Mode:

Clock:

Description:

Examples:

Subtraction

Standard: rd « rd-imm6
Extension 1: rd — rd - imm19
Extension 2: rd — rd - imm32

15 13 12 10 9 4 3 0

class 3 opl imm6 rd

0J1J1]JoJo]J1 immé rd 0x6400-0x67FF
15 12 11 8 7 4 3 0

IL(3:0) MO DS IE C \% z N
- T -T-T-T« 1«71« 1%«
Src: Immediate data (unsigned)

Dst: Register direct (%rd = %r0—%r15)

1cycle

(1) Standard
sub %rd, imm6 ;rd — rd - imm6
Subtracts the 6-bit immediate data (immé6) from the rd register.

(2) Extension 1
ext imm13 ; =imm19(18:6)
sub %rd, imm6 ;rd « rd - imm19, imm6 = imm19(5:0)
Subtracts the 19-bit immediate data (imm19) extended with the "ext" instruction from the rd
register.

(3) Extension 2

ext imm13 ; =imm32(31:19)
ext imm13' ; =imm32(18:6)
sub %rd, imm6 ;rd « rd -imm32, imm6 = imm32(5:0)

Subtracts the 32-bit immediate data (imm32) extended with the "ext" instructions from the rd
register.

(4) Delayed instruction
Thisinstruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set. In this case, thisinstruction cannot be extended with the
"ext" instruction.

sub % 0, Ox3f 7 r0 =r0 - Ox3f

ext Ox1fff

ext Ox1fff

sub % 1, Ox3f ;rl =rl - Oxffffffff

S1C33000 CORE CPU MANUAL EPSON 155

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

sub %sp, imm210

Function:

Subtraction

Standard: sp ~ sp-imml0x4
Extension 1: Invalid

Extension 2: Invalid

Code: 15 13 12 10 9 0
class 4 opl imm10
1JoJoJoJo]J1 imm10 0x8400-0x87FF
15 12 11 8 7 4 3 0
Flags: IL(3:0) MO DS IE C \% z N
(- T -T1T-T-T-T-T-7T=-"1]
Mode: Src: Immediate data (unsigned)
Dst: Register direct (SP)
Clock: lcycle
Description: (1) Standard
Quadruples the 10-hit immediate data (imm10) and subtracts it from the stack pointer SP.
(2) Delayed instruction
Thisinstruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set.
Example: sub %sp, 0x1 ; Sp = sp - 0x4
156 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

swap %rd, %rs

Function:

Code:

Flags:

Mode:

Clock:

Description:

Example:

Swap

Standard: rd(31:24) — rs(7:0), rd(23:16) — rs(15:8), rd(15:8) — rs(23:16), rd(7:0) — rs(31:24)
Extension 1: Invalid

Extension 2: Invalid

15 13 12 10 9 8 7 4 3 0

class 4 opl op2 rs rd
1JoJoJ1JoJof1]o rs rd 0x9200-0x92FF
15 12 11 8 7 4 3 0

IL(3:0) MO DS IE C \% z N

-1 -1 -T1T-1
Src: Register direct (%rs = %r0-%r15)
Dst: Register direct (%rd = %r0—%r15)

1cycle

(1) Standard
Swaps the byte order of the rsregister high and low and loads the results to the rd register.

31 24 23 16 15 8 7 0
rs register[1]0]0]o]o]1]o]o]o[1]o]oo]o]1][o]o]o[1]o]o[o]o]1]0]0]02]0]0]0]0]
L] L] L] L]

e

T 1 T 1 T 1 T 1
rd register[0]0]0[1]0o]o]o]o]o]o]1]o[o]o]o[1]o][1][o]o]o[o]1]o[1]0][0][0]0][1]0]O]
31 24 23 16 15 8 7 0

(2) Delayed instruction

Thisinstruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set.

When rlcontains 0x87654321.:
swap %0, % 1 ; r0 «~ 0x21436587

S1C33000 CORE CPU MANUAL EPSON 157

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

xor %rd, %rs

Function: Exclusive OR
Standard: rd « rd™rs
Extension 1: rd — rs”™imml3
Extension 2 rd — rs”™imm26
Code: 15 13 12 10 9 8 7 4 3 0
class 1 opl 1|0 rs rd
oJoJ1iJ1J1Jo]1]0 rs rd 0X3A00-0x3AFF
15 12 11 8 7 4 3 0
Flags: IL(3:0) MO DS IE C \Y% z N
- [- 1T -T-T-T-T+<71T%«1]
Mode: Src: Register direct (%rs = %r0—%r15)
Dst: Register direct (%rd = %r0—%r15)
Clock: lcycle
Description: (1) Standard
xor %rd, %rs ;rd «rd”™rs
Exclusive ORs the contents of the rsregister and rd register and loads the results to the rd
register.
(2) Extension 1
ext imm13
xor %rd, %rs ;rd < rs~immi3
Exclusive ORs the contents of the rsregister and the 13-bit immediate data (imm13) with zero
extension and loads the results to the rd register. It does not change the contents of the rs register.
(3) Extension 2
ext imm13 ; =imm26(25:13)
ext imm13' ; =imm26(12:0)
xor %rd, %rs ;rd < rs~imm26
Exclusive ORs the contents of the rsregister and the 26-bit immediate data (imm26) with zero
extension and loads the results to the rd register. It does not change the contents of the rsregister.
(4) Delayed instruction
Thisinstruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set. In this case, thisinstruction cannot be extended with the
"ext" instruction.
Examples: xor % 0, % 0 ; r0O=r0"™r0
ext 0x1
ext Ox1fff
xor % 1, % 2 ;rl =r2 ~ 0x00003fff
158 EPSON S1C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

xor %rd, sign6

Function:

Code:

Flags:

Mode:

Clock:

Description:

Examples:

Exclusive OR

Standard: rd — rd” signé
Extension 1: rd — rd " sign19
Extension 2: rd — rd " sign32

15 13 12 10 9 4 3 0

class 3 opl sign6 rd

0OJ1J1J1J1]o0 signé rd 0x7800-0x7BFF
15 12 11 8 7 4 3 0

IL(3:0) MO DS IE C \% z N
L-T-T-T-T-T=-T« 1T+«
Src: Immediate data (signed)

Dst: Register direct (%rd = %r0—%r15)

1cycle

(1) Standard
xor %rd, sign6 ; rd — rd ~ sign6
Exclusive ORs the contents of the rd register and the 6-bit immediate data (sign6) with sign
extension and loads the results to the rd register.

(2) Extension 1
ext imm13 ; = sign19(18:6)
xor %rd, sign6 ; rd — rd ~ signl9, sign6 = sign19(5:0)
Exclusive ORs the contents of the rd register and the 19-bit immediate data (sign19) with sign
extension and loads the results to the rd register.

(3) Extension 2

ext imm13 ; = sign32(31:19)
ext imm13' ; = sign32(18:6)
xor %rd, sign6é ; rd — rd ” sign32, sign6 = sign32(5:0)

Exclusive ORs the contents of the rd register and the signed 32-bit immediate data (sign32)
extended by the "ext" instructions and loads the results to the rd register.

(4) Delayed instruction
Thisinstruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set. In this case, this instruction cannot be extended with the
"ext" instruction.

xor % 0, Ox3e ; r0 =r0 ~ Oxfffffffe
ext Ox7ff
Xxor % 1, Ox3f ;orl =rl1 N Ox0001ffff

S1C33000 CORE CPU MANUAL EPSON 159

Appendi X m

S1C33000 Quick REFErENCEcccevveveviecece e Appendix-1
Memory Map and Trap Table.........cccocvevveciennns Appendix-1
REJISLEN'S .. Appendix-1
SYMBOIS. .. Appendix-2
Data Transfer INStructions............ccccvveeveeerenienene Appendix-3
Logic Operation INStructions...........ccocceeeeveneennn Appendix-4
Arithmetic Operation Instructions.............c.c...... Appendix-4
Shift and Rotation InStructionsccccveeeeeeneene Appendix-5
Bit Operation INStructionsccccceveeveveeienennnns Appendix-5
Immediate Extension Instructioncccceeue.e. Appendix-5
Push and Pop INStructionsccccceveeeceeieninnenne Appendix-5
Branch INStructions...........ccceeveeevennenenescseene Appendix-6
Multiplication and Accumulation Instruction...... Appendix-7
System Control INStructions...........ccceceeereeeennennen Appendix-7
Other INSIrUCLIONSoveueiverieesiereeceee e Appendix-7
Immediate Extension List (1)ccoeevevveverenennnnnns Appendix-8
Immediate Extension List (2)cccceeveevevereniennnnns Appendix-9

INSErUCION TNAEX ...voeeieceeeceeeeece e Appendix-10

IVNNVIN NdD 340D 000€EDTS

NOSd3

T-XIAN3IddV

Memory Map and Trap Table S1C33000 Core CPU

Memory Map Trap Table
Area size Vector address
EPSON OXFFFFFFF [Area 18 External memory | 64MB Reset base + 0
Area 17 External memory | 64MB Reserved base + 4-12
Area 16 External memory | 32MB Zero division base + 16
Area 15 External memory | 32MB Reserved base + 20
CMOS 32_b|t Slngle Chlp Mlcrocomputer Area 14 External memory 16MB Address error base + 24
Area 13 External memory | 16MB NMI base + 28
Area 12 External memory | 8BMB Reserved base + 32-44
S 1 C 3 3 OO O 0x1000000 |Area 11 External memory | 8MB Software exception 0 base + 48
. 0x0C00000 Area 10 External memory | 4MB : _ :
Area9 External memory | 4AMB Software exception 3 base + 60
Q U I C k R ef e r e n C e Area 8 External memory | 2MB External maskable interrupt 0 | base + 64
Area 7 External memory | 2MB : :
Area 6 External I/O 1MB External maskable interrupt 215 | base + 924
Area5 External memory | 1IMB
0x0100000 |Area4 _ External memory | 1MB base: Trap table start address
0x0080000 |Area 3 On-chip ROM 512KB = 0x0080000 (when booting by on-chip ROM)
0x0060000 |Area 2 Reserved 128KB = 0x0C00000 (when booting by external ROM)
0x0040000 |Area 1 Internal 1/0 128KB

0x0000000 Area0 On-chip RAM 256KB

S1C33000 Core CPU

General-purpose registers (16) Special registers (5) PSR
31 0 31 0 31-12 11-8 7 6 5 4 3 2 1 0
R15 | PC | Program counter | Reserved | IL [MO]DS] - JIEJC V] Z][N]
R14 IL: Interrupt level (0-15: Enabled interrupt level)
R13 | PSR | Processor status register MO: MAC overflow flag (1: MAC overflow, 0: Not overflown)
: DS: Dividend sign flag (1: Negative, O: Positive)
R4 [SP | stack pointer IE: Interrupt enable (1: Enabled, O: Disabled)
R3 Z: Zero flag (1: Zero, 0: Non zero)
R2 | ALR | Arithmetic operation low register N: Negative flag (1: Negative, 0: Positive)
R1 C: Carryflag (1: Carry/borrow, 0: No carry)
RO | AHR | Arithmetic operation high register V: Overflow flag (1: Overflow, 0: Not overflown)

(AHR, ALR: Option for Multiplication & Accumulation, Multiplication, and Division)

JONIHI43H YOINO 000€EDTS ‘XIANIdAY

¢-XIAN3IddV

NOSd3

IVNNVIN NdD 340D 000€EDTS

S1C33000 Instruction Set

%rd, rd:
%0rs, rs:
%rb, rb:
%sd, sd:
%ss, SS:
%sp, sp:

[%orb]:
[Yorb]+:

B[rb]:

HI[rb]:

W[rb]:
W(sp]:
B[sp+immé]:
H[sp+imm7]:

Immediate
immX:
signX:

Bit Field
(X):
(X:Y):
X, Y-}

Flags
MO:

°:ls0zNg

[Yosp+immX]:

WI[sp+imma8]:

Registers/Register Data

A general-purpose register (RO—R15) used as the destination register or the contents of the register.

A general-purpose register (R0-R15) used as the source register or the contents of the register.

A general-purpose register (R0—R15) that has stored a base address accessed in the register indirect addressing mode or the contents of the register.
A special register (PSR, SP, ALR, AHR) used as the destination register or the contents of the register.

A special register (PSR, SP, ALR, AHR) used as the source register or the contents of the register.

Stack pointer or the contents of the stack pointer.

ORegister bit field in the code is replaced with a number according to the specified register (R0O—R15=0-15, PSR=0, SP=1, ALR=2, AHR=3).

Memory/Addresses/Memory Data

Specification for register indirect addressing.

Specification for register indirect addressing with post-increment.

Specification for register indirect addressing with a displacement.

The address specified with the rb register, or the byte data stored in the address.

The half-word space in which the base address is specified with the rb register, or the half-word data stored in the space.

The word space in which the base address is specified with the rb register, or the word data stored in the space.

The word space in which the base address is specified with the SP, or the word data stored in the space.

The address specified with the SP and the displacement imm6, or the byte data stored in the address.

The half-word space in which the base address is specified with the SP and the displacement imm6 x 2, or the half-word data stored in the space.
The word space in which the base address is specified with SP and the displacement immé6 x 4, or the word data stored in the space.

Functions
A X-bit unsigned immediate data. - Indicates that the right item is loaded or set to the left item.
A X-bit signed immediate data. +: Addition
- Subtraction
&: AND
Bit X of data. |: OR
A bit field from bit X to bit Y. n XOR
Indicates a bit (data) configuration. I: NOT
X: Multiplication
MAC overflow flag Cycle Indicates the number of execution cycles when the instruction has been stored in the internal ROM
Dividend sign flag and the internal RAM is accessed.
Zero flag
Negative flag EXT
Carry flag - Indicates that the ext instruction cannot be used for the instruction.
Overflow flag
Not changed D
Set (1) or reset (0) o: Indicates that the instruction can be used as a delayed instruction.
Reset (0) — Indicates that the instruction cannot be used as a delayed instruction.

JONIHI43H YOINO 000€EDTS XIANIAAY

IVNNVIN NdD 340D 000€EDTS

NOSd3

Data Transfer

S1C33000 Instruction Set

Mnemonic . Flags
Opcode Operand MSB Code LSB Function Cyele forsiclv EXT
Id.b %rd, %rs 1/0/1/0|0|0 1 rs rd rd(7:0) — rs(7:0), rd(31:8) —rs(7) 1 [—-|—-|-|- -
%rd, [%rb] 0/0|1|0|0|0 0 rb rd rd(7:0) — B[rb], rd(31:8) — B[rb](7) 120 —|—|—| - m
%rd, [%rb]+ 0|0|1|0(|0]|0 1 rb rd rd(7:0) — B[rb], rd(31:8) — B[rb](7), rb — rb+1 2 |-|=|-|- -
%rd, [%sp+imm6] [0|1|0/0|0|0 imm6 rd rd(7:0) — B[sp+imm6], rd(31:8) — B[sp+imm6](7) 120 —|—|—|— 2
[%orb], %rs 0/0|1]1|0]1 0 rb rs B[rb] —rs(7:0) 1 |-1-]-]- 1
[%rb]+, %rs 0/0|1|1|0|1 1 rb rs B[rb] —rs(7:0), rb — rb+1 1 |-|-|-]- -
[Y%osp+immé6], %rs [0|1]0|1(0]|1 imm6 rs B[sp+imm6] —rs(7:0) 1 |[-|-|-|- 2
Id.ub %rd, %rs 1/0/1/0|0|1 1 rs rd rd(7:0) ~ rs(7:0), rd(31:8) -0 1 |-|-]1-]- -
%rd, [%rb] 0/0/1|0|0|1 0 rb rd rd(7:0) — B[rb], rd(31:8) - 0 120 —|—|—| - m
%rd, [%rb]+ 0|0[1|0f0]|1 1 rb rd rd(7:0) — B[rb], rd(31:8) 0, rb —rb+1 2 |-|—-|-|- -
%rd, [%sp+imm6] [0|1]|0/0|0|1 imm6é rd rd(7:0) — B[sp+immé6], rd(31:8) — 0 12— |- |- |- P
Id.h %rd, %rs 1{0/1/0|1|0 1 s rd rd(15:0) rs(15:0), rd(31:16) —rs(15) 1 |-|-|-]- -
%rd, [%rb] 0|0[1|0(f1]|0 0 rb rd rd(15:0) — H[rb], rd(31:16) — H[rb](15) 120 —|—|—|— a
%rd, [Yorb]+ 0/0|1|0f1]|0 1 rb rd rd(15:0) — H[rb], rd(31:16) — H[rb](15), rb — rb+2 2 |-|-|-]- -
%rd, [Yosp+imm6] {0|1]/0|0|1|0 imm6 rd rd(15:0) — H[sp+imm7], rd(31:16) — H[sp+imm7](15); imm7={imm6,0} |1-2™ —|—|—|— 2
[%orb], %rs 0|0[1|1|1]|0 0 rb rs H[rb] — rs(15:0) 1 [—-|—-|-|- a
[Yorb]+, %rs 0|0j1|1f1]|0 1 rb rs H[rb] - rs(15:0), rb —rb+2 1 |-1-1-]- -
[%sp+imm6], %rs [0]1/0|1|1|0 imm6 rs H[sp+imm7] — rs(15:0); imm7={imm6,0} 1 |-|-|-]- 2
Id.uh %rd, %rs 1/0/1/0|1|1 1 rs rd rd(15:0) rs(15:0), rd(31:16) — 0 1 [—-|—-|—-|- -
%rd, [%rb] 0/0|1|0|1|1 0 rb rd rd(15:0) — H[rb], rd(31:16) - 0 120 —|—|—|— m
%rd, [%rb]+ 0|0|1|0f1]|1 1 rb rd rd(15:0) — H[rb], rd(31:16) O, rb — rb+2 2 |-|-|-|- -
%rd, [%sp+imm6] [0|1]|0|/0|1|1 imm6 rd rd(15:0) — H[sp+imm7], rd(31:16) — O; imm7={imm6,0} 120 —|—|—|— 2
Id.w %rd, %rs 0/0j1/0(1|1 0 rs rd rd—rs 1 |=-|-|-|- -
%sd, %rs 1/0/1/0|0|0 0 rs sd sd —rs 1 |-|-|-]- -
%rd, %ss 1/0/1]0|0|1 0 ss rd rd - ss 1 |-|-|-]- -
%rd, sign6 0|1/1|01]|1 sign6 rd rd(5:0) —sign6(5:0), rd(31:6) — sign6(5) 1 |[-|—-|—-|-]
%rd, [%rb] 0/0|1|1|0|0 0 rb rd rd - W[rb] 120 —|—|—| - m
%rd, [%rb]+ 0|0[1|1|0]|0 1 rb rd rd - W[rb], rb —rb+4 2 |-|-|-|- -
%rd, [%sp+imm6] [0|1]|0|1|0|0 imm6 rd rd — W[sp+imm8]; imm8={imm6,00} 128 — |- |- |- 2
[%orb], %rs 0|0j1|1f1]|1 0 rb rs WI(rb] —rs 1 [-|-|—-|- [
[%orb]+, %rs 0|0j1|11]|1 1 rb rs WIrb] ~rs, rb —rb+4 1 [—-|—-|—-|- -
[Yosp+immé6], %rs [0|1]0|1(1]1 imm6 rs W([sp+imm8] —rs; imm8={imm6,00} 1 |-|-]-]- P
Remarks

€-XIAN3IddV

(1) With one EXT: base address = rb+imm13, With two EXT: base address = rb+imm26

[2) With one EXT: base address = sp+imm19, With two EXT: base address = sp+imm32
(imm19 = {imm13, imm6}, imm32 = {imm13, imm13, imm6} regardless of the transfer data size)

[B) With one EXT: data = sign19, With two EXT: data = sign32

4) "Id.0 %rd,[%rb]" and "Id.00 %rd,[%sp+imm6]" instructions are normally executed in 1 cycle. However, they take 2 cycles if the following instruction uses the rd register as the
source register, destination register or base address register.

JONIHI43H YOINO 000€EDTS ‘XIANIdAY

7-XIAN3IddVY

NOSd3

IVNNVIN NdD 340D 000€EDTS

Logic Operation

S1C33000 Instruction Set

Mnemonic . Flags
Opcode Operand MSB Code LSB Function cyeleorsicvzn|EXT| P
and %rd, %rs o/oj1]1]0[0[1|0] rs rd rdrd &rs 1 |-]-]-|-]olel@m]| o
%rd, sign6 0/1]1]1({0|0 sign6 rd rd —rd & sign6(with sign extension) 1 |—|—-|-|-|e|le| @] 0
or %rd, %rs ojo[1]1]o]1]1][0] rs rd rdrd|rs 1 [-[-]-]-]-]o]m] o
%rd, sign6 0|1/1|1|0]|1 sign6 rd rd —rd | sign6(with sign extension) 1 [—|—|=|—|e|le|@®]| o
xor %rd, %rs ojo[1][1]1]0]1[0] rs rd rdrd"rs 1 |-|-|-|-|ele|@] o
%rd, sign6 0|1(1{1f1]|0 sign6 rd rd — rd ~ sign6(with sign extension) 1 [—|—|=|-|e|le| @] o
not %rd, %rs ojo[1]1]1]1]1][0] rs rd rd—!rs 1 [-[-]-]-]o]o] = o
%rd, sign6 0/1]1]1|1|1 sign6 rd rd — Isign6(with sign extension) 1 |—|—-|-|-|e|le| @] 0
Remarks

(1) With one EXT: rd —rs <op>imm13, With two EXT: rd — rs <op>imm26

[P) With one EXT: data = sign19, With two EXT: data = sign32

Arithmetic Operation

S1C33000 Instruction Set

Mnemonic . Flags
Opcode Operand MSB Code LSB Function cyeleyorsicvzn|EXT| P
add %rd, %rs ojoj1]o|oj0[1]0] rs rd rdrd +rs 1 |=|-]elelc|e/O]| o
%rd, imm6 0/1]1/0(0|0 imm6 rd rd —rd + imm6(with zero extension) 1 |—|-|ele|le|le| @] 0
%sp, imm10 1/{0/0|0|0|0 imm10 Sp — sp + imm12(with zero extension); imm212={imm210,00} 1 |—|—-|=-|=|=|-| = | ©
adc %rd, %rs 1/0/1/1|1/0/0]|0 rs rd rd-rd+rs+C 1 |[—|—-|o|ole|le| = | o
sub %rd, %rs 0/0|1]|0|0|1]1|0 rs rd rderd-rs 1 |[—|—|e|e|e|e|]| o
%rd, imm6 0|1/1|0(f0]|1 imm6 rd rd — rd - imm6(with zero extension) 1 [—|-|o|o|e|le| @] o
%sp, imm10 1/0/0/0|0|1 imm10 sp —sp - imm12(with zero extension); imm12={imm10,00} 1 [—|—-|=|-|=|-] = | ©
shc %rd, %rs 1/0/1/1|1|1]/0]|0 rs rd rd—rd-rs-C 1 [—|-|o|o|le|le] = | 0
cmp %rd, %rs 0|0|1|0f1|0f1]|0 rs rd rd-rs 1 [—|—|o|o|e|le|]| o
%rd, sign6 0/1/1|{0f1]|0 sign6 rd rd - sign6(with sign extension) 1 [—|—-|o|o|e|lo| B]| o
mit.h %rd, %rs 1/0/1/0|0|0|1|0 rs rd alr — rd(15:0) x rs(15:0); calculated with sign ((6) 1 |[—-|—-|=|-|=|-] = | ©
mitu.h %rd, %rs 1/{0/1(0|0|1|1]|0 rs rd alr — rd(15:0) x rs(15:0); calculated without sign ([B) 1 |—|=-|=-|=|=|-| = | ©
mit.w %rd, %rs 1/0/1|0|1|0|1|0 rs rd {ahr, alr} - rd x rs; calculated with sign (CB) 5 |=|=|-|-|-|-| - | -
mltu.w %rd, %rs 1/0/1|/0|1|1]|1|0 rs rd {ahr, alr} — rd x rs; calculated without sign ((6) 5 |—-|-|-|-|-|-| - | -
divOs %rs 1/{0/0f0|1|0|1|1 rs 0|0/ 0|0 |Setup for signed division ([B); alr = dividend, rs = divisor 1 |—|o|—|—|=|o| = | -
divOu %rs 1/0/0/0|1|1|1|1 rs 0|0 |0|0 |Setup for unsigned division ([6); alr = dividend, rs = divisor 1 [-|0|—-|—|—-|O|] - | —
divl %rs 1/0/0/1|0|0|1]|1 rs 0|0 |0|0 |Step division for one bit ((#4, [B); alr — quotient, ahr —remainder (unsigned) | 1 |—|—|—|—|—|—| - | —
div2s %rs 1{0/0f1|0|1|1|1 s 0|0/ 0|0 |Correction step 1 for signed division ([5, [6) 1 |=|=|=-|=|=|-] - | -
div3s 1]o]of1]1]o]1]1]o]o]0]0]0]0]0]0]Correction step 2 for signed division (5, [B); alr — quotient, ahr —remainder | 1 [-[-]-[-]-[-[= | =
Remarks

(1) With one EXT: rd —rs <op> imm13, With two EXT: rd —rs <op> imm26

[2) With one EXT: data = imm19, With two EXT: data = imm32

[B) With one EXT: data = sign19, With two EXT: data = sign32

[4) The divl instruction must be executed 32 times when performing 32-bit data + 32-bit data. In unsigned division, the division result is loaded to the alr and ahr registers.
[b) Itis not necessary to execute the div2s and div3s instructions for unsigned division. [B) These instructions can be executed only in the models that have an optional multiplier.

JONIHI43H YOINO 000€EDTS XIANIAAY

IVNNVIN NdD 340D 000€EDTS

NOSd3

G-X1aN3IddV

Shift & Rotation S1C33000 Instruction Set

Mnemonic . Flags
Opcode Operand MSB Code LSB Function CyeleyorsiclvzIn|EXT| P
srl %rd, imm4 1/0/0/0|1|0|0|0| imm4 rd Logical shift to right imm4 bits; imm4=0-8, zero enters to MSB 1 [=|=|=|=|ele| = | 0
%rd, %rs 1/0/0/0|1|0|0]|1 rs rd Logical shift to right rs bits; rs=0-8, zero enters to MSB 1 [—|—-|=|=|el|le] = | 0
sl %rd, imm4 1/0/0/0|1|1|0|0| imm4 rd Logical shift to left imm4 bits; imm4=0-8, zero enters to LSB 1 |=|=|=|=|el|le| = |0
%rd, %rs 1/0/0/0|1|1/0]|1 rs rd Logical shift to left rs bits; rs=0-8, zero enters to LSB 1 [—|—-|=|=|el|le| = | 0
sra %rd, imm4 1/0/0/1|0|0|0|0| imm4 rd Arithmetical shift to right imm4 bits; imm4=0-8, sign copied to MSB 1 [—|—-|=|-|el|le] = | 0
%rd, %rs 1/{0/0(1(0|0|0|1 s rd Arithmetical shift to right rs bits; rs=0-8, sign copied to MSB 1 |—|—-|=|=|e|le| = |0
sla %rd, imm4 1/0/0/1|0|1|/0|0| imm4 rd Arithmetical shift to left imm4 bits; imm4=0-8, zero enters to LSB 1 |—|=|=|=|ele| = | o
%rd, %rs 1/0/0/1|0|1]|0]|1 rs rd Arithmetical shift to left rs bits; rs=0-8, zero enters to LSB 1 [—|—-|=|-|ele] = | 0
rr %rd, imm4 1/0/0(1|1|0|0|0| imm4 rd Rotation to right imm4 bits; imm4=0-8, LSB goes to MSB 1 [=|=|=|=|ele| = | 0
%rd, %rs 1/0/0(1|1|0|0|1 rs rd Rotation to right rs bits; rs=0-8, LSB goes to MSB 1 [—|—|=|-|el|le| = | 0
rl %rd, imm4 1/0/0(1|1]1|0|0| imm4 rd Rotation to left imm4 bits; imm4=0-8, MSB goes to LSB e e e e e Y e
%rd, %rs 1{0/0f1(1/1|0|1 s rd Rotation to left rs bits; rs=0-8, MSB goes to LSB 1 |—|=-|=|=|o|le| = |0

$1C33000 Instruction Set

Mnemonic . Flags
Opcode Operand MSB Code LSB Function Cycle WosICIVIZIN EXT| D
btst [%rb], imm3 1/0/1|0|1]0|0]|0 rb 0| imm3 |Z flag — 1 if B[rb](imm3)=0 3 |-|-|-|-|e|-|@M] -
bclr [%rb], imm3 1/0/1/0]|1]1]|0]|0 rb 0| imm3 |BJ[rb](imm3) -0 3 |[=|=-|-|-|-|-|O| -
bset [%rb], imm3 1/0/1[{1|0[0|0]0 rb 0| imm3 |B[rb](imm3) ~ 1 3 |-|-|-|-|-]-]|@m| -
bnot [%rb], imm3 1/0/1[1|0[1]0]|0 rb 0| imm3 |B[rb](imm3) ~ !B[rb](imm3) 3 |-|-|-|-|-|-|@] -

Remarks
1) With one EXT: address = rb+imm13, With two EXT: address = rb+imm26

Immediate Extension S1C33000 Instruction Set

Mnemonic . Flags
Opcode Operand __|MSB Code LSB Function Cyeleomsicivizn|EXT| P
ext imm13 1]1]0] imm13 Extends the immediate or operand of the following instruction. 1 [--|--|--|O] -
Remarks

(1) One or two ext instruction can be placed prior to the instructions that can be extended.

Push & Pop S1C33000 Instruction Set

Mnemonic . Flags
Opcode Operand MSB Code LSB Function Cycle MOIDS|C|V|Z|N EXT| D
pushn %rs 0(0/0/0|0|/0|21(0|0|0|0|0O rs Repeats "sp « sp-4, W[sp] — rn"; rn=rs to r0 ixn |[—|—|—|—|—|—| = | =
popn %rd 0/0/0|0|0|0|1|0|0|1|0|0 rd Repeats "rn — W[sp], sp — sp+4"; rn=r0 to rd Ixn |- |—|—|—=|—-|-| = | -

JONIHI43H YOINO 000€EDTS ‘XIANIdAY

9-XIAN3ddV

NOSd3

IVNNVIN NdD 340D 000€EDTS

S1C33000 Instruction Set

Mnemonic : Flags

Opcode Operand MSB Code LSB Function Cycle orsic v EXT| D
- - — - - - ———— =

J_rgt sign8 olololol1lolold signs pc — pc+sign9 if 1Z&!(NAV) is true; sign9={sign8,0} ([2) 1-28,) | | | ol -
jrgt.d 1(.d)

- - - - - - =osic —om8

irge sign8 olololol1lol1!d signs pc — pc+signg if I(NAV) is true; sign9={sign8,0} ([2) 1-208,) | | | ol -
irge.d 1(.d)

i _ - - e PRy —om8

i:::d sign8 olololol1!1lol4d sign8 pc —pc+sign9 if NV is true; sign9={sign8,0} ((2) 11(2d)’ N ol -
J _ - - - - Py o —om8

J_rle sign8 olololol1l1]1]d sign8 pc —pc+sign9 if Z | (NAV) is true; sign9={sign8,0} ((2) 1-28,) | | | ol -
jrle.d 1(.d)

. - - - - - P —om8

!rugt sign8 ololol1lololold signs pc —pc+signg if 1Z&!C is true; sign9={sign8,0} ((2) 1-208,) | | | ol -
jrugt.d 1(.d)

J _ - - T pC—cw —om

ruge sign8 olool1lolol1ld sign8 pc —pc+signg if IC is true; sign9={sign8,0} ([2) 128, | | | ol -
jruge.d 1(.d)

J _ - - — o —om

j_rult sign8 ololol1lol1lold signs pc —pc+signg if C is true; sign9={sign8,0} ((2) 1-28,) | | | ol -
jrult.d 1(.d)

! . - - - - ~ocic —om8

!rule sign8 ololol1lol1l1!d signs pc —pc+sign9 if Z | C is true; sign9={sign8,0} ((R) 1-28,) | | | ol -
jrule.d 1(.d)

J _ - - —— P —om8

ireq sign8 ololol1l1lolold sign8 pc —pc+sign9 if Z is true; sign9={sign8,0} ((2) 128, | | | _ ol -
jreq.d 1(.d)

F . - i if1Zi * S ={sj —2(8

jme sign8 ololol1l1lol1ld signs pc —pc+signg if IZ is true; sign9={sign8,0} ((2) 1-28,) | | | ol -
jre.d 1(.d)

call sign8 ofoJoJ1[1]1]0]d sign8 Sp — sp-4, W[sp] — pc+2, pc — pc+sign9; sign9={sign8,0} ((2) 32d)|—1—-|—|- | -
call.d %rb o[oJojofo[1][1]d[o]o]0]0] rb [sp—sp-4, W[sp]—pc+2, pcrb ((2) 32(d)|—|—|— |- N
ip sign8 0/0j0|1]1|1|1]|d sign8 pc — pc+signg; sign9={sign8,0} ((R) 21(d)[—|—|—|— m| -
jp.d %rb olofofolof1]1]d|1]0]0]0 b [pc—rb (@) 210 =[=[=]- 1=
ret 0/0/olofo|1|1|d|o|1]0|0]0|0 0|0[PCWISPlSP-sp+4((2) mo -1l - | -
ret.d 3(.d)

reti 0/0/0|0(0]|1/0|0(1][1/0|0|0|0|0]|O |psr—W][sp], sp—sp+4, pc—WI[sp], sp—sp+4 5 |olo|o|o - | -
retd 0/0/0|0|0[1]/0|0|0|1|/0]|0[0|0|0|0 |Returnsfrom debugging routine (for ICE software) 5 [-|-|-]- - | -
int imm2 0/0/0|0|0]1]/0[0]|1/0|/0|0[0]|0 |imm2|sp«sp-4, W[sp]-pc+2, sp—sp-4, W[sp] - psr, pc — software exception vector 10 |-|—-|—|—- - | -
brk o/ojoloJo[1]o]o]o]o]o]o]o]o]0]0]Interrupt for debugging (for ICE software) 10 |—|—-|—-|- - | -
Remarks

1) With one EXT: displacement = sign22 (= {imm13, sign8, 0}), With two EXT: displacement = sign32 (= {1st imm13(12:3), 2nd imm13, sign8, 0})
[R2) These instructions become a delayed branch instruction when the d bit in the code is set to 1 by suffixing ".d" to the opcode (jrgt.d, call.d, etc.).

A delayed branch instruction executes the following delayed instruction before branching. The delayed call instruction saves the pc+4 address into the stack.
[B) The conditional branch instructions without a delayed instruction (without ".d") are executed in 1 cycle when the program flow does not branch and 2 cycles when the program
flow branches.

JONIHI43H YOINO 000€EDTS XIANIAAY

IVNNVIN NdD 340D 000€EDTS

NOSd3

/-XIAN3IddV

Multiplication & Accumulation S1C33000 Instruction Set

Mnemonic . Flags
Opcode Operand MSB Code LSB Function cyeleyorsicvzIn|EXT| P
mac %rs 1]oj1][1]o]o]1]0] rs [0[0]|0]|0|Repeats "{ahr, alr}—{ahr, alr} + H[<rs+1>]+ x H[<rs+2>]+"rs times [2xn+4[|-[-|-[-|-] = | =
Remarks

<rs+1>, <rs+2>: contents of the registers that follow rs. (eg. rs=r0: <rs+1>=rl, <rs+2>=r2; rs=r15: <rs+1>=r0, <rs+2>=rl); They are incremented (+2) after each operation.
The mac instruction can be executed only in the models that have an optional multiplier.

System Control S1C33000 Instruction Set

Mnemonic . Flags
Opcode Operand MSB Code LSB Function cyeleorsicvz N EXT| P
nop 0/0/0|0|/0|0|0|0|{0|0|0|0|0|0|0|0|No operation; pc — pc+2 1 |—|=|=-|=]=]-] - | -
halt 0/0/0/0|0]|0]|0[0]|1/0|/0]|0[|0]|0|0|0]|Sets Halt mode 1 |--[-]=--l-1-
slp 0/0/0|0[{0|0|0|0|0|1]{0(0|0|0|0|O0|Sets Sleep mode 1 |=|=|=-|=|=|-] - | -
S1C33000 Instruction Set
Mnemonic . Flags
Opcode Operand MSB Code LSB Function Cycle MOIDS|C|V|Z|N EXT| D
scan0 %rd, %rs 1/{0/0(0(1|/0|1]|0 s rd Scan 0 bit for 1 byte from MSB in rs, rd — offset from MSB of found bit| 1 |[-|-|o|0|~|0| — | ©
scanl %rd, %rs 1/0/0/0|1|1|1|0 rs rd Scan 1 bit for 1 byte from MSB in rs, rd — offset from MSB of found bit| 1 |[-|—|~|0|«|0| — | ©
swap %rd, %rs 1/0/0(1|0|0|1]|0 rs rd rd(31:24) —rs(7:0), rd(23:16) —rs(15:8), rd(15:8) ~rs(23:16), rd(7:0) —rs(31:24) 1 |—-|—-|-|-|-|-| = | o
mirror %rd, %rs 1/{0/0f1(0|1|1]|0 s rd rd(31:24) —rs(24:31), rd(23:16) — rs(16:23), rd(15:8) ~rs(8:15), rd(7:0) — rs(0:7) 1 |-|—-|-|=-|-|-| = | o

JONIHI43H YOINO 000€EDTS ‘XIANIdAY

8-XIdN3IddV

NOSd3

IVNNVIN NdD 340D 000€EDTS

Immediate Extension 1

S1C33000 Instruction Set

Target instruction

Extension with one ext instruction

Extension with two ext instructions

I Usage: ext imm13 Usage: ext imml3
Classification . . . ,
Target instruction ext imm13
Opcode Operand . .
Target instruction
Register indirect |ld.b %rd, [%rb] Id.b %rd, [Yorb+imm13] Id.b %rd, [%orb+imm26] |imm26={imm13,imm13'}
data transfer Id.ub Id.ub Id.ub
(using rb register)|ld.h Id.h Id.h
Id.uh Id.uh Id.uh
Id.w Id.w Id.w
Id.b [%orb], %rs Id.b [%rb+imm13], %rs Id.b [Yorb+imm26], %rs |imm26={imm13,imm13'}
Id.h Id.h Id.h
Id.w Id.w Id.w
Register indirect |ld.b %rd, [%sp+immé6] |Id.b %rd, [%sp+imm19] |imm19={imm13,imm6} Id.b %rd, [%sp+imm32] |imm32={imm13,imm13'immé}
data transfer Id.ub Id.ub Id.ub
with displacement|ld.h Id.h Id.h
(using SP) Id.uh Id.uh Id.uh
ld.w ld.w Id.w
Id.b [%sp+immé6], %rs |(ld.b [%sp+imm19], %rs |imm19={imm13,imm6} Id.b [Yosp+imm32], %rs |imm32={imm13,imm13',imm6}
Id.h Id.h Id.h
Id.w ld.w Id.w
Immediate load |ld.w %rd, sign6 Idw |%rd, signl9 sign19={1mm13, sign6} Id.w |%rd, sign32 sign32={imm13,imm13',sign6}
Arithmetic and add %rd, %rs add %rd, %rs, imm13 rd < rs <op>imm13 add %rd, %rs, imm26 rd « rs <op>imm26
logic operation |sub sub sub imm26={imm13,imm13'}
between registers|and and and
or or or
xor xor xor
cmp cmp cmp
Arithmetic and add %rd, imm6 add |%rd, imm19 imm19={imm13,imm6} add |%rd, imm32 imm32={imm13,imm13'imm6}
logic operation |[sub sub sub
with immediate |and %rd, sign6 and |%rd, signl9 sign19={imm13,sign6} and |%rd, sign32 sign32={imm13,imm13',sign6}
or or or
xor xor xor
not not not
cmp cmp cmp
Bit operation btst [%rb], imm3 btst [%6rb+imm13], imm3 btst [Yorb+imm26], imm3 |imm26={imm13,imm13'}
bset bset bset
belr belr belr
bnot bnot bnot

JONIHI43H YOINO 000€EDTS XIANIAAY

IVNNVIN NdD 340D 000€EDTS

NOSd3

6-XIAN3IddV

Immediate Extension 2

S1C33000 Instruction Set

Classification

Target instruction

Extension with one ext instruction

Usage:

ext imm13
Target instruction

Extension with two ext instructions
Usage: ext imml3
ext imm13'

Opcode Operand . .
Target instruction

PC relative jrgt sign8 jrgt sign22 sign22={imm13,sign8,0} jrat sign32 sign32={imm13(12:3),imm13',sign8,0}
branch jrgt.d jrgt.d jrgt.d

jrge jrge jrge

irge.d irge.d irge.d

jrit jrit jrit

jrit.d jrit.d jrit.d

jrle jrle jrle

jrle.d jrle.d jrle.d

jrugt jrugt jrugt

jrugt.d jrugt.d jrugt.d

jruge jruge jruge

jruge.d jruge.d jruge.d

jrult jrult jrult

jrult.d jrult.d jrult.d

jrule jrule jrule

jrule.d jrule.d jrule.d

jreq jreq jreq

jreq.d jreq.d jreq.d

jre jre jre

jre.d jrne.d jre.d

call call call

call.d call.d call.d

ip ip ip

jp.d jp.d jp.d

JONIHI43H YOINO 000€EDTS ‘XIANIdAY

APPENDIX: INSTRUCTION INDEX

| NSTRUCTION | NDEX

[A] [L]
adc %rd, YorS.....ccoovverineereeeee 54 Id.b %rd, 2rS ..ccceveereereenes 90
add %0rd, YOrS ...occeeveeeeeeeeeeens 55 Id.b %rd, [%rD] ..cccveveeeeeeeee 91
add %rd, iMmmMBcccceevvvrcerecee 56 Id.b %rd, [%rb]+ .ocveeeee e 92
add %sp, imML0........cccvereieririen 57 Id.b %rd, [%sp + immg] 93
and %rd, Y0rSccoceeeeeeereeeree e 58 Id.b [%rb], %OrS....ccceveeieiiiriiene 94
and %rd, SIgN6cccoeveeereiene 59 Id.b [%rb]+, %rS .o 95
[B] Id.b [%sp + immB], %rSou........ 96
belr [%rb], inm3 . 60 Id.h %6rd, YOS ..o 97
bnot [%rb], iMm3 ..., 61 Id.h %rd, [Yr0] coeoveeeeeeeeeeeeeees 98
o] 62 Id.h %rd, [YrD]+ wvveorerveeeeeerreerennns 99
bset [%rb], imm3.......cccveeeeee 63 Id.h %rd, [%SD + iIMM6] ...ovvereens 100
btst [%rb], imm3.......c.coooninennn. 64 Id.h [%r0], %S ..o 101
[€] B [96r5]+, %S oo 102
call 0@rb/call.d %.rb 65 Id.h [%sp + immB], %rs 103
call sign8/call.d Sign8.....c.ooe 66 1AUD %6, DS o 104
cmp %rd, 0@rs 67 b %rd, [%rD] oo 105
- cmp %rd, SIgNG ..o 68 d.ub %rd, [%6rb]+ oo 106
diVOS YOrS..c.cceeiieireeree e 69 ld.ub %6rd, [%sp + IMMe] ... 107
AiVOU YOr'S .o 70 1AUR 9rd, YOS oo 108
VAR 7 ld.un 9rd, [96D] oo 109
L2 £ 73 ld.uh %6rd, [90rD] + -.ooocsvcvsve 110
GIVBS oo 74 ld.uh %rd, [96p + IMMO] ..o 111
[E] [dw %rd, YorS....cccoveverenereeeiene 112
X IMML3 oo 75 AW rd, HBSS.cvvrs 113
[H] Idw %rd, [%rD] .oeoveeeereeeie 114
17 L N 76 IdW %rd, [Y6rD]+ .eevveeeererrereereenne 115
[1 ldw %rd, [%sp + imm@] 116
INE TMM2.iee e 77 IdW %rd, SIGNG ..o 117
[J] 1AW %650, RS v 118
I 8 1AW [966B], 6S oo 119
ip SgNB/Jjp.d SIgNB.....oovsvernen ” 1AW [96rb]+, %orS.emroororso 120
jreq sign8/jreg.d sign8 80 AW [%Sp + IMMB], YorS.rrrrmrn. 121
jrge sign8/jrged sign8 81 [M]
jrgt sign8/jrgt.d sign8.................... 82 MBC YOFS...veorveeeeeeeseereesseesssesessnneenss 122
jrle sign8/jrled sign8.................. 83 MIrror %rd, YrS......oooovvveveerenneens. 123
jrit sign8/jrit.d Sign8........ccocovveves 84 mith %rd, %S .o..ocveeeeeriecrieeenn. 124
jrne sign8/jrne.d sign8.................. 85 Mt %6rd, YOrS oo 125
jruge sign8/jruged sign8.............. 86 MItW Y0rd, YOrS..eeeeeereeeeeeeeeeeeeeeeene 126
jrugt sign8/jrugt.d sign8 87 MItUW 96rd, YorS.....eveeeereeeeeeeseeene 127
jrule sign8/jruled sign8................ 88
jrult sign8/jrult.d sign8................. 89
APPENDIX-10 EPSON S1C33000 CORE CPU MANUAL

[N]

[O]

[P]

[R]

[S]

(X]

(410! o U 128
Not %6rd, %ors ...ccceveeveeeeeeeeeeenees 129
not %rd, SIgN6Gcceeveeeeeevereseiene 130
or %rd, %rs......coeviiiiniiii, 131
or %rd, SIgNG.......ccccovvieiiiiiiiiiiiinas 132
POPN 90rd ... 133
PUSIN S 134
ret/ retd .o 135
1= (o [136
1 137
Il 90rd, YorS..cccceeeeeeveseseveesese e 138
rl %rd, imméooovveeeeeeceeeeee 139
rr 9%0rd, YOSocoveevveceeeeecreeeeeee 140
rr %ord, iMMé ..o, 141
SBC %0rd, YOrS ...ccovveeceeeeeeeeree e 142
scan0 %ord, %6rS....cccevevreeeeeennenn, 143
scanl %ord, %OrS....ccccoevevveeceeeernnnn, 144
sla %rd, Y0rS.....cccoeeveeeererese e, 145
sla %rd, imMmé ..o, 146
Sl %rd, 90rS.....cccveeereeeee e 147
sl %rd, imMmé ..o, 148
P e 149
sra %rd, Yors ...cceeeeeeeeeeeeeeeeseeens 150
sra %rd, imMmé ..., 151
Stl %rd, YOrS ..o, 152
srl %rd, IMMA ..o, 153
Sub %0rd, YorS....cceevereeereecreeceeenenn 154
sub %rd, imm6c.ccceeeevveeereenen, 155
sub %sp, iIMML0 ..., 156
swap %ord, Yrscoceeeiereneeeee 157
(o) (o I 158
Xor %rd, SIgN6......cccveeeeeerere 159

APPENDIX: INSTRUCTION INDEX

S1C33000 CORE CPU MANUAL

EPSON

APPENDIX-11

EPSON

International Sales Operations

AMERICA ASIA
EPSON ELECTRONICS AMERICA, INC. EPSON (CHINA) CO., LTD.
- HEADQUARTERS - 28F, Beijing Silver Tower 2# North RD DongSanHuan

1960 E. Grand Avenue
El Segundo, CA 90245, U.S.A.
Phone: +1-310-955-5300 Fax: +1-310-955-5400

- SALES OFFICES -

West

150 River Oaks Parkway

San Jose, CA 95134, U.S.A.

Phone: +1-408-922-0200 Fax: +1-408-922-0238

Central

101 Virginia Street, Suite 290

Crystal Lake, IL 60014, U.S.A.

Phone: +1-815-455-7630 Fax: +1-815-455-7633

Northeast

301 Edgewater Place, Suite 120

Wakefield, MA 01880, U.S.A.

Phone: +1-781-246-3600 Fax: +1-781-246-5443

Southeast

3010 Royal Blvd. South, Suite 170

Alpharetta, GA 30005, U.S.A.

Phone: +1-877-EEA-0020 Fax: +1-770-777-2637

EUROPE

EPSON EUROPE ELECTRONICS GmbH

- HEADQUARTERS -
Riesstrasse 15

80992 Munich, GERMANY
Phone: +49-(0)89-14005-0 Fax: +49-(0)89-14005-110
SALES OFFICE

Altstadtstrasse 176

51379 Leverkusen, GERMANY

Phone: +49-(0)2171-5045-0 Fax: +49-(0)2171-5045-10

UK BRANCH OFFICE

Unit 2.4, Doncastle House, Doncastle Road

Bracknell, Berkshire RG12 8PE, ENGLAND

Phone: +44-(0)1344-381700 Fax: +44-(0)1344-381701

FRENCH BRANCH OFFICE

1 Avenue de I' Atlantique, LP 915 Les Conquerants

Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE
Phone: +33-(0)1-64862350 Fax: +33-(0)1-64862355

BARCELONA BRANCH OFFICE

Barcelona Design Center

Edificio Prima Sant Cugat

Avda. Alcalde Barrils num. 64-68

E-08190 Sant Cugat del Valles, SPAIN

Phone: +34-93-544-2490 Fax: +34-93-544-2491

ChaoYang District, Beijing, CHINA
Phone: 64106655 Fax: 64107319

SHANGHAI BRANCH

4F, Bldg., 27, No. 69, Gui Jing Road
Caohejing, Shanghai, CHINA

Phone: 21-6485-5552 Fax: 21-6485-0775

EPSON HONG KONG LTD.

20/F., Harbour Centre, 25 Harbour Road
Wanchai, Hong Kong

Phone: +852-2585-4600 Fax: +852-2827-4346
Telex: 65542 EPSCO HX

EPSON TAIWAN TECHNOLOGY & TRADING LTD.
10F, No. 287, Nanking East Road, Sec. 3

Taipei

Phone: 02-2717-7360
Telex: 24444 EPSONTB

Fax: 02-2712-9164

HSINCHU OFFICE

13F-3, No. 295, Kuang-Fu Road, Sec. 2
HsinChu 300

Phone: 03-573-9900 Fax: 03-573-9169
EPSON SINGAPORE PTE., LTD.

No. 1 Temasek Avenue, #36-00

Millenia Tower, SINGAPORE 039192

Phone: +65-337-7911 Fax: +65-334-2716

SEIKO EPSON CORPORATION KOREA OFFICE
50F, KLI 63 Bldg., 60 Yoido-dong

Youngdeungpo-Ku, Seoul, 150-763, KOREA

Phone: 02-784-6027 Fax: 02-767-3677

SEIKO EPSON CORPORATION
ELECTRONIC DEVICES MARKETING DIVISION

Electronic Device Marketing Department

IC Marketing & Engineering Group
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5816 Fax: +81-(0)42-587-5624

ED International Marketing Department Europe & U.S.A.

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5812 Fax: +81-(0)42-587-5564

ED International Marketing Department Asia
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5110

S1C33000
Core CPU Manual

SEIKO EPSON CORPORATION

H EPSON Electronic Devices Website

First issue May, 1998
Printed February, 2001 in Japan M)A

	1 OUTLINE
	1.1 Features
	1.2 Block Diagram
	1.3 I/O Signal Specification

	2 ARCHITECTURE
	2.1 Register Set
	2.1.1 General-purpose registers (R0 to R15)
	2.1.2 Program counter (PC)
	2.1.3 Processor status register (PSR)
	2.1.4 Stack pointer
	2.1.5 Arithmetic operation register (ALR, AHR)
	2.1.6 Register notation and register number

	2.2 Data Type
	2.3 Address Space
	2.4 Boot Address
	2.5 Instruction Set
	2.5.1 Type of instructions
	2.5.2 Addressing mode
	2.5.3 Immediate extension (EXT) instruction
	2.5.4 Data transfer instructions
	2.5.5 Logic operation instructions
	2.5.6 Arithmetic operation instructions
	2.5.7 Multiplication and division instructions
	2.5.8 Multiplication and accumulation instruction
	2.5.9 Shift and rotation instructions
	2.5.10 Bit operation instructions
	2.5.11 Push and pop instructions
	2.5.12 Branch instructions and delayed instructions
	2.5.13 System control instructions
	2.5.14 Scan instructions
	2.5.15 Swap and mirror instructions

	3 CPU OPERATION AND PROCESSING STATUS
	3.1 Processing Status of CPU
	3.2 Program Execution Status
	3.2.1 Fetching and executing program
	3.2.2 Number of instruction execution cycles

	3.3 Trap (Interrupts and Exceptions)
	3.3.1 Trap table
	3.3.2 Trap processing
	3.3.3 Reset
	3.3.4 Zero division exception
	3.3.5 Address error exception
	3.3.6 NMI (Non-maskable interrupt)
	3.3.7 Software exception
	3.3.8 Maskable external interrupts

	3.4 Power Down Mode
	3.4.1 HALT mode
	3.4.2 SLEEP mode

	3.5 Bus Release Status
	3.6 Debugging Mode
	3.6.1 Functions of debugging mode
	3.6.2 Configuration of Area 2
	3.6.3 Transition from user mode to debugging mode
	3.6.4 Registers for debugging
	3.6.5 Traps in debugging mode
	3.6.6 Simultaneous occurrence of debugging exceptions

	4 DETAILED EXPLANATION OF INSTRUCTIONS
	4.1 Symbol Meanings
	4.1.2 Immediate
	4.1.3 Memories
	4.1.4 Bits and bit fields
	4.1.5 Flags
	4.1.6 Functions and others

	4.2 Instruction Code Class
	4.3 Reference for Individual Instruction

	Appendix
	S1C33000 Quick
Reference
	INSTRUCTION INDEX

