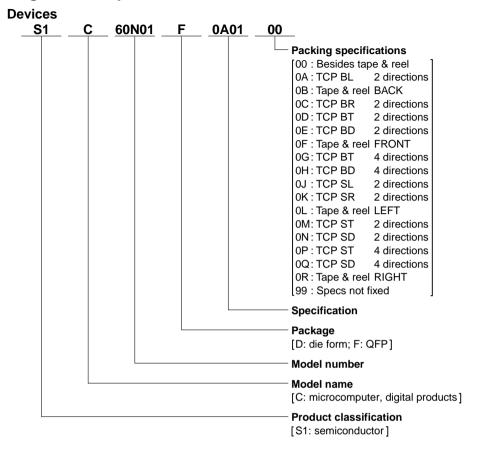
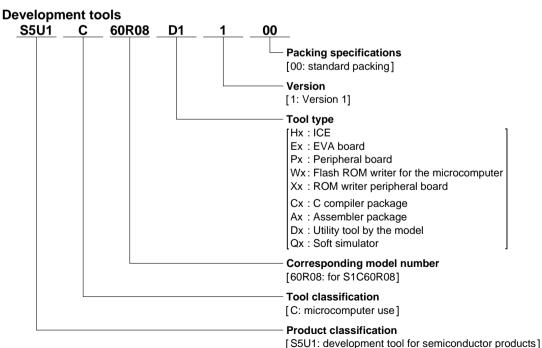


CMOS 4-BIT SINGLE CHIP MICROCOMPUTER S1C60N05 Technical Manual S1C60N05 Technical Hardware





Revisions and Additions for this manual

Chapter	Section	Page	Item	Contents
Appendices	Appendix B	90	A/D converter error factors	Figure B.4 and the explanation were added.
	Appendix C	93	Ratings	The table was revised.
			External dimension	The figure was revised.

Configuration of product number

CONTENTS

CHAPTER 1	INTRODUCTION 1				
	1.1	Configuration	1		
	1.2	Features	2		
	1.3	Block Diagram	3		
	1.4	Pin Layout Diagram	4		
	1.5	Pin Description	5		
CHAPTER 2	POV	VER SUPPLY AND INITIAL RESET	6		
	2.1	Power Supply	6		
	2.2	Initial Reset	9 9 9		
	2.3	Test Pin (TEST)	10		
CHAPTER 3	CPU	, ROM, RAM	11		
	3.1	CPU	11		
	3.2	ROM	12		
	3.3	RAM	12		
CHAPTER 4	PERI	PHERAL CIRCUITS AND OPERATION	13		
	4.1	Memory Map	13		
	4.2	Oscillation Circuit Crystal oscillation circuit CR oscillation circuit	16		

4.3	Input Ports (K00–K03)	
	Configuration of input ports	18
	Input comparison registers and interrupt function	19
	Mask option	20
	Control of input ports	20
4.4	Output Ports (R00–R03)	22
	Configuration of output ports	22
	Mask option	23
	Control of output ports	25
4.5	I/O Ports (P00–P03)	28
	Configuration of I/O ports	
	I/O control register and I/O mode	
	Mask option	
	Control of I/O ports	
	-	
4.6	LCD Driver (COM0–COM3, SEG0–SEG19)	31
	Configuration of LCD driver	31
	Cadence adjustment of oscillation frequency	37
	Mask option (segment allocation)	38
	Control of LCD driver	40
4.7	Clock Timer	41
	Configuration of clock timer	41
	Interrupt function	42
	Control of clock timer	43
4.8	A/D Converter	45
	Configuration of A/D converter	
	Operation of A/D converter	
	Interrupt function	
	Usage example of the A/D converter	
	Control of A/D converter	
4.0		
4.9	Heavy Load Protection Function	
	Operation of heavy load protection function	
	Control of heavy load protection function	58
4.10	Interrupt and HALT	59
	Interrupt factors	60
	Specific masks and factor flags for interrupt	61
	Interrupt vectors	61
	Control of interrupt	62

CHAPTER 5	BASI	C EXTERNAL WIRING DIAGRAM	63		
CHAPTER 6	ELECTRICAL CHARACTERISTICS 6				
	6.1	Absolute Maximum Rating	65		
	6.2	Recommended Operating Conditions	66		
	6.3	DC Characteristics	67		
	6.4	Analog Circuit Characteristics and Power Current Consumption	69		
	6.5	Oscillation Characteristics	73		
CHAPTER 7	PAC	KAGE	75		
	7.1	Plastic Package	75		
	7.2	Ceramic Package for Test Samples	76		
CHAPTER 8	PAD LAYOUT 7				
	8.1	Diagram of Pad Layout	77		
	8.2	Pad Coordinates	78		
CHAPTER 9	PREC	Oscillation circuit Reset circuit Power supply circuit Arrangement of signal lines Precautions for visible radiation (when bare chip is mounted)	79 79 79 80		
Appendices	TECH	HNICAL INFORMATION	81		
Appendi	ix A	Design Steps for Designing Thermometer	81 83 84		

CONTENTS

Appendix B	Error Factors			
	Thermistor resistance dispersion	87		
	A/D converter error factors	87		
	Error by floating capacity	91		
	Software error	91		
Appendix C	AT Thermistor	92		

CHAPTER 1 INTRODUCTION

Each member of the S1C60N05 Series of single chip microcomputers feature a 4-bit S1C6200B core CPU, 1,536 words of ROM (12 bits per word), 80 words of RAM (4 bits per word), an LCD driver, 4 bits for input ports (K00–K03), 4 bits for output ports (R00–R03), one 4-bit I/O port (P00–P03), clock timer and A/D converter.

Because of their low voltage operation and low power consumption, the S1C60N05 Series are ideal for a wide range of applications.

1.1 Configuration

The S1C60N05 Series are configured as follows, depending on the supply voltage.

Table 1.1.1 Configuration of the S1C60N05 Series

Model	Supply voltage	Oscillation circuits	
S1C60N05	1.8–3.5 V	Crystal or CR	
S1C60L05	1.2-2.0 V	Crystal or CR	

1.2 Features

Core CPU S1C6200B

Built-in oscillation circuit Crystal or CR oscillation circuit, 32,768 Hz (typ.)

Instruction set 100 instructions

ROM capacity $1,536 \text{ words} \times 12 \text{ bits}$

RAM capacity (data RAM) $80 \text{ words} \times 4 \text{ bits}$

Input port 4 bits (Supplementary pull-down resistors may be used)

Output port 4 bits (Piezo buzzer and programmable frequency output

can be driven directry by mask option)

Input/output port 4 bits

LCD driver 20 segments × 4 common duty (or 3 and 2 common duty)

Timer Clock timer

A/D converter CR oscillation type A/D converter built-in (2 channels)

Interrupts:

External interrupt Input port interrupt 1 system
Internal interrupt Timer interrupt 1 system
A/D converter interrupt 1 system

Supply voltage 1.5 V (1.2–2.0 V) S1C60L05 (During A/D conversion)

3.0 V (1.8-3.5 V) S1C60N05

Current consumption (typ.) $0.8 \mu A$ (Crystal oscillation CLK = 32,768 Hz, when halted)

1.5 μ A (Crystal oscillation CLK = 32,768 Hz, when executing)

Supply form QFP6-60pin (plastic) or chip

1.3 Block Diagram

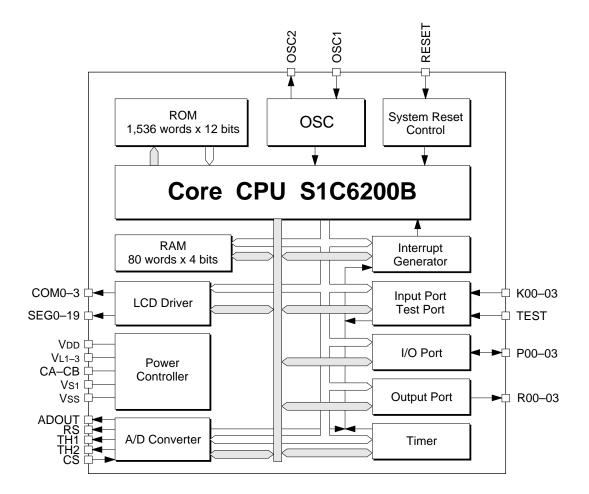
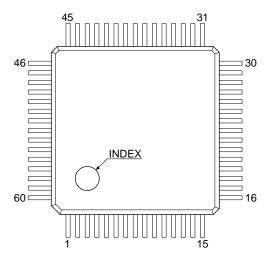



Fig. 1.3.1 Block diagram

1.4 Pin Layout Diagram

QFP6-60pin

Pin No.	Pin name						
1	N.C.	16	N.C.	31	TEST	46	VL3
2	N.C.	17	ADOUT	32	RESET	47	VL2
3	K00	18	SEG0	33	SEG12	48	VL1
4	K01	19	SEG1	34	SEG13	49	CA
5	K02	20	SEG2	35	SEG14	50	CB
6	K03	21	SEG3	36	SEG15	51	Vss
7	R00	22	SEG4	37	SEG16	52	Vdd
8	R01	23	SEG5	38	SEG17	53	OSC1
9	R02	24	SEG6	39	SEG18	54	OSC2
10	R03	25	SEG7	40	SEG19	55	Vs1
11	RS	26	SEG8	41	COM0	56	P00
12	TH1	27	SEG9	42	COM1	57	P01
13	TH2	28	SEG10	43	COM2	58	P02
14	CS	29	SEG11	44	COM3	59	P03
15	N.C.	30	N.C.	45	N.C.	60	N.C.

N.C. = No connection

Fig. 1.4.1 Pin assignment

1.5 Pin Description

Table 1.5.1 Pin description

Terminal name	Pin No.	Input/Output	Function
Vdd	52	(I)	Power source (+) terminal
Vss	51	(I)	Power source (-) terminal
Vs1	55	0	Oscillation and internal logic system regulated voltage output terminal
VL1	48	0	LCD system regulated voltage output terminal
VL2	47	О	LCD system booster output terminal
VL3	46	0	LCD system booster output terminal
CA, CB	49, 50	_	Booster capacitor connecting terminal
OSC1	53	I	Crystal or CR oscillation input terminal
OSC2	54	0	Crystal or CR oscillation output terminal
K00-K03	3–6	I	Input terminal
P00-P03	56–59	I/O	I/O terminal
R00-R03	7–10	О	Output terminal
SEG0-19	18–29	0	LCD segment output terminal
	33–40		(convertible to DC output terminal by mask option)
COM0-3	41–44	О	LCD common output terminal
CS	14	I	A/D converter CR oscillation input terminal
RS	11	0	A/D converter CR oscillation output terminal
TH1, TH2	12, 13	0	A/D converter CR oscillation output terminal
ADOUT	17	0	A/D converter oscillation frequency output terminal
RESET	32	I	Initial setting input terminal
TEST	31	I	Test input terminal

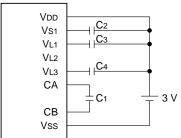
CHAPTER 2 POWER SUPPLY AND INITIAL RESET

2.1 Power Supply

With a single external power supply (*1) supplied to VDD through Vss, the S1C60N05 Series generate the necessary internal voltages with the regulated voltage circuit (<VS1> for oscillators and internal circuit) and the voltage booster/reducer (<VL2, VL3 or VL1, VL3> for LCDs). When the S1C60N05 LCD power is selected for 4.5 V LCD panel by mask option, the S1C60N05 short-circuits between

<VL2> and <VSS> in internally, and the voltage booster/ reducer generates <VL1> and <VL3>. When 3.0 V LCD panel is selected, the S1C60N05 short-circuits between <VL3> and <VSS>, and the voltage reducer generates <VL1> and <VL2>. The S1C60L05 short-circuits between <VL1> and <VSS>, and the voltage booster generates <VL2> and <VL3>.

The voltage <VS1> for the internal circuit that is generated by the regulated voltage circuit is -1.2 V (VDD standard). Figure 2.1.1 shows the power supply configuration of the S1C60N05 Series in each condition.

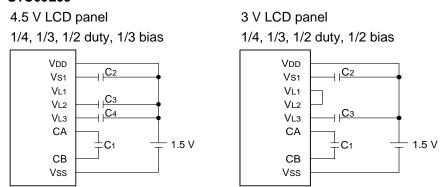

*1 Supply voltage: S1C60N05 3.0 V S1C60L05 1.5 V

- Note External loads cannot be driven by the output voltage of the regulated voltage circuit and the voltage booster/reducer.
 - See Chapter 6, "ELECTRICAL CHARACTERISTICS", for voltage values.


• S1C60N05

4.5 V LCD panel

1/4, 1/3, 1/2 duty, 1/3 bias



Note: VL2 is shorted to Vss inside the IC.

Note: VL3 is shorted to VSS inside the IC.

• S1C60L05

Note: VL1 is shorted to VSS inside the IC.

Fig. 2.1.1 External element configuration of power system

2.2 Initial Reset

To initialize the S1C60N05 Series circuits, an initial reset must be executed. There are three ways of doing this.

- (1) Initial reset by the oscillation detection circuit (Note)
- (2) External initial reset via the RESET pin
- (3) External initial reset by simultaneous high input to pins K00-K03 (depending on mask option)

Figure 2.2.1 shows the configuration of the initial reset circuit.

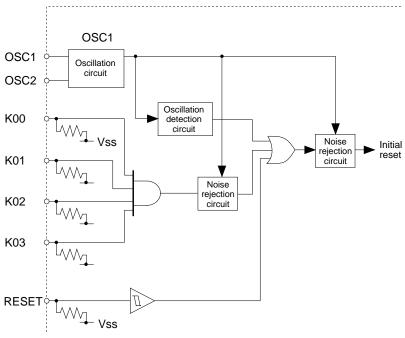


Fig. 2.2.1 Configuration of initial reset circuit

Note Since the circuit may sometimes not operate normally with the initial resetting by the oscillation detection circuit indicated in number (1), depending on the method of making the power, you should utilize one of the initial resetting methods mentioned in numbers (2) and (3).

Oscillation detection circuit

When the oscillation circuit has been stopped until the oscillation circuit begins to oscillate when the power is turned on or for any other reason, the oscillation detection circuit will output an initial reset signal, but since the circuit may sometimes not operate normally with the initial resetting due to the oscillation detection circuit, depending on the method of making the power, you should utilize one of the initial resetting methods indicated hereafter.

Reset pin (RESET)

An initial reset can be invoked externally by making the reset pin high. This high level must be maintained for at least 5 ms (when oscillating frequency, fosc = 32 kHz), because the initial reset circuit contains a noise rejection circuit. When the reset pin goes low the CPU begins to operate.

Simultaneous high input to input ports (K00-K03)

Another way of invoking an initial reset externally is to input a high signal simultaneously to the input ports (K00–K03) selected with the mask option. The specified input port pins must be kept high for at least 4 sec (when oscillating frequency fosc = 32 kHz), because of the noise rejection circuit. Table 2.2.1 shows the combinations of input ports (K00–K03) that can be selected with the mask option.

Table 2.2.1 Input port combinations

Α	Not used
В	K00*K01
С	K00*K01*K02
D	K00*K01*K02*K03

When, for instance, mask option D (K00*K01*K02*K03) is selected, an initial reset is executed when the signals input to the four ports K00–K03 are all high at the same time.

If you use this function, make sure that the specified ports do not go high at the same time during normal operation.

Internal register following initialization

An initial reset initializes the CPU as shown in the table below.

Table 2.2.2 Initial values

CPU Core							
Name	Signal	Number of bits	Setting value				
Program counter step	PCS	8	00H				
Program counter page	PCP	4	1H				
New page pointer	NPP	4	1H				
Stack pointer	SP	8	Undefined				
Index register X	X	8	Undefined				
Index register Y	Y	8	Undefined				
Register pointer	RP	4	Undefined				
General register A	A	4	Undefined				
General register B	В	4	Undefined				
Interrupt flag	I	1	0				
Decimal flag	D	1	0				
Zero flag	Z	1	Undefined				
Carry flag	С	1	Undefined				

Peripheral circuits								
Name	Number of bits	Setting value						
RAM	80×4	Undefined						
Display memory	20×4	Undefined						
Other peripheral circuit	_	*1						

^{*1:} See Section 4.1, "Memory Map"

2.3 Test Pin (TEST)

This pin is used when IC is inspected for shipment. During normal operation connect it to VSS.

10

CHAPTER 3 CPU, ROM, RAM

3.1 CPU

The S1C60N05 Series employs the S1C6200B core CPU, so that register configuration, instructions, and so forth are virtually identical to those in other processors in the family using the S1C6200B. Refer to the "S1C6200/6200A Core CPU Manual" for details of the S1C6200B.

Note the following points with regard to the S1C60N05 Series:

- (1) The SLEEP operation is not provided, so the SLP instruction cannot be used.
- (2) Because the ROM capacity is 1,536 words, 12 bits per word, bank bits are unnecessary, and PCB and NBP are not used.
- (3) The RAM page is set to 0 only, so the page part (XP, YP) of the index register that specifies addresses is invalid.

PUSH	XP	PUSH	ΥP
POP	XP	POP	ΥP
LD	XP,r	LD	YP,r
LD	r,XP	LD	r,YP

3.2 **ROM**

The built-in ROM, a mask ROM for the program, has a capacity of $1,536 \times 12$ -bit steps. The program area is 6 pages (0–5), each consisting of 256 steps (00H–FFH). After an initial reset, the program start address is page 1, step 00H. The interrupt vector is allocated to page l, steps 01H–07H.

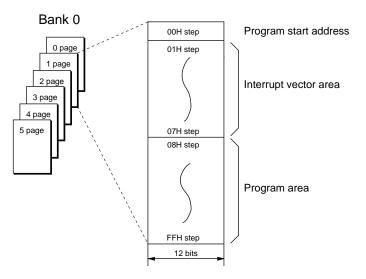


Fig. 3.2.1 ROM configuration

3.3 **RAM**

The RAM, a data memory for storing a variety of data, has a capacity of 80 words, 4-bit words. When programming, keep the following points in mind:

- (1) Part of the data memory is used as stack area when saving subroutine return addresses and registers, so be careful not to overlap the data area and stack area.
- (2) Subroutine calls and interrupts take up three words on the stack.
- (3) Data memory 000H-00FH is the memory area pointed by the register pointer (RP).

S1C60N05 TECHNICAL MANUAL

CHAPTER 4 PERIPHERAL CIRCUITS AND OPERATION

Peripheral circuits (timer, I/O, and so on) of the S1C60N05 Series are memory mapped. Thus, all the peripheral circuits can be controlled by using memory operations to access the I/O memory. The following sections describe how the peripheral circuits operate.

4.1 Memory Map

The data memory of the S1C60N05 Series has an address space of 137 words, of which 32 words are allocated to display memory and 25 words, to I/O memory. Figure 4.1.1 show the overall memory map for the S1C60N05 Series, and Tables 4.1.1(a) and (b), the memory maps for the peripheral circuits (I/O space).

Address	Low																
		0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
Page	High \																
	0	MO	M1	M2	МЗ	M4	M5	M6	M7	M8	M9	MA	MB	MC	MD	ME	MF
	1																
	2						R/	AM aı	ea (C	000H-	-04F	H)					
	3						80) wor	ds x 4	4 bits	(R/V	V)					
	4																
	5																
	6																
	7																
0	8																
	9					Dis	play	mem	ory a	rea (090H	-0AF	FH)				
	Α						32 w	ords	x 4 b	its (V	Vrite (only)					
	В																
	С																
	D																
	Е																
	F					I/O	mem	ory a	rea	Tabl	e 4.1	.1(a)	, (b)				

Fig. 4.1.1 Memory map

Unused area

Note Memory is not mounted in unused area within the memory map and in memory area not indicated in this chapter. For this reason, normal operation cannot be assured for programs that have been prepared with access to these areas.

Table 4.1.1(a) I/O memory map

Address	Register							Comment		
71001000	D3	D2	D1	D0	Name	Init *1	1	0	Common	
	K03	K02	K01	K00	K03	- *2	High	Low	Input port data K03	
0E0H	1100	1102	1101	1100	K02	- *2	High	Low	Input port data K02	
OLOIT	R		K01	- *2	High	Low	Input port data K01			
					K00	- *2	High	Low	Input port data K00	
	TM3 TM2 TM1 TM0		TMO	TM3	- *3	High	Low	Clock timer data 2 Hz		
0E3H	11110	11012		11410	TM2	- *3	High	Low	Clock timer data 4 Hz	
OLSII			R		TM1	- *3	High	Low	Clock timer data 8 Hz	
					TM0	- *3	High	Low	Clock timer data 16 Hz	
	TC3	TC2	TC1	TC0	TC3	- *3	1	0	Up/down counter data TC3	
0E4H	100	102	101	100	TC2	- *3	1	0	Up/down counter data TC2	
02411		R	/W		TC1	- *3	1	0	Up/down counter data TC1	
		13,	/ V V		TC0	- *3	1	0	Up/down counter data TC0 (LSB)	
	TC7	TC6	TC5	TC4	TC7	- *3	1	0	Up/down counter data TC7	
0E5H	101	100	100	104	TC6	- *3	1	0	Up/down counter data TC6	
OLSII		P	/W		TC5	- *3	1	0	Up/down counter data TC5	
		11,	/ V V		TC4	- *3	1	0	Up/down counter data TC4	
	TC11	TC10	TC9	TC8	TC11	- *3	1	0	Up/down counter data TC11	
0E6H	1011	1010	103	100	TC10	- *3	1	0	Up/down counter data TC10	
OLOII		D	/W		TC9	- *3	1	0	Up/down counter data TC9	
		17,	/ * *		TC8	- *3	1	0	Up/down counter data TC8	
	TC15	TC14	TC13	TC12	TC15	- *3	1	0	Up/down counter data TC15 (MSB)	
0E7H	1013	1014	1013	1012	TC14	- *3	1	0	Up/down counter data TC14	
OL/II		P	/W		TC13	- *3	1	0	Up/down counter data TC13	
		IN.	/ ۷ ۷		TC12	- *3	1	0	Up/down counter data TC12	
	EIK03	EIK02	EIK01	EIK00	EIK03	0	Enable	Mask	Interrupt mask register K03	
0E8H	LINOS	LINUZ	LINO	LINOU	EIK02	0	Enable	Mask	Interrupt mask register K02	
OLOII		R	/W		EIK01	0	Enable	Mask	Interrupt mask register K01	
		17,	/ V V		EIK00	0	Enable	Mask	Interrupt mask register K00	
	0	EIT2	EIT8	EIT32	0					*5
0EBH					EIT2	0	Enable	Mask	Interrupt mask register (clock timer) 2 Hz	
025.1	R		R/W		EIT8	0	Enable	Mask	Interrupt mask register (clock timer) 8 Hz	
	.,				EIT32	0	Enable	Mask	Interrupt mask register (clock timer) 32 Hz	
	0	0	0	EIAD	0					*5
0ECH			Ů		0					*5
02011	R		R/W	0					*5	
IX IVW		EIAD	0	Enable	Mask	Interrupt mask register (A/D)				
	0	0	0	IK0	0					*5
0EDH			Ŭ		0					*
OLDII			R		0					*
		'			IK0	0	Yes	No	Interrupt factor flag (K00–K03)	*,
	0	IT2	IT8	IT32	0					*:
0EFH	Ū	112	'''	1102	IT2	0	Yes	No	Interrupt factor flag (clock timer) 2 Hz	*,
VEFII	В		IT8	0	Yes	No	Interrupt factor flag (clock timer) 8 Hz	*,		
	R				IT32	0	Yes	No	Interrupt factor flag (clock timer) 32 Hz	*,

- *1 Initial value following initial reset
- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Always "0" when being read
- *6 Refer to main manual

Table 4.1.1(b) I/O memory map

		Ren	ister							
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment	
	0	0	0	IAD	0					*5
0F0H	_				0					*5
			R		0 IAD	0	Yes	No	Interrupt factor flag (A/D)	*5 *4
					CHTH	0	TH2	TH1	A/D channel selection	
05411	CHTH	0	0	ADRUN	0				12D chamer serection	*5
0F1H	R/W		R	R/W	0					*5
	10,44			10,00	ADRUN	0	Start	Stop	A/D conversion Start/Stop	
	Doo	Doo	R01	R00	R03	0	High	Low	Output port data R03	
	R03	R02	BUZZER	FOUT	R02 R01	0	High High	Low Low	Output port data R02 Output port data R01	
0F3H					BUZZER	0	On	Off	Buzzer On/Off control register	
		R	:/W		R00	0	High	Low	Output port data R00	
					FOUT	0	On	Off	Frequency output control register	
	P03	P02	P01	P00	P03	- *2	High	Low	I/O port data P03	
0F4H	1 00	1 02	'''		P02	- *2	High	Low	I/O port data P02	
•• ••		R	:/W		P01	- *2 *2	High	Low	I/O port data P00	
					P00 C3	- *2 - *3	High 1	Low 0	I/O port data P00 Up-counter data C3	
	C3	C2	C1	C0	C2	- *3	1	0	Up-counter data C2	
0F5H			04/		C1	- *3	1	0	Up-counter data C1	
			:/W		C0	- *3	1	0	Up-counter data C0 (LSB)	
	C7	C6	C5	C4	C7	- *3	1	0	Up-counter data C7	
0F6H					C6	- *3	1	0	Up-counter data C6	
		R	:/W		C5 C4	- *3 - *3	1 1	0	Up-counter data C5 Up-counter data C4	
					C11	- *3	1	0	Up-counter data C11	
	C11	C10	C9	C8	C10	- *3	1	0	Up-counter data C10	
0F7H			/W		C9	- *3	1	0	Up-counter data C9	
			./ VV		C8	- *3	1	0	Up-counter data C8	
	C15	C14	C13	C12	C15	- *3	1	0	Up-counter data C15 (MSB)	
0F8H					C14	- *3 - *3	1 1	0	Up-counter data C14 Up-counter data C13	
		R	:/W		C13 C12	- *3 - *3	1	0	Up-counter data C12	
	0	0		TMDCT	0		•		- CP - C- C	*5
0F9H	0	0	0	TMRST	0					*5
01 911		R		l w	0					*5
			1		TMRST	Reset	Reset	-	Clock timer reset	*5
	HLMOD	0	0	0	HLMOD 0	0	Heavy	Normal	Heavy load protection mode register	*5
0FAH					0					*5
	R/W		R		0					*5
	CSDC	0	0	0	CSDC	0	Static	Dynamic	LCD drive switch	
0FBH	CSDC	U		0	0					*5
01 511	R/W		R		0					*5
			1	I	0					*5
	0	0	0	IOC	0					*5 *5
0FCH		_	1		0					*5
		R		R/W	IOC	0	Out	In	I/O port I/O control register	_
	XBZR	0	XFOUT1	XFOUT0	XBZR	0	2 kHz	4 kHz	Buzzer frequency control	
0FDH	ADLIN	J	71 0011	A 0010	0					*5
3. 5	R/W R R/W		/W	XFOUT1	0			FOUT frequency control	*6	
					XFOUT0	0			FOUT frequency control	*6
_	0	0	0	ADCLK	0					*5 *5
0FEH		ח	1	DAM	0					*5
		R		R/W	ADCLK	0	65 kHz	32 kHz	A/D clock selection 65 kHz/32 kHz	
•										

4.2 Oscillation Circuit

The S1C60N05 Series has a built-in oscillation circuit. For the oscillation circuit, eiter crystal oscillation or CR oscillation may be selected by a mask option.

Crystal oscillation circuit

The crystal oscillation circuit generates the operating clock for the CPU and peripheral circuit on connection to an external crystal oscillator (typ. 32.768 kHz) and trimmer capacitor (5–25 pF).

Figure 4.2.1 is the block diagram of the crystal oscillation circuit.

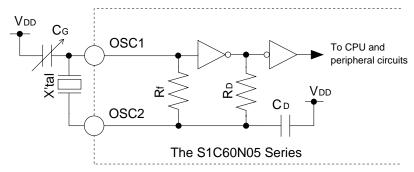


Fig. 4.2.1 Crystal oscillation circuit

As Figure 4.2.1 indicates, the crystal oscillation circuit can be configured simply by connecting the crystal oscillator (X'tal) between the OSC1 and OSC2 pins and the trimmer capacitor (CG) between the OSC1 and VDD pins.

CR oscillation circuit

For the S1C60N05 Series, CR oscillation circuit (typ. 65 kHz) may be selected by a mask option. Figure 4.2.2 is the block diagram of the CR oscillation circuit.

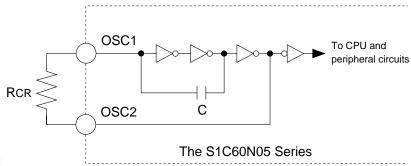


Fig. 4.2.2 CR oscillation circuit

As Figure 4.2.2 indicates, the CR oscillation circuit can be configured simply by connecting the register (RCR) between pins OSC1 and OSC2 since capacity (C) is built-in. See Chapter 6, "ELECTRICAL CHARACTERISTICS" for RCR value.

4.3 Input Ports (K00-K03)

Configuration of input ports

The S1C60N05 Series has a general-purpose input (4 bits). Each of the input port pins (K00–K03) has an internal pull-down resistance. The pull-down resistance can be selected for each bit with the mask option.

Figure 4.3.1 shows the configuration of input port.

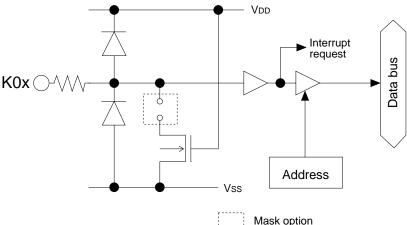


Fig. 4.3.1 Configuration of input port

Selecting "pull-down resistance enabled" with the mask option allows input from a push button, key matrix, and so forth. When "pull-down resistance disabled" is selected, the port can be used for slide switch input and interfacing with other LSIs.

Input comparison registers and interrupt function

All four input port bits (K00–K03) provide the interrupt function. The conditions for issuing an interrupt can be set by the software for the four bits. Also, whether to mask the interrupt function can be selected individually for all four bits by the software. Figure 4.3.2 shows the configuration of K00–K03.

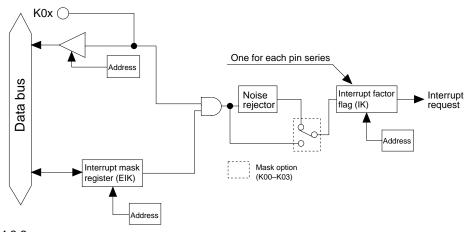


Fig. 4.3.2 Input interrupt circuit configuration (K00–K03)

The interrupt mask registers (EIK00–EIK03) enable the interrupt mask to be selected individually for K00–K03. An interrupt occurs when the input value which are not masked change and the interrupt factor flag (IK0) is set to "1".

Mask option

The contents that can be selected with the input port mask option are as follows:

- (1) An internal pull-down resistance can be selected for each of the four bits of the input ports (K00–K03). Having selected "pull-down resistance disabled", take care that the input does not float. Select "pull-down resistance enabled" for input ports that are not being used.
- (2) The input interrupt circuit contains a noise rejection circuit to prevent interrupts form occurring through noise. The mask option enables selection of the noise rejection circuit for each separate pin series. When "use" is selected, a maximum delay of 0.5 ms (fosc = 32 kHz) occurs from the time an interrupt condition is established until the interrupt factor flag (IK) is set to "1".

Control of input ports

Table 4.3.1 list the input port control bits and their addresses.

A -l -l	Register								0
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment
	K03	K02	K01	K00	K03	- *2	High	Low	Input port data K03
0E0H	1100	1102	IX01	Noo	K02	- *2	High	Low	Input port data K02
OLUII			R		K01	- *2	High	Low	Input port data K01
	K				K00	- *2	High	Low	Input port data K00
	EIK03	EIK02	EIK01	EIK00	EIK03	0	Enable	Mask	Interrupt mask register K03
0E8H	LINUS	LINUZ	LINUI	LINOU	EIK02	0	Enable	Mask	Interrupt mask register K02
UEOH		D	W		EIK01	0	Enable	Mask	Interrupt mask register K01
		K	/ V V		EIK00	0	Enable	Mask	Interrupt mask register K00
	0	0	0	IK0	0				*5
0EDH	U	U	U	INU	0				*5
UEDH	R				0				*5
					IK0	0	Yes	No	Interrupt factor flag (K00–K03) *4

- *1 Initial value following initial reset
- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Always "0" when being read
- *6 Refer to main manual

K00-K03 Input port data (0E0H)

The input data of the input port pins can be read with these registers.

When "1" is read: High level
When "0" is read: Low level
Writing: Invalid

The value read is "1" when the pin voltage of the four bits of the input ports (K00–K03) goes high (VDD), and "0" when the voltage goes low (VSS). These bits are reading, so writing cannot be done.

EIK00-EIK03 Interrupt mask registers (0E8H)

Masking the interrupt of the input port pins can be done with these registers.

When "1" is written: Enable
When "0" is written: Mask
Reading: Valid

With these registers, masking of the input port bits can be done for each of the four bits. After an initial reset, these registers are all set to "0".

IKO Interrupt factor flags (0EDH D0)

These flags indicate the occurrence of an input interrupt.

When "1" is read: Interrupt has occurred
When "0" is read: Interrupt has not occurred

Writing: Invalid

The interrupt factor flag IK0 is associated with K00–K03, respectively. From the status of these flags, the software can decide whether an input interrupt has occurred.

These flags are reset when the software has read them. Reading of interrupt factor flags is available at EI, but be careful in the following cases.

If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to "1", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated. After an initial reset, these flags are set to "0".

4.4 Output Ports (R00-R03)

Configuration of output ports

The S1C60N05 Series has 4 bits for general output ports (R00-R03).

Output specifications of the output ports can be selected individually with the mask option. Three kinds of output specifications are available: complementary output and Pch open drain output. Also, the mask option enables the output ports R00 and R01 to be used as special output ports. Figure 4.4.1 shows the configuration of the output ports.

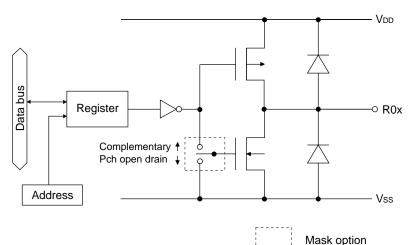


Fig. 4.4.1 Configuration of output ports

Mask option

The mask option enables the following output port selection.

(1) Output specifications of output ports

The output specifications for the output ports (R00–R03) may be either complementary output or Pch open drain output for each of the four bits. However, even when Pch open drain output is selected, a voltage exceeding the source voltage must not be applied to the output port.

(2) Special output

In addition to the regular DC output, special output can be selected for output ports R00 and R01, as shown in Table 4.4.1. Figure 4.4.2 shows the structure of output ports R00–R03.

Table 4.4.1 Special output

Pin name	When special output is selected
R00	FOUT or BUZZER
R01	BUZZER

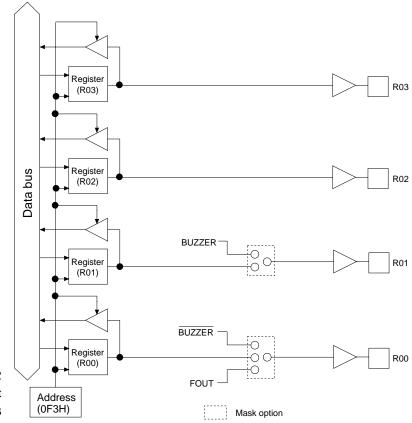


Fig. 4.4.2 Structure of output port R00–R03

FOUT (R00) When output port R00 is set for FOUT output, this port will generate fosc (CPU operating clock frequency) or clock frequency divided into fosc. Clock frequency may be selected individually for F1-F4, from among 5 types by mask option; one among F1-F4 is selected by software and used. The types of frequency which may be selected are shown in Table 4.4.2.

Table 4.4.2 FOUT clock frequency

0 44		Clock frequ	uency (Hz)	fosc = 32,768	
Setting value	F1	F2	F3	F4	
value	(D1,D0)=(0,0)	(D1,D0)=(0,1)	(D1,D0)=(1,0)	(D1,D0)=(1,1)	
1	256	512	1,024	2,048	
	(fosc/128)	(fosc/64)	(fosc/32)	(fosc/16)	
2	512	1,024	2,048	4,096	
	(fosc/64)	(fosc/32)	(fosc/16)	(fosc/8)	
3	1,024	2,048	4,096	8,192	
	(fosc/32)	(fosc/16)	(fosc/8)	(fosc/4)	
4	2,048	4,096	8,192	16,384	
	(fosc/16)	(fosc/8)	(fosc/4)	(fosc/2)	
5	4,096	8,192	16,384	32,768	
	(fosc/8)	(fosc/4)	(fosc/2)	(fosc/1)	

(D1, D0) = (XFOUT1, XFOUT0)

Note A hazard may occur when the FOUT signal is turned on or off.

BUZZER, BUZZER Output ports R01 and R00 may be set to BUZZER output (R01, R00) and BUZZER output (BUZZER reverse output), respectively, allowing for direct driving of the piezo-electric buzzer. BUZZER output (R00) may only be set if R01 is set to BUZZER output. In such case, whether ON/OFF of the BUZZER output is done through R00 register or is controlled through R01 simultaneously with BUZZER output is also selected by mask option.

> The frequency of buzzer output may be selected by software to be either 2 kHz or 4 kHz.

Note A hazard may occur when the BUZZER signal is turned on or off.

Control of output ports

Table 4.4.3 lists the output port control bits and their addresses.

Table 4.4.3 Control bits of output ports

Address	Register								Comment	
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment	
			R01	R00	R03	0	High	Low	Output port data R03	
	R03	R02			R02	0	High	Low	Output port data R02	
05011			BUZZER	FOUT	R01	0	High	Low	Output port data R01	
0F3H					BUZZER	0	On	Off	Buzzer On/Off control register	
		R	/W		R00	0	High	Low	Output port data R00	
					FOUT	0	On	Off	Frequency output control register	
	XBZR	0	XFOUT1	XFOUT0	XBZR	0	2 kHz	4 kHz	Buzzer frequency control	
OFFILE	ADZR	U	AFOUTT	XF0010	0					*5
0FDH	R/W	R	R/W		XFOUT1	0			FOUT frequency control	*6
	Ft/VV	ĸ			XFOUT0	0			FOUT frequency control	*6

- *1 Initial value following initial reset
- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Always "0" when being read
- *6 Refer to main manual

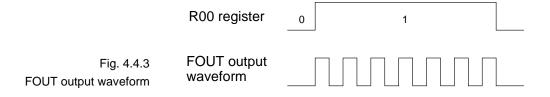
R00-R03 Output port data (0F3H)

Sets the output data for the output ports.

When "1" is written: High output
When "0" is written: Low output
Reading: Valid

The output port pins output the data written to the corresponding registers (R00–R03) without changing it. When "1" is written to the register, the output port pin goes high (VDD), and when "0" is written, the output port pin goes low (VSS). After an initial reset, all registers are set to "0".

R00 (when FOUT Special output port data (0F3H D0) is selected) Controls the FOUT (clock) output.


When "1" is written: Clock output

When "0" is written: Low level (DC) output

Reading: Valid

FOUT output can be controlled by writing data to R00. After an initial reset, this register is set to "0".

Figure 4.4.3 shows the output waveform for FOUT output.

XFOUT0, XFOUT1 FOUT frequency control (0FDH D0, 0FDH D1)

Selects the output frequency when P00 port is s

Selects the output frequency when R00 port is set for FOUT output.

Table 4.4.4 FOUT frequency selection

XFOUT1	XFOUT0	Frequency selection
0	0	F1
0	1	F2
1	0	F3
1	1	F4

After an initial reset, these registers are set to "0".

R00, R01 (when BUZZER Special output port data (0F3H D0, 0F3H D1)

and BUZZER Controls the buzzer output.

is selected)

When "1" is written: **Buzzer** output

When "0" is written: Low level (DC) output

Valid Reading:

BUZZER and BUZZER output can be controlled by writing data to R00 and R01.

When BUZZER output by R01 register control is selected by mask option, BUZZER output and BUZZER output can be controlled simultaneously by writing data to R01 register. After an initial reset, these registers are set to "0".

Figure 4.4.4 shows the output waveform for buzzer output.

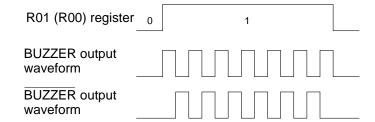


Fig. 4.4.4 Buzzer output waveform

XBZR Buzzer frequency control (0FDH D3)

Selects the frequency of the buzzer signal.

When "1" is written: 2 kHz When "0" is written: 4 kHz Valid Reading:

When R00 and R01 port is set to buzzer output, the frequency of the buzzer signal can be selected by this register. When "1" is written to this register, the frequency is set in 2 kHz, and in 4 kHz when "0" is written.

After an initial reset, this register is set to "0".

4.5 I/O Ports (P00-P03)

Configuration of I/O ports

The S1C60N05 Series has a 4-bit general-purpose I/O port. Figure 4.5.1 shows the configuration of the I/O port. The four bits of the I/O port P00–P03 can be set to either input mode or output mode. The mode can be set by writing data to the I/O control register (IOC).

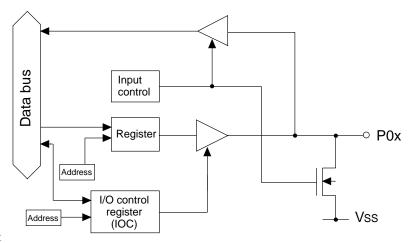


Fig. 4.5.1 Configuration of I/O port

I/O control register and I/O mode

28

Input or output mode can be set for the four bits of I/O port P00–P03 by writing data into I/O control register IOC. To set the input mode, "0" is written to the I/O control register. When an I/O port is set to input mode, its impedance becomes high and it works as an input port. However, the input line is pulled down when input data is read.

The output mode is set when "1" is written to the I/O control register (IOC). When an I/O port set to output mode works as an output port, it outputs a high signal (VDD) when the port output data is "1", and a low signal (VSS) when the port output data is "0".

After an initial reset, the I/O control register is set to "0", and the I/O port enters the input mode.

Mask option

The output specification during output mode (IOC = "1") of the I/O port can be set with the mask option for either complementary output or Pch open drain output. This setting can be performed for each bit of the I/O port. However, when Pch open drain output has been selected, voltage in excess of the supply voltage must not be applied to the port.

Control of I/O ports

Table 4.5.1 lists the I/O port control bits and their addresses.

Table 4.5.1 I/O port control bits

Address	Register							Comment	
Addicss	D3	D2	D1	D0	Name	Init *1	1	0	Comment
	P03	P02	P01	P00	P03	- *2	High	Low	I/O port data P03
0F4H	1 03	1 02	101	1 00	P02	- *2	High	Low	I/O port data P02
00740	R/W			P01	- *2	High	Low	I/O port data P01	
		IX.			P00	- *2	High	Low	I/O port data P00
	0	0	0	IOC	0				*5
0FCH		U	U	100	0				*5
UPCH	R			R/W					*5
	IX .		17/77	IOC	0	Out	In	I/O port I/O control register	

- *1 Initial value following initial reset
- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Always "0" when being read
- *6 Refer to main manual

P00-P03 I/O port data (0F4H)

I/O port data can be read and output data can be written through the port.

· When writing data

When "1" is written: High level When "0" is written: Low level

When an I/O port is set to the output mode, the written data is output from the I/O port pin unchanged. When "1" is written as the port data, the port pin goes high (VDD), and when "0" is written, the level goes low (VSS). Port data can also be written in the input mode.

· When reading data

When "1" is read: High level When "0" is read: Low level

The pin voltage level of the I/O port is read. When the I/O port is in the input mode the voltage level being input to the port pin can be read; in the output mode the output voltage level can be read. When the pin voltage is high (VDD) the port data read is "1", and when the pin voltage is low (VSS) the data is "0". Also, the built-in pull-down resistance functions during reading, so the I/O port pin is pulled down.

- Note When the I/O port is set to the output mode and a low-impedance load is connected to the port pin, the data written to the register may differ from the data read.
 - When the I/O port is set to the input mode and a low-level voltage (Vss) is input by the built-in pull-down resistance, an erroneous input results if the time constant of the capacitive load of the input line and the built-in pull-down resistance load is greater than the read-out time. When the input data is being read, the time that the input line is pulled down is equivalent to 0.5 cycles of the CPU system clock. Hence, the electric potential of the pins must settle within 0.5 cycles. If this condition cannot be met, some measure must be devised, such as arranging a pull-down resistance externally, or performing multiple read-outs.

IOC I/O control register (0FCH D0)

The input or output I/O port mode can be set with this register.

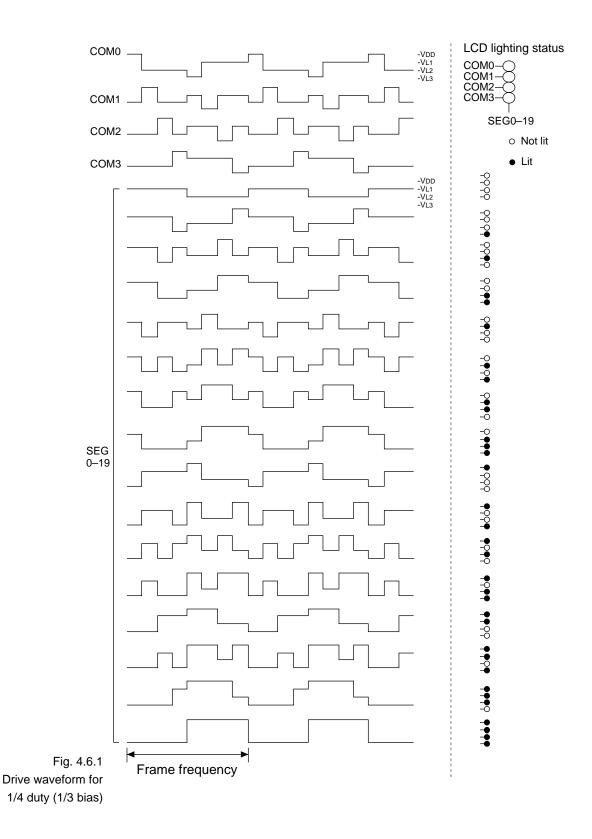
When "1" is written: Output mode When "0" is written: Input mode

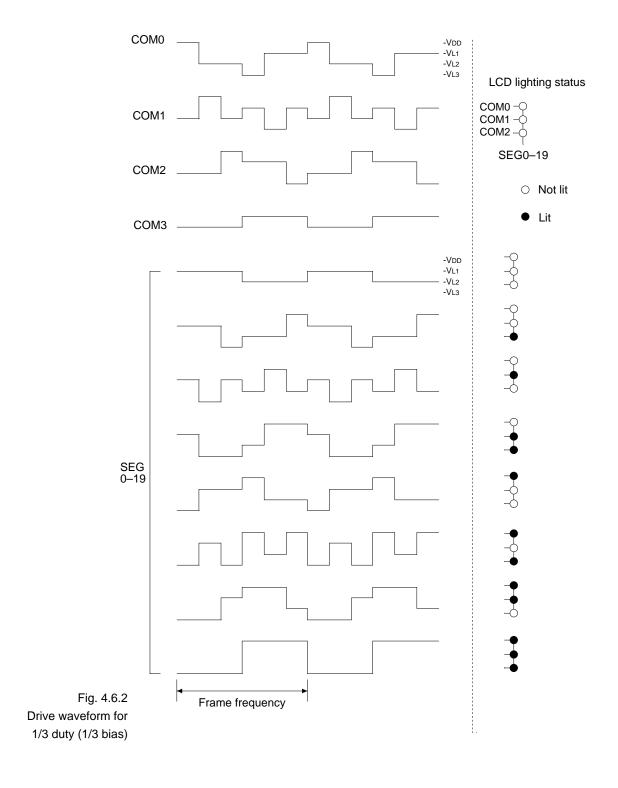
Reading: Valid

The input or output mode of the I/O port is set in units of four bits. For instance, IOC sets the mode for P00–P03. Writing "1" to the I/O control register makes the I/O port enter the output mode, and writing "0", the input mode. After an initial reset, the IOC register is set to "0", so the I/O port is in the input mode.

S1C60N05 TECHNICAL MANUAL

4.6 LCD Driver (COM0-COM3, SEG0-SEG19)


Configuration of LCD driver


The S1C60N05 Series has four common pins and 20 (SEG0–SEG19) segment pins, so that an LCD with a maximum of $80~(20\times4)$ segments can be driven. The power for driving the LCD is generated by the CPU internal circuit, so there is no need to supply power externally.

The driving method is 1/4 duty (or 1/3, 1/2 duty by mask option) dynamic drive, adopting the four types of potential (1/3 bias), VDD, VL1, VL2 and VL3. Moreover, the 1/2 bias dynamic drive that uses three types of potential, VDD, VL1 = VL2 and VL3, can be selected by setting the mask option (drive duty can also be selected from 1/4, 1/3 or 1/2). 1/2 bias drive is effective when the LCD system regulated voltage circuit is not used. The VL1 terminal and the VL2 terminal should be connected outside of the IC.

The frame frequency is 32 Hz for 1/4 duty and 1/2 duty, and 42.7 Hz for 1/3 duty (in the case of fosc = 32.768 kHz). Figure 4.6.1 shows the drive waveform for 1/4 duty (1/3 bias), Figure 4.6.2 shows the drive waveform for 1/3 duty (1/3 bias), Figure 4.6.3 shows the drive waveform for 1/2 duty (1/3 bias), Figure 4.6.4 shows the drive waveform for 1/4 duty (1/2 bias), Figure 4.6.5 shows the drive waveform for 1/3 duty (1/2 bias) and Figure 4.6.6 shows the drive waveform for 1/2 duty (1/2 bias).

Note fosc indicates the oscillation frequency of the oscillation circuit.

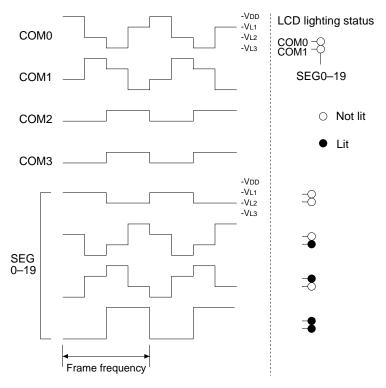


Fig. 4.6.3 Drive waveform for 1/2 duty (1/3 bias)

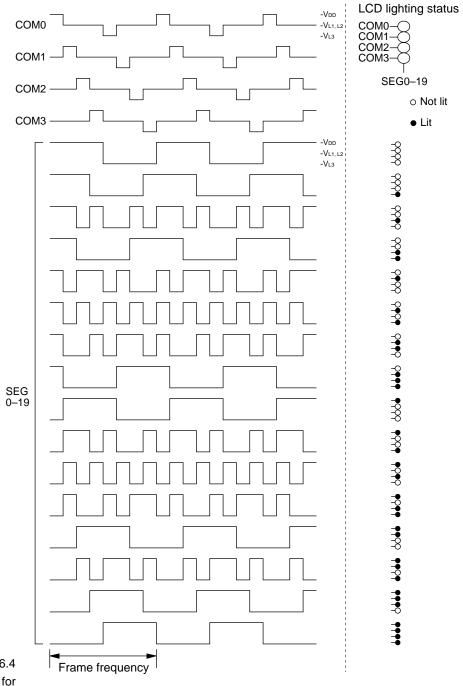
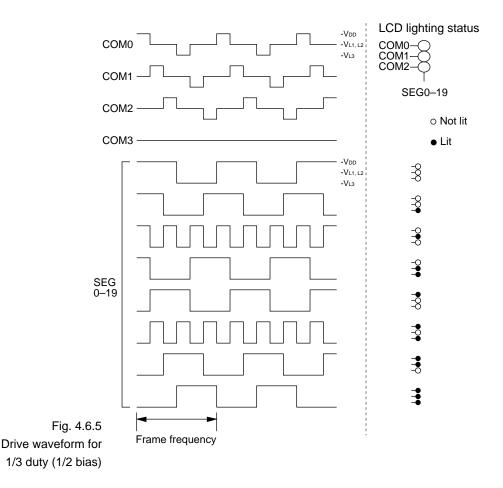
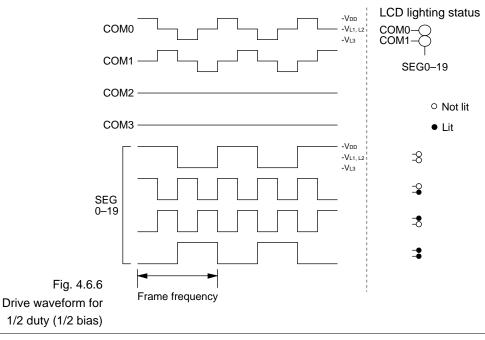
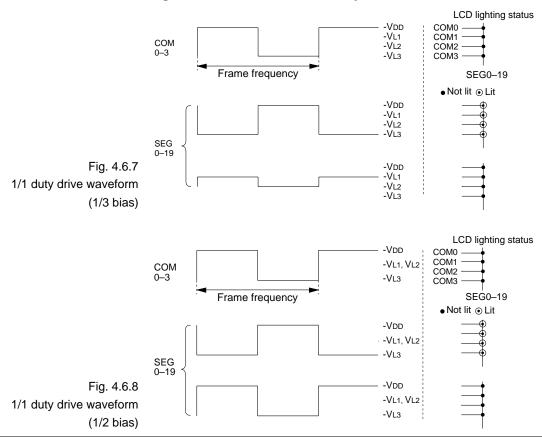




Fig. 4.6.4 Drive waveform for 1/4 duty (1/2 bias)

Cadence adjustment of oscillation frequency

In the S1C60N05 Series, the LCD drive duty can be set to 1/1 duty by software. This function enables easy adjustment (cadence adjustment) of the oscillation frequency of the OSC circuit.

The procedure to set to 1/1 duty drive is as follows:


- ① Write "1" to the CSDC register at address "0FBH D3".
- ② Write the same value to all registers corresponding to COMs 0 through 3 of the display memory.

The frame frequency is 32 Hz (fOSC1/1,024, when fOSC1 = 32.768 kHz).

Note -

- Even when I/3 or 1/2 duty is selected by the mask option, the display data corresponding to all COM are valid during 1/1 duty driving. Hence, for 1/1 duty drive, set the same value for all display memory corresponding to COMs 0 through 3.
- For cadence adjustment, set the display data corresponding to COMs 0 through 3, so that all the LCD segments go on.

Figure 4.6.7 shows the 1/1 duty drive waveform (1/3 bias). Figure 4.6.8 shows the 1/1 duty drive waveform (1/2 bias).

Mask option (segment allocation)

(1) Segment allocation

As shown in Figure 4.l.1, the S1C60N05 Series display data is decided by the display data written to the display memory (write-only) at address "090H-0AFH".

The address and bits of the display memory can be made to correspond to the segment pins (SEG0–SEG19) in any combination through mask option. This simplifies design by increasing the degree of freedom with which the liquid crystal panel can be designed.

Figure 4.6.9 shows an example of the relationship between the LCD segments (on the panel) and the display memory in the case of 1/3 duty.

Address		Da	ata	
Address	D3	D2	D1	D0
09AH	d	с	b	a
09BH	p	g	f	e
09CH	d'	c'	b'	a'
09DH	p'	g'	f'	e'

Common 0 Common 1 Common 2 SEG10 9A, D0 9B, D1 9B, D0 (a) (f) (e) SEG11 9A, D1 9B, D2 9A, D3 (d) (b) (g) SEG12 9D, D1 9A, D2 9B, D3 (f') (p)

Display data memory allocation

Pin address allocation

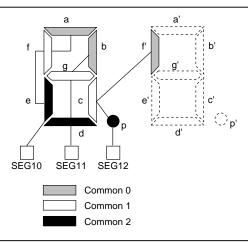


Fig. 4.6.9 Segment allocation

38

(2) Drive duty

According to the mask option, either 1/4, 1/3 or 1/2 duty can be selected as the LCD drive duty.

Table 4.6.1 shows the differences in the number of segments according to the selected duty.

Table 4.6.1
Differences according to selected duty

Duty	Pins used	Maximum number	Frame frequency
Duty	in common	of segments	(when fosc = 32 kHz)
1/4	COM0-3	$80(20 \times 4)$	32 Hz
1/3	COM0-2	$60(20 \times 3)$	42.7 Hz
1/2	COM0-1	$40(20 \times 2)$	32 Hz

(3) Output specification

- ① The segment pins (SEG0-SEG19) are selected by mask option in pairs for either segment signal output or DC output (VDD and VSS binary output). When DC output is selected, the data corresponding to COM0 of each segment pin is output.
- ② When DC output is selected, either complementary output or Pch open drain output can be selected for each pin by mask option.

Note

The pin pairs are the combination of SEG (2*n) and SEG (2*n + 1) (where n is an integer from 0 to 9).

(4) Drive bias

For the drive bias of the S1C60N05 or the S1C60L05, either 1/3 bias or 1/2 bias can be selected by the mask option.

Control of LCD driver

Table 4.6.2 shows the control bits of the LCD driver and their addresses. Figure 4.6.10 shows the display memory map.

Table 4.6.2 Control bits of LCD driver

Addross	Address Register							Comment	
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment
	CSDC	0	0	0	CSDC	0	Static	Dynamic	LCD drive switch
0FBH	OODO	U	U		0				*5
UFBH	R/W		D		0				*5
	IX/VV		IX.		0				*5

- *1 Initial value following initial reset
- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Always "0" when being read
- *6 Refer to main manual

Address 0 1 2 3 4 5 6 7 8 9 Α R С D Ε F Fig. 4.6.10 090 Display Display memory (Write only) 32 words x 4 bits 0A0 memory map

CSDC LCD drive switch (0FBH D3)

The LCD drive format can be selected with this switch.

When "1" is written: Static drive
When "0" is written: Dynamic drive

Reading: Valid

After an initial reset, dynamic drive (CSDC = "0") is selected.

Display memory (090H–0AFH)

The LCD segments are turned on or off according to this data.

When "1" is written: On
When "0" is written: Off
Reading: Invalid

By writing data into the display memory allocated to the LCD segment (on the panel), the segment can be turned on or off. After an initial reset, the contents of the display memory are undefined.

4.7 Clock Timer

Configuration of clock timer

The S1C60N05 Series has a built-in clock timer driven by the source oscillator. The clock timer is configured as a seven-bit binary counter that serves as a frequency divider taking a 256 Hz source clock from a prescaler. The four high-order bits (16 Hz–2 Hz) can be read by the software. Figure 4.7.1 is the block diagram of the clock timer.

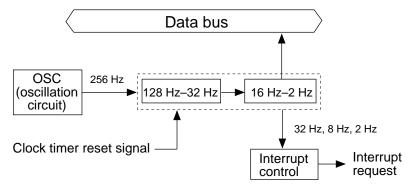


Fig. 4.7.1 Block diagram of clock timer

Normally, this clock timer is used for all kinds of timing purpose, such as clocks.

Interrupt function

The clock timer can interrupt on the falling edge of the 32 Hz, 8 Hz, and 2 Hz signals. The software can mask any of these interrupt signals.

Figure 4.7.2 is the timing chart of the clock timer.

Address	Register bits	Frequency											C	Clo	ck	tim	ner	tir	nin	go	ha	rt												
	D0	16 Hz		L				_										l		l						L		L		l		L		
0E3H	D1	8 Hz																								L								
OLSIT	D2	4 Hz																								L								
	D3	2 Hz																																
	rence of interrupt	request	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	† 1	
	rence of nterrupt re	equest				t				t				t				t				t				t				t			1	
	rence of nterrupt re	equest																t															1	

Fig. 4.7.2 Timing chart of the clock timer

As shown in Figure 4.7.2, an interrupt is generated on the falling edge of the 32 Hz, 8 Hz, and 2 Hz frequencies. When this happens, the corresponding interrupt event flag (IT32, IT8, IT2) is set to "1". Masking the separate interrupts can be done with the interrupt mask register (EIT32, EIT8, EIT2). However, regardless of the interrupt mask register setting, the interrupt event flags will be set to "1" on the falling edge of their corresponding signal (e.g. the falling edge of the 2 Hz signal sets the 2 Hz interrupt factor flag to "1").

Note Write to the interrupt mask register (EIT32, EIT8, EIT2) only in the DI status (interrupt flag = "0"). Otherwise, it causes malfunction.

Control of clock timer

Table 4.7.1 shows the clock timer control bits and their addresses.

Table 4.7.1 Control bits of clock timer

Address		Reg	ister						Comment	
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment	
	TM3	TM2	TM1	TMO	TM3	- *3	High	Low	Clock timer data 2 Hz	
0E3H	TIVIO	I IVIZ	1 101 1	TIVIO	TM2	- *3	High	Low	Clock timer data 4 Hz	
ULSII			R		TM1	- *3	High	Low	Clock timer data 8 Hz	
	N N			TM0	- *3	High	Low	Clock timer data 16 Hz		
	0	EIT2	EIT8	EIT32	0					*5
0EBH	0	LIIZ	Liio	LITOZ	EIT2	0	Enable	Mask	Interrupt mask register (clock timer) 2 Hz	
OLBII	R R/W			EIT8	0	Enable	Mask	Interrupt mask register (clock timer) 8 Hz		
			17/11		EIT32	0	Enable	Mask	Interrupt mask register (clock timer) 32 Hz	
	0	IT2	IT8	IT32	0					*5
0EFH	0	112	110	1132	IT2	0	Yes	No	Interrupt factor flag (clock timer) 2 Hz	*4
OEFH			R		IT8	0	Yes	No	Interrupt factor flag (clock timer) 8 Hz	*4
					IT32	0	Yes	No	Interrupt factor flag (clock timer) 32 Hz	*4
	0	0	0	TMRST	0					*5
0F9H		U	_ ·	TIVIICOT	0					*5
UF9H		R W			0					*5
		11		V V	TMRST	Reset	Reset	-	Clock timer reset	*5

- *1 Initial value following initial reset
- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Always "0" when being read
- *6 Refer to main manual

TM0–TM3 Timer data (0E3H)

The l6 Hz to 2 Hz timer data of the clock timer can be read from this register. These four bits are read-only, and write operations are invalid.

After an initial reset, the timer data is initialized to "OH".

EIT32, EIT8, EIT2 Interrupt mask registers (0EBH D0–D2)

These registers are used to mask the clock timer interrupt.

When "1" is written: Enabled
When "0" is written: Masked
Reading: Valid

The interrupt mask register bits (EIT32, EIT8, EIT2) mask the corresponding interrupt frequencies (32 Hz, 8 Hz, 2 Hz). After an initial reset, these registers are all set to "0".

IT32, IT8, IT2 Interrupt factor flags (0EFH D0–D2)

These flags indicate the status of the clock timer interrupt.

When "1" is read: Interrupt has occurred When "0" is read: Interrupt has not occurred

Writing: Invalid

The interrupt factor flags (IT32, IT8, IT2) correspond to the clock timer interrupts (32 Hz, 8 Hz, 2 Hz). The software can determine from these flags whether there is a clock timer interrupt. However, even if the interrupt is masked, the flags are set to "1" on the falling edge of the signal. These flags can be reset when the register is read by the software. Reading of interrupt factor flags is available at EI, but be careful in the following cases.

If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to "1", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated. Be very careful when interrupt factor flags are in the same address.

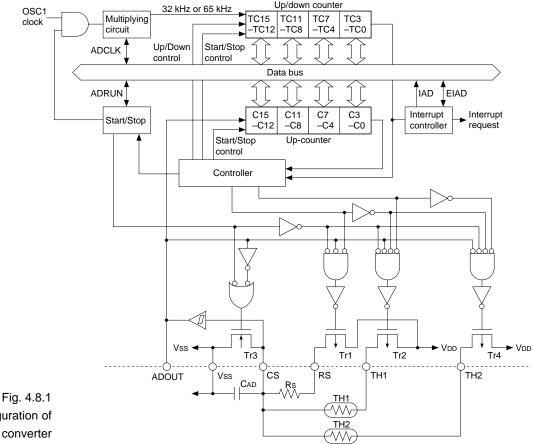
After an initial reset, these flags are set to "0".

TMRST Clock timer reset (0F9H D0)

This bit resets the clock timer.

When "1" is written: Clock timer reset
When "0" is written: No operation
Reading: Always "0"

The clock timer is reset by writing "1" to TMRST. The clock timer starts immediately after this. No operation results when "0" is written to TMRST.


This bit is write-only, and so is always "0" when read.

4.8 A/D Converter

Configuration of A/D converter

The S1C60N05 Series has a CR oscillation type A/D converter with two input channels. This A/D converter is equipped with two CR oscillation circuit systems and a counter that measures their oscillation frequency. Counted values represent connected resistance values converted into digital values. Connect a reference resistance that does not change oscillation frequency according to temperature between the RS and CS terminals and a sensor that does change resistance values according to temperature between the TH and CS terminals. Then, oscillate them alternately. The difference in the counted value can be evaluated as the difference between the respective oscillation frequencies. Therefore, various sensor circuit such as a temperaturemeasuring circuit using a thermistor can be easily created, for example.

The configuration of the A/D converter is shown in Figure 4.8.1.

Configuration of A/D converter Connect a reference resistance that only slightly changes resistance values according to environmental conditions between the oscillating I/O terminals RS and CS. Connect a sensor that changes resistance values between the TH and CS terminals. Furthermore, by connecting a condenser between the CS and Vss, a CR oscillation circuit is completed.

Operation of A/D converter

This A/D converter performs CR oscillation using one of the two resistances connected to external devices. Their oscillation frequency serves as a clock from which the oscillation frequency is counted. Difference in counted oscillation frequency can be evaluated in terms of the difference between the respective resistance values. Measurement results can be obtained from the changes in resistance values after correcting the difference according to the program.

(1) External resistances and condenser

Connect a sensor (a variable resistance element such as a thermistor) between the TH1/TH2 and CS terminals. Next, set the reference value of the item to be measured (e.g. reference temperature in the case of temperature measurement) and connect the reference resistance equivalent to the sensor resistance value at the above reference value between the RS and CS terminals. An element that does not change due to temperature or other environmental conditions must be used as the reference resistance.

Connect an oscillating condenser that is used for CR oscillation of both the reference resistance and the sensor between the CS and VSS terminals.

(2) Oscillation circuit

The CR oscillation circuit is designed so that either the reference resistance side or the sensor side can be operated independently by the oscillation control circuit. A/D conversion begins when "1" is written in the ADRUN register (0F1H D0). At the same time, the oscillation circuit also turns on. At first, the circuit of the reference resistance side (RS) is operated by the oscillation control circuit. Then, the circuit of the sensor side (TH1 or TH2) turns on when counting by the oscillation clock of the reference resistance is terminated.

TH1 or TH2 is controlled by the CHTH register (0F1H D3). Each circuit performs the same oscillating operation as follows (in this example, CHTH = "0", TH1 is selected): The Tr1 (Tr2) turns on first, and the condenser connected between the CS and Vss terminals is charged through the reference resistance (sensor). If the voltage level of the CS terminal decreases, the Tr1 (Tr2) turns off and the Tr3 turns on. As a result, the condenser becomes discharged, and oscillation is performed according to CR time constant. The time constant changes as the sensor resistance value fluctuates, producing a difference from the oscillation frequency of the reference resistance.

Oscillation waveforms are shaped by the Schmitt trigger and transmitted to counter. The clock transmitted to the counter is also output from the ADOUT terminal. As a result, oscillation frequency can be identified by the oscilloscope. Since this monitor has no effect on oscillation frequency, it can be used to adjust CR oscillation frequency.

Oscillation waveforms and waveforms output from the ADOUT terminal are shown in Figure 4.8.2.

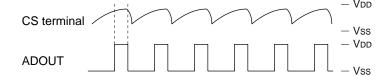


Fig. 4.8.2 Oscillation waveforms

(3) Counter

The A/D converter incorporates two types of 16-bit counters. One is the up-counter C0-C15 that counts the aforementioned oscillation clock, and the other is up/down counter TC0-TC15 that counts the internal clock for reference counting. Each counter permits reading and writing on a 4-bit basis.

The input unit of the up/down counter TC0-TC15 incorporates a multiplying circuit so that either the OSC1 clock (Typ. 32.768 kHz) or its multiplication clock (Typ. 65.536 kHz) can be selected as an input clock.

When A/D conversion is initiated by the ADRUN register, oscillation by the reference resistance begins first, and the up-counter C0–C15 starts counting up according to the oscillation clock. At the same time, the up/down counter TC0–TC15 starts counting up.

Timing in starting oscillation and starting counting up are shown in Figure 4.8.3.

The up-counter becomes ENABLE at the falling edge of the first clock after CR oscillation is initiated and starts counting up from the falling edge of the next clock. The up/down counter becomes ENABLE at the falling edge of the internal clock which is input immediately after the first CR oscillation clock has fallen. Then, it starts counting up from the falling edge of the next internal clock.

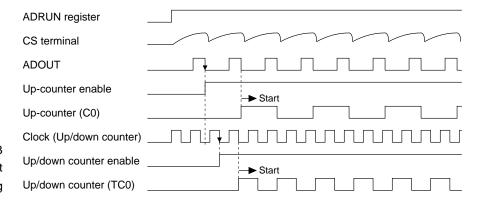


Fig. 4.8.3 Counting up start timing

48

If the up-counter C0–C15 becomes "0000H" due to overflow, the sensor side of the oscillation circuit turns on, and the up-counter starts counting up according to the oscillation clock on the sensor side. The up/down counter TC0-TC15 shifts to the counting-down mode at this point and starts counting down from the value measured as a result of oscillation by the reference resistance.

Timing in starting counting when oscillation is switched, is same as Figure 4.8.3.

When the up/down counter TC0–TC15 has counted down to "0000H", the counting operation of both counters and CR oscillation stops, and an interrupt occurs. At the same time, the ADRUN register is set to "0", and the A/D converter circuit stops operation completely.

The sensor is oscillated for the same period of time as the reference resistance is oscillated after the up/down counter TC0–TC15 is set to "0000H" prior to A/D conversion. Therefore, the difference in oscillation frequency can be measured from the values counted by the up-counter C0–C15.

Since the reference resistance is oscillated until the upcounter C0-C15 overflows, an appropriate initial value needs to be set before A/D conversion is started. If a smaller initial value is set, a longer counting period is possible, thereby ensuring more accurate detection. Likewise, if the input clock of the up/down counter TC0-TC15 is set at 65 kHz, the degree of precision is reduced. However, since CR oscillation frequency is normally set lower than the clock frequency of the up/down counter TC0-TC15 to ensure accurate measurement, the up/ down counter TC0-TC15 may overflow while counting the oscillation frequency of the reference resistance. If an overflow occurs, CR oscillation and A/D conversion is terminated immediately. Also in such cases, the up/ down counter indicates "0000H", and interrupt occurs. However, it is impossible to judge whether the interrupt has occurred due to an overflow or normal termination. Note that correct measurement is impossible if an overflow occurs. The initial value to be set depends on the measurable range by the sensor or where to set the reference resistance value within that range. The initial value must be set taking the above into consideration.

Convert the initial value into a complement (value subtracted from 0000H) before setting it on the up-counter C0–C15. Since the data output from the up-counter C0–C15 after A/D conversion matches data detected by the sensor, process the difference between that value and the initial value before it is converted into a complement according to the program and calculate the target value. The above operations are shown in Figure 4.8.4.

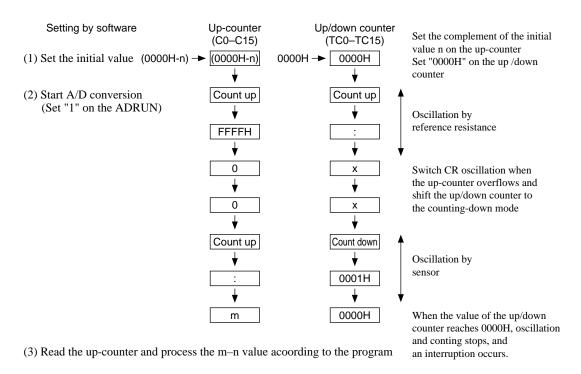


Fig. 4.8.4 Sequence of A/D conversion

- Note Before setting "1" to ADRUN, an input channel must be selected from TH1 and TH2 (TH1 by default).
 - Set the initial value of the up-counter C0–C15 taking into account the measurable range and the overflow of the up/down counter TC0–TC15.
 - If the up/down counter TC0-TC15 is measured after A/D conversion, it may not indicate "0000H". This is not due to incorrect timing in terminating A/D conversion but because the counting down clock is input after the control signal is output to the up-counter to terminate counting.

Interrupt function

The A/D converter has a function which allows interrupt to occur after A/D conversion.

When the up/down counter TC0-TC15 is counted down to "0000H", both counters stop counting. The interrupt factor flag IAD is set to "1" at the falling edge of the next clock. If the up/down counter TC0-TC15 overflow during counting-up operation, the interrupt factor flag is set to "1" at the rising edge of the clock immediately after the counter reaches "0000H".

This interrupt factor allows masking by the interrupt mask register EIAD. If the EIAD is set at "1", an interrupt occurs in the CPU. If the EIAD is set at "0", the interrupt factor flag is set to "1". However, no interrupt will occur in the CPU. The interrupt factor flag is reset to "0" by a reading operation

Timing of interrupt by the A/D converter is shown in Figure 4.8.5.

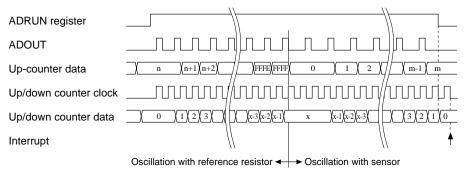


Fig. 4.8.5 Timing of A/D converter interrupt

Usage example of the A/D converter

Temperature measurement is possible with the A/D converter in which a thermistor is used as a sensor. Elements to be connected and counter setting in the case of temperature measurement are as follows:

Example: Temperature measurement at -20°C to 70°C

Reference resistance 49.8 k Ω Thermistor 50 k Ω Oscillating condenser 2,200 pF

When the above elements are connected, the oscillation frequency of the reference resistance becomes about 10 kHz, and the oscillation frequency of the thermistor varies within the range of about 1 kHz to 50 kHz at -20°C to 70°C. Reference resistance is adjusted to the thermistor resistance value at 25° C.

In addition, Figure 4.8.6 indicates the resistance and oscillation frequency ratio TYP at the time of A/D conversion.

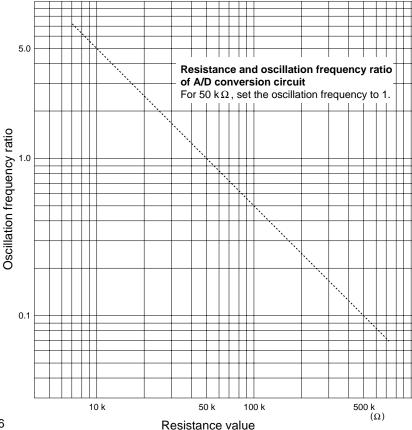


Fig. 4.8.6 Resistance and oscillation frequency ratio

Control of A/D converter

Table 4.8.2 shows the A/D converter control bits and their addresses.

Table 4.8.2 Control bits of clock timer

Address		Reg	ister						. Comment	
Address	D3	D2	D1	D0	Name	Init *1	1	0		
	TC3	TC2	TC1	TC0	TC3	- *3	1	0	Up/down counter data TC3	
0E4H	.00	. 02			TC2	- *3	1	0	Up/down counter data TC2	
02		R	W		TC1	- *3	1	0	Up/down counter data TC1	
					TC0	- *3	1	0	Up/down counter data TC0 (LSB)	
	TC7	TC6	TC5	TC4	TC7	- *3	1	0	Up/down counter data TC7	
0E5H					TC6	- *3	1	0	Up/down counter data TC6	
02011		R	W		TC5	- *3	1	0	Up/down counter data TC5	
					TC4	- *3	1	0	Up/down counter data TC4	
	TC11	TC10	TC9	TC8	TC11	- *3	1	0	Up/down counter data TC11	
0E6H					TC10	- *3	1	0	Up/down counter data TC10	
020		R	W		TC9	- *3	1	0	Up/down counter data TC9	
		1			TC8	- *3	1	0	Up/down counter data TC8	
	TC15	TC14	TC13	TC12	TC15	- *3	1	0	Up/down counter data TC15 (MSB)	
0E7H					TC14	- *3	1	0	Up/down counter data TC14	
02		R	W		TC13	- *3	1	0	Up/down counter data TC13	
					TC12	- *3	1	0	Up/down counter data TC12	
	C3	C2	C1	C0	C3	- *3	1	0	Up-counter data C3	
0F5H					C2	- *3	1	0	Up-counter data C2	
0. 0		R	W		C1	- *3	1	0	Up-counter data C1	
					C0	- *3	1	0	Up-counter data C0 (LSB)	
	C7	C6	C5	C4	C7	- *3	1	0	Up-counter data C7	
0F6H	_				C6	- *3	1	0	Up-counter data C6	
0. 0		R	W		C5	- *3	1	0	Up-counter data C5	
					C4	- *3	1	0	Up-counter data C4	
	C11	C10	C9	C8	C11	- *3	1	0	Up-counter data C11	
0F7H					C10	- *3	1	0	Up-counter data C10	
		R	W		C9	- *3	1	0	Up-counter data C9	
		ı	ı	1	C8	- *3	1	0	Up-counter data C8	
	C15	C14	C13	C12	C15	- *3	1	0	Up-counter data C15 (MSB)	
0F8H					C14	- *3	1	0	Up-counter data C14	
		R	/W		C13	- *3	1	0	Up-counter data C13	
		1	ı		C12	- *3	1	0	Up-counter data C12	
	CHTH	0	0	ADRUN	CHTH	0	TH2	TH1	A/D channel selection	
0F1H					0					*5
	R/W		R	R/W	0		.	0.		*5
			l		ADRUN	0	Start	Stop	A/D conversion Start/Stop	
	0	0	0	ADCLK	0					*5
0FEH					0					*5
		R		R/W	0		CE Idla	20 141=	A /D =1 = 1 = -1 = +1 = + (5 1-11-/22 1-11-	*5
		I	I		ADCLK	0	65 kHz	32 kHz	A/D clock selection 65 kHz/32 kHz	
	0	0	0	EIAD	0					*5
0ECH					0					*5 *5
		R		R/W	0		Enchia	Monk	Interment mostly resistant (A/D)	*5
		1	1		EIAD	0	Enable	Mask	Interrupt mask register (A/D)	*5
	0	0	0	IAD	0					
0F0H				L	0					*5
			R		0		Vaa	No	Interment factor floo (A/D)	*5 *4
					IAD	0	Yes	No	Interrupt factor flag (A/D)	*4

^{*1} Initial value following initial reset

^{*2} Not set in the circuit

^{*3} Undefined

^{*4} Reset (0) immediately after being read

^{*5} Always "0" when being read

^{*6} Refer to main manual

TC0-TC15 Up/down counter (0E4H-0E7H)

Writing and reading is possible on a 4-bit basis by the up/down counter that is used to adjust the CR oscillation time between the reference resistance and the variable resistance elements.

The up/down counter counts up during oscillation of the reference resistance and counts down from the value it reached when counting up to "0000H" during oscillation of the sensor.

"0000H" needs to be entered in the counter prior to A/D conversion in order to adjust the counting time of both counts.

After an initial reset, data in this counter become indefinite.

C0–C15 Up-counter (0F5H–0F8H)

This counter counts up according to the CR oscillation clock. It permits writing and reading on a 4-bit basis. The complement of the number of clocks to be counted by the oscillation of the reference resistance, must be entered in this counter prior to A/D conversion.

If A/D conversion is initiated, the counter counts up from the set initial value, first according to the oscillation clock of the reference resistance. When the counter reaches "0000H" due to overflow, the oscillation of the reference resistance stops, and the sensor starts oscillating. The counter continues counting according to the sensor oscillation clock. Counting time during the oscillation of the reference resistance is calculated by the up/down counter TC0-TC15. Upcounter C0-C15 stops counting when the same period of time elapses. Difference from the reference resistance can be evaluated from the value indicated by the counter when it stops. Calculate the target value by processing the above difference according to the program.

Measurable range and the overflow of the up/down counter TC0-TC15 must be taken into account when setting an initial value to be entered prior to A/D conversion.

After an initial reset, data in this counter become indefinite.

54

ADCLK Input clock selection (0FEH D0)

Select the input clock of the up/down counter TC0-TC15.

When "1" is written: 65 kHz When "0" is written: 32 kHz Reading: Valid

Select the output clock of the multiplying circuit for the counting operation of the up/down counter TC0–TC15. When "1" is written in the ADCLK, 65 kHz, a multitude of the OSC1 clock is selected. When "0" is written, the OSC1 clock is selected at 32 kHz.

If 65 kHz is selected, A/D conversion becomes more accurate. However, the initial value must be set on the upcounter C0–C15 so that the up/down counter TC0–TC15 will not overflow while CR oscillation is being counted. After an initial reset, ADCLK is set to "0".

ADRUN A/D conversion START/STOP (0F1H D0)

Start A/D conversion.

When "1" is written: A/D conversion starts
When "0" is written: A/D conversion stops

Reading: Valid

When "1" is written in the ADRUN, A/D conversion begins. The register remains at "1" during A/D conversion and is set to "0" when A/D conversion is terminated.

When "0" is written in the ADRUN during A/D conversion, A/D conversion is paused.

ADRUN is set to "0" at initial reset, when the up/down counter overflows or when measurement is finished.

CHTH A/D channel selection (0F1H D3)

Select an A/D converter channel.

When "1" is written: TH2 is selected When "0" is written: TH1 is selected

Reading: Valid

Before running the A/D converter, either TH1 or TH2 must be selected as an input channel.

After an initial reset, CHTH is set to "0".

EIAD Interrupt mask register (0ECH D0)

Select whether to mask interrupt with the A/D converter.

When "1" is written: Enable
When "0" is written: Mask
Reading: Valid

The A/D converter interrupt is permitted when "1" is written in the EIAD. When "0" is written, interrupt is masked. After an initial reset, this register is set to "0".

IAD Interrupt factor flag (0F0H D0)

This flag indicates interrupt caused by the A/D converter.

When "1" is read: Interrupt has occurred
When "0" is read: Interrupt has not occurred
Writing: Invalid

IAD is set to "1" when A/D conversion is terminated (when the up/down counter counted up or down to "0000H"). From the status of this flag, the software can decide whether an A/D converter interrupt has occurred.

This flag is reset when the software has read it.

Reading of interrupt factor flag is available at EI, but be careful in the following cases.

If the interrupt mask register value corresponding to the interrupt factor flag to be read is set to "1", an interrupt request will be generated by the interrupt factor flag set timing, or an interrupt request will not be generated. After an initial reset, this flag is set to "0".

4.9 Heavy Load Protection Function

Operation of heavy load protection function

The S1C60N05 Series has a heavy load protection function for when the battery load becomes heavy and the supply voltage drops, such as when an external buzzer sounds or an external lamp lights. This function works in the heavy load protection mode.

The normal mode changes to the heavy load protection mode in the following case:

 When the software changes the mode to the heavy load protection mode (HLMOD = "1")

In the heavy load protection mode, the internally regulated voltage is switched to the high-stability mode from the low current consumption mode. Consequently, more current is consumed in the heavy load protection mode than in the normal mode. Unless necessary, do not select the heavy load protection mode with the software.

Control of heavy load protection function

Table 4.9.1 shows the control bits and their addresses for the heavy load protection function.

Table 4.9.1 Control bits for heavy load protection function

Addross	Address Register							Comment	
Address	D3	D2 D1 D0			Name	Init *1	1	0	Comment
	HLMOD	0	0	0	HLMOD	0	Heavy	Normal	Heavy load protection mode register
0FAH	TILIVIOD	O	0	U	0				*5
UFAH	R/W		D		0				*5
	IN/VV	К			0				*5

- *1 Initial value following initial reset
- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Always "0" when being read
- *6 Refer to main manual

HLMOD Heavy load protection mode on/off (0FAH D3)

When "1" is written: Heavy load protection mode on When "0" is written: Heavy load protection mode off

Reading: Valid

When HLMOD is set to "1", the IC enters the heavy load protection mode.

In the heavy load protection mode, the consumed current becomes larger. Unless necessary, do not select the heavy load protection mode with the software.

S1C60N05 TECHNICAL MANUAL

4.10 Interrupt and HALT

The S1C60N05 Series provides the following interrupt settings, each of which is maskable.

External interrupt: Input interrupt (one)
Internal interrupt: Timer interrupt (one)

A/D converter interrupt (one)

To enable interrupts, the interrupt flag must be set to "1" (EI) and the necessary related interrupt mask registers must be set to "1" (enable). When an interrupt occurs, the interrupt flag is automatically reset to "0" (DI) and interrupts after that are inhibited.

When a HALT instruction is input, the CPU operating clock stops and the CPU enters the halt state. The CPU is reactivated from the halt state when an interrupt request occurs. Figure 4.10.1 shows the configuration of the interrupt circuit.

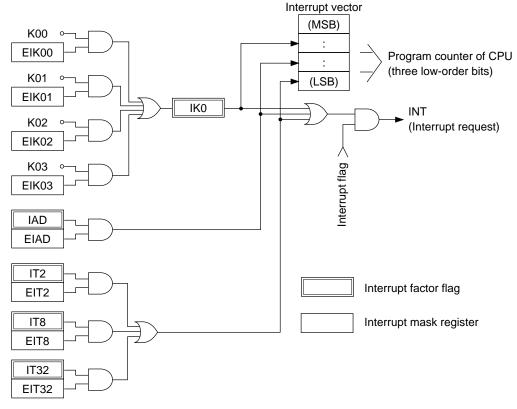


Fig. 4.10.1 Configuration of interrupt circuit

Interrupt factors

Table 4.10.1 shows the factors that generate interrupt requests.

The interrupt factor flags are set to "1" depending on the corresponding interrupt factors.

The CPU is interrupted when the following two conditions occur and an interrupt factor flag is set to "1".

- The corresponding mask register is "1" (enabled)
- The interrupt flag is "1" (EI)

The interrupt factor flag is a read-only register, but can be reset to "0" when the register data is read.

After an initial reset, the interrupt factor flags are reset to "0".

Note Reading of interrupt factor flags is available at EI, but be careful in the following cases.

If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to "1", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated. Be very careful when interrupt factor flags are in the same address.

Table 4.10.1 Interrupt factors

Interrupt factor	Interru	pt factor flag
Colck timer 2 Hz falling edge	IT2	(0EFH D2)
Colck timer 8 Hz falling edge	IT8	(0EFH D1)
Colck timer 32 Hz falling edge	IT32	(0EFH D0)
A/D converter	LAD	(0E011 D0)
A/D conversion completion	IAD	(0F0H D0)
Input data (K00–K03)	IIZO	(OEDILDO)
Rising edge	IK0	(0EDH D0)

Specific masks and factor flags for interrupt

The interrupt factor flags can be masked by the corresponding interrupt mask registers. The interrupt mask registers are read/write registers. They are enabled (interrupt enabled) when "1" is written to them, and masked (interrupt disabled) when "0" is written to them. After an initial reset, the interrupt mask register is set to "0".

Table 4.10.2 shows the correspondence between interrupt mask registers and interrupt factor flags.

Table 4.10.2 Interrupt mask registers and interrupt factor flags

Interrupt r	nask register	Interru	pt factor flag
EIT2	(0EBH D2)	IT2	(0EFH D2)
EIT8	(0EBH D1)	IT8	(0EFH D1)
EIT32	(0EBH D0)	IT32	(0EFH D0)
EIAD	(0ECH D0)	IAD	(0F0H D0)
EIK03*	(0E8H D3)		
EIK02*	(0E8H D2)	IK0	(0EDH D0)
EIK01*	(0E8H D1)	1KU	(UEDH DU)
EIK00*	(0E8H D0)		

^{*} There is an interrupt mask register for each input port pin.

Interrupt vectors

When an interrupt request is input to the CPU, the CPU begins interrupt processing. After the program being executed is suspended, interrupt processing is executed in the following order:

- ① The address data (value of the program counter) of the program step to be executed next is saved on the stack (RAM).
- ② The interrupt request causes the value of the interrupt vector (page 1, 01H–07H) to be loaded into the program counter.
- ③ The program at the specified address is executed (execution of interrupt processing routine).

Note The processing in steps 1 and 2, above, takes 12 cycles of the CPU system clock.

Control of interrupt

Table 4.10.3 shows the interrupt control bits and their addresses.

Table 4.10.3 Interrupt control bits

Address		Reg	ister						Comment	
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment	
	EIK03	EIK02	EIK01	EIK00	EIK03	0	Enable	Mask	Interrupt mask register K03	
0E8H	LINUS	LINUZ	LIKUI	LINOU	EIK02	0	Enable	Mask	Interrupt mask register K02	
UEOH		D	W		EIK01	0	Enable	Mask	Interrupt mask register K01	
		IX.	/ V V		EIK00	0	Enable	Mask	Interrupt mask register K00	
	0	EIT2	EIT8	EIT32	0					*5
0EBH	0	0 2112 2110 21102		LIIJZ	EIT2	0	Enable	Mask	Interrupt mask register (clock timer) 2 Hz	
OLBIT	R		R/W		EIT8	0	Enable	Mask	Interrupt mask register (clock timer) 8 Hz	
	1		10,11		EIT32	0	Enable	Mask	Interrupt mask register (clock timer) 32 Hz	
	0	0	0	EIAD	0					*5
0ECH		Ů		L 17 1.D	0					*5
OLOIT		R		R/W	0					*5
				10,44	EIAD	0	Enable	Mask	Interrupt mask register (A/D)	
	0	0	0	IK0	0					*5
0EDH			Ů		0					*5
OLDII			R		0					*5
					IK0	0	Yes	No	Interrupt factor flag (K00–K03)	*4
	0	IT2	IT8	IT32	0					*5
0EFH			110	1102	IT2	0	Yes	No	Interrupt factor flag (clock timer) 2 Hz	*4
OLITI			R		IT8	0	Yes	No	Interrupt factor flag (clock timer) 8 Hz	*4
	K			IT32	0	Yes	No	Interrupt factor flag (clock timer) 32 Hz	*4	
	0	0	0	IAD	0					*5
0F0H		Ů	Ů	1710	0					*5
01 011			R		0					*5
					IAD	0	Yes	No	Interrupt factor flag (A/D)	*4

- *1 Initial value following initial reset
- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Always "0" when being read
- *6 Refer to main manual

EIT32, EIT8, EIT2 Interrupt mask registers (0EBH D0-D2)

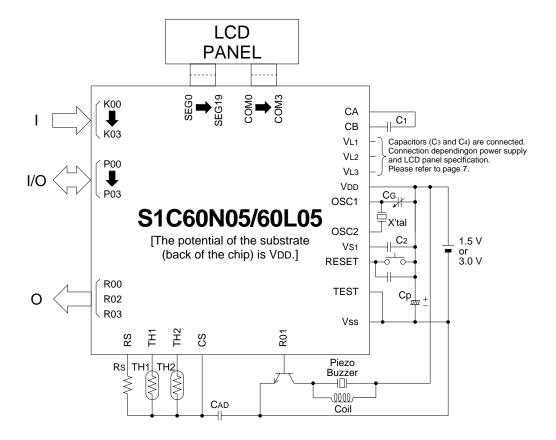
IT32, IT8, IT2 Interrupt factor flags (0EFH D0–D2)

See 4.7, "Clock Timer".

EIAD Interrupt mask register (0ECH D0)

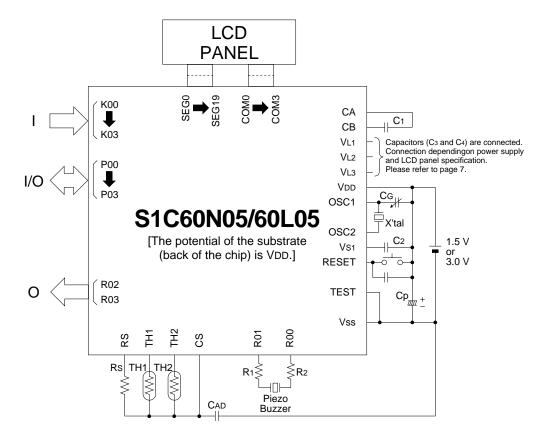
IAD Interrupt factor flag (0F0H D0)

See 4.8, "A/D Converter".


EIK00-EIK03 Interrupt mask registers (0E8H)

IKO Interrupt factor flag (0EDH D0)

See 4.3, "Input Ports".


CHAPTER 5 BASIC EXTERNAL WIRING DIAGRAM

(1) Piezo Buzzer Single Terminal Driving

X'tal	Crystal oscillator	32,768 Hz CI(MAX) = 35 kΩ
CG	Trimmer capacitor	5–25 pF
C1, C2, C3, C4	Capacitor	0.1 μF
Ср	Capacitor	3.3 μF
TH1, TH2	Thermistor	50 kΩ
Rs	Resistor	49.8 kΩ
CAD	Capacitor	2,200 pF

(2) Piezo Buzzer Direct Driving

X'tal	Crystal oscillator	32,768 Hz CI(MAX) = 35 kΩ
CG	Trimmer capacitor	5–25 pF
C1, C2, C3, C4	Capacitor	0.1 μF
Ср	Capacitor	3.3 μF
TH1, TH2	Thermistor	50 kΩ
Rs	Resistor	49.8 kΩ
R1, R2	Resistor	100 Ω
CAD	Capacitor	2,200 pF

CHAPTER 6 ELECTRICAL CHARACTERISTICS

6.1 Absolute Maximum Rating

S1C60N05

(VDD=0V)

Item	Symbol	Rated value	Unit
Power voltage	Vss	-5.0 to 0.5	V
Input voltage (1)	VI	Vss-0.3 to 0.5	V
Input voltage (2)	Viosc	Vss-0.3 to 0.5	V
Operating temperature	Topr	-20 to 70	°C
Storage temperature	Tstg	-65 to 150	°C
Soldering temperature / Time	Tsol	260°C, 10sec (lead section)	-
Allowable dissipation *1	PD	250	mW

^{*1} In case of QFP6-60 pin plastic package

S1C60L05

(VDD=0V)

Item	Symbol	Rated value	Unit
Power voltage	Vss	-5.0 to 0.5	V
Input voltage (1)	VI	Vss-0.3 to 0.5	V
Input voltage (2)	Viosc	Vss-0.3 to 0.5	V
Operating temperature	Topr	-20 to 70	°C
Storage temperature	Tstg	-65 to 150	°C
Soldering temperature / Time	Tsol	260°C, 10sec (lead section)	_
Allowable dissipation *1	PD	250	mW

^{*1} In case of QFP6-60 pin plastic package

6.2 Recommended Operating Conditions

S1C60N05

 $(Ta=-20 \text{ to } 70^{\circ}C)$

Item	Symbol	Condition	Min	Тур	Max	Unit
Power voltage	Vss	VDD=0V	-3.5	-3.0	-1.8	V
Oscillation frequency	fosc1	Crystal oscillation		32,768		Hz
	fosc2	CR oscillation, R=420kΩ		65	80	kHz
Booster capacitor	C1		0.1			μF
Capacitor between VDD and VS1	C2		0.1			μF

S1C60L05

 $(Ta=-20 \text{ to } 70^{\circ}C)$

Item	Symbol	Condition	Min	Тур	Max	Unit
Power voltage	Vss	VDD=0V *1	-2.0	-1.5	-1.2	V
Oscillation frequency	fosc1	Crystal oscillation		32,768		Hz
	fosc2	CR oscillation, R=420kΩ		65	80	kHz
Booster capacitor	C1		0.1			μF
Capacitor between VDD and VS1	C2		0.1			μF

^{*1} When there is no software control during CR oscillation or crystal oscillation.

6.3 DC Characteristics

S1C60N05

Unless otherwise specified

VDD=0 V, VSS=-3.0 V, fosc=32,768 Hz, Ta=25°C, VS1, VL1, VL2 and VL3 are internal voltages, and C1=C2=0.1 μF

Item	Symbol	Condition	n	Min	Тур	Max	Unit
High level input voltage (1)	VIH1		K00-K03, P00-P03	0.2•Vss		0	V
High level input voltage (2)	VIH2		RESET, TEST	0.15•Vss		0	V
Low level input voltage (1)	VIL1		K00-K03, P00-P03	Vss		0.8•Vss	V
Low level input voltage (2)	VIL2		RESET, TEST	Vss		0.85•Vss	V
High level input current (1)	IIH1	VIH1=0V	K00-K03, P00-P03	0		0.5	μΑ
		Without pull down resistor					
High level input current (2)	IIH2	VIH2=0V	K00-K03	10		40	μΑ
		With pull down resistor					
High level input current (3)	IIH3	VIH3=0V	P00-P03	30		100	μΑ
		With pull down resistor	RESET, TEST				
Low level input current	IIL	VIL=VSS	K00-K03, P00-P03	-0.5		0	μΑ
			RESET, TEST				
High level output current (1)	Іоні	Vohi=0.1•Vss	R02, R03, P00-P03			-1.0	mA
High level output current (2)	Іон2	Voh2=0.1•Vss	R00, R01			-1.0	mA
		(built-in protection resistance)					
High level output current (3)	Іон3	Voh3=-1.0V	ADOUT			-1.0	mA
Low level output current (1)	IOL1	Vol1=0.9•Vss	R02, R03, P00-P03	3.0			mA
Low level output current (2)	IOL2	Vol2=0.9•Vss	R00, R01	3.0			mA
		(built-in protection resistance)					
Low level output current (3)	IOL3	Vol3=-2.0V	ADOUT	3.0			mA
Common output current	Іон4	Voh4=-0.05V	COM0-COM3			-3	μΑ
	IOL4	Vol4=Vl3+0.05V		3			μΑ
Segment output current	Іон5	Voh5=-0.05V	SEG0-SEG19			-3	μΑ
(during LCD output)	IOL5	Vol5=Vl3+0.05V		3			μΑ
Segment output current	Іон6	Voh6=0.1•Vss	SEG0-SEG19			-300	μА
(during DC output)	IOL6	Vol6=0.9•Vss		300			μΑ

S1C60L05

Unless otherwise specified

VDD=0 V, Vss=-1.5 V, fosc=32,768 Hz, Ta=25°C, Vs1, Vl1, Vl2 and Vl3 are internal voltages, and C1=C2=0.1 μF

Item	Symbol	Condition	n	Min	Тур	Max	Unit
High level input voltage (1)	VIH1		K00-K03, P00-P03	0.2•Vss		0	V
High level input voltage (2)	VIH2		RESET, TEST	0.15•Vss		0	V
Low level input voltage (1)	VIL1		K00-K03, P00-P03	Vss		0.8•Vss	V
Low level input voltage (2)	VIL2		RESET, TEST	Vss		0.85•Vss	V
High level input current (1)	IIH1	VIH1=0V	K00-K03, P00-P03	0		0.5	μА
		Without pull down resistor					
High level input current (2)	IIH2	VIH2=0V	K00-K03	5		20	μA
		With pull down resistor					
High level input current (3)	IIH3	VIH3=0V	P00-P03	9.0		100	μA
		With pull down resistor	RESET, TEST				
Low level input current	IIL	VIL=VSS	K00-K03, P00-P03	-0.5		0	μA
			RESET, TEST				
High level output current (1)	Іоні	Voh1=0.1•Vss	R02, R03, P00-P03			-200	μА
High level output current (2)	Іон2	Voh2=0.1•Vss	R00, R01			-200	μА
		(built-in protection resistance)					
High level output current (3)	Іон3	Voh3=-0.5V	ADOUT			-200	μА
Low level output current (1)	Ioli	Vol1=0.9•Vss	R02, R03, P00–P03	700			μA
Low level output current (2)	IOL2	Vol2=0.9•Vss	R00, R01	700			μА
		(built-in protection resistance)					
Low level output current (3)	IOL3	Vol3=-1.0V	ADOUT	700			μА
Common output current	Іон4	VoH4=-0.05V	COM0-COM3			-3	μА
	IOL4	Vol4=Vl3+0.05V		3			μА
Segment output current	Іон5	Voh5=-0.05V	SEG0-SEG19			-3	μА
(during LCD output)	IOL5	Vol5=Vl3+0.05V		3			μА
Segment output current	Іон6	Voh6=0.1•Vss	SEG0-SEG19			-100	μА
(during DC output)	IOL6	Vol6=0.9•Vss		130			μΑ

6.4 Analog Circuit Characteristics and Power Current Consumption

S1C60N05 (Normal Operating Mode)

Unless otherwise specified

VDD=0 V, VSS=-3.0 V, fosc=32,768 Hz, Ta=25°C, Cg=25 pF, VS1, VL1, VL2 and VL3 are internal voltages, and C1=C2=0.1 μ F

(During A/D conversion: Rs=49.8 k Ω , TH=50 k Ω , CAD=2,200 pF)

Item	Symbol	Condition		Min	Тур	Max	Unit
Internal voltage	V _{L1}	Connect $1M\Omega$ load resistor between VDD and VL1 1				1/2•VL2	V
		(without panel load)				×0.9	
	VL2	Connect 1MΩ load resistor between VDD and VL2			Vss		V
		(without panel load)					
	VL3	Connect 1MΩ load resistor between VDD and VL3 3/		3/2•VL2		3/2•VL2	V
		(without panel load)		-0.1		×0.9	
Power current	IOP	During HALT			0.8	1.4	μA
consumption		During execution	Without panel load		1.5	5.0	μΑ
		During A/D conversion (HALT)			30	40	μΑ

S1C60N05 (Heavy Load Protection Mode)

Unless otherwise specified

VDD=0 V, VSS=-3.0 V, fosc=32,768 Hz, Ta=25°C, Cg=25 pF, VS1, VL1, VL2 and VL3 are internal voltages, and C1=C2=0.1 μF

(During A/D conversion: Rs=49.8 k Ω , TH=50 k Ω , CAD=2,200 pF)

Item	Symbol	Condition		Min	Тур	Max	Unit
Internal voltage	VL1	Connect $1M\Omega$ load resistor between VDD and VL1				1/2•VL2	V
		(without panel load)	-0.1		×0.85		
	VL2	Connect $1M\Omega$ load resistor be		Vss		V	
		(without panel load)	without panel load)				
	VL3	Connect $1M\Omega$ load resistor be	tween VDD and VL3	3/2•VL2		3/2•VL2	V
		(without panel load)		-0.1		×0.85	
Power current	Іор	During HALT			2.0	5.5	μΑ
consumption		During execution	Without panel load		5.5	10.0	μΑ
		During A/D conversion (HALT)			31	41.5	μΑ

S1C60L05 (Normal Operating Mode)

Unless otherwise specified

VDD=0 V, VSS=-1.5 V, fosc=32,768 Hz, Ta=25°C, Cg=25 pF, VS1, VL1, VL2 and VL3 are internal voltages, and C1=C2=0.1 μF

(During A/D conversion: Rs=49.8 k Ω , TH=50 k Ω , Cad=2,200 pF)

Item	Symbol	Condition		Min	Тур	Max	Unit
Internal voltage	V _{L1}	Connect $1M\Omega$ load resistor be	tween VDD and VL1		Vss		V
		(without panel load)					
	VL2	Connect $1M\Omega$ load resistor be	tween VDD and VL2	2•VL1		2•VL1	V
		(without panel load)		-0.1		×0.9	
	VL3	Connect $1M\Omega$ load resistor be	tween VDD and VL3	3•VL1		3•VL1	V
		(without panel load)		-0.1		$\times 0.9$	
Power current	Іор	During HALT			0.8	1.4	μA
consumption		During execution	Without panel load		1.5	5.0	μA
		During A/D conversion (HALT)			30	40	μА

S1C60L05 (Heavy Load Protection Mode)

Unless otherwise specified

VDD=0 V, Vss=-1.5 V, fosc=32,768 Hz, Ta=25°C, Cg=25 pF, Vs1, Vl1, Vl2 and Vl3 are internal voltages, and C1=C2=0.1 μF

(During A/D conversion: Rs=49.8 k Ω , TH=50 k Ω , CAD=2,200 pF)

Item	Symbol	Condition		Min	Тур	Max	Unit
Internal voltage	V _{L1}	Connect $1M\Omega$ load resistor be	tween VDD and VL1		Vss		V
		(without panel load)	(without panel load)				
	VL2	Connect 1MΩ load resistor between VDD and VL2		2•VL1		2•VL1	V
		(without panel load)				×0.85	
	VL3			3∙VL1		3•VL1	V
		(without panel load)		-0.1		×0.85	
Power current	IOP	During HALT			2.0	5.5	μA
consumption		During execution	Without panel load		5.5	10.0	μΑ
		During A/D conversion (HALT)			31	41.5	μΑ

S1C60N05 TECHNICAL MANUAL

S1C60N05 (CR, Normal Operating Mode)

Unless otherwise specified

VDD=0 V, VSS=-3.0 V, fosc=65 kHz, Ta=25°C, Cg=25 pF, VS1, VL1, VL2 and VL3 are internal voltages, and C1=C2=0.1 μF , Recommended external resistance for CR oscillation = 420 $k\Omega$

(During A/D conversion: RS=49.8 k Ω , TH=50 k Ω , CAD=2,200 pF)

Item	Symbol	Condition		Min	Тур	Max	Unit
Internal voltage	V _{L1}	Connect $1M\Omega$ load resistor be	tween VDD and VL1	1/2•VL2		1/2•VL2	V
		(without panel load)	-0.1		×0.9		
	VL2	Connect $1M\Omega$ load resistor be		Vss		V	
		(without panel load)					
	VL3	Connect $1M\Omega$ load resistor be	tween VDD and VL3	3/2•VL2		3/2•VL2	V
		(without panel load)		-0.1		×0.9	
Power current	IOP	During HALT			8.0	15.0	μΑ
consumption		During execution	Without panel load		15.0	20.0	μΑ
		During A/D conversion (HALT)			37	52.5	μΑ

S1C60N05 (CR, Heavy Load Protection Mode)

Unless otherwise specified

VDD=0 V, VSS=-3.0 V, fosc=65 kHz, Ta=25°C, Cg=25 pF, VS1, VL1, VL2 and VL3 are internal voltages, and C1=C2=0.1 μF , Recommended external resistance for CR oscillation = 420 $k\Omega$

(During A/D conversion: RS=49.8 k Ω , TH=50 k Ω , CAD=2,200 pF)

Item	Symbol	Condition		Min	Тур	Max	Unit
Internal voltage	V _{L1}	Connect $1M\Omega$ load resistor be	tween VDD and VL1	1/2•VL2		1/2•VL2	V
		(without panel load)	(without panel load)			×0.85	
	VL2	Connect $1M\Omega$ load resistor be		Vss		V	
		(without panel load)					
	VL3	Connect $1M\Omega$ load resistor be	tween VDD and VL3	3/2•VL2		3/2•VL2	V
		(without panel load)		-0.1		×0.85	
Power current	IOP	During HALT			16.0	30.0	μΑ
consumption		During execution	Without panel load		30.0	40.0	μΑ
		During A/D conversion (HALT)			45	57.5	μΑ

S1C60L05 (CR, Normal Operating Mode)

Unless otherwise specified

VDD=0 V, VSS=-1.5 V, fosc=65 kHz, Ta=25°C, Cg=25 pF, VS1, VL1, VL2 and VL3 are internal voltages, and C1=C2=0.1 $\mu F,$ Recommended external resistance for CR oscillation = 420 $k\Omega$

(During A/D conversion: RS=49.8 k Ω , TH=50 k Ω , CAD=2,200 pF)

Item	Symbol	Condition			Тур	Max	Unit
Internal voltage	V _{L1}	Connect $1M\Omega$ load resistor between VDD and VL1			Vss		V
		(without panel load)	(without panel load)				
	VL2	Connect $1M\Omega$ load resistor be	2•VL1		2•VL1	V	
		(without panel load)				×0.9	
	VL3	Connect $1M\Omega$ load resistor be	tween VDD and VL3	3•VL1		3•VL1	V
		(without panel load)		-0.1		×0.9	
Power current	IOP	During HALT			8.0	15.0	μΑ
consumption		During execution	Without panel load		15.0	20.0	μΑ
		During A/D conversion (HALT)			37	52.5	μΑ

S1C60L05 (CR, Heavy Load Protection Mode)

Unless otherwise specified

VDD=0 V, VSS=-1.5 V, fosc=65 kHz, Ta=25°C, Cg=25 pF, VS1, VL1, VL2 and VL3 are internal voltages, and C1=C2=0.1 $\mu F,$ Recommended external resistance for CR oscillation = 420 $k\Omega$

(During A/D conversion: RS=49.8 k Ω , TH=50 k Ω , CAD=2,200 pF)

Item	Symbol	Condition			Тур	Max	Unit
Internal voltage	VL1	Connect 1MΩ load resistor between VDD and VL1			Vss		V
		(without panel load)	(without panel load)				
	VL2	Connect 1MΩ load resistor between VDD and VL2				2•VL1	V
		(without panel load)				×0.85	
	VL3	Connect $1M\Omega$ load resistor be	tween VDD and VL3	3•VL1		3•VL1	V
		(without panel load)		-0.1		×0.85	
Power current	IOP	During HALT			16.0	30.0	μΑ
consumption		During execution	Without panel load		30.0	40.0	μΑ
		During A/D conversion (HALT)			45	57.5	μΑ

6.5 Oscillation Characteristics

Oscillation characteristics will vary according to different conditions (components used, board pattern, etc.). Use the following characteristics are as reference values.

S1C60N05

Unless otherwise specified

VDD=0 V, VSS=-3.0 V, Crystal: Q13MC146, Cg=25 pF, CD=built-in, Ta=25°C

Item	Symbol	Condition	Min	Тур	Max	Unit
Oscillation start voltage	Vsta	tsta≤5sec	-1.8			V
	(Vss)					
Oscillation stop voltage	Vstp	tstp≤10sec	-1.8			V
	(Vss)					
Built-in capacity (drain)	CD	Including the parasitic capacity inside the IC		20		pF
Frequency voltage deviation	f/V	Vss=-1.8 to -3.5V			5	ppm
Frequency IC deviation	f/IC		-10		10	ppm
Frequency adjustment range	f/CG	CG=5-25pF	40			ppm
Higher harmonic oscillation	Vhho	CG=5pF			-3.6	V
start voltage	(Vss)					
Allowable leak resistance	Rleak	Between OSC1 and VDD,	200			ΜΩ
		and between Vss and OSC1				

S1C60L05

Unless otherwise specified

VDD=0 V, VSS=-1.5 V, Crystal: Q13MC146, Cg=25 pF, CD=built-in, Ta=25°C

Item	Symbol	Condition	Min	Тур	Max	Unit
Oscillation start voltage	Vsta	tsta≤5sec	-1.2			V
	(Vss)					
Oscillation stop voltage	Vstp	tstp≤10sec	-1.2			V
	(Vss)					
Built-in capacity (drain)	CD	Including the parasitic capacity inside the IC		20		pF
Frequency voltage deviation	f/V	Vss=-1.2 to -2.0V (-0.9)*1			5	ppm
Frequency IC deviation	f/IC		-10		10	ppm
Frequency adjustment range	f/CG	CG=5-25pF	40			ppm
Higher harmonic oscillation	Vhho	CG=5pF			-2.0	V
start voltage	(Vss)					
Allowable leak resistance	Rleak	Between OSC1 and VDD,	200			ΜΩ
		and between Vss and OSC1				

^{*1} Items enclosed in parentheses () are those used when operating at heavy load protection mode.

S1C60N05 (CR)

Unless otherwise specified

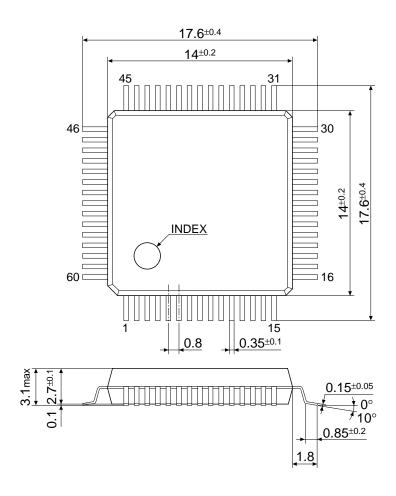
VDD=0 V, VSS=-3.0 V, RCR=480 $k\Omega$, Ta=25°C

Item	Symbol	Condition	Min	Тур	Max	Unit
Oscillation frequency dispersion	fosc		-20	65kHz	20	%
Oscillation start voltage	Vsta		-1.8			V
Oscillation start time	tsta	Vss=-1.8 to -3.5V		3		ms
Oscillation stop voltage	Vstp		-1.8			V

S1C60L05 (CR)

Unless otherwise specified

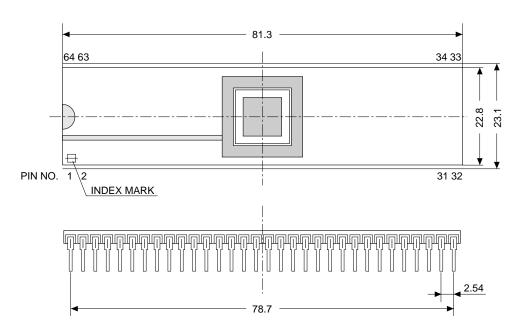
VDD=0 V, VSS=-1.5 V, RCR=480 $k\Omega$, Ta=25°C


Item	Symbol	Condition	Min	Тур	Max	Unit
Oscillation frequency dispersion	fosc		-20	65kHz	20	%
Oscillation start voltage	Vsta		-1.2			V
Oscillation start time	t sta	Vss=-1.2 to -2.0V		3		ms
Oscillation stop voltage	Vstp		-1.2			V

CHAPTER 7 PACKAGE

7.1 Plastic Package

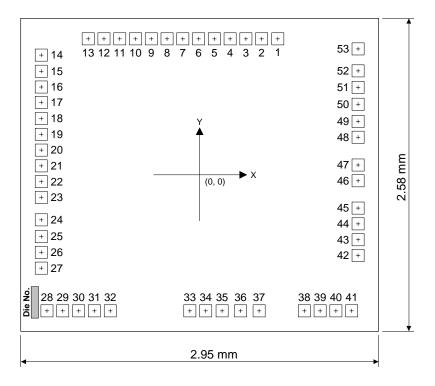
QFP6-60pin


(Unit: mm)

7.2 Ceramic Package for Test Samples

DIP-64pin

(Unit: mm)



No.	Pin name						
1	N.C.	17	OSC1	33	R02	49	SEG6
2	SEG17	18	OSC2	34	R03	50	SEG7
3	SEG18	19	Vs1	35	RS	51	SEG8
4	SEG19	20	P00	36	TH1	52	SEG9
5	COM0	21	P01	37	TH2	53	SEG10
6	COM1	22	P02	38	CS	54	SEG11
7	COM2	23	P03	39	N.C.	55	N.C.
8	COM3	24	N.C.	40	N.C.	56	N.C.
9	N.C.	25	N.C.	41	N.C.	57	TEST
10	VL3	26	N.C.	42	ADOUT	58	RESET
11	VL2	27	K00	43	SEG0	59	SEG12
12	VL1	28	K01	44	SEG1	60	SEG13
13	CA	29	K02	45	SEG2	61	SEG14
14	СВ	30	K03	46	SEG3	62	SEG15
15	Vss	31	R00	47	SEG4	63	SEG16
16	Vdd	32	R01	48	SEG5	64	N.C.

N.C. = No Connection

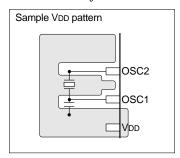
CHAPTER 8 PAD LAYOUT

8.1 Diagram of Pad Layout

8.2 Pad Coordinates

Pad No.	Pad name	Х	Υ	Pad No.	Pad name	Х	Υ
1	ADOUT	644	1,121	28	VL3	-1,259	-1,121
2	SEG0	511	1,121	29	VL2	-1,129	-1,121
3	SEG1	381	1,121	30	V _{L1}	-998	-1,121
4	SEG2	251	1,121	31	CA	-868	-1,121
5	SEG3	121	1,121	32	СВ	-737	-1,121
6	SEG4	-9	1,121	33	Vss	-81	-1,121
7	SEG5	-139	1,121	34	Vdd	50	-1,121
8	SEG6	-269	1,121	35	OSC1	185	-1,121
9	SEG7	-399	1,121	36	OSC2	337	-1,121
10	SEG8	-529	1,121	37	Vs1	490	-1,121
11	SEG9	-659	1,121	38	P00	863	-1,121
12	SEG10	-789	1,121	39	P01	993	-1,121
13	SEG11	-919	1,121	40	P02	1,123	-1,121
14	TEST	-1,306	987	41	P03	1,253	-1,121
15	RESET	-1,306	854	42	K00	1,306	-665
16	SEG12	-1,306	724	43	K01	1,306	-535
17	SEG13	-1,306	597	44	K02	1,306	-404
18	SEG14	-1,306	464	45	K03	1,306	-274
19	SEG15	-1,306	334	46	R00	1,306	-49
20	SEG16	-1,306	204	47	R01	1,306	81
21	SEG17	-1,306	74	48	R02	1,306	310
22	SEG18	-1,306	-56	49	R03	1,306	440
23	SEG19	-1,306	-186	50	RS	1,306	582
24	COM0	-1,306	-371	51	TH1	1,306	721
25	COM1	-1,306	-509	52	TH2	1,306	857
26	COM2	-1,306	-639	53	CS	1,306	1,038
27	COM3	-1,306	-769				

(Unit: µm)


78

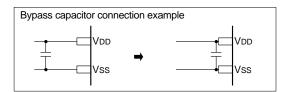
CHAPTER 9 PRECAUTIONS ON MOUNTING

Oscillation circuit

- Oscillation characteristics change depending on conditions (board pattern, components used, etc.).

 In particular, when a ceramic oscillator or crystal oscillator is used, use the oscillator manufacturer's recommended values for constants such as capacitance and resistance.
- Disturbances of the oscillation clock due to noise may cause a malfunction. Consider the following points to prevent this:
 - (1) Components which are connected to the OSC1 and OSC2 terminals, such as oscillators, resistors and capacitors, should be connected in the shortest line.
 - (2) As shown in the right hand figure, make a VDD pattern as large as possible at circumscription of the OSC1 and OSC2 terminals and the components connected to these terminals. Furthermore, do not use this VDD pattern for any purpose other than the oscillation system.

 In order to prevent unstable operation of the oscillation circuit due to current leak between OSC1 and Vss, please keep enough distance between OSC1 and Vss or other signals on the board pattern.

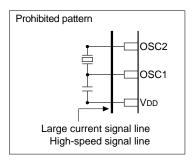

Reset circuit

- The power-on reset signal which is input to the RESET terminal changes depending on conditions (power rise time, components used, board pattern, etc.).
 - Decide the time constant of the capacitor and resistor after enough tests have been completed with the application product. When the built-in pull-down resistor is added to the RESET terminal by mask option, take into consideration dispersion of the resistance for setting the constant.
- In order to prevent any occurrences of unnecessary resetting caused by noise during operating, components such as capacitors and resistors should be connected to the RESET terminal in the shortest line.

Power supply circuit

- Sudden power supply variation due to noise may cause malfunction. Consider the following points to prevent this:
 - (1) The power supply should be connected to the VDD and VSS terminal with patterns as short and large as possible.

(2) When connecting between the VDD and Vss terminals with a bypass capacitor, the terminals should be connected as short as possible.


- (3) Components which are connected to the Vs1, VL1-VL3 terminals, such as capacitors and resistors, should be connected in the shortest line.

 In particular, the VL1-VL3 voltages affect the display quality.
- Do not connect anything to the VL1-VL3 terminals when the LCD driver is not used.

Arrangement of signal lines

- In order to prevent generation of electromagnetic induction noise caused by mutual inductance, do not arrange a large current signal line near the circuits that are sensitive to noise such as the oscillation unit.
- When a signal line is parallel with a high-speed line in long distance or intersects a high-speed line, noise may generated by mutual interference between the signals and it may cause a malfunction.

Do not arrange a high-speed signal line especially near circuits that are sensitive to noise such as the oscillation unit.

Precautions for visible radiation (when bare chip is mounted)

- Visible radiation causes semiconductor devices to change the electrical characteristics. It may cause this IC to malfunction.
 When developing products which use this IC, consider the following precautions to prevent malfunctions caused by visible radiations.
 - (1) Design the product and implement the IC on the board so that it is shielded from visible radiation in actual use.
 - (2) The inspection process of the product needs an environment that shields the IC from visible radiation.
 - (3) As well as the face of the IC, shield the back and side too.

Appendices

TECHNICAL INFORMATION

This chapter presents the information necessary for designing a thermometer using a Seiko Epson S1C60N05 and a Thermistor manufactured by Ishizuka Denshi Inc.

Appendix A

Design Steps for Designing Thermometer

This section describes the design steps for the thermometer using the S1C60N05 and the Thermistor.

Thermometer design steps

The following shows the design steps:

- (1) Obtain the external capacitor value and the oscillation frequency.
- (2) Obtain the initial value that is set to the up-counter of the A/D converter.
- (3) After A/D conversion, calculate the displayed temperature from the counter value that has been set in the up-counter.

Details of these steps are described in later sections.

Before designing the thermometer, the measured temperature range, standard temperature, and thermistor to be used have to be determined.

Measured temperature range

Determine for your application.

Standard temperature

The standard temperature is the most precise value. Determine the standard temperature as the temperature that you want to be the most precise.

Thermistor Select the thermistor considering the measured temperature range and the standard temperature. It also should match the IC.

Note that this document assumes the following:

Measured temperature range: -30°C-70°C

Standard temperature: 20°C

Thermistor: Thermistor 103AT (Compatibility with S1C60N05)

Up/down counter 32 kHz or 65 kHz OSC1 Multiplying TC15 TC11 TC7 TC3 clock -TC0 circuit -TC12 -TC8 -TC4 Up/Down Start/Stop **ADCLK** control control Data bus EIAD **ADRUN** IAD C15 C11 C7 C3 Interrupt Interrupt Start/Stop request -C12 -C8 -C4 -C0 controller Up-counter Start/Stop control Controller Vss Tr3 Tr2 Tr1 Vss CS RS TH1 TH2 **ADOUT** С Standard R2 External capacitor resistor -\\\-

The following $\ensuremath{\mathrm{A}/\mathrm{D}}$ converter circuit diagram is shown for your reference.

† Thermistor

Rз

Fig. A.1 A/D converter configuration

How to obtain capacitor value and oscillation frequency

The standard resistor and the thermistor are oscillated according to S1C60N05 A/D converter principles. It is necessary to determine the value of the external capacitor for the oscillation. This section describes how to determine the standard resistor value, the external capacitor value and the CR oscillation frequency.

Table A.1

Item	Description	Thermistor 103AT usage example
Standard resistor	Thermistor resistance value at the standard	At 25°C, the 103AT resistance is 10 k Ω .
value (R1)	temperature.	Thus the standard resistance is $10 \text{ k}\Omega$.
Computation of capacitor for oscillation	The relationship between the frequency, capacitor, and the resistor is as follows: $f = \frac{K}{CR} \qquad \begin{bmatrix} f: & Oscillation frequency \\ K: & CR & oscillation frequency \\ coefficient \\ C: & Capacitor \\ R: & Resistance \\ \end{bmatrix}$ From the equation above, C can be obtained based on f and K conditions of S1C60N05. If the C value is smaller within the conditions, the precision is higher.	The f and K conditions of S1C60N05 are as follows: $f(max) = 85 \text{ kHz (limit of IC operation)}$ $1 \leq K \leq 3 \text{ (Oscillation coefficient in S1C60N05)}$ With these conditions, the following equation can be derived: $85 \text{ kHz} \geq \frac{K}{\text{CR2(TMAX)}}$ $\text{R2(TMAX): Minimum resistance of Thermistor}$ $K=3 \text{ is the worst condition, then}$ $C \geq \frac{3}{85 \times 10^3 \times 2.23 \times 10^3} = 15,800 \text{ (pF)}$ As a result, the following is determined: $C = 22,000 \text{ (pF) (Value for general purpose product)}$
Computation of frequency from the standard resistance	If the C value is determined by the above equation, the frequency (fCR1) by the standard resistance can be obtained by the following equation: $fCR1 (kHz) = \frac{K}{CR1}$	The following is obtained: $fCR1 = \frac{(1 \text{ to } 3)}{22,000 \times 10^{-12} \times 10 \times 10^3} = 4.5 \text{ to } 13.5 \text{ (kHz)}$

By the above equations, the capacitor value (22,000 pF) and the oscillation frequency (4.5–13.5 kHz) by the standard resistance are determined.

For the details of 103AT, see Appendix C.

Setting up counter initial value

The capacitor value and the oscillation frequency by the standard resistance are determined in the previous section.

This section describes how to set the initial value of the A/D converter's up counter.

For A/D converter principals, see the technical manual for the S1C60N05.

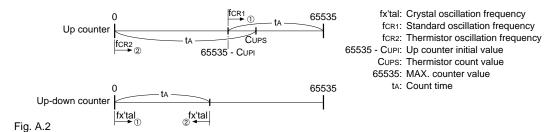


Figure A.2 shows the relationship between the up counter and the up-down counter.

The following conditions should be satisfied:

Condition (A): The up-down counter should not overflow during an up-count

Condition (B): The up counter should not overflow during a down-

With these conditions, the up counter initial value can be obtained with the following equations:

Table A.2

84

Table A.2		
Item	Description	Thermistor 103AT usage example
Obtain the up	From the condition (A) the following equation is	From $fx'tal = 65 \text{ kHz}$, $fCR1 = 4.5-13.5 \text{ kHz}$
counter initial value	derived:	4.5×103
from the condition	65525 Cupi	CUPI = $(1 - \frac{4.5 \times 10^3}{65 \times 10^3}) \times 65535 \approx 59571$
(A)	$65535 > \text{tA} \cdot \text{fx'tal} = \frac{65535 - \text{CUPI}}{\text{fcpl}} \times \text{fx'tal}$	03/10
	ICKI	CUPI = $(1 - \frac{13.5 \times 10^3}{65 \times 10^3}) \times 65535 \approx 50707$
	CUPI > $(1 - \frac{fCRI}{fx^{t}ral}) \times 65535$	03×10°
	1X tai	Initial value $\leq 65535 - 59571 = 5964 \dots (a)'$
	Initial value ≤ 65535 - CUPI(a)	
Obtain the up	From the condition (B) the following equation is	fCR1 = 4.5 - 13.5 kHz,
counter initial value	derived:	fcr2 = 85 kHz (IC operational maximum)
from the condition	$65535 > \text{Cups} = \text{ta} \times \text{fcr2}(3)$	4.5×103
(B)		CUPI = $(1 - \frac{4.5 \times 10^3}{85 \times 10^3}) \times 65535 \approx 60608$
	$=\frac{\text{fCR2}}{\text{fCR1}} \times (65535 - \text{CUPI})$	13.5×103
	fCR1	CUPI = $(1 - \frac{13.5 \times 10^3}{85 \times 10^3}) \times 65535 \approx 53837$
	CUPI = $(1 - \frac{fCR1}{fCR2(3)}) \times 65535$	03/10
	TCR2(3)	Initial value $\leq 65535 - 60608 = 4927 \dots (b)'$
	Initial value ≤ 65535 - Cupi(b)	From (a)' and (b)', the initial value should be set less
	From the above equations (a) and (b) the initial	than 4927. Here, it is set to 3000.
	value can be determined.	(Under the conditions, if the initial value is smaller,
		the precision is higher.)

The initial value (3,000) for the up counter is derived from the above equations.

Computation method of displayed temperature by linear approximation

The following shows the linear approximation equation to derive the displayed temperature.

Displayed temperature (°C) = (Count after A/D conversion - Count for minimum in the temperature range) \times linear approximation coefficient + minimum value of the temperature range

This equation derives the displayed temperature. The following shows the method. First, each value is described.

[Count value after A/D conversion]

This is the up counter value after an A/D conversion.

[Count for the minimum value of the temperature range] [Minimum value of the temperature range]

To derive the displayed temperature by the linear approximation, the temperature range must be determined for the linear approximation. In this example, the measured temperature range is -30 to 70°C.

If the temperature range for the linear approximation is set for every 10°C , the temperature range is -30 to -20°C, -20 to -10°C, and so on. The smallest value of each temperature range segment is the minimum value of the temperature range. The largest value is the maximum value of the temperature range.

The count value for the minimum value for the temperature range is expressed by the following equation:

A/D converter count value =
$$\frac{fCR2(3)}{fCR1} \times up$$
 counter initial value = $\frac{(K/CR2(3))}{(K/CR1)} \times up$ counter initial value = $\frac{R1}{R2(3)} \times up$ counter initial value

By substituting R2 (Thermistor resistance), R1 (standard resistance), and the up counter initial value with actual values, the count value for the minimum of the temperature range is obtained.

[Linear approximation coefficient]

The linear approximation coefficient is the value that shows how many degrees (centigrade) for one count in the temperature range. The linear approximation coefficient is expressed by the following equation:

Linear approximation coefficient =

Temperature range

Count for max. of temperature range - Count for min. of temperature range

The following table shows the various values for every 10°C.

Table A.3

Temperature (°C)	103AT Thermistor R2 resistance ($k\Omega$)	Linear approximation coefficient in the specified temperature range	Count value
-30	111.3	0.0575	269
-20	67.74	0.0373	443
-10	42.45	0.0254	706
0	27.28	0.0234	1099
10	17.96	0.0173	1670
20	12.09	0.0.2.2	2481
30	8.313	0.00887	3608
40	5.828	0.00650	5147
50	4.161	0.00485	7209
60	3.021	0.00368	9930
70	2.229	0.00283	13459

The following example derives a displayed temperature using the values in the above table.

Example: Assume the count value after an A/D conversion is 3200. Then, it is between 3608 and 2481 in the table. As a result the temperature range is 20° to 30°C.

- The count value for the minimum value of the temperature range: 2481
- The count value for the maximum value of the temperature range: 3608

Then, the linear approximation coefficient of the temperature range is 0.00887.

As a result, the displayed temperature is derived as follows:

Displayed temperature = $(3200 - 2481) \times 0.00887 + 20$ (°C) = 26.377 (°C)

Appendix B Error Factors

When a temperature is computed using the S1C60N05 A/D converter and the Thermistor, the following error factors should be taken in account:

Thermistor resistance dispersion

The Thermistor manufacturer should guarantee the precision.

A/D converter error factors


Error (circuit) by A/D conversion in R₁ (standard resistance) and R₂ (Thermistor)

By the CR oscillation at the standard resistor (R₁), the up counter and the up-down counter increment the counter with the timing shown below.

After the A/D RUN, the first trailing edge of the CS pin triggers the up counter enable. From the next trailing edge, the up counter starts to count. In addition, the first trailing edge of the clock after the up counter is enabled, the up-down counter is enabled and it starts to count from the next trailing edge.

When the up counter value becomes 0, the up counter is disabled. The next trailing edge of the clock disables the up-down counter. If this situation occurs, the error described below will result.

The same is true in the CR oscillation by Thermistor R₂, and a similar error occurs. Exception: because the up-down counter is down-counted the following counting error occurs:

```
Started: Min. \approx 0 Max. Up-down counter - 1 count Stopped: Min \approx 0 Total up-down counter - 2 counts
```

Therefore, as for the error from the circuit, a maximum of 2 count errors results.

The effect of the maximum 2 count error is given below.

$$\Delta$$
1MAX (%) = $\frac{2}{(fCLK/fCR1) \times CUPI1} \times 100 --- (1)$

$$\Delta 2\text{MAX (\%)} = \frac{2}{\text{(fcLK/fcR2)} \times \text{CUPS}} \times 100 --- (2)$$

fclk: Clock frequency (32 kHz/64 kHz)

fcR1: CR oscillation frequency by standard resistor

CUPI1: Up counter initial value (times)

Δ1MAX: Maximum error (%) at CR oscillation by standard resistor

fcr2: CR oscillation frequency by Thermistor

CUPS: Thermistor count (times)

Δ2MAX: Maximum error (%) at CR oscillation by Thermistor

In addition, the number of counts of the up-down counter should be the same. Then the following equation is true:

$$\frac{\text{fCLK}}{\text{fCR1}} \times \text{CUPI1} = \frac{\text{fCLK}}{\text{fCR2}} \times \text{CUPS} --- (3)$$

Then, from (3), assume the up-down counter counts shifted 2 counts, the following equations are true:

$$\frac{fCLK}{fCR1} \times CUPI1 = \frac{fCLK}{fCR2} \times CUPS \pm 2$$

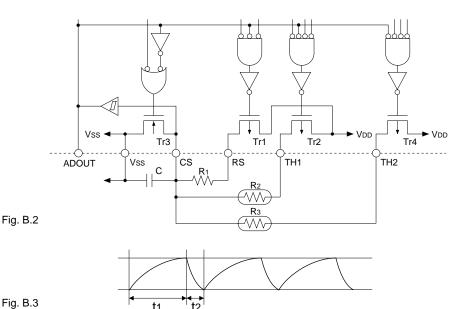
$$\frac{\text{fCR2}}{\text{fCR1}} = \frac{\text{CUPS} \pm 2 \times (\text{fCR2/fCLK})}{\text{CUPI1}} --- (3)'$$

- (1) is the count error at the CR oscillation by the standard resistor.
- (2) is the count error at the CR oscillation by Thermistor.

The total error is expressed by the equation (3)' with the ratio of fcr1 and fcr2.

The segment that represents the error in the equation (3)' is $\pm 2 \times (\text{fcr2/fclk})$. If the values Cupi1 and Cups are large, this error factor may be ignored.

For how to determine the initial value (CUPII) of the up counter, see the section describing thermometer design steps.


CR oscillation constant (K) error

The constant, K, is determined by the logic level of the internal Schmidt trigger of the IC. However, in S1C60N05, the Schmidt trigger shares the circuit with the standard resistor and Thermistor. As a result, oscillation is canceled and no error occurs.

Error by transistor ON resistance

The transistor ON resistance is directly connected to the standard resistor and Thermistor; this may cause an error.

See the circuit shown next to Figure B.2 below. In this circuit, the capacitor is charged by Tr1, T2 ON and Tr3 OFF. If the voltage at the CS pin changes to a certain level, the capacitor charge is drained by Tr1, Tr2 OFF and Tr3 ON. As a result, the CR oscillation is generated as in Figure B.3.

At this time, if the ON resistance of Tr1 and Tr2 ON is t1 and the ON resistance of Tr3 is t2, the constance may be effected.

The S1C60N05 transistors are standardized to have a maximum of 100 Ω .

This standard includes dispersion by temperature characteristics, Pch and Nch.

The Evaluation board transistor uses standard ICs and the actual resistance is about 1 $k\Omega$. (This is not guaranteed and should be regarded as just a reference.)

The error by ON resistance of this transistor is expressed by the following equations:

$$\Delta 3 \text{ (\%)} = \frac{\text{Up counter count - Actual upcounter count}}{\text{Up counter count}} \times 100$$

$$= \frac{\frac{K}{C(R1 + RTr)}}{\frac{CUPI1}{fCR1}} \times \frac{CUPI1}{r} \times 100 = \{1 - \frac{R1}{(R1 + RTr)}\} \times 100$$

$$\Delta 4 \text{ (\%)} = \frac{\text{Up counter count - Actual upcounter count}}{\text{Up counter count}} \times 100$$

$$= \frac{\frac{CUPS}{CUPS} - \frac{K}{C(R2 + RTr)}}{\frac{C(R2 + RTr)}{fCR2}} \times \frac{CUPI1}{r} \times 100 = \{1 - \frac{R2}{(R2 + RTr)}\} \times 100$$

Δ3: Error (%) by transistor ON resistance (CR oscillation by standard resistance)

 Δ 4: Error (%) by transistor ON resistance (CR oscillation by Thermistor)

CUPII: Up counter initial value (times) CUPS: Thermistor count value (times) RTr: Transistor ON resistance (Ω)

fcR1: Oscillation frequency (Hz) (CR oscillation by standard resistance)

fcr2: Oscillation frequency (Hz) (CR oscillation by Thermistor)

Example: Transistor ON resistance error when Thermistor 103AT measures 60°C

$$\Delta 3 = \{ 1 - \frac{10 \times 10^3}{(10 \times 10^3 + 100)} \} \times 100 \approx 1\%$$

$$\Delta 4 = \{ 1 - \frac{3.217 \times 10^3}{(3.217 \times 10^3 + 100)} \} \times 100 \approx 3\%$$

As a result, the following errors occur by directly connecting the transistor ON resistance:

1% at CR oscillation on the standard resistor

3% at CR oscillation on Thermistor

The transistor ON resistance effect is smaller if R1 and R2 are larger. (See Equation $\Delta 3$ and $\Delta 4$.)

In the high temperature range, the R2 value becomes small and $\Delta 4$ becomes large. This causes precision degradation. Compensation is needed to implement a user's required precision.

Figure B.4 shows the A/D converter ON resistance errors ($\Delta 4$ - $\Delta 3$) of the Evaluation board and the actual IC when the thermistor 103AT is used.

ON resistance errors when thermistor 103AT is used

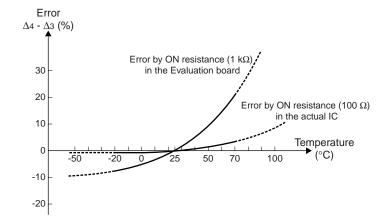


Fig. B.4

This figure shows the plot of errors when the ON resistance in the Evaluation board is 1 k Ω and that of the actual IC is 100 Ω . As shown in the figure, the Evaluation board's error is larger than the actual IC, therefore, programs evaluated using the Evaluation board may not operate normally in the actual IC.

To avoid this problem, it is necessary to reduce the ON resistance error.

Choose a thermistor resistance as large as possible to reduce the ON resistance error. At least 10 k Ω (Ta = 25°C) of resistance is required. The plot (Figure B.4) is in this case shows a 10 k Ω thermistor resistance that satisfies the minimum resistance condition, note, however, that there is a large error increase in temperature over 60°C.

For example, when using a 10 k Ω (Ta = 25°C) thermistor for the actual IC, the ON resistance in the Evaluation board can be close to that of the actual IC by connecting 10 thermistors in series to configure a 100 k Ω (Ta = 25°C) thermistor and by using a 100 k Ω reference resistance and reducing the capacitance to 1/10.

However, ON resistance is so susceptible to source voltage levels and board mount conditions affect the conversion results, therefore, it is impossible to obtain exactly the same results between the Evaluation board and the actual IC even if the methods described above are used. It is necessary to evaluate the A/D conversion using the results of several samples from the final product.

Error by floating capacity

The floating capacity of the inside of an IC, board, lead of a sensor and others may be an error factor. Floating capacity inside an IC may be several pF and it may be ignored by increasing the capacitor value.

Software error

In the software, it is normal to convert the counter value to an actual temperature by a linear approximation. In this method, an error may be caused by the linear approximation in the temperature measured range.

As shown in Figure B.5 below, if the temperature range measured is 20°C to 30°C , the weight of 1 count differs between 20°C and 29°C .

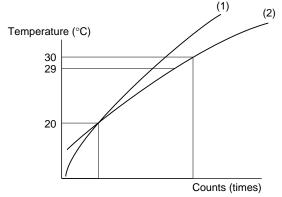


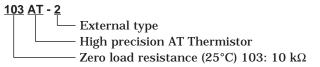
Fig. B.5

On the slope (1), the linear approximation coefficient in this segment for 1 count is large, and the slope (2) has a smaller coefficient.

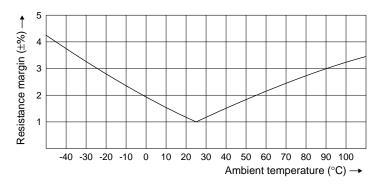
For example, if this segment (20°C to 30°C) is calculated by the same linear approximation coefficient, and if the 20°C is the reference point, then, at 29°C, the linear approximation coefficient becomes the largest and, at 29°C, the error is maximum. The error may differ depending on the temperature measured by the software, up counter initial value and Thermistor type.

Appendix C AT Thermistor

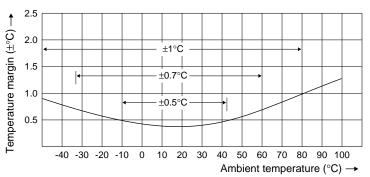
High precision thermistor


The AT Thermistor has a high precision thermistor with small resistance and B constant error margin.

Using the AT Thermistor as a temperature sensor does not require adjustment between a control circuit and the sensor; and the AT Thermistor provides a temperature precision of ±0.3°C. As a result, a high precision temperature control and temperature display are possible.


- Error margins of resistance and temperature characteristics are very small.
- Small age-based change and high reliability
- Low price
- High durability

Usage Air conditioners, fan heaters, FF heaters, refrigerators, water heaters, boiler/kitchen appliances, copiers, printers, facsimiles, automatic vending machines, agricultural equipment, automobiles (for external temperature, internal temperature, air flow sensor), portable thermometers, medical equipment, thermos-type containers, solar heating system, automatic toilet seats, fire alarms, home automation

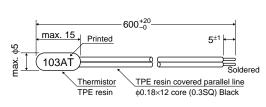

Type number

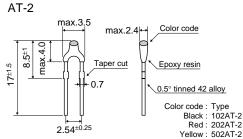
Resistance margin graph

Temperature precision graph

S1C60N05 TECHNICAL MANUAL

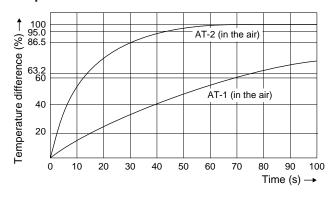
Comparison between AT type and others

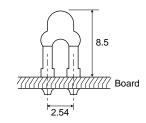

Thermistor	R25 margin	B margin	Temperature margine (25°C)	Temperature control (display) for every 1°C
AT type	±1%	±1%	±0.3°C	Circuit adhustment - not required
Other type	±5%	±3%	±1.3°C	Circuit adjystment - required


Ratings

Type R25		D constant	Thermal radiation	Thermal	Maximum power	Temperature
Type	K 25	B constant	constant (mW/°C)	constant (s)	(mW) at 25°C	range (°C)
102AT-1	1 kΩ ±1%	3100K ±1%	Approx. 3	Approx. 75	15	-50 to 90
202AT-1	$2 \text{ k}\Omega \pm 1\%$	3182K ±1%	Approx. 3	Approx. 75	15	-50 to 90
502AT-1	5 kΩ ±1%	3324K ±1%	Approx. 3	Approx. 75	15	-50 to 105
103AT-1	$10 \text{ k}\Omega \pm 1\%$	3435K ±1%	Approx. 3	Approx. 75	15	-50 to 105
102AT-2	1 kΩ ±1%	3100K ±1%	Approx. 2	Approx. 15	10	-50 to 90
202AT-2	2 kΩ ±1%	3182K ±1%	Approx. 2	Approx. 15	10	-50 to 90
502AT-2	$5 \text{ k}\Omega \pm 1\%$	3324K ±1%	Approx. 2	Approx. 15	10	-50 to 110
103AT-2, 3	10 kΩ ±1%	3435K ±1%	Approx. 2	Approx. 15	10	-50 to 110
203AT-2	20 kΩ ±1%	4013K ±1%	Approx. 2	Approx. 15	10	-50 to 110
103AT-4	10 kΩ ±1%	3435K ±1%	Approx. 2	Approx. 10	10	-30 to 90

External dimension (AT-3, 4 in omission)


AT-1


White: 103AT-2 No color: 203AT-2

Thermal response

Board soldering method

Proper usage example

Proper soldering conditions: 260°C, 10 seconds or less

Resistance - Temperature characteristics -50 to 29°C

30 to110°C

emp	Dm //	103AT	D: // ^*
(°C)	Rmax (kΩ)	Rst (kΩ)	Rmin (kΩ)
-50	344.4	329.2	314.7
-49 -48	324.7 306.4	310.7	297.2
-48 -47	289.2	293.3 277.0	280.7 265.3
-46	273.2	261.8	250.8
-45	258.1	247.5	237.3
-44	244.0	234.1	224.6
-43	230.8	221.6	212.7
-42	218.5	209.8	201.5
-41	206.8	198.7	191.0
-40	195.9	188.4	181.1
-39	185.4	178.3	171.5
-38	175.5	168.9	162.6
-37	166.2	160.1	154.2
-36	157.5	151.8	146.2
-35	149.3	144.0	138.8
-34	141.6	136.6	131.8
-33	134.4	129.7	125.2
-32	127.6	123.2	118.9
-31	121.2	117.1	113.1
-30	115.1	111.3	107.5
-29	109.3	105.7	102.2
-28	103.8	100.4	97.16
-27	98.63	95.47	92.41
-26	93.75	90.80	87.93
-25	89.15	86.39	83.70
-24	84.82	82.22	79.71
-23	80.72	78.29 74.58	75.93 72.36
-22 -21	76.85 73.20	74.58	
-21			68.99
-20 -19	69.74 66.42	67.74 64.54	65.80 62.72
-19	63.27	61.52	59.81
-18 -17	60.30	58.66	57.05
-17	57.49	55.95	54.44
-16	54.83	53.39	51.97
-13	52.31	50.96	49.63
-14	49.93	48.66	47.42
-13	47.67	46.48	45.31
-11	45.53	44.41	43.32
-10	43.50	42.45	41.43
-9	41.54	40.56	39.59
-8	39.68	38.76	37.85
-7	37.91	37.05	36.20
-6	36.24	35.43	34.63
-5	34.65	33.89	33.14
-4	33.14	32.43	31.73
-3	31.71	31.04	30.39
-2	30.35	29.72	29.11
-1	29.06	28.47	27.89
0	27.83	27.28	26.74
1	26.64	26.13	25.62
2	25.51	25.03	24.55
3	24.44	23.99	23.54
4	23.42	22.99	22.57
5	22.45	22.05	21.66
6	21.52	21.15	20.78
7	20.64	20.29	19.95
8	19.80	19.48	19.15
9	19.00	18.70	18.40
10	18.24	17.96	17.67
11	17.51	17.24	16.97
12	16.80	16.55	16.31
13	16.13	15.90	15.67
14	15.50	15.28	15.06
15	14.89	14.68	14.48
16	14.31	14.12	13.93
17	13.75	13.57	13.40
18	13.22	13.06	12.89
19	12.72	12.56	12.41
20	12.23	12.09	11.95
21	11.77	11.63	11.50
22	11.32	11.20	11.07
23	10.90	10.78	10.66
24	10.49	10.38	10.27
25	10.10	10.00	9.900
26	9.732	9.632	9.533
27	9.381	9.281	9.181
28	9.044	8.944	8.845

Temp	103AT				
(°C)	Rmax (kΩ)	Rst (kΩ)	Rmin (kΩ)		
30	8.412	8.313	8.215		
31	8.113	8.015	7.917		
32	7.826	7.729	7.632		
33	7.551	7.455	7.359		
34	7.288	7.192	7.097		
35	7.036	6.941	6.846		
36	6.793	6.699	6.606		
37	6.561	6.468	6.375		
38 39	6.338	6.246	6.154 5.942		
40	6.124 5.918	6.033 5.828	5.739		
41	5.719	5.630	5.541		
42	5.527	5.439	5.352		
43	5.343	5.256	5.170		
44	5.166	5.080	4.996		
45	4.996	4.912	4.828		
46	4.833	4.749	4.667		
47	4.676	4.594	4.512		
48	4.525	4.444	4.364		
49	4.380	4.300	4.221		
50	4.240	4.161	4.084		
51	4.104	4.026	3.950		
52	3.973	3.897	3.822		
53	3.847	3.772	3.698		
54 55	3.726	3.652	3.579		
56	3.609 3.497	3.537 3.426	3.465 3.355		
57	3.389	3.319	3.249		
58	3.285	3.216	3.148		
59	3.184	3.116	3.049		
60	3.088	3.021	2.955		
61	2.994	2.928	2.863		
62	2.903	2.838	2.775		
63	2.816	2.752	2.690		
64	2.732	2.669	2.608		
65	2.650	2.589	2.529		
66	2.572	2.512	2.452		
67	2.496	2.437	2.379		
68	2.423	2.365	2.308		
69 70	2.353 2.285	2.296 2.229	2.240 2.174		
70	2.285	2.229	2.174		
72	2.155	2.103	2.047		
73	2.093	2.040	1.987		
74	2.034	1.981	1.930		
75	1.976	1.924	1.874		
76	1.920	1.870	1.820		
77	1.866	1.817	1.768		
78	1.814	1.766	1.718		
79	1.764	1.716	1.669		
80	1.716	1.669	1.622		
81	1.668	1.622	1.577		
82	1.623	1.577	1.533		
83	1.578	1.534	1.490		
84 85	1.536	1.492 1.451	1.449 1.409		
86	4.454	1.412	1.371		
87	1.415	1.374	1.333		
88	1.378	1.337	1.297		
89	1.341	1.301	1.262		
90	1.306	1.266	1.228		
91	1.271	1.233	1.195		
92	1.238	1.200	1.163		
93	1.206	1.169	1.132		
94	1.175	1.138	1.102		
95	1.144	1.108	1.073		
96	1.115	1.080	1.045		
97	1.087	1.052	1.018		
98	1.059	1.025	0.9918		
99	1.032	0.9988	0.9663		
100	1.006 0.9812	0.9735 0.9489	0.9416 0.9175		
101	0.9812	0.9489	0.9175		
102	0.9330	0.9230	0.8716		
103	0.9100	0.8793	0.8496		
105	0.8877	0.8575	0.8284		
106	0.8660	0.8364	0.8077		
107	0.8456	0.8159	0.7877		
108	0.8245	0.7960	0.7683		
109	0.8047	0.7767	0.7495		

EPSON

International Sales Operations

AMERICA

EPSON ELECTRONICS AMERICA, INC.

- HEADQUARTERS -

150 River Oaks Parkway San Jose, CA 95134, U.S.A.

Phone: +1-408-922-0200 Fax: +1-408-922-0238

- SALES OFFICES -

Wes

1960 E. Grand Avenue El Segundo, CA 90245, U.S.A.

Phone: +1-310-955-5300 Fax: +1-310-955-5400

Central

101 Virginia Street, Suite 290 Crystal Lake, IL 60014, U.S.A.

Phone: +1-815-455-7630 Fax: +1-815-455-7633

Northeast

301 Edgewater Place, Suite 120 Wakefield, MA 01880, U.S.A.

Phone: +1-781-246-3600 Fax: +1-781-246-5443

Southeast

3010 Royal Blvd. South, Suite 170 Alpharetta, GA 30005, U.S.A.

Phone: +1-877-EEA-0020 Fax: +1-770-777-2637

EUROPE

EPSON EUROPE ELECTRONICS GmbH

- HEADQUARTERS -

Riesstrasse 15

80992 Munich, GERMANY

Phone: +49-(0)89-14005-0 Fax: +49-(0)89-14005-110

DÜSSELDORF BRANCH OFFICE

Altstadtstrasse 176

51379 Leverkusen, GERMANY

Phone: +49-(0)2171-5045-0 Fax: +49-(0)2171-5045-10

UK & IRELAND BRANCH OFFICE

Unit 2.4, Doncastle House, Doncastle Road Bracknell, Berkshire RG12 8PE, ENGLAND

Phone: +44-(0)1344-381700 Fax: +44-(0)1344-381701

FRENCH BRANCH OFFICE

1 Avenue de l' Atlantique, LP 915 Les Conquerants Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE Phone: +33-(0)1-64862350 Fax: +33-(0)1-64862355

BARCELONA BRANCH OFFICE

Barcelona Design Center

Edificio Testa, Avda. Alcalde Barrils num. 64-68 E-08190 Sant Cugat del Vallès, SPAIN

Phone: +34-93-544-2490 Fax: +34-93-544-2491

Scotland Design Center

Integration House, The Alba Campus
Livingston West Lothian, EH54 7EG, SCOTLAND
Phone: +44-1506-605040 Fax: +44-1506-605041

ASIA

EPSON (CHINA) CO., LTD.

23F, Beijing Silver Tower 2# North RD DongSanHuan

ChaoYang District, Beijing, CHINA

Phone: 64106655 Fax: 64107319

SHANGHAI BRANCH

7F, High-Tech Bldg., 900, Yishan Road

Shanghai 200233, CHINA

Phone: 86-21-5423-5577 Fax: 86-21-5423-4677

EPSON HONG KONG LTD.

20/F., Harbour Centre, 25 Harbour Road

Wanchai, Hong Kong

Phone: +852-2585-4600 Fax: +852-2827-4346

Telex: 65542 EPSCO HX

EPSON TAIWAN TECHNOLOGY & TRADING LTD.

14F, No. 7, Song Ren Road, Taipei 110 Phone: 02-8786-6688 Fax: 02-8786-6660

HSINCHU OFFICE

No. 99, Jiangong Rd., Hsinchu City 300

Phone: +886-3-573-9900 Fax: +886-3-573-9169

EPSON SINGAPORE PTE., LTD.

No. 1 Temasek Avenue, #36-00 Millenia Tower, SINGAPORE 039192

Phone: +65-6337-7911 Fax: +65-6334-2716

SEIKO EPSON CORPORATION KOREA OFFICE

50F, KLI 63 Bldg., 60 Yoido-dong

Youngdeungpo-Ku, Seoul, 150-763, KOREA Phone: 02-784-6027 Fax: 02-767-3677

GUMI OFFICE

6F, Good Morning Securities Bldg.

56 Songjeong-Dong, Gumi-City, 730-090, KOREA Phone: 054-454-6027 Fax: 054-454-6093

SEIKO EPSON CORPORATION ELECTRONIC DEVICES MARKETING DIVISION

ED International Marketing Department

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN

Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5117

S1C60N05 Technical Manual

SEIKO EPSON CORPORATION ELECTRONIC DEVICES MARKETING DIVISION

■ EPSON Electronic Devices Website

http://www.epsondevice.com