
Application Note for Standard Core
(S5U1C33001C)

CMOS 32-BIT SINGLE CHIP MICROCOMPUTER

S1C33 Family

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko
Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any
liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or
circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such
as medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there
is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright
infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic
products under the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from
the Ministry of International Trade and Industry or other approval from another government agency.

© SEIKO EPSON CORPORATION 2004, All rights reserved.

Devices
S1 C 33209 F 00E1

Packing specifications
	 00	: Besides tape & reel	
	0A	: TCP BL	 2 directions
	0B	: Tape & reel	BACK
	0C	: TCP BR	 2 directions
	0D	: TCP BT	 2 directions
	0E	: TCP BD	 2 directions
	0F	: Tape & reel	FRONT
	0G	: TCP BT	 4 directions
	0H	: TCP BD	 4 directions
	0J	 : TCP SL	 2 directions
	0K	: TCP SR	 2 directions
	0L	: Tape & reel	 LEFT
	0M	: TCP ST	 2 directions
	0N	: TCP SD	 2 directions
	0P	: TCP ST	 4 directions
	0Q	: TCP SD	 4 directions
	0R	: Tape & reel	RIGHT
	99	: Specs not fixed

Specification

Package
	D: die form; F: QFP

Model number

Model name
	C: microcomputer, digital products

Product classification
	S1: semiconductor

Development tools
S5U1 C 33000 H2 1

Packing specifications
	 00: standard packing

Version
	 1: Version 1

Tool type
	Hx	: ICE
	Dx	: Evaluation board
	Ex	: ROM emulation board
	Mx	: Emulation memory for external ROM
	Tx	: A socket for mounting

	Cx	: Compiler package
	Sx	: Middleware package

Corresponding model number
	 33L01: for S1C33L01

Tool classification
	C: microcomputer use

Product classification
	S5U1: development tool for semiconductor products

00

00

S1C33 Family

Configuration of product number

CONTENTS

S1C33 FAMILY APPLICATION NOTE EPSON i

CONTENTS

1 ABOUT THE S1C33000 CPU CORE __________________________________ 1
1.1 Outline ... 1

1.2 Memory Map .. 2

1.3 Trap Table .. 2

1.4 CPU Registers ... 3

1.5 Instruction Set Features ... 3

1.6 Instruction Execution Speed .. 6

1.7 Multiplier/Accumulator Functions .. 7

1.8 Instruction Set List ... 8

2 WRITING PROGRAMS FOR THE S1C33 _________________________________ 9
2.1 Vector Table and Boot Routine .. 9

2.2 Interrupt Handling Routines .. 14

2.3 C and Assembler Mixed Programming .. 17

2.4 Tools and Files for Assembly .. 19

2.5 Data Areas and Data-Area Pointers ... 30
2.5.1 Types of Data Areas .. 30
2.5.2 Sections ... 31
2.5.3 Data-Area Pointers ... 31
2.5.4 Specifying Compiler Options ... 33
2.5.5 Method for Locating Data in the Data Areas .. 34
2.5.6 Method for Setting Data-Area Pointers ... 35
2.5.7 G Data Area .. 37

2.6 C and Code Optimization ... 39

2.7 Mapping by Linker ... 46

2.8 Libraries ... 56
2.8.1 ANSI Library (libc.a) .. 56
2.8.2 Emulation Libraries (libgcc.a, libgccP.a) .. 56
2.8.3 Notes on Using Libraries in Advanced Macros ... 56
2.8.4 Interrupt Mask Cycles in Emulation Libraries .. 57
2.8.5 Precautions to Be Taken When Adding a Library .. 57

2.9 Differences between the S5U1C33001C and the S5U1C33000C 59

2.10 Transporting the S5U1C33000C Assets ... 63
2.10.1 Transporting Makefiles (*.mak) ... 64
2.10.2 Initialize Processing ... 65
2.10.3 Transporting C Source Files (*.c) .. 65
2.10.4 Transporting the Assembler Source Files (*.s) .. 66
2.10.5 Transporting Linker Command Files (*.cm) .. 73
2.10.6 Transporting Debugger Parameter Files (*.par) ... 76
2.10.7 Differences in Structure between srf33 Object Files (S5U1C33000C)
 and elf Object Files (S5U1C33001C) .. 76

2.11 Precautions on Use of the S5U1C33001C Tool ... 78

PREFACE

Written for developers of application systems incorporating the S1C33 Family of microcomputers, this
manual explains how to write a program, design basic circuitry, and produce audio output using the
S1C33 chips, particularly the S1C33209. The sample code provided in this manual is excerpted from
S1C33 Family C Compiler Package (S5U1C33001C) Ver. 1 or later.

CONTENTS

ii EPSON S1C33 FAMILY APPLICATION NOTE

3 PROGRAMMING THE S1C33 PERIPHERAL FUNCTIONS ______________________ 80
3.1 Setting Up BCU .. 80

3.2 Setting Up 8-bit Timer .. 85

3.3 Setting Up 16-bit Timer .. 88

3.4 Setting Up Serial Interface ... 93

3.5 Setting Up A/D Converter ... 98

3.6 Setting Up IDMA ... 103

3.7 Setting Up HSDMA.. 106

3.8 Clock Settings .. 109

3.9 SLEEP .. 113

3.10 SDRAM Controller .. 117

4 THE BASIC S1C33 CHIP BOARD CIRCUIT _____________________________ 122
4.1 Power Supply ... 122

4.2 Oscillation Circuit ... 124

4.3 Reset Circuit .. 125

4.4 Connecting ROM ... 127

4.5 Connecting Flash Memory .. 127

4.6 Connecting SRAM ... 128

4.7 Connecting DRAM... 129

4.8 Connecting 5 V ROM and 3.3 V Bus ... 130

4.9 Ports ... 131

4.10 Connections for Debugging ... 132

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM _______ 134
5.1 General Sound Output Circuits Based on Microcomputer 134

5.1.1 D/A Converter Unit ... 134
5.1.2 Low-pass Filter Unit .. 137
5.1.3 Power Amp and Speaker Unit .. 138

5.2 About Sampling Frequency and Bit Precision vs. Audio Quality 139

5.3 10-bit D/A Conversion by PWM .. 140

5.4 Examples of Audio Output Analog Circuits .. 143

5.5 Example of a Sound Input Analog Circuit .. 147

5.6 15-bit D/A Conversion by PWM .. 151

5.7 Melody Output using a Piezoelectric Buzzer .. 156

5.8 <Reference Data> Characteristic Graphs ... 157

1 ABOUT THE S1C33000 CPU CORE

S1C33 FAMILY APPLICATION NOTE EPSON 1

1 ABOUT THE S1C33000 CPU CORE
The S1C33000 is the CPU core shared by all chips in the S1C33 Family of 32-bit CMOS single-chip micro-
computers. Arranged around this core are various peripheral components, such as ROM, RAM, DMA, A/
D converters, and timers, which together make up the Seiko Epson line of S1C33 Family processors.

The main features of the S1C33000 are as follows.

• A highly code-efficient instruction set

• Fast operation and multiplier/accumulator function

• Small CPU core size

• Low current consumption

The S1C33000 supports a wide range of built-in applications, from portable to OA and FA equipment, and
from digital signal processors to various types of controllers.

1.1 Outline

• Type ... Seiko Epson original 32-bit RISC core

• Operating frequency DC to 60 MHz (varies with the type of S1C33xxx)

• Instruction set 16-bit fixed length
105 discrete instructions
Main instructions can be executed in one cycle.

• Multiplier/accumulator function MAC instruction (16 bits × 16 bits + 64 bits → 64 bits)
Executed in 2 cycles per MAC operation

• Register set ... 32-bit general-purpose register × 16
32-bit special register × 5

• Memory space 28-bit (256 MB) space
Instruction, data, and I/O mixed type linear space
Divided into 19 areas, for which the select signal is output by the
core

• Immediate extension Immediate data of instructions are extended to 32 bits by EXT
instruction.

• Interrupt ... Reset, NMI, and external interrupt × 216 sources
Software exception × 4 sources, 2 types of instruction execution
exception
Vectors are fetched from trap table when branching to the jump
address.

• Reset .. Cold reset (all internal circuits reset)
Hot reset (buses not reset)
Trap table can be selected between internal or external ROM at
boot time and can then be relocated.

• Power-down mode HALT instruction (only the core halted)
SLP instruction (all internal circuits halted)

• Other ... Little endian (standard)/ big endian
Harvard architecture

1 ABOUT THE S1C33000 CPU CORE

2 EPSON S1C33 FAMILY APPLICATION NOTE

1.2 Memory Map

Area 18 External memory
Area 17 External memory
Area 16 External memory
Area 15 External memory
Area 14 External memory
Area 13 External memory
Area 12 External memory
Area 11 External memory
Area 10 External memory
Area 9 External memory
Area 8 External memory
Area 7 External memory
Area 6 External I/O
Area 5 External memory
Area 4 External memory
Area 3 On-chip ROM
Area 2 Reserved
Area 1 Internal I/O
Area 0 On-chip RAM

0xFFFFFFF

0x1000000
0x0C00000

0x0100000
0x0080000
0x0060000
0x0040000
0x0000000

Area size
64MB
64MB
32MB
32MB
16MB
16MB
8MB
8MB
4MB
4MB
2MB
2MB
1MB
1MB
1MB
512KB
128KB
128KB
256KB

1.3 Trap Table

Trap table start address
At cold-reset, it is set to 0x0C00000.
The trap table can be relocated using the trap table
base register TTBR (memory-mapped register) after
resetting the CPU.
Vectors will be fetched from the trap table for booting
and interrupts.

Reserved
External maskable interrupt 215

:
External maskable interrupt 0

Software exception 3
:

Software exception 0
Reserved

NMI
Address error

Reserved
Zero division

Reserved
Reset

Address offset
1023
929

64
60

48
32–44
28
24
20
16
4–12
0

Interrupt sequence Reset sequence
1) The PC is saved to the stack. 1) The reset vector is fetched.
2) The PSR is saved to the stack and IE is disabled. 2) Control jumps to the vector address.
3) The vector is fetched from the trap table.
4) Control jumps to the vector address.

1 ABOUT THE S1C33000 CPU CORE

S1C33 FAMILY APPLICATION NOTE EPSON 3

1.4 CPU Registers

R15
R14
R13

:
R4
R3
R2
R1
R0

31 0

General-purpose registers (16)

PC

PSR

SP

ALR

AHR

Program counter

Processor status register

Stack pointer

Arithmetic operation low register

Arithmetic operation high register

31 0

Special registers (5)

PSR
31–12

Reserved IL
11–8

MO
7

DS
6

–
5

IE
4

C
3

V
2

Z
1

N
0

IL:
MO:
DS:
IE:
Z:
N:
C:
V:

(AHR, ALR: Option for Multiplication & Accumulation, Multiplication, and Division)

Interrupt level
MAC overflow flag
Dividend sign flag
Interrupt enable
Zero flag
Negative flag
Carry flag
Overflow flag

(0–15: Enabled interrupt level)
(1: MAC overflow, 0: Not overflown)
(1: Negative, 0: Positive)
(1: Enabled, 0: Disabled)
(1: Zero, 0: Non zero)
(1: Negative, 0: Positive)
(1: Carry/borrow, 0: No carry)
(1: Overflow, 0: Not overflown)

1.5 Instruction Set Features

● Types of instructions
Instructions are functionally classified as one of the following eight types:

 • 8, 16, or 32-bit data transfer instructions
LD.B, LD.UB, LD.H, LD.UH, LD.W
Performs 8, 16, or 32-bit data transfers between the register and memory, or between two registers.

 • 32-bit arithmetic/logic operation instructions
AND, OR, XOR, NOT, ADD, ADC, SUB, SBC, CMP, MLT.H, MLTU.H (16-bit), MLT.W, MLTU.W,
DIV0S, DIV1S, DIV2S, DIV3S
Performs 32-bit arithmetic/logic operation on two register values, or on register and immediate values.

 • 32-bit shift and rotate instructions
SRL, SLL, SRA, SLA, RR, RL
Shifts or rotates 32-bit register data by 0 to 8 bits.

 • Bit-manipulating instructions
BTST, BSET, BCLR, BNOT
Operates on byte data in memory to set or reset bitwise.

 • Stack-manipulating instructions
PUSHN, POPN
Saves or restores the contents of R0 to Rn successively to or from the stack.

 • Branch instructions
JRGT, JRGE, JRLT, JRLE, JRUGT, JRUGE, JRULT, JRULE, JREQ, JRNE, CALL, JP, RET, RETI,
RETD, INT, BRK
Performs various conditional jump, call, or return operations.

 • System control instructions
HALT, SLP, NOP
Used to place the device in power-down mode or inserted to perform no operation.

 • Other instructions
MAC, SCAN0, SCAN1, SWAP, MIRROR, EXT
Performs a MAC, data scan, or replacement operation.

1 ABOUT THE S1C33000 CPU CORE

4 EPSON S1C33 FAMILY APPLICATION NOTE

● Addressing modes

(1) Basic addressing modes
These addressing modes can be implemented in one instruction.

 • 6-bit immediate data addressing
LD.W %R1,sign6 Sign extends 6-bit data before loading it into the R1 register.
ADD %R2,imm6 Adds 6-bit data to the R2 register.
In this mode, the operations are performed upon 6-bit signed/unsigned immediate data and register.

 • Register direct addressing
LD.W %R1,%R2 Transfers data from the R2 to the R1 register.
JP %R3 Jumps to the address held by the R3 register.
In this mode, operations are performed only on register values.

 • Register indirect addressing
LD.B %R2,[%R15] Loads signed 8-bit data from the address specified by R15.
LD.W %R2,[%R15]+ Loads 32-bit data from the address specified by R15 and then increments the

R15 register.
In this mode, a memory address is set in a register and operations are performed on data at that
address.

 • SP indirect addressing with displacement
LD.UB %R15,[%SP+imm6] Loads unsigned 8-bit data from the address indicated by SP + imm6.
LD.W %R15,[%SP+imm6] Loads 32-bit data from the address indicated by SP + (imm6 × 4).
In this mode, an offset address is specified from the stack pointer and operations performed on data
within the stack.

 • Signed 8-bit PC relative addressing
JP sign8 Jumps to a location up to 127 instructions ahead of or 128 instructions behind

the current PC address.
CALL sign8 Calls a subroutine located up to 127 instructions ahead of or 128 instructions

behind the current PC address.
In this mode, the jump address is specified by a relative address from the PC.

(2) Extended addressing modes
The basic addressing modes can be extended with the EXT instruction.

 • Extended immediate data addressing
EXT imm13 + ADD %R1,imm6 → ADD %R1,imm19
EXT imm13 + EXT imm13 + ADD %R1,imm6 → ADD %R1,imm32
The immediate size can be extended to 19 or 32 bits with the EXT instruction.

 • Extended register indirect addressing
EXT imm13 + LD.W %R2,[%R15]+ → LD.W %R2,[%R15+imm13]
EXT imm13 + EXT imm13 + LD.W %R2,[%R15]+ → LD.W %R2,[%R15+imm26]
A 13-bit or 26-bit offset address can be added using the EXT instruction.

 • SP indirect addressing with extended displacement
EXT imm13 + LD.B %R15,[%SP+imm6] → LD.B %R15,[%SP+imm19]
EXT imm13 + EXT imm13 + LD.B %R15,[%SP+imm6] → LD.B %R15,[%SP+imm32]
The offset can be extended to 19 or 32 bits by the EXT instruction.

 • Extended PC relative addressing
EXT imm13 + CALL sign8 → CALL sign22
EXT imm13 + EXT imm13 + CALL sign8 → CALL sign32
The address range to which to branch may be extended to 22 or 32 bits by the EXT instruction.

1 ABOUT THE S1C33000 CPU CORE

S1C33 FAMILY APPLICATION NOTE EPSON 5

● High code density for C language
Based on the following two concepts, the S1C33 CPU core creates high code density for C language.
1. As often as possible, frequent operation patterns in C are processed by one instruction.
2. Other operation patterns are suppressed to as few instructions as possible using the EXT instruc-

tion, preventing worsening code density in less frequently used patterns.

(1) Branch patterns

 • Conditional branch
JRNE sign8 (Jump area of +127 to -128 instructions)

Supports more than 90% of conditional branching cases with one instruction (2 bytes).
EXT imm13 + JRNE sign8 → JRNE sign22 (±2M jump area)

Supports other conditional branching with two instructions (4 bytes).

 • Subroutine call
EXT imm13 + CALL sign8 → CALL sign22 (±2M jump area)

Supports almost all subroutine calls with two instructions (4 bytes).
EXT imm13 + EXT imm13 + JRNE sign9 → JRNE sign32 (Can jump to any area)

Supports other subroutine calls with three instructions (6 bytes).

(2) Variable access patterns

 • Auto variable access
LD.W %R2,[%SP+imm6] (Accesses SP + 0 to 255 area for int access)

Supports more than 80% of auto-variable access cases with one instruction (2 bytes).
EXT imm13 + LD.W %R2,[%SP+imm6] → LD.W %R2,[%SP+imm19] (Accesses 512K-byte area)

Supports other auto-variable access cases with two instructions (4 bytes).

 • Pointer variable access
LD.B %R2,[%R3]

One instruction (2 bytes)

 • Static variable access (based on global pointer)
EXT imm13 + LD.H %R2,[%R15] → LD.H %R2,[%R15+imm13] (Accesses 8K-byte area from R15)

Two instructions (4 bytes)
EXT imm13 + EXT imm13 + LD.H %R2,[%R15] → LD.W %R2,[%R15+imm26]

Three instructions (6 bytes)

(3) Arithmetic patterns

 • 2-operand, register to immediate
ADD %R2,imm6 (Adds 0–63 to R2)

One instruction (2 bytes)
EXT imm13 + ADD %R2,imm6 → ADD %R2,imm19 (Adds 0–512K to R2)

Two instructions (4 bytes)
EXT imm13 + EXT imm13 + ADD %R2,imm6 → ADD %R2,imm32

Three instructions (6 bytes)

 • 2-operand, register to register
ADD %R2,%R3 (Adds R3 to R2)

One instruction (2 bytes)

1 ABOUT THE S1C33000 CPU CORE

6 EPSON S1C33 FAMILY APPLICATION NOTE

(4) Other

 • Call, return
CALL sign8 Saves PC automatically
RET Restores PC automatically

One instruction reduced for each

 • Push, pop
PUSHN %Rn Saves R0–Rn to the stack
POPN %Rn Restores R0–Rn from the stack

Number of instructions reduced for each subroutine

 • Data conversion
LD.B %R2,%R3 Converts signed 8-bit data to 32-bit data
LD.UB/LD.H/LD.UH Also supports signed/unsigned 8-bit and 16-bit data

Ideal for data cast in C

 • Bit manipulation
BSET [%R5],2 Sets bit 2 of [%R5] (memory data in bytes) to 1
BCLR/BTST/BNOT Clears, tests, or inverts a bit

Permits read-modify-write operation with one instruction.

1.6 Instruction Execution Speed
The following shows the number of instruction cycles. Note that these apply when the program resides in
internal ROM and data exists in RAM operating in the Harvard architecture. Wait cycles are added for
access to external memory.

 • Register to register operation (arithmetic, logic, system, etc.)
AND, OR, XOR, NOT, ADD, ADC, SUB, SBC, CMP, MLT.H, MLTU.H, DIV0S, DIV1S, DIV2S, DIV3S,
SRL, SLL, SRA, SLA, RR, RL, HALT, SLP, NOP, LD.B, LD.UB, LD.H, LD.UH, LD.W

One cycle per instruction

MLT.W, MLTU.W
Five cycles per instruction

 • Memory to register operation (ld.w, ld.b, ld.ub, ld.h, ld.uh)
%RD, [%RB] (without interlock), [%RB], %RS, %RD, [%SP+imm6], [%SP+imm6], %RS, [%RB]+, %RS

One cycle per instruction

%RD, [%RB]+, %RD, [%RB] (with interlock)
Two cycles per instruction

 • Memory to memory operation
BTST, BSET, BCLR, BNOT

Three cycles per instruction

 • Branch operation
JRGT, JRGE, JRLT, JRLE, JRUGT, JRUGE, JRULT, JRULE, JREQ, JRNE, JP

Ordinary branching: Two cycles per instruction; delayed jump (xxx.d): One cycle per instruction

CALL, JP, RET, RETI, RETD, INT, BRK
Two to 10 cycles per instruction

 • Other operations
MAC 2 × N + 4 cycles
PUSHN, POPN 1 × N cycles
SCAN0, SCAN1, SWAP, MIRROR One cycle per instruction

1 ABOUT THE S1C33000 CPU CORE

S1C33 FAMILY APPLICATION NOTE EPSON 7

1.7 Multiplier/Accumulator Functions
The MAC instruction is capable of executing a 16 bits × 16 bits + 64 bits sum-of-products operation in one
instruction every 2 clock periods, up to 2 G times.

Source 1 memory block

R8 (source 1 address)

R7 (counter)

AHR ALR

Post incremented
16 × 16 = 32 bits

multiplier

64-bit adder

Source 1
16-bit
data

32-bit data 64-bit data

64-bit data

Source 2 memory block

R9 (source 2 address)

Post incremented

Source 2
16-bit
data

Example: MAC %R7
R7: Repetition counter (maximum 4 G)
R8: Source 1 address (post incremented)
R9: Source 2 address (post incremented)

The source 1 and source 2 16-bit data are read from each memory location and multiplied. The 32-bit data
resulting from the multiplication is added to a 64-bit register consisting of AHR:ALR. This is repeated
once every 2 clock periods (given that source 1 and source 2 both exist in the internal RAM).

1 ABOUT THE S1C33000 CPU CORE

8 EPSON S1C33 FAMILY APPLICATION NOTE

1.8 Instruction Set List

● Instruction format and operation
(The number of execution cycles applies here when the internal RAM is accessed for data with instructions residing in internal ROM.)

Classification

Relative branch

Relative delayed
branch

Absolute branch
Special branch
Logic operation

Arithmetic
operation

Compare
operation
Carry operation
Multiplication

Division
Shift

Memory load

Register load

Conversion
Bit operation
System
Mac operation

Stack operation
Scan
Swap
Extention

Instruction

jp, jrgt, jrge, jrlt, jrle, jrugt, jruge, jrult,
jrule, jreq, jrne, call
jp.d, jrgt.d, jrge.d, jrlt.d, jrle.d, jrugt.d,
jruge.d, jrult.d, jrule.d, jreq.d, jrne.d,
call.d
call, jp, call.d, jp.d
ret, ret.d, int imm2, reti, brk, retd
and, or, xor, not

add, sub

cmp

adc, sbc
mlt.h, mlt.uh (16bit)
mlt.w, mlt.uw (32bit)
div0s, div0u, div1, div2s, div3s
srl, sll (logical shift)
sra, sla (arithmetical shift)
rr, rl (rotate)
ld.b (signed 8bit load)
ld.ub (unsigned 8bit load)
ld.h (signed 16bit load)
ld.uh (unsigned 16bit load)
ld.w (32bit load)

ld.w

ld.b, ld.ub, ld.h, ld.uh
btst, bset, bclr, bnot
nop, slp, hlt
mac

pushn, popn
scan0, scan1
swap, miror
ext

Typical instruction
format

jp sing8

jp.d sing8

call %rb

and %rd, %rs
and %rd, sign6
add %rd, %rs
add %rd, imm6
add %sp, imm12
cmp %rd, %rs
cmp %rd, sign6
adc %rd, %rs
mlt.h %rd, %rs

srl %rd, imm4
srl %rd, %rs

ld.w %rd, [%sp+imm6]
ld.w [%sp+imm6], %rs
ld.w %rd, [%rb]
ld.w %rd, [%rb]+
ld.w [%rb], %rs
ld.w [%rb]+, %rs
ld.w %rd, %rs
ld.w %rd, sign6
ld.w %rd, %ss
ld.w %ss, %rs
ld.b %rd, %rs
btst [%rb], imm3

pushn %rs
scan0 %rd, %rs
swap %rd, %rs
ext imm13

Operation

Branch to PC + (sign8 × 2)

Branch to PC + (sign8 × 2)
Execute next instruction upon branching

Branch to address indicated by %rb
Return, interrupt, etc.
%rd = %rd & %rs
%rd = %rd & sign6
%rd = %rd + %rs
%rd = %rd + imm6
%sp = %sp + imm12
%rd - %rs, flag only changes
%rd - sign6
%rd = %rd + %rs + carry flag
%alr = %rd × %rs (32 = 16 × 16)
%ahr:%alr = %rd × %rs (64 = 32 × 32)
Execute division using these in combination
%rd = %rd >> imm4
%rd = %rd >> %rs
Shift by 0 to 8 bits
%rd = [%sp+imm6], stack relative access
[%sp+imm6] = %rs
%rd = [%rb], register address access
%rd = [%rb], %rb = %rb + 4, post inc.
[%rb] = %rs
[%rb] = %rs, %rb = %rb + 4
Copy between registers
Store immediate value
Copy from special register
Copy to special register
Convert types
Test, set, clear, or invert a bit
No operation, stock clock
Repeat %ahr:%alr= [%r14] × [%r15] +
%ahr:%alr %r13 times
Successively push/pop from %r0 to %rs
Scan 1 or 0 from MSB, up to 8 bits
Swap or mirror bits bytewise
Extend immediate data of instruction

Number of cycles

1,2(when branching)
3 for call

1
2 for call

1–3
3–10

1

1

1

1
1
5
1
1

1–2

1

1
3
1

2 × N + 4

1 × N
1
1
1

signX, immX: immediate value, %XX: register

● Immediate extension by EXT instruction
Example: Instruction only

call sign8
One EXT instruction is added

ext imm13
call sign8 (= call sign22)

Two EXT instructions are added
ext imm13
ext imm13
call sign8 (= call sign32)

Classification

Relative
branch
Operation
Stack load

Absolute load

Bit operation

Instruction

jp, jrgt, jrge, jrlt, jrle, jrugt, jruge, jrult,
jrule, jreq, jrne, call, and delayed branch inst.
add, sub, and, or, xor, not, cmp, ld.w
ld.b, ld.ub, ld.h, ld.uh, ld.w

ld.b, ld.ub, ld.h, ld.uh, ld.w

btst, bset, bclr, bnot

Typical format for 1
instruction

jp sing8

add %rd, imm6 /sign6
ld.w %rd, [%sp+imm6]
ld.w [%sp+imm6], %rs
ld.w %rd, [%rb]
ld.w %rd, [%rb]+
ld.w [%rb], %rs
ld.w [%rb]+, %rs
btst [%rb], imm3

Typical operation when 1
EXT instruction is added

jp sign22

add %rd, imm19/sign19
[%sp+imm19]
Extend offset value
[%rb+imm13]
Add offset value

[%rb+imm13]
Add offset value

Typical operation when 2
EXT instructions are added
jp sign32

add %rd, imm32
[%sp+imm32]
Extend offset value
[%rb+imm26]
Add offset value

[%rb+imm26]
Add offset value

signX, immX: immediate value, %XX: register

2 WRITING PROGRAMS FOR THE S1C33

S1C33 FAMILY APPLICATION NOTE EPSON 9

2 WRITING PROGRAMS FOR THE S1C33
This chapter explains how to write programs for the S1C33. The method described here applies to all
microcomputers in the S1C33 Family.

2.1 Vector Table and Boot Routine
The S1C33 program must have at least a vector table and a boot routine. When cold reset at power-on, the
S1C33 chip normally fetches the reset vector from address 0xC00000 and begins executing a program
from that address. The simplest assembler resembles the one show below.

.set SP_INI,0x0800 ; sp is in end of 2KB internal RAM

.set DP_INI,0x0000 ; default data area pointer %r15 is 0x0

.text

.long BOOT ; BOOT VECTOR
BOOT:

xld.w %r15,SP_INI
ld.w %sp,%r15 ; set SP
ld.w %r15,DP_INI ; set default data area pointer
xcall main ; goto main
xjp BOOT ; infinity loop

In addition, the actual application may require a vector table for exceptions and interrupts, and a boot
routine that includes processing required to set up the BCU and initialize peripheral functions. Code
examples, one in assembler and one in C, are provided below.

● Code example in assembler
The following shows an example of vector table:

Vector table [vector.s]

.text

.long RESET ; Vector table

.long RESERVED

.long RESERVED

.long RESERVED

.long ZERODIV

.long RESERVED

.long ADDRERR

.long NMI

.long RESERVED

.long RESERVED

.long RESERVED

.long RESERVED

.long SOFTINT0

.long SOFTINT1

.long SOFTINT2

.long SOFTINT3

.long INT0

.long INT1

.long INT2

.long INT3

.long INT4

.long INT5
 |

 (INT6–INT49)
 |

.long INT50

.long INT51

.long INT52

.long INT53

.long INT54

.long INT55

RESET: ; Dummy label for undefined vector
ZERODIV:

2 WRITING PROGRAMS FOR THE S1C33

10 EPSON S1C33 FAMILY APPLICATION NOTE

ADDRERR:
NMI:
RESERVED:
SOFTINT0:
SOFTINT1:
SOFTINT2:
SOFTINT3:
INT0:
INT1:
INT2:
INT3:
INT4:
INT5:
 |
(INT6–INT49)
 |
INT50:
INT51:
INT52:
INT53:
INT54:
INT55:

.global INT_LOOP
INT_LOOP: ; Trap routine for undefined vector

nop
jp INT_LOOP
reti

In this file, the vector table for boot to hardware interrupts is defined in the format

.long label

This allows storage of 32-bit jump addresses in the vector table. For safety, addresses that are not
specifically defined are vectored to INT_LOOP at the bottom of the file. Note that the program
assumes the vectors actually used will be redefined by another name. (The processing routine may
also be written by moving the jump address below to another location.)

When an invalid interrupt is generated, the CPU jumps to INT_LOOP. It may be convenient to have a
breakpoint set here when debugging the program. The address error exception (ADDRERR), 7th from
the top in the vector table, occurs especially frequently in undebugged code. Although the address
error exception in the preceding sample code is not separated from other exceptions or interrupts, we
recommend that address invalid exceptions be vectored to another routine. Note that an address error
exception occurs when an attempt is made to access an odd address during 16-bit memory read/
writes, or when accessing a nonword-aligned address (not a multiple of 4) during 32-bit memory
read/writes. In the S1C33, these memory accesses are prohibited.

Redefinition of interrupt vectors [vector.h]

;; Vector define
#define RESET BOOT
#define INT12 int_16timer_u00
#define INT15 int_16timer_c01
#define INT18 int_16timer_u11
#define INT23 int_16timer_c21
#define INT27 int_16timer_c31

Redefine the exception/interrupt vector labels actually used in vector.s by another name, letting the
CPU jump to the appropriate routine. In the preceding example, the reset vector and 16-bit timer
interrupt vectors are redefined using the label names of the actual processing routines.

2 WRITING PROGRAMS FOR THE S1C33

S1C33 FAMILY APPLICATION NOTE EPSON 11

Boot routine [boot.s]

; file name : boot.s
;
; Coptright (C) SEIKO EPSON CORP. 2002
;
; BOOT:
; boot program set, SP, default data area pointer(%r15)
; call _init_sys() and _init_lib().
; And call main.

.set SP_INI,0x0800 ; sp is in end of 2KB internal RAM

.set DP_INI,0x0000 ; global pointer is 0x0

.text

.long BOOT ; BOOT VECTOR
BOOT:

xld.w %r15,SP_INI
ld.w %sp,%r15 ; set SP
ld.w %r15,DP_INI ; set default data area pointer
xcall _init_bcu ; Initialize BCU on boot time
xcall _init_sys ; call _init_sys() in sys.c
xcall main ; goto main
xcall _exit ; in last, goto _exit

;;;
;; _init_bcu
;; Type : void
;; Ret val : none
;; Argument : void
;; Function : Initialize BCU on boot time.
;;;

.global _init_bcu
_init_bcu:
;; Set area 9-10 setting
;; Area 9-10 setting ... Device size 16 bits, output disable delay 1.5, wait control
2, burst ROM is not used in area 9-10, burst ROM burst read cycle wait control 0

xld.w %r11,BCU_A10_ADDR
xld.w %r10,BCU_BW_0|BCU_DRAH_NOT|BCU_DRAL_NOT|BCU_SZL_16|BCU_DFL_15|BCU_WTL_2
ld.h [%r11],%r10

This boot routine (BOOT) initializes the stack pointer, the default data-area pointer and the BCU
before calling the main routine.

Since the CPU uses the stack if any exception or interrupt occurs, make sure the stack pointer is set
before other processing. Always confirm that the BCU is set before accessing memory or device.

2 WRITING PROGRAMS FOR THE S1C33

12 EPSON S1C33 FAMILY APPLICATION NOTE

● Code example written in C
The following illustrative code is found in gnu33\sample\drv33209\.

Vector table, boot routine [drv33209\16timer\vector.c]

/**
 * *
 * Copyright (C) SEIKO EPSON CORP. 2002 *
 * *
 * File name: vector.c *
 * This is vector and interrupt program with C. *
 * *
 **/

/* Prototype */
void boot(void);
void dummy(void);
extern void _init_bcu(void);
extern void _init_int(void);
extern void _init_sys(void);
extern void _exit(void);
extern void int_16timer_c0(void);
extern void int_16timer_u1(void);
extern void int_16timer_c2(void);
extern void int_16timer_u3(void);

/* vector table */
const unsigned long vector[] = {

(unsigned long)boot, // 0 0
0, // 4 1
0, // 8 2
0, // 12 3
(unsigned long)dummy, // 16 4
0, // 20 5
(unsigned long)dummy, // 24 6
(unsigned long)dummy, // 28 7
0, // 32 8
0, // 36 9
0, // 40 10
0, // 44 11
(unsigned long)dummy, // 48 12
(unsigned long)dummy, // 52 13

|
(56 14 – 120 30)

|
(unsigned long)int_16timer_c0, // 124 31
(unsigned long)dummy, // 128 32
(unsigned long)dummy, // 132 33
(unsigned long)int_16timer_u1, // 136 34
(unsigned long)dummy, // 140 35
(unsigned long)dummy, // 144 36
(unsigned long)dummy, // 148 37
(unsigned long)dummy, // 152 38
(unsigned long)int_16timer_c2, // 156 39
(unsigned long)dummy, // 160 40
(unsigned long)dummy, // 164 41
(unsigned long)int_16timer_u3, // 168 42
(unsigned long)dummy, // 172 43

|
(176 44 – 268 67)

|
(unsigned long)dummy, // 272 68
(unsigned long)dummy, // 276 69
(unsigned long)dummy, // 280 70
(unsigned long)dummy // 284 71

};

2 WRITING PROGRAMS FOR THE S1C33

S1C33 FAMILY APPLICATION NOTE EPSON 13

/***
 * boot
 * Type : void
 * Ret val : none
 * Argument : void
 * Function : Boot program.
 ***/
void boot(void)
{

asm("xld.w %r15,0x2000"); // Set SP in end of 8KB internal RAM
asm("ld.w %sp,%r15");
asm("ld.w %r15,0b10000"); // Set PSR to interrupt enable
asm("ld.w %psr,%r15");
asm("xld.w %r15,0x600000");// Set DPR is 0x0
_init_bcu(); // Initialize BCU on boot time
_init_int(); // Initialize interrupt controller
_init_sys(); // Initialize for sys.c
main(); // Call main
_exit(); // In last, go to exit in sys.c to use simulated I/O

}

/***
 * dummy
 * Type : void
 * Ret val : none
 * Argument : void
 * Function : Dummy interrupt program.
 ***/
void dummy(void)
{
INT_LOOP:

goto INT_LOOP;
asm("reti");

}

This file contains a vector table and a boot routine.

The vector table is defined as a const-type 32-bit array to allow storage of 32-bit jump addresses in
ROM. The comment for each vector (//x y) is a decimal value indicating the offset address (x) from
the top of the table and the vector number (y). In this example, the start addresses of externally-
referenced interrupt processing functions are written directly. Unused interrupts are vectored to
dummy routines.

The boot routine is functionally equivalent to the preceding example written in assembler. The SP and
PSR are initialized using the asm() instruction.

The reti instruction for the dummy exception/interrupt handler routine is written using the asm()
instruction.

2 WRITING PROGRAMS FOR THE S1C33

14 EPSON S1C33 FAMILY APPLICATION NOTE

2.2 Interrupt Handling Routines

● Interrupt handling functions
In S5U1C33001C, interrupt handler functions can be implemented by declaring a function prototype
with __attribute__ ((interrupt_handler)).
In addition, the "asm("reti");" line within the interrupt function can be deleted by declaring the
function with __attribute__ ((interrupt_handler)).

● Declaring interrupt handler functions
Interrupt handler functions should be declared in the following format:

<Type><Function name>__attribute__ ((interrupt_handler));

Example for interrupt handling [gnu33\sample\int_c\int.c]

// int.c 1998.1.7
// vector and interrupt program with C

extern volatile int int_num;

// functions that jump from vector table

extern void boot() __attribute__ ((interrupt_handler));
void div0() __attribute__ ((interrupt_handler));
void unalign() __attribute__ ((interrupt_handler));
void nmi() __attribute__ ((interrupt_handler));
void softint0() __attribute__ ((interrupt_handler));
void softint1() __attribute__ ((interrupt_handler));
void softint2() __attribute__ ((interrupt_handler));
void softint3() __attribute__ ((interrupt_handler));
void hardint0() __attribute__ ((interrupt_handler));
void hardint1() __attribute__ ((interrupt_handler));
void hardint2() __attribute__ ((interrupt_handler));
void hardint3() __attribute__ ((interrupt_handler));
void hardint4() __attribute__ ((interrupt_handler));
void hardint5() __attribute__ ((interrupt_handler));
void hardint6() __attribute__ ((interrupt_handler));
void hardint7() __attribute__ ((interrupt_handler));
void hardint8() __attribute__ ((interrupt_handler));
void hardint9() __attribute__ ((interrupt_handler));

// vector table

const unsigned long vector[] = {
(unsigned long)boot, // 0 0
0, // 4 1
0, // 8 2
0, // 12 3
(unsigned long)div0, // 16 4
0, // 20 5
(unsigned long)unalign, // 24 6
(unsigned long)nmi, // 28 7
0, // 32 8
0, // 36 9
0, // 40 10
0, // 44 11
(unsigned long)softint0, // 48 12
(unsigned long)softint1, // 52 13
(unsigned long)softint2, // 56 14
(unsigned long)softint3, // 60 15
(unsigned long)hardint0, // 64 16
(unsigned long)hardint1, // 68 17
(unsigned long)hardint2, // 72 18
(unsigned long)hardint3, // 76 19
(unsigned long)hardint4, // 80 20
(unsigned long)hardint5, // 84 21
(unsigned long)hardint6, // 88 22
(unsigned long)hardint7, // 92 23

2 WRITING PROGRAMS FOR THE S1C33

S1C33 FAMILY APPLICATION NOTE EPSON 15

(unsigned long)hardint8, // 96 24
(unsigned long)hardint9 // 100 25

};

// interrupt routines

void div0()
 {

int_num = 4;
 }

void unalign()
 {

int_num = 6;
 }

void nmi()
 {

int_num = 7;
 }

void softint0()
 {

int_num = 12;
 }

void softint1()
 {

int_num = 13;
 }

void softint2()
 {

int_num = 14;
 }

void softint3()
 {

int_num = 15;
 }

void hardint0()
 {

int_num = 16;
 }

void hardint1()
 {

int_num = 17;
 }

void hardint2()
 {

int_num = 18;
 }

void hardint3()
 {

int_num = 19;
 }

void hardint4()
 {

int_num = 20;
 }

void hardint5()
 {

int_num = 21;
 }

2 WRITING PROGRAMS FOR THE S1C33

16 EPSON S1C33 FAMILY APPLICATION NOTE

void hardint6()
 {

int_num = 22;
 }

void hardint7()
 {

int_num = 23;
 }

void hardint8()
 {

int_num = 24;
 }

void hardint9()
 {

int_num = 25;
 }

● Example for software interrupt handling

Example for software interrupt handling [gnu33\sample\int_c\main.c]

// main.c 2002.2.14
// boot and main program with C

volatile int int_num;

void boot()
 {
LOOP:

asm("xld.w %r8,0x0800"); // set SP
asm("ld.w %sp,%r8");
asm("xld.w %r8,0b10000"); // set PSR to interrupt enable
asm("ld.w %psr,%r8");
asm("ld.w %r15,0x0000"); // set Default data area pointer
main(); // call main
goto LOOP;

 }

int main()
 {

int j,k;

asm("int 1"); // software interrupt 1

for (j = 0 ; ; j++)
 {

k = int_num;
 }

 }

The asm("int 1"); routine is defined as software interrupt 1 in the interrupt vector table.

(unsigned long)softint1, // 52 13 Definition of software interrupt 1

When this interrupt occurs, the program branches to the prototype-declared function in order to
process the interrupt. In the case of the above example, the program, after executing int_num=13;
returns to within the main(); function and enters an infinite loop.

2 WRITING PROGRAMS FOR THE S1C33

S1C33 FAMILY APPLICATION NOTE EPSON 17

2.3 C and Assembler Mixed Programming
Control can pass between C and assembler routines as desired, providing that rules for arguments, return
values, and register content protection are observed.

● Creating an assembler routine called from C

gnu33\UTILITY\lib_src\ansilib\string\src\strcpy.s

;***
; strcpy
; string copy from src to dest until 0 terminate
;
; arguments : %r6:dest addr, %r7:src addr (0 terminate string)
; return : %r4:dest addr
;***

.section .text

.align 1

.global strcpy

.type strcpy,@function

strcpy:
ld.w %r4, %r6 ; return dest add

strcpy_loop:
ld.ub %r10, [%r7]+ ; copy src 1 byte to dest
ld.b [%r6]+, %r10
cmp %r10, 0 ; continue until 0 terminate
jrne strcpy_loop
ret

This routine is called from a C routine as follows.
(Excerpt from gnu33\sample\ansilib\sansilib.c)

|
#include <string.h>

|
int main()
 {

|
char *pchMem; /* for malloc, strcpy */

|
strcpy(pchMem, "This is strcpy test");

 }

The first and the second arguments are respectively placed in the R6 and the R7 registers when
passed, and the return value is stored in the R4 register.

As in this example, arguments and return values must be exchanged using registers, as follows:
• The first to fourth arguments are placed in the R6 to the R9 registers when passed.
• In special cases, the preceding arguments and the fifth and subsequent arguments are placed in the

stack when passed. (Refer to the compiled code.)
• The return value is stored in the R4 register when returned.

The limitations on register usage within the assembler routine called from a C routine are as follows:
• Before the R0 to R3 registers can be used, the contents must be saved to the stack using the pushn

instruction. Also, the saved contents must be restored from the stack using the popn instruction.
• The R4 and R5 registers can be used without saving/restoring the contents until a returned value is

set in the register before returning.
• The R6 to R9 registers can be used after the stored arguments are used. It is not necessary to restore

the contents before returning.
• The R10 to R15 registers are reserved by the as assembler and ld linker for referencing symbols. Try

to use these registers as little as possible.
• Passing arguments to the function that returns a structure data

If the length of the structure data that is returned from a function is 8 bytes or less, the structure
data is stored in the R4 and R5 registers used for storing returned values. In this case, the pointer to
the structure that is normally sent as the 1st argument is not passed to the function.

2 WRITING PROGRAMS FOR THE S1C33

18 EPSON S1C33 FAMILY APPLICATION NOTE

For example, gnu33\UTILITY\lib_src\emulib\adddf3.s processes double-precision, floating-point
additions. Since this routine uses all registers, the contents of the R0 to R3 registers are saved and
restored before returning.
__adddf3:

pushn %r3 ; save register values
 |
popn %r3 ; restore register values
ret

● Creating an assembler routine that calls a C function
C functions are compiled by the preceding rules. When creating an assembler routine that calls a C
function, pay attention to the following:

Rules for delivering arguments and return values
• The first to fourth arguments are placed in the R6 to R9 registers when passed.
• The R4 register is used to receive the return value.

Register status at return
• The R0 to R3 registers hold the contents possessed when called.
• The R4 to R15 registers and other registers AHR, ALR, or PSR may have been modified.

2 WRITING PROGRAMS FOR THE S1C33

S1C33 FAMILY APPLICATION NOTE EPSON 19

2.4 Tools and Files for Assembly
The user-created assembly source files are assembled using the following three software tools:

1. C compiler xgcc (specifying the -c -xassembler-with-cpp option)
2. Preprocessor cpp
3. Assembler as

∗ The assembly source files can be assembled by the assembler alone; in such a case, however, the
preprocessor directives cannot be processed.

Example for assembly source (.s) created by user

; boot.s 2002.2.8
; boot program

#define SP_INI 0x0800 ; sp is in end of 2KB internal RAM (1)
#define DP_INI 0x0000 ; default data area pointer %r15 is 0x0 (1)

.text (2)

.long BOOT ; BOOT VECTOR (2)
BOOT:

xld.w %r15,SP_INI (3)
ld.w %sp,%r15 ; set SP
ld.w %r15,DP_INI ; set default data area pointer
xcall main ; goto main (3)
xjp BOOT ; infinity loop (3)

(1) Quasi directives processed by cpp
(2) Directive commands processed by as
(3) Extended instructions processed by as

● Preprocessor instructions
The instructions beginning with "#" are quasi preprocessor directives, which provide additional
functions, such as macro instructions, conditional assembly instructions, or symbol definitions of
values and strings, which help create readable assembler code. These instructions are processed by
cpp and expanded into basic instructions that can be assembled by as.

Preprocessor quasi directives [gnu33\sample\asm\as_withcpp.s]

/***
as instruction sample file with C preprocesser
xgcc -c -xassembler-with-cpp as_withcpp.s

**/

#include "test.h"

#define DATA1 0x1234 // define DATA1
#define DATA2 (DATA1 + 2) << 1 // define DATA2

BAR: /* start BAR function */
xld.w %r11,DATA1
xld.w %r10,DATA2
sub %r10,%r11
xld.w [BSS1],%r10
ret

FOO: // start FOO function
add %r6,%r7
ld.w %r4,%r6
ret

.section .bss
BSS1:

.zero 4

2 WRITING PROGRAMS FOR THE S1C33

20 EPSON S1C33 FAMILY APPLICATION NOTE

● Assembler directive commands
The assembler directive commands beginning with "." are primarily used to define data written into
sections and ROM. The assembler directive commands are not processed until fed into as.

Assembler directive commands [gnu33\sample\asm\as_directive.s]

; as_directive.s 2002.3.11
; sample source for as directives

.set RAM1,0x0 ; set absolute data

.text ; start text section

.global BOOT ; BOOT become global symbol

.long BOOT ; 32bit data
BOOT: ; label in code section

ld.w %r15,0
xld.w %r1,[DATA1]
xld.w [%r15+RAM1],%r1
xld.ub %r2,[DATA1+8]
xld.w [BSS1],%r2
jp BOOT
.word 0x0000 ; same with nop

.section .data

.align 2 ; align to 4 byte boundary
DATA1: ; label in data section

.long 0x12345678 ; 32bit data

.word 0x1234,0x5678 ; 16bit data

.byte 0x90 ; 8bit data

.ascii "abc" ; string data

.space 4,0 ; 4bytes 0

.section .bss

.align 2 ; align to 4 byte boundary

.global BSS1
BSS1:

.zero 4 ; 4 byte global bss data area
LBSS1:

.zero 4 ; 4 byte local bss data area

● Primary assembler instructions
When programming with the assembler, the programmer must understand how to write the following
instructions.
• CPU core instructions (basic instructions)
• Macro instructions expanded by as (extended instructions)

Pooling all instructions of these two types produces a large number of available instructions, particu-
larly an extensive list of instructions for as.

Until you are familiar with programming the S1C33, we recommend using the two types of extended
instructions shown below and the primary basic instructions of the CPU core, and then gradually
increasing the number of extended instructions according to the purposes.

Two types of extended instructions
xld.w %r8,0x12345678 ; Stores immediate value in register
xcall sub ; Call to label

2 WRITING PROGRAMS FOR THE S1C33

S1C33 FAMILY APPLICATION NOTE EPSON 21

Commonly used basic instructions

Arithmetic operation
add %r1,%r2 ; Same as for sub and sbc
add %r3,3
adc %r5,%r3

cmp %r7,%r9
cmp %r15,-1

mlt.h %r9,%r8 ; unsigned mltu.h and mltu.w also available
mlt.w %r1,%r2 ; div is supported in subroutine form

Logical operation
and %r2,%r1 ; Same as for or and xor
and %r1,0b0111

not %r2,%r1
not %r1,-1

Shift
srl %r10,5 ; Same as for sll, sra, sla, rr, and rl
srl %r9,%r5

Register copy
ld.b %r2,%r3 ; Same as for ld.ub, ld.h, ld,uh, and ld,w

ld.w %r8,%alr ; Same as for sp, ahr, alr, and psr
ld.w %sp,%r9

Memory access
ld.b %r9,[%r9] ; Same as for ld.ub, ld.h, ld,uh, and ld,w
ld.b %r15,[%r0]+

ld.b [%r3],%r2 ; Same as for ld.h, and ld.w
ld.b [%r4]+,%r0

btst [%r9],0x1 ; Same as for bset, bclr, and bnot

Branch
jrgt SYM ; Same as for jrXX, jp, jrXX.d, and jp.d

Return
ret
ret.d

Interrupt
reti
int 3

Extended instruction
ext 0x123

Other
pushn %r15
popn %r0
mac %r12
nop
halt
slp

2 WRITING PROGRAMS FOR THE S1C33

22 EPSON S1C33 FAMILY APPLICATION NOTE

● Basic instructions
Basic instructions refer to the S1C33000 instruction set, which are assembled into machine codes by as.
Write the core CPU mnemonics directly as is. For operands that specify addresses with immediate
data, you may write a predefined label by itself, or in combination with displacement, symbol mask
or pseudo-operand.
Example: jrgt LABEL ; Specify label

call LABEL+0x10 ; Specify label + displacement

ext LABEL@h ; Specify label + symbol mask

ext LABEL@m

ld.w %r9,LABEL@l ; =ld.w %r9,LABEL

ext doff_hi(FOO) ; Specify pseudo-operand

ext doff_lo(FOO)

ld.w %r0,[%r15] ; =ld.w %r0,[%r15 + (FOO address - __dp)]

The following lists the basic instructions. The instructions in bold can be written only in basic instruc-
tions, while the others can be written in the extended instructions.

Basic instruction list [gnu33\sample\asm\as_inst.s]

; as_inst.s 2002.2.8
; sample source for as instructions

; arithmetic operations
add %r1,%r2
add %r3,3
add %sp,0x123
adc %r5,%r3
sub %r1,%r2
sub %r3,3
sub %sp,0x123
sbc %r5,%r3
cmp %r7,%r9
cmp %r15,-1
mlt.h %r9,%r8
mltu.h %r7,%r4
mlt.w %r1,%r2
mltu.w %r5,%r1
div0s %r1
div0u %r2
div2s %r3
div3s

; logical operations
and %r2,%r1
and %r1,0b0111
or %r2,%r1
or %r1,11
xor %r2,%r1
xor %r1,0x11
not %r2,%r1
not %r1,-1

; shift & rotation operations
srl %r10,5
srl %r9,%r5
sll %r10,5
sll %r9,%r5
sra %r10,5
sra %r9,%r5
sla %r10,5
sla %r9,%r5
rr %r10,5
rr %r9,%r5
rl %r10,5
rl %r9,%r5

; etc
pushn %r15
popn %r0
mac %r13
nop
halt
slp
scan0 %r1,%r2
scan1 %r3,%r4
swap %r5,%r6
mirror %r7,%r7

; bit operations
btst [%r9],0x1
bset [%r0],7
bclr [%r15],0b1
bnot [%r10],5

; ext operations
ext 0x123
ext SYM@ah
ext SYM+0x56@ah
ext SYM@al
ext SYM+0x56@al
ext SYM@h
ext SYM+0x56@h
ext SYM@m
ext SYM+0x56@m
ext SYM@rh
ext SYM@rm

; load operations
ld.b %r2,%r3
ld.b %r9,[%r9]
ld.b %r15,[%r0]+
ld.b %r6,[%sp+8]
ld.b [%r3],%r2
ld.b [%r4]+,%r0
ld.b [%sp+0x10],%r11
ld.ub %r2,%r3
ld.ub %r9,[%r9]
ld.ub %r15,[%r0]+
ld.ub %r6,[%sp+8]
ld.h %r2,%r3
ld.h %r9,[%r9]
ld.h %r15,[%r0]+

2 WRITING PROGRAMS FOR THE S1C33

S1C33 FAMILY APPLICATION NOTE EPSON 23

ld.h %r6,[%sp+8]
ld.h [%r3],%r2
ld.h [%r4]+,%r0
ld.h [%sp+0x10],%r11
ld.uh %r2,%r3
ld.uh %r9,[%r9]
ld.uh %r15,[%r0]+
ld.uh %r6,[%sp+8]
ld.w %r2,%r3
ld.w %r8,%alr
ld.w %sp,%r9
ld.w %r9,[%r9]
ld.w %r15,[%r0]+
ld.w %r6,[%sp+8]
ld.w [%r3],%r2
ld.w [%r4]+,%r0
ld.w [%sp+0x10],%r11
ld.w %r9,SYM@l

; branch operations
jrgt -1
jrgt SYM
jrgt SYM@rl
jrgt.d 2
jrgt.d SYM
jrgt.d SYM@rl
jrge -1
jrge SYM
jrge SYM@rl
jrge.d 2
jrge.d SYM
jrge.d SYM@rl
jrlt -1
jrlt SYM
jrlt SYM@rl
jrlt.d 2
jrlt.d SYM
jrlt.d SYM@rl
jrle -1
jrle SYM
jrle SYM@rl
jrle.d 2
jrle.d SYM
jrle.d SYM@rl
jrugt -1
jrugt SYM
jrugt SYM@rl
jrugt.d 2
jrugt.d SYM
jrugt.d SYM@rl
jruge -1
jruge SYM
jruge SYM@rl
jruge.d 2
jruge.d SYM
jruge.d SYM@rl
jrult -1
jrult SYM
jrult SYM@rl
jrult.d 2
jrult.d SYM
jrult.d SYM@rl
jrule -1
jrule SYM
jrule SYM@rl
jrule.d 2
jrule.d SYM
jrule.d SYM@rl
jreq -1

jreq SYM
jreq SYM@rl
jreq.d 2
jreq.d SYM
jreq.d SYM@rl
jrne -1
jrne SYM
jrne SYM@rl
jrne.d 2
jrne.d SYM
jrne.d SYM@rl
call -1
call SYM
call SYM@rl
call %r5
call.d 2
call.d SYM
call.d SYM@rl
call.d %r8
jp -1
jp SYM
jp SYM@rl
jp %r5
jp.d 2
jp.d SYM
jp.d SYM@rl
jp.d %r8
ret
ret.d
reti
retd
int 3
brk

2 WRITING PROGRAMS FOR THE S1C33

24 EPSON S1C33 FAMILY APPLICATION NOTE

● Assembly source level debug
Normally, when programs are to be debugged at the C source level, if the compile option -gstabs is
added, directives in stab format are added to the elf file as debug information, allowing the program
to be debugged at the source level.

The following describes how to debug assembler sources at the source level.

Using the --gstabs option of the as assembler
When the --gstabs option is specified at start up of the as assembler, line debug information is added
to the object file created. This information can be confirmed using the -g option of the objdump tool.
Example:
(sample.s)

1: .text
2: add %r0,1
3: ext 0x100
4: ld.w %r1,0x10

>as -o sample.o sample.s --gstabs
>ld -o sample.elf sample.o
>objdump -g sample.elf

sample.elf: file format elf32-c33

sample.s:
/* file sample.s line 2 addr 0xc00000 */
/* file sample.s line 3 addr 0xc00002 */
/* file sample.s line 4 addr 0xc00004 */

Using the --gstabs option of the as assembler after executing the cpp preprocessor
Assembly sources that contain preprocessor instructions, such as "#include <filename>", must be
processed using the cpp preprocessor before assembling with the as assembler.
Example: Source expanded by cpp (sample.ps)
(inc1.h)

1: .set DATA1, 0x01
2: .set DATA2, 0x02
3: .set DATA3, 0x03
4: .set DATA4, 0x04
5: .set DATA5, 0x05
6: .set DATA6, 0x06

(sample.s)
1: #include "inc1.h"
2: .text
3: add %r0,1
4: ext 0x100
5: ld.w %r1,0x10

>cpp sample.s > sample.ps

(sample.ps)
1: # 1 "sample.s"
2: # 1 "inc1.h" 1
3: .set DATA1, 0x01
4: .set DATA2, 0x02
5: .set DATA3, 0x03
6: .set DATA4, 0x04
7: .set DATA5, 0x05
8: .set DATA6, 0x06
9: # 1 "sample.s" 2
10:
11: .text
12: add %r0,1
13: ext 0x100
14: ld.w %r1,0x10

>as -o sample.o sample.ps --gstabs
>ld -o sample.elf sample.o
>objdump -g sample.elf

sample.elf: file format elf32-c33

sample.s:

2 WRITING PROGRAMS FOR THE S1C33

S1C33 FAMILY APPLICATION NOTE EPSON 25

/* file sample.s line 3 addr 0xc00000 */
/* file sample.s line 4 addr 0xc00002 */
/* file sample.s line 5 addr 0xc00004 */

Using the -xassembler-with-cpp and --gstabs options in the xgcc command line

>xgcc -c -xassembler-with-cpp -Wa,--gstabs sample.s
>ld -o sample.elf sample.o
>objdump -g sample.elf

sample.elf: file format elf32-c33

sample.s:
/* file sample.s line 3 addr 0xc00000 */
/* file sample.s line 4 addr 0xc00002 */
/* file sample.s line 5 addr 0xc00004 */

The processing in the previous example using cpp and as can be executed simply by using these
options.

● make file
A standard make file generated by the gwb33 work bench is shown below. Make files can be edited
using the Make file editor in gwb33 or a general-purpose editor.

Make file name: sample.mak
Assembler source: boot.s
C source: main.c, sys.c

In the above case, the make file is created in the same manner as the one shown below.

make file [sample.mak]

make file made by GWB33

make file made by gnu make

macro definitions for target file

TARGET= sample

macro definitions for tools & dir

TOOL_DIR = C:/GNU33
CC= $(TOOL_DIR)/xgcc
AS= $(TOOL_DIR)/xgcc
LD= $(TOOL_DIR)/ld
RM= $(TOOL_DIR)/rm
LIB_DIR= $(TOOL_DIR)/lib
SRC_DIR= .

macro definitions for tool flags

CFLAGS= -B$(TOOL_DIR)/ -c -gstabs -O -mgda=0 -mdp=1 -mlong-calls -I$(TOOL_DIR)/
 include -fno-builtin
ASFLAGS= -B$(TOOL_DIR)/ -c -xassembler-with-cpp -Wa,--gstabs
LDFLAGS= -T $(TARGET).lds -Map $(TARGET).map -N

macro definitions for object files

OBJS= boot.o \
 main.o \
 sys.o \

OBJLDS=

macro definitions for library files

LIBS= $(LIB_DIR)/libc.a $(LIB_DIR)/libgcc.a

dependency list start

src difinition start

2 WRITING PROGRAMS FOR THE S1C33

26 EPSON S1C33 FAMILY APPLICATION NOTE

SRC1_DIR= .
src difinition end

$(TARGET).elf : $(OBJS) $(TARGET).mak $(TARGET).lds
$(LD) $(LDFLAGS) -o $@ $(OBJS) $(OBJLDS) $(LIBS)

boot.s
boot.o : $(SRC1_DIR)/boot.s

$(AS) $(ASFLAGS) -o boot.o $(SRC1_DIR)/boot.s

main.c
main.o : $(SRC1_DIR)/main.c

$(CC) $(CFLAGS) $(SRC1_DIR)/main.c

sys.c
sys.o : $(SRC1_DIR)/sys.c

$(CC) $(CFLAGS) $(SRC1_DIR)/sys.c

dependency list end

clean files except source

clean:
$(RM) -f $(OBJS) $(TARGET).elf $(TARGET).map

● Sharing of header files in assembler and C
The S5U1C33001C allows header files (*.h) to be shared in the assembly and C sources. Both the
assembly and C header files can be referenced by using the preprocessor directive #include
"filename.h" before a line in which the preprocessor definition is used. When assembling assembly
sources, always be sure to put them through the C compiler xgcc and specify the -xassembler-with-
cpp option if the preprocessor functions are to be used. If an attempt is made to assemble them by as
alone, an error may occur. Under no circumstances may the assembler-inherent functions be used in C
sources by defining them using the #define directive. Nor may the C language-inherent functions be
used in assembly sources by defining them using #define.
Bad example 1:
(header1.h)
#define REF_SYMBOL .extern symbol ← This is a function inherent in the assembler.

(source.c)
 REF_SYMBOL; ← A syntax error will occur.
 int main(void) {
 }

Bad example 2:
(header1.h)
#define SUCCESS_FLAG(x) (x>= 0) ← This is a function inherent in C.

(source.s)
 cmp SUCCESS_FLAG(%r0) ← A syntax error will occur.

Do not write a preprocessor-dependent branch such as #if, #ifdef, or #ifndef in assembly sources. The
source and the actual assembler lines may be misplaced with respect to each other's position when
they are displayed in the debugger. Furthermore, when header files are to be referenced by #include
in assembly sources, do not use #include in the header files to be referenced. In this case as well, the
source and the actual assembler lines may be misplaced when they are displayed.
Bad example:
(header1.h)
#include "header2.h"
 |

(src.s)
#include "header1.h"
 |

Header references are nested.

Good example:
(header1.h)
/* #include "header2.h" */
 |

2 WRITING PROGRAMS FOR THE S1C33

S1C33 FAMILY APPLICATION NOTE EPSON 27

(src.s)
#include "header2.h"
#include "header1.h"
 |

Shown below is an example in which headers are shared. The source for this example is included in
\gnu33\sample\shareh. For details on the source, refer to this file. In this example, TASK_X, which is
defined in a common header, is used in the assembly source when registering tasks. The program here
uses a macro replacement function for the constants that can be used in common in the assembly and
C sources.

The header file shown below can be used in common in the assembly and C sources. The #define
preprocessor directive is used to define only the values that will be determined when the preprocessor
is executed. To define the values that will be determined by an external file or a link, the program
must be written in accordance with the respective rules of C or assembler.
(shareh.h)
 /* Macros in this header are used in both C and assembler sources. */

 #define TASK_MASK 0x00ff
 #define TASK_DISNABLE 0x0000
 #define TASK_ENABLE 0x0001
 #define TASK_DEFAULT TASK_ENABLE

 #define TASK_USINGMASK 0xff00
 #define TASK_N(x) (0x0100 << x)
 #define TASK_0 TASK_N(0)
 #define TASK_1 TASK_N(1)
 #define TASK_2 TASK_N(2)
 #define TASK_3 TASK_N(3)
 #define TASK_4 TASK_N(4)
 #define TASK_5 TASK_N(5)
 #define TASK_6 TASK_N(6)
 #define TASK_7 TASK_N(7)
 #define MAX_TASK_NUM 8

 #define TASK_0_7 (TASK_0 + TASK_1 + TASK_2 + TASK_3 \
 TASK_4 + TASK_5 + TASK_6 + TASK_7)
 #define TASK_NOT0 TASK_0_7 - TASK_0
 #define TASK_0_3 TASK_0 * 0xf

 /**/
 /* when defined, application go to start routine if exit. */
 /**/
 #define GOSTART_IFAPPEND

 /**/
 /* if you change max task number, enable below line. */
 /**/
 //#define OVERRIDE_MAXTASK 8
 /* new MAX_TASK_NUM (max task number is 8.) */
 #define OVERRIDE_MAX_TASK_NUM 8

 /**/
 /* if you don't use any tasks, enable below line. */
 /**/
 //#define NO_TASK

 /**/
 /* psr default setting */
 /**/
 /* This configuration psr is set at the top of program. */
 /* if you don't permit interruption, comment here.*/
 #define IE_BIT 0x10
 /* set default interrput-level(In many case, below should be 0). */
 #define DEFAULT_INTERRUPT_LEBEL 0

 #define DEFAULT_PSR (IE_BIT | (DEFAULT_INTERRUPT_LEBEL << 8))

 /* dummy definition */
 #define MACRO_DAMMY
 #undef MACRO_DAMMY

In the file shown below, definitions that can be referenced only by the assembler are written. To use
preprocessor definitions in the assembler, replacement by a string or numeral definition is effective.

2 WRITING PROGRAMS FOR THE S1C33

28 EPSON S1C33 FAMILY APPLICATION NOTE

(onlys.s)
 #define GETTASK_H ext doff_hi(ulTaskManage)
 #define GETTASK_L ext doff_hi(ulTaskManage)
 #define GETTASK(register) ld.w register,[%r15]

 #define PUTTASK_H ext doff_hi(ulTaskManage)
 #define PUTTASK_L ext doff_hi(ulTaskManage)
 #define PUTTASK(register) ld.w [%r15],register

Shown below is an example in which preprocessor definitions are used in the assembly source.
(asm.s)
 /* Nesting header files is not supported in assembler sources. */
 #include "shareh.h"
 #include "onlys.h"
 |
 xld.w %r0,DEFAULT_PSR ← Uses a preprocessor definition
 /* Set IE, IL. See shareh.h About DEFAULT_PSR. */

 init_task:
 xld.w %r6,TASK_0 ← Uses a preprocessor definition
 xld.w %r7,DO_INT
 call add_task
 ret
 |
 SOFT_INT:
 pushn %r14

 /* delete old task0 */
 xld.w %r6,TASK_0 ← Uses a preprocessor definition
 call delete_task
 /* add dummy task0 */
 xld.w %r6,TASK_0 ← Uses a preprocessor definition
 xld.w %r7,vfnSetDummy
 call add_task

 /* add exit task */
 xld.w %r6,TASK_7 ← Uses a preprocessor definition
 xld.w %r7,EXIT_MAIN
 call add_task

 popn %r14
 reti
 |
 /* exit all program */
 /* --- no arguments --- */
 EXIT_MAIN:
 /* read ulTaskManage */
 GETTASK_H ← Uses assembler-inherent
 GETTASK_L ← definitions
 GETTASK(%r4) ←

 /* clear TASK_MASK part, and set TASK_DISABLE */
 xld.w %r5,TASK_MASK
 not %r5,%r5
 and %r4,%r5

 /* write ulTaskManage */
 PUTTASK_H ← Uses assembler-inherent
 PUTTASK_L ← definitions
 PUTTASK(%r4) ←
 ret

Shown below is an example of a header file that can only be used in C source files. The program
shown here uses preprocessor definitions and a C syntax do {...} while(1) to create a quasi-local
variable. Furthermore, an artifice is incorporated at the beginning of the file to ensure that no errors
will be assumed even when the header file is referenced doubly. This approach is very effective in
cases in which the mutual relationship between header files is complicated.
(csrc.h)
 #ifndef _ONLYC_H_ /* _ONLYC_H_ */

 #define _ONLYC_H_

 #include "shareh.h"

2 WRITING PROGRAMS FOR THE S1C33

S1C33 FAMILY APPLICATION NOTE EPSON 29

 /* macro definition changing a task bit to a task number. */
 /* This definition can be used in only C-source files. */
 #define TASK_NUM(task_bit, returned_tasknum) \
 do { \
 unsigned long ulBuf; \
 \
 ulBuf = task_bit; \
 returned_tasknum = 0; \
 while ((ulBuf & 0x100) == 0x0) { \
 returned_tasknum++; \
 ulBuf >>= 1; \
 }; \
 } while (0);

 /* #if, #ifdef or other branch prepro-instructions are
 * used in only C sources. */
 #if defined(OVERRIDE_MAX_TASK_NUM)
 #undef MAX_TASK_NUM
 #define MAX_TASK_NUM OVERRIDE_MAX_TASK_NUM
 #endif

 #ifdef NO_TASK
 /* disable all tasks. */
 #undef TASK_DEFAULT
 #define TASK_DEFAULT TASK_DISNABLE
 #endif

 #endif /* _ONLYC_H_ */

Shown below is an example of a C source file that uses a preprocessor definition.
(csrc.c)
 #include "onlyc.h"
 |
 int main_loop(void)
 {

 while (1) {
 volatile unsigned long *ulpTask = &ulTaskManage;
 unsigned long ulTaskBuf;
 unsigned int iTaskBit;
 int iTaskNum ;

 if ((*ulpTask & TASK_MASK) == TASK_ENABLE) {
 ulTaskBuf = *ulpTask;
 for (iTaskNum = 0, iTaskBit = TASK_0 ;
 iTaskNum < MAX_TASK_NUM ; iTaskNum++, iTaskBit <<= 1) {
 if ((ulTaskBuf & iTaskBit) != 0) {
 /* Execute task if registered. */
 if (fnpTask[iTaskNum] != (void *)0x0) {
 fnpTask[iTaskNum]();
 }
 }
 }
 } else {
 /* illeagal interruption occured */
 break;
 }
 }

 #if !defined(GOSTART_IFAPPEND)
 ENDLESS_LOOP:
 goto ENDLESS_LOOP
 #else
 return 0;
 #endif

 }

 void add_task(unsigned long ulTaskFlag, void *fpFunc)
 {

 int iNum = 0;

 TASK_NUM(ulTaskFlag, iNum)

 fnpTask[iNum] = fpFunc;
 ulTaskManage = ulTaskManage | ulTaskFlag ;
 }
 |

2 WRITING PROGRAMS FOR THE S1C33

30 EPSON S1C33 FAMILY APPLICATION NOTE

2.5 Data Areas and Data-Area Pointers
The S5U1C33001C has multiple available data-area pointers that hold the base addresses of memory areas
referred to as "data area". (These data-area pointers are assigned the CPU registers.) The data-area
pointers enable the global variables, pre-valued variables, and constant data located in a data area to be
accessed efficiently at high speed as a result of the use of smaller offset addresses than those used to
access the entire memory. It is possible to specify which data is to be located in which data area through
the use of an intra-source definition and a linker script setting.
For a data area to be accessed using a data-area pointer, the following operation is required:
1. Set a data-area pointer at the beginning of the program.
2. Specify a data area in the program in which variables are to be located.
3. Set compiler options associated with the data-area pointer.
4. Define sections in a linker script (if necessary).
5. Define the data-area pointer (the base address of the data area) as a symbol when linking the object

files.

2.5.1 Types of Data Areas
The S5U1C33001C supports the following five data areas:
• Default data area
• G data area
• S data area
• T data area
• Z data area

The section attributes located in each data area and the CPU registers used as data-area pointers, data
pointer symbols, and the like are listed in Table 2.5.1.1.

Table 2.5.1.1 Data area

Data area

Default

G

Z

T

S

Register
used

(STD) R15
(ADV) DP

∗1

R15–R12
∗2

R14

R13

R12

Directive used
to access

(STD) doff_hi
(STD) doff_lo
(ADV) dpoff_h
(ADV) dpoff_m
(ADV) dpoff_l

goff_lo

zoff_hi
zoff_lo
toff_hi
toff_lo
soff_hi
soff_lo

Data-area-
pointer
symbol
__dp

__gdp

__zdp

__tdp

__sdp

32-bit
address

Acceptable
only for

ADV

Not
accepted

Not
accepted

Not
accepted

Not
accepted

Attribute of located section

Variable

.bss

.gbss

.zbss

.tbss

.sbss

Pre-valued
variable

.data

.gdata

.zdata

.tdata

.sdata

Constant

.rodata

.rodata
∗3

.rozdata

.rotdata

.rosdata

∗1: If the -mc33adv option (compile in advanced macro mode) is used in compiling the source files, the pointer
for the default data area will have its register assignment changed.

∗2: The register used for the G data area can be changed using the compiler option -mgdp=XX (XX: dp, sdp,
tdp, or zdp).

∗3: All of the constant data in the G data area will be located in the .rodata section.

2 WRITING PROGRAMS FOR THE S1C33

S1C33 FAMILY APPLICATION NOTE EPSON 31

2.5.2 Sections
One data area consists of multiple sections. Each section has an attribute specific to it.

• .text attribute
Programs are stored in this section. This attribute does not belong to a data area. The entity of this
section is held in ROM. It can be transferred to RAM before being executed.

• .bss, .gbss, .zbss, .tbss, and .sbss attributes
Global variables and static-declared variables are stored in these sections. They are located in RAM,
and do not have their entities in ROM.
.bss (located in the default data area)
.gbss (located in the G data area)
.zbss (located in the Z data area)
.tbss (located in the T data area)
.sbss (located in the S data area)

• .data, .gdata, .zdata, .tdata, and .sdata attributes
Pre-valued variables are stored in these sections. They have their entities (initial values) in ROM, and
can be transferred to RAM for use as pre-valued variables. The data areas in which they will be
located are the same as those for .bss to .sbss.

• .rodata, .rozdata, .rotdata, and .rosdata attributes
Constants are stored in these sections. They have their entities in ROM. The data areas in which they
will be located are the same as those for .bss to .sbss. However, the constants specified to be located in
a G data area are included in the .rodata section, and will be located in the default data area.

• Other attributes
Any attribute can be set.

The attribute of each section should be specified in a linker script file (.lds).
Example: Definition of a section named .bss that has the attribute .bss

.bss 0x00000000 : { ← The .bss here is the name of the section to be defined.
__START_bss = . ;
*(.bss) ; ← Specifies the .bss attribute.
__END_bss = . ;

}

2.5.3 Data-Area Pointers
The xgcc compiler generates code for the addresses of global symbols (variables, pre-valued data, and
constants) to be accessed, in the manner shown below.

Symbol address = data-area-pointer value + symbol value (offset value)

The use of data-area pointers eliminates the need to specify a 32-bit address for each memory location to
be accessed. As memory locations can be accessed using only the offset value (26 or 13 bits) of a data-area
pointer, the number of memory access instructions is reduced, as is the access time.
For example, the following in a C source

a = 1;

will be converted into the assembler code given below.
xld.w %r4,1 (1)
ext doff_hi(a) (2-1)
ext doff_lo(a) (2-2)
ld.w [%r15], %r4 (2-3)

This assembler code performs the following operation:
(1) Produces the value to be written to the variable 'a' in the register R4.
(2-1 through 2-3) Writes the value that was set in R4 in (1) to the address of the variable 'a' (R15 + symbol

offset value). Here, R15 plays the role of a data-area pointer (R15 is used as the default
data-area pointer), and the "offset value for symbol" is added to the data-area pointer by
the two extended instructions (2-1) and (2-2).

2 WRITING PROGRAMS FOR THE S1C33

32 EPSON S1C33 FAMILY APPLICATION NOTE

The linker acquires the offset address for 'a' by means of (a - __dp), as it resolves the symbols in (2-1) and
(2-2). The __dp is a symbol for the default data-area pointer, the value (address) of which is normally
specified in a linker script file (with the same value also set in R15 by a program).
Bits 25–13 of the acquired offset address are applied to the code for (2-1), and bits 12–0 are applied to the
code for (2-2).

In the above example, although two ext instructions are used to add the offset value for the symbol, if the
distance between the data-area pointer and the symbol is short (8K bytes or less), (2-1) is unnecessary and
the number of instructions can be reduced by one.

Presented above is an example in which the default data-area pointer __dp (R15) is used. The CPU
registers used as symbols for other data-area pointers are listed below.

Symbol Register
Default data-area pointer: __dp R15
G data-area pointer: __gdp R15–R12 (Shared with one of the other data areas)
Z data-area pointer: __zdp R14
T data-area pointer: __tdp R13
S data-area pointer: __sdp R12

The data-area pointers must be set in the above registers after a program is booted. In no case will these
registers be changed by a compiler. (The registers for unused data-area pointers may be used as scratch
registers by specifying the compiler option -mdp.)
Example: To use the default, G, Z, and T data areas in a standard macro model

/* boot.s */

.global BOOT

.align 2

.text
BOOT:

xld.w %r4, 0x800
ld.w %sp, %r4

xld.w %r15, __dp /* set default data area pointer */
xld.w %r14, __zdp /* set default z area pointer */
xld.w %r13, __tdp /* set default t area pointer */
 :

The values for the data-area-pointer symbols should be set in a linker by one of the following methods:

1. Setting data-area pointers in the command line of the linker
Example: To set __dp, __gdp, and __zdp using the -defsym option
DOS>ld.exe -Map test.map -o test.elf boot.o -defsym __dp=0x0 -defsym __gdp=0x0
 -defsym __zdp=0x10000 -N

2. Specifying data-area pointers in a linker script file
Example: To set __dp, __gdp, and __zdp in a linker script file
DOS>ld.exe -T test.lds -Map test.map -o test.elf boot.o

(Data-area-pointer specification part in test.lds)
:

 SECTIONS
 {
 /* data pointer symbol By GWB33 */
 __dp = 0x00000000;
 __gdp = 0x00000000;
 __zdp = 0x00010000;

 /* section information By GWB33 */
 . = 0x0;

:

∗ Data-area pointers can also be set using the linker script editor of the work bench gwb33.

Always be sure to define __dp, as it is used normally.

2 WRITING PROGRAMS FOR THE S1C33

S1C33 FAMILY APPLICATION NOTE EPSON 33

2.5.4 Specifying Compiler Options
Before data areas can be used, the compiler options inherent in the S5U1C33001C must be set appropri-
ately. The compiler options associated with data areas are listed below.

-mdp, -mgda, -mgdp, -mezda, -metda, -mesda

The -mdp option specifies the data area to be used.
-mdp=1 Only the default data area will be used.
-mdp=2 The default and the Z data areas will be used.
-mdp=3 The default and the Z and T data areas will be used.
-mdp=4 The default and the Z, T, and S data areas will be used.

The above four are the only combinations that can be specified by -mdp. No other combinations, e.g., use
of the T and S data areas without use of the Z data area, can be specified. To use the S data area, for
example, the Z and T areas must be used.
It is possible to use only the default and one other data area, such as Z, by specifying -mdp=4. In such a
case, care should be taken to ensure that data will not be located in the T and S data areas by a program.
However, the data areas must be used in the order of Z, T, and S, without skipping the intermediate areas.

The -mgda option specifies the size of the data to be located in the G data area. To locate a variable 4
bytes or less in size in the G data area, for example, specify -mgda=4. If -mgda=0 is specified, the G data
area will not be used. The G data area is located at the beginning (8KB) of other data areas. -mgdp is the
option for specifying that data area. For example, specifying -mgdp=zdp causes the G data area to be
located at the beginning of the Z data area, with the result that the same data-area pointer as for the Z
data area, R14, is used for the area. By default, -mgdp=dp is assumed, so that the G data area will be
located at the beginning of the default data area. For details on the G data area, refer to Section 2.5.7, "G
Data Area".

The options -mezda, -metda, and -mesda are used to expand the sizes of the Z, T, and S data areas,
respectively, to 64MB. When these options are not specified, each area is 8KB in size and can be accessed
using two instructions (ext + access instruction). When one of these options is specified, data access to the
area is expanded to three instructions (ext + ext + access instruction). Use these options when it is neces-
sary to access a memory area greater than 8KB in size using a data pointer. Note that the default data-area
pointer is fixed for access of up to 64MB and cannot be changed to 8KB.

These compiler options must be specified the same way in all source files used. If they are specified
differently between source files, register destruction or erratic memory access may occur, or an error may
occur during linking.
Particularly in the creation of a library, it is recommended that only the default data area be used as much
as possible, with the following options specified:
-mdp=4, -mgda=0

This method of creating a library is not desirable from a performance standpoint, as all of the registers
R15 through R12 are reserved for use as data-area pointers (the number of those usable as scratch regis-
ters for the compiler is reduced), but because these registers will not be destroyed, the library can also be
linked to modules that use other data areas.
When the ANSI library provided for the S5U1C33001C is used, a performance improvement can be
expected as a result of recompiling the library using settings adjusted to suit the operating environment.

Supplementary explanation of the -mdp option

Table 2.5.4.1 Registers used by each -mdp option
Register

R15
R14
R13
R12
R11
R10

-mdp=1
__dp

Scratch register
Scratch register
Scratch register
Scratch register
Scratch register

-mdp=2
__dp
__zdp

Scratch register
Scratch register
Scratch register
Scratch register

-mdp=3
__dp
__zdp
__tdp

Scratch register
Scratch register
Scratch register

-mdp=4
__dp
__zdp
__tdp
__sdp

Scratch register
Scratch register

-mdp=5
__dp
__zdp
__tdp
__sdp

Protection register*
Scratch register

-mdp=6
__dp
__zdp
__tdp
__sdp

Protection register*
Protection register*

∗ xgcc uses the stack in place of this register.

2 WRITING PROGRAMS FOR THE S1C33

34 EPSON S1C33 FAMILY APPLICATION NOTE

Although the effective numbers usable for the -mdp option are shown here as 1 to 4, the compiler will
actually accept -mdp=5 and -mdp=6 as well, without causing an error. However, -mdp=5 and -mdp=6
have no effect as options for specifying the data-area-pointer numbers. As the number of registers
used as data pointers is limited to a maximum of 4 from R15 to R12, the number of data pointers is not
changed by specifying -mdp=5 or greater. When -mdp=4, the compiler uses R11 and R10 as scratch
registers. When -mdp=5 or -mdp=6, R11 or R11 and R10, respectively, become protected registers
(those that the compiler does not use). These registers can be freely used from the assembler with no
need to save values. It should be noted that, when -mdp=5 or 6 is specified, the register variables that
would otherwise be assigned to R10 and R11 are assigned to the stack instead, with a resulting
decrease in the execution speed. As assembler-only registers such as these may be utilized to good
effect in, for example, compiler tuning in the future, they are left intact.
It is recommended that -mdp be set in the range of 1 to 4.

2.5.5 Method for Locating Data in the Data Areas
To locate variables and the like in a specific data area, use the method described below to define data.

<Data type> <Symbol> __attribute__((Xda));

(Xda= zda, tda, sda)

Example:
char c_default; // put to default
char c_z __attribute__((zda)); // put to Z
char c_t __attribute__((tda)); // put to T
char c_s __attribute__((sda)); // put to S

∗ In this example, -mgda=0 is assumed (G data area unused).

Global variables without initial values, pre-valued variables, and constants are located in sections .Xbss,
.Xdata, and .roXdata, respectively. The data defined without data-area declarations is located in the
default data area.

When variables and the like are located in the G data area, the size of the data to be located can be
specified using the compiler option -mgda. Data no larger than the size specified by the -mgda option
will be located in the G data area.
Example: When -mgda=2 is specified

char c_data; // put to G
unsigned short us_data; // put to G
long us_data; // put to default

∗ In this example, -mgdp=dp is assumed.

Constants are located in the default data area (.rodata section) regardless of what area is specified by the
-mgdp option.

If a variable specified to be located in the G data area by the -mgda option is accompanied by
__attribute__((Xda)) declaration, it is located preferentially in the Xda area, overriding the specification.

In the xgcc compiler, referencing variables or constants in other sources using an extern declaration
requires caution. If the content of the extern declaration of a variable is not the same as that defined in the
referenced file, the variable will inadvertently be handled as another variable present in other than the
data area in which the variable to be referenced exists. When referencing variables by extern, make sure
their data types and data-area declarations are exactly the same as those of the original variable.
Example 1: Improper data-area declaration

file1.c:
char c_sdata __attribute__((sda));

file2.c:
extern char c_sdata;

In this case, as the variable c_sdata in file2.c is regarded as a variable in the default or the G data area,
the variable defined in file1.c cannot be accessed. It is necessary that __attribute__((sda)) be declared
in file2.c as well.

2 WRITING PROGRAMS FOR THE S1C33

S1C33 FAMILY APPLICATION NOTE EPSON 35

Example 2: Improper specification of the data size (when the compiler option -mgda=4 is specified)
file1.c:

char c_data[0x100];

file2.c:
extern char c_data[];

Although the variable c_data in file1.c is a variable in the default data area, it is regarded in file2.c as a
variable of 4 bytes or less in size that is present in the G data area. The same variable declaration must
be entered in file2.c as well. The correct extern declaration is shown below.

file1.c:
char c_data[0x100];

file2.c:
extern char c_data[0x100];

In order for the correct data area to be accessed, make sure the content of the extern declaration is the
same as that of the variable in the referenced file.

2.5.6 Method for Setting Data-Area Pointers

● Basic settings
Data-area pointers should normally be set to the lowermost addresses in the respective data areas. In
such a case, it is necessary that sections of a given data area be located within 64M bytes from the
data-area-pointer value. However, for the Z, T, and S data areas, each of which is within 64M bytes in
size, their data sizes must be expanded using the compiler options -mezda, -metda, and -mesda,
respectively.
Only for systems using a CPU that supports advanced macro, the entire 32-bit space can be used as
the default data area.

.roXdata
.Xdata
.Xbss

X data area
Within 64M bytes
(except for the default data
area in advanced macro)

__Xdp

Fig. 2.5.6.1 Maximum size of a data area

The following explains the basic method for setting data-area pointers. Assuming that the read-only
sections (such as the .text and .rodata sections) that are normally placed in ROM comprise the 'code
section', and that the sections that are normally placed in RAM (such as the .bss and .data sections)
comprise the 'data section'.

In cases where the 'code section' and the 'data section' are both placed within 64MB from the
default data-area pointer (__dp)

Data section (RAM)
.bss, .data, etc.

Code section (ROM)
.text, .rodata, etc.

G data area
(<8KB)

Default
data area
(< 64MB)

__dp(=%r15) __gdp(=%r15)

High
address

If the 'data section' is to be located at
lower addresses than the 'code section',
set the lowermost address of the 'data
section' in __dp. Set -mgdp=dp, so that
the G data-area pointer can be shared
with %r15.

Fig. 2.5.6.2 Location example 1

Data section (RAM)
.bss, .data, etc.

Code section (ROM)
.text, .rodata, etc.

G data area
(<8KB)

Default
data area
(< 64MB)

__dp(=%r15) __gdp(=%r15)

High
address

If the 'code section' is to be located at
lower addresses than the 'data section',
set the lowermost address of the 'code
section' in __dp. Set -mgdp=zdp, so
that %r14 is assigned to the G data-
area pointer, and set the lowermost
address of the 'data section'.Fig. 2.5.6.3 Location example 2

2 WRITING PROGRAMS FOR THE S1C33

36 EPSON S1C33 FAMILY APPLICATION NOTE

In cases neither the 'code section' nor the 'data section' can be placed within 64MB from the
default data-area pointer (__dp)
(such as when the data section is placed in area 17 while the code section is placed in area 18)

Data section (RAM)
.bss, .data, etc.

Code section (ROM)
.text, .rodata, etc.

G data area
(<8KB)

Default
data area
(< 64MB)

High
address

__dp(=%r15)

__gdp(=%r14)

Z data area
(< 64MB)

__zdp(=%r14)

Set the lowermost address of the 'code
section' in __dp. Set -mgdp=zdp, so
that %r14 is assigned to the G data-
area pointer, and set the lowermost
address of the 'data section'.

Fig. 2.5.6.4 Location example 3

Because the G data area is only 8K bytes, if all data cannot be placed in the G data area, allocate the
excess data to the S, T, or Z data areas by specifying an attribute (e.g., int __attribute__((sda)) foo;). In
this case, however, because the S, T, and Z data areas use %r12, %r13, and %r14, respectively, data
pointers need to be set not to use the G data area (-mgda=0).

The three sections .bss, .data, and .rodata are used in virtually all programs. Make sure that all of
these sections will be located in the default data area within 64M bytes from the default data-area
pointer __dp as much as possible.
The following shows an example that is normally used. In this example, ROM and RAM are assumed
to be allocated to addresses beginning with 0xc00000 and those beginning with 0x0, respectively.

.gbss

.data (VMA)

.gdata (VMA)
.bss

Always make sure this area
is within 8K bytes in size.__dp = 0x0

__gdp = 0x00x00000000

.text

.gdata (LMA)

.rodata
.data (LMA)

0x00c00000

Fig. 2.5.6.5 Section location and data-area-pointer setup example 1

For systems that contain one each of ROM and RAM, section locations similar to this example are a
standard configuration. If all of the data that must be accessed quickly cannot be located in 8K bytes
of the G data area, prepare a Z data area after the .data section (VMA) or .gdata section (LMA), and
make sure the data in that area will be accessed via a two-instruction expansion. Executing a program
in RAM is another effective means of achieving high-speed processing.

● Adding a data-area pointer
For systems having a memory device other than that shown in the above configuration, set one of the
S, T, or Z data areas. The example shown below assumes a system having a large-capacity RAM
beginning with the address 0x04000000 added to the example configuration shown above.

.zbss
.zdata If within 8K bytes, the area can be

accessed using two instructions.
__zdp = 0x040000000x04000000

Fig. 2.5.6.6 Section location and data-area-pointer setup example 2

This example uses a Z data area and sets the data-area pointer __zdp at the address 0x04000000 (start
address of the device). If __zdp is set to any value greater than 0x04000000 here, areas from 0x04000000 up
to the set address are handled as unused areas. Although symbols or variables can be set at addresses
lower than the data-area pointer, those symbols cannot be accessed from the C source. A warning may be
generated during linking. These symbols can be accessed from the assembler source, however.

If the .zbss and .zdata sections exceed 8K bytes in size, specify the -mezda option during compilation
to extend the area size to 64M bytes. However, as three instructions are used to access the Z data area
each time (two instructions for a size of 8K bytes), the expansion of area sizes is undesirable in terms
of code size and access speed. If an S or T data area is usable here, set those data areas after setting the
Z data area to increase the number of fast-accessible areas.

2 WRITING PROGRAMS FOR THE S1C33

S1C33 FAMILY APPLICATION NOTE EPSON 37

.zbss

.tdata

.zdata
.tbss

Set to within 8K bytes
__zdp = 0xd00000

__tdp = _End_zdata*

__sdp = _END_tdata*

0x00d00000

.sbss
.sdata

Set to within 8K bytes

∗ In gwb33, symbols cannot be used to set the data-area pointer values. When gwb33 is used to create a linker
script file, avoid setting those data-area pointers that cannot be set in that way. Instead, after outputting a linker
script file, use an editor or the like to add settings for the desired data pointers.

Fig. 2.5.6.7 Section location and data-area-pointer setup example 3

In the case of this example, the data in the Z and T data areas can be accessed quickly via two-
instruction expansion. However, be aware that the number of scratch registers usable for the compiler
decreases as the number of data areas used increases (in this example, the CPU registers R14 through
R12 cannot be used as scratch registers), it may cause a decrease in the overall speed of the program.

● Accessing constants
Constants such as those shown in the example below are placed in the .rodata section of the default
data area, a section that is located in ROM.
Example:
sprintf(szBuf, "Hello, World!!\n");

The character array "Hello, World!!\n" here is located in the .rodata section.

Though constants may not have been specifically defined, it is possible that a .rodata section exists as
in this example. As the default data area is accessed using three instructions, a performance improve-
ment can be expected as a result of defining the frequently referenced constants so that they are
located in another 8K-byte data area.
Example:
const char sz_s_msg1[16] __attribute__((sda)) = "Hello, World!!\n";

sprintf(szBuf, sz_s_msg1);

This example assumes that the S data area can be accessed using a two-instruction expansion (-mesda
not used). If the S data area is accessed using three instructions, a speed improvement cannot be
expected as long as the number of wait states required for memory access remain the same.

2.5.7 G Data Area
The G data area is a special data area that differs from the default, S, T, and Z data areas. Its size is fixed
at 8K bytes, enabling it to be accessed quickly using two instructions. Furthermore, as it does not have an
inherent data-area pointer, one of the other data-area pointers is used. Therefore, this area shares part of
other data areas. When the device is used in advanced macro mode, the G data area can be set indepen-
dently of other data areas.
For data to be placed in the G data area, no declarations such as those necessary for the S, T, and Z data
areas are required. Data with no __attribute__ declaration is placed in the G data area if its size is equal to
or smaller than the size specified using the -mgda option, not in the default data area.
Example: When -mgda=2 is specified (all in the example are global variables)

char c_data; ← Located in the G data area
short s_data; ← Located in the G data area
int i_data; ← Located in the default data area

When -mgda=2 is specified, variables of less than 2 bytes in size are located in the G data area.
When -mgda=0 is specified, the G data area is unused.

Normally, sections of the G data area should be located at the beginning of RAM, followed by sections of
a data area with which the data-area pointer is shared.
In the example below, the default data-area pointer is used as the G data-area pointer.

2 WRITING PROGRAMS FOR THE S1C33

38 EPSON S1C33 FAMILY APPLICATION NOTE

.gbss

.data (VMA)

.gdata (VMA)
.bss

Always make sure this area
is within 8K bytes in size.__dp = 0x0

__gdp = 0x00x00000000

Fig. 2.5.7.1 G data area

When using the G data area, be sure to specify the -mgda and -mgdp options during compilation, and
also confirm that the value of the data-area pointer symbol __gdp in a linker script file is the same as that
of the specified data-area-pointer symbol.

• -mgdp option of the compiler
To use the default data-area pointer (R15), -mgdp=dp (default setting)
To use the Z data-area pointer (R14), -mgdp=zdp
To use the T data-area pointer (R13), -mgdp=tdp
To use the S data-area pointer (R12), -mgdp=sdp

• Settings in a linker script file
To use the default data-area pointer, __gdp=__dp*
To use the Z data-area pointer, __gdp=__zdp
To use the T data-area pointer, __gdp=__tdp
To use the S data-area pointer, __gdp=__sdp

Always be sure to specify the data-area-pointer symbol to be used, or exactly the same numeric value.

∗ When the advanced macro is used, this setting does not have to be __gdp=__dp.

The G data area is a data area that is used to store variables with or without initial values, and is effective
only for RAM-type devices. Local static variables are also a candidate for being located in the G data area.
Constant data cannot be located in the G data area.

G data-area pointer in advanced macro mode
The advanced macro CPU has an available DP register that is used as the default data-area pointer. As
this enables R15 to be assigned to the G data-area pointer, it is possible to set an independent data
area that does not use the pointer for one of the other data areas.
The size of the G data area (maximum 8K bytes) and the conditions of data location specified by the
-mgda option are the same as when the standard macro described above is used.
To use this setting, specify the compiler option for the advanced macro CPU, -mc33adv.
The -mgdp option can be omitted, as it is used by default (-mgdp=dp). In a linker script file, set the
same data-area start address as that of R15 in __gdp.

.gbss
.gdata (VMA) Always make sure this area

is within 8K bytes in size.

Does not always have to be the same
as that of another data-area pointer.

__gdp = 0x100000000x10000000

Fig. 2.5.7.2 G data area in advanced macro mode

2 WRITING PROGRAMS FOR THE S1C33

S1C33 FAMILY APPLICATION NOTE EPSON 39

2.6 C and Code Optimization
This section explains how to optimize the instruction code generated by the C compiler, using main.c in
gnu33\sample\ccode as an example.
The original source is shown below.

Assembly source boot routine [ccode\boot.s]

; boot.s 2002.02.04
; boot program

.text

.align 2

.global boot

.long boot
boot:

xld.w %r15,0x0800
ld.w %sp,%r15 ; set SP
xld.w %r15,__dp ; set default data area pointer
xcall main ; goto main
xjp boot ; infinity loop

C source main program [ccode\main.c]

/* main.c 1999.7.28 */
/* sample program for optimize*/

struct ST gst;
int a;
struct ST {

int s1;
int s2;

};

main()
 {

int b;
struct ST st;
int ar[10];

a = 1;
b = 2;

st.s1 = 3;
ar[3] = 4;

sub1(a, &b);
sub2();

gst.s2 = 5;
sub3(&st, ar);

 }

sub1(a,b)
 int a;
 int *b;
 {

*b = a;
 }

sub2()
 {

volatile char *vp;

vp = (volatile char *)0x40000;
*vp = 2;

*(volatile char *)(0x48000) |= 0x1;
 }

sub3(st, ar)
 struct ST *st;
 int ar[];
 {

st->s2 = 4;
ar[5]=5;

 }

2 WRITING PROGRAMS FOR THE S1C33

40 EPSON S1C33 FAMILY APPLICATION NOTE

The code generated through the compilation of this default make file is shown below.
>objdump -S sample.elf > dis_elf.txt

Code derived by compiling [ccode\dis_elf.txt]

sample.elf: file format elf32-c33

Disassembly of section .text:

00c00000 <__START_text>:
 c00000: 0004 nop ***
 c00002: 00c0 pops %psr ***

00c00004 <boot>:
.align 2
.global boot
.long boot

boot:
xld.w %r15,0x0800

 c00004: c020 ext 0x20
 c00006: 6c0f ld.w %r15,0x0 xld.w %r15,0x800

ld.w %sp,%r15 ; set SP
 c00008: a0f1 ld.w %sp,%r15 ld.w %sp,%r15

xld.w %r15,__dp ; set default data area pointer
 c0000a: c000 ext 0x0
 c0000c: c000 ext 0x0
 c0000e: 6c0f ld.w %r15,0x0 xld.w %r15,0x0

xcall main ; goto main
 c00010: c000 ext 0x0
 c00012: c000 ext 0x0
 c00014: 1c04 call 0x4 xcall 0x8 (0x00C0001C)

xjp boot ; infinity loop
 c00016: dff8 ext 0x1ff8
 c00018: dfff ext 0x1fff
 c0001a: 1ef5 jp 0xf5 xjp 0xffffffea (0x00C00004)

00c0001c <main>:
int s2;

};

 |

sub3(st, ar)
 struct ST *st;
 int ar[];
 {

st->s2 = 4;
 c00070: 6c44 ld.w %r4,0x4 ld.w %r4,0x4
 c00072: c004 ext 0x4
 c00074: 3c64 ld.w [%r6],%r4 xld.w [%r6+0x4],%r4

00c00076 <.LM23>:
ar[5]=5;

 c00076: 6c54 ld.w %r4,0x5 ld.w %r4,0x5
 c00078: c014 ext 0x14
 c0007a: 3c74 ld.w [%r7],%r4 xld.w [%r7+0x14],%r4

00c0007c <.LM24>:
 }
 c0007c: 0640 ret ret

2 WRITING PROGRAMS FOR THE S1C33

S1C33 FAMILY APPLICATION NOTE EPSON 41

● About external variables and auto variables
The following section explains how external variables and auto variables are accessed.

a = 1; ← Accesses to external variable
 c0001e: 6c16 ld.w %r6,0x1 ld.w %r6,0x1
 c00020: c000 ext 0x0
 c00022: c008 ext 0x8
 c00024: 3cf6 ld.w [%r15],%r6 xld.w [%r15+0x8],%r6

00c00026 <.LM4>:
b = 2; ← Accesses to auto variable

 c00026: 6c24 ld.w %r4,0x2 ld.w %r4,0x2
 c00028: 5ca4 ld.w [%sp+0xa],%r4 ld.w [%sp+0xa],%r4

'a' is one of external variables (those with absolute addresses, which here include constants in ROM
and static declared variables, in addition to variables in RAM), while 'b' is one of auto variables
(variables placed in the stack).

Normally, an external variable is accessed following the procedure
1) Set 32-bit value (variable's address) in R15 (data pointer)
2) Access memory based on R15

Thus, four instructions are required.

Because auto variables are accessed following the procedure below
1) Access the location indicated by SP + offset

an auto variable in the stack area may be accessed with one instruction, if the offset is 63 bytes or less
in byte access, 126 bytes or less in half-word access, or 252 bytes or less in word access. It may be
accessed with two instructions even if the offset exceeds it. Relatively small number of auto variables
are placed in registers automatically, resulting in even more efficient processing. Since they are
already placed in registers, this is the case of "access with zero instructions".

For the following reasons, we recommend assigning variables used temporarily in a routine to auto
variables whenever possible.
• The number of instructions required for access is small, as described above, and the processing

speed is fast.
• Because auto variables are placed temporarily in the stack, RAM does not need to be occupied at all

times, conserving RAM use.
• Absence of register assignments and unnecessary accesses make it easier to reap the benefits of

optimization by the C compiler.

Excessive use of auto variables has the following disadvantage:
• The practice increases stack size, making it difficult to predict the upper limit.

The stack size can be checked with a debugger, as follows.
1) Allocate a slightly larger stack area.
2) Fill the stack with (as an example) 5555.
3) Execute the application.
4) Finally, display the stack area and check the maximum range of stack used (the range where 5555

are changed).

2 WRITING PROGRAMS FOR THE S1C33

42 EPSON S1C33 FAMILY APPLICATION NOTE

● About volatile variables
To reduce code size and increase processing speed, recent C compilers have been designed whenever
possible to minimize loads/stores to memory and to recycle values placed in the registers. Con-
versely, a description of memory access in C does not guarantee that memory is accessed at that point.
This presents problems for statements that access I/O registers. To resolve this problem, ANSI defines
a type of variable known as "volatile". Use this type of variable to access I/O registers.

sub2()
 {

volatile char *vp;

vp = (volatile char *)0x40000;
 c0005e: c000 ext 0x0
 c00060: d000 ext 0x1000
 c00062: 6c05 ld.w %r5,0x0 xld.w %r5,0x40000

00c00064 <.LM18>:
*vp = 2;

 c00064: 6c24 ld.w %r4,0x2 ld.w %r4,0x2
 c00066: 3454 ld.b [%r5],%r4 ld.b [%r5],%r4 ← Access

00c00068 <.LM19>:

*(volatile char *)(0x48000) |= 0x1;
 c00068: c200 ext 0x200
 c0006a: 6005 add %r5,0x0 xadd %r5,0x8000
 c0006c: b050 bset [%r5],0x0 bset [%r5],0x0 ← bset access

00c0006e <.LBE3>:
 }
 c0006e: 0640 ret ret

The variable "vp" is declared as a volatile type, and the address 0x40000 is set with 2 written to it. This
ensures a write to memory.

Additionally, 0x1 is OR written to address 0x48000. Here, the immediate value 0x48000 is cast for
handling as an address pointer. Using the volatile byte type to set or clear a bit generates the instruc-
tions bset and bclr, enabling processing with one instruction where three instructions may otherwise
be required.

● About pointer variables
Access to a location pointed to by a pointer variable is processed with one instruction.

sub1(a,b)
 int a;
 int *b;
 {

*b = a;
 c0005a: 3c76 ld.w [%r7],%r6 ld.w [%r7],%r6 ← Access by one instruction

00c0005c <.LM14>:
 }
 c0005c: 0640 ret ret

2 WRITING PROGRAMS FOR THE S1C33

S1C33 FAMILY APPLICATION NOTE EPSON 43

● About structure variables and arrays
Basically external or auto variables, structure variables and arrays are accessed in the same way as the
external and auto variables previously discussed.

main()
 {
 c0001c: 840d sub %sp,0xd sub %sp,0xd

:
:

st.s1 = 3;
 c0002a: 6c34 ld.w %r4,0x3 ld.w %r4,0x3
 c0002c: 5cb4 ld.w [%sp+0xb],%r4 ld.w [%sp+0xb],%r4 ← Accesses auto variable

00c0002e <.LM6>:
ar[3] = 4;

 c0002e: 6c44 ld.w %r4,0x4 ld.w %r4,0x4
 c00030: 5c34 ld.w [%sp+0x3],%r4 ld.w [%sp+0x3],%r4 ← Accesses auto variable

:
:

sub2();
 c0003c: c000 ext 0x0
 c0003e: c000 ext 0x0
 c00040: 1c0f call 0xf xcall 0x1e (0x00C0005E)

00c00042 <.LM9>:

gst.s2 = 5;
 c00042: 6c54 ld.w %r4,0x5 ld.w %r4,0x5
 c00044: c000 ext 0x0
 c00046: c004 ext 0x4
 c00048: 3cf4 ld.w [%r15],%r4 xld.w [%r15+0x4],%r4 ← Accesses external variable

Before performing an access, the C compiler converts each element of a structure or array into an
offset relative to the SP when the element is an auto variable, or into an absolute address when the
element is an external variable. Structures and arrays are thus handled in exactly the same way as
ordinary auto and external variables.

● About pointer type structures and arrays

sub3(st, ar)
 struct ST *st;
 int ar[];
 {

st->s2 = 4;
 c00070: 6c44 ld.w %r4,0x4 ld.w %r4,0x4
 c00072: c004 ext 0x4 ← Access as offset
 c00074: 3c64 ld.w [%r6],%r4 xld.w [%r6+0x4],%r4 ← Two instructions

00c00076 <.LM23>:
ar[5]=5;

 c00076: 6c54 ld.w %r4,0x5 ld.w %r4,0x5
 c00078: c014 ext 0x14 ← Access as offset
 c0007a: 3c74 ld.w [%r7],%r4 xld.w [%r7+0x14],%r4 ← Two instructions

00c0007c <.LM24>:
 }
 c0007c: 0640 ret ret

When the pointer for an external variable structure or array is used as shown above, each element of
the structure or array may be accessed with two instructions. (This is true for up to 4KB of access area,
with a maximum offset of 13 bits. Larger areas require three instructions.) This technique effectively
provides access to large external variable areas.

2 WRITING PROGRAMS FOR THE S1C33

44 EPSON S1C33 FAMILY APPLICATION NOTE

● Precautions to be taken when global symbols with the same name are defined
1) Even when two or more global symbols with the same name are defined in one C source file, the

compiler does not assume an error or issue a warning. They are regarded as one symbol definition
when processed by the compiler. If it is necessary to display a warning for such symbol defini-
tions, specify the "-Wredundant-decls" option before compiling.

2) If global symbols with the same name but without an extern declaration are defined in different C
source files, the linker does not assume an error for duplicate definitions. The symbols are re-
garded as the same address when processed by the linker.
Example:
(src1.c)

int iSym1;
iSym1 = 1;

(src2.c)
int iSym1;
iSym1 = 2;

Although the actual code is linked normally, the symbol iSym1 is recognized as existing in two
instances in the .bss section, and a double sized space is reserved in the .bss section.
iSym1 = 4 bytes, so 4 bytes × 2 = 8 bytes in total

This causes an unused area (in this case, 4 bytes) to occur. To avoid this, always be sure to write
extern declarations when external symbols are to be referenced.
Example:
(src1.c)

int iSym1;
iSym1 = 1;

(src2.c)
extern int iSym1;
iSym1 = 2;

3) If constant symbols with the same name are defined in different C source files and a reference is
made to one of those symbols, a value defined in the same source file is referenced.
Example:
(src1.c)

const sym1 = 1;
int i;

i = sym1; /* Value 1 is assigned to i */

(src2.c)
const sym1 = 2;
int k;

k = sym1; /* Value 2 is assigned to k */

Because coding such as this may cause a problem or failure, avoid definitions of the same symbol
name as much as possible.

4) Symbols with exactly the same name may be defined in one file without causing a problem. For
example, when two instances of a symbol with the same name are defined, two variable areas are
reserved in memory. Note, however, that although one of the variables can be accessed normally,
the other variable cannot be accessed at all. As this means that memory space is used wastefully,
avoid defining symbols with the same name as much as possible.
Example:

int siData1;

int siData1;

sub() {
siData1 = 1;

};

Although siData1 on one side can be accessed normally, siData1 on the other side cannot be
accessed, resulting in wasteful use of .bss.

2 WRITING PROGRAMS FOR THE S1C33

S1C33 FAMILY APPLICATION NOTE EPSON 45

● Conclusion
The following lists recommendations for C code and code optimization in order of importance.

1) Use auto variables (variables in the stack) unless external variables (those with absolute addresses)
are unavoidable.

2) Write external variables as structures or arrays, and access them as offset from the beginning
pointer. This is generally effective for address ranges up to 4KB.

Whenever possible, use -O for the GCC33 optimize switch. Specifying -O2 or -O3 only results in
special optimizing processing, without improving results.

The C compiler optimizes code generation according to one of the specified switches -O, -O2, or -O3.
When generating code, the xgcc C compiler optimizes it by placing emphasis on code efficiency and
speed (mainly code efficiency). The greater the value of -O, the higher the code efficiency. However,
there is a greater possibility of causing a problem, such as absence of some debugging information in
the output. If optimization cannot be executed normally, reduce the value of optimization. Normally, -O
should be specified. The basic make file generated by the gwb33 work bench specifies -O option when
invoking the xgcc C compiler.
When an optimization is specified, the xgcc C compiler reuses the value loaded from the memory to
the register to reduce memory read/write operations. So, sometimes the memory may not be ac-
cessed. To avoid this situation, take measures as shown below.
• Declare variables with "volatile". Example) volatile char IO_port1;
• Do not specify the optimization.
• Use "-fvolatile". Pointers are accessed as volatile objects.

Use "-fvolatile-global". External variables are all accessed as volatile objects.

2 WRITING PROGRAMS FOR THE S1C33

46 EPSON S1C33 FAMILY APPLICATION NOTE

2.7 Mapping by Linker
Sections are mapped into memory based on a linker script file.
Use the -T command-line option of the ld linker to specify the linker script file.
Shown below is an example for a general script file using only the default data-area pointer, where xgcc
option -mgdp=dp.

● Memory mapping
Define the data-area pointer at address 0x0, __dp = 0x0

Internal RAM
.gbss: Located beginning at 0x0
.gdata: Located beginning at the last address of .gbss (Load area follows .rodata)
.bss: Located beginning at the last address of .gdata
.data: Located beginning at the last address of .bss (Load area follows .gdata load area)

External ROM

.text in test2.o, test3.o: Located beginning at 0x600000

External ROM
.text (other than test2.o, test3.o): Located beginning at 0xc00000
.rodata: Located beginning at the last address of .text
.gdata load area (LMA): Located beginning at the last address of .rodata

Initial values must be copied to __start_gdata when executed
.data load area (LMA): Located beginning at the last address of .gdata

Initial values must be copied to __start_data when executed

Here, the boot vector is assumed to be present at the beginning of the .text section in boot.o.

● Linker script file
The linker script file should be created in the same manner as the one shown below.

Linker script file

OUTPUT_FORMAT("elf32-c33", "elf32-c33",
 "elf32-c33")
OUTPUT_ARCH(c33)
SEARCH_DIR(.);
SECTIONS
{

__dp = 0x0;

. = 0x0;

.gbss : { *(.gbss) }

.gdata :
AT (ADDR (.text) + SIZEOF (.text) + SIZEOF (.rodata))

{ __start_gdata = . ; *(.gdata); __end_gdata = . ; }
.bss : { *(.bss) }
.data :

AT (LOADADDR (.gdata) + SIZEOF (.gdata))
{ __start_data = . ; *(.data); __end_data = . ; }

. = 0x600000;
outputa : {

test3.o (.text)
test2.o (.text)

}

. = 0xc00000;

.text : {
boot.o(.text) ← (1)
main.o(.text)
C:/gnu33/lib/libc.a(.text) ← (2)
C:/gnu33/lib/libgcc.a(.text);

}
.rodata : { *(.rodata) }

}

2 WRITING PROGRAMS FOR THE S1C33

S1C33 FAMILY APPLICATION NOTE EPSON 47

(1) Explicitly specify that boot.o with a boot vector be located at the beginning of the section.

(2) If "*" cannot be specified as a file location in the section, the library will be forcibly added to any
section. As it is possible that this added library will overlap another section, be sure to explicitly
specify the location of the library as much as possible.

Note: If a file name is specified without specifying "*" for the file location in the section, the sections for
which "*" is specified thereafter become such that the last file specified is located at the beginning
of the section.

● TEXT, DATA, and BSS sections
Contents written in C and assembly sources are ultimately categorized into three sections.

TEXT section This section stores program code and ROM data.
DATA section This section stores R/W'able data with initial values.
BSS section This section stores R/W'able data without initial values.

Example:
int a; ← Placed in the BSS section
int b=1; ← Placed in the DATA section
const int c=2; ← Placed in the TEXT section

main() ← Program is placed in the TEXT section
 {

a=b=c;
 }

Compiling the above results in the following.

.global b

.section .data
.stabs "b:G(0,1)",32,0,0,0

.align 2

.type b,@object

.size b,4
b:

.long 1 ← b is data in the DATA section

.global c

.section .rodata
.stabs "c:G(0,1)",32,0,0,0

.align 2

.type c,@object

.size c,4
c:

.long 2 ← c is data in the TEXT section

.section .text

.align 1
.stabs "main:F(0,1)",36,0,0,main

.global main

.type main,@function
main:
.stabn 68,0,8,.LM1-main
.LM1:
.stabn 68,0,9,.LM2-main
.LM2:

xld.w %r4,2 ;0x2 ← All instructions are placed in the TEXT section
ext doff_hi(b)
ext doff_lo(b)
ld.w [%r15],%r4
ext doff_hi(a)
ext doff_lo(a)
ld.w [%r15],%r4

.stabn 68,0,10,.LM3-main

.LM3:
ret

.Lfe1:
.size main,.Lfe1-main

.stabs "a:G(0,1)",32,0,0,0
.global a

2 WRITING PROGRAMS FOR THE S1C33

48 EPSON S1C33 FAMILY APPLICATION NOTE

.section .bss

.align 2

.type a,@object

.size a,4
a:

.zero 4 ← a is placed in the BSS section

.text

.stabs "",100,0,0,Letext
Letext:

.ident "GCC: (GNU) 2.95.2 19991024 (release)"

Note that the classification of and directive commands for TEXT, DATA, and BSS incorporate UNIX
concepts.
Support for DATA sections (R/W'able variables with initial values) varies by specific vendor-supplied
development tool. Since some development tools do not support DATA sections, avoid using this
section when creating a new source. For better portability, define data as BSS section variables and
initialize them in the program as necessary.
When using C sources already developed on a PC, the DATA sections in the source may be left intact.
When handling DATA sections as R/W'able data in a built-in system, you need to write the data into
ROM and expand into RAM when booting. Some real-world examples are provided further below.

● Method for using the DATA section and caching the program to internal RAM
The DATA section is a R/W'able variable area with initial values. (For more information on each
section, see "● TEXT, DATA, and BSS sections" above.) To use the DATA section, the following three
conditions must be met.
1) The initial values of variables are written into ROM.
2) The data in ROM is expanded into RAM.
3) Program operation is based on the expanded into RAM.

By following a similar method, the program can be copied into the internal RAM for execution at high
speed. If the program exists in external ROM or flash memory, one to two wait states may be incurred
for access. However, when it is copied into the internal RAM, the program can be executed with zero
wait states.
This procedure is illustrated using gnu33\sample\section.

Method for specifying a linker command file
Example: Excerpt from section\section.lds

.bss 0x00000000 :
 {
 __START_bss = . ;
 main.o(.bss) ;
 __END_bss = . ;
 }

.data __END_bss : AT(__END_rodata)
 {
 __START_data = . ; ← Section symbol indicating RAM area for data expansion
 *(.data) ;
 __END_data = . ;
 }
__START_data_lma = LOADADDR(.data); ← Section symbol indicating the storage area in ROM

.cache __END_data : AT(__START_data_lma + SIZEOF(.data))
 {
 __START_cache = . ; ← Section symbol indicating the program cache area in RAM
 cache.o(.text) ;
 __END_cache = . ;
 }
__START_cache_lma = LOADADDR(.cache);← Section symbol indicating the storage area in ROM

Share1 __END_cache :
 {
 __START_Share1 = . ;
 share1.o(.bss) ;
 __END_Share1 = . ;
 }

2 WRITING PROGRAMS FOR THE S1C33

S1C33 FAMILY APPLICATION NOTE EPSON 49

Share2 __END_cache :
 {
 __START_Share2 = . ;
 share2.o(.bss) ;
 __END_Share2 = . ;
 }

.text 0x00c00000 :
 {
 __START_text = . ;
 boot.o(.text)
 main.o(.text)
 c:/gnu33/lib/libgcc.a(.text) ;
 __END_text = . ;
 }

.rodata __END_text :
 {
 __START_rodata = . ;
 *(.rodata) ;
 __END_rodata = . ;
 }

The linked map information can be confirmed using objdump -h.

Sections:
Idx Name Size VMA LMA File off Algn
 0 .bss 00000008 00000000 00000000 00001000 2**2
 ALLOC
 1 .data 00000004 00000008 00c000d4 00003008 2**2
 CONTENTS, ALLOC, LOAD, DATA
 2 .cache 0000003e 0000000c 00c000d8 0000300c 2**1
 CONTENTS, ALLOC, LOAD, CODE
 3 Share1 00000192 0000004a 0000004a 00001042 2**2
 ALLOC
 4 Share2 00000192 0000004a 0000004a 00001eb0 2**2
 ALLOC
 5 .text 000000ce 00c00000 00c00000 00002000 2**1
 CONTENTS, ALLOC, LOAD, READONLY, CODE
 6 .rodata 00000006 00c000ce 00c000ce 000020ce 2**2
 CONTENTS, ALLOC, LOAD, DATA
 7 .stab 00000618 00c000d4 00c000d4 0000304c 2**2
 CONTENTS, READONLY, DEBUGGING
 8 .comment 000000be 00c00a78 00c00a78 00003664 2**0
 CONTENTS, READONLY
 9 .stabstr 0000038c 00c006ec 00c006ec 00003722 2**0
 CONTENTS, READONLY, DEBUGGING

Transfer when booting
Transfer the data into RAM using the section symbols defined in the linker script file before starting
the program, as shown below.
Example: Excerpt from section\boot.s

.text

.long BOOT // BOOT VECTOR

BOOT:
xld.w %r15,0x800
ld.w %sp,%r15 // set SP 0x800
xld.w %r15, __dp // set data pointer
// if you use Advanced Macro CPU, please use below source.

/* xld.w %r4, __dp // set data pointer
ld.w %dp,%r4 // set data pointer */

// ROM has data at end of rodata; copy it
xld.w %r6, __START_data_lma // .data LMA
xld.w %r7, __START_data // .data VMA
xld.w %r8, __END_data // end of .data VMA
call HCOPY_LOOP

// transfer function cache_exec's program code to RAM
xld.w %r6, __START_cache_lma // .cash LMA
xld.w %r7, __START_cache // .cash VMA

2 WRITING PROGRAMS FOR THE S1C33

50 EPSON S1C33 FAMILY APPLICATION NOTE

xld.w %r8, __END_cache // .cash VMA
call HCOPY_LOOP

// start main

xcall main // goto main
jp BOOT // infinity loop

; copy %r6 addr to %r7 addr until %r8 addr

HCOPY_LOOP:
ld.b %r4,[%r6]+ // read byte from src addr
ld.b [%r7]+,%r4 // write byte to dest addr
cmp %r7,%r8 //
jrult HCOPY_LOOP
ret

Writing in C
When written in C, code similar to that shown below results.

extern char __START_cache_lma;
extern char __START_cache;
extern char __END_cache;

char *src = &__START_cache_lma
char *dst = &__START_cache;

while(dst < &__END_cache)
*dst++ = *src++;

Note: If the symbols generated by a linker script are referenced in C code, a linker error may result,
depending on the symbol value. When the above "char *dst=&__START_cache;" is compiled, code
similar to that shown below is generated.

ext doff_hi(__START_cache)
ext doff_lo(__START_cache)
add %r4,%r15

Although no problems are encountered if the offset from the symbol (address) is within 26 bits in
length, if the range is exceeded, the problem may occur that the address cannot be set correctly,
which may result in a linker error. This restriction is specific to the S5U1C33001C, which supports
data areas, and does not cause any problem in the GNU i386 compiler or the like.

● Specifying a library
To specify the ANSI library (lib/libc.a) or the emulation library (lib/libgcc.a) provided for the
S5U1C33001C in a linker script file, write a script like that shown below.

:
:

.text 0xc01000 :
{

boot.o(.text)
main.o(.text)
C:/gnu33/lib/libc.a(.text)
C:/gnu33/lib/libgcc.a(.text)

}

Make sure the library drive name and directory written here are exactly the same as the content
specified in the make file. The upper/lower cases must also be the same.

● Precautions regarding section-name definitions in a linker script file
In a linker script file, always be sure to define the sections ".text" and ".data". If these two section
names do not exist in the linked elf file, the debugger gdb will be unable to load that file.
Example:
TEST1 0xc00000 : { *.o (.text) }
TEST2 0xc01000 : { *.o (.data) }

For a definition like this, the ".text" and ".data" sections will not be output to the elf file.

2 WRITING PROGRAMS FOR THE S1C33

S1C33 FAMILY APPLICATION NOTE EPSON 51

● Examples of Linkage

Example 1) when the default data area only is used
The following is a linker script for minimum configuration:

Sample linker script file: sample\ldscript\default\default.lds

OUTPUT_FORMAT("elf32-c33", "elf32-c33",
 "elf32-c33")
OUTPUT_ARCH(c33)
SEARCH_DIR(.);
SECTIONS
{

/* data pointer symbol By GWB33 */
__dp = 0x0; ... 1

/* section information By GWB33 */
. = 0x0;

.bss 0x00000000 : ... 2
 {
 __START_bss = . ;
 *(.bss) ;
 __END_bss = . ;
 }

.data __END_bss : AT(__END_rodata) ... 3
 {
 __START_data = . ;
 *(.data) ;
 __END_data = . ;
 }
__START_data_lma = LOADADDR(.data);

.text 0x00c00000 : ... 4
 {
 __START_text = . ;
 *(.text) ;
 __END_text = . ;
 }

.rodata __END_text : ... 5
 {
 __START_rodata = . ;
 *(.rodata) ;
 __END_rodata = . ;
 }

}

1. The default data-area pointer (__dp) is set to 0x0.

2. All .bss sections in the input files are located beginning with address 0x0 as a .bss section. These
sections do not have an actual code, so it is not necessary to specify the load memory address.

3. The memory space immediately following the .bss section are allocated to the .data sections in the
input files. The initial data (actual code) is located following the .rodata section. The LMA is
specified by the AT statement. __END_rodata is the symbol defined in the .rodata command and it
indicates the location counter value immediately following the .rodata section.
__START_data and __END_data are defined to refer the start and end virtual memory addresses
(VMA) of the .data section. They can be used to copy data from LMA to VMA in the initialize
routine. For details on copying, refer to "Transfer when booting" in the paragraph "● Method for
using the DATA section and caching the program to internal RAM".

4. All .text sections in the input files are located beginning with address 0xc00000.

5. All .rodata sections in the input files are located immediately following the .text section.
__END_rodata is defined for specifying the LMA of the .data section.

Figure 2.7.1 shows the memory map configured with this sample script.
ld -o sample.elf file1.o file2.o -T default.lds

2 WRITING PROGRAMS FOR THE S1C33

52 EPSON S1C33 FAMILY APPLICATION NOTE

unused

unused

.data (2)

.data (2)

.data (2)

.rodata (2)
.rodata (2)

.text (2)

.text (2)

file2.o

.bss (2)

.bss (2).data (1)

.data (1)

.data (1).rodata (1)

.rodata (1)

.text (1)

.text (1)

file1.o

.bss (1) .bss (1) LMA
LMA
VMA
VMA

LMA

LMA

LMA

Default
data
area
(RAM)

ROM
LMA

Copy
before
using.

LMA
LMA

0x0

0xc00000

__end_rodata

__start_data

__dp

__end_data

Fig. 2.7.1 Memory map (Example 1)

Example 2) when all data areas are used

The following is a sample linker script when all the data areas are used:

Sample linker script file: sample\ldscript\all_area\allarea.lds

OUOUTPUT_FORMAT("elf32-c33", "elf32-c33",
 "elf32-c33")
OUTPUT_ARCH(c33)
SEARCH_DIR(.);
SECTIONS
{

 __dp = 0x0;
 __gdp = 0x0;
 __sdp = 0x1000;
 __tdp = 0x2000;
 __zdp = 0x3000;

. = 0x0;

.gbss : { *(.gbss) }

.gdata :
 AT (__load_gdata)
 { __start_gdata = . ; *(.gdata); __end_gdata = . ; }

.bss : { *(.bss) }

.data :
 AT (__load_data)
 { __start_data = . ; *(.data); __end_data = . ; }

. = 0x1000;

.sbss : { *(.sbss) }

.sdata :
 AT (__load_sdata)
 { __start_sdata = . ; *(.sdata); __end_sdata = . ; }

. = 0x2000;

.tbss : { *(.tbss) }

.tdata :
 AT (__load_tdata)
 { __start_tdata = . ; *(.tdata); __end_tdata = . ; }

. = 0x3000;

.zbss : { *(.zbss) }

.zdata :
 AT (__load_zdata)

 { __start_zdata = . ; *(.zdata); __end_zdata = . ; }

. = 0xc00000;

.text : { *(.text) }

.rodata : { *(rodata) }

.rosdata : { *(rosdata) }

.rotdata : { *(rotdata) }

.rozdata : { *(rozdata) }

__load_data = . ;

2 WRITING PROGRAMS FOR THE S1C33

S1C33 FAMILY APPLICATION NOTE EPSON 53

__load_gdata = . + SIZEOF(.data) ;
__load_sdata = . + SIZEOF(.data) + SIZEOF(.gdata) ;
__load_tdata = . + SIZEOF(.data) + SIZEOF(.gdata) + SIZEOF(.sdata);
__load_zdata = . + SIZEOF(.data) + SIZEOF(.gdata) + SIZEOF(.sdata)
 + SIZEOF(.tdata);

}

Setting of each data area is the same as that of the default data area in Example 1 except for the section
name and defined symbols.
The section map is shown in Figure 2.7.2.

Copy before using.

.gbss LMA
G data area (RAM)

.gdata LMA

0x0

Default data area (RAM)

__start_gdata
__end_gdata

.sbss LMA
S data area (RAM)

.sdata VMA

0x1000

__end_sdata

.tbss LMA
T data area (RAM)

.tdata VMA

0x2000

__start_tdata
__end_tdata

.zbss LMA
Z data area (RAM)

.zdata VMA

0x3000

__start_zdata
__end_zdata

.text
LMA

.rodata LMA

ROM

LMA.rosdata
LMA.rotdata
LMA.rozdata
LMA.data

0xc00000

__load_data

LMA.gdata__load_gdata

LMA.sdata__load_sdata

LMA.tdata__load_tdata

LMA.zdata__load_zdata

.bss LMA
.data VMA__start_data

__end_data

__dp,__gdp

__sdp

__tdp

__zdp

Fig. 2.7.2 Memory map (Example 2)

2 WRITING PROGRAMS FOR THE S1C33

54 EPSON S1C33 FAMILY APPLICATION NOTE

Example 3) when virtual and shared sections are used

The following is a sample linker script when virtual and shared sections are used:

A linker script that uses virtual and shared sections

OUTPUT_FORMAT("elf32-c33", "elf32-c33",
 "elf32-c33")
OUTPUT_ARCH(c33)
SEARCH_DIR(.);
SECTIONS
{

/* data pointer symbol By GWB33 */
__dp = 0x0;

/* section information By GWB33 */
. = 0x0;

.bss 0x00000000 :
 {
 __START_bss = . ;
 *(.bss) ;
 __END_bss = . ;
 }

.data __END_bss : AT(__END_rodata)
 {
 __START_data = . ;
 *(.data) ;
 __END_data = . ;
 }
__START_data_lma = LOADADDR(.data);

.text_foo1 __END_data : AT(__START_data_lma+SIZEOF(.data)
 {
 __START_text_foo1 = . ;
 foo1.o(.text) ;
 __END_text_foo1 = . ;
 }
__START_text_foo1_lma = LOADADDR(.text_foo1);

.text_foo2 __END_data : AT(__START_text_foo1_lma+SIZEOF(.text_foo1)
 {
 __START_text_foo2 = . ;
 foo2.o(.text) ;
 __END_text_foo2 = . ;
 }
__START_text_foo2_lma = LOADADDR(.text_foo2);

.text_foo3 __END_data : AT(__START_text_foo2_lma+SIZEOF(.text_foo2)
 {
 __START_text_foo3 = . ;
 foo3.o(.text) ;
 __END_text_foo3 = . ;
 }
__START_text_foo3_lma = LOADADDR(.text_foo3);

.text 0x00600000 :
 {
 __START_text = . ;
 *(.text) ;
 __END_text = . ;
 }

.rodata __END_text :
 {
 __START_rodata = . ;
 *(.rodata) ;
 __END_rodata = . ;
 }

}

The section map is shown in Figure 2.7.3

2 WRITING PROGRAMS FOR THE S1C33

S1C33 FAMILY APPLICATION NOTE EPSON 55

Copy before
using.

Shared section

Virtual section

∗ – .bss LMA

∗ – .data VMA

__START_bss=0x0

RAM

ROM

__END_bss=__START_data

__END_data=__START_text_foo1/foo2/foo3

∗ – .text LMA=VMA

∗ – .rodata LMA=VMA

∗ – .data LMA

LMA

__START_text=0x600000

__END_text=__START_rodata

__END_rodata=__START_data_lma

__START_data_lma+SIZEOF(.data)=__START_text_foo1_lma

START_text_foo1_lma+SIZEOF(.text_foo1)=__START_text_foo2_lma

START_text_foo2_lma+SIZEOF(.text_foo2)=__START_text_foo3_lma

foo1/foo2/foo3 –
.text_foo1/foo2/foo3

foo1 – .text_foo1

LMAfoo2 – .text_foo2

LMAfoo3 – .text_foo3

VMA
__END_text_foo1/foo2/foo3

__dp

Fig. 2.7.3 Memory map (Example 3)

The substance of the .data section is placed on the LMA in the ROM, and it must be copied to the
VMA in the RAM (immediately following the .bss section) before it can be used. The .data section
(VMA) in the RAM is a virtual section that does not exist when the program starts executing. This
method should be used for handling variables that have an initial value. In this example, the .data
sections in all the files are combined into one section.
.text_foo1 is the .text section in the foo1.o file. Its actual code is located at the LMA in the ROM and is
executed at the VMA in the RAM. Also the .text_foo2 and .text_foo3 sections are used similarly and
the same VMA is set for these three sections. The RAM area for .text_foo1/2/3 is a shared section
used for executing multiple .text sections by replacing the codes. A program cache for high-speed
program execution is realized in this method. .text sections in other files than these three files are
located in the .text section beginning with 0x600000 and are executed at the stored address in the
ROM.

2 WRITING PROGRAMS FOR THE S1C33

56 EPSON S1C33 FAMILY APPLICATION NOTE

2.8 Libraries
This C compiler package contains the following three types of libraries:

libc.a: ANSI library
libgcc.a: Emulation library
libgccP.a: Emulation library for high-precision arithmetical operations

The libraries are included in the \gnu33\lib directory.
The emulation libraries libgcc.a and libgccP.a are the standard libraries called by the xgcc C compiler, so
as a rule be sure to link them.
The ANSI library libc.a may be linked as necessary.

2.8.1 ANSI Library (libc.a)
The ANSI library is created observing the following rules with respect to usage and protection. When
programming to call the libraries, take these rules into consideration.

Registers used in the library
• The registers R0 to R11 are used.
• The registers R12 to R15 are not used.
• The registers R0 to R3 are protected by saving to the stack before execution of a function and by

restoring from the stack after completion of the function.

Data areas used in the library
• The variables and other data referenced in the library are located in the default data area. In the

library, R15 is referenced as the default data-area pointer. For this reason, the R15 register must be
initialized before using the library.

• In the library, only the default data area is used. The other data areas (G, S, T, and Z) are unused.

2.8.2 Emulation Libraries (libgcc.a, libgccP.a)
The emulation libraries are created observing the following rules with respect to usage and protection.
When programming to call the libraries, take these rules into consideration.

Registers used in the libraries
• The registers R0 to R14 are used.
• The register R15 is not used.
• The registers R0 to R3 are protected by saving to the stack before execution of a function and by

restoring from the stack after completion of the function. In libraries using R10 through R14 as well,
these registers are protected by saving to the stack.

Data areas used in the libraries

 No data areas are used in the emulation libraries.

2.8.3 Notes on Using Libraries in Advanced Macros
When compiling for the advanced macro (-mc33adv option is used), make sure R15 and DP are initialized
with the same value.
The application program references symbols in the default data area using DP, while the ANSI library
uses R15, not DP. Therefore, DP and R15 must hold the same value in order to maintain consistency.
This is because the same libraries (libgcc.a, libc.a) are used even in the advanced macro. (No libraries
exclusively for the advanced macro are available.)

2 WRITING PROGRAMS FOR THE S1C33

S1C33 FAMILY APPLICATION NOTE EPSON 57

2.8.4 Interrupt Mask Cycles in Emulation Libraries
In the emulation libraries libgcc.a and libgccP.a, some functions use the registers provided for data areas
(R12–R15). If an interrupt occurs during the execution of one of these functions, the program becomes
unable to access the data area normally in an interrupt handler routine. Therefore, interrupts are masked
during function execution.
The following shows the functions for which interrupts are masked, and the number of interrupt mask
cycles.

Function name Number of mask cycles
__mulsf3 163
__muldf3 184 (180)
__floatsisf 76
__floatsidf 81
__extendsfdf2 63
__divsf3 158
__divdf3 208 (220)
__adddf3 163 (177)
__subdf3 163 (177)

Numbers in () indicate the number of mask cycles for the libgccP.a functions.

As interrupts are masked in the emulation library, if an interrupt occurs during execution of the library,
the execution speed of the program may decrease. The corrective measure to be taken in such a case is
described below.

(1) From the source in /utility/lib_src/emulib, to recreate the library, delete the lines in which interrupts
are masked.

(2) In the interrupt handler routine, add a process to reset the data pointers, as shown below.

At the start of a function: Push R12–R15 onto the stack
Reset the data-area pointers (R12–R15).

:
Access the data area

:
At the end of the function: Pop R12–R15 off the stack.

However, because the amount of code increases before and after the interrupt handling, the processing
speed of the interrupt handler itself will decrease. Please examine the performance of the program
through comparison with a case in which an existing library is used.

2.8.5 Precautions to Be Taken When Adding a Library
To add a library other than the ANSI and emulation libraries when linking the program, specify the files
passed to the linker ld in the order shown below.

ld.exe (program.o) (Added library) (ANSI library) (Emulation library)

The object file (or library) can reference only the files present after it, in the order in which they are
passed to the linker. If the added library is specified last, none of the external libraries can be used in the
added library. Because the basic functions such as float and double arithmetic and the ANSI library
cannot be used, always make sure the added library is located before the emulation and ANSI libraries.
Example:

1. NG
ld.exe -T withmylib.lds -o withmylib.elf boot.o libc.a libgcc.a mylib.a

If mylib.a is using the emulation and ANSI libraries, an error should always occur during linking.

2. OK
ld.exe -T withmylib.lds -o withmylib.elf boot.o mylib.a libc.a libgcc.a

No errors should occur during linking, allowing mylib.a to use the emulation and ANSI libraries
normally.

2 WRITING PROGRAMS FOR THE S1C33

58 EPSON S1C33 FAMILY APPLICATION NOTE

If the added libraries have a dependent relationship, make sure the basic library is located last.
Example:

lib1.a calls only the emulation and ANSI libraries
lib2.a calls lib1.a in addition to the emulation and ANSI libraries
lib3.a calls lib1.a and lib2.a in addition to the emulation and ANSI libraries

ld.exe -T withmylib.lds -o withmylib.elf boot.o lib3.a lib2.a lib1.a libc.a libgcc.a

The make files output by the work bench gwb33 have a LIBS macro for specifying a library. Libraries can
also be added by editing this macro.
Example: To add c:\myapp\lib\mylib.a

LIBS= $(LIB_DIR)/libc.a $(LIB_DIR)/libgcc.a

↓
LIBS= c:/myapp/lib/mylib.a $(LIB_DIR)/libc.a $(LIB_DIR)/libgcc.a

Note: Make sure "\" is converted to "/". TOOL_DIR and LIB_DIR are the only macro names that the work
bench can recognize and replace in the LIBS macro. When using a work bench linker script, do not
use any other macros in the LIBS macro.

If the LIBS macro has been altered, synchronism between the make files and the linker script files (*.lds)
will be lost. Therefore, always be sure to perform the updating operation from the linker script editor in
the work bench gwb33. To perform this update, call up the linker script editor and click on OK. The
associated files (lds, ldt) will thereby be overwritten. Be aware that the contents of linker script files that
have been manually altered will be lost.

2 WRITING PROGRAMS FOR THE S1C33

S1C33 FAMILY APPLICATION NOTE EPSON 59

2.9 Differences between the S5U1C33001C and the S5U1C33000C
The S5U1C33001C has a GNU-based common interface, allowing users to develop programs with greater
flexibility and efficiency than with the conventional development environment, the S5U1C33000C.
The GNU-based common interface allows the assembler or linker development procedures in other
development environments to be used directly as they are. Development in Linux is also possible.
(Although the Linux version is outside the scope of the guarantee with regard to its operation, the same
sources as in the Windows version are used to compile tools.)
The S5U1C33001C can handle the instructions available exclusively for the advanced macro CPU, making
it capable of powerful assembler programming. The advanced macro CPU can, in effect, access 4G bytes
of memory space using the same number of instructions as for the code generated by the S5U1C33000C.
In the S5U1C33000C, memory areas only up to 64M bytes from the data-area pointer could be accessed,
whereas in the S5U1C33001C, because multiple data-area pointers have been introduced, even the
standard macro CPU can access a maximum of 64 × 4 = 256M bytes of space.

● Enhanced functions of the S5U1C33001C
Compiler
• Many and varied user requirements can be satisfied as a result of the data-area pointers added.

- In the S5U1C33001C, data-area pointers from %r10 to %r15 can be used for -mdp=6 (maximum),
or data-area pointers from %r12 to %r15 can be used for -mdp=4 (recommended, default). (In the
S5U1C33000C, only %r8 could be used through specification of the -gp option.)

- The data-area pointer extension options make the respective areas accessible in up to 64MB
(except for __gdp). At a maximum, 64MB × 4 = 256MB of memory space can be accessed (conven-
tionally limited to 64MB). In advanced macro mode, any area in the entire 32-bit address space
(4GB) can be accessed.

- Programs can be compiled with high code efficiency close to that of two-pass make in the
S5U1C33000C, if so specified using an option.

• High-speed dispatch for ROS is made possible by changing register assignments.
• The optimization routine has been enhanced (by upgrading the development base gcc version).
• Diverted use of many GNU free sources is possible.
• Interrupt handlers can be written in C. Routines for saving registers when an interrupt has occurred

are also automatically generated.

Binutils
• GNU-based binutils can be used.

- A number of optional functions intrinsic to GNU, such as the assembler, linker, make, objdump,
and objcopy, can be used. (For the S5U1C33000C, dedicated tools such as Hex33 (objcopy), dis33
(objdump), and dmp33 (objdump) are used.)

• Simple extended instructions have been adopted.
- The codes output by the compiler operate at high speed.
- The correspondence between the assembler and source is easily understood.
- Functions equivalent to those of the linker command ver.3 of the S5U1C33000C can be specified

in a linker script of the S5U1C33001C. Furthermore, a wide variety of functions are available for
use.

Work bench
• The work bench enables the visual allocation of files.

Debugger
• Compatible with the S5U1C33000H (ICD ver.2.0)

- The software/hardware breaks, execution trace, and data breaks supported by db33 are fully
supported.

- Commands in c33 XXX format are partly compatible with conventional db33 commands.

2 WRITING PROGRAMS FOR THE S1C33

60 EPSON S1C33 FAMILY APPLICATION NOTE

• Fully compatible with the S5U1C33001H (ICD ver.3.0)
- The target program can be downloaded at high speed through USB communication.
- Area breaks are usable (advanced macro CPU only).
- Bus breaks and bus traces are usable (advanced macro CPU only).
- Compatible with flash writer mode of the S5U1C33001H (ICD ver.3.0). (The debugger can be used

singly as a flash writer, with no need for any other tool.)
- The amount of information handled in a trace has been doubled.
- If the target is the advanced macro, the area break, bus break, and bus trace functions can be used.

• A simulator compatible with both standard and advanced macro modes is included.
• Symbol watch that makes use of expressions can be used.

- It has been made possible to display the contents of structure members, reference memory
symbols using numeric expressions, and watch local variables, all of which were impossible with
db33.

• The line of debugging-use step commands has been expanded.
- The newly introduced command "finish" enables the program to be stepped through until the end

of a function.
• The newly adopted "elf" format facilitates the extraction of debugging information.

- Due to the adoption of the "elf" file format, information can easily be acquired from binary data
(through the use of objdump.exe).

• An interface common to GNU gdb has been adopted.
- The debugger can be used by anyone who does not have sufficient knowledge of the

S5U1C33001C tool.
• A simple program can be created in a command file.
• Text mode is included (outside the scope of the guarantee).

- The --nw option enables debugging in CUI mode.
• The S5U1C33104H (ICE33) is not supported.
• Easy source-level debugging

- Programs transferred into the internal RAM can also be debugged easily.

Tool general
• The software (GNU tools) has been updated periodically and debugged by many programmers,

making it easy to maintain.
• A number of types of embedded-use software have been developed based on GNU tools.

- Toppers, TINET, Linux, Husion TCP/IP, etc.
• The tools can be used to some extent by anyone who does not have knowledge of the S5U1C33000C

tool, provided that he or she is familiar with GNU tools.
- The Q&A on GNU tools available at Websites can be used for reference.

• All sources are supplied. They can be customized to suit the user application (outside the scope of
the support and guarantee).

Table 2.9.1 Compatibility table of tools

Function

Usefulness for standard core
Usefulness for advanced core
Serial connection
Parallel connection
USB connection
CPU clock upper limit
Trace function of debugger
Bus break function of debugger
Bus trace function of debugger
Area break function of debugger
Forcible break function of debugger
Debug monitor (S5U1C331M2S)
Reset function of hardware tool
S5U1C33000H(ICD33 ver.2)
S5U1C33001H(ICD33 ver.3)
S5U1C330M1D1

S5U1C33000C

●

×
●

●

×

●

×
●

S1C33 Family software tools S1C33 Family hardware tools

S5U1C33001C

●

●

●

●

●

●

●

●

●

●

●

S5U1C33000H
ver.1
●

×
●

●

×
50 MHz

●

×
×
×
●

×
×

S5U1C33000H
ver.2
●

×
●

●

×
60 MHz

●

×
×
×
●

×
×

S5U1C33000H
ver.3
●

●

×
×
●

60 MHz
●

●

●

●

●

×
●

S5U1C330M1D1

●

×
●

×
×

60 MHz
×
×
×
×
×
●

●

● : Compatible ×: Not compatible
∗ 1 Possible only for the advanced core chips
∗ 2 The S5U1C330M1D1 requires a dedicated debug monitor (S5U1C331M2S).

∗ 1

∗ 1

∗ 1

∗ 2

2 WRITING PROGRAMS FOR THE S1C33

S1C33 FAMILY APPLICATION NOTE EPSON 61

The S5U1C33001C provides higher performance by up to approximately 25% compared to the S5U1C33000C.
The following shows the execution time required for each tool when the source shown below is executed
after being compiled by each tool.
S5U1C33000C: 18926.80 µs
S5U1C33001C: 14255.55 µs

The execution time required by the S5U1C33001C is approximately 3/4 that of the S5U1C33000C, as
shown above, indicating that the execution speed is approximately 25% higher. Furthermore, the code
size for the S5U1C33001C is also slightly smaller.
S5U1C33000C: 274 bytes (after two-pass make)
S5U1C33001C: 268 bytes

Conditions
CPU clock: 20 MHz
External RAM access: One wait state
Compilation: For the S5U1C33000C, the source was compiled by two-pass make

For the S5U1C33001C, the option "-O2 -mdp=1, -mgda=8192, -fno-builtin
-mno-memory" was specified

The source file used for evaluation
#define MAT_ARG1 3
#define MAT_ARG2 3

#define MAT_ARRAYSIZE 50
struct stMatrix {
 long lData[MAT_ARG1][MAT_ARG2];
};

// proto-types
void vfnInitMatrix(struct stMatrix *stClear);
void vfnMuliMatrix(struct stMatrix *stRet,
 struct stMatrix *stLeft,
 struct stMatrix *stRight);

struct stMatrix stTestData1[MAT_ARRAYSIZE], stTestData2[MAT_ARRAYSIZE];
struct stMatrix stRet[MAT_ARRAYSIZE];

int main()
 {
 int nCnt, nCnt2, nCnt3;

 // initialize matrix
 for(nCnt = 0 ; nCnt < MAT_ARRAYSIZE ; nCnt++) {
 vfnInitMatrix(&stTestData2[nCnt]);
 }

 // set each randam value
 for(nCnt = 0 ; nCnt < MAT_ARRAYSIZE ; nCnt++) {

 for(nCnt2 = 0 ; nCnt2< MAT_ARG1; nCnt2++) {
 for(nCnt3 = 0 ; nCnt3 < MAT_ARG2; nCnt3++) {
 stTestData1[nCnt].lData[nCnt2][nCnt3] = nCnt + nCnt2 + nCnt3;
 }
 }
 }

 // mutiply
 for(nCnt = 0 ; nCnt < MAT_ARRAYSIZE ; nCnt++) {
 vfnMuliMatrix(&stRet[nCnt],
 &stTestData1[nCnt], &stTestData2[nCnt]);
 }

 return 0;
}

void vfnInitMatrix(struct stMatrix *stClear)
{
 int nCnt, nCnt2;
 long lBuf;

 for(nCnt = 0 ; nCnt< MAT_ARG1; nCnt++) {

2 WRITING PROGRAMS FOR THE S1C33

62 EPSON S1C33 FAMILY APPLICATION NOTE

 for(nCnt2 = 0 ; nCnt2 < MAT_ARG2; nCnt2++) {
 if (nCnt == nCnt2)
 lBuf = 1;
 else
 lBuf = 0;
 stClear->lData[nCnt][nCnt2] = lBuf;
 }
 }
}

void vfnMuliMatrix(struct stMatrix *stRet,
 struct stMatrix *stLeft,
 struct stMatrix *stRight)
{
 int nCnt, nCnt2, nCnt3;
 long lBuf;

 // multiple each matrix
 for(nCnt = 0; nCnt < MAT_ARG1 ; nCnt++) { //y
 for(nCnt2 = 0; nCnt2 < MAT_ARG2 ; nCnt2++) { //x

 lBuf= 0;
 for (nCnt3 = 0 ; nCnt3 < MAT_ARG1 ; nCnt3++) {
 lBuf += (stLeft->lData[nCnt][nCnt3])
 *
 (stLeft->lData[nCnt3][nCnt2]);
 }
 stRet->lData[nCnt][nCnt2] = lBuf;
 }
 }
}

The above content is merely an example. A significant performance improvement over the S5U1C33000C
cannot be expected in all cases.

2 WRITING PROGRAMS FOR THE S1C33

S1C33 FAMILY APPLICATION NOTE EPSON 63

2.10 Transporting the S5U1C33000C Assets
Following is a description of how to transport the S5U1C33000C assets to S5U1C33001C, using several
examples by way of explanation.
The differences between the S5U1C33000C and S5U1C33001C packages are summarized in Table 2.10.1.

Table 2.10.1 Differences between the S5U1C33000C and S5U1C33001C packages
Tool

make

Compiler

Preprocessor
Assembler

Extended instructions

Linker

Linker mapping
ANSI library

Emulation library

Librarian
Debugger

HEX converter

Disassemble

Dump tool

Replacement tool
Work bench

S5U1C33000C
make.exe (S1C33 original)

gcc33.exe (GNU ANSI C)

pp33.exe (S1C33 original)
as33.exe (S1C33 original)
• Global pointer supported (GP)
• S1C33 original assembler directives

ext33.exe (S1C33 original)
• Expansion of extended instructions
• Two-pass make
lk33.exe (S1C33 original)

Command file (cm)
io.lib, lib.lib, math.lib,
string.lib, ctype.lib
fp.lib, idiv.lib, fpp.lib

lib33.exe (S1C33 original)
db33.exe (S1C33 original)
 SIM
 ICE33
 ICD33 Ver. 2.x
 MON33
 MEM33
hex33.exe (S1C33 original)

dis33.exe (S1C33 original)

dmp33.exe (S1C33 original)

sed.exe
wb33.exe (S1C33 original)

S5U1C33001C
make.exe (GNU)
Environment path must be set before all
functions can be used
xgcc.exe (GNU ANSI C)
• Directives for S1C33
• Data areas supported
• Advanced macro instructions supported
cpp.exe (GNU)
as.exe (GNU)
• Data-area-compatible pseudo-operand
• Directives for S1C33
• Advanced macro instructions supported
• Expansion of extended instructions
Instruction extender disused by reviewing
the extended instructions (two-pass make
also disused)
ld.exe (GNU)
• Data area supported
Linker script file (lds)
libc.a

libgcc.a, libgccP.a

ar.exe (GNU)
gdb.exe (S1C33 original)
 SIM
 ICD33 Ver. 2.x, Ver. 3, or later
 MON33

objcopy.exe (GNU)
objcopy.exe usable for multiple purposes
objdump.exe (GNU)
Possible with objdump -S -d
objdump.exe (GNU)
Possible by specifying the objdump option
sed.exe
gwb33.exe (S1C33 original)
Linker input file can be edited

The following lists the files that need to be modified when transported.
• Makefiles (*.mak)
• Initialize processing
• C source files (*.c)
• Assembler source files (*.s)
• Linker command files (*.cm)
• Debugger parameter files (*.par)

2 WRITING PROGRAMS FOR THE S1C33

64 EPSON S1C33 FAMILY APPLICATION NOTE

2.10.1 Transporting Makefiles (*.mak)
The locations to be modified in the makefiles are the lines in which tools are mentioned, as almost all
tools are different with S5U1C33001C.

• Directory path description \ → / (slash)
• Tool directory C:\cc33 → C:/gnu33
• Compiler name gcc33 → xgcc
• Assembler name as33 → as
• Linker name lk33 → ld
• Librarian name lib33 → ar
• make Delete two-path makes, if any.
• Delete pp33 and ext33.
• Option flags in each tool Modify to S5U1C33001C specifications.

● Example of modifying make file

Makefile for S5U1C33000C

TOOL_DIR = C:\cc33
GCC33 = $(TOOL_DIR)\gcc33
PP33 = $(TOOL_DIR)\pp33
EXT33 = $(TOOL_DIR)\ext33
AS33 = $(TOOL_DIR)\as33
LK33 = $(TOOL_DIR)\lk33
LIB33 = $(TOOL_DIR)\lib33
MAKE = $(TOOL_DIR)\make
SRC_DIR =

macro definitions for tool flags

GCC33_FLAG = -B$(TOOL_DIR)\ -S -g -O
PP33_FLAG = -g
EXT33_FLAG =
AS33_FLAG = -g
LK33_FLAG = -g -s -m -c
EXT33_CMX_FLAG = -lk clock -c

dependency list

test.srf : test.cm boot.o main.o
$(LK33) $(LK33_FLAG) test.cm

boot.ms : $(SRC_DIR)boot.s
$(PP33) $(PP33_FLAG) $(SRC_DIR)boot.s
$(EXT33) $(EXT33_FLAG) boot.ps

boot.o : boot.ms
$(AS33) $(AS33_FLAG) boot.ms

main.ms : $(SRC_DIR)main.c
$(GCC33) $(GCC33_FLAG) $(SRC_DIR)main.c
$(EXT33) $(EXT33_FLAG) main.ps

main.o : main.ms
$(AS33) $(AS33_FLAG) main.ms

clean files except source

clean:
del *.srf
del *.o
del *.ms
del *.ps

2 WRITING PROGRAMS FOR THE S1C33

S1C33 FAMILY APPLICATION NOTE EPSON 65

Makefile for S5U1C33001C

TOOL_DIR = C:/gnu33
CC = $(TOOL_DIR)/xgcc
AS = $(TOOL_DIR)/as
LD = $(TOOL_DIR)/ld
RM = $(TOOL_DIR)/rm
SRC_DIR =

macro definitions for tool flags

CFLAGS= -B$(TOOL_DIR)/ -c -gstabs -O -mgda=0 -mdp=1 -mlong-calls -I$(TOOL_DIR)/
 include -fno-builtin
ASFLAGS = -B$(TOOL_DIR)/ -xassembler-with-cpp -Wa,--gstabs
LDFLAGS = -Tsample.lds -N -Map test.map

macro definitions for library files

LIBS = $(LIB_DIR)/libc.a $(LIB_DIR)/libgcc.a

dependency list

test.elf : $(OBJS)
$(LD) $(LFLAGS) -o test.elf $(OBJS) $(LIBS)

boot.o : $(SRC_DIR)boot.s
$(AS) $(AFLAGS) -o boot.o boot.s

main.o : $(SRC_DIR)main.c
$(CC) $(CFLAGS) main.c

clean files except source

clean:
$(RM) *.o
$(RM) *.elf

2.10.2 Initialize Processing
The instructions in the boot processing that sets R8 (global pointer) need to be changed to data-area-
pointer settings. Normally, set R15 as the address for the default data-area pointer.
To use G, S, T, or Z data area, also set R12, R13, or R14 accordingly.
Furthermore, the data-area pointers may be initialized using data area symbol names, as shown below.

xld.w %r12,__sdp ;set S data area pointer
xld.w %r13,__tdp ;set T data area pointer
xld.w %r14,__zdp ;set Z data area pointer
xld.w %r15,__dp ;set default data area pointer

2.10.3 Transporting C Source Files (*.c)
Because both gcc33 (S5U1C33000C) and xgcc (S5U1C33001C) are compliant with ANSI C, their basic
grammars are the same, except that xgcc has several added command-line options and reserved words.

• Global variables and the like in sizes less than 4 bytes are located in the G data area by default.
Although the G data area has its upper-limit size fixed at 8KB, since the G data area can be accessed
using only two instructions (compared to three instructions for the default data area), it is advisable
that the largest possible number of variables be located in the G data area, in order to reduce code
size. For this purpose, set the sizes of data to be placed in the G data area using the -mgda option.
Example: Locate the int variable bar in the G data area

int bar;
– – – – – – – –
>xgcc -S -O -mgda=4 sample.c

• To change the data areas, use the reserved word __attribute__.
Example: Locate the int variable bar in the S data area

int __attribute__((sda)) bar;

2 WRITING PROGRAMS FOR THE S1C33

66 EPSON S1C33 FAMILY APPLICATION NOTE

• Interrupt handler functions
1) In S5U1C33000C, C interrupt handler functions are created using the interrupt filter utility

(c33\utility\filter_int). In S5U1C33001C, interrupt handler functions can be implemented by
declaring a function prototype with __attribute__ ((interrupt_handler)).
Example: If you want the function foo to be an interrupt function, declare the following function

prototype.
void foo(void) __attribute__ ((interrupt_handler));

2) The "asm("reti");" line within the interrupt function can be deleted by declaring the function with
__attribute__ ((interrupt_handler)) the same way as in 1).

2.10.4 Transporting the Assembler Source Files (*.s)

● Registers
The differences between the ways in which registers are used in S5U1C33000C and S5U1C33001C are
summarized in Table 2.10.4.1.
The assembler source lines must be corrected to take these differences into account. However, if
corrections are made simply by changing register numbers (for "pushn %rs", "popn %rs", and so on)
unintended effects will result. Therefore, caution must be used when making corrections.

Table 2.10.4.1 Method of using general-purpose registers
Register

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15

S5U1C33000C
Registers that need have to their values saved
when calling a function

Scratch registers

Global pointer
For ext33 use
Register for storing returned values
Register for storing returned values
Register for passing argument (1st word)
Register for passing argument (2nd word)
Register for passing argument (3rd word)
Register for passing argument (4th word)

S5U1C33001C
Registers that need have to their values
saved when calling a function

Register for storing returned values
Register for storing returned values
Register for passing argument (1st word)
Register for passing argument (2nd word)
Register for passing argument (3rd word)
Register for passing argument (4th word)
Scratch register/unused
Scratch register/unused
S data-area pointer register or scratch register
T data-area pointer register or scratch register
Z data-area pointer register or scratch register
Default data-area pointer register

● Comments
When using cpp, change ";" with "//" or "/* ... */". An error results if a comment beginning with ";"
contains a quote only.

Source for S5U1C33000C
.code
.ascii "ABCD" ← OK
ld.w %r0,1 ;' ← Error occurs in cpp
ld.w %r1,2 ;'A' ← OK
ld.w %r2,3 ;"ABC" ← OK
ld.w %r3,4 ;" ← Error occurs in cpp

Source for S5U1C33001C
.text
.ascii "ABCD" ← OK
ld.w %r0,1 //' ← OK
ld.w %r1,2 //'A' ← OK
ld.w %r2,3 /*"ABC"*/ ← OK
ld.w %r3,4 /*" */ ← OK

2 WRITING PROGRAMS FOR THE S1C33

S1C33 FAMILY APPLICATION NOTE EPSON 67

● Section definition directives
The section definition directives are compared between as33 and as in Table 2.10.4.2.

Table 2.10.4.2 Section definition directives
as33 (S5U1C33000C)

.code

.data

.comm
.lcomm

as (S5U1C33001C)
.text
.data

.global + .bss, .xbss (x = g, s, t, z)
.bss, .xbss (x = g, s, t, z)

1) .code
Change to the .text section.

2) .data
Can be used as is.

3) .comm
For global specification in as, use the .global and .bss (.Xbss) directives.
Example:
as33 (S5U1C33000C)

.comm symbol 4

as (S5U1C33001C)
.section .bss
.global symbol
.align 2

symbol:
.skip 4

Pay attention to the alignment of symbols when changing .comm directives:
In as33, symbols are located at a boundary address according to the data size.
In as, the symbol alignment must be specified using the .align directive like the example above.
Although it can be changed to the directive command of as ".comm symbol, size" without causing
a problem in transporting of the source file, keep the following points in mind when making the
change.

Differences in alignment by symbol size

as33 (S5U1C33000C)

____________Size __________________________________Alignment (in byte units)
1 1
2 2

3 or more 4

as (S5U1C33001C)

____________Size __________________________________Alignment (in byte units)
1 1

2–3 2
4–7 4

8–15 8
1 or more 16

Order in which symbols are located after linking
In as33, symbols are located in memory in the order in which they are written in the assembly
source, whereas in as they are not always located in the order of writing.
Example: When a .comm section is located beginning with the address 0x10000

(Assembly source)
.comm data1 4
.comm data2 4
.comm data3 4

2 WRITING PROGRAMS FOR THE S1C33

68 EPSON S1C33 FAMILY APPLICATION NOTE

(Memory map after linking)
as33 (S5U1C33000C)

0x10000: data1
0x10004: data2
0x10008: data3

as (S5U1C33001C)
0x10000: data3 ← Not in the order
0x10004: data1 ← in which they are
0x10008: data2 ← written in the source file

For the programs that were created assuming that symbols will be located in memory in the order in
which they are written in the source, be sure to declare the .bss section in the changed source file as
described above, to ensure that it will be transported properly.

4) .lcomm
For local specification in as, use the .bss (.Xbss) directive.
Example:
as33 (S5U1C33000C)

.lcomm symbol 4

as (S5U1C33001C)
.section .bss
.align 2

symbol:
.skip 4

Pay attention to the alignment of symbols same as the .comm directive.

● Data definition directives
The data definition directives must be changed, as some of them differ in size between as33 and as.
These size differences are as shown in Table 2.10.4.3.

Table 2.10.4.3 Data definition directives
as33 (S5U1C33000C)

.byte

.half

.word

as (S5U1C33001C)
.byte
.short
.hword
.word
.int
.long

Size
1 byte
2 bytes
2 bytes
2 bytes
4 bytes
4 bytes

Modification example:

as33 (S5U1C33000C)
.code
.word boot ;vector address

boot:
xld.w %r15,0x0800
ld.w %sp,%r15

as (S5U1C33001C)
.text
.long boot ;vector address

boot:
xld.w %r15,0x0800
ld.w %sp,%r15

Although the .word directive in as33 is 4 bytes long, in as it is 2 bytes long. Change .word to .int or
.long.

2 WRITING PROGRAMS FOR THE S1C33

S1C33 FAMILY APPLICATION NOTE EPSON 69

● Debug directives
Of the as33 debug directives, .endfile, .loc, and .def have no effect in as. Thus, be sure to delete them.
To add debugging information, reassemble the source files using the --gstabs option of the as assem-
bler.

● Extended instructions
Not all of the extended instructions of ext33 (S5U1C33000C) are supported in as. The codes of unus-
able extended instructions must be regenerated by using the basic instructions and usable extended
instructions in combination.

Table 2.10.4.4 Table of differences between ext33 and as extended instructions (standard macro)
ext33 (S5U1C33000C)

xadd %rd,%rd,imm32
xsub %rd,%rd,imm32
xadd %sp,%sp,imm32
xsub %sp,%sp,imm32
xadd %rd,%rs,imm32
xsub %rd,%rs,imm32
xadd %rd,%sp,imm32
xsub %rd,%sp,imm32
xadd %rd,%rd,%sp
xsub %rd,%rd,%sp
xadd %sp,%sp,%rs
xsub %sp,%sp,%rs
xcmp %rd,sign32
xcmp %rd,%sp
xcmp %sp,%rs
xand %rd,%rd,sign32
xoor %rd,%rd,sign32
xxor %rd,%rd,sign32
xand %rd,%rs,sign32
xoor %rd,%rs,sign32
xxor %rd,%rs,sign32
xnot %rd,sign32
xsrl %rd,%rs
xsll %rd,%rs
xsra %rd,%rs
xsla %rd,%rs
xrr %rd,%rs
xrl %rd,%rs
xsrl %rd,imm5
xsll %rd,imm5
xsra %rd,imm5
xsla %rd,imm5
xrr %rd,imm5
xrl %rd,imm5
xld.b %rd,[%sp+imm32]
xld.ub %rd,[%sp+imm32]
xld.h %rd,[%sp+imm32]
xld.uh %rd,[%sp+imm32]
xld.w %rd,[%sp+imm32]
xld.b [%sp+imm32],%rs
xld.h [%sp+imm32],%rs
xld.w [%sp+imm32],%rs
xld.b %rd,[symbol±imm32]
xld.ub %rd,[symbol±imm32]
xld.h %rd,[symbol±imm32]
xld.uh %rd,[symbol±imm32]
xld.w %rd,[symbol±imm32]
xld.b [symbol±imm32],%rs
xld.h [symbol±imm32],%rs
xld.w [symbol±imm32],%rs
xld.w [symbol±imm32],%sp

as (S5U1C33001C)
xadd %rd,imm32
xsub %rd,imm32
–
–
–
–
–
–
–
–
–
–
xcmp %rd,sign32
–
–
xand %rd,sign32
xoor %rd,sign32
xxor %rd,sign32
–
–
–
xnot %rd,sign32
–
–
–
–
–
–
xsrl %rd,imm5
xsll %rd,imm5
xsra %rd,imm5
xsla %rd,imm5
xrr %rd,imm5
xrl %rd,imm5
xld.b %rd,[%sp+imm32]
xld.ub %rd,[%sp+imm32]
xld.h %rd,[%sp+imm32]
xld.uh %rd,[%sp+imm32]
xld.w %rd,[%sp+imm32]
xld.b [%sp+imm32],%rs
xld.h [%sp+imm32],%rs
xld.w [%sp+imm32],%rs
xld.b %rd,[symbol+imm26]
xld.ub %rd,[symbol+imm26]
xld.h %rd,[symbol+imm26]
xld.uh %rd,[symbol+imm26]
xld.w %rd,[symbol+imm26]
xld.b [symbol+imm26],%rs
xld.h [symbol+imm26],%rs
xld.w [symbol+imm26],%rs
–

2 WRITING PROGRAMS FOR THE S1C33

70 EPSON S1C33 FAMILY APPLICATION NOTE

ext33 (S5U1C33000C)
xld.b %rd,[imm32]
xld.ub %rd,[imm32]
xld.h %rd,[imm32]
xld.uh %rd,[imm32]
xld.w %rd,[imm32]
xld.b [imm32],%rs
xld.h [imm32],%rs
xld.w [imm32],%rs
xld.w [imm32],%sp
xld.b %rd,[%rb+symbol±imm32]
xld.ub %rd,[%rb+symbol±imm32]
xld.h %rd,[%rb+symbol±imm32]
xld.uh %rd,[%rb+symbol±imm32]
xld.w %rd,[%rb+symbol±imm32]
xld.b [%rb+symbol±imm32],%rs
xld.h [%rb+symbol±imm32],%rs
xld.w [%rb+symbol±imm32],%rs
xld.w [%rb+symbol±imm32],%sp
xld.b %rd,[%rb+imm32]
xld.ub %rd,[%rb+imm32]
xld.h %rd,[%rb+imm32]
xld.uh %rd,[%rb+imm32]
xld.w %rd,[%rb+imm32]
xld.b [%rb+imm32],%rs
xld.h [%rb+imm32],%rs
xld.w [%rb+imm32],%rs
xld.w [%rb+imm32],%sp
xld.w %rd,symbol±imm32
xld.w %rd,sign32
xbtst [symbol±imm32],imm3
xbclr [symbol±imm32],imm3
xbset [symbol±imm32],imm3
xbnot [symbol±imm32],imm3
xbtst [imm32],imm3
xbclr [imm32],imm3
xbset [imm32],imm3
xbnot [imm32],imm3
xbtst [%rb+symbol±imm32],imm3
xbclr [%rb+symbol±imm32],imm3
xbset [%rb+symbol±imm32],imm3
xbnot [%rb+symbol±imm32],imm3
xbtst [%rb+imm32],imm3
xbclr [%rb+imm32],imm3
xbset [%rb+imm32],imm3
xbnot [%rb+imm32],imm3
xbtst [%sp+imm32],imm3
xbclr [%sp+imm32],imm3
xbset [%sp+imm32],imm3
xbnot [%sp+imm32],imm3
–
–
–
–
–
–
–
–
–
–
–
–
–
–

as (S5U1C33001C)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
xld.b %rd,[%rb+imm26]
xld.ub %rd,[%rb+imm26]
xld.h %rd,[%rb+imm26]
xld.uh %rd,[%rb+imm26]
xld.w %rd,[%rb+imm26]
xld.b [%rb+imm26],%rs
xld.h [%rb+imm26],%rs
xld.w [%rb+imm26],%rs
–
xld.w %rd,symbol±imm32
xld.w %rd,sign32
xbtst [symbol+imm26],imm3
xbclr [symbol+imm26],imm3
xbset [symbol+imm26],imm3
xbnot [symbol+imm26],imm3
–
–
–
–
–
–
–
–
xbtst [%rb+imm26],imm3
xbclr [%rb+imm26],imm3
xbset [%rb+imm26],imm3
xbnot [%rb+imm26],imm3
–
–
–
–
scall label+imm22
scall.d label+imm22
sjp label+imm22
sjp.d label+imm22
sjreq label+imm22
sjreq.d label+imm22
sjrne label+imm22
sjrne.d label+imm22
sjrgt label+imm22
sjrgt.d label+imm22
sjrge label+imm22
sjrge.d label+imm22
sjrlt label+imm22
sjrlt.d label+imm22

2 WRITING PROGRAMS FOR THE S1C33

S1C33 FAMILY APPLICATION NOTE EPSON 71

ext33 (S5U1C33000C)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
xcall label+imm32
xcall.d label+imm32
xjp label+imm32
xjp.d label+imm32
xjreq label+imm32
xjreq.d label+imm32
xjrne label+imm32
xjrne.d label+imm32
xjrgt label+imm32
xjrgt.d label+imm32
xjrge label+imm32
xjrge.d label+imm32
xjrlt label+imm32
xjrlt.d label+imm32
xjrle label+imm32
xjrle.d label+imm32
xjrugt label+imm32
xjrugt.d label+imm32
xjruge label+imm32
xjruge.d label+imm32
xjrult label+imm32
xjrult.d label+imm32
xjrule label+imm32
xjrule.d label+imm32
xcall sign32
xcall.d sign32
xjp sign32
xjp.d sign32
xjreq sign32

as (S5U1C33001C)
sjrle label+imm22
sjrle.d label+imm22
sjrugt label+imm22
sjrugt.d label+imm22
sjruge label+imm22
sjruge.d label+imm22
sjrult label+imm22
sjrult.d label+imm22
sjrule label+imm22
sjrule.d label+imm22
scall sign22
scall.d sign22
sjp sign22
sjp.d sign22
sjreq sign22
sjreq.d sign22
sjrne sign22
sjrne.d sign22
sjrgt sign22
sjrgt.d sign22
sjrge sign22
sjrge.d sign22
sjrlt sign22
sjrlt.d sign22
sjrle sign22
sjrle.d sign22
sjrugt sign22
sjrugt.d sign22
sjruge sign22
sjruge.d sign22
sjrult sign22
sjrult.d sign22
sjrule sign22
sjrule.d sign22
xcall label+imm32
xcall.d label+imm32
xjp label+imm32
xjp.d label+imm32
xjreq label+imm32
xjreq.d label+imm32
xjrne label+imm32
xjrne.d label+imm32
xjrgt label+imm32
xjrgt.d label+imm32
xjrge label+imm32
xjrge.d label+imm32
xjrlt label+imm32
xjrlt.d label+imm32
xjrle label+imm32
xjrle.d label+imm32
xjrugt label+imm32
xjrugt.d label+imm32
xjruge label+imm32
xjruge.d label+imm32
xjrult label+imm32
xjrult.d label+imm32
xjrule label+imm32
xjrule.d label+imm32
xcall sign32
xcall.d sign32
xjp sign32
xjp.d sign32
xjreq sign32

2 WRITING PROGRAMS FOR THE S1C33

72 EPSON S1C33 FAMILY APPLICATION NOTE

ext33 (S5U1C33000C)
xjreq.d sign32
xjrne sign32
xjrne.d sign32
xjrgt sign32
xjrgt.d sign32
xjrge sign32
xjrge.d sign32
xjrlt sign32
xjrlt.d sign32
xjrle sign32
xjrle.d sign32
xjrugt sign32
xjrugt.d sign32
xjruge sign32
xjruge.d sign32
xjrult sign32
xjrult.d sign32
xjrule sign32
xjrule.d sign32

as (S5U1C33001C)
xjreq.d sign32
xjrne sign32
xjrne.d sign32
xjrgt sign32
xjrgt.d sign32
xjrge sign32
xjrge.d sign32
xjrlt sign32
xjrlt.d sign32
xjrle sign32
xjrle.d sign32
xjrugt sign32
xjrugt.d sign32
xjruge sign32
xjruge.d sign32
xjrult sign32
xjrult.d sign32
xjrule sign32
xjrule.d sign32

Table 2.10.4.5 Table of differences between ext33 and as extended instructions (advanced macro)
ext33 (S5U1C33000C)

–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

as (S5U1C33001C)
ald.b %rd,[symbol+imm19]
ald.ub %rd,[symbol+imm19]
ald.h %rd,[symbol+imm19]
ald.uh %rd,[symbol+imm19]
ald.w %rd,[symbol+imm19]
ald.b [symbol+imm19],%rs
ald.h [symbol+imm19],%rs
ald.w [symbol+imm19],%rs
xld.b %rd,[%dp+imm32]
xld.ub %rd,[%dp+imm32]
xld.h %rd,[%dp+imm32]
xld.uh %rd,[%dp+imm32]
xld.w %rd,[%dp+imm32]
xld.b [%dp+imm32],%rs
xld.h [%dp+imm32],%rs
xld.w [%dp+imm32],%rs

2 WRITING PROGRAMS FOR THE S1C33

S1C33 FAMILY APPLICATION NOTE EPSON 73

2.10.5 Transporting Linker Command Files (*.cm)
To map the sections of objects you have created into actual memory by S5U1C33001C, create a linker
script file; when executing the ld linker and specify the -T option.
Although in linker command files (*.cm) both the location addresses of sections and the link files are
specified, these specifications in ld are entered separately. Specifically, the location addresses are specified
in a linker script file, and the link files are specified in the command line when linking.
Furthermore, the S5U1C33000C libraries must be replaced with the S5U1C33001C libraries.

Table 2.10.5.1 Libraries
as33 (S5U1C33000C)

io.lib, lib.lib, math.lib, string.lib, ctype.lib
fp.lib, idiv.lib
fpp.lib, idiv.lib

as (S5U1C33001C)
libc.a
libgcc.a
libgccP.a

● Modification example

Linker command file sample.cm for lk33 (S5U1C33000C)

;Map set
-code 0x0601000 ; set relative code section start address
-bss 0x0000400 ; set relative bss section start address

-code 0x0600000 {boot.o} ; set code sections to absolute address

;Library path
-l ..\..\lib

;Executable file
-o ansilib.srf

;Object files
boot.o
main.o
sys.o
lib.o

;Library files
io.lib
lib.lib
math.lib
string.lib
ctype.lib
fp.lib
idiv.lib

Linker script file sample.lds for ld (S5U1C33001C)

OUTPUT_FORMAT("elf32-c33", "elf32-c33",
 "elf32-c33")
OUTPUT_ARCH(c33)
SEARCH_DIR(.);
SECTIONS
{

__dp = 0x400;

. = 0x400;

.bss : { *(.bss) }

.data : { *(.data) }

. = 0x600000;

.bootsec : { boot.o (.text) }

. = 0x0601000;

.text : { *(.text) }

}

Command line of the ld linker
ld -o sample.elf boot.o main.o sys.o lib.o ../lib/libc.a ../lib/libgcc.a -Tsample.lds

2 WRITING PROGRAMS FOR THE S1C33

74 EPSON S1C33 FAMILY APPLICATION NOTE

● Example of changing lk33 Ver.3.0 linker command files

Linker command file sample.cm for lk33 (S5U1C33000C)

-v3

-defaddr IN_RAM=0x0
-defaddr EXT_ROM=0xc00000

-codeblock OBJ1
{

sample2.o
sample3.o

}

-ucodeblock OBJ2 ... Define shared blocks
{ The CODE sections in sample1.o and sample4.o are set in the same address

sample1.o
sample4.o

}

-addr IN_RAM
{

DEFAULT_BSS
@DEFAULT_DATA
@OBJ1 ... Locate "OBJ1" as a virtual block
@OBJ2 ... Locate "OBJ2" as a virtual and shared block

}

-addr EXT_ROM
{

DEFAULT_CODE
DEFAULT_DATA
OBJ1
OBJ2

}
sample1.o
sample2.o
sample3.o
sample4.o
sample5.o
sample.lib

Linker script file sample.lds for ld (S5U1C33001C)

OUTPUT_FORMAT("elf32-c33", "elf32-c33",
 "elf32-c33")
OUTPUT_ARCH(c33)
SEARCH_DIR(.);
SECTIONS
{

/* data pointer symbol By GWB33 */
__dp = 0x0;

/* section information By GWB33 */
. = 0x0;

.bss 0x00000000 :
 {
 __START_bss = . ;
 *(.bss) ;
 __END_bss = . ;
 }

.text 0x00c00000 :
 {
 __START_text = . ;
 sample5.o(.text) ;
 C:/GNU33/lib/sample.a(.text);
 __END_text = . ;
 }

.rodata __END_text :
 {
 __START_rodata = . ;

2 WRITING PROGRAMS FOR THE S1C33

S1C33 FAMILY APPLICATION NOTE EPSON 75

 __END_rodata = . ;
 }

.data __END_bss : AT(__END_rodata)
 {
 __START_data = . ;
 *(.data) ;
 __END_data = . ;
 }
__START_data_lma = LOADADDR(.data);

.OBJ1 __END_data : AT(__START_data_lma+SIZEOF(.data))
 {
 __START_OBJ1 = . ;
 sample2.o(.text)
 sample3.o(.text) ;
 __END_OBJ1 = . ;
 }
__START_OBJ1_lma = LOADADDR(.OBJ1);

.OBJ2_1 __END_OBJ1 : AT(__START_OBJ1_lma+SIZEOF(.OBJ1))
 {
 __START_OBJ2_1 = . ;
 sample1.o(.text) ;
 __END_OBJ2_1 = . ;
 }
__START_OBJ2_1_lma = LOADADDR(.OBJ2_1);

.OBJ2_2 __END_OBJ1 : AT(__START_OBJ2_1_lma+SIZEOF(.OBJ2_1))
 {
 __START_OBJ2_2 = . ;
 sample4.o(.text) ;
 __END_OBJ2_2 = . ;
 }
__START_OBJ2_2_lma = LOADADDR(.OBJ2_2);

}

By specifying multiple object files in one section as for the definition of OBJ1, it is possible to obtain
the same effect as for block definitions in lk33.

Result of sample.lds linked by the linker ld (objdump -h sample.elf)

block.elf: file format elf32-c33

Sections:
Idx Name Size VMA LMA File off Algn
 0 .bss 00000014 00000000 00000000 00001000 2**2

ALLOC
 1 .text 00000006 00c00000 00c00000 00001000 2**1

CONTENTS, ALLOC, LOAD, READONLY, CODE
 2 .rodata 00000005 00c00006 00c00006 00001006 2**0

CONTENTS, ALLOC, LOAD, DATA
 3 .data 00000014 00000014 00c0000b 00001014 2**2

CONTENTS, ALLOC, LOAD, DATA
 4 .OBJ1 0000000c 00000028 00c0001f 00001028 2**1

CONTENTS, ALLOC, LOAD, CODE
 5 .OBJ2_1 00000006 00000034 00c0002b 00001034 2**1

CONTENTS, ALLOC, LOAD, CODE
 6 .OBJ2_2 00000006 00000034 00c00031 00002034 2**1

CONTENTS, ALLOC, LOAD, CODE
 7 .stab 00000714 0000003c 0000003c 0000203c 2**2

CONTENTS, READONLY, DEBUGGING
 8 .comment 000000be 00000b66 00000b66 00002750 2**0

CONTENTS, READONLY
 9 .stabstr 00000416 00000750 00000750 0000280e 2**0

CONTENTS, READONLY, DEBUGGING

VMAs for OBJ2_1 and OBJ2_2 are allocated to the same address (0x00000034).

2 WRITING PROGRAMS FOR THE S1C33

76 EPSON S1C33 FAMILY APPLICATION NOTE

2.10.6 Transporting Debugger Parameter Files (*.par)
The gdb debugger (S5U1C33001C) requires a parameter file when it starts up, similar to the db33
debugger (S5U1C33000C). Because gwb33 (S5U1C33001C) comes with a parameter file generator (as does
wb33 (S5U1C33000C)), regenerate the *.par files using this function.

Click the [PAR edit] button on the gwb33 dialog box to bring up a dialog box in which to create a param-
eter file.

2.10.7 Differences in Structure between srf33 Object Files (S5U1C33000C)
and elf Object Files (S5U1C33001C)

The following shows the differences in structure between the srf33 format files generated by the assem-
bler as33 and linker lk33 included with the S5U1C33000C package, and the elf format files generated by
the assembler as and linker ld included with the S5U1C33001C package.

● Structure of the srf33 format file

srf33 control header information

 Section information 1
:

Section information n

Relocation information 1
 :

Relocation information n

Extern information 1
 :

Extern information n

Actual data 1
 :

Actual data n

Debugging control information 1
 :

Debugging control information n

File-name information 1
Statement information 1

Symbol information 1
 :

File-name information n
Statement information n

Symbol information n

Fig 2.10.7.1 Layout in srf file

The section information is respectively linked with the relocation information, extern information,
and actual data.
For details on the srf33 object files, refer to the Appendix in the "S5U1C33000C Manual".

2 WRITING PROGRAMS FOR THE S1C33

S1C33 FAMILY APPLICATION NOTE EPSON 77

● Structure of elf format file

elf header information

Program
header table

Section information 1
:

Section information n

Section
header table

Fig. 2.10.7.2 Layout in elf file

The elf header information includes the address size, type of architecture, file version, entry point,
and other information.
The assembler and linker handle the elf file as a collection of logical sections written in the section
header table. By contrast, the system loader handles the elf file as a collection of segments written in
the program header table.

For details on the elf object files, refer to Websites and related documents.

The content and structure of the header information are incompatible with those of srf33 files, as
shown above.

2 WRITING PROGRAMS FOR THE S1C33

78 EPSON S1C33 FAMILY APPLICATION NOTE

2.11 Precautions on Use of the S5U1C33001C Tool

● New-line character in Cygwin
When the S5U1C33001C is used on a personal computer in which Cygwin has been installed, care
must be taken, as the tool may not operate normally depending on the new-line character settings.
The new-line character settings recommended for the S5U1C33001C are CR + LF (same as in Win-
dows). New-line character settings other than this should be changed by setting up Cygwin.

● About the partial-offset display of extended assembler instructions
The extended instructions of the assembler, as in the case of the S5U1C33001C, include the description
"SYMBOL+imm26" in their operands. This imm26 can actually be assembled as a 32-bit value. How-
ever, the actual offset value that is set during linking of the source files must satisfy the conditional
expression given below.

imm26 + [offset value for SYMBOL] < 0x4000000

(The offset value for SYMBOL is the distance from the data-area pointer to SYMBOL.)

Example:
xld.b [SYMBOL+imm26],rd

This instruction is expanded into the following format.
ext (SYMBOL+imm26)@ah...A = ext ((SYMBOL+imm26) - __dp)[25:13]
ext (SYMBOL+imm26)@al...B = ext ((SYMBOL+imm26) - __dp)[12:0]
xld.b [%r15], %rd

Address range
accessible with

SYMBOL + imm26

Range of offset values
specifiable by imm26

When __dp < SYMBOL

__dp

__dp + 0x04000000

SYMBOL

High
address

Address range
accessible with

SYMBOL + imm26

Range of offset values
specifiable by imm26

Inaccessible

26-bit range

When __dp > SYMBOL (inaccessible from C)

__dp

__dp + 0x04000000

SYMBOL

High
address

Fig. 2.11.1 Specifiable range of SYMBOL + imm26

The upper limit of the accessible range of the above instruction is __dp + 0x04000000, as shown above.
Therefore, when __dp < SYMBOL, as is normally the case, values from 0 to (__dp + 04000000) -
SYMBOL can be specified for imm26. When __dp > SYMBOL, offset values exceeding the 26-bit range
can also be specified. However, SYMBOL-based addresses cannot be accessed from C sources. These
addresses can be accessed from the assembly sources, provided that SYMBOL + imm26 is in the range
of __dp to (__dp + 04000000).

2 WRITING PROGRAMS FOR THE S1C33

S1C33 FAMILY APPLICATION NOTE EPSON 79

● About the SHARE file for GUI debugging use
A group of files present in the \gnu33\utility\share folder are the files written in TCL/TK language,
which are used in GUI mode of the debugger gdb. As these are text files, they can be altered by an
editor or the like. However, care must be taken, as the debugger gdb may become inoperable depend-
ing on the altered content. If it is necessary to alter the content, be sure to gain a full understanding of
the detailed specifications before actually making a change.

Some of these files have been customized from insight gdb for use with the S5U1C33001C manufac-
tured by Epson. The \gnu33\utility\share\modify folder includes a file indicating the customized
file names and the contents of modification.

3 PROGRAMMING THE S1C33 PERIPHERAL FUNCTIONS

80 EPSON S1C33 FAMILY APPLICATION NOTE

3 PROGRAMMING THE S1C33 PERIPHERAL FUNCTIONS
This chapter describes some basic methods for programming the peripheral functions of the S1C33 chip.

Note: Unless otherwise noted, the peripheral functions and following example code apply to the
S1C33209. Functionality or control register addresses may differ, depending on the specific
microcomputer.

3.1 Setting Up BCU
The following code demonstrates how to set up SRAM (same as for ROM and flash) and DRAM. This is a
BCU setup example in cases where the S1C33209, both core and bus, operates at 25 MHz and has SRAM
and DRAM connected to areas 10 and 13, respectively.

BCU setup example

void setbcu()
 {

volatile short *ps0;
volatile char *pc0;

// set bcu

ps0 = (short *)0x48126; // area 9-10 1 wait
*ps0 = 0x01;

ps0 = (short *)0x48122; // area 13 dram (1)
*ps0 = 0x82; // area 14 2 wait

pc0 = (char *)0x4014d; // pre-scaler fpr 8bit TM0 (2)
*pc0 = 0x09; // 1/4
pc0 = (char *)0x40161; // 8bit TM0 reload
*pc0 = 0x7e; // 20us in 25MHz
pc0 = (char *)0x40160; // 8bit TM0
*pc0 = 0x3; // start

ps0 = (short *)0x4812e; (3)
*ps0 = 0x06e0; // fast page, col=9bit, refresh enable, CBR,
ps0 = (short *)0x48130;
*ps0 = 0x208; // ras1/cas2, precharge1, cefunc=01

 }

● Settings for SRAM, ROM, and flash
Settings for SRAM, ROM, and flash can be made for each area below using BCU registers at addresses
0x48120 to 0x4812B.
Setup areas

18–17, 16–15, 14–13, 12–11, 10–9, 8–7, 6, 5–4
Setup contents
a) Device size: 8 or 16 bits

(Area 6 switches between 8 and 16 bits, depending on address.)
b) Number of wait cycles: 0 to 7 cycles

(During writes, wait cycles of 1 or more are assumed, even if you set 0 here.)
c) Output disable delay time: 0.5 to 3.5 cycles

(These wait cycles are inserted when accessing locations across area boundaries.)

In this example, areas 9–10 are set for device size = 16 bits, wait cycle = 1, and output disable delay
time = 0.5 cycles.
ps0 = (short *)0x48126; // area 9-10 1 wait
*ps0 = 0x01;

While this presents no problems when two x8 type SRAMs are used for the 16-bit width, the external
interface method (0x4812E•D3) must be set to #BSL in 1 when using x16 type SRAM. Two types
cannot coexist. This is detailed in "Connecting x16 type SRAM" in Chapter 4, "The Basic S1C33 Chip
Board Circuit".

3 PROGRAMMING THE S1C33 PERIPHERAL FUNCTIONS

S1C33 FAMILY APPLICATION NOTE EPSON 81

● DRAM settings
Areas 14, 13, 8, and 7 can be set for DRAM.

(1) Selecting DRAM
Set the DRAM select bit to 1 for the area using DRAM. In this example, area 13 is set as 16-bit wide
DRAM. Area 14 can be used as 2-wait cycle, 16-bit wide SRAM, etc.

ps0 = (short *)0x48122; // area 13 dram
*ps0 = 0x82; // area 14 2 wait

(2) DRAM refresh settings using 8-bit timer 0
In this example, the clock input prescaler for 8-bit timer 0 is set to 1/4 mode. As a result, 8-bit
timer 0 is clocked with 25 MHz divided by 4. Additionally, 0x7e is set as the timer reload value.
Because the timer input clock is thus divided by 125 (0x7e + 1), the refresh cycle is 20 µs, equal to
the original operating clock (25 MHz) divided by 500.

pc0 = (char *)0x4014d; // pre-scaler fpr 8bit TM0
*pc0 = 0x09; // 1/4
pc0 = (char *)0x40161; // 8bit TM0 reload
*pc0 = 0x7e; // 20us in 25MHz
pc0 = (char *)0x40160; // 8bit TM0
*pc0 = 0x3; // start

(3) DRAM parameter settings
Finally, perform detailed DRAM setup. Note that the following settings are reflected in all con-
nected DRAMs, even when DRAMs are connected to multiple areas.
At address 0x4812E, you can select
1. EDO/fast page mode
2. Column size 8 (8–11 bits)
3. Refresh enable/disable
4. Self/CBR refresh
5. Refresh RPC delay (1, 2)
6. Refresh RAS pulse width (2–5)

Additionally, at address 0x48130, select
7. Successive RAS mode
8. Number of RAS precharges
9. Number of CAS cycles
10. Number of RAS cycles

In this example, settings are made for fast page mode, CBR refresh, RAS = 1 cycle, CAS = 2 cycles,
and precharge = 1 cycle.

ps0 = (short *)0x4812e;
*ps0 = 0x06e0; // fast page, col=9bit, refresh enable, CBR,
ps0 = (short *)0x48130;
*ps0 = 0x208; // ras1/cas2, precharge1, cefunc=01

In addition, after powering on, DRAM may require some finite time or dummy cycles before
becoming usable. Code needs to account for these requirements, in addition to the preceding
example.

3 PROGRAMMING THE S1C33 PERIPHERAL FUNCTIONS

82 EPSON S1C33 FAMILY APPLICATION NOTE

● BCLK, CEFUNC
The control bits for setting up BCU for special purposes are available at addresses 0x4812E and
0x48130. Two frequently-used control bits are described below.

BCLK (0x4812E•DF): BCLK output enable
Controls the clock output from the BCLK pin. By default, this is set at output (0). But since this output
consumes several mA of current, set BCLK high (1), if not required.

To output, select from among PLL output clock, OSC3 clock, BCU clock, or CPU clock for the BCLK
output clock, using BCLKSEL[1:0] (0x4813A•D[1:0]).

BCLKSEL1
1
1
0
0

BCLKSEL0
1
0
1
0

Output clock
PLL_CLK (PLL output clock)
OSC3_CLK (OSC3 oscillation clock)
BCU_CLK (BCU operating clock)
CPU_CLK (CPU operating clock)

High-speed (OSC3)
oscillation circuit

CLKCHGCLKDT[1:0]
BCLKSEL[1:0]

PLLS[1:0] pins #X2SPD pin
To CPU

OSC3_CLK

OSC3_CLK (PLL: off)

PLL_CLK (PLL: x2 mode)

PLL_CLK (PLL: x4 mode)

A

CPU_CLK (CLKDT = 1/1)

CPU_CLK (CLKDT = 1/2)

CPU_CLK (CLKDT = 1/4)

CPU_CLK (CLKDT = 1/8)

CPU_CLK

BCU_CLK(#X2SPD=H, x1 speed mode)

BCU_CLK(#X2SPD=L, x2 speed mode)

(When OSC3 is selected for the CPU system clock)

∗1

∗1 Internal RAM access or internal peripheral circuit access with A1X1MD = 1
∗2 External access or internal peripheral circuit access with A1X1MD = 0
 (Internal peripheral circuit access in x2 speed mode can be set to two or four
 CPU clock cycles using A1X1MD (0x4813A, D3).)

∗1

∗1

∗1

∗2 ∗1 ∗2

∗2 ∗1 ∗2

PLL_CLK

A
CPU_CLK BCU_CLK

Bus clock

PLL

 Low-speed (OSC1)
oscillation circuit

CLG
BCU

1/1 or 1/2
1/2–1/8

BCLK pin

Clock system (S1C33209)

3 PROGRAMMING THE S1C33 PERIPHERAL FUNCTIONS

S1C33 FAMILY APPLICATION NOTE EPSON 83

CEFUNC[1:0] (0x48130•D[A:9]): #CE pin function selection
Because the S1C33209 has only 7 #CE pins, it is unable use the entire address space at the same time.
Instead, it allows selection of the memory area to be used by setting CEFUNC.

Pin
#CE4
#CE5
#CE6
#CE7/#RAS0
#CE8/#RAS1
#CE9
#CE10EX

CEFUNC = "00"
#CE4
#CE5
#CE6
#CE7/#RAS0
#CE8/#RAS1
#CE9
#CE10EX

CEFUNC = "01"
#CE11
#CE15
#CE6
#CE13/#RAS2
#CE14/#RAS3
#CE17
#CE10EX

CEFUNC = "1x"
#CE11+#CE12
#CE15+#CE16
#CE7+#CE8
#CE13/#RAS2
#CE14/#RAS3
#CE17+#CE18
#CE9+#CE10EX

(Default: CEFUNC = "00")

Internal RAM

Internal I/O

(Mirror of internal I/O)

(Mirror of internal I/O)

(Reserved)
For CPU core or debug mode

(Reserved)
For middleware use

0x0BFFFFF

0x0800000
0x07FFFFF

0x0600000
0x05FFFFF

0x0400000
0x03FFFFF
0x0380000
0x037FFFF
0x0300000
0x02FFFFF

0x0200000
0x01FFFFF

0x0100000
0x00FFFFF

0x0080000
0x007FFFF

0x0060000
0x005FFFF
0x0050000
0x004FFFF
0x0040000
0x003FFFF
0x0030000
0x002FFFF

0x0000000

Area
Area 9
 SRAM type
 Burst ROM type
 8 or 16 bits
Area 8
 SRAM type
 DRAM type
 8 or 16 bits
Area 7
 SRAM type
 DRAM type
 8 or 16 bits
Area 6
 SRAM type

Area 5
 SRAM type
 8 or 16 bits

Area 4
 SRAM type
 8 or 16 bits

Area 3
 16 bits
 Fixed at 1 cycle

Area 2
 16 bits
 Fixed at 3 cycles

Area 1
 8, 16 bits
 2 or 4 cycles

Area 0
 32 bits
 Fixed at 1 cycle

Address

External memory (1MB)

External memory (1MB)

External memory (2MB)

External memory (2MB)

External memory (4MB)

External memory (4MB)

External I/O (8-bit device)

External I/O (16-bit device)

0xFFFFFFF
0xD000000
0xCFFFFFF
0xC000000
0xBFFFFFF
0x9000000
0x8FFFFFF
0x8000000
0x7FFFFFF
0x7000000
0x6FFFFFF
0x6000000
0x5FFFFFF
0x5000000
0x4FFFFFF
0x4000000
0x3FFFFFF

0x3000000
0x2FFFFFF

0x2000000
0x1FFFFFF

0x1800000
0x17FFFFF

0x1000000
0x0FFFFFF

0x0C00000

Area
Area 18
 SRAM type
 8 or 16 bits

Area 17
 SRAM type
 8 or 16 bits

Area 16
 SRAM type
 8 or 16 bits

Area 15
 SRAM type
 8 or 16 bits

Area 14
 SRAM type
 DRAM type
 8 or 16 bits
Area 13
 SRAM type
 DRAM type
 8 or 16 bits
Area 12
 SRAM type
 8 or 16 bits

Area 11
 SRAM type
 8 or 16 bits

Area 10
 SRAM type
 Burst ROM type
 8 or 16 bits

Address

External memory (8MB)

External memory (8MB)

External memory (16MB)

External memory (16MB)

External memory (16MB)

External memory (16MB)

External memory (16MB)

External memory (16MB)

S1C33 address space

3 PROGRAMMING THE S1C33 PERIPHERAL FUNCTIONS

84 EPSON S1C33 FAMILY APPLICATION NOTE

0x0FFFFFF

0x0C00000
0x0BFFFFF

0x0800000
0x07FFFFF

0x0600000
0x05FFFFF

0x0400000
0x03FFFFF
0x0380000
0x037FFFF
0x0300000
0x02FFFFF

0x0200000
0x01FFFFF

0x0100000

Area
Area 10 (#CE10)
 SRAM type
 Burst ROM type
 8 or 16 bits
Area 9 (#CE9)
 SRAM type
 Burst ROM type
 8 or 16 bits
Area 8 (#CE8/#RAS1)
 SRAM type
 DRAM type
 8 or 16 bits
Area 7 (#CE7/#RAS0)
 SRAM type
 DRAM type
 8 or 16 bits
Area 6 (#CE6)
 SRAM type

Area 5 (#CE5)
 SRAM type
 8 or 16 bits

Area 4 (#CE4)
 SRAM type
 8 or 16 bits

Area
Area 17 (#CE17)
 SRAM type
 8 or 16 bits

Area 15 (#CE15)
 SRAM type
 8 or 16 bits

Area 14 (#CE14/#RAS3)
 SRAM type
 DRAM type
 8 or 16 bits
Area 13 (#CE13/#RAS2)
 SRAM type
 DRAM type
 8 or 16 bits
Area 11 (#CE11)
 SRAM type
 8 or 16 bits

Area 10 (#CE10)
 SRAM type
 Burst ROM type
 8 or 16 bits
Area 6 (#CE6)
 SRAM type

Address

External memory 1 (1MB)

External memory 2 (1MB)

External memory 3 (2MB)

External memory 4 (2MB)

External memory 5 (4MB)

External memory 6 (4MB)

External I/O (8-bit device)

External I/O (16-bit device)

0xBFFFFFF
0x9000000
0x8FFFFFF
0x8000000
0x5FFFFFF
0x5000000
0x4FFFFFF
0x4000000
0x3FFFFFF

0x3000000
0x2FFFFFF

0x2000000
0x17FFFFF

0x1000000
0x0FFFFFF

0x0C00000
0x03FFFFF
0x0380000
0x037FFFF
0x0300000

Address

External memory 3 (16MB)

External memory 4 (16MB)

External memory 5 (16MB)

External memory 6 (16MB)

(Mirror of External memory 6)

(Mirror of External memory 5)

External I/O (8-bit device)

External I/O (16-bit device)

External memory 1 (4MB)

External memory 2 (8MB)

CEFUNC = "00" CEFUNC = "01"

Area
Area 17+18 (#CE17+18)
 SRAM type
 8 or 16 bits

Areas 15–16 (#CE15+16)
 SRAM type
 8 or 16 bits

Area 14 (#CE14/#RAS3)
 SRAM type
 DRAM type
 8 or 16 bits
Area 13 (#CE13/#RAS2)
 SRAM type
 DRAM type
 8 or 16 bits
Areas 11–12 (#CE11+12)
 SRAM type
 8 or 16 bits

Areas 9–10 (#CE9+10EX)
 SRAM type
 Burst ROM type
 8 or 16 bits
Areas 7–8 (#CE7+8)
 SRAM type
 8 or 16 bits

0xFFFFFFF
0xD000000
0xCFFFFFF
0xC000000
0xBFFFFFF
0x9000000
0x8FFFFFF
0x8000000
0x7FFFFFF
0x7000000
0x6FFFFFF
0x6000000
0x5FFFFFF
0x5000000
0x4FFFFFF
0x4000000
0x3FFFFFF

0x3000000
0x2FFFFFF

0x2000000
0x1FFFFFF

0x1000000
0x0FFFFFF

0x0800000
0x07FFFFF

0x0400000

Address

External memory 4 (16MB)

External memory 5 (16MB)

External memory 2 (8MB)

External memory 3 (16MB)

External memory 1 (4MB)

CEFUNC = "10" or "11"

External memory 7 (16MB)

External memory 7' (16MB)

(Mirror of External memory 7')

(Mirror of External memory 7)

External memory 6 (16MB)

External memory 6' (16MB)

(Mirror of External memory 6')

(Mirror of External memory 6)

Selection of external memory area

3 PROGRAMMING THE S1C33 PERIPHERAL FUNCTIONS

S1C33 FAMILY APPLICATION NOTE EPSON 85

3.2 Setting Up 8-bit Timer
In general, four settings are required for peripheral functions.

1. Prescaler setting
The operating clock for each peripheral function is always frequency-divided by the prescaler before
being fed into the peripheral function.

2. Setting of the peripheral function itself
Each peripheral function has registers to determine operating mode and to start or stop it.

3. Interrupt controller setting (when using interrupts)
Interrupt requests generated by each peripheral function are always fed into the interrupt controller
before being sent to the CPU core.

4. External pin setting (when using external pins)
By default, external pins are set for general-purpose I/O ports or input ports. Before external pins can
be used for peripheral functions, their functionality must be selected by setting up registers.

The following section describes a simple interrupt control program based on an 8-bit timer, using the
sample from sample\icdtrc\ of S5U1C33001C.

● S5U1C33000H trace auxiliary interrupt program
This sample is an code example for reinforcing the S5U1C33000H trace function. The S5U1C33000H
trace function displays the PC value by analyzing program flow from the PC value (as a starting point
such as time at which the program begins running) and the debugger's disassembly information.
However, the PC value starting point is not always known, especially in trace overwrite mode. Thus,
this program periodically generates an interrupt using the 8-bit timer to confirm the PC value (since
the absolute value of PC is output when executing reti), allowing continuation of PC analysis by
S5U1C33000H using that PC value as a starting point.

Vector section

.text

.long BOOT ; boot,rest VECTOR

.long RESERVED ; reserved 4

.long RESERVED ; reserved 8

.long RESERVED ; reserved 12

.long EXP_DIV0 ; divided by 0 exception

.long RESERVED ; reserved 20

.long EXP_UNADDR ; address un-aligned exception

.long NMI ; nmi

.long RESERVED ; reserved 32

.long RESERVED ; reserved 36

.long RESERVED ; reserved 40

.long RESERVED ; reserved 44

.long SOFT_INT ; software interrupt 0

.long SOFT_INT ; software interrupt 1

.long SOFT_INT ; software interrupt 2

.long SOFT_INT ; software interrupt 3

.long HARD_INT ; hardware interrupt 0

.long HARD_INT ; hardware interrupt 1
|

.long HARD_INT ; hardware interrupt 35

.long TIME_INT ; hardware interrupt 36 (1)
;set 8 bit timer ch0 interrupt vector

.long HARD_INT ; hardware interrupt 37

.long HARD_INT ; hardware interrupt 38

(1) Vector table setting
Register the interrupt routine in the vector table.

.long HARD_INT ; hardware interrupt 35

.long TIME_INT ; hardware interrupt 36
;set 8 bit timer ch0 interrupt vector

.long HARD_INT ; hardware interrupt 37

3 PROGRAMMING THE S1C33 PERIPHERAL FUNCTIONS

86 EPSON S1C33 FAMILY APPLICATION NOTE

Initialization and interrupt service routine

.global INIT_8TIMER
INIT_8TIMER:

;interrupt disable
 ld.w %r4,0x00 (1)
 ld.w %psr,%r4 ;IE disnable
 xld.w %r4,0x40160 (2)
 ld.w %r5,0x00
 ld.b [%r4],%r5 ;8timer0 disable in timer-reg
 xld.w %r4,0x4014d (3)
 ld.w %r5,0x7
 ld.b [%r4],%r5 ;8timer0 disable in pri-scaler

;8bit timer set
 xld.w %r4,0x40161 (4)
 xld.w %r5,0x26 ;interrupt every 10000 clocks
 ld.b [%r4],%r5 ;8timer0 interval

 xld.w %r4,0x40146 (5)
 ld.w %r5,0x00
 ld.b [%r4],%r5 ;8timer0 clock is divided clock

 xld.w %r4,0x40269 (6)
 xld.w %r5,0x03
 ld.b [%r4],%r5 ;8timer0 interrupt priority level 3

 xld.w %r4,0x40275 (7)
 xld.w %r5,0x01
 ld.b [%r4],%r5 ;8timer0 interrupt enable

 xld.w %r4,0x40285 (8)
 xld.w %r5,0x00
 ld.b [%r4],%r5 ;8timer0 interrupt flag clear

 xld.w %r4,0x4014d (9)
 ld.w %r5,0x0f
 ld.b [%r4],%r5 ;8timer0 enable in pri-scaler

;8bit timer start
 ld.w %r4,0x10 (10)
 ld.w %psr,%r4 ;IE enable

 xld.w %r4,0x40160 (11)
 xld.w %r5,0x3
 ld.b [%r4],%r5 ;clock out on,preset,start
; exit function
 ret

.global TIME_INT
TIME_INT:
 pushn %r1
 xld.w %r1,0x40285
 xld.w %r0,0x01
 ld.b [%r1],%r0 ;8timer5 interrupt flag reset
 popn %r1
 reti

(1) Disabling interrupts
Disable the IE flag (to disable interrupts). Altering the interrupt settings while interrupts are
enabled causes the program to operate erratically.

 ld.w %r4,0x00
 ld.w %psr,%r4 ;IE disnable

(2) Stopping the 8-bit timer/counter
Temporarily stop the timer from counting down before resetting it.

 xld.w %r4,0x40160
 ld.w %r5,0x00
 ld.b [%r4],%r5 ;8timer0 disable in timer-reg

3 PROGRAMMING THE S1C33 PERIPHERAL FUNCTIONS

S1C33 FAMILY APPLICATION NOTE EPSON 87

(3) Stopping prescaler clock supply to the 8-bit timer
Before altering the timer setting, to ensure safety, stop the clock supplied from the prescaler to the
8-bit timer.

 xld.w %r4,0x4014d
 ld.w %r5,0x7
 ld.b [%r4],%r5 ;8timer0 disable in pri-scaler

(4) Setting the 8-bit timer
The reload data 0x26 is used to generate an interrupt every 10,069 clock periods of the prescaler's
input clock (by default, OSC3 or PLL output).
(0x26 + 1) × 256 = 10,059 clock periods

With the CPU core operating at 20 MHz, an interrupt is generated every 0.5 ms.
 xld.w %r4,0x40161
 xld.w %r5,0x26 ;interrupt every 10000 clocks
 ld.b [%r4],%r5 ;8timer0 interval

(5) Selecting the input clock for the 8-bit timer
Select a divided clock for input to the 8-bit timer. This is the setting associated with the prescaler.

 xld.w %r4,0x40146
 ld.w %r5,0x00
 ld.b [%r4],%r5 ;8timer0 clock is divided clock

(6) Setting the interrupt priority level of the 8-bit timer
Set this interrupt priority level to 3.

 xld.w %r4,0x40269
 xld.w %r5,0x03
 ld.b [%r4],%r5 ;8timer0 interrupt priority level 3

(7) Altering settings of the 8-bit-timer interrupt enable register
Enable the 8-bit-timer interrupt.

 xld.w %r4,0x40275
 xld.w %r5,0x01
 ld.b [%r4],%r5 ;8timer0 interrupt enable

(8) Clearing the 8-bit-timer interrupt factor
Clear the 8-bit-timer interrupt factor flag.

 xld.w %r4,0x40285
 xld.w %r5,0x00
 ld.b [%r4],%r5 ;8timer0 interrupt flag clear

(9) Reenabling clock supply from the prescaler
Reenable the prescaler to allow it to start supplying a clock to the 8-bit timer. At this point, the
timer remains idle and does not count down.

 xld.w %r4,0x4014d
 ld.w %r5,0x0f
 ld.b [%r4],%r5 ;8timer0 enable in pri-scaler

(10) Reenabling interrupts
Set the IE bit in the PSR to "1" in order to reenable the interrupts. Hereafter, interrupts from any
source will be accepted.

 ld.w %r4,0x10
 ld.w %psr,%r4 ;IE enable

(11) Resetting the 8-bit timer to allow it to start counting down
Finally, reset the counter of the 8-bit timer and allow it start counting down. Although the timer/
counter here is made to start counting at the time it is reset, the timer/counter can be reset first
and then made to start counting without causing any problem.

 xld.w %r4,0x40160
 xld.w %r5,0x3
 ld.b [%r4],%r5 ;clock out on,preset,start

3 PROGRAMMING THE S1C33 PERIPHERAL FUNCTIONS

88 EPSON S1C33 FAMILY APPLICATION NOTE

3.3 Setting Up 16-bit Timer
Here, we will explain how to control 16-bit timer interrupts and PWM output, using the source code for
S5U1C331M2S middleware as an example. Note that the S1C33104's 16-bit timer significantly differs in
functionality from that of the S1C33209.

● Interrupt settings
The following describes the compare B interrupt of 16-bit timer 4.

Vector section

#define INT30 mdyInt // mdy interrupt routine (1)

.text

.long RESET

.long RESERVED

.long RESERVED

.long RESERVED

.long ZERODIV

.long RESERVED

.long ADDRERR

.long NMI

.long RESERVED

.long RESERVED

.long RESERVED

.long RESERVED

.long SOFTINT0

.long SOFTINT1

.long SOFTINT2

.long SOFTINT3

.long INT0

.long INT1
|

.long INT29

.long INT30 (1)

.long INT31
|

(1) Setting the interrupt vector
Register the interrupt routine mdyInt as the vector for INT30 (compare B interrupt of 16-bit timer 4).

Interrupt disable and PSR save/restore routine

.section .bss

.align 2
MDY_PSR :

.zero 4

.global mdyInt

mdyIntOff: (1)
xld.w %r10,MDY_PSR
ld.w %r11,%psr // save %psr and IE disable
ld.w [%r10],%r11
ld.w %r10,0
ld.w %psr,%r10
ret
.global mdyIntOn

mdyIntOn: (2)
xld.w %r10,MDY_PSR
ld.w %r11,[%r10]
ld.w %psr,%r11 // restore %psr
ret

(1) Disabling interrupts
Save the PSR contents and set the IE bit to 0 to disable interrupts.

(2) Enabling interrupts
Restore the contents of PSR saved in (1).

These settings are called from C.

3 PROGRAMMING THE S1C33 PERIPHERAL FUNCTIONS

S1C33 FAMILY APPLICATION NOTE EPSON 89

16-bit timer setup section

//***
// void mdyTmOpen(unsigned short freq)
// start timer 4, underflow interrupt with freq count
// prescaler is 1/1024
//***

void mdyTmOpen(unsigned short freq)
 {

unsigned char ucTmp;

// interrupt disable
mdyIntOff(); (1)

// set TM4 prescaler to 1/1024, 0b00001110

*(volatile unsigned char *)(0x4014b) = 0xe; (2)

// set TM4 reload and compare data

*(volatile unsigned short *)(0x481a2) = freq; //set compare b (3)
*(volatile unsigned short *)(0x481a4) = 0x0; //dummy data for up counter

// set TM4 control register
// fine mode off,compare buf off,reverse off,internal clock,clock out off,preset,stop
// 0x401a6 0010,

*(volatile unsigned char *)(0x481a6) = 0x0;

// set TM4 match compare b come to cpu interrupt

*(volatile unsigned char *)(0x40291) &= 0xBf; //set timer 4 enable (4)

// set TM4,interrupt priority level 3

ucTmp = *(volatile unsigned char *)(0x40268);
ucTmp = ucTmp & 0xf0;
ucTmp = ucTmp | 0x3;
*(volatile unsigned char *)(0x40268) = ucTmp;

// clear TM4 interrupt factor flags (write 1, and reset)

*(volatile unsigned char *)(0x40284) &= 0x0C;

// set TM4 underflow interrupt enable

*(volatile unsigned char *)(0x40274) |= 0x04; //set timer 4 enable

// start TM4 counter

*(volatile unsigned char *)(0x481a6) |= 0x01; (5)

// interrupt enable
mdyIntOn(); (6)

 }

(1) Disabling interrupts
Disable interrupts as a precautionary measure.
// interrupt disable

mdyIntOff();

(2) Setting the prescaler
A divide-by-1024 clock from the prescaler is fed into timer 4 as its input clock.
// set TM4 prescaler to 1/1024, 0b00001110

*(volatile unsigned char *)(0x4014b) = 0xe;

3 PROGRAMMING THE S1C33 PERIPHERAL FUNCTIONS

90 EPSON S1C33 FAMILY APPLICATION NOTE

(3) Timer 4 cycle (compare B), compare A, and other settings
The compare B interrupt cycle of timer 4 is set to (freq + 1) × 1024 clock periods by the following
settings:
// set TM4 reload and compare data

*(volatile unsigned short *)(0x481a2) = freq; //set compare b
*(volatile unsigned short *)(0x481a4) = 0x0; //dummy data for up counter

Set other parameters for timer 4.
// set TM4 control register
// fine mode off,compare buf off,reverse off,internal clock,clock out off, ...
// 0x401a6 0010,

*(volatile unsigned char *)(0x481a6) = 0x0;

(4) Setting the interrupt controller
Set the interrupt controller so that the compare B interrupt of timer 4 is forwarded to the CPU as
an immediate interrupt, not as an IDMA start request.
// set TM4 match compare b come to cpu interrupt

*(volatile unsigned char *)(0x40291) &= 0xBf; //set timer 4 enable

Set the interrupt priority to 3.
// set TM4,interrupt priority level 3

ucTmp = *(volatile unsigned char *)(0x40268);
ucTmp = ucTmp & 0xf0;
ucTmp = ucTmp | 0x3;
*(volatile unsigned char *)(0x40268) = ucTmp;

As a precaution, clear the interrupt factor flag.
// clear TM4 interrupt factor flags (write 1, and reset)

*(volatile unsigned char *)(0x40284) &= 0x0C;

Enable the compare B interrupt.
// set TM4 underflow interrupt enable

*(volatile unsigned char *)(0x40274) |= 0x04; //set timer 4 enable

(5) Timer start
Let timer 4 begin counting.
// start TM4 counter

*(volatile unsigned char *)(0x481a6) |= 0x01;

(6) Enabling interrupts
Reenable interrupts.
// interrupt enable

mdyIntOn();

Note that a separate interrupt routine (mdyInt) needs to be written. Make sure that the interrupt
factor flag is always cleared in the interrupt routine.
Example for clearing:
// clear TM4 interrupt factor flags (write H and reset)

*(volatile unsigned char *)(0x40284) &= 0x0C;

This prevents the re-occurrence of the same interrupt when interrupts are enabled.

3 PROGRAMMING THE S1C33 PERIPHERAL FUNCTIONS

S1C33 FAMILY APPLICATION NOTE EPSON 91

● PWM settings
The following section describes how to process PWM. The source code for S5U1C331M2S middleware
is used as an example.

PWM initial settings

//***
// void mdyTm0Set (unsigned short count, unsigned short compare)
//***

static void mdyTm0Set (unsigned short count, unsigned short compare, int reverse)
 {
// interrupt disable

mdyIntOff(); (1)

// set P22 port to TM0

*(volatile char *)(0x402d8) |= 0x04; (2)

// set TM0 prescaler to 1/16, 0b0001011

*(volatile unsigned char *)(0x40147) = 0x0b; (3)

// set TM0 reload and compare data

*(volatile unsigned short *)(0x48182) = count; //compare B (4)
*(volatile unsigned short *)(0x48180) = compare; //compare A

// set TM0 control register
// fine mode off, compare buf, reverse, internal clock, clock out on, preset, stop
// internal clock, clock out on, preset, stop
// 0x4018e 0b00010100 or 0b00110100

if (reverse==1){
*(volatile unsigned char *)(0x48186) = 0x34;

}
else{

*(volatile unsigned char *)(0x48186) = 0x24;
}

// reset TM0 counter

*(volatile unsigned char *)(0x48186) |= 0x02; (5)

// interrupt enable
mdyIntOn(); (6)

 }

(1) Disabling interrupts
Disable interrupts as a precautionary measure.
// interrupt disable

mdyIntOff();

(2) Selecting port functions
Because the ports used for PWM (16-bit timer) output are set for general-purpose input/output
ports by default, change their function to PWM output.
// set P22 port to TM0

*(volatile char *)(0x402d8) |= 0x04;

(3) Setting the prescaler
A divide-by-16 clock from the prescaler is fed into timer 0 as its input clock.
// set TM0 prescaler to 1/16, 0b0001011

*(volatile unsigned char *)(0x40147) = 0x0b;

(4) Setting timer 0
Start by setting up compare A and compare B registers. Compare B + 1 counts comprise one cycle.
In normal mode, output starts from 0; in inverse mode, output starts from 1. Compare A + 1 counts
select output between 0 and 1.

3 PROGRAMMING THE S1C33 PERIPHERAL FUNCTIONS

92 EPSON S1C33 FAMILY APPLICATION NOTE

For example, when in normal mode compare B = 5 and compare A = 0, the output is 0 in the first
clock period and 1 in the remaining other four clock periods. This is repeated.
// set TM0 reload and compare data

*(volatile unsigned short *)(0x48182) = count; //compare B
*(volatile unsigned short *)(0x48180) = compare; //compare A

Set other parameters for timer 0.
// set TM0 control register
// fine mode off, compare buf, reverse, internal clock, clock out on, preset, stop
// internal clock, clock out on, preset, stop
// 0x4018e 0b00010100 or 0b00110100

if (reverse==1){
*(volatile unsigned char *)(0x48186) = 0x34;

}
else{

*(volatile unsigned char *)(0x48186) = 0x24;
}

(5) Reset the counter for timer 0
Reset the counter for timer 0 to 0.
// reset TM0 counter

*(volatile unsigned char *)(0x48186) |= 0x02;

(6) Enabling interrupts
Finish by reenabling interrupts.
// interrupt enable

mdyIntOn();

PWM start section

//***
// void mdyTm0Start ()
//***

static void mdyTm0Start ()
 {
// start TM0 counter

*(volatile unsigned char *)(0x48186) |= 0x03;
 }

This function starts PWM.

PWM change section

//***
// void mdyTm0Change (unsigned short count, unsigned short compare)
//***

static void mdyTm0Change (unsigned short count, unsigned short compare)
 {
// set TM0 reload and compare data

*(volatile unsigned short *)(0x48182) = count; // compare B
*(volatile unsigned short *)(0x48180) = compare; // compare A

 }

This function changes the cycles and duty of PWM waveform. In setting (4) of the mdyTm0set()
function, the compare buffer (0x48186•D5 = 1) is enabled to allow compare A/B data to be written to
the buffer asynchronously with the counter. The data once stored in the buffer is set in the compare
A/B registers when the counter returns a 0 upon matching compare B. If the entire compare buffer is
not being used, a single occurrence of compare A matching may be undetected unless synchronized
since compare A/B data take effect when written.

3 PROGRAMMING THE S1C33 PERIPHERAL FUNCTIONS

S1C33 FAMILY APPLICATION NOTE EPSON 93

3.4 Setting Up Serial Interface
This section describes how to control asynchronous communications via a serial interface, using the
source code for S5U1C331M2S middleware as an example.

● Asynchronous communications using an external clock
The following example is an assembly source excerpted from mon33g\src\m3s_sci.s. In this example,
communications are controlled by polling rather than by using interrupts.

Initialize routine

#define MON_VER 0x10 ;moinitor firm-ware version

#define STDR 0x000401e0 ;transmit data register(ch0)
#define SRDR 0x000401e1 ;receive data register(ch0)
#define SSR 0x000401e2 ;serial status register(ch0)
#define SCR 0x000401e3 ;serial control register(ch0)
#define SIR 0x000401e4 ;IrDA control register(ch0)
#define PIO_SET 0x07 ;port function register

#define SIR_SET 0x0 ;SIR set(1/16 mode)
#define SCR_SET 0x7 ;SCR set(#SCLK input 1.843MHz 115200bps)
#define SCR_EN 0xc0 ;SCR enable
#define PIO 0x000402d0 ;IO port (P port) register

.text
;**
;
; void m_io_init()
; serial port initial function
;
;**

.global m_io_init
m_io_init:

xld.w %r1,SIR (1)
ld.w %r0,SIR_SET ;1/16 mode
ld.b [%r1],%r0 ;SIR set

xld.w %r1,SCR (2)
ld.w %r0,SCR_SET
ld.b [%r1],%r0 ;SCR set(#SCLK input 1.843MHz)

xld.w %r1,PIO (3)
xld.w %r0,PIO_SET
ld.b [%r1],%r0 ;IO port set

xld.w %r1,SCR (4)
xld.w %r0,SCR_EN
xoor %r0,SCR_SET
ld.b [%r1],%r0 ;SCR set
ret

(1) Selecting the division ratio
Set the division ratio of the sampling clock to 1/16.

xld.w %r1,SIR
ld.w %r0,SIR_SET ;1/16 mode
ld.b [%r1],%r0 ;SIR set

(2) Setting transfer mode
Set transfer mode to asynchronous 8-bit mode, with one stop bit, no parity, and external clock for
SCLK. For S5U1C331M2S communications, a 1.843 MHz external clock is fed from
S5U1C330M1D1 (115,200 bps).

xld.w %r1,SCR
ld.w %r0,SCR_SET
ld.b [%r1],%r0 ;SCR set(#SCLK input 1.843MHz)

3 PROGRAMMING THE S1C33 PERIPHERAL FUNCTIONS

94 EPSON S1C33 FAMILY APPLICATION NOTE

(3) Selecting input/output pin functions
Set the pins shared with I/O ports for serial interface mode.

xld.w %r1,PIO
xld.w %r0,PIO_SET
ld.b [%r1],%r0 ;IO port set

(4) Enabling transmit/receive
Enable transmit/receive operations.

xld.w %r1,SCR
xld.w %r0,SCR_EN
xoor %r0,SCR_SET
ld.b [%r1],%r0 ;SCR set

Transmit routine

;**
;
; void m_snd_1byte(sdata)
; 1 byte send function
; IN : uchar sdata (R6) send data
;
;**

.global m_snd_1byte
m_snd_1byte:

pushn %r3 ;save r3-r0
snd000:

xld.w %r0,SSR ;Address set
xld.w %r1,STDR

xbtst [%r0],0x1 ;TDBE1(bit1) == 0(full) ? (1)
jreq snd000 ;if full, jp snd000
xld.b [%r1],%r6 ;write data (2)
popn %r3 ;restore r3-r0
ret

(1) Checking the transmit buffer
Check the serial interface status register bits to determine if the transmit buffer is empty; wait until
it is emptied.
snd000:

xbtst [%r0],0x1 ;TDBE1(bit1) == 0(full) ?
jreq snd000 ;if full, jp snd000

(2) Sending one byte of data
When the transmit buffer is empty, send one byte of data from R6.

xld.b [%r1],%r6 ;write data

Receive routine

;**
;
; uchar m_rcv_1byte()
; 1 byte receive function
; OUT : 0 receive OK
; 1 receive ERROR (framing err)
; 2 (parity err)
; 3 (over run err)
;
;**

.global m_rcv_1byte
m_rcv_1byte:

pushn %r3 ;save r3-r0
xld.w %r1,SSR ;Address set
xld.w %r2,SRDR

rcv000:
xbtst [%r1],0x0 ;RDBF1(bit0) == 0(empty) ? (1)
jreq rcv000 ;if empty, jp rcv000

ld.w %r4,0x0 (2)
xbtst [%r1],0x4 ;FER1(bit4) == 0 ?

3 PROGRAMMING THE S1C33 PERIPHERAL FUNCTIONS

S1C33 FAMILY APPLICATION NOTE EPSON 95

jreq rcv010
xbclr [%r1],0x4 ;FER1(bit4) 0 clear
ld.w %r4,0x1 ;return 1

rcv010:
xbtst [%r1],0x3 ;PER1(bit3) == 0 ?
jreq rcv020
xbclr [%r1],0x3 ;PER1(bit3) 0 clear
ld.w %r4,0x2 ;return 2

rcv020:
xbtst [%r1],0x2 ;OER1(bit2) == 0 ?
jreq rcv030
xbclr [%r1],0x2 ;OER1(bit2) 0 clear
ld.w %r4,0x3 ;return 3

rcv030:
xld.b %r0,[%r2] ;read data (3)
xld.w %r1,m_rcv_data ;read data set
ld.b [%r1],%r0
popn %r3 ;restore r3-r0
ret

(1) Wait for receive
Wait until receive data is placed in the buffer.
rcv000:

xbtst [%r1],0x0 ;RDBF1(bit0) == 0(empty) ?
jreq rcv000 ;if empty, jp rcv000

(2) Check for receive errors
Check for framing, parity, and overrun errors.

ld.w %r4,0x0
xbtst [%r1],0x4 ;FER1(bit4) == 0 ?
jreq rcv010
xbclr [%r1],0x4 ;FER1(bit4) 0 clear
ld.w %r4,0x1 ;return 1

rcv010:
xbtst [%r1],0x3 ;PER1(bit3) == 0 ?
jreq rcv020
xbclr [%r1],0x3 ;PER1(bit3) 0 clear
ld.w %r4,0x2 ;return 2

rcv020:
xbtst [%r1],0x2 ;OER1(bit2) == 0 ?
jreq rcv030
xbclr [%r1],0x2 ;OER1(bit2) 0 clear
ld.w %r4,0x3 ;return 3

(3) Reading out receive data
If no errors are found, read out one byte of receive data from the buffer and save it to RAM.
rcv030:

xld.b %r0,[%r2] ;read data
xld.w %r1,m_rcv_data ;read data set
ld.b [%r1],%r0

3 PROGRAMMING THE S1C33 PERIPHERAL FUNCTIONS

96 EPSON S1C33 FAMILY APPLICATION NOTE

● Asynchronous communications using an internal clock
The transmit and receive sections are the same as with an external clock; only the initialize routine
differs. Although this is a source for the S1C33104, it may be used in the same way as for the
S1C33209, except that no pull-up processing is required.

Initialize routine

#define MON_VER 0x11 ;moinitor firm-ware version
#define P8TS3 0x0004014e ;8bit timer3 clock rate register
#define PT3 0x0004016c ;8bit timer3 control register
#define RLD3 0x0004016d ;8bit timer3 reload data register
#define STDR1 0x000401e5 ;transmit data register
#define SRDR1 0x000401e6 ;receive data register
#define SSR1 0x000401e7 ;serial status register
#define SCR1 0x000401e8 ;serial control register
#define SIR1 0x000401e9 ;IrDA control register
#define PIO 0x000402d0 ;IO port (P port) register
#define IOU 0x000402d3 ;IO port (P port) pull up register

.text
;**
;
; void m_io_init()
; serial port initial function
;
;**

.global m_io_init
m_io_init:

xld.w %r1,SIR1 (1)
ld.w %r0,0x00
ld.b [%r1],%r0 ;SIR1 set
xld.w %r1,SCR1 (2)
ld.w %r0,0x03
ld.b [%r1],%r0 ;SCR1 set
xld.w %r1,PIO (3)
xld.w %r0,0x30
ld.b [%r1],%r0 ;IO port set
xld.w %r1,IOU (4)
xld.w %r0,0xff
ld.b [%r1],%r0 ;pull up set
xld.w %r1,P8TS3 (5)
xld.w %r0,0x80
ld.b [%r1],%r0 ;P8TS3 set
xld.w %r1,RLD3 (6)

; xld.w %r0,0x20 ;9600bps
xld.w %r0,0x7 ;38400bps

; xld.w %r0,0x3 ;38400bps(clock:10MHz)for debug
; xld.w %r0,0xf ;19200bps

ld.b [%r1],%r0 ;RLD3 set
xld.w %r1,PT3 (7)
ld.w %r0,0x07
ld.b [%r1],%r0 ;PT3 set
xld.w %r1,SCR1 (8)
xld.w %r0,0xc3
ld.b [%r1],%r0 ;SCR1 set
ret

(1) Selecting the division ratio
Set the division ratio of the sampling clock to 1/16.

xld.w %r1,SIR1
ld.w %r0,0x00
ld.b [%r1],%r0 ;SIR1 set

(2) Setting transfer mode
Set transfer mode to asynchronous 8-bit mode, with one stop bit, no parity, and internal clock (8-
bit timer 3).

xld.w %r1,SCR1
ld.w %r0,0x03
ld.b [%r1],%r0 ;SCR1 set

3 PROGRAMMING THE S1C33 PERIPHERAL FUNCTIONS

S1C33 FAMILY APPLICATION NOTE EPSON 97

(3) Selecting input/output pin functions
Set the pins shared with I/O ports for serial interface mode.

xld.w %r1,PIO
xld.w %r0,0x30
ld.b [%r1],%r0 ;IO port set

(4) Setting pull-ups (S1C33104)
Enable pull-ups for the serial interface input pins. This processing is used for the S1C33104 but is
not required for the S1C33209. For real-world applications, we recommend connecting pull-up
resistors external to the chip regardless of microcomputer type.

xld.w %r1,IOU
xld.w %r0,0xff
ld.b [%r1],%r0 ;pull up set

(5) Setting the prescaler
Set the prescaler's division ratio for 8-bit timer 3 to 1/2 of internal clock. For the S1C33209, you can
also select 1/1 (0x40146•D3 = 1).

xld.w %r1,P8TS3
xld.w %r0,0x80
ld.b [%r1],%r0 ;P8TS3 set

(6) Setting the 8-bit timer
Preset value 7 (7 + 1 = divide-by-8) in the 8-bit timer. Results for the Proto Board of Epson (operat-
ing clock = 20 MHz) are as follows.
20 MHz → divided by 2 by prescaler → divided by 8 by timer → divided by 2 by serial interface →
divided by 16 for sampling use = 20,000,000 / 2 / 8 / 2 / 16 = 39,062 bps

This creates a +1.7% error with respect to 38,400 bps. An error of this magnitude will not affect the
other side any significantly, no operational problems should result under normal conditions.

xld.w %r1,RLD3
xld.w %r0,0x7 ;38400bps
ld.b [%r1],%r0 ;RLD3 set

(7) Starting the 8-bit timer
Start the 8-bit timer.

xld.w %r1,PT3
ld.w %r0,0x07
ld.b [%r1],%r0 ;PT3 set

(8) Enabling transmit/receive
Enable transmit/receive operations.

xld.w %r1,SCR1
xld.w %r0,0xc3
ld.b [%r1],%r0 ;SCR1 set

3 PROGRAMMING THE S1C33 PERIPHERAL FUNCTIONS

98 EPSON S1C33 FAMILY APPLICATION NOTE

3.5 Setting Up A/D Converter
This section describes a software-triggered A/D conversion routine, using a sample excerpted from
gnu33\sample\drv33209\demo_ad2\.

Vector table [vector.c]

extern void int_ad(void); (1)

/* vector table */
const unsigned long vector[] = {

(unsigned long)boot, // 0 0
 |

(unsigned long)dummy, // 248 62
(unsigned long)dummy, // 252 63
(unsigned long)int_ad, // 256 64 (1)
(unsigned long)dummy, // 260 65
(unsigned long)dummy, // 264 66
(unsigned long)dummy, // 268 67
(unsigned long)dummy, // 272 68
(unsigned long)dummy, // 276 69
(unsigned long)dummy, // 280 70
(unsigned long)dummy // 284 71

};

(1) Setting the vector table
This sample generates an interrupt on completion of A/D conversion and acquires the A/D
converted data in an interrupt routine. Register the start address of this interrupt routine in the
vector table (at vector table start address + 0x100).

Initializing A/D converter [drv_ad2.c]

#include "..\include\ad.h"
#include "..\include\common.h"
#include "..\include\int.h"
#include "..\include\io.h"
#include "..\include\presc.h"

/* Prototype */
void init_ad(void);
unsigned short read_ad_data(void);
void int_ad(void);
extern void save_psr(void);
extern void restore_psr(void);

/***
 * init_ad
 * Type : void
 * Ret val : none
 * Argument : void
 * Function : Initialize A/D converter.
 ***/
void init_ad(void)
{

/* Save PSR and disable all interrupt */
save_psr();

/* Set A/D converter port setting */
*(volatile unsigned char *)IN_CFK6_ADDR = IN_CFK60_AD0; // A/D ch.0 port (1)

/* SPT = A/D converter sampling time
 OSC3 = OSC3 clock (40MHz)
 PDR = Prescaler clock division (1/32)
 ST = A/D converter sampling time (9clock)
 TADC = A/D converter sampling and convert time (10us)
 SPT = ST / (OSC3 x PDR)
 = 9 / (40 x 1000000 x 1/32)
 = 7.2us
 Must be SPT > TADC / 2 */

3 PROGRAMMING THE S1C33 PERIPHERAL FUNCTIONS

S1C33 FAMILY APPLICATION NOTE EPSON 99

/* Set A/D converter prescaler setting (CLK/32) */
*(volatile unsigned char *)PRESC_PSAD_ADDR (2)

= PRESC_PTONL_ON | PRESC_CLKDIVL_SEL4;
// Set A/D converter prescaler (CLK/32)

/* Set A/D converter status register */
*(volatile unsigned char *)AD_CH_ADDR = AD_MS_NOR | AD_TS_SOFT; (3)

// A/D converter software trigger and normal mode
*(volatile unsigned char *)AD_CS_ADDR = AD_CS_0 | AD_CE_0; (3)

// A/D converter start channel AD0 and A/D end channel AD0
*(volatile unsigned char *)AD_OWE_ADDR (3)

= AD_ADE_ENA | AD_ADST_STOP | AD_OWE_NOERR;
// A/D converter enable, A/D converter stop,
// A/D converter over write error clear

*(volatile unsigned char *)AD_ST_ADDR = AD_ST_9; (2)
// A/D converter sampling 9 clocks

/* Set A/D converter interrupt CPU request on interrupt controller */
*(volatile unsigned char *)INT_RS1_RADE_RP4_ADDR = INT_RIDMA_DIS;

// IDMA request disable and CPU request enable (4)

/* Set A/D converter interrupt priority level 3 on interrupt controller */
*(volatile unsigned char *)INT_PSIO1_PAD_ADDR = INT_PRIH_LVL3; (4)

/* Reset A/D converter interrupt factor flag on interrupt controller */
*(volatile unsigned char *)INT_FADE_FCTM_FP4_ADDR = INT_FADE; (4)

// Reset A/D converter interrupt factor flag

/* Set A/D converter interrupt enable on interrupt controller */
*(volatile unsigned char *)INT_EADE_ECTM_EP4_ADDR = INT_EADE; (4)

// Set A/D converter interrupt enable

/* Restore PSR */
restore_psr();

}

A group of include files listed at the top of this routine is found in gnu33\sample\drv33209\include.
Refer to each file for detailed information on the contents of definition.

(1) Setting the analog input pin
Set the A/D converter channel 0 input pin (which is shared with K60 general-purpose input port)
for analog input. (By default, it is used as a K60 general-purpose input pin.)
/* Set A/D converter port setting */
*(volatile unsigned char *)IN_CFK6_ADDR = IN_CFK60_AD0; // A/D ch.0 port

(2) Setting the prescaler and sampling time
/* SPT = A/D converter sampling time
 OSC3 = OSC3 clock (40MHz)
 PDR = Prescaler clock division (1/32)
 ST = A/D converter sampling time (9clock)
 TADC = A/D converter sampling and convert time (10us)

 SPT = ST / (OSC3 x PDR)
 = 9 / (40 x 1000000 x 1/32)
 = 7.2us

 Must be SPT > TADC / 2 */

This comment demonstrates how the A/D converter input clock is calculated. First, set the
prescaler's division ratio at which the A/D converter operating clock is generated from the system
clock. Any multiple of 2 from 1/2 to 1/256 can be selected. Here, anticipating the use of a 40 MHz
system clock, we set the prescaler's division ratio to 1/32.
Next, set the input sampling time to 9 A/D converter clock periods. This is the sample-and-hold
time. This time must be equal to or greater than 1/2 (5 µs or more) of A/D conversion time tADC

(min. 10 µs). In this example, this is 7.2 µs. If 1/16 is selected for the prescaler, it is doubled to 3.6
µs. Although no operational problems will results with a sampling time of 5 µs or less, reduced
sampling times may result in more frequent errors. Following a sample-and-hold, the A/D
converter performs a successive comparison in approximately 10 clock periods and outputs a 10-
bit A/D conversion result.

3 PROGRAMMING THE S1C33 PERIPHERAL FUNCTIONS

100 EPSON S1C33 FAMILY APPLICATION NOTE

Set the prescaler division ratio for the A/D converter to 1/32. Set the sampling time for A/D
conversion to 9 clock periods.
/* Set A/D converter prescaler setting (CLK/32) */
*(volatile unsigned char *)PRESC_PSAD_ADDR = PRESC_PTONL_ON | PRESC_CLKDIVL_SEL4;

// Set A/D converter prescaler (CLK/32)
|

*(volatile unsigned char *)AD_ST_ADDR = AD_ST_9;
// A/D converter sampling 9 clocks

(3) Setting the A/D converter
For conversion mode (continuous or normal), select normal. For trigger (external/K52, 8-bit timer
0, 16-bit timer 0, or software trigger), select software trigger.
/* Set A/D converter status register */
*(volatile unsigned char *)AD_CH_ADDR = AD_MS_NOR | AD_TS_SOFT;

// A/D converter software trigger and normal mode

Set the conversion channel to channel 0.
*(volatile unsigned char *)AD_CS_ADDR = AD_CS_0 | AD_CE_0;

// A/D converter start channel AD0 and A/D end channel AD0

Enable A/D conversion.
*(volatile unsigned char *)AD_OWE_ADDR

 = AD_ADE_ENA | AD_ADST_STOP | AD_OWE_NOERR;
// A/D converter enable, A/D converter stop, A/D .. over write error clear

(4) Setting interrupt
Using the interrupt controller, set the A/D conversion interrupt as an interrupt request to the
CPU.
/* Set A/D converter interrupt CPU request on interrupt controller */
*(volatile unsigned char *)INT_RS1_RADE_RP4_ADDR = INT_RIDMA_DIS;

// IDMA request disable and CPU request enable

Set the interrupt level to 3.
/* Set A/D converter interrupt priority level 3 on interrupt controller */
*(volatile unsigned char *)INT_PSIO1_PAD_ADDR = INT_PRIH_LVL3;

Clear the interrupt factor flag.
/* Reset A/D converter interrupt factor flag on interrupt controller */
*(volatile unsigned char *)INT_FADE_FCTM_FP4_ADDR = INT_FADE;

// Reset A/D converter interrupt factor flag

Enable the interrupt.
/* Set A/D converter interrupt enable on interrupt controller */
*(volatile unsigned char *)INT_EADE_ECTM_EP4_ADDR = INT_EADE;

// Set A/D converter interrupt enable

3 PROGRAMMING THE S1C33 PERIPHERAL FUNCTIONS

S1C33 FAMILY APPLICATION NOTE EPSON 101

Interrupt processing [drv_ad2.c]

/***
 * read_ad_data
 * Type : unsigned short
 * Ret val : A/D converter data
 * Argument : void
 * Function : Read A/D converter data.
 ***/
unsigned short read_ad_data(void)
{

return(*(volatile unsigned short *)AD_ADD_ADDR); // A/D converter data (2)
}

/***
 * int_ad
 * Type : void
 * Ret val : none
 * Argument : void
 * Function : A/D converter interrupt function.
 * Read A/D converter status and A/D convert data.
 ***/
void int_ad(void)
{

extern volatile unsigned short ad_data;// A/D data
extern volatile int ad_int; // A/D converter interrupt flag

INT_BEGIN; (1)
ad_data = read_ad_data(); // Read A/D converter data (2)
ad_int = TRUE; // A/D converter interrupt flag on
*(volatile unsigned char *)INT_FADE_FCTM_FP4_ADDR = INT_FADE;

// Reset A/D converter interrupt factor flag (3)
INT_END; (1)

}

When A/D conversion is complete, an A/D interrupt is generated and int_ad() is called.

(1) Saving/restoring registers
To save and restore registers at the beginning and end of the interrupt handling routine, we use
INT_BEGIN and INT_END, defined in common.h.
#define INT_BEGIN asm("pushn %r15")
#define INT_END asm("popn %r15\n reti")

(2) Reading out the conversion result
Call read_ad_data(), store the A/D conversion result in a variable, and set a flag to indicate that
readout is complete.
ad_data = read_ad_data(); // Read A/D converter data
ad_int = TRUE; // A/D converter interrupt flag on

(3) Resetting the interrupt factor flag
Clear the interrupt factor flag.
*(volatile unsigned char *)INT_FADE_FCTM_FP4_ADDR = INT_FADE;

// Reset A/D converter interrupt factor flag

3 PROGRAMMING THE S1C33 PERIPHERAL FUNCTIONS

102 EPSON S1C33 FAMILY APPLICATION NOTE

Application section [demo_ad2.c]

 |
unsigned short ad_data;
volatile int ad_int; // A/D converter interrupt flag
 |
init_ad(); (1)
 |
for (i = 0; i < DATA_SIZE; i++) {

ad_int = FALSE;
/* A/D converter start by software trigger */
(volatile unsigned long)AD_OWE_ADDR |= 0x02; (2)

// Set A/D converter run bit (ADST[D1] = 1)

for (;;) {
if (ad_int == TRUE) { (3)

write_str(" A/D AD0 data ... ");
write_hex(ad_data);
break;

}
}

}

This control program performs actual A/D conversion.

(1) Initializing
Call the previously mentioned init_ad() and initialize the A/D converter and interrupt settings.

(2) Starting A/D conversion
Start A/D conversion with a software trigger.
/* A/D converter start by software trigger */
(volatile unsigned long)AD_OWE_ADDR |= 0x02;

// Set A/D converter run bit (ADST[D1] = 1)

(3) Getting A/D conversion result
When A/D conversion is complete, the previously mentioned interrupt handling routine int_ad()
is called. When processing is complete, the flag ad_int is set. Check this flag; if set to 1, read out
the conversion result from the variable ad_data for display on the screen.
for (;;) {

if (ad_int == TRUE) {
write_str(" A/D AD0 data ... ");
write_hex(ad_data);
break;

}
}

3 PROGRAMMING THE S1C33 PERIPHERAL FUNCTIONS

S1C33 FAMILY APPLICATION NOTE EPSON 103

3.6 Setting Up IDMA
An example of the transfer of data after invoking IDMA with a software trigger is described here using an
excerpt from the sample in gnu33\sample\drv33209\idma.

Header files for IDMA table [\sample\include\idma.h]

|
#define IDMA_DCHN_ADDR 0x48204 // Address for IDMA channel number, IDMA

 start register
#define IDMA_DMAEN_ADDR 0x48205 // Address for IDMA enable register

|
/* IDMA control word bit field definition ... 1st word */
#define IDMA_LNKEN_ENA 0x80000000 // Link enable

|
/* IDMA control word bit field definition ... 2nd word */
#define IDMA_DINTEN_ENA 0x80000000 // IDMA terminate interrupt enable
#define IDMA_DINTEN_DIS 0x00000000 // IDMA terminate interrupt disable
#define IDMA_DATSIZ_HW 0x40000000 // Data size .. half word
#define IDMA_DATSIZ_BYTE 0x00000000 // Data size .. byte
#define IDMA_SRINC_INC 0x30000000 // Increase address (return initial value

 when block transfer mode)
|

/* IDMA control word bit field definition ... 3rd word */
#define IDMA_DMOD_BLOCK 0x80000000 // Block transfer mode

|
#define IDMA_DSINC_INC 0x30000000 // Increase address (return initial value

 when block transfer mode)
|

Setting up and starting IDMA [demo_idma.c]

|
#include "..\include\common.h"
#include "..\include\idma.h"

/* Prototype */
int main(void);
void fill_mem1(unsigned long);
void fill_mem2(unsigned long);
void check_data(unsigned long , unsigned long);
extern void write_str(char *);
extern void init_idma(unsigned long, unsigned char);
extern void write_idma_info(unsigned long *, unsigned long, unsigned long, unsigned
long);

/* Global variable define */
volatile int idmaint_flg; // IDMA interrupt flag

/* IDMA source and destination address */
#define IDMA_SRC_START0 0x6c0000 // IDMA ch.0 source start address
#define IDMA_SRC_START1 0x6d0000 // IDMA ch.1 source start address
#define IDMA_DST_START0 0x6e0000 // IDMA ch.0 destination start address
#define IDMA_DST_START1 0x6f0000 // IDMA ch.1 destination start address

/* IDMA start channel, link channel, transfer block size, transfer counter */
#define IDMA_ST_CH0 0x0 // IDMA start ch.0
#define IDMA_LINK 0x1000000 // IDMA transfer link ch.1 (1st word:D30-D24)
#define IDMA_CNT 0x100 // IDMA transfer count (1st word:D23-D8)
#define IDMA_BSIZE 0x80 // IDMA block size (1st word:D7-D0)

struct {
unsigned long data[3];

} dma_control[128]; (1)

/***
 * main
 * Type : void
 * Ret val : none
 * Argument : void
 * Function : IDMA demonstration program.
 ***/

3 PROGRAMMING THE S1C33 PERIPHERAL FUNCTIONS

104 EPSON S1C33 FAMILY APPLICATION NOTE

int main(void)
{

unsigned long first_wd, second_wd, third_wd;
unsigned char start_ch;

write_str("*** IDMA demonstration ***\n");
write_str("\n");

/* Fill memory */
write_str("*** Filling memory area(address 0x6c0000 - 0x6c00ff) ***\n");
write_str(" Pattern ... 0x00 0x01 0xfe 0xff\n");
fill_mem1(IDMA_SRC_START0);
write_str("*** Filling memory area(address 0x6e0000 - 0x6e00ff) ***\n");
write_str(" Pattern ... 0xff 0xfe 0x01 0x00\n");
fill_mem2(IDMA_SRC_START1);

/* Disable IDMA transfer */
(volatile unsigned char)IDMA_DMAEN_ADDR &= 0xfe;

/* Initialize IDMA */
write_str("*** Initialize IDMA following setting ***\n");
write_str("\n");
write_str(" IDMA ch.0 setting\n");
write_str(" LINK enable ... Next channel is 1\n");
write_str(" Transfer 1 time\n");
write_str(" 128 half word transfer\n");
write_str(" Interrupt enable\n");
write_str(" Half word data size\n");
write_str(" Source and destination address increment\n");
write_str(" Block transfer mode\n");
/* Set IDMA ch.0 */ (2)
first_wd = IDMA_LNKEN_ENA | IDMA_LINK | IDMA_CNT | IDMA_BSIZE;
second_wd = IDMA_DINTEN_ENA | IDMA_DATSIZ_HW| IDMA_SRINC_INC | IDMA_SRC_START0;
third_wd = IDMA_DMOD_BLOCK | IDMA_DSINC_INC | IDMA_DST_START0;
write_idma_info((unsigned long *)(&dma_control[0]), first_wd, second_wd, third_wd);

write_str("\n");
write_str(" IDMA ch.1 setting\n");
write_str(" LINK disable\n");
write_str(" Transfer 1 time\n");
write_str(" 128 half word transfer\n");
write_str(" Interrupt enable\n");
write_str(" Half word data size\n");
write_str(" Source and destination address increment\n");
write_str(" Block transfer mode\n");
/* Set IDMA ch.1 */ (3)
first_wd = IDMA_LNKEN_DIS | IDMA_CNT | IDMA_BSIZE;
second_wd = IDMA_DINTEN_ENA |IDMA_DATSIZ_HW | IDMA_SRINC_INC | IDMA_SRC_START1;
third_wd = IDMA_DMOD_BLOCK | IDMA_DSINC_INC | IDMA_DST_START1;
write_idma_info((unsigned long *)(&dma_control[1]), first_wd, second_wd, third_wd);

/* Intialize IDMA control information and start channel */
start_ch = IDMA_ST_CH0;
init_idma((unsigned long)dma_control, start_ch); (1)

// Set IDMA control information and start ch.0

/* Initialize IDMA interrupt flag */
idmaint_flg = FALSE;

/* Enable IDMA transfer */
(volatile unsigned char)IDMA_DMAEN_ADDR |= 0x01;

/* Start IDMA transfer */
write_str("\n");
write_str("*** IDMA transfer starts by software trigger ***\n");
*(volatile unsigned char *)IDMA_DCHN_ADDR |= 0x80; (4)

while (1) {
if (idmaint_flg == TRUE) {

break;
}

}

/* Disable IDMA transfer */
*(volatile unsigned char *)IDMA_DMAEN_ADDR &= 0xfe; // Disable IDMA transfer.

3 PROGRAMMING THE S1C33 PERIPHERAL FUNCTIONS

S1C33 FAMILY APPLICATION NOTE EPSON 105

/* Checking IDMA data */
write_str("\n");
check_data(IDMA_SRC_START0, IDMA_DST_START0);
write_str("\n");
check_data(IDMA_SRC_START1, IDMA_DST_START1);

write_str("\n");
write_str("*** IDMA demonstration finish ***\n");

}
|

(1) Reserving a control information area
Reserve a 128-channel control information area in RAM using the structure shown below.
struct {

unsigned long data[3];
} dma_control[128];

:
init_idma((unsigned long)dma_control, start_ch); // Set IDMA control information

The address of this structure is set in the IDMA base address register (0x48200, 0x48202) by
init_idma() in drv_idma.c.
void init_idma(unsigned long addr, unsigned char ch)
{

:
/* Set IDMA control information address */
*(volatile unsigned long *)IDMA_DBASEL_ADDR = addr;

:

In this sample, the two channels ch0 and ch1 are set as shown below.

(2) Settings of IDMA ch0
The IDMA ch0 transfers data from the address 0x6c0000–0x6c00ff to the address 0x6e0000–
0x6e00ff. The data size and the transfer count are set to 16 bits and 128 times, respectively, with
data copied from the above address in one transfer. Furthermore, the two channels are linked so
that ch1 is started upon completion of a transfer on ch0.
/* Set IDMA ch.0 */
first_wd = IDMA_LNKEN_ENA | IDMA_LINK | IDMA_CNT | IDMA_BSIZE;
second_wd = IDMA_DINTEN_ENA | IDMA_DATSIZ_HW| IDMA_SRINC_INC | IDMA_SRC_START0;
third_wd = IDMA_DMOD_BLOCK | IDMA_DSINC_INC | IDMA_DST_START0;
write_idma_info((unsigned long *)(&dma_control[0]), first_wd, second_wd, third_wd);

write_idma_info() is included in drv_idma.c.
void write_idma_info(unsigned long *addrptr, unsigned long word1,

unsigned long word2, unsigned long word3)
{

/* Set IDMA control information */
*addrptr = word1; // Write 1st word
*(addrptr + 1) = word2; // Write 2nd word
*(addrptr + 2) = word3; // Write 3rd word

}

(3) Settings of IDMA ch1
The IDMA ch1 transfers data from the address 0x6d0000–0x6d00ff to the address 0x6f0000–
0x6f00ff. The data size and the transfer count are set to 16 bits and 128 times, respectively, with
data copied from the above address in one transfer. No link channels are set that will be started
upon completion of a transfer on ch1.
/* Set IDMA ch.1 */
first_wd = IDMA_LNKEN_DIS | IDMA_CNT | IDMA_BSIZE;
second_wd = IDMA_DINTEN_ENA |IDMA_DATSIZ_HW | IDMA_SRINC_INC | IDMA_SRC_START1;
third_wd = IDMA_DMOD_BLOCK | IDMA_DSINC_INC | IDMA_DST_START1;
write_idma_info((unsigned long *)(&dma_control[1]), first_wd, second_wd, third_wd);

(4) Executing a transfer
Write 0x80 to the IDMA start register (0x48204) in order to start ch0 using a software trigger.
*(volatile unsigned char *)IDMA_DCHN_ADDR |= 0x80;

Data transfer is performed exactly as in the case of the control information that has been set for
ch0, upon completion of which ch1 is started by linkage, with data transferred in the same way.

3 PROGRAMMING THE S1C33 PERIPHERAL FUNCTIONS

106 EPSON S1C33 FAMILY APPLICATION NOTE

3.7 Setting Up HSDMA
An example of the transfer of data after HSDMA is invoked using a software trigger is described here
using an excerpt from the sample in gnu33\sample\drv33209\hsdma.

Header files for HSDMA table [\sample\include\hsdma.h]

|
#define HSDMA_HSDMA_ADDR 0x4029a // Address for HSDMA software trigger register

|
#define HSDMA_HSD1_SOFT 0x0000 // HSDMA ch.1 software trigger

|
#define HSDMA_HST1 0x02 // HSDMA ch.1 software trigger

|
#define HSDMA_DUAL_DUAL 0x80000000 // HSDMA dual mode

|
#define HSDMA_DINTEN_ENA 0x80000000 // HSDMA interrupt enable

|
#define HSDMA_DATSIZE_HALF 0x40000000 // HSDMA half-word

|
#define HSDMA_DMOD_BLK 0x80000000 // HSDMA transfer mode

|
#define HSDMA_INC_INIT 0x20000000 // HSDMA address control Inc.(init)

|

Setting up and starting HSDMA [demo_hsdma.c]

|
#include "..\include\common.h"
#include "..\include\hsdma.h"

/* Prototype */
int main(void);
void fill_mem(unsigned long);
void check_data(unsigned long , unsigned long);
extern void write_str(char *);
extern void init_hsdma(unsigned char, unsigned char, unsigned long, unsigned long,
unsigned long);

/* Global variable define */
volatile int hdmaint_flg; // High-speed DMA interrupt flag

/* HSDMA source and destination address */
#define HSDMA_SRC_START 0x6c0000 // HSDMA ch.1 source start address
#define HSDMA_DST_START 0x6d0000 // HSDMA ch.1 destination start address

/* HSDMA channel */
#define HSDMA_CH1 1 // HSDMA ch.1

/***
 * main
 * Type : void
 * Ret val : none
 * Argument : void
 * Function : High-speed DMA demonstration program.
 ***/
int main(void)
{

unsigned char trig;
unsigned long mode, src, dst;

write_str("*** High-speed DMA demonstration ***\n");
write_str("\n");

/* Fill memory */
write_str("*** Filling memory area(address 0x6c0000 - 0x6c00ff) ***\n");
write_str(" Pattern ... 0x00 0x01 0xfe 0xff\n");
fill_mem(HSDMA_SRC_START);

/* Initialize HSDMA */
write_str("*** Initialize HSDMA following setting ***\n");
write_str(" HSDMA ch.1 setting\n");

3 PROGRAMMING THE S1C33 PERIPHERAL FUNCTIONS

S1C33 FAMILY APPLICATION NOTE EPSON 107

write_str(" Transfer 1 time\n");
write_str(" 128 half word transfer\n");
write_str(" Interrupt enable\n");
write_str(" Half word data size\n");
write_str(" Source and destination address increment\n");
write_str(" Block transfer mode\n");

/* Disable HSDMA transfer */ (1)
*(volatile unsigned char *)HSDMA_HS1EN_ADDR &= 0xfe; // Disable HSDMA transfer.

/* HSDMA trigger mode */ (1)
trig = HSDMA_HSD1_SOFT; // HSDMA ch.1 software trigger
/* HSDMA mode and transfer count */ (1)
mode = HSDMA_DUAL_DUAL | (1 << 8) | 0x80; // HSDMA dual mode and transfer count

1, block size 0x80
/* HSDMA source address */ (1)
src = HSDMA_DINTEN_ENA | HSDMA_DATSIZE_HALF | HSDMA_INC_INIT | HSDMA_SRC_START;

// HSDMA interrupt enable, half word size, source address increment
(init.), source address 0x6c0000

/* HSDMA destination address */
dst = HSDMA_DMOD_BLK | HSDMA_INC_INIT | HSDMA_DST_START; (1)

// Destination address increment (init.), destination address 0x6d0000
init_hsdma(HSDMA_CH1, trig, mode, src, dst); (1)

/* Initialize HSDMA interrupt flag */
hdmaint_flg = FALSE;

/* Enable IDMA transfer */ (2)
*(volatile unsigned char *)HSDMA_HS1EN_ADDR |= 0x01; // Enable HSDMA transfer.

/* Start HSDMA transfer */
write_str("\n");
write_str("*** HSDMA transfer starts by software trigger ***\n");
*(volatile unsigned char *)HSDMA_HSDMA_ADDR |= HSDMA_HST1; (2)

while (1) {
if (hdmaint_flg == TRUE) {

break;
}

}

/* Disable HSDMA transfer */
*(volatile unsigned char *)HSDMA_HS1EN_ADDR &= 0xfe; // Disable HSDMA transfer.

/* Checking HSDMA data */
write_str("\n");
check_data(HSDMA_SRC_START, HSDMA_DST_START);

write_str("\n");
write_str("*** HSDMA demonstration finish ***\n");

}
|

(1) Setting the HSDMA
Always confirm that HSDMA is disabled before setting HSDMA. If set while operating, the
register may be read or written to incorrectly.
*(volatile unsigned char *)HSDMA_HS1EN_ADDR &= 0xfe; // Disable HSDMA transfer.

Set up HSDMA ch1 as shown below.
• Trigger Software trigger
• Address mode Dual address mode
• Transfer mode Block transfer mode
• Data size Half word
• Source and destination address control Increment (including initialization)
• Transfer counter 128
• Source address 0x6c0000
• Destination address 0x6d0000

3 PROGRAMMING THE S1C33 PERIPHERAL FUNCTIONS

108 EPSON S1C33 FAMILY APPLICATION NOTE

/* HSDMA trigger mode */
trig = HSDMA_HSD1_SOFT; // HSDMA ch.1 software trigger
/* HSDMA mode and transfer count */
mode = HSDMA_DUAL_DUAL | (1 << 8) | 0x80; // HSDMA dual mode and transfer

count 1, block size 0x80
/* HSDMA source address */
src = HSDMA_DINTEN_ENA | HSDMA_DATSIZE_HALF | HSDMA_INC_INIT | HSDMA_SRC_START;

// HSDMA interrupt enable, half word size, source address increment
(init.), source address 0x6c0000

/* HSDMA destination address */
dst = HSDMA_DMOD_BLK | HSDMA_INC_INIT | HSDMA_DST_START;

// Destination address increment (init.), destination address 0x6d0000
init_hsdma(HSDMA_CH1, trig, mode, src, dst);

(2) Executing a transfer
Enable HSDMA after all settings have been made.
/* Enable IDMA transfer */
*(volatile unsigned char *)HSDMA_HS1EN_ADDR |= 0x01; // Enable HSDMA transfer.

Set the ch1 software trigger bit (D1) in the software trigger register (0x4029a) to "1", in order to
start HSDMA ch1.
/* Start HSDMA transfer */
write_str("\n");
write_str("*** HSDMA transfer starts by software trigger ***\n");
*(volatile unsigned char *)HSDMA_HSDMA_ADDR |= HSDMA_HST1;

3 PROGRAMMING THE S1C33 PERIPHERAL FUNCTIONS

S1C33 FAMILY APPLICATION NOTE EPSON 109

3.8 Clock Settings
The S1C33209 includes a clock timer capable of counting up to 64K days in units of 1/128 seconds. Here,
we will explain how to generate an alarm interrupt exactly one minute later using this clock timer. The
example program used here can be found in gnu33\sample\drv33209\ct.

● The one-minute alarm interrupt

Vector table [vector.c]

/* vector table */
const unsigned long vector[] = {

(unsigned long)boot, // 0 0
|
|

(unsigned long)dummy, // 252 63
(unsigned long)dummy, // 256 64
(unsigned long)int_ct, // 260 65 (1)
(unsigned long)dummy, // 264 66

|
};

(1) Setting the vector table
Register the interrupt handling routine int_c as the clock timer interrupt vector.

Initial settings [drv_ct.c]

#include "..\include\common.h"
#include "..\include\ct.h"
#include "..\include\int.h"

/* Prototype */
void init_ct(void);
void int_ct(void);
extern void save_psr(void);
extern void restore_psr(void);

/***
 * init_ct
 * Type : void
 * Ret val : none
 * Argument : void
 * Function : Initialize clock timer to use real time clock.
 ***/
void init_ct(void)
{

/* Save PSR and disable all interrupt */
save_psr(); (1)

/* Set clock timer interrupt disable on interrupt controller */
*(volatile unsigned char *)INT_EADE_ECTM_EP4_ADDR = INT_ENABLE_DIS;

// Set clock timer interrupt disable

/* Stop clock timer */
*(volatile unsigned char *)CT_TCRUN_ADDR &= 0xfe; (2)

/* Reset clock timer */
*(volatile unsigned char *)CT_TCRUN_ADDR |= CT_TCRST_RST;

/* Set clock timer data (1999.01.01 21:05) */
*(volatile unsigned char *)CT_TCHD_ADDR = 0x05; (3)

// Minute data (5 minutes)
*(volatile unsigned char *)CT_TCDD_ADDR = 0x15;

// Hour data (21 hours)
*(volatile unsigned char *)CT_TCNDL_ADDR = 0xd7;

// Year-month-day low byte data (3287 days)
*(volatile unsigned char *)CT_TCNDH_ADDR = 0x0c;

// Year-month-day high byte data (3287 days)

3 PROGRAMMING THE S1C33 PERIPHERAL FUNCTIONS

110 EPSON S1C33 FAMILY APPLICATION NOTE

/* Set clock timer comparison data */
*(volatile unsigned char *)CT_TCCH_ADDR = 0x06; (4)

// Minute comparison data (6 minutes)
*(volatile unsigned char *)CT_TCCD_ADDR = 0x0;

// Hour comparison data (0 hour)
*(volatile unsigned char *)CT_TCCN_ADDR = 0x0;

// Day comparison data (0 day)

/* Set clock timer interrupt factor control flag */
*(volatile unsigned char *)CT_TCAF_ADDR (5)

= CT_TCISE_NONE | CT_TCASE_M | CT_TCIF_RST | CT_TCAF_RST;

/* Set clock timer interrupt priority level 3 on interrupt controller */
*(volatile unsigned char *)INT_PCTM_ADDR = INT_PRIL_LVL3; (6)

/* Reset clock timer interrupt factor flag on interrupt controller */
*(volatile unsigned char *)INT_FADE_FCTM_FP4_ADDR = INT_FCTM;

// Reset clock timer interrupt factor flag

/* Set clock timer interrupt enable on interrupt controller */
*(volatile unsigned char *)INT_EADE_ECTM_EP4_ADDR = INT_ECTM;

// Set clock timer interrupt enable

/* Restore PSR */
restore_psr(); (7)

}

(1) Disabling interrupts
Save PSR and mask interrupts with IE.
/* Save PSR and disable all interrupt */
save_psr();

Using the interrupt controller, disable the clock timer interrupt.
/* Set clock timer interrupt disable on interrupt controller */
*(volatile unsigned char *)INT_EADE_ECTM_EP4_ADDR = INT_ENABLE_DIS;

// Set clock timer interrupt disable

(2) Resetting the clock timer
After stopping the clock timer, reset the counter.
/* Stop clock timer */
*(volatile unsigned char *)CT_TCRUN_ADDR &= 0xfe;

/* Reset clock timer */
*(volatile unsigned char *)CT_TCRUN_ADDR |= CT_TCRST_RST;

(3) Setting the date and time
Set the date and time to 21:05, January 1, 1999. The 3287 days set in the day counter are calculated
using January 1, 1990 as the starting point.
/* Set clock timer data (1999.01.01 21:05) */
*(volatile unsigned char *)CT_TCHD_ADDR = 0x05;

// Minute data (5 minutes)
*(volatile unsigned char *)CT_TCDD_ADDR = 0x15;

// Hour data (21 hours)
*(volatile unsigned char *)CT_TCNDL_ADDR = 0xd7;

// Year-month-day low byte data (3287 days)
*(volatile unsigned char *)CT_TCNDH_ADDR = 0x0c;

// Year-month-day high byte data (3287 days)

(4) Setting an alarm
Here, we set 6 minutes as comparison data and set the alarm interrupt to occur in one minute.
/* Set clock timer comparison data */
*(volatile unsigned char *)CT_TCCH_ADDR = 0x06;

// Minute comparison data (6 minutes)
*(volatile unsigned char *)CT_TCCD_ADDR = 0x0;

// Hour comparison data (0 hour)
*(volatile unsigned char *)CT_TCCN_ADDR = 0x0;

// Day comparison data (0 day)

3 PROGRAMMING THE S1C33 PERIPHERAL FUNCTIONS

S1C33 FAMILY APPLICATION NOTE EPSON 111

(5) Settings for alarm interrupt
Enable only the minutes alarm interrupt. Clear the interrupt fuctor generation and alarm fuctor
generation flags.
/* Set clock timer interrupt factor control flag */
*(volatile unsigned char *)CT_TCAF_ADDR

= CT_TCISE_NONE | CT_TCASE_M | CT_TCIF_RST | CT_TCAF_RST;

These steps set the internal functions of the clock timer, not the interrupt controller. This control
register must always be reset before use, since its initial value cannot be guaranteed.

(6) Setting the interrupt controller
Set the interrupt level to 3.
/* Set clock timer interrupt priority level 3 on interrupt controller */
*(volatile unsigned char *)INT_PCTM_ADDR = INT_PRIL_LVL3;

Clear the clock timer interrupt factor flag.
/* Reset clock timer interrupt factor flag on interrupt controller */
*(volatile unsigned char *)INT_FADE_FCTM_FP4_ADDR = INT_FCTM;

// Reset clock timer interrupt factor flag

Enable the clock timer interrupt.
/* Set clock timer interrupt enable on interrupt controller */
*(volatile unsigned char *)INT_EADE_ECTM_EP4_ADDR = INT_ECTM;

// Set clock timer interrupt enable

Note that the clock timer interrupt has no IDMA request flag and can function only as an interrupt
to the CPU.

(7) Return processing
Restore PSR and enable interrupts.
/* Restore PSR */
restore_psr();

Interrupt processing [drv_ct.c]

/***
 * int_ct
 * Type : void
 * Ret val : none
 * Argument : void
 * Function : Clock timer interrupt function.
 ***/
void int_ct(void)
{

extern volatile int ctint_flg;

INT_BEGIN; (1)
ctint_flg = TRUE; // Clock timer interrupt flag on (2)
*(volatile unsigned char *)INT_FADE_FCTM_FP4_ADDR = INT_FCTM; (3)

// Reset clock timer interrupt factor flag
INT_END; (1)

}

(1) Saving and restoring registers
Use INT_BEGIN and INT_END (defined in common.h) to save and restore registers at the begin-
ning and end of the interrupt handling routine.
#define INT_BEGIN asm("pushn %r15")
#define INT_END asm("popn %r15\n reti")

(2) Setting an interrupt-generated confirmation flag
Set a flag notifying the host routine that an interrupt has been generated.
ctint_flg = TRUE; // Clock timer interrupt flag on

(3) Resetting the cause of the interrupt flag
Clear the interrupt factor flag.
*(volatile unsigned char *)INT_FADE_FCTM_FP4_ADDR = INT_FCTM;

// Reset clock timer interrupt factor flag

3 PROGRAMMING THE S1C33 PERIPHERAL FUNCTIONS

112 EPSON S1C33 FAMILY APPLICATION NOTE

Application section [demo_ct.c]

|
/* Initialize clock timer */
write_str("*** Initialize clock timer and start ***\n");
write_str(" Today date and time (1999.01.01 21:05)\n");
write_str(" Set minute alarm interrupt enable (6 minutes)\n");
init_ct(); (1)

/* Run clock timer */
write_str("*** Run clock timer ***\n");
*(volatile unsigned char *)CT_TCRUN_ADDR |= 0x01; (2)

/* Initialize clock timer interrupt flag */
ctint_flg = FALSE;

write_str("*** Wait 1 minute ***\n");
write_str("\n");

while (1) { (3)
if (ctint_flg == TRUE) {

break;
}

}

/* Stop clock timer */
write_str("*** Stop clock timer ***\n");
*(volatile unsigned char *)CT_TCRUN_ADDR &= 0xfe; (4)

|

(1) Initial settings
Call the above-mentioned init_ct() and initialize the clock timer and interrupt settings.

(2) Starting the clock timer
Start the clock timer and clear the interrupt-generated confirmation flag.
*(volatile unsigned char *)CT_TCRUN_ADDR |= 0x01;

/* Initialize clock timer interrupt flag */
ctint_flg = FALSE;

(3) Wait for alarm interrupt
When the alarm time arrives, the above-mentioned interrupt handling routine int_ct() is called.
When processing is complete, the flag ctint_flg is set. Loop the program until this flag is set to 1.
An alarm interrupt occurs one minute after the clock timer starts.
while (1) {

if (ctint_flg == TRUE) {
break;

}
}

(4) Stopping the clock timer
After the interrupt occurs, stop the clock timer.
*(volatile unsigned char *)CT_TCRUN_ADDR &= 0xfe;

3 PROGRAMMING THE S1C33 PERIPHERAL FUNCTIONS

S1C33 FAMILY APPLICATION NOTE EPSON 113

3.9 SLEEP
This section explains the processing preceding SLEEP mode entry, and how to exit SLEEP using the alarm
function. The explanation uses an example file found in gnu33\sample\drv33209\osc of S5U1C33000C
ver.3 or later.

Main routine [demo_osc.c]

int main(void)
{

unsigned char pwr; /* Power control register data */
unsigned char clk; /* Clock control register data */

write_str("*** OSC demonstration ***\n");
write_str("\n");

/* OSC3 high-speed mode */
write_str("*** OSC3 high-speed mode ***\n");
write_str(" System clock select 1/1, Prescaler output ON, CPU clock OSC3,

OSC3 ON, OSC1 ON\n");
write_str(" HALT clock option OFF, OSC3-stabilize waiting function ON\n");
write_str(" OSC1 external output control OFF\n");
pwr = OSC_CLKDT_11 | OSC_PSCON_ON | OSC_CLKCHG_OSC3 | OSC_SOSC3_ON | (1)

OSC_SOSC1_ON;
clk = OSC_HALT2OP_OFF | OSC_8T1ON_ON | OSC_PF1ON_OFF;
set_OSC(pwr, clk);

/* If you use sleep mode, you set OSC3-stabilize waiting function on
and run 8-bit timer 1 */

/* Initialize 8-bit timer */
write_str("*** Initialize 8-bit timer ***\n");
write_str(" 8-bit timer 1 ... CLK/4096\n");
write_str(" 8-bit timer 1 reload data

... 0x62 (10ms on OSC3 clock 40MHz)\n");
init_8timer1(); (2)

/* Initialize clock timer */
write_str("*** Initialize clock timer and start ***\n");
write_str(" Today data and time (1999.01.01 21:05)\n");
write_str(" Set minute alarm interrupt enable (6 minutes)\n");
init_ct(); (3)

/* Run clock timer */
write_str("*** Run clock timer ***\n");
*(volatile unsigned char *)CT_TCRUN_ADDR |= 0x01; (4)

write_str("*** Wait 1 minute ***\n");

write_str("*** Sleep mode ***\n");
write_str("\n");

/*Run 8-bit timer 1 */
run_8timer(T8P_PTRUN1_ADDR); (5)

/* Sleep */
asm("slp"); (6)

/* Stop 8-bit timer 1 */
write_str("*** Return to OSC3 high-speed mode from sleep mode ***\n");

write_str("\n");
write_str("*** OSC demonstration finish ***\n");

}

3 PROGRAMMING THE S1C33 PERIPHERAL FUNCTIONS

114 EPSON S1C33 FAMILY APPLICATION NOTE

(1) Setting the oscillator circuit
Call set_osc() and set the following.
pwr = OSC_CLKDT_11 | OSC_PSCON_ON | OSC_CLKCHG_OSC3 | OSC_SOSC3_ON | OSC_SOSC1_ON;
clk = OSC_HALT2OP_OFF | OSC_8T1ON_ON | OSC_PF1ON_OFF;
set_OSC(pwr, clk);

OSC_CLKDT_11 System clock division ratio = 1/8
OSC_PSCON_ON Prescaler ON
OSC_CLKCHG_OSC3 CPU operating clock = OSC3
OSC_SOSC3_ON High-speed (OSC3) oscillation ON
OSC_SOSC1_ON Low-speed (OSC1) oscillation ON
OSC_HALT2OP_OFF HALT2 mode OFF
OSC_8T1ON_ON High-speed (OSC3) oscillation wait after SLEEP exit function ON
OSC_PF1ON_OFF OSC1 clock external output OFF *

 ∗ OSC1 clock external output is disabled when the internally-wired clock from OSC1 block to FOSC
pin is disabled, reducing current consumption during SLEEP mode to a minimum. If necessary,
the OSC1 clock may be output even during SLEEP mode. In this case, the P14/DCLK/FOSC1 pin
must be set for OSC1 clock output (FOSC1).

(2) Initializing 8-bit timer 1
Because the high-speed (OSC3) oscillation wait function is used after exiting SLEEP, set the wait
time in 8-bit timer 1. This processing is performed in init_8timer1().

(3) Setting the clock timer
Call init_ct() and set the clock timer to generate an alarm interrupt one minute after starting. For
more information on processing by init_ct(), see Section 3.8, "Clock Settings".

(4) Starting the clock timer
Start the clock timer.
*(volatile unsigned char *)CT_TCRUN_ADDR |= 0x01;

(5) Starting 8-bit timer 1
Call run_8timer() and start 8-bit timer 1.
(drv_8timer.c)
void run_8timer(unsigned long reg)
{

*(volatile unsigned char *)reg |= 0x01;
}

(6) SLEEP
Execute the SLP instruction to enter SLEEP mode. The high-speed (OSC3) oscillator circuit stops.
asm("slp");

(7) Exiting SLEEP
Even during SLEEP mode, the clock timer is paced by the low-speed (OSC1) oscillation circuit to
allow the processor to be roused from SLEEP mode when the set alarm interrupt occurs. The high-
speed (OSC3) oscillation circuit begins operating upon exiting SLEEP, but program execution can
restart only after an oscillation stabilization wait interval (10 ms) elapses. This is set in 8-bit timer
1.

With this program running on a S5U1C33208D3, current consumption was measured at 65 mA for
normal operations and 35 mA during SLEEP — a savings of about 30 mA.

3 PROGRAMMING THE S1C33 PERIPHERAL FUNCTIONS

S1C33 FAMILY APPLICATION NOTE EPSON 115

Setting the oscillation circuit [drv_osc.c]

void set_osc(unsigned char pwr, unsigned char clk)
{

/* Before power control register write access,
set power control register protect flag write enable */

*(volatile unsigned char *)OSC_CLGP_ADDR = OSC_CLGP_ENA; (1)

/* Set power control register */
*(volatile unsigned char *)OSC_SOSC_ADDR = pwr;

/* Before clock control register write access,
set power control register protect flag write enable */

*(volatile unsigned char *)OSC_CLGP_ADDR = OSC_CLGP_ENA; (2)

/* Set clock control register */
*(volatile unsigned char *)OSC_PF1ON_ADDR = clk;

}

(1) Setting the power control register
Remove write protection for the power control register (0x40180). Write the set value passed from
main() into this register.
/* Before power control register write access,

set power control register protect flag write enable */
*(volatile unsigned char *)OSC_CLGP_ADDR = OSC_CLGP_ENA;

/* Set power control register */
*(volatile unsigned char *)OSC_SOSC_ADDR = pwr;

(2) Setting the clock option register
Remove write protection for the clock option register (0x40190). Write the set value passed from
main() into this register.
/* Before clock control register write access,

set power control register protect flag write enable */
*(volatile unsigned char *)OSC_CLGP_ADDR = OSC_CLGP_ENA;

/* Set clock control register */
*(volatile unsigned char *)OSC_PF1ON_ADDR = clk;

Setting 8-bit timer 1 [drv_8timer.c]

void init_8timer1(void)
{

/* Save PSR and disable all interrupt */
save_psr(); (1)

/* Set 8bit timer1 prescaler */
*(volatile unsigned char *)PRESC_P8TS0_P8TS1_ADDR (2)

|= (PRESC_PTONH_ON | PRESC_CLKDIVH_SEL7);
// Set 8bit timer1 prescaler (CLK/4096)

/* Set 8bit timer1 reload data */
*(volatile unsigned char *)T8P_RLD1_ADDR = 0x62; (3)

// Set reload data (0x62 ... 10ms on OSC3 clock 40MHz)

/* Set 8bit timer1 clock output off, preset and timer stop */
*(volatile unsigned char *)T8P_PTRUN1_ADDR

= T8P_PTOUT_OFF | T8P_PSET_ON | T8P_PTRUN_STOP;

/* Set 8bit timer1 interrupt CPU request on interrupt controller */
*(volatile unsigned char *)INT_R16T5_R8TU_RS0_ADDR = INT_RIDMA_DIS; (4)

// IDMA request disable and CPU request enable

/* Set 8bit timer1 interrupt priority level 3 on interrupt controller */
*(volatile unsigned char *)INT_P8TM_PSIO0_ADDR = INT_PRIL_LVL3;

/* Reset 8bit timer1 interrupt factor flag on interrupt controller */
*(volatile unsigned char *)INT_F8TU_ADDR = INT_F8TU1;

// Reset 8bit timer1 underflow interrupt factor flag

3 PROGRAMMING THE S1C33 PERIPHERAL FUNCTIONS

116 EPSON S1C33 FAMILY APPLICATION NOTE

/* Set 8bit timer1 interrupt disable on interrupt controller */
*(volatile unsigned char *)INT_E8TU_ADDR &=~INT_E8TU1;

// Set 8bit timer1 underflow interrupt disable

/* Restore PSR */
restore_psr(); (5)

}

(1) Disabling interrupts
Save PSR and mask interrupts with IE.
/* Save PSR and disable all interrupt */
save_psr();

(2) Setting the prescaler
Set the prescaler division ratio to 1/4096.
/* Set 8bit timer1 prescaler */
*(volatile unsigned char *)PRESC_P8TS0_P8TS1_ADDR

|= (PRESC_PTONH_ON | PRESC_CLKDIVH_SEL7);
// Set 8bit timer1 prescaler (CLK/4096)

(3) Setting 8-bit timer
Set 0x62 as the reload data. This value generates an OSC3 oscillation stabilization wait time of
about 10 ms when the CPU operates at 40 MHz.
25 µs (=1/40 MHz) × 4096 × (0x62 + 1) = approx. 10 ms
/* Set 8bit timer1 reload data */
*(volatile unsigned char *)T8P_RLD1_ADDR = 0x62;

// Set reload data (0x62 ... 10ms on OSC3 clock 40MHz)

Preset the above reload data in the counter. Do not start the timer yet.
/* Set 8bit timer1 clock output off, preset and timer stop */
*(volatile unsigned char *)T8P_PTRUN1_ADDR

= T8P_PTOUT_OFF | T8P_PSET_ON | T8P_PTRUN_STOP;

(4) Setting the interrupt controller
Disable IDMA start with an 8-bit timer 1 interrupt.
/* Set 8bit timer1 interrupt CPU request on interrupt controller */
*(volatile unsigned char *)INT_R16T5_R8TU_RS0_ADDR = INT_RIDMA_DIS;

// IDMA request disable and CPU request enable

Set the 8-bit timer interrupt priority level to 3.
/* Set 8bit timer1 interrupt priority level 3 on interrupt controller */
*(volatile unsigned char *)INT_P8TM_PSIO0_ADDR = INT_PRIL_LVL3;

Reset the 8-bit timer 1 interrupt factor flag.
/* Reset 8bit timer1 interrupt factor flag on interrupt controller */
*(volatile unsigned char *)INT_F8TU_ADDR = INT_F8TU1;

// Reset 8bit timer1 underflow interrupt factor flag

Leave the 8-bit timer 1 interrupt disabled.
/* Set 8bit timer1 interrupt disable on interrupt controller */
*(volatile unsigned char *)INT_E8TU_ADDR &=~INT_E8TU1;

// Set 8bit timer1 underflow interrupt disable

(5) Return processing
Restore PSR and enable interrupts.
/* Restore PSR */
restore_psr();

3 PROGRAMMING THE S1C33 PERIPHERAL FUNCTIONS

S1C33 FAMILY APPLICATION NOTE EPSON 117

3.10 SDRAM Controller
At present, the SDRAM controller is incorporated into the following types of devices:
S1C33L03, S1C33205

The following shows examples of the initialization program for using SDRAM.

Example of initialization routine for 4M words × 16 bits × 4 banks (32MB) of SDRAM

;**
;
; Copyright (C) SEIKO EPSON CORP. 2002
; All rights Reserved
;
; File name : SDRAM_led.s
;
; Revision :
; 2002/10/01 M.Toki start
; 2003/04/18 CH.Yoon Port to GNU
;**
 .text
 .long START

START:

INIT_SDRAM_32MB:
;;;----------------------- SDRAM access configuration -----------------------------------
;;;***
;;;***************** C33 macro setting part ************************
;;;***
;;; set CEFUNC to use #CE13/14 (upper area)
 xld.w %r0,0x48131
 bset [%r0],0x1
;;; set area 6,13,14 to internal access
 xld.w %r0,0x48132
 xld.w %r1,0x2200
 ld.h [%r0],%r1
;;; area 6 -> output disable 0.5, wait 2
 xld.w %r0,0x4812A
 xld.w %r1,0x0237
 ld.h [%r0],%r1
;;; available #WAIT
 xld.w %r0,0x04812E
 bset [%r0],0x0
;;; area 13,14 -> 8bit device, output disable 2.5, wait 0
 xld.w %r0,0x048122
 xld.w %r1,0x30
 ld.h [%r0],%r1

;;;***
;;;************** SDRAM Controller REG setting part ****************
;;;***
;;;---
;;; area13 0x2000000 - 0x2FFFFFF(16MB)
;;; area14 0x3000000 - 0x3FFFFFF(16MB)
;;;---
;///
;;; SDRAM area configuration register
 xld.w %r0,0x39FFC0 ;
 xld.w %r1,0xc8 ; set area13&14 to SDRAM area, #SDCE0(#CE13) available
 ld.b [%r0],%r1 ; (32MB area available)
;///
;;; SDRAM control register
;;; xld.w %r0,0x39FFC1 ;
;;; xld.w %r1,0xff ; SDRAM self-refresh -> disable, initial sequence ->PRE REF MRS
;;; ld.b [%r0],%r1 ; Little endian
;///
;;; SDRAM address configuration register
 xld.w %r0,0x39FFC2 ;
 xld.w %r1,0x2a ; col 512 / row 8K / bank 4 -> 256Mb[32MB] available
 ld.b [%r0],%r1 ;
;///

3 PROGRAMMING THE S1C33 PERIPHERAL FUNCTIONS

118 EPSON S1C33 FAMILY APPLICATION NOTE

;;; SDRAM mode set-up register
 xld.w %r0,0x39FFC3 ;
 xld.w %r1,0x40 ; 2 CAS Latency ,burst length = 1
 ld.b [%r0],%r1 ;
;///
;;; SDRAM timing set-up register 1
 xld.w %r0,0x39FFC4 ;
 xld.w %r1,0x4A ; Tras=2,Trp=1,Trc=2 ... Recommended setting to operate with 25 MHz clock in x1 speed mode
 ld.b [%r0],%r1 ;
;///
;;; SDRAM timing set-up register 2
 xld.w %r0,0x39FFC5 ;
 xld.w %r1,0x48 ; Trcd=1,Trsc=2,Trrd=1
 ld.b [%r0],%r1 ;
;///
;;; SDRAM auto refresh count low-order register
;;; xld.w %r0,0x39FFC6 ;
;;; xld.w %r1,0xff ;
;;; ld.b [%r0],%r1 ;
;///
;;; SDRAM auto refresh count high-order register
 xld.w %r0,0x39FFC7 ;
 xld.w %r1,0x00 ;
 ld.b [%r0],%r1 ;
;///
;;; SDRAM self refresh count register
;;; xld.w %r0,0x39FFC8 ;
;;; xld.w %r1,0x0f ;
;;; ld.b [%r0],%r1 ;
;///
;;; SDRAM advanced control register
 xld.w %r0,0x39FFC9 ;
 xld.w %r1,0x20 ; data width -> 16bit, bank interleave -> on
 ld.b [%r0],%r1 ;

;;;***
;;;***************** SDRAM controller power up *********************
;;;***
 xld.w %r0,0x39FFC1 ; SDRAM control register
 xld.w %r1,0x39FFCA ; SDRAM status register
 xld.w %r2,0x0
 xld.w %r3,0x10

;;; enable SDRAM signal
 bset [%r0],0x7 ; set SDRENA[D7/0x39FFC1]

SDRAM_SIGNAL_EN:
 add %r2,0x1 ; SDRAM signal enable waiting loop
 cmp %r2,%r3
 xjrne SDRAM_SIGNAL_EN

;;; SDRAM power up
 bset [%r0],0x6 ; set SDRINI[D6/0x39FFC1]

POWER_UP:
 btst [%r1],0x7 ; SDRAM power-up waiting loop
 xjrne POWER_UP

;;;--------------------- end of SDRAM access configuration -------------------------

;;;***
;;;************************* Program translating ***********************************
;;;***
; Transfer data from 0x00c00400 to 0x00001000
 xld.w %r9,0x2000000 ; r9 = 0x2000000 : destination address
 xld.w %r8,0x0001000 ; r8 = 0x0001000 : source address
 xld.w %r7,0x0000000 ; reference data ("nop,nop" of end -> 0x00000000)

DATA_TRANSFER:
 ld.w %r6,[%r8]+ ; data transfer FROM iRAM to SDRAM
 ld.w [%r9]+,%r6 ;

3 PROGRAMMING THE S1C33 PERIPHERAL FUNCTIONS

S1C33 FAMILY APPLICATION NOTE EPSON 119

 cmp %r6,%r7 ; compare the instruction code with 0x00000000(nop,nop)
 xjrne DATA_TRANSFER ; if instruction code = "nop,nop", exit this loop
;;;***
 xld.w %r9,0x2000000 ; r9 = 0x2000000 :
 jp %r9 ; jp to "LED on/off loop" of SDRAM
;;;------------------------- end of program translating ----------------------------

;**
;
; Target source program - LED ON/OFF - program
;
;**
main:
 xld.w %r10,0x402d2
 xld.w %r12,0x08
 ld.b [%r10],%r12 ; P7 I/O port INPUT mode
 xld.w %r10,0x402d1
 xld.w %r12,0x00
 ld.b [%r10],%r12 ; LED ON

 xld.w %r13,0x100000 ; wait counter
loop:
 sub r13,0x1
 xjrgt loop

 xld.w %r12,0x08
 ld.b [%r10],%r12 ; LED OFF

 xld.w %r13,0x100000 ; wait counter
loop2: ; loop for wait
 sub %r13,0x1
 xjrgt loop2

 xld.w %r12,0x00
 ld.b [%r10],%r12 ; LED ON

 xld.w %r13,0x100000 ; wait counter
loop3: ; loop for wait
 sub %r13,0x1
 xjrgt loop3

 xjp loop ; jp to "loop"
;**
 nop ; program end indicator
 nop ;
 nop ;
 nop ;

3 PROGRAMMING THE S1C33 PERIPHERAL FUNCTIONS

120 EPSON S1C33 FAMILY APPLICATION NOTE

Example of initialization routine for 2M words × 16 bits × 4 banks (16MB) of SDRAM

INIT_SDRAM_16MB:
;;;----------------------- SDRAM access configuration -----------------------------------
;;;***
;;;***************** C33 macro setting part ************************
;;;***

;;; set CEFUNC to use #CE13/14 (upper area)
 xld.w %r0,0x48131
 bset [%r0],0x1

;;; set area 6,13,14 to internal access
 xld.w %r0,0x48132
 xld.w %r1,0x2200
 ld.h [%r0],%r1

;;; area 6 -> output disable 0.5, wait 2
 xld.w %r0,0x4812A
 xld.w %r1,0x0237
 ld.h [%r0],%r1

;;; available #WAIT
 xld.w %r0,0x04812E
 bset [%r0],0x0

;;; area 13,14 -> 16bit device, output disable 2.5, wait 0
 xld.w %r0,0x048122
 xld.w %r1,0x30
 ld.h [%r0],%r1

;;;***
;;;************** SDRAM Controller REG setting part ****************
;;;***
;;;---
;;;area13 0x2000000 - 0x2FFFFFF(16MB)
;;;area14 0x3000000 - 0x3FFFFFF(16MB)
;;;---
;///
;;; SDRAM area configuration register
 xld.w %r0,0x39FFC0 ;
 xld.w %r1,0x88 ; set area13 to SDRAM area, #SDCE0(#CE13) available
 ld.b [%r0],%r1 ; (16MB area available)
;///
;;; SDRAM control register
;;; xld.w %r0,0x39FFC1 ;
;;; xld.w %r1,0xff ; SDRAM self-refresh -> disable, initial sequence ->PRE REF MRS
;;; ld.b [%r0],%r1 ; Little endian
;///
;;; SDRAM address configuration register
 xld.w %r0,0x39FFC2 ;
 xld.w %r1,0x26 ; col 512 / row 4K / bank 4 -> 128Mb[16MB] available
 ld.b [%r0],%r1 ;
;///
;;; SDRAM mode set-up register
 xld.w %r0,0x39FFC3 ;
 xld.w %r1,0x40 ; 2 CAS Latency ,burst length = 1
 ld.b [%r0],%r1 ;
;///
;;; SDRAM timing set-up register 1
 xld.w %r0,0x39FFC4 ;
 xld.w %r1,0x4A ; Tras=2,Trp=1,Trc=2 ... Recommended setting to operate with 25 MHz clock in x1 speed mode
 ld.b [%r0],%r1 ;
;///
;;; SDRAM timing set-up register 2
 xld.w %r0,0x39FFC5 ;
 xld.w %r1,0x48 ; Trcd=1,Trsc=2,Trrd=1
 ld.b [%r0],%r1 ;
;///
;;; SDRAM auto refresh count low-order register
;;; xld.w %r0,0x39FFC6 ;
;;; xld.w %r1,0xff ;

3 PROGRAMMING THE S1C33 PERIPHERAL FUNCTIONS

S1C33 FAMILY APPLICATION NOTE EPSON 121

;;; ld.b [%r0],%r1 ;
;///
;;; SDRAM auto refresh count high-order register
 xld.w %r0,0x39FFC7 ;
 xld.w %r1,0x00 ;
 ld.b [%r0],%r1 ;
;///
;;; SDRAM self refresh count register
;;; xld.w %r0,0x39FFC8 ;
;;; xld.w %r1,0x0f ;
;;; ld.b [%r0],%r1 ;
;///
;;; SDRAM advanced control register
 xld.w %r0,0x39FFC9 ;
 xld.w %r1,0x20 ; data width -> 16bit, bank interleave -> on
 ld.b [%r0],%r1 ;

;;;***
;;;***************** SDRAM controller power up *********************
;;;***
 xld.w %r0,0x39FFC1 ; SDRAM control register
 xld.w %r1,0x39FFCA ; SDRAM status register
 xld.w %r2,0x0
 xld.w %r3,0x10

;;; enable SDRAM signal
 bset [%r0],0x7 ; set SDRENA[D7/0x39FFC1]
SDRAM_SIGNAL_EN:
 add %r2,0x1 ; SDRAM signal enable waiting loop
 cmp %r2,%r3
 jrne SDRAM_SIGNAL_EN

;;; SDRAM power up
 bset [%r0],0x6 ; set SDRINI[D6/0x39FFC1]
POWER_UP:
 btst [%r1],0x7 ; SDRAM power-up waiting loop
 jrne POWER_UP

;;;------------------------ end of SDRAM access configuration ---------------------------
ret

The SDRAM can be accessed after executing the above program.

● Precautions
(1) Make sure that two wait cycles are inserted when accessing area 6, where the SDRAM controller is

allocated. With any other number of specified wait cycles, data may not be written normally to the
SDRAM control registers.

(2) Set the area used for an SDRAM for internal access (A8IO (DA/0x48132) = "1" or A14IO (DD/
0x48132) = "1").

(3) Before entering HALT2 or SLEEP mode, be sure to place the SDRAM in self-refresh mode, because the
SDRAM cannot be auto-refreshed while in those modes. In that case, confirm that SDRSRM (D6/
0x39FFCA) = "0" (i.e., that the SDRAM is in self-refresh mode) before executing the HALT or SLP
instruction.
If an access to the SDRAM occurs while being self-refreshed, the SDRAM is taken out of self-refresh
mode; thus always make sure the SDRAM check and the HALT/SLP instruction execution are per-
formed from devices other than the SDRAM.

(4) Do not access addresses 0x39FFCB to 0x39FFCD, as the user program will not be able to control the
CPU.

(5) If the program accesses an area out of the address range set using the address setting register
(0x39FFC2), an unintended area is accessed and the stored data may be overwritten. Therefore, do not
access an area out of the set range.

4 THE BASIC S1C33 CHIP BOARD CIRCUIT

122 EPSON S1C33 FAMILY APPLICATION NOTE

4 THE BASIC S1C33 CHIP BOARD CIRCUIT
This chapter explains the basic circuit design of the S1C33209.

4.1 Power Supply
Here, we'll explain the power supply based on a DC-DC converter, using the S5U1C33209D1 circuit as an
example.

● DC-DC converter

3–4.5V

DC IN

GND

CLK/SEL
ON
AIN

POKIN
REF

MAX1703

P
G

N
D

P
G

N
D

G
N

D

P5V

0.22µ

0.1µ 10V
68µ

10V
68µ

4.7µH
3A

HRF22

0.22µ

0.1µ 10µ 22µ10

LXP
LXN

POUT
POUT

CUT
AO

POK
FB

LT1117CST-3.3P5V

+

+

10V
68µ

+

P5V

+

P3V

+
VIN VOUT

G
N

D

This power supply circuit steps up the 3 to 4.5 V input voltage with a switching regulator to generate
a 5 V power supply for the external I/O and memory block, as well as for the analog block. This 5 V
power supply is stepped down with a linear regulator to generate a 3.3 V power supply for the CPU
core. Because the S1C33209's CPU core operates at 3.3 V, two such power supplies are required if the
external interface operates with 5 V.

Select capacitors carefully when using a switching-mode power supply as in the S5U1C33209D1. A 68
µF decoupling capacitor is positioned between the battery and coil. Due to the large rush current
flowing here, large ESR (equivalent internal resistance) results in power dissipation and abbreviated
battery life. For example, battery life can vary as much as 1.5 times between the OS capacitor used in
the S5U1C33209D1 and an ordinary electrolytic capacitor. The capacitors located after the coil do not
significantly affect battery life. If noise is a consideration, choose capacitors with low ESRs. The
capacitor is used to maintain as consistent a post-coil voltage as possible, and its change voltage
(ripple) increases proportionately with ESR. For S5U1C33209D1, using an electrolytic capacitor
produces sufficient noise in audio output to render audio quality unusable. Use the OS capacitor to
reduce relative noise levels to about 1/10, levels at which noise is generally not a problem.
In digital circuits, differences between capacitors produces only slight differences in noise margins.
But such differences are significant in analog circuits. In analog circuits, for increased safety, avoid
using a switching-mode power supply if possible.

4 THE BASIC S1C33 CHIP BOARD CIRCUIT

S1C33 FAMILY APPLICATION NOTE EPSON 123

● Decoupling capacitors
Use the following four methods for noise abatement between power supply and ground lines.

1) Use a circuit board comprised of four or more layers, and provide full-surface GND and full-
surface VDD layers.

2) Attach a 100 µF electrolytic capacitor per circuit board. For small circuit boards, attach a 10 µF
tantalum capacitor.

3) Attach a 1 µF + 0.1 µF laminated ceramic capacitor to the CPU and to the memory block.

4) Attach a 0.01 µF + 1000 pF chip-form laminated ceramic capacitor to each IC, positioning it as
close to the power supply pins as possible.

1µ 0.1µ

VDDE

1µ 0.1µ

VDD

Mount for every one or several IC blocks

0.01µ 1000p

VDDE

0.01µ 1000p

VDD

Mount for every two power supply lines on each IC

10µ~100µ

VDDE

10µ~100µ

VDD

Mount for each board

The capacitors in 2) to 4) above cover the following frequency ranges:
100 µF: Absorbs AC components in frequencies below several 100 kHz.
1 µF: Absorbs AC components in frequencies from several 100 kHz to several MHz.
0.1 µF: Absorbs AC components in frequencies from several MHz to about 20 MHz.
0.01 µF: Absorbs AC components in frequencies from 10 MHz to about 50 MHz.
1000 pF: Absorbs AC components in frequencies from several 10 MHz to about 100 MHz.

Omission of any of these capacitors results in difficulty absorbing noise in that frequency range. For
example, in the common arrangement of 0.1 µF per IC, noise for frequencies around 10 MHz is
absorbed relatively efficiently, but noise cannot be absorbed in frequencies above 10 MHz. S1C33209
circuit boards operating at frequencies above 40 MHz are subject to noise at frequencies approaching
100 MHz or even higher. This noise can only be absorbed with a capacitor of about 1000 pF. Addition-
ally, since inductance resulting from extended wiring lowers the upper absorption limit of the 1000 pF
capacitor, be sure to mount it at the closest position possible to the pin, second only to the PLL
capacitor described further below. Failure to do so will lower the actual upper limit of the absorption
range below 100 MHz.

When using double-sided circuit boards, reinforce GND as much as possible to ensure equivalent
GND potentials at each location. To prevent voltage fluctuations, use a decoupling capacitor to
reinforce power supply lines on each block.

4 THE BASIC S1C33 CHIP BOARD CIRCUIT

124 EPSON S1C33 FAMILY APPLICATION NOTE

4.2 Oscillation Circuit
The following section discusses oscillation circuits, referring to the S5U1C33209D1 and S5U1C33208E1 as
examples.

● 20 MHz resonator
This example applies to the S5U1C33209D1 when the high-
speed (OSC3) oscillation circuit is comprised of a crystal
resonator, a resistor, and capacitors.
For more information on resistor and capacitor values, see the
documentation supplied with your crystal resonator.

● 32 kHz resonator
This example applies to the S5U1C33209D1 when the 32 kHz,
low-speed (OSC1) oscillation circuit is comprised of a crystal
resonator, a resistor, and capacitors.
For more information on resistor and capacitor values, see the
documentation supplied with your crystal resonator.

● 20 MHz oscillator
This example applies to the S5U1C33208E1 when the
oscillator's output clock is fed to the OSC3 pin. Make sure the
voltage level of the input clock is the same as that of the
operating clock (VDD) of the CPU core (e.g. 3.3 V). The same
applies when an external clock is fed to the OSC1 pin.

● PLL, core clock, and bus clock
Related pins are PLLC and PLLS[1:0].

5p

4.7k
PLLC

PLLS0
PLLS1

100p

S1C33209
VSS

PLLC

VSS

The PLLC must have the shortest wiring pattern of all other pins. To prevent crosstalk from other
signal lines, it should also be enclosed with the largest GND pattern possible. Poor noise characteris-
tics on the PLLC line will result in increased jitter, or adversely affect the clock's duty ratio.

Select a high-speed operating clock for the S1C33209 from the following three options by processing
the PLLS0 and PLLS1 pins.
PLLS1 = 0, PLLS0 = 0: The OSC3 clock is used directly as is.

(Because PLL is unused, current consumption slightly lowers.)
PLLS1 = 1, PLLS0 = 1: A 2-times OSC3 clock is selected. (10–20 MHz clock input for OSC3)
PLLS1 = 0, PLLS0 = 1: A 4-times OSC3 clock is selected.

This clock is fed into the CPU core in the chip. The #X2SPD pin is used to determine the bus operating
clock.
#X2SPD = 1: The bus operates with the same clock as the core.
#X2SPD = 0: The bus operates at half the frequency of the core clock.

Combination example:
OSC3 PLLS1 PLLS0 #X2SPD Core clock Bus clock

20 MHz 0 0 1 20 MHz 20 MHz
20 MHz 1 1 0 40 MHz 20 MHz
15 MHz 0 1 0 60 MHz 30 MHz

5p5p

1M

MA-306 (20MHz)
4

1

3

2

OSC3

OSC4

S1C33

5p5p

1.5M

MC-306 (32.768kHz)
4

1

3

2

OSC1

OSC2

S1C33

0.1µ

SG8002DC (20MHz)
S1C33

OUT

N.C.

VCC

GND

OSC3

OSC4

VDD

4 THE BASIC S1C33 CHIP BOARD CIRCUIT

S1C33 FAMILY APPLICATION NOTE EPSON 125

4.3 Reset Circuit
This section describes a simple RC reset circuit as well as a more sophisticated circuit with a reset IC
capable of power supply voltage detection.

● Reset by an RC network
The S1C33209's reset input pin consists of a Schmitt trigger circuit with a pull-up resistor of about 120
kΩ. A simple reset circuit can be configured just by connecting an off-chip capacitor of about 0.22 µF.
The 0.22 µF capacitor may be laminated ceramic or an electrolytic capacitor.

0.22µ

#RESET

S1C33209
VDD

120k
Reset when low;
deactivated when high

This comprises an RC time constant of about 15 to 20 ms from power-on to VDD/2. This circuit has the
simplest structure. But because the reset input is only 120 kΩ pull-up and because reset is recognized
at a rising edge, it is also susceptible to noise. Make sure the capacitor is connected to the reset pin at
the shortest distance possible, within design constraints.

When using the S5U1C33000H for debugging, we recommend attaching a reset switch to your system.
When you encounter difficulty connecting the S5U1C33000H and target, this lets you hold down the
reset switch while turning on the S5U1C33000H, then release the reset switch, ensuring that the
S5U1C33000H and target are connected. For development purposes, only a switch needs to be in-
serted between the capacitor and VSS.

0.22µSW

#RESET

● Reset circuit using a reset IC
The reset IC used in the S5U1C33T01D1 (PST572 made by Mitsumi) is a three-terminal type connect-
ing VDD and GND. When VDD is below the rated level, it drives VOUT low; when VDD is above the
rated level, it puts VOUT in a high-impedance state.

Adding this IC to the above reset circuit results in the following (excerpt from the S5U1C33T01D1
circuit):

0.22µSW

#RESETReset
IC

VDD

4 THE BASIC S1C33 CHIP BOARD CIRCUIT

126 EPSON S1C33 FAMILY APPLICATION NOTE

● Protecting reset against noise
If the reset circuit described above is routed around apart from the IC, it becomes susceptible to
crosstalk. In such cases, take the following protective measures.
1) Reduce the pull-up resistance.
2) Attach a decoupling capacitor on the pin side.
3) Enclose with a GND pattern to protect against crosstalk.
4) Drive reset high/low with low impedance using logic.

0.1µ
SW

#RESET

4.7µ

5.6k

270

Reset
IC

VDD VDD

In this example of noise protection, the reset line is pulled high with external 5.6 kΩ. The switch also
has 270 Ω connected in series, thereby limiting the current flowing into it. A 0.1 µF decoupling
capacitor is inserted on the reset pin side to reduce high-frequency noise, which can easily ride on the
line due to crosstalk.

#RESET

74HC14

SW
4.7µ

5.6k

270

Reset
IC

VDD VDD

In this example of noise protection, a 74HC14 (Schmitt type inverter) is inserted to drive reset with
logic. This renders the reset circuit significantly resistant to noise.

In addition to reset, all edge-activated ports such as NMI and input interrupts require caution regard-
ing erratic device behavior induced by noise. Make the wiring as short as possible, particularly for
inputs whose high/low levels are regulated using pull-up/pull-down resistors. Implement protective
measures, such as the ones described above. Use of pull-up/pull-down resistors of about 100 kΩ
makes it crucial that the line and pin be connected by the shortest distance. Even for pull-up/pull-
down resistors of 10 kΩ or less, avoid extending wiring unnecessarily. Check with an oscilloscope to
confirm absence from crosstalk.

4 THE BASIC S1C33 CHIP BOARD CIRCUIT

S1C33 FAMILY APPLICATION NOTE EPSON 127

4.4 Connecting ROM
Using the S5U1C33209D1 and S5U1C33000H as examples, a ROM connection diagram is shown below.

● Connecting x16 ROM

A[15:0]

IO[15:0]

CE
OE

PGM
VPP

27C1024HCCS1C33209

VDDE (5V)
10k

VCC

VSS2
VSS1

A[16:1]

D[15:0]

#CEx
#RD

VDDE (5V)

0.1µ

The S5U1C33209D1 has a 1M-bit EPROM packaged in a 44-pin PLCC. The S1C33209 I/O and this
ROM both operate at 5 V.
When the bus clock speed is 20 MHz, the ROM access time requirements are as follows:
For 2-cycle read with one wait state (bus cycle = 100 ns), ROM access time of 80 ns (or 75 ns for 3.3 V)
or greater
For 3-cycle read with two wait states (bus cycle = 150 ns), ROM access time of 130 ns (or 125 ns for 3.3
V) or greater

4.5 Connecting Flash Memory
Using the S5U1C33209D1 as an example, the following is a diagram of a x16-type flash memory connec-
tion.

● Connecting x16 flash memory
An 8M-bit flash memory in a 48-pin TSOP package is connected directly to the chip. A x8/x16 dual-
type flash memory labeled "29F800" is used in a x16 configuration.

A[18:0]

D[15:0]

CE
OE
WE

RP

MBM29F800TA-70PFTNS1C33209

BYTE

VCC

GND

A[19:1]

D[15:0]

#CEx
#RD

#WRL/#WR/#WE

#RESET

VDDE

VDDE

0.1µ

10k

0.1µ
Reset circuit

BYTE = 1: 16 bits
BYTE = 0: 8 bits

#RESET#RESET

4 THE BASIC S1C33 CHIP BOARD CIRCUIT

128 EPSON S1C33 FAMILY APPLICATION NOTE

4.6 Connecting SRAM

● Connecting x16 SRAM
In the example shown below, one 4M-bit, x16 SRAM is connected to the chip.

A[17:0]

I/O[15:0]

UB
LB
CS
OE
WE

µPD434016ALES1C33209

VCC

GND

A[18:1]

D[15:0]

#WRH/#BSH
A0/#BSL

#CEx
#RD

#WRL/#WR/#WE

VDDE

0.1µ

This type of RAM cannot be accessed with a default BCU setting. If BCU is changed to BSL mode, the
RAM becomes operational with the wiring shown above. BSL mode is selected by setting D3 at
0x4812E to 1. Setting D3 = 0 selects regular A0 mode.

Note: In the S1C33209 and S1C33L01, BSL mode cannot be used in combination with S5U1C33000H
debugging. Use the S5U1C331M2S for debugging.

● Connecting two x8 SRAMs
When two SRAM units are required, we recommend using two x8 type units, since they are easily
connected, without requiring external logic. In the example shown below, two 4M-bit, x8 SRAMs are
connected to the S5U1C33209D1.

A[18:0]

IO[7:0]

CS
OE
WE

HM628512S1C33209

VCC

GND

A[19:1]

D[15:8]
D[7:0]

#CEx
#RD

#WRH/#BSH
#WRL/#WR/#WE

VDDE

0.1µ

A[18:0]

IO[7:0]

CS
OE
WE

HM628512

VCC

GND

VDDE

0.1µ

The address, #CE, and #RD outputs may be connected directly to the chip, although the 2-device
connection may increase their load capacitance.

At a bus clock speed of 20 MHz, RAM access time requirements are as follows:
For 2 cycles with one wait state (bus cycle = 100 ns), RAM access time of 80 ns (or 75 ns for 3.3 V) or
greater
For 3 cycles with two wait states (bus cycle = 150 ns), RAM access time of 130 ns (or 125 ns for 3.3 V)
or greater

The access time for SRAM mounted on the S5U1C33209D1 (operating at 20 MHz) is 55 ns in one wait
state.

4 THE BASIC S1C33 CHIP BOARD CIRCUIT

S1C33 FAMILY APPLICATION NOTE EPSON 129

● Connecting one x8 SRAM
This example illustrates the connection of a single 256K-bit, x8 SRAM.

A[14:0]

I/O[7:0]

CS1
OE
WE

SRM28256SL00X7S1C33209

VCC

VSS

A[14:0]

D[7:0]

#CEx
#RD

#WRL/#WR/#WE

VDDE

0.1µ

By default, the BCU is set to 16-bit size. Change its setting to 8-bit and set each area's setup register D6
or DE bit to 1.

4.7 Connecting DRAM
Using the S5U1C33L01D1 as an example, the following shows a DRAM connection diagram. Note that a
DRAM pattern is prepared on the S5U1C33L01D1, but that no DRAMs are yet mounted.

● Connecting 4M-bit, x16 DRAM

A[8:0]

DQ[15:0]

W
OE
UCAS
LCAS
RAS

SDMV4265CLUS1C33209

VCC

VSS

A[9:1]

D[7:0]

#WRL/#WR/#WE
#RD

#HCAS
#LCAS

#CEx/#RASx

VDDE

0.01µ 1000p

For more information on BCU settings, see Section 3.1, "Setting Up BCU".

4 THE BASIC S1C33 CHIP BOARD CIRCUIT

130 EPSON S1C33 FAMILY APPLICATION NOTE

4.8 Connecting 5 V ROM and 3.3 V Bus

● Method for connecting a 5 V ROM to a 3.3 V bus
The S1C33209 bus is not 5 V-tolerant. If another 3.3 V memory device is connected, current will also
flow into that memory. Connecting a 5 V device to the 3.3 V I/O S1C33 chip requires a buffer to
absorb the potential difference.

A[15:0]

IO[15:12]
IO[11:8]

IO[7:4]
IO[3:0]

CE
OE

PGM
VPP

2Y[4:1]
1Y[4:1]

1G
2G

2A[4:1]
1A[4:1]

VCC

VSS

27C1024HCC

74VHC244

S1C33209

5V
10k

VCC

VSS2
VSS1

A[16:1]

D[15:12]
D[11:8]

D[7:4]
D[3:0]

#CEx
#RD

5V

0.1µ

VDDE (3.3V)

0.1µ

2Y[4:1]
1Y[4:1]

1G
2G

2A[4:1]
1A[4:1]

VCC

VSS

74VHC244

VDDE (3.3V)

0.1µ

In this example, two pieces of the 74VHC244 convert 5 V ROM output data to 3.3 V during a ROM
read. The buffer operates only when the ROM is selected. This is used in the S5U1C33000H (the CPU,
however, is the S1C33104).
VHC-type ICs tolerate 5 V input and receive 5 V signals even when operating at a power supply
voltage of 3.3 V. Many low-voltage CMOS ICs exhibit this voltage-tolerant feature.
Although the address, #RD, and #CE signals fed to the ROM are at 3.3 V, they can be entered directly
only if the ROM is TTL-level compatible (high at 2.0 V or above, low at 0.8 V or below).
If the 16244 is used for the buffer IC in place of the 244, one IC may be sufficient. The signal connected
to the G pin on the buffer is an AND'd product of #CE and #RD. Data is output from Y only during
ROM reads. Swapping out the buffer IC for a 245 or 16245 and connecting #CE to the G pin and #RD
to the DIR pin creates a bi-directional buffer, in which case the AND logic shown above is unneces-
sary. A bi-directional buffer also permits use of ROM emulation memory, like the MEM33DIP42.

4 THE BASIC S1C33 CHIP BOARD CIRCUIT

S1C33 FAMILY APPLICATION NOTE EPSON 131

4.9 Ports

● Processing unused I/O (P) ports
By default, the unused I/O ports are set for input. Connect unused ports to VDD or VSS, or switch
them for output immediately after booting. Take care that ports connected to VDD or VSS are never set
for output.

● Eliminating chattering on input (K, P) ports
Except for K60–K67, the K and P ports are Schmitt inputs, as is the reset pin. To simply eliminate
several ms of chattering on 2-level switch inputs, configure a circuit like the one shown below.

SW

Kxx port

1µ

10k 2k

VDD

In this example, no internal pull-ups are used. Turn-off from 0 to VDD constitutes a rise time of about
10 ms, eliminating several ms of chattering. Turn-on from VDD to 0 constitutes a fall time of about 2
ms. You can also reduce current drain at switch-on time by using a larger R. However, since this
results in vulnerability to noise, route the wiring carefully.

For pins which are not Schmitt inputs, use a 74HC14 or equivalent to eliminate chattering. To deter-
mine if a particular pin is a Schmitt input, see the user's manual supplied with each IC. (For the
S1C33209 Technical Manual, see Appendix B, "Pin Characteristics".)

4 THE BASIC S1C33 CHIP BOARD CIRCUIT

132 EPSON S1C33 FAMILY APPLICATION NOTE

4.10 Connections for Debugging
Using the S5U1C33209D1 as an example, this section explains how to connect the S5U1C33000H and the
S5U1C330M1D1 for S5U1C331M2S.

● Connecting the S5U1C33000H
The S1C33209 has six dedicated pins to which a debugger can be connected, including DCLK, DSIO,
DST2, DST1, DST0, and DPCO.
Add a 33 Ω resistor in series to DSIO. Use a total of 10 lines to connect to the S5U1C33000H, including
four additional GND lines.

DCLK

DSIO

DST2

DST1

DST0
DPCO

33Ω

S1C33209S5U1C33000H I/F connector
1
2
3
4
5
6
7
8
9

10

If the above pattern cannot be laid out on the circuit board, use aerial wiring to connect, without
inserting the 33 Ω resistor. The S5U1C33000H will function with this connection.
You can also disable the PC trace function with the S5U1C33000H (by pushing the rightmost DIP
switch down) and connect to the S5U1C33000H with only a total of four lines consisting of DCLK,
DSIO, DST2, and one GND line. Except for PC trace, this allows all debug functions in ICD mode to
be used without problems.
Make sure the above wiring length is 5 cm or less. In particular, the 33 Ω resistor for DSIO must be
located as close to the 33 chip as possible. DSIO is the only input pin and is pulled high with internal
120 kΩ. A low pulse on this input places the device in debug mode. To prevent erratic DSIO behavior,
if you are not debugging, leave the 33 Ω resistor out and minimize the pattern length of DSIO, or
connect it high to 3.3 V (the core's VDD voltage) to prevent including noise.

● Connection with the S5U1C330M1D1
S5U1C331M2S uses the following resources: 10K bytes of ROM, 4K bytes of RAM, and one serial
interface channel.
The diagram shown below depicts a S5U1C330M1D1 circuit diagram and an interface component on
the target board.

VDD
C1P
VCC
C1M
C5P
GND
C5M

DIN1
DIN2
DIN3

ROUT1
ROUT2
ROUT3
ROUT4
ROUT5

µPD4724

S1C33209

S5U1C330M1D1S5U1C33209D1
C4P
GND
C4M
VSS

STBYN
VCHA

EN

DOUT1
DOUT2
DOUT3

RIN1
RIN2
RIN3
RIN4
RIN5

OSC

1327-B1
(1.843MHz)

VCC

GND

1
2
3
4
5
6
7
8
9

10
11
12

#RESET
P01
P00

#NMI

K63

P02

1µ

1µ

1µ
1µ

0.1µ

P5V

P5V

5

4

3

2

1

9

8

7

6

P5V

P5V

RS232C
connector

Target I/F
connector

10V
220µ

#RESET_IN
TXD
RXD
#NMI

DEBUG

SCLK

TXD(P05)

RXD(P04)

+

P5V

0.1µ

10k
#RESET_IN

TXD
RXD
#NMI

DEBUG

SCLK

P5VP5V

P5V

0.1µ

Y1
Y2
Y3
Y4
Y5
Y6
VCC

74HC14

DEBUG SW

A1
A2
A3
A4
A5
A6

GND

0.1µ

0.01µ 330

4.7k

P5V
RESET SW

0.01µ 330

4.7k

P5V
NMI SW

0.01µ 330

4.7k

1
2
3
4
5
6
7
8
9
10
11
12

Reset
circuit

The S5U1C33209D1 is connected to the S1C33 to allow use of all S5U1C330M1D1 functions. Of these,
three lines - RESET input, NMI input, and the debug switch for input port connection - are used for
the sake of convenience rather than necessity.

4 THE BASIC S1C33 CHIP BOARD CIRCUIT

S1C33 FAMILY APPLICATION NOTE EPSON 133

Only essential pins need to be connected, as shown below.

User target board

Signal lines must be less than 10 cm in length.

12

10

5
4

1

GND

SCLK

SIN
SOUT

VCC

There are five essential pins: SCLK, SIN, SOUT, GND, and VDD. VDD is 5 V for the S5U1C330M1D1,
and 3.3 V for the S5U1C330M1D2.

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

134 EPSON S1C33 FAMILY APPLICATION NOTE

5 SPEAKER OUTPUT AND EXTERNAL ANALOG

CIRCUIT USING FINE PWM
5.1 General Sound Output Circuits Based on Microcomputer
Sound (music) output to speakers using a microcomputer requires the following three general compo-
nents.

1) D/A converter unit
Converts digital sound data into analog form.

2) Low-pass filter unit
Eliminates quantization noise from the D/A converted analog sound, smoothing it into a continuous
analog waveform.

3) Power amp and speaker unit
Amplifies the low-pass filtered analog waveform and drives the speaker.

S1C33 chip

D/A converter unit
 PWM or

D/A converter

ROM/RAM
 Digital sound

data
Low-pass filter Power amp

Speaker

Here, we'll explain a general method for building a relatively low-cost sound output system, using a
single power supply, as well as the structure of each block, sampling frequencies, and output accuracy vs.
quality.

5.1.1 D/A Converter Unit
Digital sound data is generally converted into analog data using the following three methods:
1) Conversion by DAC
2) Conversion by resistor ladder
3) Conversion by PWM

Each method is explained below.

● Conversion by DAC
This method uses the DAC incorporated in a microcomputer to output sound.

S1C33104, etc.

DAC

The DAC built into a microcomputer generally is a R-2R resistor ladder-type with 8- to 10-bit resolu-
tion. For higher accuracy, prepare a dedicated off-chip DAC. A 12-bit R-2R type DAC is commonly
used for sound output; 14–20-bit delta-sigma type DACs are often used for audio.

When using a DAC, pay attention to its output impedance. If the DAC produces low-impedance
output (if capable of 5–10 mA output) using the op amp in the latter stage of R-2R, it can be received
directly by the low-pass filter unit in the next stage.

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

S1C33 FAMILY APPLICATION NOTE EPSON 135

High-impedance output may require a voltage follower to lower impedance.

DAC
15kΩ

35kΩ
To low-pass filter

0–5V output

LM324, etc.
+

–

Level adjusted
to 0–3.5V

Impedance conversion
by voltage follower

The input voltage is limited by the op amp used. Because an inexpensive CMOS-type op amp (e.g.
LM324) is used in this example, the input voltage is divided by resistors to adjust it into the range 0 to
3.5 V. In this case, since a current flows into GND through 15 kΩ + 35 kΩ resistors, care must be taken
that it does not exceed the rated output current of the DAC.
The following provides a rough guide to the op amp's input voltage range relative to the power
supply voltage.
1) For ordinary bipolar type and FET type (e.g. RC4558 operating with positive/negative dual-power

supplies)
Positive power supply voltage - 1 to 1.5 V to negative power supply voltage + 1 to 1.5 V

2) For CMOS types (e.g. LM324 operating with single power supply)
Positive power supply voltage - 1 to 1.5 V to GND + several mV to several 10 mV (almost GND)

This also applies to output voltages. A rail-to-rail type capable of full swing relative to the power
supply is also available. While output rail-to-rail is relatively inexpensive, input/output rail-to-rail is
too costly for low-cost systems.

DAC output is an analog waveform with quantization noise riding on it, as shown below.

For output with 8 kHz of sampling frequency, for example, write digital data every 1/8000 seconds
into the DAC in software. Because the output does not change states until the next data write, the
output is in noncontiguous staircase form. This is quantization noise, which degrades audio quality
centering around the same frequency as sampling. A low-pass filter in the next stage is required to
eliminate this noise. Audio quality depends heavily on low-pass filter performance characteristics.

While the S1C33104 chip's internal 8-bit DAC may be used for audio output, 8-bit resolution is
generally considered inadequate for audio quality. The S1C33209 uses a 16-bit timer and the PWM
method described further below to provide high resolution, from 10 bits to a maximum of 15 bits.

● Conversion by resistor ladder
This configures a simplified version of DAC by connecting external resistors to a microcomputer's
I/O ports. This method is used specifically for microcomputers lacking a DAC, but may be used for
all types of microcomputers.

Microcomputer

Resistor values selected from the E24 series
10 kΩ and 20 kΩ have a 1% error; others are 5% accurate.

6-bit analog outputIO5

IO4

IO3

IO2

IO1

IO0

10kΩ

20kΩ

39kΩ

82kΩ

160kΩ

330kΩ

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

136 EPSON S1C33 FAMILY APPLICATION NOTE

The resistors used for higher-order bits must provide better accuracy. Resistors with 1% accuracy are
limited to 6-bit resolution. Even those with 0.5% accuracy are generally limited to 7 bits. But since
relative accuracy is important, we can obtain a resolution of 8 bits (more or less) by using a R-2R
resistor ladder (with resistors integrated into a single component, using the R-2R method, e.g. resistor
arrays from BI Technologies in the U.S.). In most cases, the R-2R method D/A with 12 bits or more
produces the desired resolution by trimming output internally. But because this method creates high
output impedance, a voltage follower is required for low impedance conversion before the output can
be fed to the low-pass filter unit.
The waveform itself is of the same staircase form containing quantization noise as for the DAC
described above.

● Conversion by PWM
Instead of outputting analog voltages, this method represents voltages by changing the duty ratio (the
ratio of 1 to 0 pulse widths) of a digital waveform. PWM outputs differ markedly from DAC output
waveforms. But after smoothing with a low-pass filter, we obtain a staircase analog waveform con-
taining quantization noise, as with DAC output waveforms. Furthermore, since the audio portion of
PWM has the same spectrum as that of DAC output, both are perceived as identical to human ears.

S1C33209, etc.

5V

0V

PWM
(16-bit timer, etc.)

PWM waveform

Voltages are represented by changing the duty ratio in this one cycle.
A high-to-low ratio of 1:1 represents 2.5V, a 4:1 ratio represents 4V, and a 2:3 ratio represents 2V.

In this case, PWM cycles (carrier frequency) must be greater than the D/A conversion cycles (band to
be reproduced). For example, we use a carrier frequency of 80 kHz or higher for sound reproduction.
When passed through a low-pass filter that cuts frequencies above 20 kHz, we obtain the same
staircase analog waveform obtained from the DAC described above.

The PWM waveform has a broad noise spectrum centering around the carrier frequency, say 80 kHz.
This frequency band significantly exceeds the audio frequency, so that even when this PWM wave-
form is output directly to speakers, it has no perceptible effect on sound for human ears. We can safely
convert PWM waveforms into continuous analog waveforms using a low-pass filter before speaker
reproduction. Since the low-pass filter used in the next stage to cut quantization noise can also be
used for this purpose, a low-pass filter is not required for this D/A converter unit. But not all noise
concentrates around 80 kHz, and traces of PWM noise are found even in the audible frequency range.
These noise components can be reduced by using a higher carrier frequency — 160 to 320 kHz — but,
in practice, the 80 kHz carrier presents no problems for 10-bit D/A conversion. In addition, since the
output impedance is regulated to low impedance by I/O pads for PWM use, no impedance conver-
sion by a voltage follower is required.

The accuracy of the PWM method is determined by the resolution of the pulse width. To realize 8-bit
accuracy, one cycle must be 256 × 80 kHz, requiring a 20 MHz reference clock. The audio output
library for the S1C33209 realizes 10-bit accuracy with PWM, providing high audio quality comparable
to that of a 10-bit DAC. Normally, 10-bit accuracy requires 1024 × 80 kHz = 80 MHz clock, but the
S1C33209 obtains the same effects with a 40 MHz clock, thanks to PWM technology.

For years, the PWM method been known as a D/A conversion method that features high differentia-
tion accuracy. But due to its need for a high-frequency reference clock, the method has not always
been practical for the voice band. A variation of this method has been used for voice applications as a
delta-sigma type DAC in which PWM is converted into PDM (Pulse Density Modulation), which is
then subjected to digital signal processing in the time-base direction to improve S/N ratios. This high-
resolution PWM is a Seiko Epson exclusive technology, in which pulse width is controlled in units of
half-clock periods. Combined with a S1C33 chip capable of operating at 40 MHz or better, this tech-
nology has made possible significant advances — now outpacing DAC — for PWM, which was
formerly regarded as impractical for audio output use.

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

S1C33 FAMILY APPLICATION NOTE EPSON 137

5.1.2 Low-pass Filter Unit
The quantization noise generated during D/A conversion degrades audio quality. To the human ear, this
noise appears as roughness in the sound, with shrill high tones. Resolving this problem requires careful
design of the low-pass filter unit to eliminate quantization noise. Costs must also be considered.
For low-cost systems, we recommend second-order to fourth-order low-pass filters. Set the cutoff fre-
quency to about 1/2.5 of the sampling frequency (for fourth-order filters) or 1/3 (for third-order filters),
or 1/3.5 to 1/4 (for second-order filters). Attenuate higher frequencies. At higher cutoff frequencies,
quantization noise centering around the sampling frequency becomes conspicuous, degrading audio
quality. Due to their low attenuation, the safe course is to avoid first-order low-pass filters. Note that
depending on usage conditions (for example, when you want artificially emphasized high tones to be
heard clearly against background noise), quantization noise is sometimes generated intentionally.

● Example of a second-order filter

Input Output
3.9k 3.9k

0.1µ 0.1µ

Low-pass filters, each consisting of R and C, are combined to form a second-order filter. This example
is designed for 8 kHz output, with a cutoff frequency slightly lower than 2 kHz. This enables configu-
ration of an inexpensive filter with two resistors and two capacitors. However, attenuation near the
cutoff frequency is moderate, resulting in slightly degraded audio quality - a tinkling, metallic sound.

● Example of a fourth-order filter

Input
Output

+

–
0.01µ

3.3k
20k

0.01µ

TLC2272
(T1)

20k30k

62k 470p3300p

This configures the third-order active filter with one op amp, followed by an additional first-order
low-pass filter consisting of R and C, together forming the fourth-order filter. Providing good attenua-
tion characteristics, this filter is adequate for acceptable audio quality in low-cost systems. This
example is designed for 8 kHz output, with a cutoff frequency of approximately 3 kHz. Additionally,
30 kΩ and 62 kΩ inserted at the input narrow the input voltage range by a factor of 0.67 to prevent
saturating the op amp input.

● Oversampling
In Seiko Epson's speech and music middleware (e.g. S5U1C330V1S, S5U1C330T1S, and
S5U1C330S1S), x2 oversampling technology is used in audio output to significantly reduce software
quantization noise, reducing the load on the low-pass filter unit. The result is such that even when
using filters above the fourth-order, no differences in audio quality can be detected by ear. Without
oversampling, the fourth-order shown above is inadequate. The commonly used fifth and higher-
order Chebyshev filters are structurally complex and expensive.

Also see Section 5.4, "Examples of Audio Output Analog Circuits".

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

138 EPSON S1C33 FAMILY APPLICATION NOTE

5.1.3 Power Amp and Speaker Unit
We describe two examples here. In one, we use a dedicated differential-type power amp to produce a
large sound volume. In the second, we use transistors to realize moderate sound volume at low cost.

● Example of a power amp

Input
C1 R1

R2

LM4862 (NS)C2

–

+
0.1µ

1µ

15k

0~20k

Capacitor C1 at the input configures the first-order high-pass filter to cut D.C components. The cutoff
frequency determined by C1 and R1 is normally around 50 Hz. With lower cutoff frequencies, the
popping tone heard when sound is first produced becomes conspicuous. The input impedance here
must be several times higher than the output impedance of the low-pass filter unit. If the relative
magnitudes of the impedances are the same or in reverse relationship to this requirement, filter
characteristics may be altered due to mutual interference of low- and high-pass filters.

The differential amp is used to drive the speaker. Audio volume is determined by R2/R1.

● Driving the speaker with a transistor

Input

VDDE

2SD2153 (Rohm)

Speaker (8Ω)

The speaker is driven here by an emitter-follower. For such applications, select a transistor with large
hfe (500 or greater; Darlington is unusable due to its narrow voltage range). For current amplification,
the impedance in the D/A converter and the low-pass filter units must be matched to this.

Also see Section 5.4, "Examples of Audio Output Analog Circuits".

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

S1C33 FAMILY APPLICATION NOTE EPSON 139

5.2 About Sampling Frequency and Bit Precision vs. Audio Quality

● Sampling frequency
Higher sampling frequencies generate more high tones, with better fidelity to natural sound. A
sampling frequency of at least 2 kHz or higher is required. At lower sampling frequencies, sound
becomes unclear, making speech difficult to make out. Audio quality increases as sampling frequen-
cies increase to 4 kHz, 8 kHz, and 16 kHz. Of these frequencies, 8 kHz was adopted for telephone
communications. For this reason, 8 kHz is used in countless products. The sampling frequencies
above 16 kHz are 22 kHz and 32 kHz, frequencies with which sound may be reproduced close to 10
kHz and 15 kHz, respectively. But due to the relative insensitivity of human hearing to the higher
frequencies and the limited performance expected of low-cost systems, no further increase in audio
quality is to be expected. Higher sampling frequencies include the 44.1 kHz CD and 48 kHz DAT
classes.

As sampling frequencies increase, so does data volume. As a rough guide, we recommend the follow-
ing sampling frequencies for low-cost systems:

Human voice: 8 kHz (when data size concerns have priority)
16 kHz (when audio quality has priority)

Music: 22.05 kHz
32 kHz (high-end audio quality)

● Bit precision
S/N ratios change significantly according to the number of bits used in the D/A converter unit.
Roughly speaking, when the number of bits increases by one, the S/N ratio increases by 6 dB. The
approximate relationship between the number of bits and audio quality is given below.

(1) 8 kHz sampling
1 to 3 bits: Sound is hidden behind noise, so that the speech is difficult to make out (the

signals are perceived as human voice signals, but nothing further can be per-
ceived).

4 to 5 bits: Although speech can be understood, noise levels are significant and obtrusive.
6 to 7 bits: Sound quality is clearer, but irritating noise levels persist.
8 to 9 bits: Results are useable for real-world applications, with perceptible noise levels,

which are not disagreeable to the ear.
10 bits or more: No noise can be perceived, even when heard in a quiet environment.
A precision of at least 8 bits is desirable. If resources permit, consider using 10 bits.

(2) 22 kHz or higher sampling
As sampling frequencies increase, quantization noise becomes more conspicuous to the ear.
8 to 9 bits: Even in somewhat noisy rooms, noise remains perceptible.
10 to 11 bits: Under normal conditions, noise cannot be detected.
12 bits or more: No noise can be detected, even when heard in a quiet environment.
A precision of at least 10 bits is desirable. If resources permit, consider using 12 bits.

(3) 16 kHz sampling
Audio quality is almost midway between 8 kHz and 22 kHz. A precision of at least 9 bits is
desirable. If resources permit, consider using 11 bits.

The S1C33104 by itself is capable only of 8-bit output, using its internal 8-bit DAC. The S1C33209 can
produce 8 to 32 kHz, 10 to 15-bit output thanks to its PWM, providing ample capabilities for most
applications.

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

140 EPSON S1C33 FAMILY APPLICATION NOTE

5.3 10-bit D/A Conversion by PWM
The S1C33209 is able to realize high-resolution audio output, from 10 bits up to 15 bits, thanks to its high-
resolution PWM technology. This section will first describe 10-bit output with high-resolution PWM, then
discuss 15-bit output. (See Section 5.6, "15-bit D/A Conversion by PWM".)

● Differences between PWM and DAC
As previously described, PWM uses the duty ratio to represent voltages, and its waveform differs
markedly to the eye. However, when PWM components are removed by a low-pass filter, the result-
ing waveform closely resembles DAC output waveforms.

5V

0V

5V

0V

PWM waveform

PWM output

Low-pass
filter output

Voltage is represented by changing the duty ratio in this one cycle.

The human ear perceives frequency spectrum as sound rather than waveforms.

Spectrum of DAC output

100 1k 10k 100k (Hz)

Spectrum of PWM output

100 1k 10k 100k (Hz)

PWM carrier

PWM output has significant power near the carrier frequency, but in the same spectrum as that of
DAC output in the audible frequency range. Thus, although the output waveforms of PWM and DAC
are quite different, both PWM and DAC outputs are perceived as identical by human ears. Because
the PWM carrier noise disappears when processed by the low-pass filter unit, eliminating quantiza-
tion noise, the spectra of both waveforms ultimately match.

● About high-resolution PWM mode
The accuracy of PWM output depends on how elaborately the duty ratio of output waveform can be
controlled. Obtaining 8-bit accuracy using a constant cycle of 80 kHz requires: 80 kHz × 256 clock
periods = 20 MHz clock, which indicates that pulse width must be controlled in units of 0.05 µs. The
PWM available with the audio output middleware for the S1C33209 is 10-bit accurate, so that control
of one clock width requires 80 kHz × 1024 = 80 MHz clock. The S1C33209 drives the 16-bit timer for
PWM use with a 40 MHz clock, and controls output pulse width in units of half-clock periods.
Combined, this results in 80 MHz equivalent PWM output.

PWM output in high-resolution mode

Compare A = 0

05 1 2 3 4 0 1 05 1 2 3 4 0 1 05 1 2 3 4 0 1 05 1 2 3 4 0 1 05 1 2 3 4 0 1 05 1 2 3 4 0 1

Compare A = 1 Compare A = 2 Compare A = 3 Compare A = 4 Compare A = 7

x

Compare B = 4

Output in normal mode

16-bit timer clock

16-bit timer counter

Output in
 high-resolution mode

x Inverted output in
 normal mode
 Inverted output in
 high-resolution mode

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

S1C33 FAMILY APPLICATION NOTE EPSON 141

● PWM programming using high-resolution mode
In this section, we'll discuss how to produce PWM output in high-resolution mode, using
gnu33\sample\drv33208\pwm as an example.

High-resolution PWM control (Excerpt from drv_pwm.c)

void init_16timer1(unsigned short compareA, unsigned short compareB)
{

/* Save PSR and disable all interrupt */
save_psr();

/* Set 16bit timer1 prescaler */
*(volatile unsigned char *)PRESC_P16TS1_ADDR (1)

= PRESC_PTONL_ON | PRESC_CLKDIVL_SEL0;
// Set 16bit timer1 prescaler (CLK/1)

/* Set 16bit timer1 TM1 port enable */
*(volatile unsigned char *)IO_CFP2_ADDR |= IO_CFP23_TM1; (2)

/* Set 16bit timer1 comparison match A data */
*(volatile unsigned short *)T16P_CR1A_ADDR = compareA; (3)

/* Set 16bit timer1 comparison match B data */
*(volatile unsigned short *)T16P_CR1B_ADDR = compareB; (3)

/* Set 16bit timer1 mode, fine mode, comparison buffer enable, output normal */
*(volatile unsigned char *)T16P_PRUN1_ADDR = T16P_SELFM_FM | T16P_SELCRB_ENA

| T16P_OUTINV_NOR | T16P_CKSL_INT | T16P_PTM_ON | T16P_PSET_OFF
| T16P_PRUN_RUN; (4)

/* Restore PSR */
restore_psr();

}

void set_16timer1(unsigned short compareA)
{

/* Set 16bit timer1 comparison match A data */
*(volatile unsigned short *)T16P_CR1A_ADDR = compareA;

}

Initializing the PWM timer (16-bit timer channel 1)

(1) Setting the prescaler
Feed the clock directly to 16-bit timer 1 without dividing it by the prescaler.
/* Set 16bit timer1 prescaler */
*(volatile unsigned char *)PRESC_P16TS1_ADDR

= PRESC_PTONL_ON | PRESC_CLKDIVL_SEL0;
// Set 16bit timer1 prescaler (CLK/1)

(2) Switching over port functions
Switch the functions of pins shared with I/O ports for PWM output.
/* Set 16bit timer1 TM1 port enable */
*(volatile unsigned char *)IO_CFP2_ADDR |= IO_CFP23_TM1;

(3) Setting compare data
Set the compare A data (pulse rise timing) for 16-bit timer 1.
/* Set 16bit timer1 comparison match A data */
*(volatile unsigned short *)T16P_CR1A_ADDR = compareA;

Set the compare B data (cycle) for 16-bit timer 1.
/* Set 16bit timer1 comparison match B data */
*(volatile unsigned short *)T16P_CR1B_ADDR = compareB;

(4) Setting 16-bit timer 1 mode and starting
Set the timer's operational mode and allow PWM output to start.
/* Set 16bit timer1 mode, fine mode, comparison buffer enable, output normal */
*(volatile unsigned char *)T16P_PRUN1_ADDR = T16P_SELFM_FM | T16P_SELCRB_ENA

| T16P_OUTINV_NOR | T16P_CKSL_INT | T16P_PTM_ON | T16P_PSET_OFF | T16P_PRUN_RUN;

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

142 EPSON S1C33 FAMILY APPLICATION NOTE

The following settings are made here:
• Select high-resolution mode (to produce high-resolution PWM output)
• Enable the compare data buffer (to set duty change data asynchronously)
• Select non-inverted output (each cycle begins with 0)
• Select the internal clock (prescaler output clock)
• Turn timer output on (outputs PWM waveform)

When the timer starts, the output waveform begins with 0. When the counter matches compare A, it
goes high (= 1); when the counter matches compare B, it goes low (= 0). These ascending and descend-
ing transitions comprise one cycle, which is determined by the set value of compare B. Unless the
compare A register is changed at this point, the same waveform is output in the next cycle.

Changing the duty ratio
Because the compare data buffer is enabled in (4), compare A data can be written to asynchronously
with a count operation.
void set_16timer1(unsigned short compareA)
{

/* Set 16bit timer1 comparison match A data */
*(volatile unsigned short *)T16P_CR1A_ADDR = compareA;

}

When compare A is rewritten by this function, a new duty ratio takes effect, beginning with the next
cycle. Because the output waveform at the time of the write is unaffected, the waveform can be
changed smoothly.

Compare data
For audio output, set compare B to 80 kHz or higher in terms of cycle and write the data to be D/A
converted directly into the compare A data buffer asynchronously every sampling period (8 to 32
kHz).

80kHz

16kHz
(Sampling rate)

Write within this period

Write 0x100
into compare A

Write 0x300
into compare A

Write 0x200
into compare A

Compare B = 0x3ff
Compare A = 0x200

Compare A changes
to 0x100

Compare A changes
to 0x300

Compare A changes
to 0x200

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

S1C33 FAMILY APPLICATION NOTE EPSON 143

5.4 Examples of Audio Output Analog Circuits

● Power amp
Shown below is the power amp circuit mounted in the S5U1C330A1D1.

0.1µ

0.1µ

(Film)

15k

+V

4
1

2

7
5

8
63

20k

LM4862

1µ
(OS)

–

+
+

Film capacitors are better than ceramic capacitors as capacitors for signal reception. Inexpensive
polyethylene film capacitors may be used without problems. Because ceramic capacitors exhibit
minute hysteresis, use of this capacitor type in a circuit in which signal passes directly may result in
signal distortion. An OS capacitor is most suitable for the 1 µF capacitor used for AC coupling apart
from GND. Although electrolytic capacitors may be used, they affect audio quality, if only slightly.
Carbon film type resistors with 5% accuracy should serve adequately.

The types of speakers generally used for audio applications are 4 Ω to 8 Ω. Commonly used for
portable equipment are 8 Ω speakers; even smaller equipment uses speakers above 8 Ω (e.g. 24 Ω).

● Low-pass filter configured with an op amp
The following shows examples of 8, 16, and 22.05 kHz sampling low-pass filters configured with one
op amp. All are audio quality-prioritized, fourth-order low-pass filters mounted in the
S5U1C330A1D1 and S5U1C330A2D1.

Fourth-order low-pass filter for 8 kHz sampling (S5U1C330A1D1)

+

–
0.01µ

3.3k
20k

0.01µ

+V
3

2

8

4

1

TLC2272

20k30k

62k 470p3300p

To eliminate 8 kHz sampling quantization noise, choose a cutoff frequency in the range 3.5 kHz to 2.7
kHz. In this filter, the cutoff frequency is set to 3.0 kHz. As the cutoff frequency rises, quantization
noise becomes audible at around 3.5 kHz (when using x2 oversampling). The first dividing resistor
lowers the 5 V input to a little above 3 V, matching it to the op amp's rated input voltage (0 to about
3.5 V). The op amp is the third-order filter, and the RC network following it is the first-order filter.
Together, they comprise the fourth-order low-pass filter.

Here, use carbon film resistors with 5% accuracy or better. Metal film resistors are ideal, but the
difference is relatively insignificant, unless minute signals are being handled.

Capacitor selection requires care. When using laminated ceramic capacitors, select a B-characteristic
type that guarantees accuracy of ±10% or better (at worst, ±20%) within the operating temperature
range. Do not use capacitors with +80% -40% Z accuracy. Be particularly leery of inexpensive 0.01 µF
capacitors, since most are Z-accurate. Low-pass filter characteristics deteriorate with lower accuracy.
Although film capacitors are suitable for analog circuits, they are not always ideal for low-cost audio
output.

For the op amp, choose a CMOS-type single-power supply with an input voltage range of 0 to 3.5 V.
An inexpensive op amp is fine. The same applies for DAC output.

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

144 EPSON S1C33 FAMILY APPLICATION NOTE

Fourth-order low-pass filter for 16 kHz sampling (S5U1C330A2D1)

+

–
0.01µ

1.6k
10k

0.01µ

+V
3

2

8

4

1

TLC2272

10k15k

30k 470p3300p

Configured in the same way as the 8 kHz sampling circuit, this filter has a cutoff frequency set to 6.1
kHz. If all resistor values are halved without changing capacitor values, the cutoff frequency doubles
while the characteristic curve remains unchanged. The same is true when all capacitor values are
halved without changing resistor values. However, because the capacitors are primarily of the E6
series and the range of capacitance values is relatively narrow, E24 series-based resistors are to be
preferred.

E6 series: Six discrete values–10, 15, 22, 33, 47, and 68 (every 1.5-fold)
E24 series: 24 discrete values– 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68,

75, 82, and 91 (every 1.1-fold)

Although more minute choices are available for some components, it is safer to design with the above-
valued resistors, which are relatively easy to obtain.

Fourth-order low-pass filter for 22.05 kHz sampling (S5U1C330A2D1)

+

–
0.01µ

1.2k
7.5k

0.01µ

+V
3

2

8

4

1

TLC2272

7.5k11k

22k 470p3300p

This circuit is the same as those described above, with the 8 kHz sampling resistance values replaced
by 8/22 values. The cutoff frequency is 8.3 kHz.

● Low-pass filter comprised of an RC network
The first-order low-pass filter consisting of R and C is configured as shown below. Its cutoff frequency
is obtained by calculating 1/ (2π × R × C).

R

C

The attenuation factor is 6 dB/oct. When frequency doubles, the waveform is halved. For this reason,
audible quantization noise cannot be entirely eliminated. Thus, two such filters are used, with one
placed above the other. The configuration creates an effective low-pass filter for cost-priority systems.
The resistors and capacitors used in this RC low-pass filter also require caution with regard to usage,
just as for op amp based fourth-order filters. Again, we recommend avoiding Z-accuracy capacitors.

Second-order RC low-pass filter for 8 kHz sampling
3.9k 3.9k

0.01µ 0.01µ

This configuration comprises a low-pass filter whose cutoff frequency is 2 kHz. However, because the
preceding and following RC networks have the same impedance, the roll-off near the cutoff frequency
is moderated by interference.

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

S1C33 FAMILY APPLICATION NOTE EPSON 145

Shown below is a circuit with this part improved (used in the S5U1C330A1D1).

390 3.9k

0.1µ 0.01µ

Because the impedance in the following stage differs by a factor of 10 from the preceding stage, the
attenuation characteristics near the cutoff frequency are quite sharp. However, since the resistance in
the preceding stage is small, a current of about 2 mA (when operating at 5 V) flows into it from the
S1C33209 chip. When the resistance is 3.9 kΩ, this current is around 0.2 mA. Note that the PWM
output characteristics are slightly bowl-shaped, a shape determined by the resistance value in the
preceding stage. For example, the output characteristics are bowl-shaped by about 40 mV for 390 Ω,
and by about 4 mV for 3.9 kΩ. This affects the distortion factor slightly.

When connecting to the DAC of the S1C33104, change the 390 Ω resistor in the preceding stage to 150
Ω, since the DAC's output section contains an internal resistor of approximately 250 Ω in series.

The impedance in the following stage must be lower than that of the power amp's high-pass filter. To
prevent impedance interference, this impedance value must be 1/4 or less — preferably 1/10 or less
— that of the latter. A resistance value of 3.9 kΩ was determined, assuming a power amp input
impedance of 15 kΩ or greater. Because large impedances greater than 1/4 of the power amp value
affect the characteristics of both, overall design considerations must also account for the design of the
power amp.

Of the two circuits above, we recommend the first example (3.9 kΩ + 0.01 µF stacked two-high). If a
greater emphasis on high tones is desired, try changing 0.01 µF to 6800 pF. Note that quantization
noise will increase.

When using a two-high stack of RC networks, take care that the impedance of the following stage is
never lower than that of the preceding stage. Characteristics may otherwise become degraded to the
point of unusability.

RC low-pass filter for 16 kHz sampling

3.9k 3.9k

4700p 4700p

With this circuit, the 0.01 µF capacitor for 8 kHz sampling is nearly halved to 4700 pF. The cutoff
frequency is approximately 4 kHz. If a greater emphasis on high tones is desired, change 4700 pF to
3300 pF. Note that quantization noise will increase.

RC low-pass filter for 22.05 kHz sampling

3.9k 3.9k

3300p 3300p

With this circuit, the 0.01 µF capacitor for 8 kHz sampling is nearly divided by 3 to 3300 pF. The cutoff
frequency is approximately 6 kHz. If a greater emphasis on high tones is desired, change 3300 pF to
2200 pF. Note that quantization noise will increase.

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

146 EPSON S1C33 FAMILY APPLICATION NOTE

● Driving the speaker with a transistor
When using transistors to drive the speaker, design the low-pass filter and power amp unit side by
side. The third-order low-pass filter is adopted here.

Transistor amp circuit for 8 kHz sampling

300 *
(Used for

PWM output)

∗ 47Ω for DAC output

+V

100

300 300 1000p

2SD2474 (Matsushita)
or

2SD2153 (Rohm)

0.1µ

0.22µ

0.1µ 0.1µ

Choose a transistor of 500 or larger hfe (current amplification factor). Because the current is amplified,
the low-pass filter unit must have low impedance. An impedance of about 1 kΩ from the D/A con-
verter unit to the transistor results in a good balance. Larger impedances values rapidly reduce sound
volume, so that a small increase in impedance will result in a dramatic drop in sound volume. Con-
versely, smaller impedances make circuit design difficult, including selection of capacitor capacitance
current values. Nor will this noticeably raise sound volumes. In the above example, the cutoff fre-
quency is approximately 2.5 kHz.

When entering from the DAC of the S1C33104, change the 300 Ω resistor in the preceding stage to 47
Ω (300 Ω minus the DAC's internal resistor of about 250 Ω). Note that the 0.1 µF capacitor connected
to +V is used to decouple the power supply, and that the 1000 pF is used to prevent oscillation.
Without these capacitors, the transistor output may oscillate. The 100 Ω variable resistor in front of the
speaker is used to control the volume.

Transistor amp circuit for 16 kHz sampling

300 *
(Used for

PWM output)

∗ 47Ω for DAC output

+V

100

300 300 1000p

2SD2153

0.1µ

0.047µ 0.047µ

0.1µ

The low-pass filter's cutoff frequency is about 5 kHz.

Transistor amp circuit for 22.05 kHz sampling

300 *
(Used for

PWM output)

∗ 47Ω for DAC output

+V

100

300 300 1000p

2SD2153

0.1µ

0.033µ 0.033µ

0.068µ

The low-pass filter cutoff frequency is about 8 kHz.

The low-pass filters used here can may be used in combination with the S1C33209 PWM or S1C33104
DAC.

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

S1C33 FAMILY APPLICATION NOTE EPSON 147

5.5 Example of a Sound Input Analog Circuit
This section explains how to enter sound using an A/D converter.

Filter unitMicrophone
amp unit

Electrostatic
microphone

unit
ADC

Although the specific configuration of the sound input circuit depends on the input source, we'll examine
it separately in the blocks shown above (configuration of the S5U1C330A1D1 circuit).

+

–
0.01µ

68µ

5.1k
20k

0.01µ

0.01µ

+V

+V

+V

5

6

8

4

7

TLC2272

+

–

+V
3

2

8

4

1

TLC2272

20k39k

390

5.6k 470k

470k

330p2200p39k
0.01µ

3300p

1500p

+V

470k

470k

+V

480k

480k

+

1µ
(OS)

1k

+

500k24k

22p

+

–

+V

ADC

5

6

8

4

7

TLC2272
1µ

(OS)

10k

+

100k20k

220p

Electrostatic microphone unit Microphone amp unit Filter unit

● Electrostatic microphone unit

68µ

0.01µ

+V

+V

390

5.6k 470k

470k

+

Electrostatic microphone and AC coupling
The manufacturer's original recommendation for the 5.6 kΩ resistor inserted in the line-feed power to
the electrostatic microphone was originally 1.5 kΩ. This is because the potential difference here
constitutes the input signal level; we therefore increased the resistor value to reduce the burden on the
microphone amp in the next stage, producing a 3.7-fold gain. This also reduces current consumption.
However, an excessively large resistor value reduces current more than necessary, destabilizing the
electrostatic microphone itself. The feasible limit may be around 4 times the original value. We use
metal film resistors here, since minute signals of a magnitude less than mV are being handled.
The noise appearing here, including power supply noise, is amplified in direct proportion to the
amount of gain here and in the next stage. Thus, noise must be smaller here than at any other point in
the circuit. To this end, the analog power supply has a first-order low-pass filter with a cutoff fre-
quency of 5 Hz comprised of 390 Ω and 68 µF, which cuts voice band noise over a wide frequency
range.

68µ

390 5.6k

+

Analog power supply Input

For 68 µF, an electrolytic capacitor may be used without problems.

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

148 EPSON S1C33 FAMILY APPLICATION NOTE

The 0.01 µF capacitor and 470 kΩ resistors, one to GND and one to the power supply, are used for AC
coupling to 1/2 power supply voltage, and to cut the DC component as a first-order high-pass filter.
The cutoff frequency is approximately 70 Hz, below which frequencies are attenuated.

High-pass filter equivalent circuit
0.01µ

235k

2.5V

For resistors used for AC coupling, select ones providing 1% accuracy or better. Unless the exact
middle point is set here, large-scale amplification by the microphone amp may cause the signal to
exceed the VDD–GND range, producing clipping. Depending on the amplification factor, an accuracy
of 0.5% may be required. Because minute signals pass through the high-pass filtering capacitor, use a
film capacitor (polyester). Ceramic or other types of capacitors may degrade audio quality.

● Microphone amp unit

+

–

+V
3

2

8

4

1

TLC2272
1µ

(OS)

1k

+

500k24k

22p

The gain for this AC amplifier may be adjusted in the range of 24-fold to 524-fold using a variable
resistor. Combined with the 3.7-fold gain in the electrostatic microphone unit, this amounts to a gain
of 90-fold to 2,000-fold. However, because 524-fold is used for experimental purposes, the amp as
installed in actual products may need to be configured in two stages, or receive other consideration.
Note that with the same gain, noise is smaller for amplification in one stage than for amplification in
two stages.

Adjust the gain in the range 24 k/1 k = 24-fold to (24 k + 500 k)/1 k = 524-fold using the 500 kΩ
variable resistor. This variable resistor may be preselected from the readily-available values 1, 2, or 5.
The 22 pF capacitor connected in parallel with 24 kΩ and 500 kΩ is a low-pass filter that lowers the
gain in highs. However, to prevent oscillation of the op amp, its cutoff frequency is high, varying with
the variable resistor value. Such feedback loop low-pass filters do little to prevent oscillation. It is
better to lower the gain with the RC low-pass filter at the input, since the cutoff frequency in this case
is fixed and high oscillation prevention effects are already present. But because the input stage is
already AC-coupled, we gave up the idea of using an RC low-pass filter.

The 1 kΩ and 1 µF comprise the first-order high-pass filter with cutoff of 150 Hz. For low-cost systems
discussed in this manual, 50 or 60 Hz — including ham noise and low frequencies — results in
various problems. Along with AC coupling in the preceding stage, this filter reduces these noise
sources to a minimum. The remaining noise is eliminated by a filter in the following stage.

● Filter unit

Fourth-order low-pass filter

+

–
0.01µ

5.1k
20k

0.01µ

+V
5

6

8

4

7

TLC2272

20k39k

330p2200p39k

Mounted on the S5U1C330A1D1 board is a microphone low-pass filter with 3.5 kHz cutoff, as shown
above. This filter cuts unwanted high-frequency components, improving perceived sound quality. The
effect is not dramatic, and the filter may be omitted. Here, the amplitude is halved with a dividing
resistor, as matched to the op amp. This is divided by considering the gain of the AC amp in the next
stage.

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

S1C33 FAMILY APPLICATION NOTE EPSON 149

AC amp

0.01µ

+V

470k

470k

+

–

+V
5

6

8

4

7

TLC2272
1µ

(OS)

10k

+

100k20k

220p

This circuit is a 2-fold to 20-fold AC amp. The 0.01 µF and 470 kΩ comprise the first-order high-pass
filter with 70 Hz cutoff, and the 10 kΩ and 1 µF comprise a 15 Hz, first-order high-pass filter, while the
20 kΩ + 100 kΩ (20–120 kΩ) and 220 pF comprise a 50 kHz–10 kHz first-order low-pass filter. If
amplification up to high frequencies is desired, reduce the 220 pF. The cutoff frequency increases in
inverse proportion to this capacitance.

High-pass filter

3300p

1500p

+V

480k

480k

Here, a high-pass filter is used for AC coupling to 1/2 power supply voltage and to cut low tones that
adversely affect sound compression. The relationship between capacitor capacitances and cutoff
frequencies is shown below.
4800 pF: 250 Hz cutoff
3300 pF: 300 Hz cutoff
1500 pF: 500 Hz cutoff

Although the default capacitance for the S5U1C330A1D1 is 4800 pF, other capacitances may be tried,
depending on the usage environment. For example, the VSX sound compression included in the
S5U1C330V1S sound compression/expansion middleware may yield better results at 500 Hz, since it
is susceptible to DC noise.

● About the analog power supply
Using the same power supply in both analog and digital systems leaves systems susceptible to noise
and other problems. Use dedicated batteries and linear regulators in the analog system, separate from
the digital system. Dividing the analog power supply between heavy load blocks (e.g. speaker) and
minute voltage blocks (microphone) will prove more effective. The use of multiple regulators is ideal.
A simpler alternative, one-point grounding (connecting to GND at one point centering around the
power supply), helps eliminate common impedance, which is also beneficial.

Digital systemPositive
power
supply Analog power system

Comprises common impedance,
so make as short as possible.

Analog microphone system

AC noise is absorbed by
the decoupling capacitor in each

Digital systemGND

Analog power system

Analog microphone system

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

150 EPSON S1C33 FAMILY APPLICATION NOTE

Microcomputer programs cause loads to fluctuate periodically, which as power supply fluctuations
affect microphone input. To absorb these fluctuations, separate the regulator. Or better, insert a low-
pass filter with several Hz to 10 Hz cutoff in the power supply for the electrostatic microphone, as
with the S5U1C330A1D1.

68µ

+V

390

5.6k
+

Due to their noise, even linear regulators (especially of the low-drop type) affect microphone input.
For the sake of safety, we strongly recommend attaching this low-pass filter to the microphone input
circuit.

For switching-mode power supplies as used in the S5U1C33209D1, use an OS capacitor with low-ESR
or an SP cap for the output capacitor to minimize ripples. Never use electrolytic capacitors; they
increase noise. In S5U1C33209D1 + S5U1C330A1D1 systems, noise is suppressed with only the low-
pass filter for the microphone power supply, based on various characteristics measurements. How-
ever, this solution is imperfect. The AC coupling part and op amp power supply issue remain to be
resolved. We recommend using linear regulators, which are less problematic than switching regula-
tors. When using switching regulators, be sure to verify usefulness with the actual product, and take
various noise preventive measures.

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

S1C33 FAMILY APPLICATION NOTE EPSON 151

5.6 15-bit D/A Conversion by PWM
The S1C33209 is able to support 8 kHz to 48 kHz sampling frequencies up to 15-bit precision, thanks to
Seiko Epson's exclusive hybrid PWM technology. This makes possible high audio quality approaching
CD quality, at extremely low cost.

The hybrid PWM technology is implemented by a combination of the following three techniques:

(1) High-resolution PWM
By controlling PWM output in units of half-clock periods as described in Section 5.3, this technique
can produce speech/music output of up to 10-bit precision in a single channel.

(2) Dual PWM
Through a synthesis of two channels of high-resolution PWM, this technique can produce speech/
music output with a precision of up to 15 bits.

(3) Soft adjust PWM
During PWM output, this technique deploys corrective software processing to produce high-accuracy
output, with a linearity error as small as 0.01%.

This section discusses dual PWM and soft-adjust PWM.

● Dual PWM

Basic principle
Dual PWM is a technique used to extend bit precision by forwarding the same output data from two
channels in high-resolution PWM mode, then synthesizing them with external resistors. We recom-
mend synthesizing the main and sub channels at a ratio of 1 to 64, and directly synthesizing raw
PWM waveforms before passing them through the low-pass filter.

7.5k

480k

High-resolution PWM main channel output

High-resolution PWM sub channel output

To low-pass filter

480 / 7.5 = 64.0

High-resolution PWM provides extremely high differentiation accuracy, with an error of 1/100 LSB or
less when actually measured. (Use PLL at x2 or better. Using x1 OSC3 directly as is destroys the duty
ratio, making it impossible to obtain this level of differentiation accuracy. For 1-channel high-resolu-
tion PWM, x1 may be used without problems.)

By adding the sub PWM divided exactly by 64 to the main PWM, we can add a precision of 6 bits to
the bit precision of the main channel alone. For the main channel, use a carrier frequency of 160 kHz
or higher for noise reduction (320 kHz is the upper limit; do not use any carrier frequency higher than
that). As a result, the main channel is 9 bits precise (when operating at 40 MHz or better). Adding 6
sub-channel bits improves overall precision to 15 bits.

Resistance accuracy
The accuracy of resistors configuring the 1:64 ratio affects the accuracy of the D/A conversion. If the
resistors are exactly 480.0 kΩ and 7.5 kΩ, no problem arise. However, for reasons involving manufac-
turing cost, the resistors used in mass production have ±1% or ±0.5% errors. In addition, 480 kΩ
resistors are difficult to obtain; it is not available in the E24 series. Two resistors, 470 kΩ + 10 kΩ, may
be substituted. Most affected by this error is the change part of the main channel. If the sub channel is
exactly 1/64 of the main channel, the sub channel changes from 0x3f to 0x0 in the main channel's
change part. An error in the combined resistance causes this relative position to drift. The differential
error in only this part is as follows:
Resistor with 0.1% error: 15 bits ±1 LSB or less
Resistor with 0.5% error: 14 bits ±1 LSB or less
Resistor with 1% error: 13 bits ±0.7 LSB or less

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

152 EPSON S1C33 FAMILY APPLICATION NOTE

n+3n+2n+1n

High-resolution PWM
Main channel output

A change in the 1:64 ratio
results in an error in the main
channel change part.

For the error to fall within ±1 LSB,
the ratio must be at least
±1/64 = ±1.5% accurate.

High-resolution PWM
Sub channel output
(main channel × 1/64)

Linearity error of differentiation
is ±1/100 LSB for both main and sub

0

0x3f
Added

Since a differentiation accuracy of 15 bits ±0.5 LSB more or less applies to 63/64 patterns in which the
sub channel changes to other values, audio quality is not degraded as much by the error. Neverthe-
less, we recommend using resistors with small error values, about 0.5% accuracy, if possible. At worst,
try using resistors with 1% error. Do not use resistors with 5% error values.
The two to three resistors used to combine resistance are the only resistors requiring high accuracy.
Resistors with 5% error or so may be used for the low-pass filter in the following stage.

● Circuit example (S5U1C330A3D1)

Low-pass filter for 32 kHz or higher sampling

Fourth-order op amp block

+

–
0.01µ

820
5.1k

0.01µ

+V

TLC2272

5.1k

7.5k(±0.5%)
16k 470p3300p

PWM sub channel

PWM main channel

10k(±1%)470k(±0.5%)

Third-order RC network
3.9k 3.9k

1000p1000p 1000p
3.9k(±0.5%)

PWM sub channel

PWM main channel

10k(±1%)240k(±0.5%)

Before the ordinary low-pass filter, add the first-stage synthesizing resistors and connect two-channel
PWM outputs. Make sure the ratio of the synthesizing resistors is as close to 64.0-fold as possible (by
calculation, within ±0.2% error, from 63.87-fold to 64.13-fold). Use resistance values in the E24 series
that are readily available. For difficult to obtain resistance values, use two resistors in pairs as an
alternative. Use high-accuracy (0.5% to 1%) resistors for the synthesizing resistors. The resistance
values in the above example fall within ±0.2%, as follows:
480 k/7.5 k = 64.0 (480k = 470 k + 10 k)
250 k/3.9 k = 64.10 (250k = 240 k + 10 k)

With an emphasis on the attenuation factor, the RC filter is stacked three-high. Although the differ-
ence is infinitesimal for 32 kHz sampling, a fourth-order filter using an op amp is more effective.

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

S1C33 FAMILY APPLICATION NOTE EPSON 153

For the circuits shown below, capacitor values have been changed to adjust the cutoff frequency,
making the circuits useful for 22.05 kHz sampling and 16 kHz sampling, respectively. In either case,
the ratio of the first-stage synthesizing resistors is 1:64.

Low-pass filter for 22.05 kHz sampling

Fourth-order op amp method

+

–
0.015µ

820
5.1k

0.015µ

+V
3

2

8

4

1

TLC2272

5.1k

16k 680p4700p
7.5k(±0.5%)

PWM sub channel

PWM main channel

10k(±1%)470k(±0.5%)

Third-order RC network method
3.9k 3.9k

1500p1500p 1500p
3.9k(±0.5%)

PWM sub channel

PWM main channel

10k(±1%)240k(±0.5%)

Low-pass filter for 16 kHz sampling

Fourth-order op amp method

+

–
0.022µ

820
5.1k

0.022µ

+V
3

2

8

4

1

TLC2272

5.1k

16k 1000p6600p
7.5k(±0.5%)

PWM sub channel

PWM main channel

10k(±1%)470k(±0.5%)

Third-order RC network method
3.9k 3.9k

2200p2200p 2200p
3.9k(±0.5%)

PWM sub channel

PWM main channel

10k(±1%)240k(±0.5%)

● Linearity correction by software
High-resolution PWM technology offers a differentiation accuracy of 1/100 LSB or better (actual
measured value), which may be said to approach ultimate accuracy. The linearity error is relatively
good, with bowl-shaped characteristics. This is because PWM outputs have minute differences in
impedance between high and low levels. If the difference between the low-pass filter's first-stage
resistance and the S1C chip's internal equivalent resistance is known, the drift can be theoretically
calculated. For example, if the first-stage resistance is 3.9 kΩ when the PWM output voltages are 0.0 V
and 5.0 V, the middle part of the output curve deflects 2.5 mV downward. The deflection is 1.3 mV for
7.5 kΩ, and 25 mV for 390 Ω.

5V

0V
0x0 0x200

2.5mVOutput
voltage

Output data
0x3ff

This deflection is corrected using a table like the one (for 3.9 kΩ) shown below.

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

154 EPSON S1C33 FAMILY APPLICATION NOTE

Table example
const unsigned char ucAdj18 [] = { // PWM adjust for 3.9Kohm with 18bit precision

0x4, // 0
0x8, // 1
0xc, // 2
0x10, // 3
0x14, // 4
0x17, // 5
0x1b, // 6
0x1f, // 7
0x22, // 8
0x26, // 9
0x29, // a
0x2d, // b
0x30, // c
0x33, // d
0x36, // e
0x39, // f
0x3c, // 10
0x3f, // 11
0x42, // 12
0x45, // 13
0x48, // 14
0x4b, // 15
0x4d, // 16
0x50, // 17
0x52, // 18
0x55, // 19
0x57, // 1a
0x5a, // 1b
0x5c, // 1c
0x5e, // 1d
0x60, // 1e
0x62, // 1f
0x64, // 20
0x66, // 21
0x68, // 22
0x6a, // 23
0x6c, // 24
0x6d, // 25
0x6f, // 26
0x71, // 27
0x72, // 28
0x74, // 29
0x75, // 2a
0x76, // 2b
0x77, // 2c
0x79, // 2d
0x7a, // 2e
0x7b, // 2f
0x7c, // 30
0x7d, // 31
0x7e, // 32
0x7e, // 33
0x7f, // 34
0x80, // 35
0x80, // 36
0x81, // 37
0x81, // 38
0x82, // 39
0x82, // 3a
0x83, // 3b
0x83, // 3c
0x83, // 3d
0x83, // 3e
0x83, // 3f
0x83, // 40
0x83, // 41
0x83, // 42
0x83, // 43
0x82, // 44

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

S1C33 FAMILY APPLICATION NOTE EPSON 155

0x82, // 45
0x82, // 46
0x81, // 47
0x80, // 48
0x80, // 49
0x7f, // 4a
0x7e, // 4b
0x7e, // 4c
0x7d, // 4d
0x7c, // 4e
0x7b, // 4f
0x7a, // 50
0x79, // 51
0x78, // 52
0x76, // 53
0x75, // 54
0x74, // 55
0x72, // 56
0x71, // 57
0x6f, // 58
0x6d, // 59
0x6c, // 5a
0x6a, // 5b
0x68, // 5c
0x66, // 5d
0x64, // 5e
0x62, // 5f
0x60, // 60
0x5e, // 61
0x5c, // 62
0x5a, // 63
0x57, // 64
0x55, // 65
0x52, // 66
0x50, // 67
0x4d, // 68
0x4b, // 69
0x48, // 6a
0x45, // 6b
0x42, // 6c
0x3f, // 6d
0x3c, // 6e
0x39, // 6f
0x36, // 70
0x33, // 71
0x30, // 72
0x2d, // 73
0x29, // 74
0x26, // 75
0x22, // 76
0x1f, // 77
0x1b, // 78
0x17, // 79
0x14, // 7a
0x10, // 7b
0xc, // 7c
0x8, // 7d
0x4, // 7e
0x0, // 7f

};

The values in this table have been created as 18-bit precision data by subtracting correction values from
7 high-order bits, so that the values are ultimately added after right-shifting three bits before use for
correction. By this correction, the linearity error can be suppressed to about ±0.2 mV on average, or
down to about ±1 mV even for large errors. An error of ±1 mV is equivalent to 12 bits ±1 LSB for 5 V.

Unless corrected, the error appears in the waveform as distortion. But errors of up to about 2.5 mV
produce no perceptible differences to human ears, and generally does not require correction. In
speech middleware, corrective processing is omitted to alleviate software burdens.

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

156 EPSON S1C33 FAMILY APPLICATION NOTE

5.7 Melody Output using a Piezoelectric Buzzer
In this section, we discuss producing melody output using PWM and connecting a piezoelectric buzzer.

● PWM and melody
Human ears can discriminate tone on the musical scale by sound frequency. For example, a 131 Hz
tone is heard as do (C3). A 262 Hz tone is heard as a do (C4) one-octave higher, while a 65.5 Hz tone is
heard as a do (C2) one-octave lower. When one octave (up to 2-fold frequency) is equally divided by
12, with frequency increased by about 6% for each, musical intervals are recognized as being raised by
a halftone at a time. The musical scale is expressed in this way.

Seiko Epson's S5U1C331M2S middleware and general melody ICs use PWM (square) waveforms to
express these tones. Note that waveforms with perfect 50% duty cycles bear three-fold harmonics,
such as 3 times and 9 times the fundamental frequency, providing fairly extensive high-pitched
components in addition to the actual musical scale.

● 1-channel output
131Hz

Do (C3)

1k

Piezoelectric buzzer

TM0

S1C33

100k

● 2-channel synthesis output

1k

1k Piezoelectric buzzer

TM0

TM1

S1C33

100k

● Differential output

1k

1k

Piezoelectric buzzer

TM0

TM1

S1C33

100k

● Differential output, 2-channel synthesis output

1k
Piezoelectric buzzer

TM2

1k

1k

TM0

TM1

1k
TM3

S1C33

100k

The output waveform of 131 Hz produces a sound
corresponding to do (C).

One-channel output drives a piezoelectric buzzer, as
shown here.

Two or more channels can be synthesized, as shown
here.

Sound volume can be increased through differential
output, using inverted PWM on one channel.

Two-channel synthesis and differential output can be
used in combination using two differential outputs.

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

S1C33 FAMILY APPLICATION NOTE EPSON 157

5.8 <Reference Data> Characteristic Graphs

● RC second-order low-pass filter frequency response (for 8 kHz sampling)

(1) fc = 2.5 kHz
390

(150Ω for DAC output)

3.9k

0.1µ 0.01µ
+

–

IN OUT

6.00

-6.00

-18.00

-30.00

-42.00

-54.00
100 1k 10k 100k

Frequency [Hz]

G
ai

n
[d

B
]

Ta = 27°C

fc = 2.5kHz

-14dB

-28dB

(2) fc = 1.7 kHz
3.9k 3.9k

0.01µ 0.01µ
+

–

IN OUT

6.00

-6.00

-18.00

-30.00

-42.00

-54.00
10 100 1k 10k 100k

Frequency [Hz]

G
ai

n
[d

B
]

Ta = 27°C

fc = 1.7kHz

-16dB

-29dB

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

158 EPSON S1C33 FAMILY APPLICATION NOTE

● Transistor third-order low-pass filter frequency response (for 8 kHz sampling)

fc = 2.5 kHz

+V

300

8

300 300
2SD2153

0.22µ

0.1µ 0.1µ

(50Ω for DAC output)

+

–

IN

OUT

-6.00

-18.00

-30.00

-42.00

-54.00

-66.00
100 1k 10k 100k

Frequency [Hz]

G
ai

n
[d

B
]

Ta = 27°C

-16dB

-34dB

fc = 2.5kHz

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

S1C33 FAMILY APPLICATION NOTE EPSON 159

● Op amp fourth-order low-pass filter frequency response (for 8 kHz sampling)

fc = 3 kHz

+

–
0.01µ 100k

3.3k
20k

0.01µ

+V

1

TLC2272

20k30k

62k 470p3300p
+

–

IN
OUT

6.00

-6.00

-18.00

-30.00

-42.00

-54.00
100 1k 10k 100k

Frequency [Hz]

G
ai

n
[d

B
]

Ta = 27°C

fc = 3.0kHz

-31dB

● RC third-order low-pass filter frequency response (for 16 kHz sampling)

fc = 3.7 kHz
3.9k 3.9k

2200p 2200p

3.9k

2200p
+

–

IN OUT

6.00

-6.00

-18.00

-30.00

-42.00

-54.00
100 1k 10k 100k

Frequency [Hz]

G
ai

n
[d

B
]

Ta = 27°C

fc = 3.7kHz

-14dB

5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM

160 EPSON S1C33 FAMILY APPLICATION NOTE

● AC amp high-pass filter frequency response (for 8 kHz sampling)

0.01µ
C

+V

480k

480k

+V

480k

480k

+

–

+V
ADC

TLC2272
1µ

1k

+

R

(1) R = 24kΩ, C = 0.0048µF (fc = 250Hz)
(2) R = 24kΩ, C = 0.0015µF (fc = 500Hz)

22p

+

–

IN 20k

20p

OUT

(1) fc = 250 Hz

54.00

42.00

30.00

18.00

6.00

-6.00
10 100 1k 10k 100k

Frequency [Hz]

G
ai

n
[d

B
]

Ta = 27°C

fc = 250Hz

(2) fc = 500 Hz

54.00

42.00

30.00

18.00

6.00

-6.00
10 100 1k 10k 100k

Frequency [Hz]

G
ai

n
[d

B
]

Ta = 27°C

fc = 500Hz

AMERICA

EPSON ELECTRONICS AMERICA, INC.

- HEADQUARTERS -
150 River Oaks Parkway
San Jose, CA 95134, U.S.A.
Phone: +1-408-922-0200 Fax: +1-408-922-0238

- SALES OFFICES -

West
1960 E. Grand Avenue
EI Segundo, CA 90245, U.S.A.
Phone: +1-310-955-5300 Fax: +1-310-955-5400

Central
101 Virginia Street, Suite 290
Crystal Lake, IL 60014, U.S.A.
Phone: +1-815-455-7630 Fax: +1-815-455-7633

Northeast
301 Edgewater Place, Suite 120
Wakefield, MA 01880, U.S.A.
Phone: +1-781-246-3600 Fax: +1-781-246-5443

Southeast
3010 Royal Blvd. South, Suite 170
Alpharetta, GA 30005, U.S.A.
Phone: +1-877-EEA-0020 Fax: +1-770-777-2637

EUROPE

EPSON EUROPE ELECTRONICS GmbH

- HEADQUARTERS -
Riesstrasse 15
80992 Munich, GERMANY
Phone: +49-(0)89-14005-0 Fax: +49-(0)89-14005-110

DÜSSELDORF BRANCH OFFICE
Altstadtstrasse 176
51379 Leverkusen, GERMANY
Phone: +49-(0)2171-5045-0 Fax: +49-(0)2171-5045-10

UK & IRELAND BRANCH OFFICE
Unit 2.4, Doncastle House, Doncastle Road
Bracknell, Berkshire RG12 8PE, ENGLAND
Phone: +44-(0)1344-381700 Fax: +44-(0)1344-381701

FRENCH BRANCH OFFICE
1 Avenue de l' Atlantique, LP 915 Les Conquerants
Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE
Phone: +33-(0)1-64862350 Fax: +33-(0)1-64862355

BARCELONA BRANCH OFFICE
Barcelona Design Center
Edificio Testa, Avda. Alcalde Barrils num. 64-68
E-08190 Sant Cugat del Vallès, SPAIN
Phone: +34-93-544-2490 Fax: +34-93-544-2491

Scotland Design Center
Integration House, The Alba Campus
Livingston West Lothian, EH54 7EG, SCOTLAND
Phone: +44-1506-605040 Fax: +44-1506-605041

ASIA

EPSON (CHINA) CO., LTD.
23F, Beijing Silver Tower 2# North RD DongSanHuan
ChaoYang District, Beijing, CHINA
Phone: 64106655 Fax: 64107319

SHANGHAI BRANCH
7F, High-Tech Bldg., 900, Yishan Road
Shanghai 200233, CHINA
Phone: 86-21-5423-5577 Fax: 86-21-5423-4677

EPSON HONG KONG LTD.
20/F., Harbour Centre, 25 Harbour Road
Wanchai, Hong Kong
Phone: +852-2585-4600 Fax: +852-2827-4346
Telex: 65542 EPSCO HX

EPSON TAIWAN TECHNOLOGY & TRADING LTD.
14F, No. 7, Song Ren Road, Taipei 110
Phone: 02-8786-6688 Fax: 02-8786-6660

HSINCHU OFFICE
No. 99, Jiangong Rd., Hsinchu City 300
Phone: +886-3-573-9900 Fax: +886-3-573-9169

EPSON SINGAPORE PTE., LTD.
No. 1 Temasek Avenue, #36-00
Millenia Tower, SINGAPORE 039192
Phone: +65-6337-7911 Fax: +65-6334-2716

SEIKO EPSON CORPORATION KOREA OFFICE
50F, KLI 63 Bldg., 60 Yoido-dong
Youngdeungpo-Ku, Seoul, 150-763, KOREA
Phone: 02-784-6027 Fax: 02-767-3677

GUMI OFFICE
6F, Good Morning Securities Bldg.
56 Songjeong-Dong, Gumi-City, 730-090, KOREA
Phone: 054-454-6027 Fax: 054-454-6093

SEIKO EPSON CORPORATION
ELECTRONIC DEVICES MARKETING DIVISION

ED International Marketing Department
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5117

International Sales Operations

EPSON Electronic Devices Website

ELECTRONIC DEVICES MARKETING DIVISION

http://www.epsondevice.com

Application Note for Standard Core
(S5U1C33001C)

S1C33 Family

Issue February, 2004
Printed in Japan AL

Document code: 404862100

	1 ABOUT THE S1C33000 CPU CORE
	1.1 Outline
	1.2 Memory Map
	1.3 Trap Table
	1.4 CPU Registers
	1.5 Instruction Set Features
	1.6 Instruction Execution Speed
	1.7 Multiplier/Accumulator Functions
	1.8 Instruction Set List

	2 WRITING PROGRAMS FOR THE S1C33
	2.1 Vector Table and Boot Routine
	2.2 Interrupt Handling Routines
	2.3 C and Assembler Mixed Programming
	2.4 Tools and Files for Assembly
	2.5 Data Areas and Data-Area Pointers
	2.5.1 Types of Data Areas
	2.5.2 Sections
	2.5.3 Data-Area Pointers
	2.5.4 Specifying Compiler Options
	2.5.5 Method for Locating Data in the Data Areas
	2.5.6 Method for Setting Data-Area Pointers
	2.5.7 G Data Area

	2.6 C and Code Optimization
	2.7 Mapping by Linker
	2.8 Libraries
	2.8.1 ANSI Library (libc.a)
	2.8.2 Emulation Libraries (libgcc.a, libgccP.a)
	2.8.3 Notes on Using Libraries in Advanced Macros
	2.8.4 Interrupt Mask Cycles in Emulation Libraries
	2.8.5 Precautions to Be Taken When Adding a Library

	2.9 Differences between the S5U1C33001C and the S5U1C33000C
	2.10 Transporting the S5U1C33000C Assets
	2.10.1 Transporting Makefiles (*.mak)
	2.10.2 Initialize Processing
	2.10.3 Transporting C Source Files (*.c)
	2.10.4 Transporting the Assembler Source Files (*.s)
	2.10.5 Transporting Linker Command Files (*.cm)
	2.10.6 Transporting Debugger Parameter Files (*.par)
	2.10.7 Differences in Structure between srf33 Object Files (S5U1C33000C) and elf Object Files (S5U1C33001C)

	2.11 Precautions on Use of the S5U1C33001C Tool

	3 PROGRAMMING THE S1C33 PERIPHERAL FUNCTIONS
	3.1 Setting Up BCU
	3.2 Setting Up 8-bit Timer
	3.3 Setting Up 16-bit Timer
	3.4 Setting Up Serial Interface
	3.5 Setting Up A/D Converter
	3.6 Setting Up IDMA
	3.7 Setting Up HSDMA
	3.8 Clock Settings
	3.9 SLEEP
	3.10 SDRAM Controller

	4 THE BASIC S1C33 CHIP BOARD CIRCUIT
	4.1 Power Supply
	4.2 Oscillation Circuit
	4.3 Reset Circuit
	4.4 Connecting ROM
	4.5 Connecting Flash Memory
	4.6 Connecting SRAM
	4.7 Connecting DRAM
	4.8 Connecting 5 V ROM and 3.3 V Bus
	4.9 Ports
	4.10 Connections for Debugging

	5 SPEAKER OUTPUT AND EXTERNAL ANALOG CIRCUIT USING FINE PWM
	5.1 General Sound Output Circuits Based on Microcomputer
	5.1.1 D/A Converter Unit
	5.1.2 Low-pass Filter Unit
	5.1.3 Power Amp and Speaker Unit

	5.2 About Sampling Frequency and Bit Precision vs. Audio Quality
	5.3 10-bit D/A Conversion by PWM
	5.4 Examples of Audio Output Analog Circuits
	5.5 Example of a Sound Input Analog Circuit
	5.6 15-bit D/A Conversion by PWM
	5.7 Melody Output using a Piezoelectric Buzzer
	5.8 <Reference Data> Characteristic Graphs

